
1 

 

 

 

 

 

 

 

 

 

 

 

CellSight: Machine Vision Defect Detection During 

Automated Cell Assembly 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CellSight: Machine Vision Defect Detection 

During Automated Cell Assembly Thesis 

Author: Joe Henshall  

Supervisor: Dr David Cheneler / Dr Xiaonan Hou 

Date: 26/09/23 



2 

 

Table of Contents 

1.0 – Introduction .......................................................................................................................................... 4 

1.1 - Aims .................................................................................................................................................... 5 

1.2 - Objectives ......................................................................................................................................... 5 

2.0 - Literature Review ................................................................................................................................. 6 

3.0 - System Architecture ......................................................................................................................... 19 

3.1 - Hardware Configuration .............................................................................................................. 19 

3.1.1 - Coin Cell .................................................................................................................................. 20 

3.2 - Software Design ............................................................................................................................ 21 

3.2.1 -  AI Cell Sight Module ............................................................................................................ 21 

3.2.2 - Morphological Analyser Module ........................................................................................ 21 

3.2.3 - Predictor Lite Module ........................................................................................................... 21 

3.2.4 - Build Report Generator Module ......................................................................................... 22 

3.2.5 - Model Generator Module ..................................................................................................... 22 

3.2.6 – Preprocessor Module .......................................................................................................... 22 

3.2.7 – Data Augmenter Module ..................................................................................................... 22 

4.0 – Morphological Analysis .................................................................................................................. 23 

4.1 – Isolating the Component ............................................................................................................ 23 

4.1.1 – Approach 1: Dynamic Canny Edge Thresholding and Filtering ............................... 23 

4.1.2 – Approach 2: Background Subtraction and Thresholding .......................................... 25 

4.2 - Edge Quality Analysis .................................................................................................................. 27 

4.2.1 – Approach 1: Smoothing by Erosion/Dilation ................................................................. 28 

4.2.2 – Approach 2: Smoothing by 1D Blur Kernel ................................................................... 30 

4.2.3 - Edge Quality Analysis End-to-End Validation ............................................................... 33 

4.3 – Electrode Curvature Analysis ................................................................................................... 34 

4.3.1 - Methods ................................................................................................................................... 35 

4.3.2 – Results .................................................................................................................................... 35 

4.3.3 – Discussion .............................................................................................................................. 36 

4.4 – Punching Overlap ........................................................................................................................ 37 

4.4.1 - Methods ................................................................................................................................... 37 

4.4.2 – Results .................................................................................................................................... 39 

4.4.3 - Discussion............................................................................................................................... 39 

5.0 – Machine Learning Surface Inspection ........................................................................................ 40 

5.1 - Architecture and classification type ........................................................................................ 40 

5.2 - Prerequisites .................................................................................................................................. 41 

5.2.1 - Data collection ....................................................................................................................... 41 

5.2.2 - Labelling .................................................................................................................................. 41 



3 

 

5.2.3 - Initial Dataset .......................................................................................................................... 42 

5.3 - Training ............................................................................................................................................ 42 

5.3.1 - Stochastic Gradient Descent .............................................................................................. 42 

5.3.2 – Training Epochs .................................................................................................................... 43 

5.3.3 - Loss Function ......................................................................................................................... 43 

5.4 - Architecture Investigation .......................................................................................................... 44 

5.4.1 - Introduction ............................................................................................................................. 44 

5.4.2 - Architectures .......................................................................................................................... 44 

5.4.3 - Methods ................................................................................................................................... 48 

5.4.4 – Results .................................................................................................................................... 48 

5.4.5 – Discussion .............................................................................................................................. 49 

5.4.6 - Amending the dataset .......................................................................................................... 49 

5.4.7 - Results ..................................................................................................................................... 50 

5.4.8 – Discussion .............................................................................................................................. 50 

5.5 - Data augmentation ........................................................................................................................ 51 

5.5.1 - Batch training ......................................................................................................................... 51 

5.5.2 - Data generator ........................................................................................................................ 53 

5.6 - Extended Results .......................................................................................................................... 54 

5.7 – Discussion ..................................................................................................................................... 58 

6.0 - System Integration ............................................................................................................................ 59 

6.1 – Black Box Testing and Reporting ............................................................................................ 59 

6.1.1 – Methods .................................................................................................................................. 59 

6.1.2 – Results .................................................................................................................................... 59 

6.1.3 – Discussion .............................................................................................................................. 62 

6.2 – Benchmarking ............................................................................................................................... 64 

6.2.1 – Methodology .......................................................................................................................... 64 

6.2.2 – Results .................................................................................................................................... 65 

6.2.3 Discussion ................................................................................................................................. 66 

7.0 - Conclusions ........................................................................................................................................ 68 

7.2 - Further Work .................................................................................................................................. 70 

7.3 - Final Statement .............................................................................................................................. 71 

8.0 - References .......................................................................................................................................... 72 

Appendix A: Algorithm Flowcharts ....................................................................................................... 77 

Appendix B: Raw Results ......................................................................................................................... 80 

 



4 

 

1.0 – Introduction 

 

During the last decade there has been a paradigm shift in our society to move away from non-

renewable energy sources. The Paris Agreement, a legally binding international treaty, was signed 

by 196 parties in 2015 to establish a climate goal for the near future [1]. The established climate 

goal places a higher focus on renewable energy sources and storage methods. Battery science 

has presented itself as one of the most promising technologies to achieve the sustainable future 

outlined in the Paris Agreement. It is estimated that the demand for lithium-ion battery energy 

storage could reach 9300 Gigawatt hours by 2030. A 17-fold increase from the demand of 0.5 

Gigawatt hours back in 2010 [2]. This surge in production volume has led to “an 85% decline in 

prices” [3], making many energy storage applications viable for the first time in history. 

The rise of renewable energy sources such as wind and solar power has been one of the driving 

factors in the accelerated deployment of energy storage systems. Moreover, the exceptional 

growth of the electric vehicle market has become a serious alternative as manufacturers seek to 

meet stringent emissions regulations and consumer demands for cleaner transport. 

Because of this exponential rise, industry leaders and research groups around the world are 

frantically pursuing innovation in the field of battery science to produce the next optimal chemistry 

[4]. Much of this research is completed by small research teams producing batteries by hand, 

which is both demanding on the operator, time inefficient and unreliable. In addition, most of these 

cells are built inside pressurised glove boxes where visibility and tactile feedback is further 

reduced. Repeatability is also an important factor in research as handmade cells have a number of 

uncontrollable variables surrounding the build process that muddy the waters around testing. 

Cellerate are a company that look to optimise the process of battery research and development. 

They manufacture robots that fully autonomise the process of coin cell production. Their core 

system takes coin cell components in a loading tray format, automatically assembles and crimps 

them together to produce working cell [5]. Their system looks to not only speed up the build 

process, which has been quoted by earlier adopters by a 30% increase in speed over cell 

manufacture by hand, but to also improve repeatability as each cell is constructed with the same 

maximal accuracy. The operator is also free to do other tasks while the system is making a cell, 

saving further resources.  

During automated assembly it is possible that sub optimal components are used, resulting in sub 

optimal cells. These cells go on to absorb test channel resources that could otherwise be used on 

cells with controlled variables and quality. This project looks to offer maximum visual data on the 

cell build process back to the operator to optimise their workflow. Defects and features detected by 

the systems described in this project during the build process can be inextricably linked to a cell 

and quickly referenced when analysing the cells performance. This gives research teams more 

analysis tools when reviewing cell data to discard bad cells that were improperly made and to 
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change their processes to reduce the rate of bad cell production moving forward. In addition, the 

cell component quality data can be used to optimize component sourcing and preparation. This 

project looks to actively drive forward the rate of battery development which is not only a benefit to 

the adopters but also, ultimately, the environment as the switch to greener energy can be 

accelerated. 

1.1 - Aims 
The aim of this project is to produce a computer vision system that can not only dynamically locate 

cell components in an image, for alignment purposes, but can also inspect the quality of cell 

components by detecting defects. These results shall be inextricably linked to a cell and give 

operators a vital resource when correlating test data to cell build reports. 

1.2 - Objectives 
1. Isolate a cell component within an image. 

2. Produce an algorithm to perform auto exposure to accommodate different lighting 

conditions. 

3. Produce an algorithm to find the outer contour of the cell component and perform 

morphological analysis to determine: 

a. Edge quality 

b. Punching overlap 

c. Curvature 

d. Component alignment 

4. Develop a machine learning model that can determine the presence of: 

a. Electrode creases 

b. Surface scratches 

c. Cracks 

d. Flaked electrode coating 

5. Integrate the developed algorithms into the existing Cellerate system. 
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2.0 - Literature Review 

 

Computer vision encompasses many technologies such as cameras, edge computing, cloud-based 

computing, software and artificial intelligence that can be combined and used to extract meaningful 

information from digital images [6]. Humans perceive 80% of all impressions through the sense of 

sight [7] and with 88% of people ranking sight as their most valuable sense [8], it is clear that 

capturing the real world through vision data and harnessing the power of computer vision is a huge 

leap with almost endless applications to enrich our existing systems. This has never been more 

applicable as the compression, reduction in cost and increase in power of computer chips in recent 

years has led to increased expansion of the Internet of Things (IoT). As more systems become 

smart and connected there is more demand for interaction and control of real world systems and it 

is clear that vision data is the biggest opportunity.  

It is still not fully understood how the brain interprets light entering the eye into understanding about 

the surrounding environment. However, It is believed that groups of neurons in the back of the 

brain called V1 and V2 neurons react to edges in the image, combining edges of similar 

orientations and supressing those orthogonal to that orientation at the same location, a process 

called cross orientation [9]. These cross oriented edge combinations are assembled in various 

ways to allow us to detect various shapes and give meaning to light information [9].  

This understanding was applied to the computer 

vision problem by means of the convolutional kernel. 

A kernel is a matrix, that can be multi-dimensional and 

any size, which is slid across an image and multiplied 

with the input such that the output is changed [10]. 

These form the most fundamental mathematical 

process in computer vision and describe how useful 

information can be extracted from pixel data. The 

weights within the kernel can be altered to produce a 

wide range of effects. These can range from edge 

detection, blurring, sharpening and filling in gaps.  

Traditional computer vision and image processing techniques are somewhat outdated with the rise 

of deep learning and convolutional neural networks, due to their adaptability. Traditional computer 

vision techniques, such as edge detectors and contouring algorithms, are very rigid in their 

implementation. They are very susceptible to random variance in their environments and 

applications. For example, lighting changes in real time systems can have drastic effects on the 

success of an edge detector as the bounds for the edge detection are defined. Of course, dynamic 

traditional computer vision methods can be implemented, but there is always the vulnerability that 

unseen edge cases can destabilize the tuning of the system. Although these methods are 

Fig.1 – Convolutional kernel [51] 
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somewhat outdated, it is important to understand the theory behind these approaches to gain more 

of an understanding of how a modern convolutional neural network can achieve a better result. 

Many computer vision problems rely on the ability to discern between the composite objects within 

an image. Humans perform this processing innately and intuitively know where an object ends, and 

another begins. Programming computers to perform similar tasks automatically is a challenge as a 

computational process must be defined to determine features and ultimately separate one object 

from another within an image.  

One powerful technique that is referenced through a large body of image processing and computer 

vision literature is edge detection [11] [12]. As the name suggests, edge detection allows the edges 

to be determined within an image. This information can be used to locate objects within an image 

for further processing. There have been many iterations of edge detecting algorithms throughout 

the development of the literature; Sobel, Prewitt, Laplacian, Robert [12] are some examples. 

However, the most widely adopted edge detector was developed by John Canny in 1986, 

described in A Computation Approach to Edge Detection [13].  

It is through the isolation of the most important edges in an image that the location of objects can 

be identified. The most popular computer vision programming library, OpenCV [14], provides 

functions to find contours against these edges which provides coordinate representations of the 

edges that can be used in analysis.  

Due to the proven usefulness of the technique, the edge detector is still used extensively for 

computer vision problems. Even modern techniques, such as deep learning using convolutional 

neural networks (CNN), which have somewhat replaced traditional computer vision and image 

processing methods, use edge detectors extensively in their convolutional layers [15]. Moreover, 

even though their use in the most modern computer vision approaches is mostly with deep 

learning, traditional image processing techniques, such as edge detection, still have applications. 

A problem when using the canny edge detector with OpenCV is that the intensity thresholds that 

determine an edge are static throughout the image. What is found in practice is that found edges 

can be discontinuous and contain gaps. This leads to frustration when trying to optimally set the 

Canny thresholds to preserve as much of the target edge as possible. Moreover, applying this to 

many images with varying image parameters, such as exposure and lighting conditions, is 

exponentially harder. The work presented in [16] provides a method to actively recover edges that 

the eye would consider continuous, but the edge detection method has considered broken. The 

work uses a snakelet method [16] in which each piece of the broken edge is considered as such. 

Two energy equations, internal and external, are used to quantitively predict how to join the 

snakelets together and recover the disjoined edge. The internal energy equation concerns the 

snakelets existing points and the external energy equation considers the points of the other 

snakelets. What has been shown in [16], is that this method successfully and accurately 

reconnects edges that are intuitively seen as continuous from the human perspective.  
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Another key method in traditional image processing is the Hough transform [17]. It is a statistical 

approach for line and edge detection that can be used after a canny threshold to determine shapes 

in an image such as lines and even circles. It does this by finding statistical hot points between 

many imaginary lines centred at points on a given intensity boundary [17]. These hot points give 

statistical confidence that vertices or circle centres are found there by computing each point’s 

allegiance with other points in the image. This a very important concept as it allows threshold 

images to be described mathematically using combinations of lines and shapes. This allows 

contours in images to be described by mathematical structures of points, allowing computer 

algorithms to analyse their shapes and positions. This information is crucial for real world 

applications such as object detection and control systems. 

Another popular technique used in traditional computer vision applications is background 

subtraction. Often with computer vision tasks there is focus on tracking or recognising an object or 

objects in an image and performing some action based on this information. This could be 

controlling another device or saving information about the objects for analysis. Of course, to do this 

the computer needs to make the distinction between the parts of the image that are useful and 

contain the object and the parts that are not useful. The process of background subtraction gives 

the computer a reference to what constitutes the background in an image. If the background is 

treated as a ground truth then subtracting this known background from an image will leave behind 

the foreground and areas of interest. A popular algorithm to perform this is known as the Mode of 

Gaussian (MoG) algorithm. This algorithm uses multiple Gaussian distributions to model each pixel 

in an image [18].  The weights of the mixture represent the amount of time the colour of a pixel has 

remained the same, indicating the background. As the pixel remains the same for a longer duration 

the probability that it belongs to the background in an image increases [18] [19]. This effect creates 

a dynamic model of the background that adapts with the scene as lighting conditions change and 

other things come in and constitute the background of an image. Fig.3 shows this concept. It 

should be noted that The MoG algorithm relies on a video feed to determine the background as the 

time component is critical to provide the weightings. However, a similar approach can be used with 

still images if an appropriate representative background is provided and the state of the scene in 

Fig.2 - Active canny recovery with snakelets [16] 
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the image can be controlled. This is most applicable to repeatable scenarios with fixed 

backgrounds such as production lines or repetitive robotic tasks. 

 

The most novel and ground-breaking work in the field of computer vision over the last decade has 

been through the use of deep learning and convolutional neural networks.  However, traditional 

computer vision approaches by manual feature extraction and defined computational approaches 

still have useful, but usually specific, applications. The work in [20] describes a computer vision 

system that detects edge defects in sheet steel rolls. Using a Sobel edge detector [12], the edge of 

the roll can be identified. A Hough transform [17] searching for horizontal lines is then be applied to 

determine the edge gradient, which can be plotted. Any deviation of the signal from a flat response 

is known to be a defective area and can be identified. The work [20] showed reliable results over 

numerous widths of material. It is important to consider traditional computer vision techniques when 

appropriate as they are much simpler to implement and are computationally less expensive than 

equivalent deep learning approaches.  

The next stage in the development of computer vision was to introduce artificial neural networks 

(ANN) into the fold to make predictions on images [15]. ANNs mimic neural pathways in the brain 

which fire in a specific way leading to a decision being made. ANNs have some set of input nodes 

which contain parameterised values. These are then fully connected to a hidden layer of neurons, 

which are then fully connected to another layer of neurons and so on. The number of hidden layers 

is variable but can become computationally expensive as the number increases. The neurons fire 

based on a nonlinear activation function, most commonly the ReLU function [15]. Finally, the last 

hidden layer is connected to an output layer consisting of the defined set of classes on which to 

make the classification [15]. 

Fig.3 - Mode of Gaussian background removal [57] 
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Each node and connection between nodes have an adjustable weight assigned to it. Using a 

training dataset, an optimisation process is conducted to best adjust the weights to have the 

network fire correctly and classify an image to what is expected. This process should train the 

network to give the correct output classification response to varying input stimuli [15]. 

The challenge when using ANNs in computer vision problems is providing input values, this is 

known as feature extraction. What is it about an image that you can train the network to pick up on 

and classify based upon? Feeding each pixel into the input layer of a network would give you all 

the information you would ever need about an image, but the network would become impractically 

large and contains far too many parameters to realistically optimise. The literature in [21] describes 

defect detection system using an ANN. A series on invariant moments are calculated from an 

image which are fed into the input layer of an ANN. These invariant moments are based on 

regional shape recognition that is maintained when the image is subject to rotation, ratio, scale and 

pan [21]. They ultimately result in a series of scalar values about an image that the ANN can be 

trained to recognise and classify the image based upon. The defects are subdivided into 6 

subcategories: pits, holes, scratches, burrs, indentations and smearing. The system detected the 

defects to an accuracy of: 88.9%, 94.4%, 94.4%, 96.1%, 96.3% and 90.6% respectively [21]. This 

work speaks to the advocacy of using ANNs when the circumstances allow for reliable feature 

extraction. 

The problem encountered when trying to apply the methodology of ANNs to wider computer vision 

problems is that of feature extraction. Diverse datasets make feature extraction very difficult as the 

target object within the image will vary greatly in size, position, aspect ratio, colour and so on. And 

as mentioned previously, feeding each pixel into the input layer of a neural network is not feasible. 

Deep learning using convolutional neural networks was the breakthrough technology that solves 

this problem.  

Fig.4 - Simple ANN [15] Fig.5 - ReLU Function [58] 
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Convolutional neural networks (CNN) allow the network to learn, through the optimisation process, 

which features of an image are the best to classify it [15]. It is through the learning of the feature 

extraction stage that defines ‘deep’ learning. These features are extracted through many layers of 

kernel convolutions [22]. The first layer may only contain features as simple as horizontal edges, 

corners and so on. But when combinations of combinations of convolutions are combined, filters for 

picking out features such as noses, eyes and ears can be optimised [15] [22], see Fig.7. The 

convolutional layers reduce the 

spatial dimension of the image 

but increase the feature 

dimension with each successive 

stage. The pooling stage is also 

used to reduce the spatial 

dimension of the image through 

sampling. The result is a 

flattened image with a tiny 

spatial dimension but with large 

feature depth. This can then be 

connected to a fully connected 

ANN network for final classification. These output classifications could be binary (Dog or not a 

Dog), probabilities that the image contains one of many classes or pixel-wise, where each pixel in 

the original image is given a class: semantic segmentation [23]. 

A project that used CNNs in a practical sense in defect detection is described in [24]. The work 

details a system to detect and classify the coating on material from 5 distinct coating classes: 

cracked, running, orange peel, adhesion failure and defect free. The work compares several 

different CNN architectures to evaluate which yields the best results: VGG19, Resnet50, Xception, 

MobileNetV2 and Densenet121. The training dataset contained 1500 images distributed between 

the classes listed. It was found that Resnet50 and DenseNet gave the best results of 97% and 96% 

accuracy respectively [24]. The method shows promise with great performance metrics. In addition, 

the number of images in the dataset is typically low. The high success rate with this amount of 

Fig.6 - Convolutional neural network architecture [59] 

Fig.7 - Deep learning feature maps [60] 
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training data can be 

attributed to the low 

variance in the context 

of the images. The 

more specific the 

problem and dataset 

can be, the less variety 

of context are needed in 

the training data 

An image does not 

have to be classified as a whole, different classes can exist within the same image and be 

distinguished separately. This is known as object detection. Commonly, bounding boxes around 

objects in an image are generated along with the class the object belongs to. The most common 

object detection algorithm in the literature is the YOLO (you only look once) algorithm [25]. The 

YOLO algorithm splits the image into an NxM grid. It makes a bounding box prediction at each grid 

reference for an object that is centred there [23]. Any convolutional neural network backbone can 

be adapted for the YOLO algorithm, the difference being the classification head at the end of the 

network is replaced with an object detection and classification head [23].  The object detection and 

classification head predicts the x and y coordinates of the centre, the width and height of the 

bounding box, a confidence factor and the class of the object.  

The third way of classifying an image is by semantic segmentation. This goes a step further than 

object detection by making pixel-wise classifications, resulting in much higher accuracy of 

identification within the image. The most popular and notable network architecture for achieving 

semantic segmentation is U-Net [26]. U-Net was initially devised for biomedical applications and 

won the 2015 ISBI cell tracking challenge [23]. The network design excels in biomedical 

applications as it is receptive to small training datasets, as large datasets are very rare for 

biomedical applications [26]. However, the literature [26] relies on strong use of data augmentation, 

such as elastic deformation, rotation and cropping on the available training images to enrich the 

data set [26].  

Fig.8 - Types of image classification [61] 

Fig.9 - Classification head of the YOLO algorithm [23] Fig.10 - Output examples from YOLO 

algorithm [23] 
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Unlike typical CNN architecture, the network does not contain any fully connected layers. The 

network has a contracting path (left) and expanding path (right). The contracting path utilises 

repeated application of two 3x3 convolutions (unpadded), each followed by a ReLU and a 2x2 max 

pooling operation with stride 2 for down sampling [26]. At each down sampling step, the number of 

feature channels are doubled. Every step in the expansive path consists of an up sampling of the 

feature map followed by a 2x2 convolution (up convolution) that halves the number feature 

channels [26]. A concatenation with the correspondingly cropped feature map from the contracting 

path is then performed followed by two 3x3 convolutions and a ReLU activation function [26]. At the 

final layer a 1x1 convolution is used to map each 64 component feature vector to the desired 

number of classes [26]. 

U-Net was able to achieve 92% accuracy when classifying PhC-U373 cells and 77% accuracy 

when classifying DIC-HeLa cells compared to 83% and 46% respectively of the second price 

network in the 2015 ISBI cell tracking challenge [26]. Because of these outstanding results U-Net 

has become very well adopted in the literature surrounding image classification by semantic 

segmentation. Moreover, in the field of defect detection in cell assembly, semantic segmentation 

allows for localised information to be fed back about the defect. This information could be critical for 

traceability of defective cells or to optimise the workflow to avoid repeating failure.  

The works detailed in [27] looks to further improve on U-Net by making it more lightweight and 

efficient. ELU-Net was developed for the brain tumour segmentation benchmark (BraTS) 2018 

Challenge and the ISBI liver tumour segmentation benchmark (LiTS) 2017 Challenge, in which it 

was one of the top performing architectures and the top performer respectively [27]. The 

architecture builds on U-Net by implementing deep skip connections, in which layers in the 

contracting path are concatenated directly to the corresponding layers in the expanding path [27]. 

These deep skips enable full capture of “fine-grained details and coarse-grained semantics in the 

encoder” [27] as the features extracting in the encoder stage are the key to image segmentation. 

Therefore, deep skips help maintain these features. 

Fig.11 - U-Net architecture [26] Fig.12 - Semantic segmentation of cells 

with coloured masks [26] 
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The network architecture, when built using a ResNet backbone, contains only ~4% of the 

parameters of U-Net 3+, making it much more lightweight and easier to train [27]. The method also 

scored highest Dice coefficient, 97%, of any of the state-of-the-art semantic segmentation networks 

that were tested when applied to the ISBI LiTS dataset [27]. This variation on U-Net is specifically 

optimized for resource constrained applications, such as the one in this work, and should be 

considered. 

Another implementation of U-Net implemented for lightweight applications is the system, described 

in [28]. The network is again, designed for semantic segmentation of cells in biomedical images. 

However, it has been optimised by applying methods that reduce useless information in the images 

as a pre-processing step. Removing redundant information in the images allows for the network to 

be reduced in complexity as a result. This is done by applying the watershed algorithm [29] which 

removes the non-edge pixels, leaving only the boundaries between cells [28]. This reduction in 

information in the input images allowed for a reduction in the number of convolutional layers and 

features channels when compared to standard U-Net [28]. This optimisation resulted in a 94%, 

83% and 68% reduction in memory consumption, training time and testing time respectively 

compared to U-Net [28]. 

An example of the U-Net architecture for use in a defect detection application is described in [30]. It 

adapts the U-Net architecture by implementing SE-Res blocks in the skip connections. The SE-Res 

block comprises of a convolutional layer, a global max pooling layer, two fully connected layers, 

proportional method block, a skip path and an add block. The SE-Res block performs adaptive 

weighting on each channel to suppress harmful or invalid channels [30].  

Fig.13 - SE- U-Net Architecture [30] 

Fig.14 - SE-Res Block [30] 
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The system was trained using a small dataset of 1344 samples, subdivided into 6 defect 

categories: Blowhole (115), Crack (57), Fray (32), Break (85), Uneven (103) and Free (952) [30]. 

As the average defected area in the original dataset images does not exceed 10%, extensive data 

augmentation was used to enrich the images by copying closed graphics onto empty spaces. A test 

accuracy of 97.3% was achieved using SE-U-Net, a 2.5% increase on standard U-Net [30]. The 

test data was also augmented with increasing suppression ratios to simulate uneven lighting 

conditions. It was shown that SE-U-Net increasingly outperformed U-Net as the suppression ratio 

was increased, resulting in 7.5% better accuracy compared to U-Net for the largest suppression 

ratio tested [30].   

Another application of U-Net and semantic segmentation for defect detection is shown in [31]. The 

paper describes an adapted U-Net architecture: BSU-Net used for defect detection in sheet steel 

and magnetic tile manufacture. BSU-Net was adapted with the objective of maintaining small 

details and defects through network traversal. To achieve this, BSU-Net varies the size of the 

kernel convolutions on the last layer of the encoding stage and first layer of the decoding stage 

from a 5x5 kernel to a 15x15 kernel. Using larger kernel sizes gives better semantic segmentation 

accuracy and the mixing of different convolutional kernel sizes can enhance the performance of the 

network [31]. In addition, BSU-Net includes a FEN network to process the input image and 

concatenate the results with the image pre and post the enhanced U-Net. The FEN network allows 

for better maintenance of smaller details by magnifying then reducing the feature dimension of the 

image, avoiding the loss of tiny defects by continuous sampling [31]. 

 

 

 

 

 

 

  

 

Fig.15 - BSU-Net Architecture [31] 

Fig.16 - Enhanced U-Net Architecture 

[31] 

Fig.17- FEN Architecture [31] 
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The network was trained using steel and magnetic tile datasets containing 10,671 and 1,009 

images respectively, both using a 7:3 split between training and testing images. The network was 

measured to achieve an accuracy of 90.2% using the steel network and 75.0% using the magnetic 

tile dataset, an improvement of 8.83% and 6.15% when compared to the standard U-Net 

architecture. However, the most staggering improvement was the intersection of union (IOU) 

improvement using the steel dataset, an increase of 45.7%. This metric describes the degree of 

agreement between the ground truth pixels and the predicted pixels.  

Another implementation of U-Net for defect detection is described in [32]. This work, again, looks to 

develop a network capable of detecting defects in sheet steel. The network design uses a U-Net 

architecture but makes use of a residual block with a skip connection.  

 

 

 

 

 

 

 

 

It is observed that accuracy can saturate when the network has learned the intricacies of the data. 

A first reaction to this problem may be to add more layers to the network, but this can sometimes 

lead to even worse performance. This is known as degradation [33]. The residual block looks to 

overcome this limitation and contains two parts: identity mapping and the residual. Identity mapping 

integrates the input with the output of the residual to maintain subsequent feature information [34] 

and to solve the problem of gradient disappearance and non-convergence. Moreover, any poor 

ability to extract features in the residual part of the block is compensated [34]. Using residual 

blocks have also been shown to improve the training of the network and using U-Net structure 

allows for the use of skip connections to facilitate information propagation without degradation [32]. 

The network was trained using a dataset of 12568 images for training and 1801 images for testing, 

distributed between 4 classes of defects [32]. The network scored a dice coefficient of 0.731, which 

is a metric of pixelwise agreement between the ground truth and the network predictions [32] 

As mentioned previously, the success of these machine learning models is partly down to the 

amount of data available to train the network on. Therefore, more bespoke applications of the 

technology can be limited due to the limited amount of data available to teach the network. The 

success of the U-Net architecture, as described earlier in the paper, was also partly down to its 

Fig.18 - Common neural network unit and residual neural network unit 

[34] 
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receptibility and positive results with relatively smaller, bespoke datasets of medical images.  As 

briefly mentioned previously, a technique that many of the papers [26] [30] already discussed use 

to enhance their results is data augmentation. Data augmentation is the process of enriching a 

dataset by taking the original images and applying various transformations such as rotations, flips, 

translations, crops and zooms to artificially create many more images to train the network on, Fig. 

19 shows this concept. Data augmentation helps to prevent the model from overfitting the data [35] 

which occurs when the network ‘memorises’ the training data and does not generalise the 

information. The means it cannot respond to unseen data and will give poor results as it’s only 

optimised to respond to the training data. If done correctly this process can increase the size of the 

training dataset dramatically, providing more context to the network to learn how to classify. It has 

been shown in [36] that by using data augmentation the validation accuracy can be increased by as 

much as 5%, which is a great improvement in terms of validation accuracy and through only reuse 

of the current data. Of course, over augmentation of the data can be detrimental to the 

performance of the model. If the dataset is over augmented the original context of what is trying to 

be achieved could be lost. Care should be taken deciding on not only the amount of augmentation 

to perform but also the types of transformations to perform. For example applying stretches and 

warping to pictures of cats will produce images that don’t resemble cats at all and this can muddy 

the waters with the features the network should be learning. 

 

 

 

 

 

 

 

 

Many conclusions can be drawn from the review of the literature surrounding this topic. Through 

review of the major milestones of the technology including traditional image processing techniques, 

manual feature extraction paired ANNs, convolutional neural networks and classification to very 

modern semantic segmentation models it is important to recognise the pros and cons of using each 

technology.  

Although easy to implement and low computational demand, traditional image processing 

techniques for computer vision are rigid and difficult to optimise for dynamic systems. Consistency 

in the use case is required to properly define the processes and thresholds for algorithms like edge 

detectors.  

Fig.19 - Data augmentation [52] 
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It is clear after reviewing the modern state of computer vision projects that using convolutional 

neural networks is essential to get the best results. This is partly due to fantastic open source 

libraries such as TensorFlow [37] and Keras [38] becoming available, allowing anyone to be able to 

create and train their own networks. Also, this is partly due the availability and power of modern 

GPU chips ever increasing which allows for training the networks in a reasonable time period.  

It is clear that some of the requirements for the project are better suited to applying traditional 

machine learning techniques where strictly the shape of the cell component is required. Electrode 

curve, edge quality and punching overlap are examples of these. A machine learning approach 

would not be suited to analyse these criteria. On the other hand the remaining requirements 

absolutely lend themselves to a machine learning approach. Furthermore, the type of classification 

that would be most applicable to this problem would be a semantic segmentation approach. This 

gives more extensive localisation of the defects which could be useful information for an end user 

to refine their processes. The most successful semantic segmentation model that exists in the 

literature is U-Net. There are many variations on this architecture and the one that seems to suit 

best is very dependent on the dataset. With this in mind, extensive testing and investigation will 

need to be done, using the dataset in this project, to find the optimal architecture for this problem.  
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3.0 - System Architecture  

 

3.1 - Hardware Configuration  
The project looks to integrate a software package into the existing Cellerate system. The system, 

shown in Fig.20 comprises of multiple modular elements that can be passed individually through an 

antechamber to the controlled environment of an glovebox.  

The autoloader module of the system feeds trays, which are loaded with the various components of 

the cell to the assembler. The XY Stage and Z Axis placer work together to build up the cell layer 

by layer. It is during this process that this project will capture an image of each component, using 

the top and bottom cameras, sequentially and perform analysis on their condition. Once the cell 

has been constructed it is passed to the sealer which applies a large pressure to seal the cell ready 

for test. The cell is finally returned to a position in the autoloader and the next cell is then loaded. 

This equipment provides value due to its versatility, reconfigurability, repeatability and throughput. 

Moreover, it allows the user to set multiple cell configurations and build programs to run 

automatically to explore a large parameter space, even overnight if required. This frees up the time 

of research scientists to complete more urgent tasks that require more ingenuity and creative 

thinking. Moreover, the repeatability of the cell build process eliminates randomness in the build 

process and restricts the variables to only those being explored in the tests.  

The addition of the system developed during this project will allow scientists to have a full 

understanding of the quality of the cell, including any defects that are present and the alignment of 

the components. This allows for isolation of dud cells and freeing up of vital test channel resources 

for those that were built to a consistent standard. In addition, this information allows for optimisation 

of their component preparation methods to eliminate possible reoccurring defects as these will 

become clear through the cell inspection.  

Following the definition of requirements, it was determined that the existing system hardware would 

suffice to achieve the project objectives. The system is currently controlled by a Raspberry Pi 4 

microprocessor. Two camera modules are used for active alignment of cell components as they are 

placed during the build process. The design choice to fully utilise the existing components is both 

an economical and design decision as the physical space within the system is lacking due to the 

arrangements of existing components.  
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3.1.1 - Coin Cell 

Coin cells are used in the battery research 

space as a small scale analogue to the 

large battery packs used in most 

applications. They are used to assess 

various chemistries and cell designs 

before scale up. Fig.21 shows the cross 

section and of a typical coin cell. The 

Cellerate system assembles coin cells by 

sequentially placing each component onto 

a build plate, using active alignment to 

centre each component. When the stack is 

complete the entire arrangement is fed into the crimper unit which applies a large pressure to the 

stack, locking the components in place. The typical coin cell, shown in Fig.21, consists of a: case, 

spacer, positive electrode, separator, negative electrode, spacer, spring and cap in order bottom to 

top. Electrolyte is also dispensed at various stages in the build process by an electronically 

controlled pipette. 

Fig.21 - Typical coin cell build configuration 

Fig.20 - Cellerate Automatic Cell Assembly System [5] 

[1] [3] 

[2] 

[5] 

[6] 

[4] 

[7] 

[1] – Sealer 

[2] – Z Axis placer 

[3] – Assembler 

[4] – Autoloader 

[5] – Top Camera 

[6] – Bottom Camera 

[7] – XY Stage 
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3.2 - Software Design 
The main bulk of the work for this project comes through the design and implementation of various 

software modules. The software will be implemented in the Python programming language and any 

additional imported distributed modules will be highlighted. Moreover, each module described will 

be implemented as a Python class which are instantiated in various places within the codebase. 

Fig. 22 shows the hierarchal design of how the software modules will integrate with the existing 

Cellerate system software. Additional flowcharts for the processes described can be found in 

Appendix A. 

3.2.1 -  AI Cell Sight Module 

The AI Cell sight module is the parent module to the system. It is instantiated by the existing 

camera module within the current Cellerate system software. The module has been designed to 

contain all the high level functions that describe the overarching functionality of the system, such as 

finding component alignment, performing morphological analysis, performing surface inspection 

and generating the final build report. The module instantiates the morphological analyser, predictor 

lite and build report generator modules and controls their running. 

3.2.2 - Morphological Analyser Module 

The Morphological Analyser module controls the processes surrounding the morphological or 

shape based analysis of the component. The methodology involves using background subtraction 

methods and contouring to isolate the outer contour of the component and subsequent 

mathematical analysis on the shape of the component can be done to determine: the component 

alignment, the component curvature, the component edge quality and the presence of punching 

overlap.  

3.2.3 - Predictor Lite Module 

The Predictor Lite module controls the machine learning surface inspection analysis. It is named 

‘Lite’ because of the implementation of Tensorflow Lite as opposed to the Tensorflow. TensorFlow 

Lite is optimised to run on resource constrained and mobile applications [39] such as the 

Raspberry Pi 4 platform. The module controls inferencing the trained machine learning model with 

Fig.22 - Hierarchical Class Diagram for the Project Software 
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a target image to yield predictions to the presence of: creases, scratches, flaked coatings and 

cracks. 

3.2.4 - Build Report Generator Module 

The Build Report Generator module has been designed to manage the creation of the build report. 

The report consists of a feedback slide which highlights the found defects and morphological 

analyses. It is designed to be a quick reference to the user containing all the critical information of 

the build process. 

3.2.5 - Model Generator Module 

The Model Generator module is one of three standalone modules that are not implemented on the 

target Raspberry Pi platform and is used specifically for model development and run on a more 

powerful, GPU enabled PC. This module contains the Keras python code to describe the neural 

network model architectures that will be evaluated in this work. The module is used for the 

compiling and training of the machine learning models used throughout the project. It controls the 

Keras implementation of the model architectures, the preprocessing of the training data and the 

training procedure and validation. The module uses both the Tensorflow [37] and Keras [38] 

libraries to achieve this. In addition a script provided by [40] was used as a reference.  

3.2.6 – Preprocessor Module 

The Preprocessor Module is another standalone module that has been designed to control the 

processing of the raw image/mask pairs into the suitable format to be used in the model training 

process. This involves assembling the separate defect masks into a master mask for each image 

with the correct pixels encodings for each defect type. Moreover, the image/mask pairs have to be 

divided into suitably sized tiles of 256x256 pixels for training. The useless tiles that contain no 

useful defect information are also discarded.  

3.2.7 – Data Augmenter Module 

The Data Augmenter Module is another standalone module that has been designed to control the 

augmentation of the training data for the model optimisation. It applies various operations such as 

shifts, flips, crops and resizing to enrich the original dataset and increase its size by a large factor. 

This artificial expanding of the dataset can provide more context to the training process and 

increase the accuracy of the models when used correctly. The script provided by [41] was used a 

reference for this module. 
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4.0 – Morphological Analysis 

 

The first body of work surrounds morphological analysis of the cell components. This analysis can 

be performed using traditional image processing techniques and does not require a machine 

learning component. This analysis concerns the shape of the cell component, from this the amount 

of curvature, punching overlap and edge quality can be ascertained.  

4.1 – Isolating the Component 
To perform analysis on the morphological aspects of the cell components they first must be 

isolated within the image. The neural pathways in the human brain have evolved to perform this 

processing without intent and can recognise where one object end and another begins. A computer 

stores an image as a three dimensional array of values, and cannot intuitively know how to 

segment an image into its constituent components. Using image processing libraries, such as 

OpenCV [14], the cell components can be isolated within an image and analysis can be performed.  

4.1.1 – Approach 1: Dynamic Canny Edge Thresholding and Filtering 

The first approach taken to isolate the electrode within the image was to find the optimal 

combination of pre-processing methods available within OpenCV to fit this specific application.  

4.1.1.1 Methods 

The problem was defined as being able to isolate the outer edge of the cell component. The 

literature surrounding using edge detectors, such as a Sobel or Canny edge detector [13] [12], 

suggests to firstly convert the image to grayscale to produce a 2D image array and then to apply a 

blur filter of some kind. 

To determine the optimal combination of pre-processing to isolate the cell component edge an 

experiment was designed and conducted. The stages of pre-processing were broken down into the 

flow chart shown in Fig.23. 

 

To account for the requirement of dynamic lighting compensation, an image equalisation stage was 

also included which distributes the range of pixel values more evenly across the available range.  

Fig.23 – Preprocessing Flowchart 
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Each of the methods listed were tried in combination with each other to determine the optimum set 

of pre-processing stages to isolate the outer edge of the cell component. 

4.1.1.2 Results 

It was determined that the optimal combination of pre-processing methods to best isolate the outer 

edge of the cell component was as described in Fig.24. 

     

Fig.25 and Fig.26 show the results of the pre-processing steps when applied to the corresponding 

source images from the top camera and bottom camera respectively. 

4.1.1.3 Discussion 

As can be seen from Fig.25 and Fig.26 the algorithm performed well on the bottom camera image, 

successfully isolating the outer edge of the cell component for analysis further down the pipeline. 

This is due to the large focal difference between the cell component in the foreground and the 

Fig.24 – Optimal Preprocessing Flowchart 

Fig.26 – (a) Input image of cell component from bottom camera (b) Output image after pre-processing 

steps in Fig 24 have been applied 

Fig.25- Input image of cell component from top camera (b) Output image after pre-processing steps 

in Fig.24 have been applied 
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background of the image. The results from the top camera suffer from the fact the component of 

interest and the rest of the build plate exist on the same plane, meaning that when the pre-

processing is applied the edge detector picks up noise and edges that are of no interest to this 

process. Extensive filtering and cropping are required to isolate the useful outer edges of the 

component.  

After applying the methods described further in this paper it was clear that this method was not 

sufficient as it became impossible to differentiate between noise and the actual component edge in 

excessively noisy images. Moreover, the static thresholds for the canny edge detectors proved to 

be ineffective to dynamic changes in the environment from image to image. As lighting conditions 

and material types for the components changed, so too did the optimum thresholds for the edge 

detector to isolate the correct edges.  

4.1.2 – Approach 2: Background Subtraction and Thresholding 

Due to the sensitivity of lighting conditions and complexity to isolate the electrode when dealing 

with excessive noise from the top camera, a new method was considered for acquiring the 

component’s outer edge.  

4.1.2.1 Methods 

An attribute of how images are captured on the Cellerate system is that images are always 

captured from the same repeatable position with high precision. This allows the method of 

background subtraction to be used: to set a static ground truth image of the build area and subtract 

it from the target image with the desired component present [42]. This subtraction should leave the 

parts of the image that are not common with the ground truth image: the cell component. Fig.27 

shows this concept. 

 

This implemented methodology was based on what is described in [42] with an additional step of a 

HSV (Hue, Saturation, Value) filter, which was included to remove noise after the subtraction. 

Small changes in the lighting conditions within the room can cause subtle differences in the 

background space between the ground truth and the target image. The HSV filter, optimally 

Fig.27 - Background subtraction method [28] 
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calibrated for each different material type, removes this noise to leave the target component. Fig.28 

shows the flowchart for the final background subtraction process. 

 

4.1.2.3 Results 

Fig.29 and Fig.30 show the input images to the background subtraction algorithm and the output 

respectively. As can be seen, the method of background subtraction leaves a much better 

representation of the cell component as compared to results of Section 4.1.1. The noise seen in 

Fig.21 has been eliminated and what remains is the only part that is required: the component.  

 

 

 

4.1.2.3 Discussion 

The method of background subtraction has shown to address the limitations of the first approach. 

That is, the top camera does not have the benefit from a focus difference between the target 

Fig.29 - (a) Ground truth background image taken from the top camera (b) Target image taken 

from the top camera. 

Fig.30 – Output image after thresholding 

Fig.28 - Updated method of background 

subtraction  
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component and the background. Because of this, a lot of noise can pass through the edge 

detection process that is not useful for morphological analysis. Background subtraction not only 

addresses this by removing everything that is similar between the images, but also compensates 

for changing lighting conditions that the first approach can also suffer from. If the lighting conditions 

are consistent between the background image and the target image they will be accounted for by 

the subtraction. Moreover, this method reduces the execution time of the algorithm as the 

extensive filtering that was required in the first approach to remove the noise is no longer needed. 

In addition, this method is more suitable for multiple analyses on multiple components as the cell is 

built. This is because the ground truth image is dynamic and can be updated with the current state 

of the build pad before the next component is added, isolating each component as the cell is built. 

A negative aspect of this method is that an extra image must be captured for each component: the 

background image. Moreover, to optimally isolate different components of different materials, a 

calibration process that determines the optimal settings for the HSV filter should be completed for 

each material. However, the trade-off for these concessions is a much more accurate isolation of 

the target component in the image, shown in Fig.30, that can then be fed downstream for analysis 

on its outer edge for morphological analysis.  

 

4.2 - Edge Quality Analysis  
Section 4.1 describes how the component is isolated 

within an image for analysis. Contours can be found on 

the image in Fig.30 to produce a data structure that 

details the points that make up the outer edge of the cell 

component for analysis. Fig.31 shows the contours 

found on image in Fig.30.  

The first morphological requirement of the system is to 

assess the quality of the edge of the component. An 

ideal edge on a perfectly circular and flat component 

would be resemble a perfect circle. However, in 

practice components are often not perfectly circular 

when viewed from a plan view above or below due to 

component curvature, an example of this is shown in 

Fig.32. Therefore, comparing the edge of a component 

to an idealised circle that encompasses it would not 

give an accurate result even though curved 

components may still have pristine edges.  

To solve this issue, a method of comparing the 

component edge to idealised version of itself is presented. The component edge is filtered in such 

a way to remove the rough edge (noise) and present a smoothened version of itself. The actual 

Fig.31 - Image Contours 

Fig.32 - Curved electrode compared to ideal 

circle 
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edge can then be compared to the smoothened version to determine how noisy the actual edge is, 

and therefore it’s quality. This method accommodates components that are not completely flat and 

circular like the curved electrode in Fig.32. The following sections describe the methodologies to 

achieve this smoothened contour. 

4.2.1 – Approach 1: Smoothing by Erosion/Dilation 

The first approach that was taken was to use large morphological operations [43] in erosion and 

dilation, otherwise known as opening, to smoothen out the component contour so an assessment 

of the edge quality could be done.  

4.2.1.1 – Methods 

The process of using operations such as dilation and erosion change the shape of a binary image 

by growing or shrinking the object pixel area respectively [43]. They can be useful for closing in 

contours that have gaps or by removing noise in the form of flecks on a binary image [43]. 

In this application, a large kernel of (150x150) was used to erode the component contour shape 

down followed by a dilation of the same size to expand it. Finding the contours on the resulting 

shape was shown to give a smoothening effect, as shown in Fig.33 and Fig.35. The imperfections 

in the edge present in the original contours are shown to have been removed and an idealised 

version of the original shape is found.  

Fig.35 - Found contours on 

the resulting shape from 

the erosion/dilation 

process  

Fig.34 - Result of 

erosion/dilation process 

Fig.33 - Original contours 

found on the component 
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The contour points on both the 

original contour and the smoothened 

version can then be compared to 

determine the edge quality. To do 

this the method shown in Fig.36 is 

implemented. Each point on the 

actual contour is sampled and its 

distance from the centre is 

determined. The corresponding 

radial distance to the smoothened 

contour point, shown in green on 

Fig.36, is also found and its distance 

sampled. The distances are then compared to determine the percentage error between the 

idealised, smoothened contour point and the actual contour point. Note that the green line 

representing the radial distance of the smoothened contour points will never be constant as the 

component will likely have some curvature, resulting in a non-ideal circle when viewed from above 

or below.  

4.2.1.2 – Results 

 

As can be seen from Fig.37 , the algorithm was able to produce estimates for the quality of the 

edge. 

4.2.1.3 Discussion 

When profiling the execution time demand of the algorithm running on the Raspberry Pi, it was 

revealed that the edge detection stage of the algorithm was causing significant slowdown. The 

erosion/dilation processes were found to be highly resource demanding as each pixel in the image 

has a large kernel operation associated with it. Therefore, as the image or kernel increases in size 

Fig.36 – Edge quality analysis method  

Fig.37 - Edge quality detection output 
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so does the amount of processing required to perform morphological operations. Moreover, the 

method of quantifying edge quality, shown in Fig.32, is also highly inefficient. This is due to the 

method of matching a contour point on the actual contour to a corresponding point on the 

smoothened contour. There is no association between them as smoothened contour points are 

found by a secondary process on the shape after the erosion/dilation operation. This means there 

is no correspondence between the 𝑛𝑡ℎ actual contour point and the 𝑛𝑡ℎ smoothened contour point. 

Because of this, a best matching point must be found. Each point on the contour must be checked 

and compared to identify the optimal point for comparison. This is done by checking distance from 

the smoothened points to the line that passes through the centre of the component to the actual 

contour point in question. This is, of course, highly inefficient as the number of comparisons 

required is: 

𝑁𝑜. 𝑜𝑓 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠 =  𝑁𝑠𝑚𝑜𝑜𝑡ℎ  ∙ 𝑁𝑎𝑐𝑡𝑢𝑎𝑙 

Where 𝑁𝑠𝑚𝑜𝑜𝑡ℎ is the number of number smoothened contour points and 𝑁𝑎𝑐𝑡𝑢𝑎𝑙 is the number of 

contour points on the actual contour.  

4.2.2 – Approach 2: Smoothing by 1D Blur Kernel  

Due to the poor performance of the method discussed in Section 4.2.1 a new approach was 

considered.  

4.2.2.1 - Methods 

The method in [44] describes applying a 1D blur kernel to the contour points. The blur kernel 

samples each contour point using a window of width 𝑛, replacing the contour point with the average 

value of the points within the window. The method can be visualised with a kernel size of 3 in 

Fig.38. The red box represents the kernel window. 

 

 

Fig.38 - Blur kernel operation   
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Fig.40 - Edge quality detection output from top camera  

 

 

 

The method shown in Fig.38 was used with a much larger kernel size of 80 and applied to the 

entire contour points data structure. Fig.39 shows the results of the blur kernel smoothing 

technique. The imperfections have once again been removed and a smoothened contour remains 

that can be used as a reference of comparison to determine the edge quality of the component. 

The method achieves the same result as the approach described in Section 4.2.1, but with much 

less processing. 

4.2.2.2 Results 

 

 

Fig.39 - (a) Actual contour of component (b) Resulting contours of 1D blur kernel smoothing 
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As can be seen from Fig.40, the algorithm was able to produce estimates for the quality of the edge 

from images as per the previous method. Fig 41 and 42 show the effect of the optimisations when 

the execution time of the process was measured with the second methodology. The execution time 

was seen to be significantly reduced when compared to the first methodology. The is mostly in part 

to the removal of the extensive kernel operations and comparison algorithm, described in Section 

4.2.1.1. 

4.2.2.3 Discussion 

The results yielded from this method are consistent with what was achieved using the method 

outlined in Section 4.2.1. Moreover, this method maintains a 1:1 relationship between the actual 

contour points and the smoothened contour points. As the blur kernel acts directly on the existing 

contour points, the 𝑛𝑡ℎ point in the actual contour points is directly associated with the 𝑛𝑡ℎ point in 

the smoothened contour points. By virtue of this, there is no requirement to search for the 

corresponding matching point as described in Section 4.2.1.1. Fig.41 and Fig.42 show the 

reduction in the execution time of the edge quality detection stage, running on the Raspberry Pi, as 

compared to the previous method. The method of the 1D blur kernel for contour smoothing reduced 

the execution time demand for this stage by 99.94% from 164.5s to 0.1s, which highlights the 

inefficiency of the large erosion/dilation and point matching processes.    

Fig.41 – Algorithm Execution Time by Stage  

Fig.42 – Cumulative Algorithm Execution time  
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4.2.3 - Edge Quality Analysis End-to-End Validation  

4.2.3.1 Methodology 

An experiment was designed to attempt to validate the effectiveness of the edge quality detection 

algorithm. This was challenging as the ‘quality’ of an electrode component’s edge is subjective and 

what looks bad to the eye might not be reflected when empirically processing the data. 

50 electrodes were imaged and reviewed by a human. Each electrode was given a score between 

0-10 to describe the perceived quality of the electrode edge, with 0 being the worst and 10 being 

impeccable. These images were then passed through the edge quality detection algorithm and the 

scores given by the system were captured and compared. Among the electrodes were examples of 

a wide array of edge qualities, coating types and varying amounts of curvature. 

4.2.3.2 Results 

 

Fig.43 shows the association between the determined edge quality by the algorithm and the human 

perceived edge quality of the electrode.  

4.2.3.3 Discussion  

As can be seen from Fig.43, the association between the algorithm output and the human 

perceived edge quality is very weak. There is a vague trend that passes throughout but not 

something definitive enough to validate the method. A weakness of the methodology is that if 

pointwise calculations are going to be performed on the outer contour of the component, then it is 

required that the found contour be very accurate to give meaningful results. Any noise that passes 

the filtering in the background subtraction stage of the method will negatively affect the accuracy of 

the measurement.  

Another observed weakness is that the contour smoothening mechanism has more transformative 

impact to areas of the component perimeter with greater curvature. As the smoothening method 

applies a 1D average kernel to the contour point, they are dragged closer together and ultimately 

Fig 43 - Algorithm determined edge quality against human perceived edge quality of 

an electrode components 
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shrink the contour slightly inwards. This effect is more pronounced on curved electrodes in areas 

where the perimeter curvature is more pronounced. This cause a larger discrepancy between the 

contour and the smoothened ideal contour, reducing the perceived edge quality. This can be seen 

when reviewing the images in the experiment of curved electrodes with perceived excellent quality 

edges that are given uncharacteristically low edge quality scores by the algorithm.  

Another conclusion that can be drawn from the experiment is that the method itself could be 

inherently flawed. There will always be a bias when assessing these electrode components by eye 

and certain characteristics that look bad do not result in low scores when processed analytically 

through the algorithm. Another approach could be used in the future work of the project to 

reattempt the validation. This other approach could be to use a more powerful segmentation tool 

such as Meta’s segment anything model (SAM) to segment the image and extract the contour of 

the component. Using this contour within the algorithm to produce an edge quality assessment and 

comparing to these results would give validation that the methodology is working as designed.  

It is clear that this method has limitations, mainly around the sensitivity required to gain an accurate 

estimate of the edge quality of a component. Presence of noise in the image after the filtering is 

complete will negatively affect the accuracy of the method. Moreover, the HSV filter can be 

sensitive and the settings to perfectly achieve a component isolation in one image may vary slightly 

in the next image of a similar component. An effective autocalibration method to achieve the best 

HSV settings for each individual component would remove this uncertainty and improve the 

effectiveness of the method. In addition, the degree of curvature in the component will also 

negatively affect the accuracy of the measurement. A possibility to explore in future work of this 

project is the inclusion of edge quality to the machine learning model. If instance of bad edge 

quality can be captured in the labelling process of images then this knowledge can be captured by 

the model and used to predict other instances where the edge quality has been compromised. 

4.3 – Electrode Curvature Analysis  
Electrodes often don’t conform to 

perfectly flat circles when punched from a 

sheet of material. They often distort 

vertically created a hyperbolic parabola, 

as shown in Fig.44. Electrode curvature 

is an important parameter to identify and 

track during the build procedure of a cell 

as it could have a negative impact on the 

alignment of components. Furthermore, 

the ability to correlate the performance of 

a cell to its curvature among other components is a powerful tool to optimise the cell build 

workflow. 

Fig.44 - Examples of curved electrodes [53] 
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4.3.1 - Methods 

The expected circular nature of coin cell components can be exploited to determine the amount of 

electrode curvature present in a cell component. It can be assumed that, when laid flat, the 

component resembles a circle.  Using this, the found outer 

contour of the cell component can be compared to an ideal 

circle encompassing the component. The discrepancy 

between the values represents the amount of vertical 

deflection in the component, the curvature. 

The method used to find the component edge, described in 

Section 4.2, was compared to the minimum bounding circle 

around the component and the discrepancy of the area 

between the two shapes was used to quantify the amount 

of curvature present.  

An experiment was designed and carried out to validate the 

performance of the methodology. A set of 20 electrodes were produced of two differing sizes: 

14mm and 16mm diameters. The electrodes were a mixture of coated and non-coated, meaning 

the material exposed to the camera when imaged could be the electrode coating and the copper 

material underneath. Curvatures of random magnitudes were introduced into the electrodes by 

rolling them against rounded surfaces of differing diameters. The electrodes were then measured 

using digital callipers and their heights recorded. The electrodes were subsequently passed 

through the Cellerate system where they were imaged and the resulting determined electrode 

curvatures were determined. Both positive and negative deflections of equal amount were used, 

shown in Fig.46.  

4.3.2 – Results 

What was expected from the testing is that a relationship would exist between the measured height 

of the electrode and the algorithm’s determined curvature. The algorithm’s methodology looks at 

the 2D plan view of the component and treats this as a flat plane, determining the area of the 

shape and comparing to an idealised circle gives a reflection of how much vertical deflection, and 

therefore curvature, is present. As the component gains more curvature, there is a reduction in the 

apparent radius in one axis, see Fig.45. The effect that this transformation will have on the area of 

the 2D plan view of the component is expected resemble an inverse square relationship, as the 

Fig.46 - a) Positive deflection of electrode b) Negative deflection of electrode [36] 

 

Fig.45 - Observed reduction in 𝑟 in one 

axis as curvature increases 

Reduction in 𝑟 
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area of a circle is proportional to  𝑟2. Although, the radius does not uniformly reduce at all points on 

the circle, resulting in an oval and an imperfect relationship. Therefore, the expected relationship 

between the measured height of the electrode and algorithm’s determined curvature is something 

resembling a second order polynomial.  

Fig.47 shows the results gathered from the experiment plotted in their entirety. Fig.48 shows the 

results split between the positive and negative deflections. 

4.3.3 – Discussion 

As can be seen from Fig.47 the expected relationship was observed. This is to be expected as the 

rate at which the area of the 2D shape of the plan view of the component decreases as the radius 

in the affected direction is reduced increases non-proportionally.  

What could be noticed initially is the ambiguity of the algorithms output. The algorithm curvature 

percentage is simply the percentage of discrepancy of the 2D plan view of the component 

compared to the idealised bounding circle. What should be remembered is that this value can be 

Fig.47 - Measured electrode height versus algorithm determined curvature 

Fig.48 - Measured electrode height versus algorithm determined curvature with separate 

positive and negative deflections plotted 
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quantised and scaled as appropriate to reflect something more reasonable to the user. An example 

of this could be scaling the value between 0-10 where 0 represent no curvature and 10 represents 

maximal curvature.  

Moreover, the results positively validate the effectiveness of the methodology proposed. The 

relationship between the height and the detected curvature is all that is needed to prove out the 

method. Confidence can be gained that the algorithm can distinguish between electrodes of 

differing curvatures and this information can be quantised and presented back to the user for their 

cell performance data correlation.  

An interesting feature of the results can be seen when splitting out the positive and negative 

deflections. It seems that the results gathered from the positive deflections are shifted downwards. 

Before the experiment was conducted it was expected that both the positive and negative 

deflections would yield the same results, due to the 2D plan view of the component being 

expectedly identical in both cases. What can be seen is that that is perhaps not the case. 

Additional investigation into this phenomenon could be done to identify the cause of this 

discrepancy.  

The data points also, however, contain some deviation from the trendline. This is most likely due to 

two main considerations: human error when measuring the height of the electrodes and misshapen 

electrodes that are not perfect circles. The human error comes in both using the eye to determine 

when both sides of the calliper are just touching the top and bottom of the electrode and placing the 

electrode optimally with the apex of the deflection at the centre point of the calliper. Secondly, small 

variation in the shape of the electrodes, perhaps due to imperfect edges can cause the bounding 

circle to be slightly mis sized which results in an inaccurate calculation.  

4.4 – Punching Overlap  
Often when the electrodes are punched out of a sheet of 

material the punch can overlap between successive 

punches when trying to leave minimal excess material. 

These punching overlaps can be subtle and missed by 

operators, especially when making many electrodes. 

The presence of these leave non-symmetrical 

components with uneven impedance profiles. Therefore, 

it is important that these mistakes are captured, and 

traceability is maintained to connect subpar cells to test 

data. 

4.4.1 - Methods 

The method of detecting punching overlaps involves comparing the found outer contour of the cell 

component to the convex hull found on the same contour. A convex hull of an object is a minimum 

bounding polygon that can enclose it [45]. Therefore, it can be used to highlight missing material of 

a component as the convex hull will approximate a straight line across regions of the cell 

Fig.49 – Punching Overlap 
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component that are concave. Fig.50 demonstrates this concept. Comparing the areas of the 

convex hull and the actual contour of the component for discrepancy reveals the presence of a 

punching overlap. The algorithm assesses the delta between the area of the cell contour and the 

area of the accompanying convex hull. A punching overlap detection is triggered according to the 

equation below: 

Condition Outcome 

𝐴𝑐 − 𝐴𝑐ℎ > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝐹𝑎𝑐𝑡𝑜𝑟 ∙ 𝐴𝑐 True 

𝐴𝑐 − 𝐴𝑐ℎ ≤ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝐹𝑎𝑐𝑡𝑜𝑟 ∙ 𝐴𝑐 False 

 

Where: 

Term Description 

𝐴𝑐 Area of the contour 

𝐴𝑐ℎ Area of the convex hull 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝐹𝑎𝑐𝑡𝑜𝑟 Calibrated threshold factor 

 

The threshold factor was calibrated based on the smallest punching overlap possible that could be 

introduced to a cell component. However, it is possible that this factor may need to be reduced 

upon further update to the requirement on the system.  

An experiment was designed and carried out to validate the method of detecting punching overlap. 

40 electrodes were made, purposely introducing punching overlaps to them. These punch overlaps 

were subdivided into 4 subgroups: small, medium, large and no punch overlap. Within these 

subgroups, curvature was introduced to 5 of the electrodes, to prove that the algorithm can detect 

punch overlap with the presence of curvature. These electrodes were then passed through the 

Cellerate system and the algorithm’s determination of whether there is punch overlap present was 

recorded.  

 

 

Fig.50 - Convex hull  
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4.4.2 – Results  
 

Electrode Group Curvature Punching Overlap Detected (%) 

Small Punch 
Overlap 

Curvature 100% 

No Curvature 100% 

Medium Punch 
Overlap 

Curvature 100% 

No Curvature 100% 

Large Punch 
Overlap 

Curvature 100% 

No Curvature 100% 

No Punch Overlap Curvature 0% 

No Curvature 0% 

 

 

 

4.4.3 - Discussion 

As can be seen from Table 1, the algorithm was able to detect the presence of punching overlap 

flawlessly on all electrodes that contained an punching overlap. Fig.79 shows an example of the 

output from the experiment. The algorithm was able to accurate locate the component contour and 

apply a convex hull process to it. The difference between the internal area of the convex hull and 

contour was calculated and a decision can be made whether there is material missing and there is 

a punching overlap present. The most impressive thing about these results is the ability of the 

algorithm to detect punching overlap on electrodes that contain curvature. This is possible as the 

cell contour is adaptable to component curvature and the convex hull is derived from the 

component contour. A downside of this is that the presence of punching overlap will affect the 

accuracy of the electrode curvature estimations, as more material is missing from the component. It 

should be made clear to the user that if punching overlap is detected that the accuracy of the 

electrode curvature will suffer. Moreover, this method is not able to describe the amount of material 

that is missing due to the punching overlap. This again, due to the fact that any electrode curvature 

will affect the validity to any comparisons made to the idealised flat circle. This method therefore 

requires a calibration to be performed to the smallest allowable percentage area to be the critical 

point where a punching overlap is flagged, described as the threshold factor. 

Table 1 - Punching overlap validation results  

Fig.79 - Execution time of each of surface inspection 
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5.0 – Machine Learning Surface Inspection 

The remaining project objectives: to detect scratches, creases, flaked coating and cracks on the 

electrode surface were determined to be most suited to a machine learning approach. This section 

details the methodology to evaluate and determine the most appropriate neural network 

architecture for this application. 

5.1 - Architecture and classification type 
As determined by the review of the current literature on machine learning for defect detection 

applications, it is clear that the U-Net is the most popular architecture currently available. This is 

partly due to the classification type that is offers, semantic segmentation. Semantic segmentation is 

a pixel wise classification that gives each pixel within an image a specific class. The result from the 

classification process is a 

segmentation map which gives 

localised information about the 

classes present within an  image. 

This has a particular advantage 

over object detection methods, in 

this application, as there will often 

be many defects contained within 

a small area and the many 

overlapping boxes that an object 

detection algorithm would yield could make the information uninterpretable and confusing to an end 

user. A segmentation map solves this issue by removing the box and applying a colour to the pixel 

to highlight the areas of interest. The difference in the approaches can be seen in Fig.52. In 

addition, the U-Net architecture was cited to be very responsive to small datasets, due to its initial 

application of medical image segmentation with few training images [26].      

Fig. 52– (a) Defect detection by object detection (b) by semantic segmentation 

Fig.51 – Segmentation Map [62] 
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5.2 - Prerequisites  

5.2.1 - Data collection  

To gather reliable data on the performance of the CNN architectures, a dataset was needed to 

consistently test each architecture against. The dataset had to be consistent with each test to 

isolate the variables to solely the architecture.  

To be able to validate neural network architectures against each other a dataset was created. 

Many images were taken of electrode components in a variety of lighting conditions. The images 

were taken using cameras used on the Cellerate system to maintain as much consistency between 

the dataset and the final use case.  

Firstly, a set of electrode components were sourced. The components had not been stored in an 

ideal manner, meaning many imperfections and defects were already present on them. A first 

round of images was collected from them. Subsequently, additional defects were artificially 

introduced through representative methods that would be mimic processes found in a lab scenario. 

These methods included mishandling the electrode components with tweezers and rattling within a 

storage box. After the additional defects were introduced the electrodes were subject to another 

round of imaging. Fig.53 show examples of these images.  

 

5.2.2 - Labelling  

The process of training a neural network for semantic segmentation, as shown [26], requires 

labelled images. This is how the knowledge is encoded into the weights of the neural network. 

To do this a human must use as labelling tool to draw on the regions which represent the various 

defects within the images and then create masks that can be fed into the model training procedure. 

The masks provide a reference to the network to which areas in a target image represent which 

region, including defects. The training process uses these masks to optimise it’s learning of how to 

classify these defects and to validate that the learning process is successful when applied to new 

data. Fig. 54 shows an example image and associated mask from the final dataset. The difference 

between the initial dataset and the final dataset is described further in this section. 

Fig. 53 – Examples of images gathered for the dataset 
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 The different shades of grey indicate different defect types. In this example the white represents 

the background of the image, the black represents the defect free areas of the cell component, the 

lighter grey represents scratches and the darker grey represents creases. 

5.2.3 - Initial Dataset  

As described previously, the original dataset contained 1308 image/mask pairs. The masks 

contained labels of the following types: scratches, creases, flaked coating, cracks. As every pixel 

within the image must belong to a class for semantic segmentation the remaining pixels that are 

not classified into the classes described belong to a background class. This class encompasses 

the non-component area and the parts of the cell component that do not contain defects.  

5.3 - Training  
The training process of a convolutional neural 

network involves using the training data, where 

image/mask pairs are used to optimise the weights 

of the network so that the output activation of the 

network matches the ground truth. Each node and 

each connection between nodes contains a weight 

which is adjusted by the optimiser to align the 

output with the ground truth. In addition, within 

each node is a nonlinear activation function which 

determines the magnitude of the node output. This 

process of optimisation is achieved through use of the stochastic gradient descent algorithm. In 

addition, there are many other hyperparameters to the optimisation which can be tuned to achieve 

the best possible result.  

5.3.1 - Stochastic Gradient Descent 

The stochastic gradient descent method [46] is commonly used in machine learning applications to 

train models. It was adapted from the gradient descent algorithm by implementation of the 

stochastic approximation [47] in 1951. It improved on the gradient descent algorithm by optimising 

the process for large datasets. In traditional gradient descent, model parameters are updated 

based on the average gradient computed over the entire dataset. This can be computationally and 

Fig.55 - Network weights 

Fig. 54 – Example image and corresponding mask 
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time expensive for large datasets. Stochastic gradient descent improved on this by subdividing the 

dataset into mini batches and updating model parameters based on the average gradient of the 

random subset.  

For each mini-batch the gradient of the loss function with respect to the model parameters is 

calculated. The model parameters are adjusted by taking a small step, with size determined by the 

learning rate,  in the opposite direction to the loss function gradient to head towards a minima. This 

is done across all mini batches, this process is repeated a number of times, which is referred to as 

an epoch.  

The desired result is that the loss function should have settled within a minima which corresponds 

to optimal model performance. 

5.3.2 – Training Epochs 

A tuneable hyperparameter in the training process is the number of epochs. As mentioned 

previously, an epoch is a round of training. Where the optimizer has passed through every mini-

batch and made appropriate adjustments to the model parameters to minimise the loss function. 

Typically,  more epochs gives the model more chance to better learn and generalize the training 

data. However, too many epochs of training can lead to overtraining. This is generally noticeable 

when the training accuracy continues to decrease but the validation accuracy becomes unstable. 

This is because the model is ‘memorising’ the training data and has learnt its intricacies to further 

reduce the training loss function. This means that is has not generalised the learning from the 

training data and cannot be applied to new data or transfer the performance to the validation 

dataset.  

To mitigate against this, an early stopping callback was used. This early stopping callback monitors 

the validation accuracy, which shows how much the model has generalised to new data, for an 

overall decreasing gradient. If the validation accuracy has failed to decrease at all over a defined 

number of epochs the training is stopped and the weights which achieved the best validation 

accuracy are restored. A maximum of 100 epochs were used in each case. However, this is rarely 

reached as the model will converge much sooner than that, approximately around the 40th epoch in 

most cases.  

5.3.3 - Loss Function 

The loss function used during testing was categorical focal loss. This loss function was selected 

through some initial testing and because it is the most adopted loss function for multiclass 

classification. It is so popular because it uses weighting to lessen the influence of easy examples in 

the optimisation process and focusses on the hard examples to better understand the nuances of 

how to classify underrepresented classes. In the context of this problem, the background class is 

very dominant as the individual defect instances are very small. Another loss function could lead to 

the model being very able to distinguish the background as this would instantly lead to a very high 

accuracy due to its prevalence. Focal loss weights down overrepresented classes and weights up 

underrepresented classes such as the small scratch defects in this instance.  
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5.4 - Architecture Investigation  

5.4.1 - Introduction 

In this section, the methods taken to evaluate the performance of the various U-net architectures 

tested during the project will be outlined. As reviewed in Section 2, there are many variations and 

adaptations to the U-Net architecture. This section describes the various architectures tested under 

the pretences already discussed. 

5.4.2 - Architectures 

The initial architecture that was tested was the first iteration of U-Net, described in the initial paper 

[26] and shown in Fig.56. Unlike typical CNN architecture, the network does not contain any fully 

connected layers. The network has a contracting path (left) and expanding path (right). The 

contracting path utilises repeated application of two 3x3 convolutions (unpadded), each followed by 

a ReLU and a 2x2 max pooling operation with stride 2 for down sampling [26]. At each down 

sampling step, the number of feature channels are doubled. Every step in the expansive path 

consists of an up sampling of the feature map followed by a 2x2 convolution (up convolution) that 

halves the number feature channels [26]. A concatenation with the correspondingly cropped feature 

map from the contracting path is then performed followed by two 3x3 convolutions and a ReLU 

activation function [26]. At the final layer a 1x1 convolution is used to map each 64- component 

feature vector to the desired number of classes [26]. 

Due to memory constraints on the GPU used to train the network , the number of convolutional 

layers was reduced to that of Fig.56b. 

      

Fig. 56 – (a) Original U-net Architecture [26] and (b) Simplified version 
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5.4.2.1 - Deeper U-Net 

The deeper u-net architecture that was used was identical to the u-net described previously, but 

the number of convolutional layers at each stage was multiplied by 2, see Fig.57. The effect is that 

the number of parameters increases significantly, in theory increasing the capacity to encode the 

information imparted on it by the training process. 

 

5.4.2.2 - ELU-Net 

This architecture builds on U-Net by implementing deep skip connections, in which layers in the 

contracting path are concatenated directly to the corresponding layers in the expanding path [27]. 

These deep skips enable full capture of “fine-grained details and coarse-grained semantics in the 

encoder” [27] as the features extracting in the encoder stage are the key to image segmentation. 

Therefore, deep skips help maintain these features. The network architecture, when built using a 

ResNet backbone, contains only ~4% of the parameters of U-Net 3+, making it much more 

lightweight and easier to train [27]. The method also scored highest Dice coefficient, 97%, of any of 

the state-of-the-art semantic segmentation networks that were tested when applied to the ISBI LiTS 

Fig.57 - Deeper U-Net Architecture 

Fig.58 – ELU-Net architecture [27] 
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dataset [27]. This variation on U-Net is specifically optimized for resource constrained applications, 

such as the one in this work, and should be considered. 

5.4.2.3 - Deeper ELU-Net 
The Deeper ELU-Net architecture applies the rationale discussed in the deeper U-Net section. It 

takes the basic ELU-Net architecture but increasing the number of convolutional layers to each 

stage by a factor of 2 in both the expanding and contracting path. 

5.4.2.4 - Residual U-Net 
Residual U-Net uses the U-Net 

architecture described above but 

adapts the convolutional blocks into 

residual convolutions, see Fig.59. 

It is observed that accuracy can 

saturate when the network has 

learned the intricacies of the data. A 

first reaction to this problem may be to 

add more layers to the network, but 

this can sometimes lead to even worse 

performance, known as degradation 

[33]. The residual block looks to overcome this limitation and contains two parts: identity mapping 

and the residual. Identity mapping integrates the input with the output of the residual to maintain 

subsequent feature information [34] and to solve the problem of gradient disappearance and non-

convergence. Moreover, any poor ability to extract features in the residual part of the block is 

compensated [34]. Using residual blocks has also been shown to improve the training of the 

network and using U-Net structure allows for the use of skip connections to facilitate information 

propagation without degradation [32]. 

5.4.2.5 - Residual ELU-Net 

The residual ELU-Net carries the principle outlined in the Residual U-Net architecture but applies it 

to the ELU-Net architecture described above. 

Fig.59 – Residual Convolutional Block [34] 
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5.4.2.6 - Lighter U-Net 

The lighter u-net architecture takes the standard u-net architecture and replaces the convolutional 

blocks with depth wise separable convolutional blocks, see Fig.60.  

The breaking of the standard convolution into a separate depth wise and pointwise convolutions 

significantly reduces the parameter count as the 3D kernel used in the standard convolution is 

broken into 2 separate 2D kernels. By reducing the parameter count, the size of the model and 

inference time can be reduced. This is applicable to use cases with limited compute, such as the 

Raspberry Pi used in this project. This architecture gives an option to reduce the complexity of the 

model easily without sacrificing too much performance if the model’s inference time is not feasible 

running on the Raspberry Pi. 

5.4.2.7 - Inception U-Net 

The inception U-Net architecture used in the testing uses the basic architecture of the standard U-

Net, however the convolutional blocks are replaced by inception blocks, shown in Fig.61. An 

inception block is a culmination of various convolutions with different kernel sizes. The idea of 

using multiple different filter sizes is to provide more flexibility in the feature sizes it can optimise 

for.  

Fig.60 – Depth wise separable convolution [54] 

Fig.61 – Inception Convolutional Block [55] 
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5.4.3 - Methods  

This experiment looks to quantitively evaluate the performance of the various U-Net derived 

network architectures described and find the U-Net architecture variation that responds best for this 

dataset. 

The networks were constructed through implementation of the Data Preprocessor and Model 

Generator module classes, described in Section 3. These modules were designed and 

implemented in Python to be the classes that oversee the model architecture creation and training. 

The Data Preprocessor module took the dataset images and the corresponding labelled masks and 

formatted them into many tiles of 256x256x3 pixel pairs. This was done to provide the expected 

suitable input tensor size for the network. Using the Tensorflow [37] package with Keras [38] 

Python API library the Model Generator module was responsible for describing the model 

architectures in Python that would allow the training procedure to take place. The Tensorflow 

library was written to take advantage of GPU capabilities to perform parallel operations which 

optimise the training process with multi-dimensional tensors. Through this library, the model files 

created by the Model Generator module are able to be applied to the parallel architecture of a GPU 

for optimised parallel training. A code reference from [40] was used to write the keras interface 

methods responsible for constructing for U-Net model object.  

The models were trained on the dataset using a 70:30 split between training and testing as this is 

commonly used split among the machine learning community. Each model was trained and 

optimised using the training subset of the training data. The testing subset is purely used for 

validation and represents how the model performs against unseen data as the data in this subset is 

never seen by the model during the optimisation process. 

The metric for performance used was accuracy. The accuracy metric is described as the number of 

pixels in the model prediction that align with ground truth masks. The higher the accuracy the more 

consistency there is between the prediction and the known ground truth, and thus higher 

performance of the model the results of the final validation accuracy of the model.  

Each model architecture was individually implemented using the Keras library and trained against 

the training dataset, the final validation accuracies of the models were collected and shown below. 

5.4.4 – Results 

 

Architecture Validation 

Accuracy 

Parameter Count 

U-Net 96.63% 1,947,078 

Deeper U-Net 96.86% 7,772,038 

ELU-Net 96.47% 2,720,966 



49 

 

Deeper ELU-Net 96.59% 10,864,006 

Residual U-Net 95.57% 2,037,846 

Residual ELU-Net 96.57% 2,818,646 

Lighter U-Net 93.23% 275,312 

Inception U-Net 96.21% 1,160,868 

 

 

5.4.5 – Discussion 

The results, shown in Table 2 show that the best performing architecture was deeper U-Net 

followed closely by Deeper ELU-Net. However, the gained improvements over the standard U-Net 

are very marginal when considering the vastly increased parameter count. An increased parameter 

count means that not only is the model larger and occupies more space in memory but also that 

the inference times when passing new data through it are also increased. This may be detrimental 

to this application where quicker inference times are optimal to maintain the smooth operation of 

the Cellerate system. Moreover, all the model architectures except the lighter U-Net performed 

quite similarly. It should be noted that the Lighter U-Net still performed admirably when considering 

the significant reduction in the parameter count. The architecture that presents the best balance 

between performance and parameter count be said to be the standard U-Net. 

5.4.6 - Amending the dataset  

During the testing process it was clear that some defects, that were seemingly more obvious than 

some detected defects, were getting missed. Fig.62 shows an example of this. It was hypothesised 

that encoding the background and the defect free area of the cell component with the same value 

may be detrimental to the performance of the model. The ambiguity between the defect free areas 

and background class may cause the model to misclassify actual defects during the SoftMax 

activation function at the end of the network. If the areas of the cell component without defects and 

Table 2 – Results using the original dataset 

Fig.62 – Model classification results of standard U-Net architecture with 

missing defect detection 
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the background can be split and have their own separate encoding, then maybe the network can 

learn what it means to be a defect free component, and thus boost the effectiveness of classifying 

the actual defects.  

To implement this theory the dataset had to be amended with another class. This meant drawing in 

the background on every image using the labelling tool to create an amended dataset with 6 

classes: background, defect free cell, scratches, creases, flaked coating and cracks. The most 

successful network architectures tested using the old 5 class dataset was retested with the added 

class to see if the performance could be boosted 

5.4.7 - Results  

 

Architecture Validation 

Accuracy 

Parameter Count 

U-Net 95.66% 1,947,078 

Deeper U-Net 95.48% 7,772,038 

Lighter U-Net 92.90% 275,312 

 

 

 

 

 

 

 

 

 

 

5.4.8 – Discussion 

It is clear that amending the dataset with the additional background class improved the 

performance of the model. When comparing Fig.63 to Fig.62 it can clearly be seen that more of the 

defects have been detected and the significant defects missed by the U-Net trained on the initial 

dataset have been highlighted. It should be noted that the validation accuracy of the model has 

decreased. This is likely due to more ambiguity between the background class and the defect free 

areas of the cell component. As this is such a large area encompassing the image any 

misclassification between these areas will cause the validation accuracy to decrease.  

Table 3 – Results using the amended dataset 

Fig.63 - model classification results using standard U-Net 

with amended dataset  
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Fig.64 shows an example of this effect. Fig.64 shows an example image and the raw segmentation 

map produced by the model. Each colour represents a separate class, the most important in this 

distinction is the red background class and the dark blue defect free class. The addition of the 

background class to separate out the background and the defect free class causes some ambiguity 

within the model when trying to distinguish between these two. In the previous dataset they would 

be one blanket class, dominating the image. It is easy to see how a metric like accuracy that does 

not account for class imbalances would report a very high result if the model is able to determine 

the background class correctly. With the amended dataset there will most likely be more 

misclassification between these two classes, which can be seen in Fig.64 on the left hand side of 

the component. This will naturally cause the overall validation accuracy to be reported as lower 

when the actual performance of the model (how well the defects are detected) could improve.  

     

 

5.5 - Data augmentation  
A popular technique used throughout the literature surrounding convolutional neural networks is 

data augmentation. Data augmentation is the process of artificially enriching your existing dataset 

to create more training data. This can be done by applying transformations to your images such as 

rotations, axis flips, zooms and translations. By applying some data augmentation techniques the 

size of the dataset can be expanded dramatically. However, there is always a point where 

extensive augmentation becomes a detriment to the final model performance. The types of 

augmentations should also always be considered.  

Data augmentation was used in this testing to evaluate whether it would boost the best performing 

models performance further still.  

5.5.1 - Batch training 

The data augmentation algorithm was tuned to produce three output images per one input image 

from the 10,700 image dataset, yielding 32,100 images to use during training. Due to memory 

constraints on the host PC used to train the model, this amount of data could not be held 

concurrently in RAM. The approach used to overcome this shortcoming was to use batch training. 

Fig 64 - Example image with accompanying raw segmentation map 
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Simply, the dataset was split into 3 chunks of around 10000 images each and separate training 

phases were completed on each chunk. The weights from the previous training cycle were able to 

be reloaded and applied to the current batch for batches 2 and 3.  

Testing was done using the standard U-Net architecture to compare whether using the data 

augmentation method described had any effect on the accuracy of the model. The improvement 

from applying the augmentation to the training data can be seen below: 

 

Architecture Validation Accuracy No Data 

Augmentation 

Validation Accuracy With 

Data Augmentation 

U-Net 95.66% 96.26% 

 

At first, it appears that the data augmentation improved the model performance by around 0.5% 

which is still a notable gain when reaching into the 95+% accuracy range. However, this reading is 

represents the validation accuracy of the model when applied to the final batch in the training. For it 

to have truly improved the model’s performance. This improvement should be seen when applied 

to the other batches. 

The problem with training in batches is that although knowledge from the previous batches is 

carried forward in the weights of the model, the final optimisation is only ever performed on the final 

batch. This effect leads to fast convergence on the final batch of training but if the data is not 

equally represented in all batches there is a chance that knowledge gained in training using the 

initial batches may be lost. 

 

Architecture Batch A Validation 

Accuracy 

Batch B Validation 

Accuracy 

Batch C Validation 

Accuracy 

U-Net batch trained 

with data 

augmentation 

92.99% 82.79% 96.26% 

 

 

Table 5 shows this effect. The model trained with data augmentation, referenced in Table 4, is 

validated against all the batches that were used to train it. As is shown, the model does not 

respond as well to the earlier batches as It does to the final batch, where the ultimate optimisation 

of the weights is performed. This indicates that knowledge gained during the training of batches A 

and B was lost as it was not important to the optimisation of the final batch. It is also important to 

Table 4 – The effect of data augmentation using batch training 

Table 5 – The validation accuracy of the training batches using the final optimised model using 

batch training 
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note that the inner workings of the weights of the neural network are too complicated to decipher 

and understand by humans, therefore it is impossible to tell what information was not lost. It may 

appear that each batch is equally representative of the dataset as a whole and contains an equal 

spread of the classes but this is clearly not the case to the optimiser, Therefore, training in this 

method comes with inherent risk and may lead to poor performance on new data. 

5.5.2 - Data generator  

To overcome the flaw in the batch training process, described above, a new method to process 

such a large amount of training data was implemented. A data generator is a class in Keras that 

allows data to be dynamically grabbed from memory during the training process, one mini-batch at 

a time. This method removes the memory constraint of batch training as the training data can 

remain on disk while it not being used. It also means that the model can optimise for the whole 

dataset instead of the final chunk as with batch training.  

The testing was repeated with the new method of feeding the training data and the results are 

shown below: 

Architecture Validation Accuracy No Data 

Augmentation 

Validation Accuracy With 

Data Augmentation 

U-Net 95.66% 94.29% 

 

In this instance the training with data augmentation actually gave a worse validation accuracy than 

with no data augmentation. This could be a sign that the types of augmentations applied to the data 

set are detrimental to preserving an accurate representation of the dataset. It could also be due to 

the variability and non-deterministic nature of model training. If the same model architecture is 

trained using the same data successively, the final validation accuracy will never be the same. This 

is in part due to the non-linear nature if the activation functions used. It should be noted that the 

data generator method still outperformed the batch training method overall. When considering the 

average validation accuracy over the three batches, the batch training did not perform well and 

shows that this method of transfer learning is not optimal. 

Architecture Batch A Validation 

Accuracy 

Batch B Validation 

Accuracy 

Batch C Validation 

Accuracy 

U-Net data generator 

trained with data 

augmentation 

94.79% 92.29% 96.31% 

 

 

Table 6 – The effect of data augmentation using data generator 

Table 7 – The validation accuracy of the training batches using the final optimised model using a 

data generator 
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Table 7 repeats the testing shown in Table 5 with a model trained using a data generator. As all the 

data can be used in the optimisation process concurrently, the final optimisation of the model is 

performed on all available data, meaning that no knowledge is lost due to the batching process. As 

expected, the model performed more consistently over the 3 batches as the knowledge of the 

whole dataset was retained as best as possible during the optimisation.  

It is generally accepted that data augmentation can improve the performance of models and has 

been cited in many papers to do so. It is however, also accepted that each machine learning 

application is very much unique and that it is naïve to assume that techniques that improve 

performance in one instance can be ported and the results carry over to another instance. This is 

due to the black box model approach taken by deep learning model programmers that a trial and 

error methodology should be taken to find the correct parameters for the specific application. 

In this case, the use of data augmentation did not improve the performance of the model and was 

not used in further testing. 

5.6 - Extended Results  
As discussed, the standard U-Net architecture with reduced convolutional layers was the stand out 

performer in the initial testing and remained so when tested once again with the amended dataset. 

However, it is curious that the validation accuracy of the model decreased from 96.63% to 95.66%. 

At first glance it is obvious that a direct comparison between the two results is irrelevant as the two 

datasets are largely different due to the addition of the extra background class. It did however, 

raise the question whether the adding the additional class improved the performance of the model 

to pick out defects.  

A set of example images from the dataset were passed through both models and the output was 

reviewed. Creases, scratches, cracks and flaked coating are shown with blue, green, red and cyan 

respectively. 

 

  

 

 

 

 

 

 

 

(a) 

(b) 
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Fig.65 shows that training the model using the amended dataset achieved better performance at 

picking out defects. If this is the case, then why was the validation accuracy lower? 

As discussed previously, adding an additional class to separate out the background and defect free 

component pixels will add additional uncertainty to the distinction between them.  

Of course this raises questions whether accuracy is the best metric to track performance of these 

models. The models should be further verified with a metric that weights the classes according to 

their prevalence in the dataset. This inspired another round of testing and evaluation of the model 

architectures with metrics that weight classes based on their prevalence in the dataset. 

The two additional metrics that were used in this round of testing are: Intersection over Union and 

F1 Score. 

5.6.1 Intersection Over Union 

Intersection over union is a commonly used metric in computer vision, particularly for object 

detection, semantic segmentation and instance segmentation tasks. It describes the ratio of the 

intersection of two regions to the area of the union of the two regions [48]. The formula to describe 

IOU is as follows: 

(c) 

(d) 

(e) 

Fig.65 – Examples of images passed through U-Net architecture trained with original dataset (left) and 

amended dataset (right) 
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𝐼𝑂𝑈 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 

A visual aid of the premise of IOU is shown in 

Fig.66. IOU helps to determine how well machine 

predictions of bounding boxes or masks align 

with the ground truth annotation. A high IOU 

describes a good match between the prediction 

and the known truth.  

In addition, the nature of the metric provides 

dynamic weighting of classes based on their 

prevalence in the dataset [48]. As it is scaled by 

the area of the union, each class can be 

weighted accordingly. Therefore, the metric is not 

dominated by the model’s ability to decern the most prevalent class in the dataset. 

5.6.2 F1 Score 

The F1 score is a commonly used metric to quantify machine learning model performance. It 

provides a single value that reflects a model’s performance considering both false positives and 

false negatives [49]. 

It is numerically described below as: 

𝐹1 = 2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙) 

Where: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃(𝑇𝑃 + 𝐹𝑁) 

𝑇𝑃 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝐹𝑃 = 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝐹𝑁 = 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

F1 score is particularly useful when dealing with imbalanced datasets, where one class is more 

prevalent that the others, such as this case. It balances the trade-off between precision and recall 

and presents a mean of the two [49]. 

 

Architecture Validation Intersection 

Over Union 

Validation F1 Score Validation Accuracy 

U-Net 31.77% 41.67% 95.66% 

Fig.66 – Intersection over Union [56] 
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Deeper U-Net 29.62% 41.28% 95.48% 

ELU-Net 28.26% 38.23% 95.37% 

Deeper ELU-Net 30.33% 39.26% 95.22% 

Residual U-Net 32.82% 40.56% 94.95% 

Residual ELU-Net 30.54% 40.24% 95.01% 

Lighter U-Net 22.89% 31.19% 92.90% 

Inception U-Net 32.42% 38.17% 94.62% 

 

 

Architecture IOU 

Ranking 

F1 Score 

Ranking 

Combined without 

accuracy 

Combined Ranking 

U-Net 3 1 4 1 

Deeper U-Net 6 2 8 2 

ELU-Net 7 6 15 5 

Deeper ELU-Net 5 5 10 4 

Residual U-Net 1 3 4 1 

Residual ELU-Net 4 4 8 2 

Lighter U-Net 8 8 16 6 

Inception U-Net 2 7 9 3 

 

The model architectures from the initial testing were applied once more with the additional 

performance metrics of IoU and F1 score to monitor during training, shown in Table 8. A combined 

ranking was then taken, shown in Table 9, to indicate the model architecture that performed the 

best across the three metrics.  

The standard U-Net was once again the best performing architecture for this application, ranking 

joint first with Residual U-Net architecture. However, the higher validation accuracy score is 

enough to secure it as the best performing architecture.  

Table 8 – Architecture performance validation using IOU, F1 score and Accuracy 

Table 9 – Combined rankings of the scores from Table 7 
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5.7 – Discussion 
The additional round of testing was performed with the additional metrics to settle the assumption 

that accuracy was not the best metric to track performance where a large class imbalance was 

present. This question was raised when the validation accuracy decreased when the additional 

background class was introduced yet the model appeared to perform much better when applied to 

the eye test. Fig.64 confirmed the hypothesis that the addition of the background class to separate 

out the background and the defect free cell component from the original data gave the opportunity 

for misclassification and ambiguity between these two separate classes. Whilst this did not affect 

the model’s ability to detect defects, on the contrary it actually greatly improved, it did cause the 

validation accuracy to report lower than when trained using the original dataset. 

As shown in Table 9, the standard U-Net architecture performed the best among the architectures 

tested. The final ranking of the architectures was chosen on the combined ranking of the IoU and 

the F1 score as these two metrics are receptive to imbalanced datasets. It could be said that 

accuracy was not the correct metric to track as for the application as there is more commonality 

between the rankings of IoU and F1 score for a given architecture. And as these metrics account 

for dataset class imbalance they hold more weight to indicate which model architecture performs 

the best.  

What should be noted is the how relatively low the final IoU and F1 scores for the architectures 

came out to be. It is interesting to see how low these values are when compared to the validation 

accuracy. This further shows that the accuracy metric is unable to account for class imbalance and 

the model’s ability to identify the dominating class artificially boosts the accuracy and gives a 

misleading metric.  

Moreover, it is interesting to note how low the IoU and F1 scores are when viewing the model 

output. Reviewing the images in Fig.65 it is clear to see that the most, if not all, of the defects in the 

images are detected in some capacity. The hidden classes of the background and defect free cell 

areas are not drawn on the image. It is possible that there is some confusion in the model’s ability 

to discern these two classes, which could drastically bring down the IoU and F1 score. Although 

this distinction is not important to this application.  

It must also be considered that it might not be necessary to achieve a very high IOU of >80% for 

this application. While it is optimal to have very accurate mask/ground truth union of the output, the 

end user may only care about the indication that a defect is present. A fully accurate representation 

of the defect drawn on the image is not necessary, as long as some part of the defect is detected 

and highlighted the user is made aware of its presence and can act accordingly. The best in class 

performance of the U-Net architecture in the F1 score category confirms that it is the best at 

discerning false negatives and false positives and gives the most confidence that when a user sees 

a defect highlighted on the output image that it is in fact there.  
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6.0 - System Integration  

This section looks to review the project as a black box as seen from the user’s perspective to 

evaluate the culmination of the work. The way the gathered data is fed back to the user, in the form 

of a cell build report will also be evaluated. Moreover, benchmarking will be done to evaluate the 

performance of the software and how this will affect the current runtime of the system. 

6.1 – Black Box Testing and Reporting 
This experiment looks to evaluate the project as a culmination of all the work detailed so far in this 

report. This testing will be carried out as black box testing carrying forward the confidence in the 

validity of the individual methods of the system, through the testing detailed in Sections 4 and 5.  

6.1.1 – Methods 

These tests are designed to represent a genuine use case of the system, by passing in cell 

components and producing a build report summarizing the defects present.  

5 cells were built using the Cellerate system, comprising of 10 active cell components, 5 anodes 

and 5 cathodes. The components were purposely prepared with little care to artificially introduce 

defects of all types outlined in the objectives of this project. The anodes and cathode used were 

16mm and 14mm in 

diameter respectively. 

These cell 

components were 

prepared using typical 

materials: copper with 

a graphite coating. 5 

trays were prepared 

with these 

components and the 

relevant additional components required to produce a coin cell, including a coin cell base, 

separator, spacer spring and coin cell cap. The Cellerate system was programmed to build these 

cells and the AI Cell Sight system produced a build report as an output, summarizing the required 

build information outlined in the objectives of this project.  

Fig.67 show the cell components before the build procedure. 

6.1.2 – Results 

The figures below show the build reports produced by the system for each of the 5 cells that were 

built. 

Fig.67 - Cell components used in experiment 
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Fig.68 - Cell 1 Build Report 

Fig.69 - Cell 2 Build Report 
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Fig.70 - Cell 3 Build Report 

Fig.71 - Cell 4 Build Report 
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6.1.3 – Discussion 

Firstly, the report builder module has been shown to successfully collate and present back data 

gathered during the cell build process. The system was consistently able to locate the component 

contour in the image and perform morphological analysis. These results reflect the success shown 

with the testing carried out in Section 4.0. Moreover, it could be argued that these results are 

quantitively better than those gathered previously. This can be seen in the purple line on the 

images which denotes the contour of the component. The accuracy of the morphological methods 

hinge on the accuracy to which the outer contour of the component is found, as the rationale of the 

numerical methods to ascertain curvature, edge detection and punch overlap have been validated.  

This also demonstrates a shortcoming in the curvature algorithm. The cathode in the cell 4 build 

report demonstrates how a misshapen cell components can invalidate the curvature determination 

as the bounding circle is not representative of the component. As shown, the determined curvature 

of the cathode for both the top and bottom view are higher than expected. This is due to misshapen 

aspect of the edge defect causing the reference minimum bounding circle to misrepresent the 

component. The likelihood of this kind of defect being present in a true use case is low due to the 

higher quality of component preparation standards of actual end users compared to this 

experiment. However, other methods to determine this reference circle should be considered to 

mitigate this. One method that has been used previously is the Hough transform. As mentioned 

previously, this method uses a statistical approach using the relationships of points within an image 

Fig.72 - Cell 5 Build Report 
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[17] to ascertain the presence of circles. This method could be resilient to these edge anomalies as 

a circle of best fit would be applied to the contour rather than encapsulating its entirety. 

The accurate determination of the component contour allows for accurate location information 

about the components to be deduced after the component has been placed onto the build pad. 

This can be seen throughout the cell build reports in the form of the alignment plots. This 

information is extremely valuable to an end user as alignment of the active components within the 

cell is important for optimum performance. This alignment analysis gives clear feedback to the end 

user about the alignment of their active components, allowing them to monitor the effect this has on 

cell performance and to discard cells which don’t meet a standard. It must be noted that the actual 

post-place alignments themselves are not optimal during this testing, most notably cell 1. This is 

due to the Cellerate software build used to complete these tests was going through a large 

transitional period and the alignment calibration was not completed optimally. However, this is not 

necessary to validate this systems ability to locate the component after placing and report back 

active component alignment.  

Furthermore, the algorithm once again proved its ability to spot punching overlap on a component. 

Referring to cell build report 1, the system was able to determine the punching overlap present in 

the cathode from both the top and bottom cameras. 

The most surprising and disappointing outcome of this testing was the performance of the machine 

learning component of the project. The high success rate and performance seen in the initial 

validation tests in Section 5.0 were not seen during these tests. Although defects were being 

detected, the activation on these defects and the success rate at which they are being identified 

was not acceptable to address the initial objectives. 

This could be due to a number of factors. The most probable factor is a combination of an overfit 

model and a leak of similar data between the training sub dataset and the validation sub dataset. 

When a model overfits, it ‘memorises’ the training data into the model weights. This means it 

performs very well on the data it was trained on but it does not generalise well to unseen data [15]. 

This effect would be obvious when applied to the validation sub dataset as that data has never 

been seen by the model during training and would be respond poorly with the model. However, the 

initial dataset contains similar images that differ only with change in lighting conditions and contain 

the same defects in shape and class. This means an overfit model that had ‘memorised’ a defect 

would respond well to a copy of that defect in the validation data set, giving the illusion of great 

generalisation. 

Another reason could be the context of the images within the dataset. The images were captured 

using a static camera and not using the Cellerate system with the LED ring. The LED ring gives a 

very niche and specific characteristic to images in terms of lighting, which is not reflected in the 

data used to teach the model.  
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A further reason could be underrepresentation or non-representation of certain defects contained in 

the images present in the build reports in Section 6.1.2, which is also a symptom of a small and 

non-diverse dataset. An example of this can be seen in build report 4, anode B. These types of 

defects are novel and not represented in the dataset. The defects would intuitively fall somewhere 

between flaked coating and scratch in the current dataset labels. 

The overall reflection from the unsatisfactory results of the machine learning component is that, to 

address the shortcomings, more data is required to be added to the training dataset. This data 

should be captured from the system itself in the same use case context. More data on all defect 

subtypes is required to broaden the knowledge captured in the model’s weights. The amount of 

datapoints on each defect is currently relatively small when compared to other sophisticated 

models, so therefore it understandable the model would not perform to the levels displayed in the 

validation testing in Section 5. 

With this in mind however, the testing still proves the potential of this machine learning 

methodology. Defects are being detected just not at the reliability and accuracy required to truly 

satisfy viability at this stage. With additional data, there is optimism that this same methodology can 

produce a model that satisfies it’s expectations to a higher level. 

6.2 – Benchmarking 

Due to the nature of the application, consideration had to be given to the execution time of the 

additional processing that this project adds to the Cellerate system. The system must be able to 

continuously build cells without delay, any delays introduced by this project would inherently 

devalue the Cellerate system as throughput is one of the most critical selling points.  

An investigation into the processing and inference times accrued during runtime was conducted to 

understand the optimal processing pipeline, this would ultimately determine whether the processing 

of each cell would be done sequentially or in batches at a convenient time.   

During runtime the only critical process that is required is the contouring of the cell by the bottom 

camera to determine the location of the cell component centroid within the image. The centroid is 

used to calculate additional offsets so the component is placed into the middle of the coin cell 

casing. The additional processing described throughout this project are able to be completed at a 

later point as none have bearing on the cell build process. This could be in batches at the end of 

build sessions, or as the autoloader is grabbing the next tray if the execution time permits. 

6.2.1 – Methodology 

An experiment was conducted to evaluate the execution times of various stages of processing 

required for both the morphological analysis and the machine learning components.  

For the experiment, timign benchmarks were introduced throughout the code at critical points and 

the absolute time taken from the Raspberry Pi was output and collected.  5 electrodes were 
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processed through the system and their execution times were saved. This process was repeated 5 

times and the average was taken. 

6.2.2 – Results 

6.2.2.1 – Morphological Analysis Results 

 

Fig.73 and Fig.74 show the elapsed time and individual execution times by stage of the 

morphological analysis procedure respectively. 

 

 

Fig.74 - Execution time of each stage of morphological analysis 

Fig.73 - Elapsed time of stage by stage execution of morphological analysis 
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6.2.2.2 – Machine Learning Surface Inspection Results 

Fig.75 and Fig.76 show the elapsed time and individual execution times by stage of the surface 

inspection procedure respectively. 

6.2.3 Discussion 

Firstly, the average execution time of the morphological analysis is relatively quick for what is 

required for this system, the entire execution of the code took less than 0.35 seconds. As can be 

seen from Fig.73. The most processing heavy stage was the morphological closing operation, 

which is used to fill in gaps in the threshold mask and ensure the contour is an optimal 

representation of the outside of the cell component. It is no surprise that this is stage is the most 

processing heavy as kernel operations, such as opening and closing, require vast amounts of 

kernel convolutions and computation. Referring back, it was for this reason that the method for 

creating the smoothened contour was changed in Section 4.1. What can be confirmed is that this 

processing can be done in line with systems normal execution and does not present a requirement 

for batch processing. 

Fig.75 - Elapsed time of stage by stage execution of surface inspection  

Fig.76 - Execution time of each of surface inspection 
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With the machine learning surface inspection however, there is a much greater time demand. This 

processing time demand comes almost solely from the patch wise predictions stage. As the images 

taken by the system are large (2566x1944x3) they must first be reduced into a stack of images 

compatible with the input layer of the machine learning model (256x256x3) and inferenced through 

the model individually. This means that for a single image, even with a crop applied to isolate the 

useful part of the image containing the cell component, 25 separate model inferences are required 

before the image is stitched back together for output. Fig.76 shows that this stage incurred a nearly 

16 seconds delay, which is somewhat expected for 25+ image inference through the model, but by 

far presents the most processor demand of the whole system. This is additionally impressive 

considering the limitations of the Raspberry Pi. The hardware is only compatible with Tensorflow 

lite which is a lightweight version of Tensorflow that strips away any parallel inferencing 

optimisations that GPUs are capable of and converts the model into a compatible CPU 

procedurally executable file. 

A combined execution time of both the morphological analysis and surface inspection came to 

18.45s. This only represents the execution time for one image though and under normal 

circumstances there will be at least 4 images to process per cell: one image for either surface of 

the activate components of the cell, the anode and cathode. This means that there is a minimum 

time requirement per cell of around 73s. Inserting this delay into the normal build routine of the 

assembler is of course not acceptable. Adding an additional minute to the cell build time would 

devalue the system significantly.  

There are times during the cell build where the assembler is idle however, during crimping and 

during an autoloader operation. During these operations the assembler is waiting to receive the 

coin cell back from crimping or to receive the next tray from the autoloader. The delay incurred 

while crimping is around 45 seconds and the delay incurred while changing trays is around 30 

seconds. This time can be used by the system to process the images in the cell which would cover 

the additional required processing time.. 

 Fig.77 shows a pipeline diagram of the execution order of the system to accommodate or the extra 

processing time required. The Assembler module is never idle, using the time when the crimper 

and autoloader are controlling the flow of the cell components to perform the required processing to 

minimise hang ups in the operation flow.  

 

Fig.77 – Pipeline diagram of the cell build process with stage descriptions 
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7.0 - Conclusions 

 

The goal of the project was to develop software analysis tools that would provide the end users of 

the Cellerate system with more data to optimise and accelerate their battery research. This goal 

was to be realised by designing tools to provide data to the end user to isolate variables in the cell 

build process to build better batteries and bolster the work done to shift society over to greener and 

more effective energy storage methods. The data provided by the project would allow an end user 

to correlate shortcomings in coin cell battery production with cell test data to identify optimisations 

that can be made in the component preparation stages. The defined aspects to collect data on  

were defined as morphological defects to the cell component such as edge quality, curvature and 

punching overlap. As well as surface defects defined as scratches, creases, flaked electrode 

coating and coating cracks.  

A discussion of the effectiveness of the methods applied can be broken, once again into two parts 

due to the vastly different implementations to satisfy the criteria of each part. Firstly, the 

morphological analysis component of the project looked to tackle defects related to the shape of 

the components specifically. A more traditional image processing approach was hypothesized to be 

the most suitable as methods to find and contour shapes in images have long been established 

with many effective implementations in past, work such as [20] [16].  

The methods described in this work have been shown to be mostly effective at achieving the goals 

that were laid out at the beginning of the project. The method of using a stable background image 

as a reference point to subtract the foreground and isolate the cell component has been shown to 

be effective and with some additional filtering a good representation of the contour of the cell 

component could be extracted and analysed. This is particularly effective for determining the 

degree of curvature present in the cell component when placed into the cell and also the presence 

of any punching overlap. These two are particularly effective as the reliance on a hyper accurate 

representation of the cell contour is not required. The experiments described in Section 4 and 

Section 6 show that the methods to determine component curvature and punching overlap are 

successful and provide good accuracy. It has been shown that the relationship between the height 

of the component curvature and the area of the shape when looked down on as a 2D plan is solid 

and can be used to provide an indication of component curvature.  

The results for the punching overlap are even stronger with 100% accuracy of the detection of 

punching overlap with no false positives or false negatives. It was also shown to be effective even 

in the presence of curvature in the component. These results validate the effectiveness of using the 

convex hull of the contour to determine any missing material. 

In earlier testing in Section 4.0 there were shortcomings of the method to determine the cell edge 

quality. These were the reliance on a very accurate approximation of the cell contour in order to 

make high precision comparisons with the smoothened contour. The testing in Section 6.0 
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demonstrated good performance of the morphological analysis operations on the cell but still 

contained an instance in which noise made it through the filtering stages to invalidate the accurate 

component contour. 

The validation experiment methodology also proved to have some flaws as it relies on subjective 

interpretation of what makes a ‘good’ and ‘bad’ edge as it is difficult to quantify. This subjective 

interpretation could conflict with the quantitative analysis method and skew results. Another 

shortcoming that must be reiterated is the requirement of a calibration. The HSV filter requires a 

calibration to work optimally which is ultimately a pitfall of the entire method. Different materials 

require separate calibrations and it is possible that moving the machine into a different area may 

cause the requirement for another calibration to be completed, due to varying lighting conditions. A 

method to remove the dependency on this calibration would be a huge next step for the system. 

The remaining objectives to be detected and qualified by the analysis tools were scratches, cracks, 

creases and flaked coatings. It was hypothesised that these would lend themselves much more 

effectively to a machine learning approach. Throughout the literature, there have been many 

implementations of defect detection models that use various architectures and classification types 

to achieve this.  

The classification methodology which stood out as the most appropriate for this application was 

semantic segmentation. This allows the user to see in great detail not only the presence of a defect 

but also the localised area in which it is present. It was decided that this approach would give the 

maximum amount of data back to the end user to optimise their cell preparation stages and identify 

and rectify shortcomings in how their components are handled. 

The overwhelming majority of defect detection applications that use convolutional neural networks 

in the literature use the U-Net architecture [30] [31] [32]. This is due to its great response to small 

bespoke datasets, such as what would have been available for this application.  

The methodology in Section 5 done to evaluate the effectiveness of various models revealed that 

there exists a fundamental unique relationship between the dataset and the model architecture to 

garner the best results. Many of the variations on the U-Net architecture boast improved results of 

the standard U-Net. The quoted improvements in this case were not seen during this investigation.  

Most performed worse and some performed marginally better, but at the expense of greatly 

increasing the complexity of the model.  

It is clear from this investigation that each dataset should be treated as its own isolated instance 

and the promise of improved results seen when applied to other datasets should not be assumed. 

These results can point you in a general direction to guide the optimisation of the model but it is up 

to individual testing and tweaking of the model parameters and architectures to find the right 

architecture for the specific dataset.  
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The final model evidently performed well when referencing the output classifications when tested 

using the validation dataset. However, when applied to truly novel data, in Section 6.0, the model 

clearly did not perform as expected. It is hypothesized that the model was overfit during training 

and a leak of similar data between the training sub dataset and validation sub dataset gave an 

illusion of great performance and generalisation. It was determined that the testing, while 

disappointing, still demonstrates the potential of the technology given that a satisfactory amount of 

data is available for training which sufficiently represents the broad scope of potential defects. As 

the system is used by more customers and more cell data is collected the dataset will become 

more diverse and mature. As a starting point to something that will indefinitely improve the results 

gathered in this work are promising regardless.  

Furthermore, the system integration testing in Section 6 showed that the collected data on the cell 

build inspection is collated and reported back to the user in a clear and concise manner. In 

addition, the benchmarking results gathered show that the system can be run on the lightweight 

Raspberry Pi device in reasonable time. With some scheduling design, the Raspberry Pi is capable 

of processing the neural network inferencing, which is the most time demanding process, during 

the downtime of the assembler system, during a crimping or autoloader process. A big 

consideration when setting out the design of the system was not to compromise the throughput of 

the Cellerate system, as this constitutes one of its greatest USPs. Not compromising the current 

operation of the Cellerate system whilst adding the additional functionality discussed in this project 

is a great achievement. 

7.2 - Further Work 

One of the most promising and encouraging developments that has been brought to the public eye 

whilst completing this project is Meta’s Segment Anything Model (SAM). This open source model 

has been trained on an incredibly large dataset of over 11 Billion images. The model is able to 

segment the articles within an image to a great accuracy and reliability. If this model could be 

reasonably implemented into this system it could optimise many of the processes.  

The most impact it could have is to improve the reliability of edge quality detection algorithm. It 

would remove the need for the background subtraction methodology, including the HSV filter. This 

advancement would put greater trust that the contour edge found as part of this process is accurate 

and that the edge quality calculations performed using it are representative and reliable. It would 

also remove the need to take an additional background image of the cell build plate before the 

component is placed to allow the background subtraction process to be performed, saving 

additional time. Moreover, the successful implementation of this technology would remove the need 

for any component calibration of the HSV filter. This was a great concern as the current method 

adds some further user dependency to find a good calibration  

During the SAM model investigation, further testing and optimisation should be done to improve the 

robustness of the system. This is to gain further confidence the system will work as expected in 

various settings. This testing should be mainly focussing around lighting condition changes and 
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whether this could disrupt the calibration. Of course, with the implementation of the SAM model this 

not need be a priority as the model is adaptable and resilient to changes in lighting. 

Of course, the most natural further work for this project is to continue to collect and label data from 

the field to grow and improve the performance of the machine learning model. With a constant flow 

of actual use case data from the field the sophistication and performance of the model could 

become more viable within a short period of time. 

7.3 - Final Statement 
In conclusion, a great deal of personal development has been achieved in the past year completing 

this project. All the knowledge displayed in this report surrounding the machine learning topic was 

exclusively gained during the process of study. Both technical and managerial skills have been 

developed through working with the Cellerate team and managing personal deadlines and 

milestones. The technical results of the project are generally positive with clear direction of how 

these can be improved and built upon going forward. The work completed in this project is 

significant as there is currently nothing on the market that rivals what the Cellerate system can 

achieve, let alone with the additional functionality developed in this project. Therefore, the fusion of 

this work with the Cellerate product has an opportunity to really penetrate the battery research 

space and help advance the field.  
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Appendix A: Algorithm Flowcharts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.78 – Image preprocessing flowchart 

Fig.79 – Image collection flowchart 

 

Fig.80 – Morphological analysis flowchart 

Fig.81 – Component curvature flowchart 
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Fig.82 – Edge quality analysis flowchart 

Fig.83 – Punching overlap flowchart 

Fig.84 – Get contour information flowchart 
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Fig.85 – Model generator 

pre-processing flowchart 

Fig.86 – Model generator flowchart 
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Appendix B: Raw Results 

 

 

 

Electrode 
No. 

Algo Determined 
Edge Quality % 

Human assessed 
edge quality (/10) 

1 99.7233% 8 

2 99.7038% 7.5 

3 99.6204% 5 

4 99.6142% 5 

5 99.7126% 7 

6 99.7158% 7.5 

7 99.7476% 8 

8 99.7469% 7.5 

9 99.6603% 6 

10 99.6632% 6 

11 99.6552% 7.5 

12 99.7374% 7 

13 99.7014% 7.5 

14 99.6801% 7.5 

15 99.6368% 6 

16 99.6874% 6 

17 99.6184% 9 

19 99.6649% 8.5 

20 99.7258% 8 

21 99.6415% 8 

22 99.7379% 8.5 

23 99.7211% 9 

24 99.7255% 9 

25 99.6658% 8.5 

 Pre Optimisations 
After Smoothing 

Optimisation 
After Smoothing  and Edge Quality 

Optimisation 

Stage Split(s) 
Total 
Time(s) Split(s) Total Time(s) Split(s) Total Time(s) 

Image Loading  0.24 0.24 0.24 0.24 0.23 0.23 

Undistort Image  0.73 0.97 0.74 0.97 0.73 0.97 

Background 
Removal 0.23 1.2 0.23 1.20 0.23 1.20 

Locating Circle 0.18 1.39 0.18 1.39 0.18 1.38 

Find Contour 0.02 1.41 0.02 1.41 0.02 1.40 

Edge Quality 
Detection 164.56 165.96 14.18 15.59 0.10 1.50 

Punching 
Overlap 0 165.97 0 15.59 0.00 1.50 

Curvature 
Detection 0.01 166.09 0.01 15.59 0.10 1.50 

Save Image  0.12 166.09 0.12 15.71 0.12 1.62 

Table 10 - Raw results for Fig.41 and Fig.42 
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26 99.6658% 8 

27 99.7420% 9.5 

28 99.7384% 9 

29 99.6697% 8 

30 99.6809% 8 

31 99.6766% 8 

32 99.6654% 9.5 

33 99.6553% 9.5 

34 99.6286% 7.5 

35 99.7495% 10 

36 99.6482% 8 

37 99.6703% 10 

38 99.6175% 6.5 

39 99.6962% 10 

40 99.7334% 8 

41 99.7301% 10 

42 99.6756% 9.5 

43 99.6748% 8.5 

44 99.6300% 6.5 

45 99.6921% 10 

46 99.6467% 7.5 

47 99.6568% 9.5 

48 99.5847% 6 

49 99.7292% 9 

50 99.7028% 8.5 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11 - Raw results for Fig.43 
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Electrode 
No. 

Diameter 
(mm) 

Measured 
Height (mm) 

Algo 
Curvature (%) Coating Position 

1 14 1.82 3.12% Copper Concave 

2 14 1.42 2.85% Black Concave 

3 14 2.52 7.73% Black Concave 

4 16 1.68 1.27% Copper Concave 

5 14 2.03 3.24% Black Concave 

6 14 2.95 13.75% Copper Convex 

7 14 1.36 4.44% Black Convex 

8 16 2.82 10.73% Copper Convex 

9 16 1.95 5.67% Black Convex 

10 16 2.72 10.55% Copper Convex 

11 14 2.28 7.48% Black Convex 

12 14 2.71 8.11% Black Convex 

13 14 2.33 5.58% Black Convex 

14 16 3.32 13.94% Copper Convex 

15 14 2.95 12.44% Black Convex 

16 14 2.56 6.83% Copper Concave 

17 14 1.61 3.55% Black Concave 

18 16 1.17 2.02% Copper Concave 

19 16 1.65 1.57% Copper Concave 

20 16 2.13 6.72% Copper Concave 

 

 

Electrode  
Punch Overlap 
Category Curvature Detected? 

1 Slight No Yes 

2 Slight No Yes 

3 Slight No Yes 

4 Slight No Yes 

5 Slight No Yes 

6 Slight Yes Yes 

7 Slight Yes Yes 

8 Slight Yes Yes 

9 Slight Yes Yes 

10 Slight Yes Yes 

11 Medium No Yes 

12 Medium No Yes 

13 Medium No Yes 

14 Medium No Yes 

15 Medium No Yes 

16 Medium Yes Yes 

17 Medium Yes Yes 

18 Medium Yes Yes 

19 Medium Yes Yes 

Table 12 - Raw results for Fig.47 and Fig.48 
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20 Medium Yes Yes 

21 Large No Yes 

22 Large No Yes 

23 Large No Yes 

24 Large No Yes 

25 Large No Yes 

26 Large Yes Yes 

27 Large Yes Yes 

28 Large Yes Yes 

29 Large Yes Yes 

30 Large Yes Yes 

31 Non No No 

32 Non No No 

33 Non No No 

34 Non No No 

35 Non No No 

36 Non Yes No 

37 Non Yes No 

38 Non Yes No 

39 Non Yes No 

40 Non Yes No 

 

Description  Delta Time Elapsed Time 

Start time 0 0 

Get file paths 0.013080015 0.01308 

AICellSight object created 7.43771E-05 0.013154 

MorphoAnalyser created 0.041661625 0.054816 

Absdiff generated 0.002587986 0.057404 

HSV filter applied 0.01157836 0.068982772 

Gray image created 0.00072443 0.069707202 

Image cropped 0.001144791 0.070851992 

Blur applied 0.002597208 0.0734492 

Threshold applied 0.000414791 0.073863992 

Closing applied 0.229787998 0.30365199 

Contours found 0.003143187 0.306795176 

Bounding circle found 0.006090832 0.312886008 

Contour smoothened 0.000369568 0.313255576 

Convex hull found 0.000154037 0.313409613 

Edge quality determined 0.02155838 0.334967994 

Curvature found 8.91876E-05 0.335057181 

Punching overlap found 4.55856E-05 0.335102767 

Results saved 0.001713648 0.336816415 

Output image drawn 0.006940384 0.343756799 

 

Table 13 - Raw results for Table 1 

Table 14 - Raw results for Fig.73 and Fig.74 
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Description  Delta Time Abs Time 

Start time 0.000000 0 

Got file path 0.024822 0.024822 

Created aicellsight object 0.000104 0.024926 

Created predictor object 0.000147 0.025072 

Image loaded 0.203399 0.228471 

Image cropped 0.000198 0.228669 

Patches created 0.493908 0.722577 

Patchwise predictions made 15.662192 16.38477 

Final prediction created 0.007633 16.3924 

Output drawn 1.807785 18.20019 

 Table 15 - Raw results for Fig.75 and Fig.76 


