
1

CellSight: Machine Vision Defect Detection During

Automated Cell Assembly

CellSight: Machine Vision Defect Detection

During Automated Cell Assembly Thesis

Author: Joe Henshall

Supervisor: Dr David Cheneler / Dr Xiaonan Hou

Date: 26/09/23

2

Table of Contents

1.0 – Introduction .. 4

1.1 - Aims .. 5

1.2 - Objectives ... 5

2.0 - Literature Review ... 6

3.0 - System Architecture ... 19

3.1 - Hardware Configuration .. 19

3.1.1 - Coin Cell .. 20

3.2 - Software Design .. 21

3.2.1 - AI Cell Sight Module .. 21

3.2.2 - Morphological Analyser Module .. 21

3.2.3 - Predictor Lite Module ... 21

3.2.4 - Build Report Generator Module ... 22

3.2.5 - Model Generator Module ... 22

3.2.6 – Preprocessor Module .. 22

3.2.7 – Data Augmenter Module ... 22

4.0 – Morphological Analysis .. 23

4.1 – Isolating the Component .. 23

4.1.1 – Approach 1: Dynamic Canny Edge Thresholding and Filtering 23

4.1.2 – Approach 2: Background Subtraction and Thresholding .. 25

4.2 - Edge Quality Analysis .. 27

4.2.1 – Approach 1: Smoothing by Erosion/Dilation ... 28

4.2.2 – Approach 2: Smoothing by 1D Blur Kernel ... 30

4.2.3 - Edge Quality Analysis End-to-End Validation ... 33

4.3 – Electrode Curvature Analysis ... 34

4.3.1 - Methods ... 35

4.3.2 – Results .. 35

4.3.3 – Discussion .. 36

4.4 – Punching Overlap .. 37

4.4.1 - Methods ... 37

4.4.2 – Results .. 39

4.4.3 - Discussion... 39

5.0 – Machine Learning Surface Inspection .. 40

5.1 - Architecture and classification type .. 40

5.2 - Prerequisites .. 41

5.2.1 - Data collection ... 41

5.2.2 - Labelling .. 41

3

5.2.3 - Initial Dataset .. 42

5.3 - Training .. 42

5.3.1 - Stochastic Gradient Descent .. 42

5.3.2 – Training Epochs .. 43

5.3.3 - Loss Function ... 43

5.4 - Architecture Investigation .. 44

5.4.1 - Introduction ... 44

5.4.2 - Architectures .. 44

5.4.3 - Methods ... 48

5.4.4 – Results .. 48

5.4.5 – Discussion .. 49

5.4.6 - Amending the dataset .. 49

5.4.7 - Results ... 50

5.4.8 – Discussion .. 50

5.5 - Data augmentation .. 51

5.5.1 - Batch training ... 51

5.5.2 - Data generator .. 53

5.6 - Extended Results .. 54

5.7 – Discussion ... 58

6.0 - System Integration .. 59

6.1 – Black Box Testing and Reporting .. 59

6.1.1 – Methods .. 59

6.1.2 – Results .. 59

6.1.3 – Discussion .. 62

6.2 – Benchmarking ... 64

6.2.1 – Methodology .. 64

6.2.2 – Results .. 65

6.2.3 Discussion ... 66

7.0 - Conclusions .. 68

7.2 - Further Work .. 70

7.3 - Final Statement .. 71

8.0 - References .. 72

Appendix A: Algorithm Flowcharts ... 77

Appendix B: Raw Results ... 80

4

1.0 – Introduction

During the last decade there has been a paradigm shift in our society to move away from non-

renewable energy sources. The Paris Agreement, a legally binding international treaty, was signed

by 196 parties in 2015 to establish a climate goal for the near future [1]. The established climate

goal places a higher focus on renewable energy sources and storage methods. Battery science

has presented itself as one of the most promising technologies to achieve the sustainable future

outlined in the Paris Agreement. It is estimated that the demand for lithium-ion battery energy

storage could reach 9300 Gigawatt hours by 2030. A 17-fold increase from the demand of 0.5

Gigawatt hours back in 2010 [2]. This surge in production volume has led to “an 85% decline in

prices” [3], making many energy storage applications viable for the first time in history.

The rise of renewable energy sources such as wind and solar power has been one of the driving

factors in the accelerated deployment of energy storage systems. Moreover, the exceptional

growth of the electric vehicle market has become a serious alternative as manufacturers seek to

meet stringent emissions regulations and consumer demands for cleaner transport.

Because of this exponential rise, industry leaders and research groups around the world are

frantically pursuing innovation in the field of battery science to produce the next optimal chemistry

[4]. Much of this research is completed by small research teams producing batteries by hand,

which is both demanding on the operator, time inefficient and unreliable. In addition, most of these

cells are built inside pressurised glove boxes where visibility and tactile feedback is further

reduced. Repeatability is also an important factor in research as handmade cells have a number of

uncontrollable variables surrounding the build process that muddy the waters around testing.

Cellerate are a company that look to optimise the process of battery research and development.

They manufacture robots that fully autonomise the process of coin cell production. Their core

system takes coin cell components in a loading tray format, automatically assembles and crimps

them together to produce working cell [5]. Their system looks to not only speed up the build

process, which has been quoted by earlier adopters by a 30% increase in speed over cell

manufacture by hand, but to also improve repeatability as each cell is constructed with the same

maximal accuracy. The operator is also free to do other tasks while the system is making a cell,

saving further resources.

During automated assembly it is possible that sub optimal components are used, resulting in sub

optimal cells. These cells go on to absorb test channel resources that could otherwise be used on

cells with controlled variables and quality. This project looks to offer maximum visual data on the

cell build process back to the operator to optimise their workflow. Defects and features detected by

the systems described in this project during the build process can be inextricably linked to a cell

and quickly referenced when analysing the cells performance. This gives research teams more

analysis tools when reviewing cell data to discard bad cells that were improperly made and to

5

change their processes to reduce the rate of bad cell production moving forward. In addition, the

cell component quality data can be used to optimize component sourcing and preparation. This

project looks to actively drive forward the rate of battery development which is not only a benefit to

the adopters but also, ultimately, the environment as the switch to greener energy can be

accelerated.

1.1 - Aims
The aim of this project is to produce a computer vision system that can not only dynamically locate

cell components in an image, for alignment purposes, but can also inspect the quality of cell

components by detecting defects. These results shall be inextricably linked to a cell and give

operators a vital resource when correlating test data to cell build reports.

1.2 - Objectives
1. Isolate a cell component within an image.

2. Produce an algorithm to perform auto exposure to accommodate different lighting

conditions.

3. Produce an algorithm to find the outer contour of the cell component and perform

morphological analysis to determine:

a. Edge quality

b. Punching overlap

c. Curvature

d. Component alignment

4. Develop a machine learning model that can determine the presence of:

a. Electrode creases

b. Surface scratches

c. Cracks

d. Flaked electrode coating

5. Integrate the developed algorithms into the existing Cellerate system.

6

2.0 - Literature Review

Computer vision encompasses many technologies such as cameras, edge computing, cloud-based

computing, software and artificial intelligence that can be combined and used to extract meaningful

information from digital images [6]. Humans perceive 80% of all impressions through the sense of

sight [7] and with 88% of people ranking sight as their most valuable sense [8], it is clear that

capturing the real world through vision data and harnessing the power of computer vision is a huge

leap with almost endless applications to enrich our existing systems. This has never been more

applicable as the compression, reduction in cost and increase in power of computer chips in recent

years has led to increased expansion of the Internet of Things (IoT). As more systems become

smart and connected there is more demand for interaction and control of real world systems and it

is clear that vision data is the biggest opportunity.

It is still not fully understood how the brain interprets light entering the eye into understanding about

the surrounding environment. However, It is believed that groups of neurons in the back of the

brain called V1 and V2 neurons react to edges in the image, combining edges of similar

orientations and supressing those orthogonal to that orientation at the same location, a process

called cross orientation [9]. These cross oriented edge combinations are assembled in various

ways to allow us to detect various shapes and give meaning to light information [9].

This understanding was applied to the computer

vision problem by means of the convolutional kernel.

A kernel is a matrix, that can be multi-dimensional and

any size, which is slid across an image and multiplied

with the input such that the output is changed [10].

These form the most fundamental mathematical

process in computer vision and describe how useful

information can be extracted from pixel data. The

weights within the kernel can be altered to produce a

wide range of effects. These can range from edge

detection, blurring, sharpening and filling in gaps.

Traditional computer vision and image processing techniques are somewhat outdated with the rise

of deep learning and convolutional neural networks, due to their adaptability. Traditional computer

vision techniques, such as edge detectors and contouring algorithms, are very rigid in their

implementation. They are very susceptible to random variance in their environments and

applications. For example, lighting changes in real time systems can have drastic effects on the

success of an edge detector as the bounds for the edge detection are defined. Of course, dynamic

traditional computer vision methods can be implemented, but there is always the vulnerability that

unseen edge cases can destabilize the tuning of the system. Although these methods are

Fig.1 – Convolutional kernel [51]

7

somewhat outdated, it is important to understand the theory behind these approaches to gain more

of an understanding of how a modern convolutional neural network can achieve a better result.

Many computer vision problems rely on the ability to discern between the composite objects within

an image. Humans perform this processing innately and intuitively know where an object ends, and

another begins. Programming computers to perform similar tasks automatically is a challenge as a

computational process must be defined to determine features and ultimately separate one object

from another within an image.

One powerful technique that is referenced through a large body of image processing and computer

vision literature is edge detection [11] [12]. As the name suggests, edge detection allows the edges

to be determined within an image. This information can be used to locate objects within an image

for further processing. There have been many iterations of edge detecting algorithms throughout

the development of the literature; Sobel, Prewitt, Laplacian, Robert [12] are some examples.

However, the most widely adopted edge detector was developed by John Canny in 1986,

described in A Computation Approach to Edge Detection [13].

It is through the isolation of the most important edges in an image that the location of objects can

be identified. The most popular computer vision programming library, OpenCV [14], provides

functions to find contours against these edges which provides coordinate representations of the

edges that can be used in analysis.

Due to the proven usefulness of the technique, the edge detector is still used extensively for

computer vision problems. Even modern techniques, such as deep learning using convolutional

neural networks (CNN), which have somewhat replaced traditional computer vision and image

processing methods, use edge detectors extensively in their convolutional layers [15]. Moreover,

even though their use in the most modern computer vision approaches is mostly with deep

learning, traditional image processing techniques, such as edge detection, still have applications.

A problem when using the canny edge detector with OpenCV is that the intensity thresholds that

determine an edge are static throughout the image. What is found in practice is that found edges

can be discontinuous and contain gaps. This leads to frustration when trying to optimally set the

Canny thresholds to preserve as much of the target edge as possible. Moreover, applying this to

many images with varying image parameters, such as exposure and lighting conditions, is

exponentially harder. The work presented in [16] provides a method to actively recover edges that

the eye would consider continuous, but the edge detection method has considered broken. The

work uses a snakelet method [16] in which each piece of the broken edge is considered as such.

Two energy equations, internal and external, are used to quantitively predict how to join the

snakelets together and recover the disjoined edge. The internal energy equation concerns the

snakelets existing points and the external energy equation considers the points of the other

snakelets. What has been shown in [16], is that this method successfully and accurately

reconnects edges that are intuitively seen as continuous from the human perspective.

8

Another key method in traditional image processing is the Hough transform [17]. It is a statistical

approach for line and edge detection that can be used after a canny threshold to determine shapes

in an image such as lines and even circles. It does this by finding statistical hot points between

many imaginary lines centred at points on a given intensity boundary [17]. These hot points give

statistical confidence that vertices or circle centres are found there by computing each point’s

allegiance with other points in the image. This a very important concept as it allows threshold

images to be described mathematically using combinations of lines and shapes. This allows

contours in images to be described by mathematical structures of points, allowing computer

algorithms to analyse their shapes and positions. This information is crucial for real world

applications such as object detection and control systems.

Another popular technique used in traditional computer vision applications is background

subtraction. Often with computer vision tasks there is focus on tracking or recognising an object or

objects in an image and performing some action based on this information. This could be

controlling another device or saving information about the objects for analysis. Of course, to do this

the computer needs to make the distinction between the parts of the image that are useful and

contain the object and the parts that are not useful. The process of background subtraction gives

the computer a reference to what constitutes the background in an image. If the background is

treated as a ground truth then subtracting this known background from an image will leave behind

the foreground and areas of interest. A popular algorithm to perform this is known as the Mode of

Gaussian (MoG) algorithm. This algorithm uses multiple Gaussian distributions to model each pixel

in an image [18]. The weights of the mixture represent the amount of time the colour of a pixel has

remained the same, indicating the background. As the pixel remains the same for a longer duration

the probability that it belongs to the background in an image increases [18] [19]. This effect creates

a dynamic model of the background that adapts with the scene as lighting conditions change and

other things come in and constitute the background of an image. Fig.3 shows this concept. It

should be noted that The MoG algorithm relies on a video feed to determine the background as the

time component is critical to provide the weightings. However, a similar approach can be used with

still images if an appropriate representative background is provided and the state of the scene in

Fig.2 - Active canny recovery with snakelets [16]

9

the image can be controlled. This is most applicable to repeatable scenarios with fixed

backgrounds such as production lines or repetitive robotic tasks.

The most novel and ground-breaking work in the field of computer vision over the last decade has

been through the use of deep learning and convolutional neural networks. However, traditional

computer vision approaches by manual feature extraction and defined computational approaches

still have useful, but usually specific, applications. The work in [20] describes a computer vision

system that detects edge defects in sheet steel rolls. Using a Sobel edge detector [12], the edge of

the roll can be identified. A Hough transform [17] searching for horizontal lines is then be applied to

determine the edge gradient, which can be plotted. Any deviation of the signal from a flat response

is known to be a defective area and can be identified. The work [20] showed reliable results over

numerous widths of material. It is important to consider traditional computer vision techniques when

appropriate as they are much simpler to implement and are computationally less expensive than

equivalent deep learning approaches.

The next stage in the development of computer vision was to introduce artificial neural networks

(ANN) into the fold to make predictions on images [15]. ANNs mimic neural pathways in the brain

which fire in a specific way leading to a decision being made. ANNs have some set of input nodes

which contain parameterised values. These are then fully connected to a hidden layer of neurons,

which are then fully connected to another layer of neurons and so on. The number of hidden layers

is variable but can become computationally expensive as the number increases. The neurons fire

based on a nonlinear activation function, most commonly the ReLU function [15]. Finally, the last

hidden layer is connected to an output layer consisting of the defined set of classes on which to

make the classification [15].

Fig.3 - Mode of Gaussian background removal [57]

10

Each node and connection between nodes have an adjustable weight assigned to it. Using a

training dataset, an optimisation process is conducted to best adjust the weights to have the

network fire correctly and classify an image to what is expected. This process should train the

network to give the correct output classification response to varying input stimuli [15].

The challenge when using ANNs in computer vision problems is providing input values, this is

known as feature extraction. What is it about an image that you can train the network to pick up on

and classify based upon? Feeding each pixel into the input layer of a network would give you all

the information you would ever need about an image, but the network would become impractically

large and contains far too many parameters to realistically optimise. The literature in [21] describes

defect detection system using an ANN. A series on invariant moments are calculated from an

image which are fed into the input layer of an ANN. These invariant moments are based on

regional shape recognition that is maintained when the image is subject to rotation, ratio, scale and

pan [21]. They ultimately result in a series of scalar values about an image that the ANN can be

trained to recognise and classify the image based upon. The defects are subdivided into 6

subcategories: pits, holes, scratches, burrs, indentations and smearing. The system detected the

defects to an accuracy of: 88.9%, 94.4%, 94.4%, 96.1%, 96.3% and 90.6% respectively [21]. This

work speaks to the advocacy of using ANNs when the circumstances allow for reliable feature

extraction.

The problem encountered when trying to apply the methodology of ANNs to wider computer vision

problems is that of feature extraction. Diverse datasets make feature extraction very difficult as the

target object within the image will vary greatly in size, position, aspect ratio, colour and so on. And

as mentioned previously, feeding each pixel into the input layer of a neural network is not feasible.

Deep learning using convolutional neural networks was the breakthrough technology that solves

this problem.

Fig.4 - Simple ANN [15] Fig.5 - ReLU Function [58]

11

Convolutional neural networks (CNN) allow the network to learn, through the optimisation process,

which features of an image are the best to classify it [15]. It is through the learning of the feature

extraction stage that defines ‘deep’ learning. These features are extracted through many layers of

kernel convolutions [22]. The first layer may only contain features as simple as horizontal edges,

corners and so on. But when combinations of combinations of convolutions are combined, filters for

picking out features such as noses, eyes and ears can be optimised [15] [22], see Fig.7. The

convolutional layers reduce the

spatial dimension of the image

but increase the feature

dimension with each successive

stage. The pooling stage is also

used to reduce the spatial

dimension of the image through

sampling. The result is a

flattened image with a tiny

spatial dimension but with large

feature depth. This can then be

connected to a fully connected

ANN network for final classification. These output classifications could be binary (Dog or not a

Dog), probabilities that the image contains one of many classes or pixel-wise, where each pixel in

the original image is given a class: semantic segmentation [23].

A project that used CNNs in a practical sense in defect detection is described in [24]. The work

details a system to detect and classify the coating on material from 5 distinct coating classes:

cracked, running, orange peel, adhesion failure and defect free. The work compares several

different CNN architectures to evaluate which yields the best results: VGG19, Resnet50, Xception,

MobileNetV2 and Densenet121. The training dataset contained 1500 images distributed between

the classes listed. It was found that Resnet50 and DenseNet gave the best results of 97% and 96%

accuracy respectively [24]. The method shows promise with great performance metrics. In addition,

the number of images in the dataset is typically low. The high success rate with this amount of

Fig.6 - Convolutional neural network architecture [59]

Fig.7 - Deep learning feature maps [60]

12

training data can be

attributed to the low

variance in the context

of the images. The

more specific the

problem and dataset

can be, the less variety

of context are needed in

the training data

An image does not

have to be classified as a whole, different classes can exist within the same image and be

distinguished separately. This is known as object detection. Commonly, bounding boxes around

objects in an image are generated along with the class the object belongs to. The most common

object detection algorithm in the literature is the YOLO (you only look once) algorithm [25]. The

YOLO algorithm splits the image into an NxM grid. It makes a bounding box prediction at each grid

reference for an object that is centred there [23]. Any convolutional neural network backbone can

be adapted for the YOLO algorithm, the difference being the classification head at the end of the

network is replaced with an object detection and classification head [23]. The object detection and

classification head predicts the x and y coordinates of the centre, the width and height of the

bounding box, a confidence factor and the class of the object.

The third way of classifying an image is by semantic segmentation. This goes a step further than

object detection by making pixel-wise classifications, resulting in much higher accuracy of

identification within the image. The most popular and notable network architecture for achieving

semantic segmentation is U-Net [26]. U-Net was initially devised for biomedical applications and

won the 2015 ISBI cell tracking challenge [23]. The network design excels in biomedical

applications as it is receptive to small training datasets, as large datasets are very rare for

biomedical applications [26]. However, the literature [26] relies on strong use of data augmentation,

such as elastic deformation, rotation and cropping on the available training images to enrich the

data set [26].

Fig.8 - Types of image classification [61]

Fig.9 - Classification head of the YOLO algorithm [23] Fig.10 - Output examples from YOLO

algorithm [23]

13

Unlike typical CNN architecture, the network does not contain any fully connected layers. The

network has a contracting path (left) and expanding path (right). The contracting path utilises

repeated application of two 3x3 convolutions (unpadded), each followed by a ReLU and a 2x2 max

pooling operation with stride 2 for down sampling [26]. At each down sampling step, the number of

feature channels are doubled. Every step in the expansive path consists of an up sampling of the

feature map followed by a 2x2 convolution (up convolution) that halves the number feature

channels [26]. A concatenation with the correspondingly cropped feature map from the contracting

path is then performed followed by two 3x3 convolutions and a ReLU activation function [26]. At the

final layer a 1x1 convolution is used to map each 64 component feature vector to the desired

number of classes [26].

U-Net was able to achieve 92% accuracy when classifying PhC-U373 cells and 77% accuracy

when classifying DIC-HeLa cells compared to 83% and 46% respectively of the second price

network in the 2015 ISBI cell tracking challenge [26]. Because of these outstanding results U-Net

has become very well adopted in the literature surrounding image classification by semantic

segmentation. Moreover, in the field of defect detection in cell assembly, semantic segmentation

allows for localised information to be fed back about the defect. This information could be critical for

traceability of defective cells or to optimise the workflow to avoid repeating failure.

The works detailed in [27] looks to further improve on U-Net by making it more lightweight and

efficient. ELU-Net was developed for the brain tumour segmentation benchmark (BraTS) 2018

Challenge and the ISBI liver tumour segmentation benchmark (LiTS) 2017 Challenge, in which it

was one of the top performing architectures and the top performer respectively [27]. The

architecture builds on U-Net by implementing deep skip connections, in which layers in the

contracting path are concatenated directly to the corresponding layers in the expanding path [27].

These deep skips enable full capture of “fine-grained details and coarse-grained semantics in the

encoder” [27] as the features extracting in the encoder stage are the key to image segmentation.

Therefore, deep skips help maintain these features.

Fig.11 - U-Net architecture [26] Fig.12 - Semantic segmentation of cells

with coloured masks [26]

14

The network architecture, when built using a ResNet backbone, contains only ~4% of the

parameters of U-Net 3+, making it much more lightweight and easier to train [27]. The method also

scored highest Dice coefficient, 97%, of any of the state-of-the-art semantic segmentation networks

that were tested when applied to the ISBI LiTS dataset [27]. This variation on U-Net is specifically

optimized for resource constrained applications, such as the one in this work, and should be

considered.

Another implementation of U-Net implemented for lightweight applications is the system, described

in [28]. The network is again, designed for semantic segmentation of cells in biomedical images.

However, it has been optimised by applying methods that reduce useless information in the images

as a pre-processing step. Removing redundant information in the images allows for the network to

be reduced in complexity as a result. This is done by applying the watershed algorithm [29] which

removes the non-edge pixels, leaving only the boundaries between cells [28]. This reduction in

information in the input images allowed for a reduction in the number of convolutional layers and

features channels when compared to standard U-Net [28]. This optimisation resulted in a 94%,

83% and 68% reduction in memory consumption, training time and testing time respectively

compared to U-Net [28].

An example of the U-Net architecture for use in a defect detection application is described in [30]. It

adapts the U-Net architecture by implementing SE-Res blocks in the skip connections. The SE-Res

block comprises of a convolutional layer, a global max pooling layer, two fully connected layers,

proportional method block, a skip path and an add block. The SE-Res block performs adaptive

weighting on each channel to suppress harmful or invalid channels [30].

Fig.13 - SE- U-Net Architecture [30]

Fig.14 - SE-Res Block [30]

15

The system was trained using a small dataset of 1344 samples, subdivided into 6 defect

categories: Blowhole (115), Crack (57), Fray (32), Break (85), Uneven (103) and Free (952) [30].

As the average defected area in the original dataset images does not exceed 10%, extensive data

augmentation was used to enrich the images by copying closed graphics onto empty spaces. A test

accuracy of 97.3% was achieved using SE-U-Net, a 2.5% increase on standard U-Net [30]. The

test data was also augmented with increasing suppression ratios to simulate uneven lighting

conditions. It was shown that SE-U-Net increasingly outperformed U-Net as the suppression ratio

was increased, resulting in 7.5% better accuracy compared to U-Net for the largest suppression

ratio tested [30].

Another application of U-Net and semantic segmentation for defect detection is shown in [31]. The

paper describes an adapted U-Net architecture: BSU-Net used for defect detection in sheet steel

and magnetic tile manufacture. BSU-Net was adapted with the objective of maintaining small

details and defects through network traversal. To achieve this, BSU-Net varies the size of the

kernel convolutions on the last layer of the encoding stage and first layer of the decoding stage

from a 5x5 kernel to a 15x15 kernel. Using larger kernel sizes gives better semantic segmentation

accuracy and the mixing of different convolutional kernel sizes can enhance the performance of the

network [31]. In addition, BSU-Net includes a FEN network to process the input image and

concatenate the results with the image pre and post the enhanced U-Net. The FEN network allows

for better maintenance of smaller details by magnifying then reducing the feature dimension of the

image, avoiding the loss of tiny defects by continuous sampling [31].

Fig.15 - BSU-Net Architecture [31]

Fig.16 - Enhanced U-Net Architecture

[31]

Fig.17- FEN Architecture [31]

16

The network was trained using steel and magnetic tile datasets containing 10,671 and 1,009

images respectively, both using a 7:3 split between training and testing images. The network was

measured to achieve an accuracy of 90.2% using the steel network and 75.0% using the magnetic

tile dataset, an improvement of 8.83% and 6.15% when compared to the standard U-Net

architecture. However, the most staggering improvement was the intersection of union (IOU)

improvement using the steel dataset, an increase of 45.7%. This metric describes the degree of

agreement between the ground truth pixels and the predicted pixels.

Another implementation of U-Net for defect detection is described in [32]. This work, again, looks to

develop a network capable of detecting defects in sheet steel. The network design uses a U-Net

architecture but makes use of a residual block with a skip connection.

It is observed that accuracy can saturate when the network has learned the intricacies of the data.

A first reaction to this problem may be to add more layers to the network, but this can sometimes

lead to even worse performance. This is known as degradation [33]. The residual block looks to

overcome this limitation and contains two parts: identity mapping and the residual. Identity mapping

integrates the input with the output of the residual to maintain subsequent feature information [34]

and to solve the problem of gradient disappearance and non-convergence. Moreover, any poor

ability to extract features in the residual part of the block is compensated [34]. Using residual

blocks have also been shown to improve the training of the network and using U-Net structure

allows for the use of skip connections to facilitate information propagation without degradation [32].

The network was trained using a dataset of 12568 images for training and 1801 images for testing,

distributed between 4 classes of defects [32]. The network scored a dice coefficient of 0.731, which

is a metric of pixelwise agreement between the ground truth and the network predictions [32]

As mentioned previously, the success of these machine learning models is partly down to the

amount of data available to train the network on. Therefore, more bespoke applications of the

technology can be limited due to the limited amount of data available to teach the network. The

success of the U-Net architecture, as described earlier in the paper, was also partly down to its

Fig.18 - Common neural network unit and residual neural network unit

[34]

17

receptibility and positive results with relatively smaller, bespoke datasets of medical images. As

briefly mentioned previously, a technique that many of the papers [26] [30] already discussed use

to enhance their results is data augmentation. Data augmentation is the process of enriching a

dataset by taking the original images and applying various transformations such as rotations, flips,

translations, crops and zooms to artificially create many more images to train the network on, Fig.

19 shows this concept. Data augmentation helps to prevent the model from overfitting the data [35]

which occurs when the network ‘memorises’ the training data and does not generalise the

information. The means it cannot respond to unseen data and will give poor results as it’s only

optimised to respond to the training data. If done correctly this process can increase the size of the

training dataset dramatically, providing more context to the network to learn how to classify. It has

been shown in [36] that by using data augmentation the validation accuracy can be increased by as

much as 5%, which is a great improvement in terms of validation accuracy and through only reuse

of the current data. Of course, over augmentation of the data can be detrimental to the

performance of the model. If the dataset is over augmented the original context of what is trying to

be achieved could be lost. Care should be taken deciding on not only the amount of augmentation

to perform but also the types of transformations to perform. For example applying stretches and

warping to pictures of cats will produce images that don’t resemble cats at all and this can muddy

the waters with the features the network should be learning.

Many conclusions can be drawn from the review of the literature surrounding this topic. Through

review of the major milestones of the technology including traditional image processing techniques,

manual feature extraction paired ANNs, convolutional neural networks and classification to very

modern semantic segmentation models it is important to recognise the pros and cons of using each

technology.

Although easy to implement and low computational demand, traditional image processing

techniques for computer vision are rigid and difficult to optimise for dynamic systems. Consistency

in the use case is required to properly define the processes and thresholds for algorithms like edge

detectors.

Fig.19 - Data augmentation [52]

18

It is clear after reviewing the modern state of computer vision projects that using convolutional

neural networks is essential to get the best results. This is partly due to fantastic open source

libraries such as TensorFlow [37] and Keras [38] becoming available, allowing anyone to be able to

create and train their own networks. Also, this is partly due the availability and power of modern

GPU chips ever increasing which allows for training the networks in a reasonable time period.

It is clear that some of the requirements for the project are better suited to applying traditional

machine learning techniques where strictly the shape of the cell component is required. Electrode

curve, edge quality and punching overlap are examples of these. A machine learning approach

would not be suited to analyse these criteria. On the other hand the remaining requirements

absolutely lend themselves to a machine learning approach. Furthermore, the type of classification

that would be most applicable to this problem would be a semantic segmentation approach. This

gives more extensive localisation of the defects which could be useful information for an end user

to refine their processes. The most successful semantic segmentation model that exists in the

literature is U-Net. There are many variations on this architecture and the one that seems to suit

best is very dependent on the dataset. With this in mind, extensive testing and investigation will

need to be done, using the dataset in this project, to find the optimal architecture for this problem.

19

3.0 - System Architecture

3.1 - Hardware Configuration
The project looks to integrate a software package into the existing Cellerate system. The system,

shown in Fig.20 comprises of multiple modular elements that can be passed individually through an

antechamber to the controlled environment of an glovebox.

The autoloader module of the system feeds trays, which are loaded with the various components of

the cell to the assembler. The XY Stage and Z Axis placer work together to build up the cell layer

by layer. It is during this process that this project will capture an image of each component, using

the top and bottom cameras, sequentially and perform analysis on their condition. Once the cell

has been constructed it is passed to the sealer which applies a large pressure to seal the cell ready

for test. The cell is finally returned to a position in the autoloader and the next cell is then loaded.

This equipment provides value due to its versatility, reconfigurability, repeatability and throughput.

Moreover, it allows the user to set multiple cell configurations and build programs to run

automatically to explore a large parameter space, even overnight if required. This frees up the time

of research scientists to complete more urgent tasks that require more ingenuity and creative

thinking. Moreover, the repeatability of the cell build process eliminates randomness in the build

process and restricts the variables to only those being explored in the tests.

The addition of the system developed during this project will allow scientists to have a full

understanding of the quality of the cell, including any defects that are present and the alignment of

the components. This allows for isolation of dud cells and freeing up of vital test channel resources

for those that were built to a consistent standard. In addition, this information allows for optimisation

of their component preparation methods to eliminate possible reoccurring defects as these will

become clear through the cell inspection.

Following the definition of requirements, it was determined that the existing system hardware would

suffice to achieve the project objectives. The system is currently controlled by a Raspberry Pi 4

microprocessor. Two camera modules are used for active alignment of cell components as they are

placed during the build process. The design choice to fully utilise the existing components is both

an economical and design decision as the physical space within the system is lacking due to the

arrangements of existing components.

20

3.1.1 - Coin Cell

Coin cells are used in the battery research

space as a small scale analogue to the

large battery packs used in most

applications. They are used to assess

various chemistries and cell designs

before scale up. Fig.21 shows the cross

section and of a typical coin cell. The

Cellerate system assembles coin cells by

sequentially placing each component onto

a build plate, using active alignment to

centre each component. When the stack is

complete the entire arrangement is fed into the crimper unit which applies a large pressure to the

stack, locking the components in place. The typical coin cell, shown in Fig.21, consists of a: case,

spacer, positive electrode, separator, negative electrode, spacer, spring and cap in order bottom to

top. Electrolyte is also dispensed at various stages in the build process by an electronically

controlled pipette.

Fig.21 - Typical coin cell build configuration

Fig.20 - Cellerate Automatic Cell Assembly System [5]

[1] [3]

[2]

[5]

[6]

[4]

[7]

[1] – Sealer

[2] – Z Axis placer

[3] – Assembler

[4] – Autoloader

[5] – Top Camera

[6] – Bottom Camera

[7] – XY Stage

21

3.2 - Software Design
The main bulk of the work for this project comes through the design and implementation of various

software modules. The software will be implemented in the Python programming language and any

additional imported distributed modules will be highlighted. Moreover, each module described will

be implemented as a Python class which are instantiated in various places within the codebase.

Fig. 22 shows the hierarchal design of how the software modules will integrate with the existing

Cellerate system software. Additional flowcharts for the processes described can be found in

Appendix A.

3.2.1 - AI Cell Sight Module

The AI Cell sight module is the parent module to the system. It is instantiated by the existing

camera module within the current Cellerate system software. The module has been designed to

contain all the high level functions that describe the overarching functionality of the system, such as

finding component alignment, performing morphological analysis, performing surface inspection

and generating the final build report. The module instantiates the morphological analyser, predictor

lite and build report generator modules and controls their running.

3.2.2 - Morphological Analyser Module

The Morphological Analyser module controls the processes surrounding the morphological or

shape based analysis of the component. The methodology involves using background subtraction

methods and contouring to isolate the outer contour of the component and subsequent

mathematical analysis on the shape of the component can be done to determine: the component

alignment, the component curvature, the component edge quality and the presence of punching

overlap.

3.2.3 - Predictor Lite Module

The Predictor Lite module controls the machine learning surface inspection analysis. It is named

‘Lite’ because of the implementation of Tensorflow Lite as opposed to the Tensorflow. TensorFlow

Lite is optimised to run on resource constrained and mobile applications [39] such as the

Raspberry Pi 4 platform. The module controls inferencing the trained machine learning model with

Fig.22 - Hierarchical Class Diagram for the Project Software

22

a target image to yield predictions to the presence of: creases, scratches, flaked coatings and

cracks.

3.2.4 - Build Report Generator Module

The Build Report Generator module has been designed to manage the creation of the build report.

The report consists of a feedback slide which highlights the found defects and morphological

analyses. It is designed to be a quick reference to the user containing all the critical information of

the build process.

3.2.5 - Model Generator Module

The Model Generator module is one of three standalone modules that are not implemented on the

target Raspberry Pi platform and is used specifically for model development and run on a more

powerful, GPU enabled PC. This module contains the Keras python code to describe the neural

network model architectures that will be evaluated in this work. The module is used for the

compiling and training of the machine learning models used throughout the project. It controls the

Keras implementation of the model architectures, the preprocessing of the training data and the

training procedure and validation. The module uses both the Tensorflow [37] and Keras [38]

libraries to achieve this. In addition a script provided by [40] was used as a reference.

3.2.6 – Preprocessor Module

The Preprocessor Module is another standalone module that has been designed to control the

processing of the raw image/mask pairs into the suitable format to be used in the model training

process. This involves assembling the separate defect masks into a master mask for each image

with the correct pixels encodings for each defect type. Moreover, the image/mask pairs have to be

divided into suitably sized tiles of 256x256 pixels for training. The useless tiles that contain no

useful defect information are also discarded.

3.2.7 – Data Augmenter Module

The Data Augmenter Module is another standalone module that has been designed to control the

augmentation of the training data for the model optimisation. It applies various operations such as

shifts, flips, crops and resizing to enrich the original dataset and increase its size by a large factor.

This artificial expanding of the dataset can provide more context to the training process and

increase the accuracy of the models when used correctly. The script provided by [41] was used a

reference for this module.

23

4.0 – Morphological Analysis

The first body of work surrounds morphological analysis of the cell components. This analysis can

be performed using traditional image processing techniques and does not require a machine

learning component. This analysis concerns the shape of the cell component, from this the amount

of curvature, punching overlap and edge quality can be ascertained.

4.1 – Isolating the Component
To perform analysis on the morphological aspects of the cell components they first must be

isolated within the image. The neural pathways in the human brain have evolved to perform this

processing without intent and can recognise where one object end and another begins. A computer

stores an image as a three dimensional array of values, and cannot intuitively know how to

segment an image into its constituent components. Using image processing libraries, such as

OpenCV [14], the cell components can be isolated within an image and analysis can be performed.

4.1.1 – Approach 1: Dynamic Canny Edge Thresholding and Filtering

The first approach taken to isolate the electrode within the image was to find the optimal

combination of pre-processing methods available within OpenCV to fit this specific application.

4.1.1.1 Methods

The problem was defined as being able to isolate the outer edge of the cell component. The

literature surrounding using edge detectors, such as a Sobel or Canny edge detector [13] [12],

suggests to firstly convert the image to grayscale to produce a 2D image array and then to apply a

blur filter of some kind.

To determine the optimal combination of pre-processing to isolate the cell component edge an

experiment was designed and conducted. The stages of pre-processing were broken down into the

flow chart shown in Fig.23.

To account for the requirement of dynamic lighting compensation, an image equalisation stage was

also included which distributes the range of pixel values more evenly across the available range.

Fig.23 – Preprocessing Flowchart

24

Each of the methods listed were tried in combination with each other to determine the optimum set

of pre-processing stages to isolate the outer edge of the cell component.

4.1.1.2 Results

It was determined that the optimal combination of pre-processing methods to best isolate the outer

edge of the cell component was as described in Fig.24.

Fig.25 and Fig.26 show the results of the pre-processing steps when applied to the corresponding

source images from the top camera and bottom camera respectively.

4.1.1.3 Discussion

As can be seen from Fig.25 and Fig.26 the algorithm performed well on the bottom camera image,

successfully isolating the outer edge of the cell component for analysis further down the pipeline.

This is due to the large focal difference between the cell component in the foreground and the

Fig.24 – Optimal Preprocessing Flowchart

Fig.26 – (a) Input image of cell component from bottom camera (b) Output image after pre-processing

steps in Fig 24 have been applied

Fig.25- Input image of cell component from top camera (b) Output image after pre-processing steps

in Fig.24 have been applied

25

background of the image. The results from the top camera suffer from the fact the component of

interest and the rest of the build plate exist on the same plane, meaning that when the pre-

processing is applied the edge detector picks up noise and edges that are of no interest to this

process. Extensive filtering and cropping are required to isolate the useful outer edges of the

component.

After applying the methods described further in this paper it was clear that this method was not

sufficient as it became impossible to differentiate between noise and the actual component edge in

excessively noisy images. Moreover, the static thresholds for the canny edge detectors proved to

be ineffective to dynamic changes in the environment from image to image. As lighting conditions

and material types for the components changed, so too did the optimum thresholds for the edge

detector to isolate the correct edges.

4.1.2 – Approach 2: Background Subtraction and Thresholding

Due to the sensitivity of lighting conditions and complexity to isolate the electrode when dealing

with excessive noise from the top camera, a new method was considered for acquiring the

component’s outer edge.

4.1.2.1 Methods

An attribute of how images are captured on the Cellerate system is that images are always

captured from the same repeatable position with high precision. This allows the method of

background subtraction to be used: to set a static ground truth image of the build area and subtract

it from the target image with the desired component present [42]. This subtraction should leave the

parts of the image that are not common with the ground truth image: the cell component. Fig.27

shows this concept.

This implemented methodology was based on what is described in [42] with an additional step of a

HSV (Hue, Saturation, Value) filter, which was included to remove noise after the subtraction.

Small changes in the lighting conditions within the room can cause subtle differences in the

background space between the ground truth and the target image. The HSV filter, optimally

Fig.27 - Background subtraction method [28]

26

calibrated for each different material type, removes this noise to leave the target component. Fig.28

shows the flowchart for the final background subtraction process.

4.1.2.3 Results

Fig.29 and Fig.30 show the input images to the background subtraction algorithm and the output

respectively. As can be seen, the method of background subtraction leaves a much better

representation of the cell component as compared to results of Section 4.1.1. The noise seen in

Fig.21 has been eliminated and what remains is the only part that is required: the component.

4.1.2.3 Discussion

The method of background subtraction has shown to address the limitations of the first approach.

That is, the top camera does not have the benefit from a focus difference between the target

Fig.29 - (a) Ground truth background image taken from the top camera (b) Target image taken

from the top camera.

Fig.30 – Output image after thresholding

Fig.28 - Updated method of background

subtraction

27

component and the background. Because of this, a lot of noise can pass through the edge

detection process that is not useful for morphological analysis. Background subtraction not only

addresses this by removing everything that is similar between the images, but also compensates

for changing lighting conditions that the first approach can also suffer from. If the lighting conditions

are consistent between the background image and the target image they will be accounted for by

the subtraction. Moreover, this method reduces the execution time of the algorithm as the

extensive filtering that was required in the first approach to remove the noise is no longer needed.

In addition, this method is more suitable for multiple analyses on multiple components as the cell is

built. This is because the ground truth image is dynamic and can be updated with the current state

of the build pad before the next component is added, isolating each component as the cell is built.

A negative aspect of this method is that an extra image must be captured for each component: the

background image. Moreover, to optimally isolate different components of different materials, a

calibration process that determines the optimal settings for the HSV filter should be completed for

each material. However, the trade-off for these concessions is a much more accurate isolation of

the target component in the image, shown in Fig.30, that can then be fed downstream for analysis

on its outer edge for morphological analysis.

4.2 - Edge Quality Analysis
Section 4.1 describes how the component is isolated

within an image for analysis. Contours can be found on

the image in Fig.30 to produce a data structure that

details the points that make up the outer edge of the cell

component for analysis. Fig.31 shows the contours

found on image in Fig.30.

The first morphological requirement of the system is to

assess the quality of the edge of the component. An

ideal edge on a perfectly circular and flat component

would be resemble a perfect circle. However, in

practice components are often not perfectly circular

when viewed from a plan view above or below due to

component curvature, an example of this is shown in

Fig.32. Therefore, comparing the edge of a component

to an idealised circle that encompasses it would not

give an accurate result even though curved

components may still have pristine edges.

To solve this issue, a method of comparing the

component edge to idealised version of itself is presented. The component edge is filtered in such

a way to remove the rough edge (noise) and present a smoothened version of itself. The actual

Fig.31 - Image Contours

Fig.32 - Curved electrode compared to ideal

circle

28

edge can then be compared to the smoothened version to determine how noisy the actual edge is,

and therefore it’s quality. This method accommodates components that are not completely flat and

circular like the curved electrode in Fig.32. The following sections describe the methodologies to

achieve this smoothened contour.

4.2.1 – Approach 1: Smoothing by Erosion/Dilation

The first approach that was taken was to use large morphological operations [43] in erosion and

dilation, otherwise known as opening, to smoothen out the component contour so an assessment

of the edge quality could be done.

4.2.1.1 – Methods

The process of using operations such as dilation and erosion change the shape of a binary image

by growing or shrinking the object pixel area respectively [43]. They can be useful for closing in

contours that have gaps or by removing noise in the form of flecks on a binary image [43].

In this application, a large kernel of (150x150) was used to erode the component contour shape

down followed by a dilation of the same size to expand it. Finding the contours on the resulting

shape was shown to give a smoothening effect, as shown in Fig.33 and Fig.35. The imperfections

in the edge present in the original contours are shown to have been removed and an idealised

version of the original shape is found.

Fig.35 - Found contours on

the resulting shape from

the erosion/dilation

process

Fig.34 - Result of

erosion/dilation process

Fig.33 - Original contours

found on the component

29

The contour points on both the

original contour and the smoothened

version can then be compared to

determine the edge quality. To do

this the method shown in Fig.36 is

implemented. Each point on the

actual contour is sampled and its

distance from the centre is

determined. The corresponding

radial distance to the smoothened

contour point, shown in green on

Fig.36, is also found and its distance

sampled. The distances are then compared to determine the percentage error between the

idealised, smoothened contour point and the actual contour point. Note that the green line

representing the radial distance of the smoothened contour points will never be constant as the

component will likely have some curvature, resulting in a non-ideal circle when viewed from above

or below.

4.2.1.2 – Results

As can be seen from Fig.37 , the algorithm was able to produce estimates for the quality of the

edge.

4.2.1.3 Discussion

When profiling the execution time demand of the algorithm running on the Raspberry Pi, it was

revealed that the edge detection stage of the algorithm was causing significant slowdown. The

erosion/dilation processes were found to be highly resource demanding as each pixel in the image

has a large kernel operation associated with it. Therefore, as the image or kernel increases in size

Fig.36 – Edge quality analysis method

Fig.37 - Edge quality detection output

30

so does the amount of processing required to perform morphological operations. Moreover, the

method of quantifying edge quality, shown in Fig.32, is also highly inefficient. This is due to the

method of matching a contour point on the actual contour to a corresponding point on the

smoothened contour. There is no association between them as smoothened contour points are

found by a secondary process on the shape after the erosion/dilation operation. This means there

is no correspondence between the 𝑛𝑡ℎ actual contour point and the 𝑛𝑡ℎ smoothened contour point.

Because of this, a best matching point must be found. Each point on the contour must be checked

and compared to identify the optimal point for comparison. This is done by checking distance from

the smoothened points to the line that passes through the centre of the component to the actual

contour point in question. This is, of course, highly inefficient as the number of comparisons

required is:

𝑁𝑜. 𝑜𝑓 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠 = 𝑁𝑠𝑚𝑜𝑜𝑡ℎ ∙ 𝑁𝑎𝑐𝑡𝑢𝑎𝑙

Where 𝑁𝑠𝑚𝑜𝑜𝑡ℎ is the number of number smoothened contour points and 𝑁𝑎𝑐𝑡𝑢𝑎𝑙 is the number of

contour points on the actual contour.

4.2.2 – Approach 2: Smoothing by 1D Blur Kernel

Due to the poor performance of the method discussed in Section 4.2.1 a new approach was

considered.

4.2.2.1 - Methods

The method in [44] describes applying a 1D blur kernel to the contour points. The blur kernel

samples each contour point using a window of width 𝑛, replacing the contour point with the average

value of the points within the window. The method can be visualised with a kernel size of 3 in

Fig.38. The red box represents the kernel window.

Fig.38 - Blur kernel operation

31

Fig.40 - Edge quality detection output from top camera

The method shown in Fig.38 was used with a much larger kernel size of 80 and applied to the

entire contour points data structure. Fig.39 shows the results of the blur kernel smoothing

technique. The imperfections have once again been removed and a smoothened contour remains

that can be used as a reference of comparison to determine the edge quality of the component.

The method achieves the same result as the approach described in Section 4.2.1, but with much

less processing.

4.2.2.2 Results

Fig.39 - (a) Actual contour of component (b) Resulting contours of 1D blur kernel smoothing

32

As can be seen from Fig.40, the algorithm was able to produce estimates for the quality of the edge

from images as per the previous method. Fig 41 and 42 show the effect of the optimisations when

the execution time of the process was measured with the second methodology. The execution time

was seen to be significantly reduced when compared to the first methodology. The is mostly in part

to the removal of the extensive kernel operations and comparison algorithm, described in Section

4.2.1.1.

4.2.2.3 Discussion

The results yielded from this method are consistent with what was achieved using the method

outlined in Section 4.2.1. Moreover, this method maintains a 1:1 relationship between the actual

contour points and the smoothened contour points. As the blur kernel acts directly on the existing

contour points, the 𝑛𝑡ℎ point in the actual contour points is directly associated with the 𝑛𝑡ℎ point in

the smoothened contour points. By virtue of this, there is no requirement to search for the

corresponding matching point as described in Section 4.2.1.1. Fig.41 and Fig.42 show the

reduction in the execution time of the edge quality detection stage, running on the Raspberry Pi, as

compared to the previous method. The method of the 1D blur kernel for contour smoothing reduced

the execution time demand for this stage by 99.94% from 164.5s to 0.1s, which highlights the

inefficiency of the large erosion/dilation and point matching processes.

Fig.41 – Algorithm Execution Time by Stage

Fig.42 – Cumulative Algorithm Execution time

33

4.2.3 - Edge Quality Analysis End-to-End Validation

4.2.3.1 Methodology

An experiment was designed to attempt to validate the effectiveness of the edge quality detection

algorithm. This was challenging as the ‘quality’ of an electrode component’s edge is subjective and

what looks bad to the eye might not be reflected when empirically processing the data.

50 electrodes were imaged and reviewed by a human. Each electrode was given a score between

0-10 to describe the perceived quality of the electrode edge, with 0 being the worst and 10 being

impeccable. These images were then passed through the edge quality detection algorithm and the

scores given by the system were captured and compared. Among the electrodes were examples of

a wide array of edge qualities, coating types and varying amounts of curvature.

4.2.3.2 Results

Fig.43 shows the association between the determined edge quality by the algorithm and the human

perceived edge quality of the electrode.

4.2.3.3 Discussion

As can be seen from Fig.43, the association between the algorithm output and the human

perceived edge quality is very weak. There is a vague trend that passes throughout but not

something definitive enough to validate the method. A weakness of the methodology is that if

pointwise calculations are going to be performed on the outer contour of the component, then it is

required that the found contour be very accurate to give meaningful results. Any noise that passes

the filtering in the background subtraction stage of the method will negatively affect the accuracy of

the measurement.

Another observed weakness is that the contour smoothening mechanism has more transformative

impact to areas of the component perimeter with greater curvature. As the smoothening method

applies a 1D average kernel to the contour point, they are dragged closer together and ultimately

Fig 43 - Algorithm determined edge quality against human perceived edge quality of

an electrode components

34

shrink the contour slightly inwards. This effect is more pronounced on curved electrodes in areas

where the perimeter curvature is more pronounced. This cause a larger discrepancy between the

contour and the smoothened ideal contour, reducing the perceived edge quality. This can be seen

when reviewing the images in the experiment of curved electrodes with perceived excellent quality

edges that are given uncharacteristically low edge quality scores by the algorithm.

Another conclusion that can be drawn from the experiment is that the method itself could be

inherently flawed. There will always be a bias when assessing these electrode components by eye

and certain characteristics that look bad do not result in low scores when processed analytically

through the algorithm. Another approach could be used in the future work of the project to

reattempt the validation. This other approach could be to use a more powerful segmentation tool

such as Meta’s segment anything model (SAM) to segment the image and extract the contour of

the component. Using this contour within the algorithm to produce an edge quality assessment and

comparing to these results would give validation that the methodology is working as designed.

It is clear that this method has limitations, mainly around the sensitivity required to gain an accurate

estimate of the edge quality of a component. Presence of noise in the image after the filtering is

complete will negatively affect the accuracy of the method. Moreover, the HSV filter can be

sensitive and the settings to perfectly achieve a component isolation in one image may vary slightly

in the next image of a similar component. An effective autocalibration method to achieve the best

HSV settings for each individual component would remove this uncertainty and improve the

effectiveness of the method. In addition, the degree of curvature in the component will also

negatively affect the accuracy of the measurement. A possibility to explore in future work of this

project is the inclusion of edge quality to the machine learning model. If instance of bad edge

quality can be captured in the labelling process of images then this knowledge can be captured by

the model and used to predict other instances where the edge quality has been compromised.

4.3 – Electrode Curvature Analysis
Electrodes often don’t conform to

perfectly flat circles when punched from a

sheet of material. They often distort

vertically created a hyperbolic parabola,

as shown in Fig.44. Electrode curvature

is an important parameter to identify and

track during the build procedure of a cell

as it could have a negative impact on the

alignment of components. Furthermore,

the ability to correlate the performance of

a cell to its curvature among other components is a powerful tool to optimise the cell build

workflow.

Fig.44 - Examples of curved electrodes [53]

35

4.3.1 - Methods

The expected circular nature of coin cell components can be exploited to determine the amount of

electrode curvature present in a cell component. It can be assumed that, when laid flat, the

component resembles a circle. Using this, the found outer

contour of the cell component can be compared to an ideal

circle encompassing the component. The discrepancy

between the values represents the amount of vertical

deflection in the component, the curvature.

The method used to find the component edge, described in

Section 4.2, was compared to the minimum bounding circle

around the component and the discrepancy of the area

between the two shapes was used to quantify the amount

of curvature present.

An experiment was designed and carried out to validate the

performance of the methodology. A set of 20 electrodes were produced of two differing sizes:

14mm and 16mm diameters. The electrodes were a mixture of coated and non-coated, meaning

the material exposed to the camera when imaged could be the electrode coating and the copper

material underneath. Curvatures of random magnitudes were introduced into the electrodes by

rolling them against rounded surfaces of differing diameters. The electrodes were then measured

using digital callipers and their heights recorded. The electrodes were subsequently passed

through the Cellerate system where they were imaged and the resulting determined electrode

curvatures were determined. Both positive and negative deflections of equal amount were used,

shown in Fig.46.

4.3.2 – Results

What was expected from the testing is that a relationship would exist between the measured height

of the electrode and the algorithm’s determined curvature. The algorithm’s methodology looks at

the 2D plan view of the component and treats this as a flat plane, determining the area of the

shape and comparing to an idealised circle gives a reflection of how much vertical deflection, and

therefore curvature, is present. As the component gains more curvature, there is a reduction in the

apparent radius in one axis, see Fig.45. The effect that this transformation will have on the area of

the 2D plan view of the component is expected resemble an inverse square relationship, as the

Fig.46 - a) Positive deflection of electrode b) Negative deflection of electrode [36]

Fig.45 - Observed reduction in 𝑟 in one

axis as curvature increases

Reduction in 𝑟

36

area of a circle is proportional to 𝑟2. Although, the radius does not uniformly reduce at all points on

the circle, resulting in an oval and an imperfect relationship. Therefore, the expected relationship

between the measured height of the electrode and algorithm’s determined curvature is something

resembling a second order polynomial.

Fig.47 shows the results gathered from the experiment plotted in their entirety. Fig.48 shows the

results split between the positive and negative deflections.

4.3.3 – Discussion

As can be seen from Fig.47 the expected relationship was observed. This is to be expected as the

rate at which the area of the 2D shape of the plan view of the component decreases as the radius

in the affected direction is reduced increases non-proportionally.

What could be noticed initially is the ambiguity of the algorithms output. The algorithm curvature

percentage is simply the percentage of discrepancy of the 2D plan view of the component

compared to the idealised bounding circle. What should be remembered is that this value can be

Fig.47 - Measured electrode height versus algorithm determined curvature

Fig.48 - Measured electrode height versus algorithm determined curvature with separate

positive and negative deflections plotted

37

quantised and scaled as appropriate to reflect something more reasonable to the user. An example

of this could be scaling the value between 0-10 where 0 represent no curvature and 10 represents

maximal curvature.

Moreover, the results positively validate the effectiveness of the methodology proposed. The

relationship between the height and the detected curvature is all that is needed to prove out the

method. Confidence can be gained that the algorithm can distinguish between electrodes of

differing curvatures and this information can be quantised and presented back to the user for their

cell performance data correlation.

An interesting feature of the results can be seen when splitting out the positive and negative

deflections. It seems that the results gathered from the positive deflections are shifted downwards.

Before the experiment was conducted it was expected that both the positive and negative

deflections would yield the same results, due to the 2D plan view of the component being

expectedly identical in both cases. What can be seen is that that is perhaps not the case.

Additional investigation into this phenomenon could be done to identify the cause of this

discrepancy.

The data points also, however, contain some deviation from the trendline. This is most likely due to

two main considerations: human error when measuring the height of the electrodes and misshapen

electrodes that are not perfect circles. The human error comes in both using the eye to determine

when both sides of the calliper are just touching the top and bottom of the electrode and placing the

electrode optimally with the apex of the deflection at the centre point of the calliper. Secondly, small

variation in the shape of the electrodes, perhaps due to imperfect edges can cause the bounding

circle to be slightly mis sized which results in an inaccurate calculation.

4.4 – Punching Overlap
Often when the electrodes are punched out of a sheet of

material the punch can overlap between successive

punches when trying to leave minimal excess material.

These punching overlaps can be subtle and missed by

operators, especially when making many electrodes.

The presence of these leave non-symmetrical

components with uneven impedance profiles. Therefore,

it is important that these mistakes are captured, and

traceability is maintained to connect subpar cells to test

data.

4.4.1 - Methods

The method of detecting punching overlaps involves comparing the found outer contour of the cell

component to the convex hull found on the same contour. A convex hull of an object is a minimum

bounding polygon that can enclose it [45]. Therefore, it can be used to highlight missing material of

a component as the convex hull will approximate a straight line across regions of the cell

Fig.49 – Punching Overlap

38

component that are concave. Fig.50 demonstrates this concept. Comparing the areas of the

convex hull and the actual contour of the component for discrepancy reveals the presence of a

punching overlap. The algorithm assesses the delta between the area of the cell contour and the

area of the accompanying convex hull. A punching overlap detection is triggered according to the

equation below:

Condition Outcome

𝐴𝑐 − 𝐴𝑐ℎ > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝐹𝑎𝑐𝑡𝑜𝑟 ∙ 𝐴𝑐 True

𝐴𝑐 − 𝐴𝑐ℎ ≤ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝐹𝑎𝑐𝑡𝑜𝑟 ∙ 𝐴𝑐 False

Where:

Term Description

𝐴𝑐 Area of the contour

𝐴𝑐ℎ Area of the convex hull

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝐹𝑎𝑐𝑡𝑜𝑟 Calibrated threshold factor

The threshold factor was calibrated based on the smallest punching overlap possible that could be

introduced to a cell component. However, it is possible that this factor may need to be reduced

upon further update to the requirement on the system.

An experiment was designed and carried out to validate the method of detecting punching overlap.

40 electrodes were made, purposely introducing punching overlaps to them. These punch overlaps

were subdivided into 4 subgroups: small, medium, large and no punch overlap. Within these

subgroups, curvature was introduced to 5 of the electrodes, to prove that the algorithm can detect

punch overlap with the presence of curvature. These electrodes were then passed through the

Cellerate system and the algorithm’s determination of whether there is punch overlap present was

recorded.

Fig.50 - Convex hull

39

4.4.2 – Results

Electrode Group Curvature Punching Overlap Detected (%)

Small Punch
Overlap

Curvature 100%

No Curvature 100%

Medium Punch
Overlap

Curvature 100%

No Curvature 100%

Large Punch
Overlap

Curvature 100%

No Curvature 100%

No Punch Overlap Curvature 0%

No Curvature 0%

4.4.3 - Discussion

As can be seen from Table 1, the algorithm was able to detect the presence of punching overlap

flawlessly on all electrodes that contained an punching overlap. Fig.79 shows an example of the

output from the experiment. The algorithm was able to accurate locate the component contour and

apply a convex hull process to it. The difference between the internal area of the convex hull and

contour was calculated and a decision can be made whether there is material missing and there is

a punching overlap present. The most impressive thing about these results is the ability of the

algorithm to detect punching overlap on electrodes that contain curvature. This is possible as the

cell contour is adaptable to component curvature and the convex hull is derived from the

component contour. A downside of this is that the presence of punching overlap will affect the

accuracy of the electrode curvature estimations, as more material is missing from the component. It

should be made clear to the user that if punching overlap is detected that the accuracy of the

electrode curvature will suffer. Moreover, this method is not able to describe the amount of material

that is missing due to the punching overlap. This again, due to the fact that any electrode curvature

will affect the validity to any comparisons made to the idealised flat circle. This method therefore

requires a calibration to be performed to the smallest allowable percentage area to be the critical

point where a punching overlap is flagged, described as the threshold factor.

Table 1 - Punching overlap validation results

Fig.79 - Execution time of each of surface inspection

40

5.0 – Machine Learning Surface Inspection

The remaining project objectives: to detect scratches, creases, flaked coating and cracks on the

electrode surface were determined to be most suited to a machine learning approach. This section

details the methodology to evaluate and determine the most appropriate neural network

architecture for this application.

5.1 - Architecture and classification type
As determined by the review of the current literature on machine learning for defect detection

applications, it is clear that the U-Net is the most popular architecture currently available. This is

partly due to the classification type that is offers, semantic segmentation. Semantic segmentation is

a pixel wise classification that gives each pixel within an image a specific class. The result from the

classification process is a

segmentation map which gives

localised information about the

classes present within an image.

This has a particular advantage

over object detection methods, in

this application, as there will often

be many defects contained within

a small area and the many

overlapping boxes that an object

detection algorithm would yield could make the information uninterpretable and confusing to an end

user. A segmentation map solves this issue by removing the box and applying a colour to the pixel

to highlight the areas of interest. The difference in the approaches can be seen in Fig.52. In

addition, the U-Net architecture was cited to be very responsive to small datasets, due to its initial

application of medical image segmentation with few training images [26].

Fig. 52– (a) Defect detection by object detection (b) by semantic segmentation

Fig.51 – Segmentation Map [62]

41

5.2 - Prerequisites

5.2.1 - Data collection

To gather reliable data on the performance of the CNN architectures, a dataset was needed to

consistently test each architecture against. The dataset had to be consistent with each test to

isolate the variables to solely the architecture.

To be able to validate neural network architectures against each other a dataset was created.

Many images were taken of electrode components in a variety of lighting conditions. The images

were taken using cameras used on the Cellerate system to maintain as much consistency between

the dataset and the final use case.

Firstly, a set of electrode components were sourced. The components had not been stored in an

ideal manner, meaning many imperfections and defects were already present on them. A first

round of images was collected from them. Subsequently, additional defects were artificially

introduced through representative methods that would be mimic processes found in a lab scenario.

These methods included mishandling the electrode components with tweezers and rattling within a

storage box. After the additional defects were introduced the electrodes were subject to another

round of imaging. Fig.53 show examples of these images.

5.2.2 - Labelling

The process of training a neural network for semantic segmentation, as shown [26], requires

labelled images. This is how the knowledge is encoded into the weights of the neural network.

To do this a human must use as labelling tool to draw on the regions which represent the various

defects within the images and then create masks that can be fed into the model training procedure.

The masks provide a reference to the network to which areas in a target image represent which

region, including defects. The training process uses these masks to optimise it’s learning of how to

classify these defects and to validate that the learning process is successful when applied to new

data. Fig. 54 shows an example image and associated mask from the final dataset. The difference

between the initial dataset and the final dataset is described further in this section.

Fig. 53 – Examples of images gathered for the dataset

42

 The different shades of grey indicate different defect types. In this example the white represents

the background of the image, the black represents the defect free areas of the cell component, the

lighter grey represents scratches and the darker grey represents creases.

5.2.3 - Initial Dataset

As described previously, the original dataset contained 1308 image/mask pairs. The masks

contained labels of the following types: scratches, creases, flaked coating, cracks. As every pixel

within the image must belong to a class for semantic segmentation the remaining pixels that are

not classified into the classes described belong to a background class. This class encompasses

the non-component area and the parts of the cell component that do not contain defects.

5.3 - Training
The training process of a convolutional neural

network involves using the training data, where

image/mask pairs are used to optimise the weights

of the network so that the output activation of the

network matches the ground truth. Each node and

each connection between nodes contains a weight

which is adjusted by the optimiser to align the

output with the ground truth. In addition, within

each node is a nonlinear activation function which

determines the magnitude of the node output. This

process of optimisation is achieved through use of the stochastic gradient descent algorithm. In

addition, there are many other hyperparameters to the optimisation which can be tuned to achieve

the best possible result.

5.3.1 - Stochastic Gradient Descent

The stochastic gradient descent method [46] is commonly used in machine learning applications to

train models. It was adapted from the gradient descent algorithm by implementation of the

stochastic approximation [47] in 1951. It improved on the gradient descent algorithm by optimising

the process for large datasets. In traditional gradient descent, model parameters are updated

based on the average gradient computed over the entire dataset. This can be computationally and

Fig.55 - Network weights

Fig. 54 – Example image and corresponding mask

43

time expensive for large datasets. Stochastic gradient descent improved on this by subdividing the

dataset into mini batches and updating model parameters based on the average gradient of the

random subset.

For each mini-batch the gradient of the loss function with respect to the model parameters is

calculated. The model parameters are adjusted by taking a small step, with size determined by the

learning rate, in the opposite direction to the loss function gradient to head towards a minima. This

is done across all mini batches, this process is repeated a number of times, which is referred to as

an epoch.

The desired result is that the loss function should have settled within a minima which corresponds

to optimal model performance.

5.3.2 – Training Epochs

A tuneable hyperparameter in the training process is the number of epochs. As mentioned

previously, an epoch is a round of training. Where the optimizer has passed through every mini-

batch and made appropriate adjustments to the model parameters to minimise the loss function.

Typically, more epochs gives the model more chance to better learn and generalize the training

data. However, too many epochs of training can lead to overtraining. This is generally noticeable

when the training accuracy continues to decrease but the validation accuracy becomes unstable.

This is because the model is ‘memorising’ the training data and has learnt its intricacies to further

reduce the training loss function. This means that is has not generalised the learning from the

training data and cannot be applied to new data or transfer the performance to the validation

dataset.

To mitigate against this, an early stopping callback was used. This early stopping callback monitors

the validation accuracy, which shows how much the model has generalised to new data, for an

overall decreasing gradient. If the validation accuracy has failed to decrease at all over a defined

number of epochs the training is stopped and the weights which achieved the best validation

accuracy are restored. A maximum of 100 epochs were used in each case. However, this is rarely

reached as the model will converge much sooner than that, approximately around the 40th epoch in

most cases.

5.3.3 - Loss Function

The loss function used during testing was categorical focal loss. This loss function was selected

through some initial testing and because it is the most adopted loss function for multiclass

classification. It is so popular because it uses weighting to lessen the influence of easy examples in

the optimisation process and focusses on the hard examples to better understand the nuances of

how to classify underrepresented classes. In the context of this problem, the background class is

very dominant as the individual defect instances are very small. Another loss function could lead to

the model being very able to distinguish the background as this would instantly lead to a very high

accuracy due to its prevalence. Focal loss weights down overrepresented classes and weights up

underrepresented classes such as the small scratch defects in this instance.

44

5.4 - Architecture Investigation

5.4.1 - Introduction

In this section, the methods taken to evaluate the performance of the various U-net architectures

tested during the project will be outlined. As reviewed in Section 2, there are many variations and

adaptations to the U-Net architecture. This section describes the various architectures tested under

the pretences already discussed.

5.4.2 - Architectures

The initial architecture that was tested was the first iteration of U-Net, described in the initial paper

[26] and shown in Fig.56. Unlike typical CNN architecture, the network does not contain any fully

connected layers. The network has a contracting path (left) and expanding path (right). The

contracting path utilises repeated application of two 3x3 convolutions (unpadded), each followed by

a ReLU and a 2x2 max pooling operation with stride 2 for down sampling [26]. At each down

sampling step, the number of feature channels are doubled. Every step in the expansive path

consists of an up sampling of the feature map followed by a 2x2 convolution (up convolution) that

halves the number feature channels [26]. A concatenation with the correspondingly cropped feature

map from the contracting path is then performed followed by two 3x3 convolutions and a ReLU

activation function [26]. At the final layer a 1x1 convolution is used to map each 64- component

feature vector to the desired number of classes [26].

Due to memory constraints on the GPU used to train the network , the number of convolutional

layers was reduced to that of Fig.56b.

Fig. 56 – (a) Original U-net Architecture [26] and (b) Simplified version

45

5.4.2.1 - Deeper U-Net

The deeper u-net architecture that was used was identical to the u-net described previously, but

the number of convolutional layers at each stage was multiplied by 2, see Fig.57. The effect is that

the number of parameters increases significantly, in theory increasing the capacity to encode the

information imparted on it by the training process.

5.4.2.2 - ELU-Net

This architecture builds on U-Net by implementing deep skip connections, in which layers in the

contracting path are concatenated directly to the corresponding layers in the expanding path [27].

These deep skips enable full capture of “fine-grained details and coarse-grained semantics in the

encoder” [27] as the features extracting in the encoder stage are the key to image segmentation.

Therefore, deep skips help maintain these features. The network architecture, when built using a

ResNet backbone, contains only ~4% of the parameters of U-Net 3+, making it much more

lightweight and easier to train [27]. The method also scored highest Dice coefficient, 97%, of any of

the state-of-the-art semantic segmentation networks that were tested when applied to the ISBI LiTS

Fig.57 - Deeper U-Net Architecture

Fig.58 – ELU-Net architecture [27]

46

dataset [27]. This variation on U-Net is specifically optimized for resource constrained applications,

such as the one in this work, and should be considered.

5.4.2.3 - Deeper ELU-Net
The Deeper ELU-Net architecture applies the rationale discussed in the deeper U-Net section. It

takes the basic ELU-Net architecture but increasing the number of convolutional layers to each

stage by a factor of 2 in both the expanding and contracting path.

5.4.2.4 - Residual U-Net
Residual U-Net uses the U-Net

architecture described above but

adapts the convolutional blocks into

residual convolutions, see Fig.59.

It is observed that accuracy can

saturate when the network has

learned the intricacies of the data. A

first reaction to this problem may be to

add more layers to the network, but

this can sometimes lead to even worse

performance, known as degradation

[33]. The residual block looks to overcome this limitation and contains two parts: identity mapping

and the residual. Identity mapping integrates the input with the output of the residual to maintain

subsequent feature information [34] and to solve the problem of gradient disappearance and non-

convergence. Moreover, any poor ability to extract features in the residual part of the block is

compensated [34]. Using residual blocks has also been shown to improve the training of the

network and using U-Net structure allows for the use of skip connections to facilitate information

propagation without degradation [32].

5.4.2.5 - Residual ELU-Net

The residual ELU-Net carries the principle outlined in the Residual U-Net architecture but applies it

to the ELU-Net architecture described above.

Fig.59 – Residual Convolutional Block [34]

47

5.4.2.6 - Lighter U-Net

The lighter u-net architecture takes the standard u-net architecture and replaces the convolutional

blocks with depth wise separable convolutional blocks, see Fig.60.

The breaking of the standard convolution into a separate depth wise and pointwise convolutions

significantly reduces the parameter count as the 3D kernel used in the standard convolution is

broken into 2 separate 2D kernels. By reducing the parameter count, the size of the model and

inference time can be reduced. This is applicable to use cases with limited compute, such as the

Raspberry Pi used in this project. This architecture gives an option to reduce the complexity of the

model easily without sacrificing too much performance if the model’s inference time is not feasible

running on the Raspberry Pi.

5.4.2.7 - Inception U-Net

The inception U-Net architecture used in the testing uses the basic architecture of the standard U-

Net, however the convolutional blocks are replaced by inception blocks, shown in Fig.61. An

inception block is a culmination of various convolutions with different kernel sizes. The idea of

using multiple different filter sizes is to provide more flexibility in the feature sizes it can optimise

for.

Fig.60 – Depth wise separable convolution [54]

Fig.61 – Inception Convolutional Block [55]

48

5.4.3 - Methods

This experiment looks to quantitively evaluate the performance of the various U-Net derived

network architectures described and find the U-Net architecture variation that responds best for this

dataset.

The networks were constructed through implementation of the Data Preprocessor and Model

Generator module classes, described in Section 3. These modules were designed and

implemented in Python to be the classes that oversee the model architecture creation and training.

The Data Preprocessor module took the dataset images and the corresponding labelled masks and

formatted them into many tiles of 256x256x3 pixel pairs. This was done to provide the expected

suitable input tensor size for the network. Using the Tensorflow [37] package with Keras [38]

Python API library the Model Generator module was responsible for describing the model

architectures in Python that would allow the training procedure to take place. The Tensorflow

library was written to take advantage of GPU capabilities to perform parallel operations which

optimise the training process with multi-dimensional tensors. Through this library, the model files

created by the Model Generator module are able to be applied to the parallel architecture of a GPU

for optimised parallel training. A code reference from [40] was used to write the keras interface

methods responsible for constructing for U-Net model object.

The models were trained on the dataset using a 70:30 split between training and testing as this is

commonly used split among the machine learning community. Each model was trained and

optimised using the training subset of the training data. The testing subset is purely used for

validation and represents how the model performs against unseen data as the data in this subset is

never seen by the model during the optimisation process.

The metric for performance used was accuracy. The accuracy metric is described as the number of

pixels in the model prediction that align with ground truth masks. The higher the accuracy the more

consistency there is between the prediction and the known ground truth, and thus higher

performance of the model the results of the final validation accuracy of the model.

Each model architecture was individually implemented using the Keras library and trained against

the training dataset, the final validation accuracies of the models were collected and shown below.

5.4.4 – Results

Architecture Validation

Accuracy

Parameter Count

U-Net 96.63% 1,947,078

Deeper U-Net 96.86% 7,772,038

ELU-Net 96.47% 2,720,966

49

Deeper ELU-Net 96.59% 10,864,006

Residual U-Net 95.57% 2,037,846

Residual ELU-Net 96.57% 2,818,646

Lighter U-Net 93.23% 275,312

Inception U-Net 96.21% 1,160,868

5.4.5 – Discussion

The results, shown in Table 2 show that the best performing architecture was deeper U-Net

followed closely by Deeper ELU-Net. However, the gained improvements over the standard U-Net

are very marginal when considering the vastly increased parameter count. An increased parameter

count means that not only is the model larger and occupies more space in memory but also that

the inference times when passing new data through it are also increased. This may be detrimental

to this application where quicker inference times are optimal to maintain the smooth operation of

the Cellerate system. Moreover, all the model architectures except the lighter U-Net performed

quite similarly. It should be noted that the Lighter U-Net still performed admirably when considering

the significant reduction in the parameter count. The architecture that presents the best balance

between performance and parameter count be said to be the standard U-Net.

5.4.6 - Amending the dataset

During the testing process it was clear that some defects, that were seemingly more obvious than

some detected defects, were getting missed. Fig.62 shows an example of this. It was hypothesised

that encoding the background and the defect free area of the cell component with the same value

may be detrimental to the performance of the model. The ambiguity between the defect free areas

and background class may cause the model to misclassify actual defects during the SoftMax

activation function at the end of the network. If the areas of the cell component without defects and

Table 2 – Results using the original dataset

Fig.62 – Model classification results of standard U-Net architecture with

missing defect detection

50

the background can be split and have their own separate encoding, then maybe the network can

learn what it means to be a defect free component, and thus boost the effectiveness of classifying

the actual defects.

To implement this theory the dataset had to be amended with another class. This meant drawing in

the background on every image using the labelling tool to create an amended dataset with 6

classes: background, defect free cell, scratches, creases, flaked coating and cracks. The most

successful network architectures tested using the old 5 class dataset was retested with the added

class to see if the performance could be boosted

5.4.7 - Results

Architecture Validation

Accuracy

Parameter Count

U-Net 95.66% 1,947,078

Deeper U-Net 95.48% 7,772,038

Lighter U-Net 92.90% 275,312

5.4.8 – Discussion

It is clear that amending the dataset with the additional background class improved the

performance of the model. When comparing Fig.63 to Fig.62 it can clearly be seen that more of the

defects have been detected and the significant defects missed by the U-Net trained on the initial

dataset have been highlighted. It should be noted that the validation accuracy of the model has

decreased. This is likely due to more ambiguity between the background class and the defect free

areas of the cell component. As this is such a large area encompassing the image any

misclassification between these areas will cause the validation accuracy to decrease.

Table 3 – Results using the amended dataset

Fig.63 - model classification results using standard U-Net

with amended dataset

51

Fig.64 shows an example of this effect. Fig.64 shows an example image and the raw segmentation

map produced by the model. Each colour represents a separate class, the most important in this

distinction is the red background class and the dark blue defect free class. The addition of the

background class to separate out the background and the defect free class causes some ambiguity

within the model when trying to distinguish between these two. In the previous dataset they would

be one blanket class, dominating the image. It is easy to see how a metric like accuracy that does

not account for class imbalances would report a very high result if the model is able to determine

the background class correctly. With the amended dataset there will most likely be more

misclassification between these two classes, which can be seen in Fig.64 on the left hand side of

the component. This will naturally cause the overall validation accuracy to be reported as lower

when the actual performance of the model (how well the defects are detected) could improve.

5.5 - Data augmentation
A popular technique used throughout the literature surrounding convolutional neural networks is

data augmentation. Data augmentation is the process of artificially enriching your existing dataset

to create more training data. This can be done by applying transformations to your images such as

rotations, axis flips, zooms and translations. By applying some data augmentation techniques the

size of the dataset can be expanded dramatically. However, there is always a point where

extensive augmentation becomes a detriment to the final model performance. The types of

augmentations should also always be considered.

Data augmentation was used in this testing to evaluate whether it would boost the best performing

models performance further still.

5.5.1 - Batch training

The data augmentation algorithm was tuned to produce three output images per one input image

from the 10,700 image dataset, yielding 32,100 images to use during training. Due to memory

constraints on the host PC used to train the model, this amount of data could not be held

concurrently in RAM. The approach used to overcome this shortcoming was to use batch training.

Fig 64 - Example image with accompanying raw segmentation map

52

Simply, the dataset was split into 3 chunks of around 10000 images each and separate training

phases were completed on each chunk. The weights from the previous training cycle were able to

be reloaded and applied to the current batch for batches 2 and 3.

Testing was done using the standard U-Net architecture to compare whether using the data

augmentation method described had any effect on the accuracy of the model. The improvement

from applying the augmentation to the training data can be seen below:

Architecture Validation Accuracy No Data

Augmentation

Validation Accuracy With

Data Augmentation

U-Net 95.66% 96.26%

At first, it appears that the data augmentation improved the model performance by around 0.5%

which is still a notable gain when reaching into the 95+% accuracy range. However, this reading is

represents the validation accuracy of the model when applied to the final batch in the training. For it

to have truly improved the model’s performance. This improvement should be seen when applied

to the other batches.

The problem with training in batches is that although knowledge from the previous batches is

carried forward in the weights of the model, the final optimisation is only ever performed on the final

batch. This effect leads to fast convergence on the final batch of training but if the data is not

equally represented in all batches there is a chance that knowledge gained in training using the

initial batches may be lost.

Architecture Batch A Validation

Accuracy

Batch B Validation

Accuracy

Batch C Validation

Accuracy

U-Net batch trained

with data

augmentation

92.99% 82.79% 96.26%

Table 5 shows this effect. The model trained with data augmentation, referenced in Table 4, is

validated against all the batches that were used to train it. As is shown, the model does not

respond as well to the earlier batches as It does to the final batch, where the ultimate optimisation

of the weights is performed. This indicates that knowledge gained during the training of batches A

and B was lost as it was not important to the optimisation of the final batch. It is also important to

Table 4 – The effect of data augmentation using batch training

Table 5 – The validation accuracy of the training batches using the final optimised model using

batch training

53

note that the inner workings of the weights of the neural network are too complicated to decipher

and understand by humans, therefore it is impossible to tell what information was not lost. It may

appear that each batch is equally representative of the dataset as a whole and contains an equal

spread of the classes but this is clearly not the case to the optimiser, Therefore, training in this

method comes with inherent risk and may lead to poor performance on new data.

5.5.2 - Data generator

To overcome the flaw in the batch training process, described above, a new method to process

such a large amount of training data was implemented. A data generator is a class in Keras that

allows data to be dynamically grabbed from memory during the training process, one mini-batch at

a time. This method removes the memory constraint of batch training as the training data can

remain on disk while it not being used. It also means that the model can optimise for the whole

dataset instead of the final chunk as with batch training.

The testing was repeated with the new method of feeding the training data and the results are

shown below:

Architecture Validation Accuracy No Data

Augmentation

Validation Accuracy With

Data Augmentation

U-Net 95.66% 94.29%

In this instance the training with data augmentation actually gave a worse validation accuracy than

with no data augmentation. This could be a sign that the types of augmentations applied to the data

set are detrimental to preserving an accurate representation of the dataset. It could also be due to

the variability and non-deterministic nature of model training. If the same model architecture is

trained using the same data successively, the final validation accuracy will never be the same. This

is in part due to the non-linear nature if the activation functions used. It should be noted that the

data generator method still outperformed the batch training method overall. When considering the

average validation accuracy over the three batches, the batch training did not perform well and

shows that this method of transfer learning is not optimal.

Architecture Batch A Validation

Accuracy

Batch B Validation

Accuracy

Batch C Validation

Accuracy

U-Net data generator

trained with data

augmentation

94.79% 92.29% 96.31%

Table 6 – The effect of data augmentation using data generator

Table 7 – The validation accuracy of the training batches using the final optimised model using a

data generator

54

Table 7 repeats the testing shown in Table 5 with a model trained using a data generator. As all the

data can be used in the optimisation process concurrently, the final optimisation of the model is

performed on all available data, meaning that no knowledge is lost due to the batching process. As

expected, the model performed more consistently over the 3 batches as the knowledge of the

whole dataset was retained as best as possible during the optimisation.

It is generally accepted that data augmentation can improve the performance of models and has

been cited in many papers to do so. It is however, also accepted that each machine learning

application is very much unique and that it is naïve to assume that techniques that improve

performance in one instance can be ported and the results carry over to another instance. This is

due to the black box model approach taken by deep learning model programmers that a trial and

error methodology should be taken to find the correct parameters for the specific application.

In this case, the use of data augmentation did not improve the performance of the model and was

not used in further testing.

5.6 - Extended Results
As discussed, the standard U-Net architecture with reduced convolutional layers was the stand out

performer in the initial testing and remained so when tested once again with the amended dataset.

However, it is curious that the validation accuracy of the model decreased from 96.63% to 95.66%.

At first glance it is obvious that a direct comparison between the two results is irrelevant as the two

datasets are largely different due to the addition of the extra background class. It did however,

raise the question whether the adding the additional class improved the performance of the model

to pick out defects.

A set of example images from the dataset were passed through both models and the output was

reviewed. Creases, scratches, cracks and flaked coating are shown with blue, green, red and cyan

respectively.

(a)

(b)

55

Fig.65 shows that training the model using the amended dataset achieved better performance at

picking out defects. If this is the case, then why was the validation accuracy lower?

As discussed previously, adding an additional class to separate out the background and defect free

component pixels will add additional uncertainty to the distinction between them.

Of course this raises questions whether accuracy is the best metric to track performance of these

models. The models should be further verified with a metric that weights the classes according to

their prevalence in the dataset. This inspired another round of testing and evaluation of the model

architectures with metrics that weight classes based on their prevalence in the dataset.

The two additional metrics that were used in this round of testing are: Intersection over Union and

F1 Score.

5.6.1 Intersection Over Union

Intersection over union is a commonly used metric in computer vision, particularly for object

detection, semantic segmentation and instance segmentation tasks. It describes the ratio of the

intersection of two regions to the area of the union of the two regions [48]. The formula to describe

IOU is as follows:

(c)

(d)

(e)

Fig.65 – Examples of images passed through U-Net architecture trained with original dataset (left) and

amended dataset (right)

56

𝐼𝑂𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛

A visual aid of the premise of IOU is shown in

Fig.66. IOU helps to determine how well machine

predictions of bounding boxes or masks align

with the ground truth annotation. A high IOU

describes a good match between the prediction

and the known truth.

In addition, the nature of the metric provides

dynamic weighting of classes based on their

prevalence in the dataset [48]. As it is scaled by

the area of the union, each class can be

weighted accordingly. Therefore, the metric is not

dominated by the model’s ability to decern the most prevalent class in the dataset.

5.6.2 F1 Score

The F1 score is a commonly used metric to quantify machine learning model performance. It

provides a single value that reflects a model’s performance considering both false positives and

false negatives [49].

It is numerically described below as:

𝐹1 = 2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)

Where:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃(𝑇𝑃 + 𝐹𝑁)

𝑇𝑃 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑃 = 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑁 = 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

F1 score is particularly useful when dealing with imbalanced datasets, where one class is more

prevalent that the others, such as this case. It balances the trade-off between precision and recall

and presents a mean of the two [49].

Architecture Validation Intersection

Over Union

Validation F1 Score Validation Accuracy

U-Net 31.77% 41.67% 95.66%

Fig.66 – Intersection over Union [56]

57

Deeper U-Net 29.62% 41.28% 95.48%

ELU-Net 28.26% 38.23% 95.37%

Deeper ELU-Net 30.33% 39.26% 95.22%

Residual U-Net 32.82% 40.56% 94.95%

Residual ELU-Net 30.54% 40.24% 95.01%

Lighter U-Net 22.89% 31.19% 92.90%

Inception U-Net 32.42% 38.17% 94.62%

Architecture IOU

Ranking

F1 Score

Ranking

Combined without

accuracy

Combined Ranking

U-Net 3 1 4 1

Deeper U-Net 6 2 8 2

ELU-Net 7 6 15 5

Deeper ELU-Net 5 5 10 4

Residual U-Net 1 3 4 1

Residual ELU-Net 4 4 8 2

Lighter U-Net 8 8 16 6

Inception U-Net 2 7 9 3

The model architectures from the initial testing were applied once more with the additional

performance metrics of IoU and F1 score to monitor during training, shown in Table 8. A combined

ranking was then taken, shown in Table 9, to indicate the model architecture that performed the

best across the three metrics.

The standard U-Net was once again the best performing architecture for this application, ranking

joint first with Residual U-Net architecture. However, the higher validation accuracy score is

enough to secure it as the best performing architecture.

Table 8 – Architecture performance validation using IOU, F1 score and Accuracy

Table 9 – Combined rankings of the scores from Table 7

58

5.7 – Discussion
The additional round of testing was performed with the additional metrics to settle the assumption

that accuracy was not the best metric to track performance where a large class imbalance was

present. This question was raised when the validation accuracy decreased when the additional

background class was introduced yet the model appeared to perform much better when applied to

the eye test. Fig.64 confirmed the hypothesis that the addition of the background class to separate

out the background and the defect free cell component from the original data gave the opportunity

for misclassification and ambiguity between these two separate classes. Whilst this did not affect

the model’s ability to detect defects, on the contrary it actually greatly improved, it did cause the

validation accuracy to report lower than when trained using the original dataset.

As shown in Table 9, the standard U-Net architecture performed the best among the architectures

tested. The final ranking of the architectures was chosen on the combined ranking of the IoU and

the F1 score as these two metrics are receptive to imbalanced datasets. It could be said that

accuracy was not the correct metric to track as for the application as there is more commonality

between the rankings of IoU and F1 score for a given architecture. And as these metrics account

for dataset class imbalance they hold more weight to indicate which model architecture performs

the best.

What should be noted is the how relatively low the final IoU and F1 scores for the architectures

came out to be. It is interesting to see how low these values are when compared to the validation

accuracy. This further shows that the accuracy metric is unable to account for class imbalance and

the model’s ability to identify the dominating class artificially boosts the accuracy and gives a

misleading metric.

Moreover, it is interesting to note how low the IoU and F1 scores are when viewing the model

output. Reviewing the images in Fig.65 it is clear to see that the most, if not all, of the defects in the

images are detected in some capacity. The hidden classes of the background and defect free cell

areas are not drawn on the image. It is possible that there is some confusion in the model’s ability

to discern these two classes, which could drastically bring down the IoU and F1 score. Although

this distinction is not important to this application.

It must also be considered that it might not be necessary to achieve a very high IOU of >80% for

this application. While it is optimal to have very accurate mask/ground truth union of the output, the

end user may only care about the indication that a defect is present. A fully accurate representation

of the defect drawn on the image is not necessary, as long as some part of the defect is detected

and highlighted the user is made aware of its presence and can act accordingly. The best in class

performance of the U-Net architecture in the F1 score category confirms that it is the best at

discerning false negatives and false positives and gives the most confidence that when a user sees

a defect highlighted on the output image that it is in fact there.

59

6.0 - System Integration

This section looks to review the project as a black box as seen from the user’s perspective to

evaluate the culmination of the work. The way the gathered data is fed back to the user, in the form

of a cell build report will also be evaluated. Moreover, benchmarking will be done to evaluate the

performance of the software and how this will affect the current runtime of the system.

6.1 – Black Box Testing and Reporting
This experiment looks to evaluate the project as a culmination of all the work detailed so far in this

report. This testing will be carried out as black box testing carrying forward the confidence in the

validity of the individual methods of the system, through the testing detailed in Sections 4 and 5.

6.1.1 – Methods

These tests are designed to represent a genuine use case of the system, by passing in cell

components and producing a build report summarizing the defects present.

5 cells were built using the Cellerate system, comprising of 10 active cell components, 5 anodes

and 5 cathodes. The components were purposely prepared with little care to artificially introduce

defects of all types outlined in the objectives of this project. The anodes and cathode used were

16mm and 14mm in

diameter respectively.

These cell

components were

prepared using typical

materials: copper with

a graphite coating. 5

trays were prepared

with these

components and the

relevant additional components required to produce a coin cell, including a coin cell base,

separator, spacer spring and coin cell cap. The Cellerate system was programmed to build these

cells and the AI Cell Sight system produced a build report as an output, summarizing the required

build information outlined in the objectives of this project.

Fig.67 show the cell components before the build procedure.

6.1.2 – Results

The figures below show the build reports produced by the system for each of the 5 cells that were

built.

Fig.67 - Cell components used in experiment

60

Fig.68 - Cell 1 Build Report

Fig.69 - Cell 2 Build Report

61

Fig.70 - Cell 3 Build Report

Fig.71 - Cell 4 Build Report

62

6.1.3 – Discussion

Firstly, the report builder module has been shown to successfully collate and present back data

gathered during the cell build process. The system was consistently able to locate the component

contour in the image and perform morphological analysis. These results reflect the success shown

with the testing carried out in Section 4.0. Moreover, it could be argued that these results are

quantitively better than those gathered previously. This can be seen in the purple line on the

images which denotes the contour of the component. The accuracy of the morphological methods

hinge on the accuracy to which the outer contour of the component is found, as the rationale of the

numerical methods to ascertain curvature, edge detection and punch overlap have been validated.

This also demonstrates a shortcoming in the curvature algorithm. The cathode in the cell 4 build

report demonstrates how a misshapen cell components can invalidate the curvature determination

as the bounding circle is not representative of the component. As shown, the determined curvature

of the cathode for both the top and bottom view are higher than expected. This is due to misshapen

aspect of the edge defect causing the reference minimum bounding circle to misrepresent the

component. The likelihood of this kind of defect being present in a true use case is low due to the

higher quality of component preparation standards of actual end users compared to this

experiment. However, other methods to determine this reference circle should be considered to

mitigate this. One method that has been used previously is the Hough transform. As mentioned

previously, this method uses a statistical approach using the relationships of points within an image

Fig.72 - Cell 5 Build Report

63

[17] to ascertain the presence of circles. This method could be resilient to these edge anomalies as

a circle of best fit would be applied to the contour rather than encapsulating its entirety.

The accurate determination of the component contour allows for accurate location information

about the components to be deduced after the component has been placed onto the build pad.

This can be seen throughout the cell build reports in the form of the alignment plots. This

information is extremely valuable to an end user as alignment of the active components within the

cell is important for optimum performance. This alignment analysis gives clear feedback to the end

user about the alignment of their active components, allowing them to monitor the effect this has on

cell performance and to discard cells which don’t meet a standard. It must be noted that the actual

post-place alignments themselves are not optimal during this testing, most notably cell 1. This is

due to the Cellerate software build used to complete these tests was going through a large

transitional period and the alignment calibration was not completed optimally. However, this is not

necessary to validate this systems ability to locate the component after placing and report back

active component alignment.

Furthermore, the algorithm once again proved its ability to spot punching overlap on a component.

Referring to cell build report 1, the system was able to determine the punching overlap present in

the cathode from both the top and bottom cameras.

The most surprising and disappointing outcome of this testing was the performance of the machine

learning component of the project. The high success rate and performance seen in the initial

validation tests in Section 5.0 were not seen during these tests. Although defects were being

detected, the activation on these defects and the success rate at which they are being identified

was not acceptable to address the initial objectives.

This could be due to a number of factors. The most probable factor is a combination of an overfit

model and a leak of similar data between the training sub dataset and the validation sub dataset.

When a model overfits, it ‘memorises’ the training data into the model weights. This means it

performs very well on the data it was trained on but it does not generalise well to unseen data [15].

This effect would be obvious when applied to the validation sub dataset as that data has never

been seen by the model during training and would be respond poorly with the model. However, the

initial dataset contains similar images that differ only with change in lighting conditions and contain

the same defects in shape and class. This means an overfit model that had ‘memorised’ a defect

would respond well to a copy of that defect in the validation data set, giving the illusion of great

generalisation.

Another reason could be the context of the images within the dataset. The images were captured

using a static camera and not using the Cellerate system with the LED ring. The LED ring gives a

very niche and specific characteristic to images in terms of lighting, which is not reflected in the

data used to teach the model.

64

A further reason could be underrepresentation or non-representation of certain defects contained in

the images present in the build reports in Section 6.1.2, which is also a symptom of a small and

non-diverse dataset. An example of this can be seen in build report 4, anode B. These types of

defects are novel and not represented in the dataset. The defects would intuitively fall somewhere

between flaked coating and scratch in the current dataset labels.

The overall reflection from the unsatisfactory results of the machine learning component is that, to

address the shortcomings, more data is required to be added to the training dataset. This data

should be captured from the system itself in the same use case context. More data on all defect

subtypes is required to broaden the knowledge captured in the model’s weights. The amount of

datapoints on each defect is currently relatively small when compared to other sophisticated

models, so therefore it understandable the model would not perform to the levels displayed in the

validation testing in Section 5.

With this in mind however, the testing still proves the potential of this machine learning

methodology. Defects are being detected just not at the reliability and accuracy required to truly

satisfy viability at this stage. With additional data, there is optimism that this same methodology can

produce a model that satisfies it’s expectations to a higher level.

6.2 – Benchmarking

Due to the nature of the application, consideration had to be given to the execution time of the

additional processing that this project adds to the Cellerate system. The system must be able to

continuously build cells without delay, any delays introduced by this project would inherently

devalue the Cellerate system as throughput is one of the most critical selling points.

An investigation into the processing and inference times accrued during runtime was conducted to

understand the optimal processing pipeline, this would ultimately determine whether the processing

of each cell would be done sequentially or in batches at a convenient time.

During runtime the only critical process that is required is the contouring of the cell by the bottom

camera to determine the location of the cell component centroid within the image. The centroid is

used to calculate additional offsets so the component is placed into the middle of the coin cell

casing. The additional processing described throughout this project are able to be completed at a

later point as none have bearing on the cell build process. This could be in batches at the end of

build sessions, or as the autoloader is grabbing the next tray if the execution time permits.

6.2.1 – Methodology

An experiment was conducted to evaluate the execution times of various stages of processing

required for both the morphological analysis and the machine learning components.

For the experiment, timign benchmarks were introduced throughout the code at critical points and

the absolute time taken from the Raspberry Pi was output and collected. 5 electrodes were

65

processed through the system and their execution times were saved. This process was repeated 5

times and the average was taken.

6.2.2 – Results

6.2.2.1 – Morphological Analysis Results

Fig.73 and Fig.74 show the elapsed time and individual execution times by stage of the

morphological analysis procedure respectively.

Fig.74 - Execution time of each stage of morphological analysis

Fig.73 - Elapsed time of stage by stage execution of morphological analysis

66

6.2.2.2 – Machine Learning Surface Inspection Results

Fig.75 and Fig.76 show the elapsed time and individual execution times by stage of the surface

inspection procedure respectively.

6.2.3 Discussion

Firstly, the average execution time of the morphological analysis is relatively quick for what is

required for this system, the entire execution of the code took less than 0.35 seconds. As can be

seen from Fig.73. The most processing heavy stage was the morphological closing operation,

which is used to fill in gaps in the threshold mask and ensure the contour is an optimal

representation of the outside of the cell component. It is no surprise that this is stage is the most

processing heavy as kernel operations, such as opening and closing, require vast amounts of

kernel convolutions and computation. Referring back, it was for this reason that the method for

creating the smoothened contour was changed in Section 4.1. What can be confirmed is that this

processing can be done in line with systems normal execution and does not present a requirement

for batch processing.

Fig.75 - Elapsed time of stage by stage execution of surface inspection

Fig.76 - Execution time of each of surface inspection

67

With the machine learning surface inspection however, there is a much greater time demand. This

processing time demand comes almost solely from the patch wise predictions stage. As the images

taken by the system are large (2566x1944x3) they must first be reduced into a stack of images

compatible with the input layer of the machine learning model (256x256x3) and inferenced through

the model individually. This means that for a single image, even with a crop applied to isolate the

useful part of the image containing the cell component, 25 separate model inferences are required

before the image is stitched back together for output. Fig.76 shows that this stage incurred a nearly

16 seconds delay, which is somewhat expected for 25+ image inference through the model, but by

far presents the most processor demand of the whole system. This is additionally impressive

considering the limitations of the Raspberry Pi. The hardware is only compatible with Tensorflow

lite which is a lightweight version of Tensorflow that strips away any parallel inferencing

optimisations that GPUs are capable of and converts the model into a compatible CPU

procedurally executable file.

A combined execution time of both the morphological analysis and surface inspection came to

18.45s. This only represents the execution time for one image though and under normal

circumstances there will be at least 4 images to process per cell: one image for either surface of

the activate components of the cell, the anode and cathode. This means that there is a minimum

time requirement per cell of around 73s. Inserting this delay into the normal build routine of the

assembler is of course not acceptable. Adding an additional minute to the cell build time would

devalue the system significantly.

There are times during the cell build where the assembler is idle however, during crimping and

during an autoloader operation. During these operations the assembler is waiting to receive the

coin cell back from crimping or to receive the next tray from the autoloader. The delay incurred

while crimping is around 45 seconds and the delay incurred while changing trays is around 30

seconds. This time can be used by the system to process the images in the cell which would cover

the additional required processing time..

 Fig.77 shows a pipeline diagram of the execution order of the system to accommodate or the extra

processing time required. The Assembler module is never idle, using the time when the crimper

and autoloader are controlling the flow of the cell components to perform the required processing to

minimise hang ups in the operation flow.

Fig.77 – Pipeline diagram of the cell build process with stage descriptions

68

7.0 - Conclusions

The goal of the project was to develop software analysis tools that would provide the end users of

the Cellerate system with more data to optimise and accelerate their battery research. This goal

was to be realised by designing tools to provide data to the end user to isolate variables in the cell

build process to build better batteries and bolster the work done to shift society over to greener and

more effective energy storage methods. The data provided by the project would allow an end user

to correlate shortcomings in coin cell battery production with cell test data to identify optimisations

that can be made in the component preparation stages. The defined aspects to collect data on

were defined as morphological defects to the cell component such as edge quality, curvature and

punching overlap. As well as surface defects defined as scratches, creases, flaked electrode

coating and coating cracks.

A discussion of the effectiveness of the methods applied can be broken, once again into two parts

due to the vastly different implementations to satisfy the criteria of each part. Firstly, the

morphological analysis component of the project looked to tackle defects related to the shape of

the components specifically. A more traditional image processing approach was hypothesized to be

the most suitable as methods to find and contour shapes in images have long been established

with many effective implementations in past, work such as [20] [16].

The methods described in this work have been shown to be mostly effective at achieving the goals

that were laid out at the beginning of the project. The method of using a stable background image

as a reference point to subtract the foreground and isolate the cell component has been shown to

be effective and with some additional filtering a good representation of the contour of the cell

component could be extracted and analysed. This is particularly effective for determining the

degree of curvature present in the cell component when placed into the cell and also the presence

of any punching overlap. These two are particularly effective as the reliance on a hyper accurate

representation of the cell contour is not required. The experiments described in Section 4 and

Section 6 show that the methods to determine component curvature and punching overlap are

successful and provide good accuracy. It has been shown that the relationship between the height

of the component curvature and the area of the shape when looked down on as a 2D plan is solid

and can be used to provide an indication of component curvature.

The results for the punching overlap are even stronger with 100% accuracy of the detection of

punching overlap with no false positives or false negatives. It was also shown to be effective even

in the presence of curvature in the component. These results validate the effectiveness of using the

convex hull of the contour to determine any missing material.

In earlier testing in Section 4.0 there were shortcomings of the method to determine the cell edge

quality. These were the reliance on a very accurate approximation of the cell contour in order to

make high precision comparisons with the smoothened contour. The testing in Section 6.0

69

demonstrated good performance of the morphological analysis operations on the cell but still

contained an instance in which noise made it through the filtering stages to invalidate the accurate

component contour.

The validation experiment methodology also proved to have some flaws as it relies on subjective

interpretation of what makes a ‘good’ and ‘bad’ edge as it is difficult to quantify. This subjective

interpretation could conflict with the quantitative analysis method and skew results. Another

shortcoming that must be reiterated is the requirement of a calibration. The HSV filter requires a

calibration to work optimally which is ultimately a pitfall of the entire method. Different materials

require separate calibrations and it is possible that moving the machine into a different area may

cause the requirement for another calibration to be completed, due to varying lighting conditions. A

method to remove the dependency on this calibration would be a huge next step for the system.

The remaining objectives to be detected and qualified by the analysis tools were scratches, cracks,

creases and flaked coatings. It was hypothesised that these would lend themselves much more

effectively to a machine learning approach. Throughout the literature, there have been many

implementations of defect detection models that use various architectures and classification types

to achieve this.

The classification methodology which stood out as the most appropriate for this application was

semantic segmentation. This allows the user to see in great detail not only the presence of a defect

but also the localised area in which it is present. It was decided that this approach would give the

maximum amount of data back to the end user to optimise their cell preparation stages and identify

and rectify shortcomings in how their components are handled.

The overwhelming majority of defect detection applications that use convolutional neural networks

in the literature use the U-Net architecture [30] [31] [32]. This is due to its great response to small

bespoke datasets, such as what would have been available for this application.

The methodology in Section 5 done to evaluate the effectiveness of various models revealed that

there exists a fundamental unique relationship between the dataset and the model architecture to

garner the best results. Many of the variations on the U-Net architecture boast improved results of

the standard U-Net. The quoted improvements in this case were not seen during this investigation.

Most performed worse and some performed marginally better, but at the expense of greatly

increasing the complexity of the model.

It is clear from this investigation that each dataset should be treated as its own isolated instance

and the promise of improved results seen when applied to other datasets should not be assumed.

These results can point you in a general direction to guide the optimisation of the model but it is up

to individual testing and tweaking of the model parameters and architectures to find the right

architecture for the specific dataset.

70

The final model evidently performed well when referencing the output classifications when tested

using the validation dataset. However, when applied to truly novel data, in Section 6.0, the model

clearly did not perform as expected. It is hypothesized that the model was overfit during training

and a leak of similar data between the training sub dataset and validation sub dataset gave an

illusion of great performance and generalisation. It was determined that the testing, while

disappointing, still demonstrates the potential of the technology given that a satisfactory amount of

data is available for training which sufficiently represents the broad scope of potential defects. As

the system is used by more customers and more cell data is collected the dataset will become

more diverse and mature. As a starting point to something that will indefinitely improve the results

gathered in this work are promising regardless.

Furthermore, the system integration testing in Section 6 showed that the collected data on the cell

build inspection is collated and reported back to the user in a clear and concise manner. In

addition, the benchmarking results gathered show that the system can be run on the lightweight

Raspberry Pi device in reasonable time. With some scheduling design, the Raspberry Pi is capable

of processing the neural network inferencing, which is the most time demanding process, during

the downtime of the assembler system, during a crimping or autoloader process. A big

consideration when setting out the design of the system was not to compromise the throughput of

the Cellerate system, as this constitutes one of its greatest USPs. Not compromising the current

operation of the Cellerate system whilst adding the additional functionality discussed in this project

is a great achievement.

7.2 - Further Work

One of the most promising and encouraging developments that has been brought to the public eye

whilst completing this project is Meta’s Segment Anything Model (SAM). This open source model

has been trained on an incredibly large dataset of over 11 Billion images. The model is able to

segment the articles within an image to a great accuracy and reliability. If this model could be

reasonably implemented into this system it could optimise many of the processes.

The most impact it could have is to improve the reliability of edge quality detection algorithm. It

would remove the need for the background subtraction methodology, including the HSV filter. This

advancement would put greater trust that the contour edge found as part of this process is accurate

and that the edge quality calculations performed using it are representative and reliable. It would

also remove the need to take an additional background image of the cell build plate before the

component is placed to allow the background subtraction process to be performed, saving

additional time. Moreover, the successful implementation of this technology would remove the need

for any component calibration of the HSV filter. This was a great concern as the current method

adds some further user dependency to find a good calibration

During the SAM model investigation, further testing and optimisation should be done to improve the

robustness of the system. This is to gain further confidence the system will work as expected in

various settings. This testing should be mainly focussing around lighting condition changes and

71

whether this could disrupt the calibration. Of course, with the implementation of the SAM model this

not need be a priority as the model is adaptable and resilient to changes in lighting.

Of course, the most natural further work for this project is to continue to collect and label data from

the field to grow and improve the performance of the machine learning model. With a constant flow

of actual use case data from the field the sophistication and performance of the model could

become more viable within a short period of time.

7.3 - Final Statement
In conclusion, a great deal of personal development has been achieved in the past year completing

this project. All the knowledge displayed in this report surrounding the machine learning topic was

exclusively gained during the process of study. Both technical and managerial skills have been

developed through working with the Cellerate team and managing personal deadlines and

milestones. The technical results of the project are generally positive with clear direction of how

these can be improved and built upon going forward. The work completed in this project is

significant as there is currently nothing on the market that rivals what the Cellerate system can

achieve, let alone with the additional functionality developed in this project. Therefore, the fusion of

this work with the Cellerate product has an opportunity to really penetrate the battery research

space and help advance the field.

72

8.0 - References

[1] UNFCC, “The Paris Agreement,” [Online]. Available: https://unfccc.int/process-and-meetings/the-paris-

agreement/the-paris-agreement.

[2] J. Wood, “Batteries are a key part of the energy transition. Here’s why,” 15 September 2021. [Online].

Available: https://www.weforum.org/agenda/2021/09/batteries-lithium-ion-energy-storage-circular-

economy/. [Accessed 12 January 2023].

[3] P. Stevens, “The battery decade: How energy storage could revolutionize industries in the next 10

years,” CNBC, 30 December 2019. [Online]. Available: https://www.cnbc.com/2019/12/30/battery-

developments-in-the-last-decade-created-a-seismic-shift-that-will-play-out-in-the-next-10-years.html.

[Accessed 12 January 2023].

[4] C. Crownhart, “What’s next for batteries,” MIT Technology Review, 4 January 2023. [Online].

Available: https://www.technologyreview.com/2023/01/04/1066141/whats-next-for-batteries/.

[Accessed 12 January 2023].

[5] Cellerate, “The Cell Asseembly and Sealing System,” Cellerate, 2022. [Online]. Available:

https://www.cellerate.co.uk/products. [Accessed 12 January 2023].

[6] Intel, “What Is Computer Vision?,” 2023. [Online]. Available:

https://www.intel.co.uk/content/www/uk/en/internet-of-things/computer-vision/overview.html.

[Accessed 28 June 2023].

[7] Zeiss, “Why good vision is so important,” 16 October 2021. [Online]. Available:

https://www.zeiss.co.uk/vision-care/eye-health-and-care/health-prevention/why-good-vision-is-so-

important.html. [Accessed 28 June 2023].

[8] Enoch J, L. McDonald, L. Jones, J. PR and D. Crabb, “Evaluating Whether Sight Is the Most Valued

Sense,” JAMA ophthalmology, vol. 137, no. 11, pp. 1317-1320, 2019.

[9] T. O. Sharpee and R. J. Rowekamp, “How the brain recognizes what the eye sees,” Nature

Communications, 8 June 2017. [Online]. Available: https://www.salk.edu/news-release/brain-

recognizes-eye-sees/. [Accessed 28 June 2023].

[10] P. Ganesh, “Types of Convolution Kernels : Simplified,” Towards Data Science, 18 October 2019.

[Online]. Available: https://towardsdatascience.com/types-of-convolution-kernels-simplified-

f040cb307c37. [Accessed 28 June 2023].

[11] L. Shapiro and G. Stockman, “Filtering and Enhancing Images,” in Computer Vision, Washington,

Michigan, Pearson, 2000, pp. 145-209.

[12] M. A. Ansari, D. Kurchaniya and M. Dixit, “A Comprehensive Analysis of Image Edge Detection

Techniques,” International Journal of Multimedia and Ubiquitous Engineering, vol. 12, no. 11, pp. 1-12,

2017.

[13] J. Canny, “A Computational Approach to Edge Detection,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vols. PAMI-8, no. 6, pp. 679-698, 1986.

[14] OpenCV, “OpenCV,” 2023. [Online]. Available: https://opencv.org/. [Accessed 12 January 2023].

73

[15] N. Ryan and K. O'Shea, “An Introduction to Convolutional Neural Networks,” arXiv, Aberystwyth,

Lancashire, 2015.

[16] M. Bastan and S. S. Bukhari, “Active Canny: Edge Detection and Recovery with Open,” IET Image

Processing, vol. 11, no. 12, pp. 1325-1332, 2017.

[17] A. S. Hassaniem, S. Mohammed, M. Sameer and M. E. Ragab, “A Survey on Hough Transform,

Theory, Techniques and Applications,” IJCSI International Journal of Computer Science Issues, vol.

12, no. 1, pp. 139-156, 2015.

[18] H. Tabkhi, R. Bushey and G. Schirner, “ALgorithm and Architecture Co-Design of Mixture of Gaussian

(MoG) Background Subtraction for Embedded Vision,” IEEE, Boston, 2014.

[19] Pranjal, “Background Subtraction for multiple conditions,” Cronj, 2019. [Online]. Available:

https://www.cronj.com/blog/background-subtraction/. [Accessed 29 June 2023].

[20] C. G. Spinola, J. Canero, G. Moreno-Aranda, J. M. Bonelo and M. Martin-Vasquez, “Real-Time Image

Processing for Edge Inspection and Defect Detection in Stainless Steel Production Lines,” in IEEE

International Conference on Imaging Systems and Techniques, Batu Ferringhi, 2011.

[21] P. Wang, X. Zhang, Y. Mu and Z. Wang, “The Copper Surface Defects Inspection System Based on

Computer Vision,” in 2008 Fourth International Conference on Natural Computation, Jinan, 2008.

[22] M. Jogin, M. M. S. Mohana, D. G. D, M. R. K and A. S, “Feature Extraction using Convolutional Neural

Networks (CNN) and Deep Learning,” in 2018 3rd International Conference on Recent Trends in

Electronics, Information & Comminication Technology, Bangalore, 2018.

[23] V. Lakschmanan, M. Gorner and R. Gillard, “Object Detection and Image Segmentation,” in Practical

Machine Learning For Computer Vision, Sebastopol, O'Reilly, 2021.

[24] H. Zhao, Y. Lv, J. Sha, R. Peng, Z. Chen and G. Wang, “Research on Detection Method of Coating

Defects Based on Machine Vision,” in 2021 IEEE International Conference on Artificial Intelligence

and Computer Applications (ICAICA), Dalian, 2021.

[25] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, “You Only Look Once: Unified, Real-Time Object

Detection,” arXiv, Washington, 2015.

[26] O. Ronneberger, P. Fischer and T. Brox, “U-Net: Convolutional Networks for Biomedical,” in Medical

Image Computing and Computer-Assisted Intervention – MICCAI 2015, Munich, 2015.

[27] Y. Hou, J. Yan and D. Zeng, “ELU-Net: An Efficient and Lightweight U-Net for Medical Image

Segmentation,” IEEE Access, vol. 10, pp. 35932-35941, 2022.

[28] K. Li and G. Ding, “L-FCN: A lightweight fully convolutional network for biomedical semantic

segmentation,” in 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM),

Madrid, 2018.

[29] J. B. Roerdink and A. Meijster, “The Watershed Transform: Definitions, Algorithms and

Parrallelization,” Fundamenta Informaticae, vol. 41, pp. 187-228, 2001.

[30] X. Cao, B. Yao, B. Chen and Y. Wang, “Multi-defect detection for magnetic tile based on SE-U-Net,” in

2020 IEEE International Symposium on Product Compliance Engineering-Asia (ISPCE_SN),

Chongqing, 2020.

74

[31] Z. Xinzi, “BSU-Net: A Surface Defect Detection Method Based On Bilaterally Symmetric U-Shaped

Network,” in 2020 5th International Conference on Mechanical, Control and Computer Engineering

(ICMCCE), Harbin, 2020.

[32] D. Amin and S. Akhter, “Deep Learning-Based Defect Detection System in Steel Sheet Surfaces,” in

2020 IEEE Region 10 Symposium (TEMSYMP), Dhaka, 2020.

[33] S. Sahoo, “Residual blocks — Building blocks of ResNet,” 27 November 2018. [Online]. Available:

https://towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec. [Accessed

12 January 2023].

[34] G. Shang, G. Liu, P. Zhu, J. Han, C. Xia and K. Jiang, “A Deep Residual U-Type Network for

Semantic Segmentation of Orchard Environments,” Applied Sciences, vol. 11, no. 1, pp. 322-335,

2021.

[35] S. Moon, “How data augmentation affects machine learning,” Datahunt, 23 May 2023. [Online].

Available: https://www.thedatahunt.com/en-insight/how-data-augmentation-impacts-machine-learning.

[Accessed 29 June 2023].

[36] J. Wang and L. Perez, “The Effectiveness of Data Augmentation in Image Classification using Deep

Learning,” arXiv, Stanford, 2017.

[37] TensorFlow, “Introduction to TensorFlow,” 2023. [Online]. Available: https://www.tensorflow.org/learn.

[Accessed 6 June 2023].

[38] Keras, “About Keras,” [Online]. Available: https://keras.io/api/. [Accessed 6 June 2023].

[39] TensorFlow, “Deploy machine learning models on mobile and edge devices,” [Online]. Available:

https://www.tensorflow.org/lite. [Accessed 20 June 2023].

[40] D. S. Bhattiprolou, “multiclass semantic segmentation using U-Net,” 11 March 2021. [Online].

Available:

https://github.com/bnsreenu/python_for_microscopists/blob/master/208_multiclass_Unet_sandstone.p

y. [Accessed 9 May 2023].

[41] D. S. Bhattiprolou, “127_data_augmentation_using_keras.py,” 1 March 2020. [Online]. Available:

https://github.com/bnsreenu/python_for_microscopists/blob/master/127_data_augmentation_using_ke

ras.py. [Accessed 6 June 2023].

[42] OpenCV, “How to Use Background Subtraction Methods,” OpenCV, 29 December 2022. [Online].

Available:

https://docs.opencv.org/3.4/d1/dc5/tutorial_background_subtraction.html#:~:text=OpenCV%3A%20Ho

w%20to%20Use%20Background%20Subtraction%20Methods&text=Background%20subtraction%20(

BS)%20is%20a,scene)%20by%20using%20static%20cameras.. [Accessed 12 January 2023].

[43] OpenCV, “Morphological Transformations,” OpenCV, 29 December 2022. [Online]. Available:

https://docs.opencv.org/4.x/d9/d61/tutorial_py_morphological_ops.html. [Accessed 12 January 2023].

[44] W. Benesova, “Curvature Scale Space in OpenCV,” 12 April 2013. [Online]. Available:

https://vgg.fiit.stuba.sk/2013-04/css-%E2%80%93-curvature-scale-space-in-opencv/. [Accessed 12

January 2023].

[45] D. Pandey, “Contours and Convex Hull in OpenCV Python,” 19 April 2021. [Online]. Available:

https://medium.com/analytics-vidhya/contours-and-convex-hull-in-opencv-python-d7503f6651bc.

[Accessed 13 January 2023].

75

[46] J. Keifer and J. Wolfowitz, “Stochastic Estimation of the Maximum of a Regression Function,”

University of North Carolina, Durham, 1952.

[47] H. Robbins and S. Mondro, “A Stochastic Approximation Method,” University of North Carolina,

Durham, 1951.

[48] E. Hofesmann, “IoU a better detection evaluation metric,” Towards Data Science, 25 August 2020.

[Online]. Available: https://towardsdatascience.com/iou-a-better-detection-evaluation-metric-

45a511185be1. [Accessed 2 August 2023].

[49] J. Korstanje, “The F1 Score,” Towards Data Sciecne, 31 August 2021. [Online]. Available:

https://towardsdatascience.com/the-f1-score-bec2bbc38aa6. [Accessed 2 August 2023].

[50] Jacomex, “Glove Boxes for Battery Applications,” 2023. [Online]. Available:

https://www.jacomex.com/application/energy/batteries/. [Accessed 6 June 2023].

[51] Apple, “Blurring an Image,” [Online]. Available:

https://developer.apple.com/documentation/accelerate/blurring_an_image. [Accessed 2 August 2023].

[52] TagX, “Data Augmentation for Computer Vision,” medium, 4 Febuary 2023. [Online]. Available:

https://medium.com/@tagxdata/data-augmentation-for-computer-vision-b97cbe0bae9e. [Accessed 29

June 2023].

[53] MTI, “19 mm Dia Graphite ANode Electrode Disk for CR20XX Coin Cells 100 pcs / pack - bccff-

cms19,” 2022. [Online]. Available: https://www.mtixtl.com/bc-cf-cms-68.aspx. [Accessed 12 January

2023].

[54] F. Chollet, “Xception: Deep Learning with Depthwise Separable Convolutions,” IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 1800-1807, 2017.

[55] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke and A.

Rabinovich, “Going deeper with convolutions,” IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 1-9, 2015.

[56] A. Rosebrock, “Intersection over Union (IoU) for object detection,” 7 November 2016. [Online].

Available: https://pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/.

[Accessed 2 August 2023].

[57] Cronj, “Background Subtraction For Multiple Conditions,” Cronj, 2019. [Online]. Available:

https://www.cronj.com/blog/background-subtraction/. [Accessed 2 August 2023].

[58] Naveen, “What is a ReLU and Sigmoid activation function?,” Nomidl, 20 April 2022. [Online].

Available: https://www.nomidl.com/deep-learning/what-is-relu-and-sigmoid-activation-function/.

[Accessed 2 August 2023].

[59] S. Saha, “A Comprehensive Guide to Convolutional Neural Networks - The EL15 Way,” Towards Data

Science, 15 December 2018. [Online]. Available: https://saturncloud.io/blog/a-comprehensive-guide-

to-convolutional-neural-networks-the-eli5-way/. [Accessed 12 January 2023].

[60] C. Kevin, “Feature Maps,” Medium, 11 May 2018. [Online]. Available:

https://medium.com/@chriskevin_80184/feature-maps-ee8e11a71f9e. [Accessed 2 August 2023].

[61] R. Bhatia, “Top 5 Image Classification Research Papers Every Data Scientist Should Know,” Analytics

India Mag, 17 September 2017. [Online]. Available: https://analyticsindiamag.com/top-5-image-

classification-research-papers-every-data-scientist-should-know/. [Accessed 12 January 2023].

76

[62] Signal and Image Processing Lab, “Creating Image Segmentation Maps Using GANs,” 2021. [Online].

Available: https://sipl.eelabs.technion.ac.il/projects/creating-image-segmentation-maps-using-gans/.

[Accessed 6 July 2023].

77

Appendix A: Algorithm Flowcharts

Fig.78 – Image preprocessing flowchart

Fig.79 – Image collection flowchart

Fig.80 – Morphological analysis flowchart

Fig.81 – Component curvature flowchart

78

Fig.82 – Edge quality analysis flowchart

Fig.83 – Punching overlap flowchart

Fig.84 – Get contour information flowchart

79

Fig.85 – Model generator

pre-processing flowchart

Fig.86 – Model generator flowchart

80

Appendix B: Raw Results

Electrode
No.

Algo Determined
Edge Quality %

Human assessed
edge quality (/10)

1 99.7233% 8

2 99.7038% 7.5

3 99.6204% 5

4 99.6142% 5

5 99.7126% 7

6 99.7158% 7.5

7 99.7476% 8

8 99.7469% 7.5

9 99.6603% 6

10 99.6632% 6

11 99.6552% 7.5

12 99.7374% 7

13 99.7014% 7.5

14 99.6801% 7.5

15 99.6368% 6

16 99.6874% 6

17 99.6184% 9

19 99.6649% 8.5

20 99.7258% 8

21 99.6415% 8

22 99.7379% 8.5

23 99.7211% 9

24 99.7255% 9

25 99.6658% 8.5

 Pre Optimisations
After Smoothing

Optimisation
After Smoothing and Edge Quality

Optimisation

Stage Split(s)
Total
Time(s) Split(s) Total Time(s) Split(s) Total Time(s)

Image Loading 0.24 0.24 0.24 0.24 0.23 0.23

Undistort Image 0.73 0.97 0.74 0.97 0.73 0.97

Background
Removal 0.23 1.2 0.23 1.20 0.23 1.20

Locating Circle 0.18 1.39 0.18 1.39 0.18 1.38

Find Contour 0.02 1.41 0.02 1.41 0.02 1.40

Edge Quality
Detection 164.56 165.96 14.18 15.59 0.10 1.50

Punching
Overlap 0 165.97 0 15.59 0.00 1.50

Curvature
Detection 0.01 166.09 0.01 15.59 0.10 1.50

Save Image 0.12 166.09 0.12 15.71 0.12 1.62

Table 10 - Raw results for Fig.41 and Fig.42

81

26 99.6658% 8

27 99.7420% 9.5

28 99.7384% 9

29 99.6697% 8

30 99.6809% 8

31 99.6766% 8

32 99.6654% 9.5

33 99.6553% 9.5

34 99.6286% 7.5

35 99.7495% 10

36 99.6482% 8

37 99.6703% 10

38 99.6175% 6.5

39 99.6962% 10

40 99.7334% 8

41 99.7301% 10

42 99.6756% 9.5

43 99.6748% 8.5

44 99.6300% 6.5

45 99.6921% 10

46 99.6467% 7.5

47 99.6568% 9.5

48 99.5847% 6

49 99.7292% 9

50 99.7028% 8.5

Table 11 - Raw results for Fig.43

82

Electrode
No.

Diameter
(mm)

Measured
Height (mm)

Algo
Curvature (%) Coating Position

1 14 1.82 3.12% Copper Concave

2 14 1.42 2.85% Black Concave

3 14 2.52 7.73% Black Concave

4 16 1.68 1.27% Copper Concave

5 14 2.03 3.24% Black Concave

6 14 2.95 13.75% Copper Convex

7 14 1.36 4.44% Black Convex

8 16 2.82 10.73% Copper Convex

9 16 1.95 5.67% Black Convex

10 16 2.72 10.55% Copper Convex

11 14 2.28 7.48% Black Convex

12 14 2.71 8.11% Black Convex

13 14 2.33 5.58% Black Convex

14 16 3.32 13.94% Copper Convex

15 14 2.95 12.44% Black Convex

16 14 2.56 6.83% Copper Concave

17 14 1.61 3.55% Black Concave

18 16 1.17 2.02% Copper Concave

19 16 1.65 1.57% Copper Concave

20 16 2.13 6.72% Copper Concave

Electrode
Punch Overlap
Category Curvature Detected?

1 Slight No Yes

2 Slight No Yes

3 Slight No Yes

4 Slight No Yes

5 Slight No Yes

6 Slight Yes Yes

7 Slight Yes Yes

8 Slight Yes Yes

9 Slight Yes Yes

10 Slight Yes Yes

11 Medium No Yes

12 Medium No Yes

13 Medium No Yes

14 Medium No Yes

15 Medium No Yes

16 Medium Yes Yes

17 Medium Yes Yes

18 Medium Yes Yes

19 Medium Yes Yes

Table 12 - Raw results for Fig.47 and Fig.48

83

20 Medium Yes Yes

21 Large No Yes

22 Large No Yes

23 Large No Yes

24 Large No Yes

25 Large No Yes

26 Large Yes Yes

27 Large Yes Yes

28 Large Yes Yes

29 Large Yes Yes

30 Large Yes Yes

31 Non No No

32 Non No No

33 Non No No

34 Non No No

35 Non No No

36 Non Yes No

37 Non Yes No

38 Non Yes No

39 Non Yes No

40 Non Yes No

Description Delta Time Elapsed Time

Start time 0 0

Get file paths 0.013080015 0.01308

AICellSight object created 7.43771E-05 0.013154

MorphoAnalyser created 0.041661625 0.054816

Absdiff generated 0.002587986 0.057404

HSV filter applied 0.01157836 0.068982772

Gray image created 0.00072443 0.069707202

Image cropped 0.001144791 0.070851992

Blur applied 0.002597208 0.0734492

Threshold applied 0.000414791 0.073863992

Closing applied 0.229787998 0.30365199

Contours found 0.003143187 0.306795176

Bounding circle found 0.006090832 0.312886008

Contour smoothened 0.000369568 0.313255576

Convex hull found 0.000154037 0.313409613

Edge quality determined 0.02155838 0.334967994

Curvature found 8.91876E-05 0.335057181

Punching overlap found 4.55856E-05 0.335102767

Results saved 0.001713648 0.336816415

Output image drawn 0.006940384 0.343756799

Table 13 - Raw results for Table 1

Table 14 - Raw results for Fig.73 and Fig.74

84

Description Delta Time Abs Time

Start time 0.000000 0

Got file path 0.024822 0.024822

Created aicellsight object 0.000104 0.024926

Created predictor object 0.000147 0.025072

Image loaded 0.203399 0.228471

Image cropped 0.000198 0.228669

Patches created 0.493908 0.722577

Patchwise predictions made 15.662192 16.38477

Final prediction created 0.007633 16.3924

Output drawn 1.807785 18.20019

 Table 15 - Raw results for Fig.75 and Fig.76

