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Abstract

Fundus images play a key role in clinical diagnosis and are especially critical for the
diagnosis of retinal diseases. However, current fundus images are usually two-dimensional
and lack three-dimensional depth information, which poses a limitation for physicians to
fully understand patients’ ocular diseases. For diseases that require depth information on
the fundus surface such as glaucoma [MacCormick et al., 2019], commonly used diagnostic
methods such as fundus OCT often do not provide sufficient 3D information, and these
methods do not include background parameters regarding fundus photography information.
In addition, since the fundus is located inside the eye, acquiring its corresponding 3D image
is often not easy, especially when using a mobile camera like the remidio.

To address this challenge, this study worked on developing a method that can estimate
3D surface contours from monocular fundus images to provide more information about the
surface structure of the eye. We created a dataset containing fundus OCT images and their
corresponding 3D truth values, named 3D-CSCR.Based on this dataset, we developed a
method capable of constructing corresponding 3D models from monocular fundus images
and constructed an average template of the fundus 3D model to provide generic structural
features.

The results of our study show that our method has made significant progress in
providing depth information, which provides ophthalmologists with more comprehensive
image information and thus contributes to a more accurate diagnosis of ocular diseases,
especially diseases like glaucoma, which require depth information. In addition, our
study provides new perspectives for improving ophthalmic medical diagnosis and lays a
solid foundation for research and development in the field of 3D reconstruction based on
monocular fundus images.
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Chapter 1

Introduction

1.1 Motivation

Scientific and technological progress can often affect traditional medical diagnosis methods.
In recent years, the improved performance of artificial intelligence algorithms, especially the
application of machine learning [Hosny et al., 2018] technologies such as convolutional neural
networks to variational autoencoders in the field of medical image analysis, has promoted
the rapid development of automated disease diagnosis. As a branch of computer vision
technology, medical 3D reconstruction technology can provide rich and clear 3D images for
medical image processing, thus playing a vital role in the diagnosis of diseases.

However, due to the small size of biomedical images, the high levels of noise, and the
difficulty of obtaining samples, the 3D reconstruction of biomedical images is more difficult
than the reconstruction of human hands and the reconstruction of unmanned driving scenes.
For example, for hand reconstruction, there are many clean and high-precision hand datasets
containing 3D information, such as DART, FreiHAND and HO3D, and the MANO [Romero,
Tzionas, and Black, 2017] parameterised model can be applied to pre-estimate a reasonable
and accurate initial hand pose. For many types of medical imaging, including those for
retina surface OCT, lung cancer, and glaucoma, do not have a prior 3D model, and most
pre-trained network parameters such as ImageNet and VggNet do not include these types
of images, which adds a lot of resistance to the 3D reconstruction of biomedical images.

Many disease recognition projects based on biomedical images, such as [Yu-Qian et al.,
2006][Song et al., 2017][Oktay et al., 2018], have focused on using segmentation networks
like U-Net or Mask R-CNN for disease identification and segmentation. Compared with the
fields of medical image segmentation and classification, which have made significant progress,
research on generating 3D models based on biomedical images is relatively limited. Although
some research studies, such as [Y. Wang, Zhong, and Hua, 2019] propose, have successfully
used 3D/4D-CT projection or X-ray images to obtain reliable 3D information and construct
accurate 3D models, the associated costs are prohibitively high in clinical settings. It is
unrealistic for developing countries like China or Africa to be able to afford such expenses
for clinical trials.

In addition, machine learning-based clinical apps like PupilScreen [Mariakakis et al.,
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Chapter 1. Introduction

2017] have been successful in areas where tech services are relatively scarce, such as Africa.
The app enables an initial diagnosis of eye health by capturing images of the eye using a
mobile phone camera and relying on computer vision and machine learning algorithms to
analyse these images. This example inspired me to think about how machine learning can
lead to technological advances in clinical settings, especially in developing countries. In
these places, reducing the cost of 3D reconstruction becomes a crucial factor.

By studying research papers related to 3D reconstruction of the hand, such as the
MANO parametric model of the hand and the S2HAND paper published by Y. Chen et al.,
2021 on generating a 3D hand model from a monocular hand image by leveraging the
consistency between 2D and 3D representations, we can analyze and conclude from them
that the research o n S2HAND has demonstrated that implementing 3D modeling of the
hand requires only a single RGB captured image of the hand. This marks a significant cost
reduction compared to traditional 3D reconstruction techniques, which typically involve
using a depth camera to capture a depth map and then manually modeling the hand in 3D.
This finding further supports our research view that if depth values can be extracted from
monocular medical images and utilized for 3D modeling, it will significantly reduce the cost
associated with traditional methods. In addition, some diseases, such as glaucoma, which
was analysed in the MacCormick et al., 2019 paper, may also lead to changes in the ratio
of the optic cup to the optic disc of the eye. The ability to quickly construct 3D models
based on OCT images during clinical diagnosis would help to easily identify the presence of
these diseases. This further emphasises the importance and potential application areas of
our research.

1.2 Project Aim

Based on the above situation, this study aims to develop a 3D reconstruction method based
on monocular fundus images through machine learning. This method processes biomedical
image data with a small amount of noise and extracts 3D features of the depth value of the
fundus surface. It will use Computer vision technology generates 3D models to promote the
development of automated disease diagnosis technology.

1.3 Objectives

In order to achieve our research goals, we need to proceed step by step with the analysis:

• Firstly, we need to find an applicable fundus image dataset. This dataset should
contain clear fundus OCT images to ensure image quality and feature clarity. This step
is to ensure that we can extract valid 3D information from the images in the subsequent
experiments, and the fundus OCT images can provide us with the necessary fundus
features to ensure that we can restore the corresponding 3D models in the subsequent
applications. At the same time, OCT images are not as expensive as depth cameras
or Lidar 3D inspection images [Qian et al., 2020], which ensures the clinical usability
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of our study and reduces the cost of 3D reconstruction, in line with our expectations
for the results of our study.

• Next, we need to determine whether the dataset already contains the 3D depth
value information required for our experiments. If the dataset does not contain this
information, we will need to integrate the image feature information in the dataset
and construct the corresponding 3D model to infer the corresponding 3D depth value
information. This step provides the 3D truth-value labels for our subsequent neural
network training and is an integral part of our research.

• After completing the preparation of the dataset, we need to construct a machine
learning neural network suitable for this dataset. The goal of our research is to enable
the network to extract valid 3D depth value information from monocular fundus OCT
images and use this information to restore the corresponding 3D model. The most
critical part in this network is to train it to have the ability to learn to recover 3D
structures from 2D images. Unlike traditional 2D image detection and classification,
our deep learning network needs to not only extract the feature details of 2D images,
but also learn the structural features of the fundus surface in 3D space.

• Finally, we will conduct extensive testing and evaluation of the trained model. We will
use different evaluation criteria to judge the performance of the model, as well as to
analyse the reasons for the poor performance and to find the direction of improvement,
and finally to achieve the results we are satisfied with.

1.4 Current Approach

Firstly, we constructed a fundus image dataset containing 3D depth value information. We
obtained clean fundus OCT images by eliminating the black circular localisation lines and
the green scanning area noise caused by the OCT device shots.

To extract effective 3D depth information from the images, we combined the fundus OCT
top view and its corresponding slices, constructed a world coordinate system, matched the
specific coordinate positions in the fundus OCT top view with the OCT slice images, and
filled in the blank areas between the slice images using Gaussian interpolation. This process
restored the complete 3D model of the fundus and preserved the corresponding 3D depth
information.

After completing the dataset preparation, we proceeded to construct a machine learning
neural network suitable for this dataset. We chose the U-Net network based on the image
segmentation task and modified it for the regression task. We also added a dropout layer
between the Decoder module and the Encoder module in the U-Net network to prevent
overfitting problems, especially when the dataset is small. Additionally, we proposed a
composite loss function that combines the Mean Square Error (MSE) and the SmoothL1 loss
function. The MSE was used for pixel-level image variance, while incorporating the SSIM
to consider the structural and perceptual quality of the image. This composite loss function
improved the network’s ability to perceive changes in image structure while retaining the
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ability to compare pixel-level image differences, thus effectively enhancing the adaptability
of the U-Net network model to our research goals.

Finally, we performed extensive testing and evaluation of the trained U-Net model using
MSE to assess the prediction of 3D depth values. The results showed that our U-Net network
model was able to extract the feature details of fundus OCT images well and learned the
structural features of the 3D model to some extent. Additionally, we identified a direction
for further in-depth research, aiming to improve the network model’s ability to learn 3D
structural features. Referring to the MANO hand parametric model, we abstracted the
fundus 3D model into a digitized parametric model and constructed an average template of
the fundus 3D model. This template was input into the model during network training to
improve the structural features.

1.5 Report Overview

The rest of this thesis is organised as follows. Chapter 2 presents the background and
literature review. In Chapter 3, the development of the new 3D retinal surface dataset
is presented. The 3D ground truth is constructed in Chapter 4. The first model for
3D reconstruction is presented in Chapter 5. The template-based model is developed in
Chapter 6. This work is discussed and concluded in Chapters 7 and 8
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Chapter 2

Background and Literature Review

Over the past two decades, computer vision has revolutionised the field of medical diagnosis
by enabling significant advancements in imaging technology. The emergence of advanced
medical imaging techniques, such as 3D imaging [Schwab et al., 2017], has greatly enriched
the visual information available to surgeons and physicians, enabling them to make more
accurate diagnoses and develop improved treatment strategies.

One of the key areas where 3D imaging has had a transformative impact is in medical
diagnosis. Although the 3D information of biomedical images is hard to obtain, it is
undeniable that machine learning of biomedical images can play a great role in clinical
diagnosis. By visualising anatomical structures in three dimensions, healthcare providers
can gain a more comprehensive understanding of complex diseases and their progression.
This enables them to plan treatments more effectively, perform surgical interventions with
greater precision, and deliver personalised care tailored to each patient’s unique needs.
Such as, in order to promote hematopathologists to study megakaryocytes in bone marrow
trephine biopsy, Song et al., 2017 proposed a new framework based on supervised machine
learning, using colour and texture features to effectively delineate megakaryocyte nuclei and
cytoplasm in digital images of bone marrow trephine biopsy. Oktay et al., 2018 proposed a
novel attention gate (AG) model for medical imaging, using AG to train the U-Net model,
which implicitly learns to suppress irrelevant areas in the input image while highlighting
salient areas features useful for specific tasks. Using this method to locate the pancreas has
greatly improved performance compared with the cascaded multi-model CNNmethod [S. Liu
et al., 2022]. The availability of 3D imaging [Singh et al., 2020] has significantly improved
the accuracy and efficacy of medical diagnoses, leading to better patient outcomes.

2.1 Application of 3D reconstruction in the field of computer
vision

In the field of computer vision, 3D reconstruction technology is a compelling field, which
aims to obtain the geometry of objects from a collection of images. Its applications span
many fields such as robot navigation [M. Li et al., 2019], object recognition and scene

5



Chapter 2. Background and Literature Review

understanding [Handa et al., 2016], 3D modeling and animation, industrial control, and
medical diagnosis [Zhao and L. Wang, 2019][Borse, S. Patil, and B. Patil, 2013]. The
core goal of this technology is to convert information from single-view or multi-view
two-dimensional images or point cloud data into 3D models containing three-dimensional
structural and geometric information [Ram et al., 2022]. 3D reconstruction is a complex
process involving multiple technical fields. Its core technology roughly includes the following
three aspects:

• Visual geometry is the basis of 3D reconstruction, which studies camera projections
and geometric transformations. By calculating feature points, camera parameters and
geometric relationships in the image, the three-dimensional shape and position of the
object can be reconstructed.

• Deep Learning: Deep learning methods, especially Convolutional Neural Networks
(CNN) and Generative Adversarial Networks (GAN), have achieved tremendous
breakthroughs. They can be used for tasks such as extracting features from images,
performing image segmentation, and generating realistic 3D models.

• Point cloud processing: For point cloud-based 3D reconstruction, point cloud
processing technology is the key. This includes filtering, registration, segmentation
and fitting of point clouds to obtain accurate 3D models.

In addition to division based on application fields, 3D reconstruction can also be classified
and applied according to the type of reconstructed objects. These include human body
reconstruction SMPL [Loper et al., 2015], scene reconstruction CAM [Facil et al., 2019],
object reconstruction SMR [Hu et al., 2021], human hand reconstruction MANO [Romero,
Tzionas, and Black, 2017], and medical image 3D model construction, etc. These different
types of application fields reflect the diversity and wide application of 3D reconstruction
technology. In the field of biomedicine, 3D reconstruction technology plays a vital role in
medical image processing [J.-J. Wang et al., 2021], pathological analysis, surgical planning,
etc. Compared with the application of 2D images in the medical field, common surgical
procedures use X-rays as a reference [Ham, Wesley, and Hendra, 2019] for doctors to perform
operations based on specific conditions. However, some important features often cannot be
well visualized in 2D images [Yao et al., 2003]. Besides, medical diagnosis based on 2D
images also depends on the accuracy of the image, including the number of 2D views, noise
in the image, and image distortion. These requirements further limit the medical diagnosis
effect of 2D views in some cases.

As 3D reconstruction technology in the biomedical field gradually matures, the above-
mentioned problems have gradually been solved. 3D reconstruction technology provides
doctors and researchers with comprehensive and accurate vision by converting 2D medical
images into 3D models with spatial information. Display and analysis tools. This allows
them to examine medical images from multiple angles, gain a deeper understanding of
anatomy and pathology, and make informed decisions about patient care. [Pichat et al.,
2018] introduces 3D reconstruction methods for 3D histology to overcome the limitations
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of single-section studies in a dimensional range. [Guedri, Malek, and Belmabrouk, 2015]
used fractal interpolation to 3D reconstruct human retinal blood vessels. [Sumijan et al.,
2017] in their work introduced a method to calculate volume Hemorrhage Brainon CT-Scan
Image and 3D Reconstruction. These examples illustrate the expanding promise of 3D
reconstruction in biomedicine, demonstrating its versatility and transformative potential.
As this technology continues to develop, it is expected to further enhance the capabilities
of medical professionals and researchers seeking to improve healthcare and gain a deeper
understanding of complex biological systems.

2.2 Methods to achieve 3D reconstruction

Traditional 3D reconstruction methods of biomedical images mainly rely on geometric
models and traditional computer vision technology. These methods reconstruct 3D models
by extracting geometric features and edge information from medical images. For example,
[Kar et al., 2015] proposed a class-specific 3D shape model learning method based on object
contours, capable of capturing intra-class shape variations from a single image. In addition,
the voxelization method divides medical images into voxel grids and uses the relationship
between pixel gray values and adjacent pixels for reconstruction. Another approach proposed
by [Huang, H. Wang, and Koltun, 2015] is to use a global network to establish dense pixel-
level correspondence between natural and rendered images, which is then used for joint
image segmentation and 3D model building. Furthermore, [Widya et al., 2019] suggested
that medical images can be reconstructed from videos by learning structure from motion
(SfM). The 3D model generated by SfM can provide better 3D visualization and provide
more details for doctors to diagnose. However, traditional methods have certain limitations
when dealing with complex scenes, noise, and blurred images. In the field of biomedical
images, it is more difficult to obtain clear, high-quality and sufficient images of medical
cases than large objects (such as human bodies, buildings, scenes).

In recent years, deep learning techniques have made remarkable advancements in the
field of 3D reconstruction, particularly in biomedical imaging. Deep learning methods
leverage neural network models to achieve more accurate and efficient 3D reconstruction
of biomedical images. These methods can learn meaningful feature representations from
images and directly reconstruct 3D structures through end-to-end training processes.
Convolutional neural networks (CNNs) [Aghasi et al., 2017] excel in extracting image
features, while [McCann, Unser, et al., 2019] proposed imaging system models that
use forward models and sparsity-based regularisation to solve reconstruction problems.
Generative adversarial networks (GANs) offer advantages in improving image quality and
capturing fine details. Additionally, methods based on variational autoencoders (VAEs) and
attention mechanisms have emerged, aiming to enhance computational efficiency and image
quality while maintaining accuracy.

Although modern methods have made significant progress in achieving 3D reconstruc-
tion, 3D reconstruction in the biomedical field still presents some challenges. Biomedical
images, such as optical coherence tomography (OCT) images, are often affected by various
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interference factors, such as positioning lines and time recording noise, which makes it
difficult to obtain a large number of clean medical images. Additionally, with CT (computed
tomography) images, there is a potential risk of radiation exposure for the patient due to
their use of X-rays. Especially for children, pregnant women, and patients who require
multiple scans, radiation dose can be a concern. Because CT images have high resolution
in displaying hard tissues and relatively low resolution in displaying soft tissues, they are
often used for 3D reconstruction of non-soft tissues (such as teeth and bones) [Heo and
Chae, 2004]. MRI (magnetic resonance images) is more expensive than OCT images and
has a longer scan cycle, it is not suitable for medical image applications that require instant
imaging such as eyeball scanning. However, in terms of 3D reconstruction, MRI-based
biomedical images have shown outstanding performance good effect. [Gnonnou and Smaoui,
2014] proposed a 3D reconstruction method based on breast cancer MRI images, which
effectively solved the problem of detecting such cancers and the problem of 3D reconstruction
of MRI images for breast cancer detection.

2.3 3D reconstruction based on monocular images

Compared with multi-view 3D construction, the 3D reconstruction method based on
single view has wider availability of image resources. However, extracting information
from monocular images and predicting 3D models are also more challenging tasks [Tian
et al., 2023], because a single view can only express limited feature information [Toppe,
Nieuwenhuis, and Cremers, 2013]. In addition, occlusion often occurs in single-view images
[Y. J. Lee et al., 2012], which means that some parts of an object may be occluded by other
objects or structures, resulting in incomplete image information. Unlike the multi-view
approach, the single view problem cannot be solved simply by comparing multiple views
together.

The initial single-view three-dimensional reconstruction work mainly restored the object
shape through mathematical perspective changes [Lavest, Rives, and Dhome, 1993]. After
that, [Sun et al., 2018] proposed to simultaneously recover 3D shape and surface color
from a single image, namely ”color 3D reconstruction”. With the rapid development of
deep learning, single-view 3D reconstruction methods based on voxel, point cloud and grid
representation have been applied [Shin, Fowlkes, and Hoiem, 2018], achieving better results
than before.

After this, a number of excellent results on single-view based 3D modelling have
gradually emerged in the field of biomedical imaging, e.g., [Y. Wang, Zhong, and Hua,
2019] proposed DeepOrganNet, a method that can generate and visualise fully high-
fidelity 3D / 4D organ geometry models in real-time from single-view medical images with
complex backgrounds. Unlike conventional 3D / 4D medical image reconstruction that
requires nearly hundreds of projections, the method learns to smooth the model through
the DeepOrganNet framework, exploits information-rich latent descriptors extracted from
the input 2D image, and generates high-quality and high-fidelity streaming meshes for the
3D/4D lung model, significantly shortening the surgical time for dynamic visualisations and
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significantly reducing the human subjects’ imaging dose. After that, [Loper et al., 2015]
proposed a skeleton-driven parametric human body model SMPL. The model is learned
based on a large amount of human body data and uses a vertex-based additive method
to control the shape changes of the 3D mesh. The SMPL model is controlled by a shape
component and a pose component, enabling it to effectively represent the 3D form of the
human body and provide a template mesh for single-view 3D reconstruction. Similarly,
the MANO [Romero, Tzionas, and Black, 2017] hand parametric model is also based on
the SMPL hand topology. The MANO model is similar to SMPL. It includes a template
mesh, a dynamics tree (a tree structure for finger movement), parameters that control the
shape and posture of the hand, as well as structural parameters such as joint regression
matrices and skin weights. All these parameters provide strong support for single-view-
based 3D hand reconstruction. In addition, there are some other related research, such as
SMR based on 2D-3D loss consistency [Hu et al., 2021], and DD-Net [Guan et al., 2021],
which is specifically designed for 3D sparse and limited-view photoacoustic tomography
(PAT) image reconstruction. By incorporating dense connections and dilated convolutions
into the U-Net architecture, DD-Net enhances information flow and expands the effective
receptive field without sacrificing resolution coverage. Similarly,[Gunduzalp et al., 2021]
proposed a reconstruction technique that leverages deep learning and adopts a 3D U-Net
architecture (similar to U-Net) to denoise sparse or noisy signal projections in the image
domain. Furthermore, in [Seok et al., 2021] paper, a U-Net based deep learning architecture
was used to generate personalized 3D models for patients undergoing thyroid surgery (after
obtaining appropriate informed consent).etc.These studies have achieved satisfactory results.

Medical imaging plays a key role in clinical diagnosis and promotes advancements in the
field of clinical medicine. Our research is to achieve three-dimensional reconstruction based
on monocular fundus OCT images without providing depth information. These fundus OCT
images will be converted into accurate 3D models to promote the development of automated
disease diagnosis. Especially in the diagnosis of complex fundus and retinal diseases, the
use of two-dimensional fundus OCT images and their corresponding visualized 3D images
allows medical professionals to better understand the complex structure of the fundus retinal
surface, thereby improving the level of medical diagnosis.
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Chapter 3

Building a New 3D Retinal Surface
Dataset

3.1 Requirements and Search of Suitable Datasets

3.1.1 Requirements

Our research aims to achieve 3D reconstruction based on monocular fundus images, and we
have the following data requirements for our experiments:

• Requirements for Fundus Images: We require a dataset containing multiple fundus
images, which should be from different patients or sources, and try to ensure that the
dataset covers different kinds of fundus diseases and health states so that the model
can work effectively in multiple situations. The size and quality of the dataset is also
important for training the deep learning model, so we need to collect as many fundus
images as possible and filter the data to remove images with obvious anomalies and
errors, and make sure that the structural regions of the fundus are clear enough to
help in the extraction of features from the surface of the fundus.

• Depth value labels: For each fundus image, we need to have corresponding depth value
labels. These labels contain the specific depth values of the fundus surface structures,
expressed in pixel units from the world coordinate system. This requires us to extract
the depth information in the fundus image by means of data preprocessing to construct
the corresponding mask labels.

• Training and Testing Sets: The division of training and testing sets is also very
important for model training. The training set will be used to train the regression
network model while the test set will be used to evaluate the performance of the model.
When dividing the fundus image dataset into a training set and a test set, make sure
that there is no data overlap between the two to ensure the generalisation ability of
the model and avoid overfitting during training.
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3.1.2 Data Search

We performed a search for datasets, including the Messidor dataset that facilitates computer-
aided diagnosis of diabetic retinopathy, the Diabetic Retinal Morphology dataset provided
by the Kaggle competition, the DRISHTI-GS1 dataset from the prospective study of
glaucoma conducted at the Aravind Eye Hospital in India, and datasets from other domains
such as the 3D reconstruction of the hand for the FreiHAND and HO3D datasets, etc.

We found that although deep learning has been widely used in the field of biomedical
imaging with significant achievements in different disease domains, most of the applications
are still focused on disease classification or disease segmentation [He et al., 2021] of 2D
images [Aggarwal et al., 2011] via neural networks. Even though we have been able to
extract features and construct 3D models from monocular images in dealing with large
objects, such as faces [Amin and Gillies, 2007], hands [Loper et al., 2015], and cars [Lequellec
and Lerasle, 2000], no in-depth research results have been achieved in the field of monocular
image-based 3D reconstruction of tiny objects, such as the fundus retina. Although many
datasets exist that provide excellent OCT fundus images and their labels, they lack the
corresponding labels with information about the details of the fundus surface, and therefore
we are unable to construct the corresponding 3D models.

Based on the above, we can draw the following conclusions:
(i) Although several good quality fundus datasets are currently available, these datasets

do not contain 3D information on fundus OCT, which is crucial in our study.
(ii) Relevant datasets that we currently have include the DR-OCT dataset and the CSCR

dataset. Of particular note, the CSCR dataset not only contains OCT top-view images of
the fundus surface, but also provides the corresponding sliced OCT images. This provides
the necessary foundation for us to combine the existing 2D dataset to construct a dataset
containing 3D depth information of the fundus surface.

Therefore, (iii) we plan to create a new dataset applicable to our study based on
the existing dataset, which will contain information about the 3D depth values of the
fundus surface. This will provide more comprehensive data to support our study for 3D
reconstruction based on monocular fundus images.

3.2 Introduction to Existing Datasets

The dataset we plan to create, named CSCR 3D, will contain the following elements: a
fundus OCT top view image, a slice OCT image corresponding to the feature location,
and key 3D ground truth mask labels. Our goal is to use this dataset to train the neural
network by feeding the fundus OCT top-view image into the neural network and providing
the corresponding 3D ground truth at the same time, in order to help the neural network
to extract the deep features and predict the feature details of the fundus surface. The
construction of this dataset relies on the CSCR dataset and the DR-OCT dataset that we
will introduce next.
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3.2.1 CSCR Dataset

The dataset We currently have is from the Lancaster ICVL group, called CSCR (center
serous chorioretinopathy), and contains fundus images of the left and right eyes of 77 subjects
(some subjects had only a left or right eye). This dataset includes two types of EDI (As
shown in Figure 3.2) images and OCT (As shown in Figure 3.1) images. Because the OCT
image can quickly scan the retina within milliseconds, it can eliminate as much as possible
the image capture error caused by the experimenter’s eye rotation and other problems, and
the accuracy is high. At the same time, OCT can image different layers of fundus tissue,
with better spatial resolution and contrast. EDI images can provide deeper retinal imaging,
but what we want to achieve here is to build a corresponding 3D model based on the top
view of the monocular fundus OCT image, so we are only interested in the details of the
surface layer of the fundus, so we decided to use OCT images for the production of the
dataset.

Figure 3.1: Subject A’s left eye OCT image and partial slice images

Figure 3.2: Subject A’s left eye EDI image and partial slice images

The data in the CSCR dataset consists of left and right parts, where the left part is
the fundus OCT top-view scanning image, which contains the depth features of the fundus
surface, and the observation also shows the auxiliary black localisation lines left by the OCT
scanning, as well as the highlighted green lines in the scanning area, where each position of
the green lines with arrows corresponds to the right part of the sliced OCT image, which is
the key for us to construct the 3d depth information of the fundus surface.
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3.2.2 DR-OCT dataset

In addition to the CSCR dataset that we have, we also draw on a comprehensive open
access dataset OCTID, the Optical Coherence Tomography Image Database which contains
more than 500 high-resolution OCT images that are categorised into different pathological
conditions. We selected the portion of these images that contains diabetic images and
normal images to form the DR-OCT dataset(diabitc retinopathy, shown in Figure 3.3), and
we chose to use this dataset because it provides the same OCT images as our CSCR dataset,
which can show the deep layers of the retina, which is very important for us to obtain the
information about the depth of the retinal surface, and it also provides the ground truth(As
shown in Figure 3.4) corresponding to the OCT images. contour, which is not included in
our CSCR dataset, with the help of DR-OCT dataset we can construct the mask labels
corresponding to the sliced OCT images in the CSCR dataset.

Figure 3.3: DR-OCT data

Figure 3.4: DR-OCT data mask

3.3 Motivation for pre-processing fundus images

Fundus OCT images in the CSCR dataset contain noise such as black circular lines and
green lines in addition to fundus surface depth information.

The black circular lines in fundus OCT (Optical Coherence Tomography) images are
usually due to the optical paths and interference patterns of the OCT scanning equipment.
These black circular lines are actually reference lines or markers for the OCT scan, which
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are used to help the doctor or researcher to identify and locate and correct the scanning of
the different structures of the fundus in the image, especially to reason about the position
of the various layers, which is very important for obtaining high-quality OCT images of the
fundus. Therefore, we were unable to directly acquire fundus images that did not contain
black circular localisation lines.

The area covered by the green line usually indicates an image processing or labelling
method. In fundus OCT images, the green lines serve to mark the location of the
corresponding slice image of the OCT as well as the size of the region. Each green line
represents a specific location of a slice image in the fundus OCT image, while the green line
with an arrow indicates the exact location of the current slice image. These green lines play
a key role in positioning and aligning the slice images to ensure the correct position of the
slice image in the overall fundus OCT image.

Our aim is to input the fundus OCT images from the CSCR dataset into the U-Net
model to train it for regression prediction, but the black localisation lines and green line
noise contained in the images can adversely affect the training of the model, which is the
reason why they should be removed:

• Noise interference: the black localisation lines and green lines do not contain useful
data about the fundus structure or depth information, but are interference due to the
workings of the OCT scanning equipment. During model training, these noises may
be incorrectly seen as part of the structure, leading to misleading results from the
model.

• Reduced computational complexity: retaining these noises increases the complexity
of image processing and analysis, and pre-processing of the data should also take
into account whether it will have an effect on the noise that will lead to poorer
model results. Removing these lines can simplify the image pre-processing process
and improve processing efficiency.

• Improve model performance: removing the noise can reduce the interference of the
model and make it more focused on learning the real features of the fundus structure,
thus improving the performance and accuracy of the model.

In conclusion, removing the black localisation lines and the green lines can improve the
robustness of the model, allowing it to better adapt and extract features from the fundus
OCT image, and construct a better 3d fundus surface model.

3.4 Remove the noise interference of the black ring position-
ing line

It can be seen from the image that the initial data set we obtained at the beginning is full
of noise interference such as green lines and black circles on the OCT image because OCT
and EDI images need to be positioned and scanned, so we need to remove these noises.
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3.4.1 Try to set the threshold to remove the black positioning line

At the beginning, we started to solve the black circle, because the RGB value of black is
close to 0, so We want to clean up the noise by extracting the value of all pixels, looking for
a threshold, and removing pixels below this threshold The purpose, but in fact, if the noise
is removed in this way, the black circle noise can be removed perfectly, but at the same
time, a lot of image details will be lost, which is unacceptable to us.

3.4.2 Corrosion operation

In our specific case, the main goal is to eliminate the black positioning lines that appear in
binary images. These lines often prove detrimental to subsequent image processing tasks
and can significantly affect the accuracy of our analysis.

We then decided to look deeper into whether the corrosion operation [Ahuja and Shukla,
2018], commonly known as etching, might be able to solve our problem. This operation often
plays a key role in image processing. It does this by acting on every pixel in the binary
image. It uses a small structural element (usually a square or circular kernel) to scan the
image and replace the value of each pixel with the minimum value in its local neighborhood.

The choice of whether to use square or circular kernels in a task often depends on
the specific image processing task and application scenario. Square kernels are often used
when it is necessary to emphasize a uniform impact on specific areas in the image. For
example, when removing small-sized noise points or smoothing image edges, square kernels
can provide a more uniform effect. The circular kernel is mostly used to process images
involving arcs and curves, because they are closer to the image in shape, and are more
suitable for situations where the characteristics of arcs, curves or circular objects in the
image need to be preserved. They can be more Captures the outlines of these shapes nicely.

The result of the erosion operation is to erode or reduce the boundaries and features
of objects in the image, effectively compressing scattered pixel areas and eliminating
unwanted artifacts such as noise points, fragmented lines, and isolated points. From a
theoretical perspective, erosion operations help improve the connectivity of an image, remove
unnecessary details, and reduce the size of objects in the image. Therefore, we hope to obtain
a clean fundus image by removing the black positioning ring that is incompatible with the
surrounding area through an etching operation.

By applying erosion, the aim was to erode the boundaries of these lines, effectively
eliminating them from the image and retaining only the essential features intact. However,
upon careful consideration of the specific characteristics of the lines and the resulting
consequences, we ultimately concluded that erosion was not well-suited (As shown in Figure
3.5) for achieving our intended goals.

Therefore, it is imperative for us to explore alternative methods that can effectively
remove the black positioning lines while simultaneously preserving the crucial features
present in the image. By doing so, we can ensure the accurate and reliable analysis required
for the successful completion of our graduation thesis.
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Figure 3.5: corrosion operation

3.4.3 Retrieve the black ring

Because the black circle noise is a regular pattern, we thought of extracting the black
positioning line shape by retrieving straight lines and circles. we first convert the image
to grayscale and then perform a binarization operation on it (the object of the operation
must be a grayscale image). We then retrieved the circles in the image through the Hough
transform, but in the end only the largest circle was successfully retrieved and covered with
white (As shown in Figure 3.6). While this method provides some degree of noise reduction
by eliminating the largest circles, it fails to account for the remaining smaller circles and
any potential irregularities in the image. Therefore, further exploration and refinement of
alternative techniques are necessary to effectively address these challenges and achieve the
desired level of noise cancellation in our study.

Figure 3.6: retrieve black circle

Inspired by the previous steps, we chose not to retract and cover the rings one by one,
but to choose a suitable RGB threshold, make a mask image, and then directly use the
Navier-Stokes algorithm to interpolate the mask image, and finally succeeded in getting a
relatively good result.
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Figure 3.7: The result after removing circles and positioning lines through RGB threshold
(from left to right and from top to bottom are the original OCT image, the mask obtained
through RGB thresholding, and the OCT image obtained after removing noise through
mask)

However, although the result of this method is to successfully remove the noise and
reduce the loss of image details (As shown in Figure 3.7), even such a loss is still
unacceptable. At this point, we began to think about how to accurately locate the position
of the ring in each image.

Although there is no way to directly remove the rings, we can use the cv2.HoughCircles()
function to obtain useful information about the position of the center of the circle and the
approximate radius of each ring. Here we wrote a detect ring code to extract the center and
radius information, and use this information to make a ring mask template.

We obtain the center and radius data of the ring through the circle retrieval algorithm
of Hough transform, and obtain the parameters rho and theta of the straight line through
the straight line retrieval algorithm of Hough transform. rho represents the distance from
the origin to the straight vertical line, and theta represents the angle between the vertical
line and the x-axis. Through the obtained straight line information and its intersection on
each circle, the position information of four intersection points (top left, top right, bott left,
bott right) is obtained.

3.4.4 Mask for making black circle positioning lines

In order to create a template that can effectively cover the black ring positioning line, we
conducted a decomposition of the black ring noise into its constituent parts. We identified
four rings, four diagonal lines, a straight line on the first ring, a cross line at the center of
the circle, a line on the left side of the fourth ring, and a line on the right side of the fourth
ring. Based on the obtained center position, four intersection positions, and four ring radius
information, we constructed a mask template.

Since we only want to remove the black ring positioning line, we need to expand the
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Figure 3.8: mask template

mask to the size of the original image and ensure that only the position of the positioning
line is marked.

Figure 3.9: extend mask template

This mask template (As shown in Figure 3.8 and Figure 3.9) was then used as the mask
parameter in the cv2.inpaint() function to remove the noise from the original image. The
cv2.inpaint() function works by filling in the masked regions with plausible image content,
based on the surrounding pixels. By applying this technique, we were able to successfully
remove the black ring positioning line while preserving a significant amount of image details
(As shown in Figure 3.10 and Figure 3.11).

Figure 3.10: original fundus image

The use of the mask template in the inpainting process yielded excellent results,
significantly improving the overall quality of the image and reducing the impact of the
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Figure 3.11: the result after processing using the mask template

noise. This approach allowed us to obtain a cleaner and more accurate representation of
the desired features in the image.

3.5 Remove green line noise interference

It is relatively easy to remove the noise of the green line, because if the values of the three
channels of RGB are the same, the pixel will display gray. The value of the three channels
of RGB determines the brightness . If the values of the three channels of RGB are not the
same, the pixel will display Various colors, so what we have to do is to traverse the values of
all pixels in the image, replace all the pixels that are not gray with white (255, 2 55, 255),
and then use the cv2.inpaint() function Just do the interpolation. Result shown like Figure
3.12.

Figure 3.12: Remove the green line noise result

3.6 Initially obtain one clean OCT fundus image

By employing the mask template method to eliminate the black circle noise and the
technique of removing the green line noise, we are able to obtain a pristine OCT fundus
image when these two methods are combined. However, it is crucial to follow a specific
order of noise removal, giving priority to eliminating the black circle noise before tackling
the green line noise. This sequence is essential because of the subsequent image inpainting
process performed using the cv2.inpaint() function.
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Once we remove the noise from the image, the cv2.inpaint() function works by
interpolating and repairing the affected areas. Consequently, the original positions of the
noise are filled with other pixels. If we were to remove the green line noise first, numerous
black pixels would remain in the image after inpainting. However, by eliminating the black
circle noise first, the interpolated pixels will predominantly consist of green, allowing for
their simultaneous removal when addressing the subsequent green line noise. Results shown
like Figure 3.13 and Figure 3.14.

Following this sequential approach ensures that the resulting image is free from both the
black circle noise and the green line noise. It leads to a more accurate and visually appealing
representation of the OCT fundus image, providing a clearer view of the underlying features
of interest.

Figure 3.13: Removing in the wrong order

Figure 3.14: Removing in the correct order

3.7 Automatically process all images and obtain correspond-
ing OCT fundus images

Clean OCT fundus images obtained by data preprocessing proved the feasibility of the
above method, but there were limitations that could not be addressed by this template. The
corresponding template produced from a specific image is not compatible with other images.
If there are other images with inconsistent ring sizes, inconsistent centers, or different ranges
of green lines, there will still be a lot of noise using a fixed template that will not achieve
the results we require.
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In order to make this method work for all images, we tried to construct methods that
automatically find position information, make mask templates for the corresponding images,
and automatically remove noise. To realize the automatic search function, combined with
the conditions required for constructing mask templates before, we first need to know the
position of the corresponding black localization line in the image for different OCT images.

3.7.1 Backtracking algorithm to solve for Template center point coordi-
nates

Since we are solving a graphical and decision-making problem, and since our noisy templates
are also used to obtain the coordinates of the intersections of straight lines and circles
through the Hough transform and the retrieval of circles in bresenham’s algorithm, the first
thing that comes to mind is to simulate the trajectory of the movements of the MASK
centers through a backtracking algorithm to find the corresponding MASK centers for the
new image.

First, we selected the template center point and moved it in four directions, up, down,
left, and right, by adding and subtracting along the x and y coordinate directions. After
each move, we performed an elimination operation on the template to assess its effect on
the OCT image. Specifically, we first calculated the initial pixel mean and subsequently,
after each action, the pixel mean was calculated again and compared to the initial value.
Since black pixels have an RGB value of 0, the RGB value of pixels filled using Gaussian
interpolation must increase after eliminating black pixels. Therefore, when the average value
of the pixels of the OCT image rises, it can be inferred that the action in that direction is
effective.

However, in subsequent implementations, we noticed that the results were not as
expected. Through breakpoint debugging, we found that in the backtracking algorithm,
the center point was backtracking when retrieving surrounding pixels. Specifically, after
acting upward once, the center point would retrieve the other three directions around it.
However, if satisfactory results were not obtained in these directions, the center point would
fall back to its previous position and then repeat the process over and over again. Meanwhile,
even if we succeeded in finding a new image corresponding to the mask center, the sizes of
the four circles may vary from image to image, i.e., the problem of scaling the sizes of the
circles from one image to another.

3.7.2 Traversal alternative backtracking algorithm to find the center point
of the black marked line

Based on a detailed observation of the dataset, we found that there is limited variation in
the distance between the centers of the localization lines taken by the same instrument.
In order to overcome the backtracking problem of the backtracking algorithm in finding
the centroid, we decided to adopt a more effective strategy, i.e., using the average value
of the pixels in the surrounding 20x20 range for locating the center of the locus line, and
sacrificing the space complexity in exchange for the reduction of the time complexity. This
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method has achieved remarkable results in practical applications, however, we also realize
that it has certain limitations. In particular, when facing images with large differences in
shooting angles, the traversal range may need to be adjusted accordingly, and we note that
the adjustment of the traversal range may lead to an increase in the space complexity, thus
requiring a trade-off between time complexity and space complexity.

3.7.3 Automatically find the size change of the black circle and its
position.

With the center of the black localization line determined, we consider the radius of the rings
as a variable parameter. By varying the radius size of the rings one by one, we observe
how the change in the radius of each ring correlates with the change in the average value
of the image pixels. The goal of this process is to find the appropriate radius size such that
there is a clear correspondence between changes in the radius of the rings and changes in
the average value of the image pixels.

By systematically repeating the above operation for each circle, we can gradually
construct a mask template in which the radius of each circle is precisely adjusted to reflect
the exact characteristics of the black localization lines of the new image. Eventually, the
mask template we obtain will be able to exactly match the black localization lines in the
new image, thus providing us with a precise and effective tool to accomplish noise removal.

3.7.4 Loss Determination Criteria for Finding Algorithms

Let the mask template adjust its position and size according to the position of the black
circle in the image, which reminds me of the application of loss value in deep learning of
neural network. However, our previous method of using the global pixel average of the
image is not only very slow in terms of time, but also takes up a lot of unnecessary space
resources in terms of space complexity, and cannot automatically find the position of the
black positioning line for noise elimination. Here we need to define the range of the average
value calculated in this algorithm. First, define a variable as the average value, which is the
average value of all pixels in the black circle on the mask image, because the value range of
the RGB value of the pixel is [0,255 ] , and the RGB value of black is (0, 0, 0), so the closer
the mean value is to 0, the closer these pixels are to black, that is, the closer to the circle
position.

The implementation is as follows. First, we define a standard mask template. 1. Get
the RGB values of the pixels on the ring by center position and radius. 2. through the
Bresenham algorithm, take the position information of the four intersection points (top left,
top right, bottom left, bottom right), backward calculate the position of the pixels on the
four straight lines, and obtain the corresponding RGB values. 3. Obtain the RGB values of
the center pixel point Cross, the upper line of the first circle, and the left and right sides of
the fourth circle. The RGB average thus obtained represents the proximity of the template
to the black localization line in the image, which is much less space-complex than the global
average of the image used previously, while the improvement in computational speed is
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also significant. 4. Define the optimization class. This class contains the find center and
find circle functions. By traversing the surrounding locations, traverse the size of nearby
circles to get different averages. Find the location information of the center of the circle, the
radius information of the circle, and the location information of the four intersections when
the mean is smallest. This is the closest mask template to the black circle on the image. 6.
By constantly adjusting the mean value, we obtain a different mask template suitable for
each image, and then using our previous method of eliminating the black circle noise and
the green line noise, we can automatically obtain a clean fundus from the initial dataset of
OCT images , and there is virtually no loss of image detail information (the loss of detail
information when interpolating and fitting via inpaint is unavoidable)
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Constructing 3D ground truth
based on CSCR dataset

After performing a series of data preprocessing operations on the CSCR data set by clearing
the black positioning lines and green scanning areas, we obtained the clean fundus OCT top
view of the fundus OCT and its corresponding slice images from the original OCT image
(As shown in Figure 4.1).

Figure 4.1: Original OCT fundus image

Now what we need to do is to integrate the information through the limited data in
hand and deduce the 3d data information from it. From the top view of the fundus OCT we
can see that there are many features that can be extracted such as texture features, color
features, shape features, etc., but our purpose is to build a retinal surface model, so we only
need the distance of the retinal fundus from the camera view.

4.1 Automatically Generating retinal OCT slice image mask
labels

To get the details of the surface of the fundus image, we need to know the distance and
depth of the surface of the fundus from the camera, because we uniformly take the top view
from the same perspective, so we need to get the distance from the surface of the fundus
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Figure 4.2: Data pre-processing process

to the top of the image, which we call the fundus depth value. Data pre-processing process
shown in Figure 4.2.

Then we need to construct the corresponding coordinate system according to the OCT
slice image to specify the distance of the camera viewpoint from the fundus surface, and we
selected the distance of the fundus surface from the coordinate axis x of the fundus OCT
slice image as the fundus depth value. As shown in Figure 4.3.

Figure 4.3: Definition of fundus depth value

4.1.1 Determining the training dataset DR-OCT for neural network
segmentation models

In order to get the coordinate distance corresponding to the fundus depth value, we need to
obtain the precise coordinate position of each pixel of the fundus surface, but it is known
that our image shape is (1024, 496), which means that we need to artificially find the
coordinates of the 1024 pixel points for each sliced image, and the number of sliced images
corresponding to each fundus OCT top-view image is 19, which is a huge project.
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In addition to identifying and confirming the coordinates pixel by pixel, we can also use
professional labeling tools such as LabelMe to label the surface of the sliced OCT images,
and then identify and record them by code. However, this method still has a big labor cost
problem, and it is still a tedious and huge project to annotate nearly 600 images one by one.

For the case of too many images, manual annotation labor cost is too large, based on
the current computer vision field of mature image segmentation and recognition technology,
we think of using our computer vision experimental group another group of similar dataset
DR-OCT dataset, the images in the dataset are the same as the fundus slice OCT images,
and contains a complete mask image and the corresponding data, we use this dataset and its
annotations as the training and testing sets for the neural network, so that the trained neural
network can automatically annotate the fundus slice OCT images in our CSCR dataset.

4.1.2 Segmentation of train and validation set of DR-OCT dataset

We began by randomly permuting the identifiers of the DR-OCT dataset using the
np.random.permutation function. This step was taken to introduce a certain level of
randomness into the dataset division, thereby enhancing its diversity. Subsequently, we
divided the randomly shuffled sequences into an 80% training set and a 20% validation set.
These sets were used for training the deep learning model, evaluating its performance, and
checking for potential issues such as overfitting.

After segmentation training of the U-Net network using the DR-OCT dataset, we
evaluate the model performance based on Loss, Accuracy and IoU score evaluation criteria.
The three images below show the numerical changes of these criteria during the training
process.

Figure 4.4: Validation Loss Over Epochs comparison (The numbers in the upper right corner
represent 5 datasets split in different random ways. Each Valid Loss represents a validation
curve obtained by training using a type of dataset.)
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Figure 4.5: Validation Accuracy Over Epochs comparison (The numbers in the the lower
right corner represent 5 datasets split in different random ways. Each Valid Acc represents
an accuracy curve obtained by training using a type of dataset.)

Figure 4.6: Validation IOU scores Over Epochs comparison (The numbers in the the lower
right corner represent 5 datasets split in different random ways. Each Valid IOU represents
a IOU scores curve obtained by training using a type of dataset.)
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We conducted this dataset division process five times, and each resulting dataset was
fed into the segmentation model for performance evaluation. Upon comparing our data
curves, we observed that while valid log5 had the highest accuracy, log1 exhibited the most
substantial decline in the Loss curve and achieved the highest IOU scores. Both of these
datasets achieved a final accuracy of over 99.5%. Consequently, we selected the dataset
generated from the segmentation ratio of log1 as the ultimate dataset. This dataset was
then used for comprehensive training of the segmentation network model, and we saved the
best-weighted parameters.

4.1.3 U-Net image segmentation network model construction

U-Net, proposed in 2015, is a deep learning semantic segmentation model whose underlying
architecture still continues the core idea of full convolutional neural networks. It was initially
created to address the semantic segmentation challenges in the field of medical imaging,
especially for applications in areas such as organ segmentation and lesion detection in
medical imaging. In recent years, U-Net has gained wide application in the field of medical
image analysis.

Figure 4.7: U-Net network model (the left part is the Encoder module, the
right part is the Decoder module) Image source: U-Net model, Website URL:
https://blog.csdn.net/weixin 44969144/article/details/126153665

We selected U-Net (model shown in Figure 4.7) as a model for OCT slice image
segmentation based on the following considerations: first, its unique Encoder-Decoder
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structure can tightly fuse the shallow features and deep features of the input image,
restore the low-resolution image containing high-level abstract features to a high resolution,
and then, by fusing with the high-resolution image of the low-level features (through the
Then, by fusing with the high-resolution image of low-level features (through concatenation
operation), a feature map with complex semantic information is generated.

Another significant advantage is U-Net’s pixel-level classification, where the output is
classified for each pixel point. This design naturally fits our need for localization in fundus
OCT slice images, which can accurately label and localize pixel coordinates on the surface
of fundus OCT slice images.

Given the excellent performance of U-Net in the field of image segmentation, we decided
to adopt SMP (Segmentation Models) segmentation model in PyTorch framework to build
an efficient U-Net image segmentation neural network framework.

In this framework, we chose SE-ResNeXt (’se resnext50 32x4d’) as the component
of Encoder, an image classification network based on the ResNeXt architecture, which
incorporates multi-dimensional grouped convolutions and is thus capable of capturing a
rich variety of features (As shown in Figure 4.8). In the network module, it retains the
Residual structure proposed based on ResNet networks. This structure effectively solves
the gradient vanishing problem by connecting the inputs directly to the middle or end
layers of the network through shortcut connections.

Figure 4.8: Comparison of Residual modules between ResNet and SE-ResNeXt

In addition to this, SE-ResNeXt introduces the Squeeze-and-Excitation (SE) module,
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which is a channel attention mechanism. This module enables the network to intelligently
adjust the weights of channel features by globally pooling the feature graph of each channel
and then learning the channel weights with the help of a series of fully connected layers.
Such a mechanism allows the network to adaptively highlight task-relevant features while
suppressing responses to task-irrelevant features.

4.1.4 Transfer Learning

Following the completion of the U-Net neural network structure, our decision to initialize
the model with pre-trained weights from ’ImageNet’ [Deng et al., 2009] marks a pivotal
step. These pre-trained weights are obtained through U-Net’s prior training on the extensive
ImageNet dataset, a colossal collection of images encompassing millions of visuals across over
a thousand categories. Through this pre-training process, the U-Net model effectively learns
to extract features from a vast array of images, acquiring the ability to capture intricate
details about each individual category. This collection of parameters can be conceptualized
as an abstract representation of features derived from a diverse array of images.

The comprehensive nature of the ImageNet dataset, coupled with its remarkable
diversity, allows for the seamless adaptation of these pre-trained parameters to diverse visual
tasks, mirroring our current demand for the task of annotating sliced OCT images. Notably,
even in the presence of a relatively modest dataset, these parameters exhibit the capacity
to yield commendable performance. This approach, founded on the principles of transfer
learning, not only obviates the need to initiate the training of extensive models from scratch
but also translates into substantial savings in terms of time and computational resources.

4.1.5 Image segmentation evaluation metrics

In image segmentation tasks, the choice of evaluation metrics that quantify the performance
of the U-Net model in segmenting the surface of OCT sliced images is crucial. Here we have
chosen two image segmentation evaluation metrics: Intersection over Union (IOU) and
Accuracy.

IOU (Intersection over Union) is one of the important metrics to measure the
performance of segmentation model. It evaluates the accuracy of segmentation by
calculating the ratio of intersection and concatenation between the predicted results and
the real mask annotations in the segmentation task. The specific calculation formula is as
follows eq4.1:

IOU =
A ∩B

A ∪B
(4.1)

The intersection of A and B here is the overlap between the model prediction and the
real annotation, while the concatenation of A and B refers to their merged parts.The value
of IOU ranges from 0 to 1 (As shown in Figure 4.9), and a higher score means a more
accurate segmentation range of the surface of the sliced OCT image, based on which it is an
intuitive measure of the model’s segmentation boundary precision and segmentation region
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Figure 4.9: Comparison of different IOU scores

accuracy, reflecting the effectiveness of the model training. The score is higher than 1, which
means that the segmentation range of the sliced OCT image is more accurate.

Accuracy, on the other hand, is another common evaluation metric that calculates the
number of correctly predicted pixels as a proportion of the total number of pixels, and is
usually used in image classification tasks. However, it can also be used in image segmentation
tasks, especially since our image segmentation task belongs to binary segmentation (dividing
an image into target and background). In our OCT slice image segmentation task, the
accuracy is calculated by determining the number of correctly predicted pixels and then
comparing it to the total number of pixels. By examining the number of pixels that the model
correctly segmented the surface region of the fundus as a proportion of the overall image
pixels, we are able to accurately reflect the accuracy of the model’s prediction results, leading
to a more in-depth understanding of the model’s performance and training effectiveness.

4.1.6 Data Augmentation

In order to increase the diversity of the training data, improve the generalization ability of
the deep learning model, and effectively avoid the overfitting problem, we employ a series
of image enhancement operations. These operations subject the original images to multiple
transformations to generate more diverse training data. This enhancement process was
designed to target the specific needs of fundus OCT slice images and was implemented
through the albumentations library.
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We used the following multiple ways to perform randomized data enhancement on the
data, with each data enhancement method deciding whether or not to perform this operation
according to the corresponding probability at the time of invocation.

• horizontal flip:

Each batch calls the training set with a 50% probability to flip the image horizontally
to increase the diversity of the data.

• Scale, Rotation and Translation Transformations:

Scale, rotation and translation transformations are performed on the image to simulate
fundus OCT images at different angles and positions.

• fill image:

Fills the image according to the specified minimum height of 320 and width of 320.

• Random Crop:

Randomly crops the image at a size of 320x320 to keep the image size consistent while
expanding the training set.

• Gaussian Noise:

Each batch calls the training set with a 20% probability to add Gaussian noise to the
image, introducing random, Gaussian-distributed [Goodman, 1963] brightness variations
in the image. Due to the random nature of the Gaussian distribution, each pixel varies
differently, thus creating a visual noise in the image. Adding this random interference
can help improve the robustness and performance of the algorithmic model by simulating
real-world noise situations, thus allowing the model to better adapt to images in various
environments.

• Perspective Transformation:

Each batch calls the training set with a 50% probability of perspective transformation of
the image, which guides the parallel lines of the image to the same vanishing point, simulates
the sense of perspective near and far, and converts the camera viewpoint to a different
viewpoint, thus producing a perspective effect, increasing the diversity of the training data,
and improving the adaptability of the deep learning model to different imaging conditions
and angles.

In addition to the conventional data enhancement methods mentioned above, we further
constructed an integration of the three data enhancement methods through the ”OneOf”
operation, so that there is a 90% probability of randomly selecting a method from this
integrated package during the data enhancement process of each batch, in order to increase
the Randomness and diversity of data enhancement. This integrated data enhancement
operation includes the following three methods:
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• a. Contrast, Brightness and Gamma Transform:

By randomly selecting an operation, we apply it to the image to increase the change in
brightness and contrast of the image.

• b. Sharpening, Blurring and Motion Blur:

By randomly selecting an operation, we simulate changes in the sharpness and blurring of
an image as a way of introducing varying degrees of visual effects.

• c. Contrast and Hue Saturation Transformations:

By randomly selecting an operation, we apply it to the image to increase the color saturation
and contrast variations of the image, in order to enrich the visual characteristics of the image.

4.1.7 Obtain the Mask label corresponding to the CSCR dataset image

Based on the DR-OCT dataset and with the help of the U-Net image segmentation
network constructed using the SMP framework, we successfully obtained the optimised
weight parameter best model eyes1.pth after 200 epochs of training.During the training
process of each epoch, we continuously monitored and recorded the evaluation stage of the
validation metrics, including the results of valid loss, valid acc, and valid iou, and stored
these data in a csv file named valid logs1.

From the detailed analysis of the data in valid logs1.csv, it is obvious that the U-
Net network model performs well in terms of training effectiveness. Its performance on
the validation set shows a gradual decrease in the loss value, which implies the gradual
improvement of the model’s learning ability and fitting ability. In addition, in terms of
accuracy, after 25 epochs of training, the accuracy of the model tends to be stable and close
to the level of 99.6%, which proves the stability of the model in classifying unseen data.
Correspondingly, the IOU scores fluctuate between 96% and 98%, highlighting the model’s
high adaptability to the segmentation task.

Together, these positive performances demonstrate the successful training of our
designed U-Net model on the DR-OCT dataset. It is able to almost perfectly separate
the fundus surface from the surrounding background region in OCT slice images effectively,
achieving excellent image segmentation and annotation results. This series of performances
confirms the effectiveness of the optimal weighting parameters, which can be migrated to
our subsequent CSCR dataset for image segmentation of the fundus surface, thus further
enriching our analyses and experimental results!
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Figure 4.10: Validation Metrics Over Epochs

We replaced the ’imagenet’ pre-trained parameters with the meticulously optimized
weight parameters we obtained through our training regimen. Employing this refined set of
weights, we employed the U-Net network architecture to conduct precise image segmentation
on the CSCR dataset. The outcome was a set of meticulously generated masks, each
intricately aligned with its respective image. These masks were then methodically stored
within the designated ’mask’ directory, meticulously serving as the precise labels for the
delineated fundus surface within our CSCR dataset. Result shown like Figure 4.11.
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Figure 4.11: OCT fundus slice image and its corresponding Mask Label

4.1.8 Manual removal of abnormal labels using LabelMe software

Although the optimal weighting parameters of the U-Net network model in the DR-OCT
dataset succeeded in distinguishing the fundus from the background with an accuracy of
more than 99%, there is still a certain degree of error rate. To ensure the rigour of the
research results, we manually checked the mask labels of 674 images automatically segmented
by the U-Net network model and saved the identified segmentation error labels in the ”error”
folder. According to our statistical analysis, the accuracy of the best weighting parameter
in the DR-OCT dataset drops to 87% for the segmentation annotation task on the CSCR
dataset.

Figure 4.12: CSCR dataset image problems
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We conducted an in-depth analysis of the original images corresponding to these
mislabelled images (As shown in Figure 4.12) and concluded that the CSCR dataset contains
some fundus images of patients with ophthalmic diseases as well as incorrectly photographed
images, which are missing in the DR-OCT dataset (even though a few ophthalmic disease
slices are also included in the DR-OCT dataset), and that such a lack cannot be compensated
for by data preprocessing and data enhancement operations.

To address this problem, the first task was to exclude error images with tilt and
translation problems. Unlike the fundus images that appeared to feature disease, these
mislabelled images could no longer be positionally aligned with the fundus top-down OCT
images, and even if we were able to acquire the depth information, we were unable
to map them to the correct position in the world coordinate system. We then used
LabelMe software to manually annotate the remaining mislabelled images to obtain complete
annotation information. This step of annotation using the U-net segmentation model not
only significantly reduces the cost of manual annotation, but also provides us with high-
quality annotated data. Based on these labelling data, we can obtain pixel-level depth
value information for each OCT image corresponding to the slice image, which provides an
accurate and reliable basis for our study. Result shown in Figure 4.13.

Figure 4.13: Data preprocessing effect display
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4.2 Constructing World Coordinate System to extract depth
information

In the process of constructing the fundus surface model, our key task is to obtain the depth
values of the fundus surface corresponding to the ground truth and clearly define the size
range of the model. Based on the analysis of the top view of the fundus OCT, the range of
the fundus OCT slices corresponds to the size of the green area labelled in the top view of
the fundus OCT, which in turn defines the range of the features from which we can extract
the depth values. We determined the pixel positions of the four directional corners of the
green localisation line by locating the left, right, and upper and lower polar ranges of pixels
with green RGB values in the image by their RGB values, which ultimately gave us the
green localisation line region size, i.e., the size of the 3D ground truth construction range.
As shown in Figure 4.14.

Figure 4.14: Depth value feature extraction range

4.2.1 Automated acquisition of depth value information for each slice
image

After determining the size of the 3D ground truth range, our next step is to obtain depth
information corresponding to each individual slice image. Defining the distance of fundus
surface pixels from the camera’s viewpoint as depth values is the foundation of our approach.
However, manually extracting the positions of fundus surface pixels is a monumental task.
To address this challenge, we leverage the distinguishing feature in the fundus OCT image
masks where the labels have different RGB values from the background.

We achieve this by systematically traversing each column of the label pixels and
identifying the minimum y-coordinate where the label pixels are present.This process allows
us to determine the distance from the top of the image to the fundus surface in the mask
label and obtain the corresponding fundus surface depth value for each fundus slice image.

37



Chapter 4. Constructing 3D ground truth based on CSCR dataset

4.2.2 Construct a World Coordinate System to map fundus slice images

Intermittent depth value information is meaningless for neural network learning, and we
need to correspond the fundus OCT top view and its corresponding all slice images. For
this purpose, we established a world coordinate system, mapped all slice images separately
according to the position of the green localisation line in the fundus top-view OCT image
in the same coordinate system, integrated the depth value information of all images, and
constructed the corresponding 3D model of the fundus.

In order to integrate two different-sized images, namely the fundus OCT top-view and
its corresponding set of fundus OCT slice images, into the same global coordinate system,
it is essential to ensure that their pixels can be aligned seamlessly. As shown in Figure 4.15.

The fundus OCT slice images have dimensions of 1024x496 pixels, whereas the effective
area of the fundus OCT top view measures 332x251 pixels. Therefore, we employed an
interpolation method to process the fundus OCT top view, interpolating its original 332
pixels into 1024 smaller pixels. This enables us to accurately map the 1024 pixels of the
OCT slice images to the fundus OCT top view, facilitating the seamless integration of these
two differently sized images within the same global coordinate system.

After completing the mapping of a single slice image, we also need to consider that one
fundus OCT top view often corresponds to multiple slice images at different positions. In
our scenario with 19 corresponding slice OCT images, our task is to sequentially map these
19 images to the positions corresponding to the green positioning lines in the original image.
This process requires us to determine the position coordinates of each positioning line. Based
on the analysis of the original OCT image, we have observed that the interval between each
green positioning line remains constant.Therefore, we perform an equal division operation
on the range of y ∈ [0, 250], dividing it into 19 segments, each of which corresponds to the
position of a slice OCT image. The process is shown in the Figure 4.16.

At this point, we have been able to reconstruct the 3D model using the positional
information from the original fundus OCT top-view and the depth values obtained from
the OCT slice images. It turns out that the effect is good. However, there is still a need
for further refinement. While the top view looks promising, from a lateral perspective,
it remains evident that it consists of 19 slice images spaced apart, rather than providing
continuous depth information. Unfortunately, we cannot extract depth values from the top-
view within this interval.Therefore, we must resort to Gaussian interpolation to enable us
to establish continuous depth information for the entire area.

Through the above-mentioned method of mapping images from the horizontal and
vertical directions, we have successfully mapped the original fundus OCT top view and its
corresponding multiple slice images to the same world coordinate system.But what needs
to be noted here is that all operations we do on the sliced OCT image must be performed
on the mask again to ensure that the mask is also in the same world coordinate system and
that the fundus OCT image always corresponds to its mask.
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Figure 4.15: The correspondence between fundus and slices in 3D

Figure 4.16: Visual display of world coordinate system construction
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4.3 Processing and Storage of 3D ground truth

At this stage, we have successfully constructed the 3D ground truth of the fundus OCT
images, as illustrated in Figure 4.17, demonstrating excellent results. However, it is
important to address the fact that not all pixels in the mask images contain accurate pixel
depth values ranging from 0 to 1024. Some of these pixels deviate from the expected features
of the fundus structure, and such pixel points need to be excluded from our analytical
framework as they affect the interpolation of the surrounding pixel points when performing
Gaussian interpolation.

Figure 4.17: 3d ground truth without processing outlier pixel values

In the presence of such abnormal pixels, we perform a column-wise search to identify
pixels with depth values significantly different from the majority of pixels. Subsequently,
we remove the entire column of pixels containing these points. This step produces the final
model, effectively creating a 3D model of the fundus surface.

Figure 4.18: The final constructed 3D ground truth
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After obtaining the 3D ground truth corresponding to the fundus OCT images
respectively, we need to save them as labels suitable for neural networks. Since the original
images are 2D images, we consider saving the 3D ground truth as a 2D image as well.
However, unlike npy arrays, PNG images usually have a value range between [0, 255].
Therefore, we need to normalise the depth values stored in the npy array to the range of
the PNG image in order to feed them into the neural network for training along with the
training data. We used two normalisation algorithms:

y = 255 · y −min(y)

max(y)−min(y)
(4.2)

Figure 4.19: 3D Ground Truth saved using normalisation algorithm Eq (4.2)

The normalisation algorithm Eq (4.2) is based on the minimum and maximum values of
the dataset, which ensures that the range of depth values is between [0, 255], and is suitable
for cases where different depth values need to be mapped to the standard RGB colour range
for maintaining data consistency. However, if there are outliers in the dataset, such as noise
or outliers in the depth values, it may result in the range of depth values being stretched by
the outliers, making the normalised depth image not obvious enough to distinguish between
different depth levels, which may lead to the loss of details in some depth levels.

y =

(
y

495

)
· 255 (4.3)

Figure 4.20: 3D Ground Truth saved using normalisation algorithm Eq (4.3)

The normalisation algorithm Eq (4.3) scales depth values directly and proportionally to
the range [0, 255], which is simple and fast. The reason we choose to use a factor of 495
for scaling is that the depth value of the 3D model is in the range [0, 495]. By applying
the scaling operation y

495 , we can map the numerical range of depth values to [0, 1]. This
step normalizes the range of depth values to better adapt to the normalization process. The
subsequent multiplication operation 255 proportionally maps the normalized depth range
into the standard range [0, 255] of pixel RGB values. Effective in preserving depth level
detail for datasets with relatively uniform depth value distribution.
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Given that our 3D ground truth dataset has a relatively uniform distribution of depth
values and the outliers have been removed and filtered in advance by means of data
preprocessing, we choose to use the normalisation algorithm Eq (4.3) as a simple but effective
preservation method. Before inputting the model, we will use the inverse operation of the
algorithm to input the real depth value information into the model for training.
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Regression-based 3D Surface
Estimation from Monocular Images

5.1 Motivation for U-Net regression model construction

Achieving 3D reconstruction based on monocular images is currently one of the important
research directions in the field of computer vision and has achieved remarkable results in
several fields, such as hand reconstruction. The core problem in this direction is how to
extract multi-dimensional feature information including colour, texture, size, etc. from a
single image for 3D reconstruction of objects. Unlike traditional 2D image feature extraction,
achieving 3D reconstruction of objects requires the extraction and learning of 3D structural
features. Therefore, successful models not only need to ensure that their predicted values
are close to those of the real labels, but also that their predicted 3D models are similar to
the real 3D Ground Truth in terms of structural features.

Our research goal is to allow the neural network to extract the depth information features
of the fundus surface from the monocular fundus OCT top view, and to construct a 3D
fundus surface model based on the predicted values, which requires that we need to predict
the depth value of each pixel, and U-Net, as a deep convolutional neural network architecture
for pixel-level image segmentation and semantic segmentation tasks, is an ideal model to
achieve our research goal . There are several reasons for this:

• Pixel-level feature extraction: Its encoder-decoder architecture is well suited for
processing fundus surface OCT medical images because it enables pixel-level depth
information ingestion through multilevel feature extraction, where there is a lot
of tiny structural and detail information in the fundus surface images, and the
depth information extracted by the U-Net is very important for performing 3D
reconstruction.

• Up-sampling operation of decoder: The decoder part of U-Net includes up-sampling
operation which helps to reduce the feature maps extracted in the encoder to the
same resolution as the input image. This is important for the 3D reconstruction task
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because we need to reduce the feature information in the 2D image to 3D information
in equal proportion.

• Previous successes: U-Net has achieved extensive success in the field of medical image
analysis for implementing 3D reconstruction based on monocular images, such as
mannequins, faces, and hand models. These research results provide strong support
for the performance of U-Net in processing fundus images

• Trainability: Compared with other network structures (e.g., VGG19, ResXnet, etc.),
the structure of U-Net is relatively simple and easy to be restructured and modified.
This means that we can adapt the U-Net image segmentation model to depth-valued
predictive regression model according to the specific fundus surface feature extraction
and 3D model reconstruction needs.

5.2 Modify the U-Net image segmentation model to a regres-
sion model

U-Net models are commonly used for image segmentation tasks. In our study, we
first trained the U-Net segmentation model using the DR-OCT dataset to obtain the
corresponding mask labels for the CSCR dataset. However, achieving our research goal
requires changing the U-Net network from a common image segmentation task to a regression
task capable of performing prediction of depth values. To achieve this goal, we need to
modify the network structure of U-Net. This requires an in-depth understanding of the
difference between segmentation tasks and regression tasks, an understanding of how U-Net
networks work, and how to adapt the model structure of U-Net networks accordingly.

5.2.1 Analysis of the working principle of U-Net network

When obtaining the mask labels corresponding to the CSCR data set, we introduced the
special components of the U-Net network structure and learned that it can rely on its
unique Encoder-Decoder structure to generate high-level feature information with complex
semantics.

The encoder part of the U-Net network structure mainly implements the capture of input
image context information. It is composed of multiple convolutional layers and pooling layers
stacked. The convolutional layer is used to extract input image features, and the pooling
layer is used to Reduce the resolution of the feature map obtained by the convolutional
layer. The encoder reduces the details in the image by mapping the input image to a low-
resolution feature representation, while extracting different levels of feature information.
Each layer of the encoder can be regarded as an abstract representation of features, where
low-level features include local information such as edges and textures, while high-level
features include more abstract semantic information. These feature abstraction capabilities
enable U-Net to capture the contextual information of an image, that is, the pixel values
and features surrounding each pixel.
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The decoder part of the U-Net network structure mainly maps the low-resolution feature
map output by the encoder back to the image segmentation result. It consists of multiple
upsampling operations and convolutional layers, and can gradually restore the segmentation
result layer by layer. spatial resolution, and finally restore the low-resolution feature map
to the resolution of the original input image. As shown in Figure 5.1.

Figure 5.1: Bilinear interpolation upsampling restores image resolution

It should be especially noted that the U-Net network is not a simple input-output mode,
but after each layer of the encoder ends, the feature map output by the layer is copied to
the corresponding layer of the decoder to establish a skip connection or called U-shaped
connection. This means that the decoder can use high-resolution feature information from
shallow layers to compensate for and restore image details lost due to downsampling while
performing upsampling and feature recovery. This direct connection method (As shown in
Figure 5.2) helps It alleviates the problems of information loss and gradient disappearance,
and provides a better information flow and feature reconstruction mechanism, allowing
the network to more accurately retain details and contextual information when performing
image segmentation. This structure has achieved good results in fields such as medical
image segmentation that pays attention to image details.
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Figure 5.2: Skip-Connection implementation process

The high-resolution feature map with complex semantics output after the complete U-
Net network will be input into the softmax function to convert each pixel of the feature
map into a category probability pixel by pixel, resulting in a segmentation with the same
size as the input image Probability map is then segmented according to different category
thresholds, and finally completes the image segmentation task.

5.2.2 The difference between segmentation tasks and regression tasks

The main difference between U-Net in image segmentation tasks and depth value prediction
regression tasks is the task type and output. Here are the key differences between them:

• Task type:

In the image segmentation task, the goal of U-Net is to assign each pixel in the input
image to a specific category or label, so its final output is a pixel-level mask label,
where each pixel corresponds to the input image A pixel position in a pixel and is
assigned to a category or label. Usually, we use these labels to represent different
objects or parts of objects to achieve pixel-level semantic segmentation. The mask
label of the CSCR dataset is also obtained by segmenting the OCT image of the
fundus slice by distinguishing the difference between the background and the fundus
label.

In the depth value prediction regression task, the depth value prediction task we want
to implement is more focused on the regression problem, which requires the U-Net
network to estimate the depth or distance information of each pixel in the fundus
surface OCT image, rather than dividing it into a certain specific categories or tags.
This requires us to modify the final output type of the U-Net network from outputting
a mask label with the same spatial resolution as the input image to a depth value map
with the same spatial resolution as the input image, where each pixel contains a depth
value.
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• Loss function:

In image segmentation tasks, classification loss functions like cross-entropy are often
used to compare the difference between the model output and the ground truth.

In the depth value prediction regression task, a regression loss function, such as mean
square error (MSE)[Allen, 1971], is usually used to measure the error between the
depth estimate of the model and the actual depth to measure the similarity between
the model output and the 3D ground truth.

• The focus of feature extraction is different:

The image segmentation task focuses more on the boundaries and shapes of different
objects or object parts in the image, while the regression task requires more accurate
prediction of the depth information of different pixel positions in the global OCT
image of the fundus surface, rather than individual areas.

These differences highlight the adaptability of U-Net to different task contexts and the
variations in output types. They also represent the key factors in how we successfully
modified the U-Net network structure from a segmentation task to suit the regression task
of predicting depth values.

5.2.3 U-Net network structure modification

Based on our understanding of the U-Net architecture and the differences between
segmentation and regression tasks, we have identified the specific modifications required
to adapt U-Net for our purposes.

Firstly, it can be observed from the source code that in a typical U-Net architecture,
the common practice is to employ a 1x1 convolution operation with a number of output
channels equal to the number of classes in the classification task. Consequently, each channel
represents a distinct class, and each pixel within these channels contains the predicted
probability for its corresponding class. In order to transform the output from predicting
class probabilities to predicting depth values, we need to modify the number of output
channels to be 1. This implies that the final output will no longer be a multi-channel
probability distribution for different classes but a single-channel numeric value representing
the regression prediction for each pixel, such as the desired retinal depth values in our
research.

Furthermore, in multi-class classification tasks, it is customary to apply a softmax
activation function to the final output. This function maps the model’s output to a
probability distribution over each class, ensuring that the probabilities sum to 1. However,
in regression tasks, we no longer require this transformation into a probability distribution.
Instead, we aim to directly obtain predicted depth values. (As shown in Figure 5.3)
Therefore, we need to replace the softmax activation function with a linear activation
function (also known as the identity activation function) or use no activation function at
all. This allows us to obtain the final output of the U-Net network as the predicted depth
values without any further transformations.
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Figure 5.3: Comparison of classification task and regression task output

After completing the modification to the U-Net network model, we still need to pay
attention to the training process of the model. Typically, in classification tasks, we usually
use cross-entropy as the classification loss function to measure the difference between the
model output and the true label.

The core idea of cross-entropy loss is to measure the difference between two probability
distributions. In a classification task, we have two probability distributions:

The output probability distribution of the model: This is generated by the neural
network model and is usually represented as P(y—x), where y represents the category and
x represents the input sample.

Distribution of real labels: This is a one-hot encoding vector representing the real
categories. In this vector, only the element corresponding to the true category is 1, and
the remaining elements are 0.

The cross-entropy loss function is calculated as follows:

H(y, p) = −
∑
i

(yi log(pi)) (5.1)

Where: H(y, p) is the cross-entropy loss. yi is the i-th element of the real label (one-
hot encoding), which takes a value of 0 or 1. pi is the i-th element of the model’s output
probability distribution, representing the probability that the sample belongs to category i.

When optimizing a neural network model, the cross-entropy loss can be viewed as the
relative entropy between the true distribution and the model output distribution, that is,
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the model’s estimation error of the true distribution’s uncertainty. Therefore, minimizing
the cross-entropy loss can make the model closer to the real distribution, thereby improving
the accuracy of classification.

What we want to achieve is to modify the classification task to a regression task, and
after converting U-Net into a regression task of depth value prediction, our training data
will contain real depth value information. Therefore, our focus is no longer on the difference
in probability distribution, but on the difference between the output predicted value and
the real value. Here we need to change the loss function used during training to the mean
square error function.

The mean square error loss is calculated as follows:

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (5.2)

in MSE: yi is the ith element of the real value. ŷi is the ith element of the model’s
predicted value. n is the sample size.

The MSE loss function squares the difference between the real value and the model’s
predicted value, and then averages it, which can be regarded as a secondary measure of
the difference. This also means that the loss function is very sensitive to outliers, and the
predicted value is different from the true value. The larger the difference between , there
will be a higher loss value, and for the sample with a smaller difference, the loss value will
be lower.

5.3 Dataset preprocessing and augmentation

Due to limitations of currently available dataset sizes, our comprehensive CSCR 3D
dataset contains only 32 retinal optical coherence tomography (OCT) images and their
corresponding 3D ground truth labels. Given the relatively small size of this dataset, training
a neural network on it carries a significant risk of overfitting. Therefore, in order to meet
the training requirements of neural networks, we must adopt data preprocessing techniques
to effectively increase the dataset size.

The dataset expansion process aims to increase the number of available data instances
while adhering to sound academic principles. This data augmentation is critical to enhance
the model’s generalization ability and reduce the potential for overfitting.

5.3.1 Flip Expansion

Data flip augmentation is a classic data preprocessing technology that is widely used in
the field of image processing. In our study, we adopted three common flipping operations,
including vertical flipping, horizontal flipping, and 180-degree flipping, to expand the size
of our original fundus OCT image data set by four times its original size.

They both aim to create variants of the original image to increase the diversity of the
dataset. The following is a step-by-step analysis and rationale for these operations:
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• Horizontal Flip: Also known as left-right flip. In horizontal flipping, the fundus OCT
image is mirror flipped along the vertical central axis (usually the center line of the
image). The implementation principle is to reverse the position of each pixel in the
image, that is, copy the pixel data of the i-th row in the original image to the i-th row
in the new image, but in reverse order.

• Vertical flip (Vertical Flip): Vertical flip is to flip the image along the horizontal axis,
also known as flip up and down. The implementation is the same as horizontal flipping.
The difference is that vertical flipping is the reverse sorting of the pixel data in column
i in the original image.

Both of the above mirror flips can reduce the model’s dependence on the location of
specific structures in the image. For the fundus images we studied, artificially making some
changes in the position of the fundus structures can improve the generalization ability of
the model.

• 180 degree flip: This operation is to perform an angular rotation on the image, also
known as inversion. 180-degree flip rearranges the pixel data in the image so that the
image is rotated 180 degrees, and the effect is equivalent to first flipping horizontally
and then flipping vertically.

Figure 5.4: Original image flip examples

The purpose of these flipping operations (Results shown in Figure 5.4) is to increase the
diversity of the dataset, allowing the neural network to be exposed to images of different
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perspectives and characteristics. These transformations are usually reversible, so they do
not change the semantic content of the image, but help the network generalize better to
different situations.

5.3.2 Crop Expansion

Although we have obtained 128 training data images through flip augmentation, this is still
not enough to meet the amount of data required to fully train the model. Therefore, we
need to employ additional data preprocessing operations to further expand the size of the
dataset. Our goal is to enable the model to predict the depth value of the entire fundus
OCT image, so we not only focus on specific local areas, but also on the characteristics of
the overall image. This is the basis on which we can further expand the data set through
clipping operations.

In order to ensure that the image data corresponds to the label, all our image cropping
operations must be applied to the label image. First of all, we already know that the size
of a fundus surface OCT image is 1024x332. Here we want to crop it into 5 images of equal
size, and ensure that the original image can be perfectly restored after these 5 images are
spliced according to the cropping position. Therefore, we use sliding window cropping or
overlap cropping.

The specific implementation steps are as follows:

• Starting from the upper left corner (0,0) of the original image, crop out the first
332x332 sub-image.

• When cropping the second image, we do not start cropping from 332, but slide the
upper left corner of the cropping window to the right by a certain number of pixels to
create an overlap, and then crop again.

• And so on, cropping out all required sub-images in turn. Each time we slide the
window, make sure there is a portion of overlap so that continuous image information
is captured.

This approach ensures image continuity and allows us to crop out any number of sub-
images without losing information. However, attention should be paid to determining the
sliding step size and cropping window size to avoid the sliding window not covering the
entire original image after cropping is completed, resulting in the loss of the second half of
the data.

Now we know that the size of the cropping window is 332x332, and the calculation
formula of the sliding step is:

Stepsize =
Originalimagesize− Cropsize

Cropnumber − 1

In short, through this series of data preprocessing operations, we successfully expanded
the size of the data set and provided more samples for the training of the deep learning
model, which is expected to improve the performance and robustness of the model. This is
crucial for our depth value prediction regression task.
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5.4 Model training process

5.4.1 Add a dropout neural network layer after the Encoder module

Given that the data set we have is relatively small and the U-Net network has powerful
feature extraction capabilities, this can easily lead to overfitting problems. In the case of
overfitting, the model will pay too much attention to the specific details and noise in the
training data and ignore the general features, and our research goal is to predict the global
image depth value. Therefore, we adopted a commonly used regularization technique, which
is to introduce a Dropout neural network [Srivastava et al., 2014] layer after the Encoder
module of U-Net to prevent the model from paying too much attention to specific parts of
the data, effectively solving the problem of U-Net network in small data sets. Deep feature
aggregation problem.

Dropout is a regularization method that randomly turns off neurons during the training
process (The operating principle is shown in the Figure 5.5), the left half of the figure
represents the process of feature transfer in the neural network layers, and the right half
represents the process of feature transfer between layers after using dropout. It can be seen
that in the process of feature transfer between layers, there are some units containing features
are hidden. The dropout operation randomly hides some feature information, thereby
reducing the cooperation between neurons and helping reduce the model’s dependence on
specific training samples. It should be noted here that the hidden units are random during
each training process, which ensures that we will not permanently lose some features.

Figure 5.5: The working process of the dropout layer. Source: adopted from Website URL:
https://blog.csdn.net/upupyon996deqing/article/details/124840237

5.4.2 Parameter settings

After completing the modification of the U-Net regression network model, we need to start
setting the parameters of the network training. This is a crucial step in the deep learning
model training process.
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Initially, the dataset is partitioned into a training set and a test set, utilizing 80%
and 20% of the data, respectively. To ensure the exclusive presence of a patient’s data
(comprising multiple augmented images) in either the training or test set, we have adopted
a careful grouping strategy. Each patient’s images are identified and grouped accordingly.
Subsequently, a random selection process allocates 80% of patient groups to construct the
training set, leaving the remaining 20% for the test set. This ensures that all images
pertaining to a specific patient are exclusively present in either the training or test set,
mitigating mutual interference. This partitioning strategy preserves dataset independence,
enhancing the accuracy and generalization of the model. Following this, data augmentation
is applied to the grouped dataset, ensuring augmented images do not concurrently appear
in both the training and test sets.

Then we need to select an appropriate loss function. Here we use the mean square error
as the loss function to measure the difference between the model’s predicted depth value and
the true value. During the training process, by minimizing the MSE loss, we can make the
model better fit the training data, thereby improving the accuracy of depth value prediction.

Next, we need to choose a suitable optimizer. The optimizer is responsible for updating
the weights and biases of the model to minimize the loss function. Commonly used
optimizers include stochastic gradient descent (SGD), Adam, RMSprop, etc. When choosing
an optimizer, you need to consider factors such as the complexity of the model, the size of
the data set, and the speed of convergence during training. We finally chose Adam as an
optimizer for adjusting weights. It has the characteristics of adaptive learning rate and
can converge to the local minimum faster. Here, for the learning rate adjustment strategy
during the training process, we use the optim.lr scheduler.ReduceLROnPlateau scheduler,
which is used to dynamically adjust the learning rate of the Adam optimizer based on the
performance of the model. The parameters set are as follows:

The parameter ’min’ of the scheduler means that it monitors the minimum value of the
loss function.

• ’patience’=3 indicates that when the monitoring indicator does not improve within 3
consecutive epochs, the learning rate should be adjusted. If the loss function does not
decrease within 3 consecutive epochs, then the learning rate will be reduced.

• ’factor’=0.1: This parameter indicates that when the learning rate needs to be
adjusted, the learning rate is multiplied by this factor. Here, if the monitoring metric
does not improve, the learning rate will become 0.1 times the current learning rate,
which is reduced to 1/10 of the original.

• ’min lr’=0.00001: This parameter represents the minimum value of the learning rate.
If the learning rate is lowered than this value, it will no longer decrease.

• ’cooldown’=1: This is a scheduling parameter that indicates the number of periods to
wait after the learning rate is adjusted to avoid continuous triggering of learning rate
adjustments due to rapid loss function decline in the early stages of model training.
Here, wait for one epoch before triggering the learning rate adjustment again.
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After adjusting the module that monitors the loss function of the model, if the loss
function does not improve for 3 consecutive periods, the learning rate is reduced to 1/10 of
the current learning rate until the learning rate is reduced to the specified minimum value.
This adjustment method adjusts the learning rate more finely than the traditional method
of decreasing the learning rate with each epoch. It is more adaptable to various situations
in the decrease of the loss function and can improve the performance and generalization
ability of the model.

Finally, we need to define evaluation metrics to measure the performance of our modified
U-Net regression model on the task of predicting depth values. In regression tasks, various
evaluation indicators are usually used to measure the performance of the model, including
mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE),
etc. For our task, we finally chose mean square error (MSE) as the main evaluation metric.
The main reason is that it is relatively insensitive to outliers. This means that if there
are some depth value outliers in the data, MSE will reduce their impact on the evaluation
results, making the model more robust. Secondly, MSE provides a secondary measure of
the depth value prediction error, which can more clearly reflect the difference between the
predicted value and the true value.

Once we define these training parameters and evaluation metrics, we can start training
the U-Net regression model. During the training process, the model gradually adjusts
the weights and biases based on feedback from the loss function to minimize the loss and
improve the accuracy of depth value prediction. As training progresses, we monitor changes
in evaluation metrics to evaluate the performance of the model and make hyperparameter
adjustments if necessary. It should be noted that this training process usually requires a
certain amount of time and computing resources, and the selection of hyperparameters will
have an important impact on the training effect. Therefore, in subsequent experiments,
we also need to conduct some ablation experiments and comparisons of hyperparameter
combinations to determine the best model configuration.

By carefully setting training parameters and appropriate data augmentation, we can
expect to obtain a high-quality depth value prediction model to provide strong support for
fundus OCT image analysis tasks.

5.4.3 Ablation Experiment

In order to achieve optimal depth value prediction, we must have a deep understanding of
the impact of each component in network training and their weights on overall performance.
This requires continuous trial and analysis to determine the most appropriate configuration
of network components and weights. To achieve this goal, we employed an ablation
experimental approach.

Ablation experiments are an important method in scientific research and experimental
studies, the main purpose of which is to understand their impact on model performance by
gradually excluding or reducing components, parameters, or characteristics of the model.
In our study, ablation experiments can be applied in the following three aspects:

• Component analysis: We can use ablation experiments to gain insights into the
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contribution of individual components or modules in the model to overall performance.
By gradually disabling or adjusting certain components, such as different layers in a
neural network or features in a model, we are able to identify which components are
critical to the task and which contribute positively to performance improvements.
This analysis is very useful for the dropout layer we added independently, because
based on the theoretical analysis of the data set, we believe that the dropout layer can
reduce the overfitting problem caused by the small size of the data set. However, to
verify its effectiveness, it needs to be verified through ablation experiments.

• Parameter impact: Our U-Net network and loss function usually contain many
adjustable parameters. Through ablation experiments, we can evaluate the impact of
each parameter on model performance, determine which parameters are most sensitive
to performance, and which parameters can be adjusted to further improve the model
effect.

• Hyperparameter tuning: Ablation experiments help us determine the optimal hyper-
parameter configuration for the model. By progressively eliminating different hyper-
parameter settings, we can find the most efficient combination of hyperparameters for
a specific task. In our study, ablation experiments are also used to adjust the weight
ratio of each part of the composite loss function. We plan to add other loss functions
in subsequent studies to build more complex composite functions, and the weight ratio
between these functions will be precisely regulated through ablation experiments.

But ablation experiments also have their corresponding limitations, because ablation
experiments often involve removing components or parameters from complex models to
observe their impact on performance. This simplification may not fully reflect the situation
in real applications, where individual components and parameters may interact with each
other rather than simply add up. Therefore, the results of ablation experiments may
sometimes be too idealistic.

Beyond this, ablation experiments typically focus on the effects of one or a few specific
factors. However, in practical problems, many factors may interact, making it difficult
to fully understand through a single ablation experiment. This can lead to a poor
understanding of overall system behavior.

Considering time and computing costs, conducting large-scale ablation experiments may
require a large amount of computing resources and time. Stepwise exclusion of components
or parameters may require training and evaluating the model multiple times, which may
increase research costs.

Despite these limitations, ablation experiments are still a powerful tool in our deep
learning research, which can help us deeply understand the behavior and performance of the
model and optimize model design. Therefore, it is necessary to conduct ablation experiments
to improve the effect of the network model. After all, everything is ultimately The quality
of the method must be determined based on the effect of the network model.
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5.5 Result analysis

5.5.1 Training Program

After completing the construction of the U-Net model and the design of the ablation
experimental plan (As shown in Figure 5.6), we began to formally train the network to
predict depth values. We have designed the following plans for ablation experiments:

• A - No dropout layer is added, and a separate MSE loss function is used for network
training.

• B - No dropout layer is added, and a separate SML1 loss function is used for network
training.

• C - Add a dropout layer and use a separate MSE loss function for network training.

• D - Add a dropout layer and use a separate SML1 loss function for network training.

• E - Add a dropout layer and use MSE and SML1 composite functions according to
the weight ratio for network training (here you need to test the weight ratio multiple
times to find the best ratio).

Figure 5.6: The whole process of U-Net regression model training

The reason why we chose to introduce the SML1 loss function is mainly to supplement
the shortcomings of the MSE (Mean Square Error) loss function, especially in the regression
depth value prediction task. MSE is sensitive to errors, which means that larger errors have
a significant impact on the loss. If the dataset contains errors, MSE may cause poor model
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performance. In contrast, SML1 Loss is less sensitive to errors because it penalizes a linear
penalty on large errors rather than a quadratic penalty. It provides smoother gradients
during optimization and is more robust in situations where the data contains errors or
extreme values.

SML1Loss =
1

N

N∑
i=1

|yi − ŷi|
max(|yi|, τ)

(5.3)

In SML1 mathematical formula:

• N is the total number of samples, which refers to the total number of pixels in the
OCT image.

• |yi − ŷi| represents the absolute error between the true value and the predicted value.

• max(|yi|, τ) is used to calculate the scale factor, where τ is a small positive number,
often used to prevent the denominator from being zero.

• The key characteristic of the SML1 loss function is that its numerator contains the
absolute error, while the denominator includes a scaling factor max(|yi|, τ). This
scaling factor makes the SML1 loss function insensitive to the scaling of the data.
When there is a significant difference between the true value |yi| and the predicted
value |ŷi|, the absolute error in the numerator dominates, while the influence of the
scaling factor decreases when the differences are small. This property makes the SML1
loss function perform well in the presence of outliers or data with different scales, as
it is not overly sensitive to large errors.

Figure 5.7: Mathematical explanation of smooth loss function

First, the SML1 loss function is scale invariant, which means it is not affected by data
scaling. In contrast, the MSE loss function penalizes large error terms more heavily because
it includes a squaring operation, which makes it very sensitive to outliers or outliers. SML1
reduces the impact of large error terms on the loss by using absolute values instead of
squared differences to measure errors. Therefore, SML1 performs better on data sets with
outliers because it is not too disturbed by extreme values.

Second, SML1’s absolute value operation generally results in a smoother loss function
surface, relative to the squared term of MSE, which helps to find the global minimum
more easily, thereby enhancing the stability of training. MSE may introduce multiple local
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Figure 5.8: Smooth loss function curve

minima in the loss function surface, leading to instability in training, while SML1 makes it
easier to avoid this situation.

Furthermore, the MSE loss function assumes that the error follows a Gaussian
distribution, which may not be appropriate in some cases, especially when the error
distribution does not satisfy normality. In contrast, SML1 makes looser assumptions about
the error distribution and is therefore more suitable for different types of data.

To summarize, the SML1 loss function is generally more robust in regression tasks,
especially when outliers are present or scale invariance is required. It complements the MSE
loss function and helps improve the performance and stability of the model. Therefore, we
choose to introduce the SML1 loss function into our ablation experiments in order to obtain
better depth value prediction effects.

5.5.2 Experimental Analysis of single loss function

After conducting the first round of training according to Plan A (3D model shown in Figure
5.9), we have made certain progress. This is a positive sign for such a small dataset. The
regression U-Net network showed excellent ability to extract some depth value information
from a single fundus image, and the difference between the predicted value and the true
value was only 88.98 (the difference in the first epoch was 323892462) . This indicates that
the model has learned to predict depth information from fundus images to some extent.

However, when we further observe and visualize the predicted 3D model, we find that
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Figure 5.9: Plan A predicts fundus 3D model

the similarity between the predicted model and the real 3D model does not seem to be as
close as it should be with a difference value of 88.98. We believe that the main reason for this
problem is that the U-Net model over-learns the significantly changing feature information
in the center, but ignores the detailed feature information in the edges and surrounding
areas. This situation may be caused by the small size of the data set and limitations of the
U-Net architecture or problems with network parameter settings. In U-Net, the information
transfer between encoder and decoder is usually implemented through skip connections, but
they may not be enough to effectively capture global and local features. In addition, factors
such as the depth of the network, the number of feature maps, and regularization may affect
the performance of the model.

This analysis highlights the challenges of training deep learning models on small-scale
datasets, while also highlighting the importance of further research and tuning to improve
model performance. This also highlights the complexity and challenge of the medical
image analysis task we studied, namely fundus OCT image analysis. Through continuous
experimentation, analysis, and improvement, we can gradually improve the model to achieve
more accurate depth value predictions.

Compared with plan A, the training effect of plan B is very close. The observation that
solution B using the SML1 loss function has a predicted value error of 81.72 suggests that
in this particular task, the SML1 loss function and the MSE loss function perform almost
identically when used alone.

However, this also inspires us to construct a composite loss function by reasonably
configuring the weight ratio of the SML1 loss function and the MSE loss function to further
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improve the performance of the model. This composite function can comprehensively utilize
the scale invariance of the SML1 loss function and the squared difference characteristics of
the MSE loss function to better capture the key features of the depth value prediction task.

This finding inspired our subsequent research directions, especially on how to determine
the optimal weight ratio between SML1 and MSE, and how to effectively combine them
into a composite loss function. This is also closely related to the ablation experiments we
mentioned before, because through ablation experiments, we can evaluate the performance
of the model under different weight ratios and find the best combination to achieve more
accurate depth value prediction.

In subsequent experiments C and D, we added the dropout layer to the training process
of the MSE and SML1 loss functions respectively. The results showed that the predictive
value of the MSE loss function dropped to 54.54, while the predictive value of the SML1
loss function increased to 93.84. Based on further analysis, we think this phenomenon may
be due to the impact of the data distribution of our data set, because the MSE and SML1
loss functions have different focuses. Although adding the dropout layer helps alleviate the
overfitting problem, it still It is inevitable that detailed information will gradually be lost
as the number of neural network layers progresses. The lack of this information may cause
individual larger error terms, but there will not be a large number of outliers. The MSE
loss function has a relatively larger penalty for large error terms than SML1, which makes
it more robust in the presence of individual outliers or noisy data. SML1 is not sensitive to
large error terms, so when the data distribution of our data set is relatively even without a
large number of outliers, it may not perform as well as MSE in certain situations.

In addition, the hyperparameter settings of the dropout layer itself will also have a
certain impact on the training effect of the neural network model, including the dropout
dropout rate and the settings of other training parameters. A dropout rate that is too large
may also lead to large changes in the data distribution of the data set, which in turn affects
the adaptability of the loss function to the data distribution. This requires trying different
hyperparameter configurations to find the best combination. This is true for SML1 and The
MSE loss function is applicable.

In the preceding discussion, we primarily explored network training strategies based
on individual loss functions. However, in Experiment E, we ventured into a more
challenging approach by combining the MSE (Mean Squared Error) and SML1 (Scale-
Invariant Mean Absolute Error) loss functions into a composite loss function. This endeavor
was motivated by our recognition of the limitations of single loss functions in specific
scenarios.In Experiments A and B, different loss functions exhibited similar performance
when handling data distributions of the same nature. However, in Experiments C and D,
different loss functions demonstrated varying performances when dealing with different data
distributions and task characteristics. This led us to the insight that combining these loss
functions could be a promising strategy to achieve favorable outcomes in different aspects.

Our objective was to optimize the composite loss function by adjusting the weight ratios
between MSE and SML1, enabling it to harness the strengths of both loss functions. This
approach aimed to further enhance the training efficiency and performance of the neural
network model.
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5.5.3 Experiments to find the weight ratio of the composite loss function

Ensemble methods are widely used in neural network training, such as random forest, which
is a typical method based on ensemble learning. It improves the performance of the model by
combining the prediction results of multiple decision trees. Similarly, loss functions in deep
learning can also combine different loss functions within a single model through composite
integration to guide the model to learn different aspects of knowledge or optimize different
goals. The main loss function compound methods are as follows:

• Weighted combination of loss functions:

In neural networks, multiple loss functions can be combined according to certain
weights to form a composite loss function. In our research, we combine the MSE
and SML1 loss functions. MSE focuses on the regression task of continuous data.
By appropriately adjusting the weights of the SML1 loss function, we can balance
the influence of different loss functions in multi-task learning and improve the multi-
tasking ability of the model. Feature.

• Adversarial loss function:

In adversarial training, two competing loss functions are usually used. For example,
the generator and discriminator in generative adversarial networks (GANs) use
different loss functions. The generator seeks to fool the discriminator, and the
discriminator seeks to accurately classify real and fake data. This competitive dynamic
often results in the generator generating more realistic data. This combination of
adversarial loss functions can also be used as a compound loss in deep learning.

• Loss function adaptation:

Some methods adapt to different characteristics of the data by dynamically adjusting
the weight or shape of the loss function. This kind of adaptation can also be regarded
as a collection of multiple characteristics. For example, Focal Loss performs well in
target detection. It reduces the weight of easy-to-classify samples and increases the
importance of difficult-to-classify samples when the samples are imbalanced.

These examples illustrate that in neural network training, the combination of loss
functions can be used to take full advantage of different loss functions and improve model
performance and robustness. The weighted composite loss function used in our study uses
the weighted composite formula as follows:

argmin
θ

1

N

N∑
i=1

(
α(yi − ŷi)

2 + β
(2µyiµŷi + c1)(2σyiσŷi + c2)

(µ2
yi + µ2

ŷi
+ c1)(σ2

yi + σ2
ŷi
+ c2)

)
(5.4)

N is the number of training images; yi is the ground truth depth value; ŷi is the predicted
depth value; µx denotes the mean of x; σx denotes the standard deviation of x; c1, c2, α, β
are tunable parameters.
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Figure 5.10: Composite loss function training process

In Experiment E, we chose to use the simplest weighted combination method to control
the weights of different loss functions by adjusting the values of α and β so that they have
different effects on the model during training. In our research, we have also considered using
cascade or parallel network methods or neural network adaptive weight learning methods
to regulate the proportion of α and β parameters, but these two methods each have their
own drawbacks.

For the cascade or parallel network approach, it requires designing two independent
neural networks, one using the MSE loss function and the other using the SML1 loss function.
Their outputs can then be cascaded or paralleled together to form the final prediction.
Although this method is theoretically very flexible and can better handle the output of
different loss functions, it is not applicable in our specific task. Since we only have one data
set and one target task, simply training two networks would double the computational cost
with about the same effect as using two loss functions alone, so we decided not to use this
approach.

For the neural network adaptive weight learning method, it is a very powerful weight
learning technique that can learn dynamic weights through the neural network to adaptively
adjust the weights of the two loss functions. This can be achieved by designing additional
network layers so that the two weight parameters α and β become hyperparameters of the
network layer and combining them with the characteristics of the input data to achieve
adaptive adjustment. However, this method of autonomously regulating weights will lead
to increased computational costs and often requires more training data to ensure that the
network finds the corresponding weight balance. This method may not be as good as when
data is scarce or very noisy. Simple fixed weights work. And this will make the model’s
decision-making process more opaque and reduce the interpretability of the model.

Therefore, after considering both methods, we finally chose the simplest weighted
combination method to control the weight of the loss function by manually adjusting the
values of α and β (As shown in Figure 5.10). Although this approach is relatively more
intuitive and easier to implement, in some cases more experimentation and tuning may be
required to find the optimal weight settings. This decision was made after weighing factors
such as computational cost, model interpretability and mission requirements.

In our specific implementation plan, we chose to use the MSE loss function as the main
loss function and the SML1 loss function as the auxiliary loss function to ensure the stability

62



Chapter 5. Regression-based 3D Surface Estimation from Monocular Images

of model training and reduce the impact of outliers on the overall composite loss function.
Influence. We divided the experiment into 40 groups, in which the value of α was fixedly
set to 1, while the value of β gradually increased from 0 to 2 with a step size of 0.05.
Each set of experiments was conducted for 100 rounds of training, and 3 sets of training
weight parameters with the best results were selected. We used 3D visualization methods
to compare and observe the training effects of different parameter combinations.

However, over many epochs of training, we noticed some particularly large outliers, with
values exceeding 10,000. The occurrence of these outliers will cause the entire network
to completely collapse in this round of training. Therefore, to deal with this situation,
we introduce a threshold, i.e. (0, 496), every time we obtain a prediction value to avoid
occasional outliers from ruining the entire training process. The purpose of this strategy
is to ensure that the model is robust to outliers during the training process and prevent
them from having too great an impact on the overall training. The implementation of this
strategy helps to improve the stability of the model and ensure that the model can better
adapt to different parameter combinations.

The data tables and curves we finally obtained from training are as Table 5.1 and Figure
5.11.

Figure 5.11: Comparison curve of loss prediction value with different weight ratios

According to the comparative analysis of the table and the curve (As shown in Figure
5.12), we can observe that the final loss prediction value shows a standard gradient downward
trend, but starts to rise when approaching the convergence point. By carefully observing
the loss trend curve 1 and curve 2, we can initially determine that the optimal weight
parameter β should be between 1.245 and 1.275. In order to determine the optimal value
more precisely, we further narrowed the step size, setting it to 0.005, and conducted a series
of experiments to find the most suitable β weight parameter.

Finally, we determined that the combination with α of 1 and β of 1.25 achieved the best
results in the 51st round of training, with a predicted value of 29.703. We saved the weight
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Figure 5.12: Comparison curve2 of loss prediction value with different weight ratios

parameters this time as ”Best checkpoint epoch51.pth”. This set of weight parameters was
gradually adjusted through multiple rounds of ablation experiments. After repeated manual
adjustments to the weight ratio of the α and β parameters, we successfully reduced the loss
to 29.08, which was a significant decrease compared to the original 81. This shows that our
model is closer to the real image label in depth value prediction, which further validates the
effectiveness of our method.

At the same time, the following is the final table of our ablation experiment, showing
the predicted values obtained by different U-Net module combinations, as well as the finally
selected best parameter combination on Table 5.3.

This table gradually shows the entire process of our ablation experiment. It can be seen
that as we gradually modify the network structure and loss function with scientific rigor,
the final predicted loss value has been steadily declining. This marks that our model has
undergone a series of fine optimizations and adjustments in the depth value prediction task
of monocular images, continuously approaching the relationship between real images and
3D scenes. Through this series of ablation experiments, we gradually locked in the best
parameter combination, and generated the corresponding 3D visualization model through
the best weight combination:

5.5.4 Analysis and Conclusion

So far, we have achieved certain research results. Observing the 3D model predicted from
monocular fundus images obtained by our E-scheme (As shown in Figure 5.13), we can
see that the optimal weight ratio trained U-Net model performs well in extracting central
salient features and partially extracts the 3D ground truth center left Half of the marginal
information shows a trend of high, low, and then higher (As shown in Figure 5.14). However,
the feature extraction effect for the right half still needs to be improved, which is a direction
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Figure 5.13: Plan E predicts fundus 3D model

that requires further research and optimization.
Combining the predicted 3D models obtained by Plan A and Plan E, we can find the

inclined plane trend with the 3D ground truth. The predicted 3D models of both are still
in the horizontal plane, which means that even the improved U-Net model is still It is
impossible to learn the structural features of 3D ground truth from the monocular fundus
image, and it is still only a simple extraction of 2D feature information. This shows that
although our U-Net model has achieved certain improvements in extracting 2D feature
information, requiring it to learn 3D structural features from monocular fundus images is
still a very challenging task.

As for why the verified MSE prediction depth value error has been greatly reduced, our
analysis is because the predicted 3D depth value is close to the 3D ground truth depth
value in the overall trend (As shown in Figure 5.15). However, the part with relatively poor
feature extraction ability is closer to the 3D The average depth value of the ground truth,
so its error should be seen as reduced relative to the average depth value of the label, but
this does not mean that it has learned the 3D structured features of the label.

In this stage of research, we have made a series of progress in the depth value prediction
task, but we also face some challenges. Our method utilizes the design and optimization of
the deep learning model U-Net network and composite loss function to provide a promising
approach for 3D depth value prediction of monocular fundus images. However, we also
identify directions for future research and improvements. We need to explore more deeply
the common structural features in fundus images and input these features into the U-Net
model together with monocular fundus images. This will enable the model to combine
structural features during feature extraction to better learn and predict 3D models, making
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Figure 5.14: Edge feature learning

Figure 5.15: Explanation of reduced error in predicted depth values
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them closer to 3D ground truth. This improvement is expected to improve the performance
of U-Net networks in 3D model prediction.

In summary, our research provides a promising starting point for the field of 3D models
for predicting depth values from monocular fundus images, and also points out the direction
of future research aimed at further improving the prediction effect.
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Table 5.1: Comparison table of loss prediction values for different weight ratios

Step(0.05) Epoch Last Loss Pred with Threshold

1 71 54.54070282
2 68 140.0891266
3 64 510.9633789
4 7 33.11423874
5 7 76.83986664
6 31 103.9022903
7 5 87.6574173
8 6 65.116539
9 24 672.6921387
10 70 172.3680115
11 4 102.9262238
12 36 449.5148926
13 3 23.71237946
14 15 394.0952759
15 3 142.9620819
16 3 42.38488007
17 15 584.9703979
18 100 95.14992523
19 4 213.114212
20 7 85.83585358
21 1 168.0022278
22 92 271.7408447
23 17 49.78013611
24 5 41.10489655
25 1 247.4756622
26 5 40.82254028
27 67 96.008461
28 94 105.7719727
29 5 56.02663422
30 51 74.1809845
31 13 227.0072937
32 4 81.3144989
33 65 338.4442444
34 2 48.83658218
35 50 66.39360809
36 3 499.8345032
37 87 100.7852707
38 5 79.73686981
39 7 45.86663437
40 96 215.1383057
41 5 41.15210724
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Table 5.2: Test for optimal weight ratio of β parameters

β Epoch Last Loss Pred with Threshold

1.245 24 58.573
1.25 51 29.704
1.255 28 66.924
1.26 15 105.943
1.27 21 77.472
1.275 23 101.837

Table 5.3: Final results of Ablation Experiment

Exp. Setup MSE (validation) ↓
A U-Net + Loss MSE 88.98
B U-Net + Loss SML1 81.72
C U-Net + Dropout + Loss MSE 54.54
D U-Net + Dropout + Loss SML1 93.84
E U-Net + Dropout + (α*Loss MSE + β*Loss SML1) 29.71
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Template-based 3D Surface
Estimation from Monocular Images

6.1 Motivation for building a generic template for fundus 3d
modelling

Based on our previous research and related results in the field of 3D reconstruction, we
can conclude the following: unlike traditional 2D image feature extraction, realising the
3D reconstruction task for monocular fundus images requires not only extracting 2D depth-
valued feature information, but also learning and capturing real-world 3D structural features
[Jebara, Azarbayejani, and Pentland, 1999].

3D model structural features usually refer to information such as the 3D shape, geometric
structure, and topological relationships of the target object or scene. These features include,
but are not limited to, the object’s surface shape, pose, edges, curvature, surface normals,
volume, corner points, planes, bumps, etc. In our study of monocular fundus images, based
on 3D truth analysis, it can be obtained that the 3D structural features of the fundus may
involve the shape of the eyeball, the hierarchical structure of the retina, the distribution of
the vascular network, the optic cups and discs of the retina, and the anomalous protruding
lesions caused by fundus diseases. By capturing and learning the regular features (i.e., the
feature regions that are present in every eyeball) from these features, we can more accurately
restore the 3D scene corresponding to the fundus image and achieve a more accurate 3D
reconstruction, instead of stacking the feature information in a 2D horizontal plane.

The research direction of 3D model reduction based on monocular images has made
remarkable progress since it was proposed. A parametric 3D model of the human body
was proposed in the SMPL(Loper et al., 2015) paper, which greatly advanced the research
in this area by modelling shape and pose on top of the base human model. The SMPL
models the human body as a base model of the human form and then captures the features
of different human bodies through deformation. This deformation is achieved through PCA
(Principal Component Analysis), which results in low-dimensional parameters that portray
the shape, often referred to as shape parameters. Meanwhile, the SMPL model uses the
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concept of a kinematic tree to represent the pose of the human body, where the rotational
relationship between each joint point and its parent node can be represented by 3D vectors.
These local rotation vectors ultimately constitute the pose parameters of the SMPL model.
The uniqueness of this approach is that it can accurately simulate the muscle stretching
and contraction of the human body in different poses, thus avoiding the problem of surface
distortion during motion and providing a more accurate morphological description for human
modelling.

In fact, although the SMPL model has been very successful in modelling the human
body, it has some limitations in accurately modelling detailed models. This limitation is
mainly manifested in the portrayal of human hand structures and gestures. The relatively
small number of pixels occupied by the hand in the whole human body image, especially
in full or half body images, makes it difficult for SMPL to accurately distinguish hand
movements and details.

To overcome this limitation, Romero, Tzionas, and Black, 2017 proposed the MANO
hand parametric model in 2017. This model is dedicated to fine-grained hand modelling, it
contains 78 vertices, 1538 faces and constructs a complete hand skeleton, which can also be
referred to as a forward dynamics tree, based on 16 keypoints as well as 5 points from the
vertices at the fingertips of the fingers. As shown in Figure 6.1.

Figure 6.1: Joint skeleton structure. Source: Web URL:
https://blog.csdn.net/g11d111/article/details/115539407

The role of the MANO model is equivalent to introducing an intermediate layer in
the process of extracting the 3D pose from the input image, which acts as a transition
representation or a powerful layer of a priori information. This allows the model to better
handle occluded and low-resolution images, thus improving the ability to accurately model
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hand structures and gestures.The introduction of the MANO model has greatly contributed
to the field of 3D modelling of hand structures and gestures, allowing us to better reconstruct
the complex movements and details of the hand, providing strong support for applications
in areas such as hand pose recognition, gesture control, and virtual reality.

With the significant influence of MANO model in the field of hand 3D model
construction, the number of MANO-based hand applications has been increasing, among
which the S2HAND 3D hand reconstruction network is in line with our research direction.

Due to the varied hand configurations and depth ambiguity, in order to reliably
reconstruct 3D hands from monocular images, most state-of-the-art methods rely heavily on
3D annotations during the training phase, but the cost of obtaining 3D annotations is high.
Y. Chen et al., 2021 proposes a self-supervised 3D hand reconstruction network, S2HAND,
that is capable of jointly estimating poses, shapes, textures, and camera viewpoints in order
to alleviate the network’s training dependence on 3d annotated training data. dependence.
The model is stripped down from the MANO parametric hand model, which obtains
geometric cues from the input image via easily accessible 2D detection keypoints, and
exploits the consistency between 2D and 3D representations by proposing a series of novel
2D-3D losses to rationalise the output of the neural network. This result demonstrates the
feasibility of the MANO hand parametric model for monocular image reconstruction tasks
and further strengthens the exploration of parametric models of the fundus in our research.

All of these findings demonstrate the feasibility of constructing a generalised template
model in the field of medical imaging, and in our subsequent research we hope to draw on
the idea of the MANO model to abstract realistic 3-dimensional objects into parametrically
representative mathematical models by constructing a parametric model of the fundus to
provide generic template fundus structural features to the network model. By capturing
these generic features, we can better perform 3D reconstruction of monocular fundus images
without relying on a large amount of training data and individualised models, thus improving
the prediction of the models.

6.2 Parameter definition of fundus parametric model tem-
plate

In order to abstract real-world objects into mathematical models composed of parameters,
we first need to find the ubiquitous characteristics or commonalities of these objects. The
MANO model is built based on an initialized hand model. This model uses changes in 21
skeletal points to control the deformation of the entire hand model. This means that by
tracking the changes of these 21 key points in the three-dimensional space, the changes of
the entire hand model in the 3D space can be effectively represented. Therefore, our goal is
to find common feature points between multiple fundus 3D models and use them as reference
standards for fundus 3D model changes.

By finding and capturing these common feature points, we can build a universal fundus
3D model parametric model. This model will be able to reflect the changes between different
fundus 3D models while retaining their common features. The establishment of this abstract
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model will provide a promising method for 3D reconstruction of monocular fundus images
without relying on a large amount of individualized training data, thus improving the
prediction effect and generalization ability of the model. 3D ground truth model shown
in Figure 6.2.

Figure 6.2: 3D ground truth comparison

While analysing different 3D ground truth fundus models, we noticed significant
differences between each fundus model, which are less similar in their overall structure and
have multiple points that may be used as representative features, such as textural features
of the fundus surface, trends in the concavity and convexity of the fundus, and the range
of variation in fundus depth values. However, our goal was to find feature points that are
largely invariant across different fundus 3D models, which can be used to determine a fundus
3D model.

Further observations showed that although the structures of the fundus 3D models varied
from subject to subject, they collectively showed a tendency to convex from the periphery
to the centre and then concave to a single point. Although the size of the central elliptical
ring region of the fundus and the plane in which it is located change with different fundus
3d models of the fundus, and the centre point of the fundus concavity also changes, based
on the plane in which the ellipse is located and the coordinates of the centre of the fundus,
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we can roughly determine the position of the fundus 3d model in 3D space. Therefore, we
chose the elliptical circle and the centre of the fundus as representative features of the entire
3D model of the fundus and abstracted them to be represented as parameters.

This parametric approach allows us to represent the key features of the fundus 3D model
in a more accurate way without considering the complexity of the whole model. We can
achieve adaptability of the generic fundus structure template by adjusting the parameters so
that it can be adapted to different fundus structures without having to rely on large amounts
of individualised training data. Another important advantage of such a parameterised model
is that it ensures that the U-Net network does not learn the features of the validation set
labels while learning the fundus structure. This separated feature representation helps to
improve the generalisation performance of the model, which leads to better adaptation to
new fundus images and reduces the risk of overfitting.

6.3 Calculate the coordinates of the centre point of the
fundus recess

The key to finding the depression centre point of each fundus 3d model is how to determine
its coordinate position. Because not every depression centre point is exactly the position of
the image centre, so we have to judge its coordinates according to the changing trend of the
fundus model.

According to the analysis of the image trend theory, all the fundus images follow the
changing trend of protruding from the outside to the inside and then concave to a point,
which means that the trend around the concave centre point is changing very drastically,
and the gradient of the pixel point expresses the changing trend around the pixel value, so
by detecting the change of the gradient, we can find the position with the fastest increase
or decrease of the gradient, and it is the coordinates of the concave centre point that we
want to determine. As shown in Figure 6.3.

Figure 6.3: Gradient change in depression center
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6.3.1 Gradient change row and column cross positioning

Analysis based on gradient trend maps is an effective method to locate the centroid of a
depression, which makes full use of the gradient information to determine the location of
the nadir, i.e. the centroid of the depression.

First of all, we can point out that the main function of the gradient map is to reveal the
intensity variations in different regions of the image, thus helping us to find the region with
the largest gradient variation, i.e., the region that may contain the depression centroid. In
all 3d ground truth models, the depression centroid must be located at the lowest point,
which means that the gradient at that point is zero. Therefore, we can determine the exact
coordinates of the depression centroid by finding the location where the gradient value is
zero.

To achieve this, we first traverse a two-dimensional array of 3D ground truth depth
values and compute the mean value of the gradient for each row or column by row and
column, respectively. This process is achieved by calculating the gradients of neighbouring
elements in the array. The specific steps are as follows:

• Iterating through each row or column, we compute the gradients between neighbouring
elements and take the absolute values of these gradient values and then compute the
mean of these absolute values. This gives us the mean value of the gradient for each
row or column.

• Next, we find the rows and columns with the largest mean values of the gradients, and
the coordinates of these rows and columns will indicate where the gradient changes
are most pronounced, i.e., where they may contain the centroid of the depression.

With this method, we can determine the coordinates of the depression centroid in the
gradient trend graph because this point has a gradient of zero and because it is located at the
intersection of the rows and columns with the largest gradient change. The advantage of this
method is that it is an image information-based localisation approach that automatically
adapts to different fundus images and does not depend on specific image size or location
constraints.

However, we found through experiments that some fundus 3D models are not applicable,
which shows that the row gradient cross positioning method may have limitations on some
fundus 3D models. Different fundus 3D models may have different characteristics and
changing trends, resulting in a sunken center. The positions of points are diverse. In
some cases, the row with the largest change in row gradient may pass through the center
point of the depression, but the column with the largest change in column gradient is in the
edge area, and the gradient of the point where the two intersect is exactly 0 (As shown in
Figure 6.4). In this case Our row and column cross positioning cannot accurately locate the
coordinates of the center point of the depression.
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Figure 6.4: Defects in row and column cross positioning coordinates

6.3.2 First-order derivative improved fundus sunken center positioning
method

According to the image we obtained to continue the analysis, we found that in fact the vast
majority of the depression centre is near the centre of the image, and the depression centre
point as the lowest point in the range, its first-order derivative must be zero, which means
that the pixel value in the vicinity of the point does not change much, that is to say, this
point may be a smooth region or inflection point in the image. By combining the conditions
that the first order derivative is zero and the gradient changes the most, we restrict the
selection range on the basis of the original, as follows:

• First, still traverse each row or column and calculator its gradient value change, but
here we need to add an array to calculate and save the coordinates of all the points
in the row or column where the first-order derivative is zero.

• Then, the coordinates of the centre of the image are calculated and the distance of the
points contained in the array from the centre of the image is calculated, here we set
the threshold to 50 and discard all points with zero first order derivatives above 50.

• Finally, we cross-locate the remaining points by row and column gradients, and we
can obtain the centroid of the depression that is closest to the centre of the image and
has a first-order derivative of 0 and the largest gradient change.
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Figure 6.5: Defects in row and column cross positioning coordinates

After a series of experiments and analyses, we conclude that the cross-location method
using first-order derivatives as well as a threshold range-constrained rank gradient variation
performs well in fundus image processing (As shown in Figure 6.5). This method not only
accurately locates the position of the centre point of the fundus depression, but also shows
strong adaptability in coping with the situation of different 3D models of the fundus. Most
importantly, it is able to robustly cope with underlying fundus structural lesions without
being affected by them.

The successful application of this method lays a solid foundation for us to construct
a universal fundus 3D model structure. By accurately locating the centre point of the
depression, we can more accurately capture key features of the fundus structure without
relying too much on individualised data or being limited by the diversity of fundus structures.

6.4 Extraction of fundus elliptical circular coordinates

After determining the locations of the fundus depressions, we tried to combine the experience
of eliminating the black circular localisation lines in the fundus OCT images at the very
beginning, constructing standard elliptical circles and traversing the pixel points around
the centroid, hoping to use this to find the corresponding elliptical circle coordinates of the
location of each fundus 3d model.

However, we found that this method is not applicable to the structural localisation
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of fundus 3D models because the elliptic rings in fundus 3D models have complex 3D
information, and their constituent pixel points are not only located in different planes,
but also difficult to be captured due to their different sizes and shapes, e.g., some elliptic
rings have very similar long and short axes, and thus are closer to a circle, which makes it
difficult to adapt the standard template to the various fundus 3D models. This makes it
difficult to adapt standard templates to various fundus 3d model structures.

For these reasons, there is an urgent need for a more applicable method to accurately
locate elliptical rings in fundus 3D models. This approach needs to take into account the
diversity of locations and shapes of elliptical rings in 3D space (As shown in Figure 6.6)
in order to more accurately capture the features of the fundus structure and to be able to
adapt to a variety of different situations.

Figure 6.6: Expected renderings of fundus elliptical ring positioning

6.4.1 Method for finding the coordinates of elliptical ring

Before embarking on defining a method for finding the coordinates of an elliptical torus,
we need to take a deeper look at the characteristics of different 3D models of the fundus.
The essential task of finding the elliptical rings remains to determine the coordinates of
the individual pixel points that make up the ellipse. Considering the trend of fundus 3D
models, it usually shows a gradual increase and then decrease from the periphery to the
centre. Therefore, the first order derivatives of the pixel points on the circle of the ellipse
we are looking for should also be zero.

Although we realise that the method used to find the black ring from a 2D image
cannot be directly applied to the search for 3D elliptical rings, we can learn from the
method previously used to find the centre point of a depression. We can modify this method
appropriately to make it applicable to the task of finding the coordinates of elliptical rings.
The specific implementation is as follows:
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• First, the traversal is altered to start from the previously retrieved depression centroid
coordinates and scan along the 360-degree direction in 1-degree steps to find possible
elliptical rings, a process that still uses gradient change trend analysis to find the point
in the image with the largest change in gradient as the centroid of a possible elliptical
ring.

• Then, the scanning range is set, here we set the radius of the circle to 100, to check
whether these points are within a certain distance and satisfy the condition that the
first-order derivative is 0, so as to avoid selecting irrelevant points.

• Finally, the scanning formally starts along 360 directions, gradually increasing the
radius along the given direction vectors, and recording the point with the largest pixel
value and its coordinates among the pixel points that meet all the conditions during
the scanning process.

The experimental results prove that the improved method works very well and can be
applied to different fundus 3D models including disease cases. In different situations, it
can find the corresponding local highest points in 360 directions and record the ellipse (As
shown in Figure 6.7). The pixel coordinates of the circle. At this point, we have successfully
obtained the parameter information for the digital parametric 3D fundus model. Now, we
will further investigate how to build a standard fundus 3D model based on this information.

Figure 6.7: Fundus 3D model elliptical ring coordinates
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6.5 Fit the fundus ellipse according to the circular coordi-
nates

Now we already have the elliptical ring coordinates corresponding to each fundus 3D
model, but observing the saved elliptical ring pixel coordinate points, we can find that
the distribution of these pixel points is irregular, and they are not perfectly distributed
according to the elliptical shape (As shown in Figure 6.8). in the 3d model. This also
means that based on these pixels that are not on the same plane, we can construct many
elliptical rings containing different numbers of pixels in different planes, but what we need is
the ellipse that best represents the 3D gradient transformation trend of the fundus surface
Ring, so we need to fit an ellipse that best fits the fundus 3D model through these ellipse
pixel coordinates, which we call the fundus ellipse.

Figure 6.8: Distribution of elliptical ring coordinates in 3D space

Based on the 3D image in elliptical coordinates, it is observed that different pixel points
do not all lie in the same plane. This can complicate dealing with the 3D ellipse fitting
problem in subsequent studies. To address this challenge, we chose to downscale the problem
from 3D to 2D, using a top-down view to deal with these 360 pixel points. Our approach is to
fit an ellipse that passes through most of the pixel points by using an ellipse fitting function
and obtaining the corresponding ellipse parameters. The ellipse circle thus obtained will
contain the largest number of pixel points and will best represent the positional coordinates
of the 3D gradient transform of the fundus surface. The key steps in this method are as
follows:

• Downscaling:
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Since the pixel points are located in different 3D planes, we have chosen to adopt a
top-down view for these pixel points. This means that we ignore the depth information
and only consider the projection of the ellipse on the horizontal plane, obtaining the
ellipse that passes through the most pixels through the horizontal projection, and then
upscaling it to 3D space.

• Fitting the ellipse:

We fit these pixel points using an ellipse fitting function to find the ellipse circle that
best fits these points. This fitting process will give us the parameters of the ellipse,
such as the long axis, short axis, rotation angle and centre coordinates. Result shown
in Figure 6.9.

Figure 6.9: Fitting of elliptical ring coordinates in 2D space

With this approach, we are able to process 3D images in elliptical coordinates in a
simpler and controlled manner, resulting in the most representative elliptical circles. This
will help us to understand the fundus structure more accurately and construct a digital
parametric 3D model of the fundus.

6.6 Construct template corresponding to the fundus 3D
model

The production of generic templates is important for the study and analysis of 3D models
of the fundus. A generic template is a standardised 3D model of the fundus with a set
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of shared features that can represent common features across different samples. Secondly,
generic templates can be used as a basis for further analysis. Similar to the MANO hand
parameter model, once we have the same standardised 3D generic template of the fundus, we
can input the gradient transformation trend, 3D depth information, etc. that the 3D model
of the fundus has during network training to further refine the network model training.

In our study, the individual fundus 3D models have different poses, sizes, and rotation
angles from one another, and attempting to analyse the shape features they share requires
us to artificially apply control variables to the models. Therefore, in our study, we rotated
all 3D models to a plane parallel to the x-axis to eliminate these differences, making feature
differences between models easier to compare and analyse. This standardisation also allowed
us to identify and understand important features of the fundus structure more easily.

However, when dealing with the rotation of 3D models of the fundus, we must take into
account a variety of complex factors. Unlike simple angular rotation of 2D images, rotation
of 3D models [D.-Y. Chen et al., 2003] involves a number of key concepts that need to be
handled carefully to ensure accuracy and controllability.

• Axis of rotation:

We need to determine the axis of 3d rotation. Typically, we can choose to rotate
around the X, Y, or Z axes, but in the case of the fundus 3D model, we rely on the
coordinates of the ellipsoid ring of the fundus 3D model that we previously acquired
to determine the axis of rotation. The plane where this elliptical ring is located can
be regarded as the plane that the whole fundus 3d model is facing, and the normal
vector of that will be the rotation axis for our rotation.

• Sequence of rotation:

The order of rotation involves the order in which rotations are performed around
multiple axes. For example, XYZ order means rotating first around the X axis, then
around the Y axis, and finally around the Z axis. A different order of rotation may
lead to completely different results, in our experiment, since we want to rotate all the
fundus 3d models to be parallel to the x-axis plane, the order of rotation is from the
fundus 3d model rotation axis rotating it to be parallel to the z-axis and perpendicular
to the x-axis, ensuring that the plane of rotation is parallel to the plane where the
x-axis is located.

• Centre of rotation:

The centre of rotation is the centre of the rotation operation, and we need to explicitly
define a centre of rotation to ensure that the model is rotated around the correct point.
In our study, we have tried to use the centre point of the depression, the centre of the
ellipse circle and the centre of the image as the centre of rotation, respectively, and
obtained different conjunctions.

By taking these key factors into account, we were able to ensure that the rotation of the
fundus 3D model was accurate and controllable, which provided theoretical support for our
subsequent construction of a generic template for fundus 3d models.
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6.6.1 Rotate all fundus 3d models to the same plane

After obtaining the fitting plane corresponding to each fundus 3D model, we also obtain the
parameters of the plane as well as the normal vectors, and combining this known information
we can rotate these planes one by one to a common plane and make them share the same
centre point:

This was achieved by firstly we constructed a unit matrix of the normal vectors of the
corresponding planes of each fundus 3d model and calculated the angle of rotation between
the normal vectors of each model and the normal vector of the reference unit (which is
parallel to the Z-axis) and the corresponding axis of rotation. This step aimed to obtain
the rotation parameters needed to make the plane of each model parallel to the plane where
the X-axis is located.

Next, we used these rotation matrices to rotate all pixel points on each fundus 3D model
to ensure that they were parallel to the reference plane.

After completing the rotation, we also needed to translate the rotated points according
to the distance of each model from the reference centre of rotation (the image centroid in
the plane where the X-axis is located) to ensure that all rotated fundus 3D models shared
the same centroid. The example shown in Figure 6.10.

Through these steps, we successfully rotated and translated each fundus 3D model to a
plane aligned with the X-axis, providing a consistent baseline for subsequent analyses and
comparisons. This process helps eliminate rotational and translational differences between
models, making them easier to analyse quantitatively and qualitatively.

Figure 6.10: Plane rotation example (where Θ is the rotation angle)
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6.6.2 Construct average template for fundus

After completing the rotation and centre alignment of all the fundus 3D models, we
attempted to construct a universal fundus 3D model template. However, since the individual
images differed considerably in all aspects except for the distinguishing features such as
the fundus fitting ellipse and the centroid, it became exceptionally difficult to construct a
universal template that included all features. Based on these considerations, we decided to
take a mean-computation approach to create a template for the 3D model of the fundus.

We generated this universal fundus 3D model template by calculating the mean value
of each pixel point for each of the 32 fundus 3D model structures by traversing them row
by row. This method captures the common features of the fundus structures uniformly
across all images without interference from other differences, and is simple and effective to
implement.

Figure 6.11: Average template of fundus 3d model

It should be noted here that due to the rotation of the fundus 3D models, the depth
value of the universal template changes significantly relative to the initial fundus 3D models.
To ensure the rigor and feasibility of the experiment, we need to carry out some human
intervention. The range of depth values of the unrotated fundus 3D model is first calculated
and then averaged. Then add the average template depth value to the average depth value
range to ensure that it is between (0, 496), so as to obtain the final average template
of the fundus 3D model, laying the foundation for the subsequent implementation of the
template-based U-Net regression network.

In this way, we can obtain a more representative 3D model of the fundus that reflects the
average features of the fundus structure and provides a strong basis for further research and
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analysis. In subsequent experiments, we can make full use of the structural features of this
template to provide initialisation information for the neural network to help the network
better understand the fundus structure. In addition, we can achieve higher structural
similarity by allowing the neural network to learn the structural features of this model
so that it can mimic the structure of the target 3D model of the fundus.

6.7 Template-based regression u-net network results and
analysis

After constructing a generic template for the fundus 3D model, we need to choose how
to input this template into our U-Net network to provide structural features, and different
input strategies will have different impacts on the performance of the network. In our study,
we take the approach of inputting both the generic template and the fundus 3D image into
the U-Net network simultaneously, allowing the network to learn two aspects of information
at the same time, i.e., the detailed features of the fundus image and the structural features
of the generic template. In this way, we can fuse different levels of information at the output
in the network to better capture the nuances and overall structure of the fundus structure.

At the output of the network, we merge these two parts of information to improve
the structural similarity of the predicted values for the actual 3D structure. The benefit
of this process is that it does not require large-scale changes to the U-Net network, only
adjustments to the computation of the loss function and the input channels. This greatly
simplifies the complexity and maintenance cost of the code, while improving the performance
and predictive power of the network.

6.8 Result analysis

After several rounds of experiments, the overall results of the network training are quite
satisfactory. For most of the 3D models of the fundus without lesions, the predictions are
very close to the true values. However, for those cases that contain specific lesion areas, the
performance of the network still needs to be improved.

We reviewed and examined the performance of the network using several rubrics
including mean square error, structural similarity index, Pearson’s correlation coefficient,
and cosine similarity, which are widely used to assess the quality and accuracy of image
prediction models.

In MSE data analyses [Table 6.1], the highlighted areas usually indicate areas where the
network predictions are better. By taking a closer look at the tabular data, it can be seen
that the vast majority of the samples show a significant boost after the application of the
generic template, suggesting that the use of the generic template was very effective for these
samples. This enhancement may be attributed to the fact that the generic template is able
to provide the network with valuable structural features that help the network to better
predict the depth values of the 3D model of the fundus.
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However, it is worth noting that there is a portion of the samples where the effectiveness
decreases relative to before. After in-depth analysis, we found that these samples usually
contain special lesion regions. The depth values of these regions varied considerably, and
there were significant differences between them and the 3D models of the generic templates.
Despite some structural similarities, the generic templates may not even be as good at
predicting these samples as if no template had been used due to the differences in depth
values. This implies that the use of templates may have a negative impact on the network
training results when there are significant differences between the samples and the generic
templates.

SSIM (Structural Similarity) is an image quality evaluation metric used to compare the
similarity between two images. Through it we can compare the similarity of structural
information between different images, not just the similarity of pixel values. SSIM is
computed based on brightness similarity, incorporating a weighted combination of contrast
similarity and structural similarity. The resulting value ranges from -1 to 1, where a value
closer to 1 indicates greater structural similarity between the two images. A value of 0
implies no structural similarity, while -1 denotes complete dissimilarity between the two
images.

In the data analysis [Table 6.2], we can observe that almost all samples show significant
improvements after applying the universal template. This shows that the use of universal
templates is very effective in improving the structural similarity between the fundus
prediction model and the ground truth. This once again confirms that universal templates
can provide valuable structural features for the network, further enhancing the performance
and reliability of our model in fundus image analysis.

6.9 Conclusion and discussion

In the second phase of research, we successfully constructed a universal template of the
fundus 3D model and applied it to the depth value prediction task. Actual results show
that the universal 3D model template we constructed is very effective. It enables the network
to fully combine structural features during the training process, better learn and predict 3D
models, and improve the structural similarity between model predictions and real data.

To summarize, our research has initially achieved 3D model prediction based on
monocular fundus images, and provided a template model containing shared structural
features of fundus 3D models. This achievement provides a solid foundation for future
fundus image processing and medical diagnosis research, and also provides strong support
for further development in the medical field. In future research, we will continue to explore
how to further optimize the template model to better fit fundus images including lesion
samples, and expect to apply this technology to actual medical practice in the future.
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Table 6.1: Compares the MSE estimates of fundus 3D models (considering the use of a
universal template). MSE is used to evaluate the pixel-level difference accuracy between
model prediction result and label. Its calculation is based on the regression U-Net model,
and the data type used is fundus OCT images and depth labels. The first column represents
the fundus 3D subject used for prediction, the second column corresponds to the scenario
where the universal template is applied, and the third column represents the scenario where
the template is not used. Solutions with excellent MSE evaluation results are highlighted
in red.

Subject Template MSE MSE

1 12.3614836 80.91336823
2 15.14782969 56.91899109
3 16.88923188 96699160
4 35.61440597 9416958
5 42.68319129 237.9021759
6 45.7116713 65.7665863
7 48.84662025 67719.26563
8 122.6052081 280197152
9 127.8628406 24773854
10 148.4345572 14.86326218
11 217.0648647 36.88617325
12 249.6140609 362520960
13 260.6320753 1528.672119
14 396.7403977 1977.305908
15 414.0925701 21.51996803
16 467.4578377 325.0846863
17 474.3960847 34879372
18 504.2673745 532.2302246
19 525.0994288 40.8406868
20 650.7512414 17909376
21 718.3414949 312.6500854
22 722.2468451 30624404
23 787.7619538 104.9335327
24 933.2428543 115.9980469
25 1045.694062 10630474
26 1114.920979 25548984
27 1439.015502 3348531.75
28 1806.800601 346.7709351
29 2078.00298 1292.505493
30 2116.339417 368.3284912
31 2175.876901 6817828
32 2916.398308 4527.938477
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Table 6.2: Compares the SSIM estimates of fundus 3D models (considering the use of
a universal template). SSIM is used to evaluate the structural similarity between model
prediction result and label. Its calculation is based on the regression U-Net model, and the
data type used is fundus OCT images and depth labels. The first column represents the
fundus 3D subject used for prediction, the second column corresponds to the scenario where
the universal template is applied, and the third column represents the scenario where the
template is not used. Solutions with excellent SSIM evaluation results are highlighted in
blue.

Subject Template SSIM SSIM

1 0.309957861 0.160092813
2 0.368556838 0.211438074
3 0.314710477 0.109986005
4 0.421658318 0.223939794
5 0.354966576 0.192360925
6 0.231940488 0.162960583
7 0.274446169 0.139932696
8 0.246549575 0.152055737
9 0.245414813 0.085069172
10 0.340885333 0.152512824
11 0.308847197 0.16505761
12 0.175178239 0.214976578
13 0.243875195 0.162884957
14 0.314483949 0.167974559
15 0.303206265 0.157944098
16 0.295468195 0.125537772
17 0.1434751 0.103765445
18 0.298501999 0.157907577
19 0.321736441 0.159980542
20 0.124661653 0.071921662
21 0.294543924 0.134211002
22 0.224788544 0.059701347
23 0.314312627 0.144573086
24 0.337558703 0.18767955
25 0.115480629 0.151643251
26 0.293167554 0.063000767
27 0.203230481 0.116723158
28 0.161465101 0.135863357
29 0.108840358 0.132600015
30 0.20757415 0.118227432
31 0.26041153 0.104746451
32 0.323379329 0.152754062
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Discussion

The core goal of our research was to achieve 3D model prediction based on monocular fundus
images, which is a pioneering advancement in the field of fundus medical imaging, where we
have successfully achieved 3D reconstruction of a single view of the fundus in the absence
of depth information. Our work has made significant progress in the following aspects:

Firstly, we have successfully achieved single-view 3D reconstruction of fundus images,
which is the first of its kind in the field. Fundus images typically provide only 2D information
and lack depth information, whereas our method allows 3D models to be reduced from these
single images, providing ophthalmologists with more comprehensive visual information.

Secondly, we overcome the problem of shot noise such as localisation lines and scanning
areas in fundus OCT images by proposing an effective algorithm to remove these interfering
factors. At the same time, we used a Gaussian interpolation method to fill in the blank
areas left after scanning to maximise the preservation of feature details in the images. This
step is crucial for the quality and usability of fundus OCT images and provides a fundus
OCT dataset that can be used for training in our subsequent studies.

Thirdly, we constructed 3D truth labels for the fundus OCT images. By establishing
world coordinates and integrating the fundus OCT top view and its corresponding slice
images, we mapped the depth value information contained in the slice OCT images to their
corresponding locations in 3D space, and obtained the corresponding truth labels for the
fundus 3d model, which provided a reliable benchmark for subsequent studies.

In addition, we designed an effective U-Net model that can be used for the regression
task and proposed the corresponding composite loss function, which combines the MSE loss
function and the SML1 loss function, and obtained the appropriate weight ratio through
multiple tests, so that it retains the ability of MSE to differentiate the difference between
the predicted and the true values while improving its generalisation ability corresponding
to the complex environment.

Finally, we obtained the trained U-Net model after several rounds of training, and after
testing, we proved that it is indeed capable of extracting detailed features from monocular
fundus images, and the effect is more significant for features with obvious changes in the
central gradient, and weaker for edge features.

However, we also recognise some challenges and limitations. it is difficult for the U-Net
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model to extract structural features from 2D images for the fundus 3d model. To solve
this problem, we constructed an average template of the fundus 3D model by learning the
MANO hand parametric model, and input it into the U-Net model along with the fundus
OCT images to participate in the training, as well as providing 2D feature details as well as
initialised structural features for the network model. Ultimately, we succeeded in improving
the learning effect of the model for edge features and SSIM similarity, which signifies that
the predicted 3d model is more similar to the 3d truth in terms of structural features, in
line with our prediction of the template effect.

In summary, our study provides a new approach for 3D reconstruction of fundus medical
images, overcoming a series of challenges and laying a solid foundation for future ophthalmic
research and clinical practice.
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Conclusions

In this study, we aimed to achieve 3D model prediction based on monocular fundus images,
which is a pioneering work in the field of fundus medical imaging. We successfully overcame
the challenge of single-view 3D reconstruction and provided a new depth-informed solution
for fundus images.

Firstly, we initially achieved single-view 3D reconstruction of fundus images without
providing depth information and relying only on the U-Net model for feature extraction,
which reduces the cost of constructing fundus 3d models and provides more comprehensive
3d visual information for doctors. In addition to this we also provide a fundus OCT dataset
containing the corresponding 3d truth values, we not only remove the shot noise in the
fundus OCT images, but also fill the blank area after scanning by Gaussian interpolation
method to maximally preserve the feature details of the images, which will provide an
effective dataset support for future research and clinical applications. The algorithms we
provide to clean up the black localisation lines and green scanning area noise left behind by
fundus OCT image capture also ensure that we can subsequently obtain more fundus OCT
images that can be used for training.

Second, we proposed a composite loss function suitable for extracting 3d feature
information from 2d fundus images, and tested the best weights of MSE and SML1 in
its constituent functions, which further improved the model performance and generalisation
ability.

Finally, we abstracted the fundus 3d model as a mathematical parametric model, and
used the elliptical rings with obvious gradient changes and the concave centre point as the
key points of the template to construct a fundus 3D model average template, which can
provide structural features of the fundus for the training of the network model, and make
up for the poor effect of the convolutional network in the extraction of 3d structural features.

We have made significant progress in this study by successfully achieving 3D reconstruc-
tion of fundus medical images and overcoming several technical challenges, which provides a
basis for further innovation and improvement in ophthalmic clinical care. However, we also
recognise that there is still much potential room for improvement. The highest ssim value
we obtained was 0.3, which is far from 1. This indicates that our structural similarity is
still not high enough, so we need to continue to strengthen the model’s ability to extract 3D
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structural features in subsequent studies. Meanwhile, the size of our dataset is too small,
which inevitably produces overfitting prematurely in multiple rounds of training, but we
cannot lose too many detailed features using dropout, so we need to further expand the size
of the fundus OCT dataset to better train the network model in future studies.

Another possible direction of improvement is the introduction of the Transformer
model.Transformer, as a powerful deep learning architecture with a self-attention mech-
anism, allows the model to establish weight relationships between positions in the input
sequence, which means that the model can take into account all elements in the fundus
OCT image at the same time, not just the local context, which promises to make the model
to focus not just on the central region where gradient changes are evident, but to have
an enhanced ability for edge feature extraction. This is expected to provide better feature
capture and sequence modelling capabilities in our task, helping to further improve the
performance of the model and improve the results of 3D reconstruction of fundus medical
images.

We believe that future efforts will further improve our results and contribute to further
improvements in ophthalmic medicine and patient well-being.
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