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Abstract

The sixth generation (6G) wireless communication is anticipated as a three-

dimensional (3D) network with full support of aerial edge and space edge. Moreover,

semantic communication (SemCom) based on machine learning (ML) is also con-

sidered a significant enabling technology for 6G systems. Nevertheless, integrating

SemCom into future 3D networks introduces emerging semantic coder updating

requirements and new functional challenges considering, e.g. latency, energy, and

privacy. Motivated by the above observations, in this thesis, the challenges of

SemCom in various 6G edge-enable network architectures are investigated.

Firstly, a terrestrial vehicular SemCom system is investigated for vehicle task

offloading in vehicular networks (VNs). A novel mobility-aware split-federated with

transfer learning (MSFTL) framework for SemCom coder updating is then proposed.

Moreover, to incorporate vehicle mobility and training delays I propose a high-

mobility training resource optimisation mechanism based on a Stackelberg game for

MSFTL.

Secondly, an air-terrestrial SemCom system is proposed for energy-efficient

implementation of SemCom in aerial-aided edge networks (AENs). An energy-

efficient game theoretic incentive mechanism (EGTIM) is proposed for improving the

energy efficiency of the AEN for SemCom. To update SemCom coders accurately and

efficiently in AENs, I further present a game theoretic efficient distributed learning

(GEDL) framework based on the renewed EGTIM.

Finally, a space-air-terrestrial (SAT) SemCom system is proposed for the

computation offloading of resource-limited users in SAT networks. An adaptive

pruning-split federated learning (PSFed) method for updating the SemCom coder is

then proposed. Furthermore, the users processing computational tasks strategy

in presented systems is formulated as an incomplete information mixed integer

nonlinear programming (MINLP). A new computational task processing scheduling

(CTPS) mechanism is also proposed based on the Rubinstein bargaining game.
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Chapter 1

Introduction

1.1 Motivations

The 6th generation (6G) wireless communication is considered a three-dimensional

(3D) communication network fully assisted by edge cloud facilities [1], [2]. The

aerial facilities and satellites with edge clouds, i.e., aerial edge clouds (AECs) and

satellites edge clouds (SECs), are anticipated to provide abundant storage and

computing resources to subscribers alongside the terrestrial edge clouds (TECs).

Subscribers are allowed to access these edge facilities to o�oad computationally

sensitive tasks for rapid processing or acquire massive image/video information etc.

[3]. However, since wireless physical layer capacity is approaching the Shannon limit,

current wireless technologies are becoming increasingly insu�cient to satisfy such a

sophisticated, data tra�c and diverse o�oading need in future 6G 3D networks [4].

How to improve the communication e�ciency and Quality of service (QoS) for future

communication systems thus become an emerging challenge in the development of

6G-enabled networks.

Semantic communication (SemCom) is a new intelligent communication paradigm

and is considered a promising solution for 6G to address this challenge [5]. Di�erent

from the conventional Shannon paradigm [6], SemCom is a genuinely intelligent

system that only selects the necessary information to be transmitted. It concentrates

1



Chapter 1. Introduction

on the meaning of the information transmitted and ignores irrelevant information

by employing deep learning (DL) approaches [7]. Using this approach, the network

spectral e�ciency is signi�cantly reduced, thereby improving the performance of the

communication network.

Figure 1.1: Semantic versus conventional communication transmission systems.

Generally, the coder in SemCom is designed as a DL-based joint source-

channel (DLJSC) coder to substitute the conventional transmission coder [8] (Figure

1.1). However, in this approach, the DLJSC encoder and decoder are deployed

in the transmitter and receiver separately but are required to be trained for

particular transmission contents together. This introduces the question of SemCom

deployment and utilisation in practical networks. Moreover, in practice, the DLJSC

coder model needs to continue learning and updating on previously untrained

content to ensure providing a consistent QoS [9]. This presents several di�erent

emerging challenges for di�erent future 3D networks, e.g. collaboration coder

2



1.2. Thesis contents and contribution

updating of transmitter and receiver, the dynamism of some networks, and di�erent

users' di�erent encoder models. Nevertheless, the existing SemCom systems and

distributed learning frameworks for semantic communications (see, e.g., [10]{[12])

in generic networks are however not automatically applicable to the various complex

3D networks. Designing e�cient SemCom systems and distributed learning methods

for updating the semantic coders in 6G networks thus is essential.

In addition to the above, SemCom alters the transmission paradigm of con-

ventional networks by increasing the computational load while reducing the

communication load. It changes the existing pattern of communication and

computation resource utilisation. This new communication paradigm means a new

trade-o� to be made in future SemCom-assisted networks in terms of technical

factors such as delays, energy cost and privacy.

Therefore, in this thesis, the objectives are to design e�cient SemCom systems to

address di�erent unique challenges for various 3D networks, i.e., terrestrial vehicular

networks, air-terrestrial networks and space-air-terrestrial networks. In addition,

novel SemCom coder updating learning frameworks are investigated while new and

technical challenges of SemCom in 6G networks are also considered, e.g. delay,

energy and privacy.

1.2 Thesis contents and contribution

Motivated by the discussions aforementioned, this thesis focuses on the unique

challenges of SemCom in various future wireless networks. Speci�cally, by designing

SemCom systems and novel ML frameworks, the SemCom coders enable updating

and employment e�ciently. Furthermore, economic game theories are utilised to

analyse and investigate the SemCom functional challenges in various networks in

terms of delay, energy and privacy. The main contributions of this thesis are

summarised as the following.

Chapter 2 provides the background theory and literature related to the system

3



Chapter 1. Introduction

design of this thesis. The background knowledge of SemCom, edge cloud and 3D

networks is introduced �rst. In addition, the basic theory of the technological areas

utilised in this thesis is also presented, i.e., collaborative learning and game theories.

The existing studies of SemCom in networks are then introduced to help readers

understand the research background.

In Chapter 3, the terrestrial vehicular SemCom system is investigated. A

mobility-aware split-federated learning framework is then proposed for SemCom

coder updating to solve the unique challenges of SemCom in vehicular networks.

Moreover, although an un-updated model causes degradation in accuracy for

new transmission tasks, the un-updated encoder model can be exploited to

increase training e�ciency and decrease the computing and communications cost

of distributed training. A novel transfer learning (TL) [13] paradigm for vehicular

SemCom is further proposed to be integrated into the presented framework by

employing part of the un-updated encoder. The proposed mobility-aware split-

federated with transfer learning framework is referred to as MSFTL. In addition,

a high-mobility training energy optimisation mechanism for MSFTL is presented

based on the Stackelberg game. The main contributions of this chapter are as

follows:

ˆ The terrestrial vehicular SemCom system is investigated and a novel MSFTL

framework for vehicular semantic communication networks is proposed. The

proposed model splits the coder into four separate components for training.

The vehicle only needs to train parts of the coder to reduce the cost of

computing. MSFTL addresses unique challenges for semantic communications

in vehicular networks that were not addressed by the existing learning

framework for semantic communication networks.

ˆ A new TL-based learning approach is presented in the developed MSFTL.

Here, by utilising the part of the un-updated semantic encoder model, the

MSFTL increases the convergence speed and accuracy. It decreases the

4



1.2. Thesis contents and contribution

training computing and communication cost. This approach also reduces

storage load and performs well on a few sample learning scenarios.

ˆ A Stackelberg game-based energy optimisation mechanism is developed to

further reduce the training energy cost and optimise the proposed framework.

The most appropriate amount of training data is selected for each vehicle and

the entire network. It jointly considers factors such as vehicle residence time,

computational load, and communication overhead.

In Chapter 4, a novel air-terrestrial SemCom system is proposed for aerial-

aided edge networks (AENs). The resource allocation problem during SemCom

usage is then discussed. A new energy-e�cient game theoretic incentive mechanism

(EGTIM) based on the proposed system is presented to optimise the network energy

e�ciency in a fair way. In addition, a game theoretic e�cient distributed learning

(GEDL) framework is designed for semantic coders updating in AENs. It updates

the proposed EGTIM and integrates EGTIM with traditional distributed learning

methods to accurately and e�ciently update the semantic coder with respect to

energy consumption. The major contributions of this chapter are summarised as

follows:

ˆ A novel air-terrestrial SemCom system to support AENs is proposed. In this

system, AECs and TECs provide edge services to users via employed ML-based

semantic coders. Moreover, it enables edge devices to schedule the processing

locations of computational tasks due to semantic communication intelligently

to improve the energy e�ciency of the AEN. The AENs' spectral e�ciency

and the QoS thus can be improved.

ˆ In particular, a new EGTIM in the proposed SemCom system is presented

to further improve the energy e�ciency of AENs. The computational

and communication workload of the AEC and TECs to perform semantic

communication are developed as a Stackelberg game. It is designed to

5



Chapter 1. Introduction

maximise the energy e�ciency of the AEN while proportional fairness

maximising the service revenue of each edge device in the network.

ˆ A GEDL framework is proposed for semantic coder updating in AENs. It

is based on our designed renewed EGTIM for semantic coder updating.

Compared to federated learning (FL), it signi�cantly improves the semantic

coder accuracy in Non-IID scenarios and improves the training energy

e�ciency by retraining the model after federated aggregation in the AEC.

In Chapter 5, the SemCom system for space-air-terrestrial (SAT) networks is

designed. A new SemCom-assisted SEC (SemCom-SEC) framework is put forward

for computation o�oading by terrestrial users. The proposed approach divides the

SemCom service into two scenarios: in-maintenance (where semantic coders need

updating) and in-service (where trained semantic coders are used for o�oading

computations). In the in-maintenance scenario, the real-time update of deployed

semantic coders in SemCom-SEC is explored. Following this, a pruning-split

federated learning (PSFed) method is introduced to update semantic coders while

taking into account o�oading quality of service (QoS) and ensuring privacy. In the

in-service scenario, the challenge of computational task processing for terrestrial

users under the new SemCom paradigm is examined. A novel computational

task processing scheduling (CTPS) mechanism is then suggested, based on the

Rubinstein bargaining game, which aims to minimize users' processing delay and

energy consumption while safeguarding their privacy. The main contributions of

this chapter are summarised as follows:

ˆ The SemCom and SEC networks are integrated and a novel SemCom-SEC

framework enabling task o�oading for under-served users is proposed. In the

proposed framework, the SemCom coders are deployed on both the TSTs and

satellites. The SemCom-SEC takes into account various user task-processing

approaches and access modalities. The user's computational tasks can be

either performed locally, at SEC or in the core cloud server. Moreover, users

6



1.3. Thesis outline

have the option to access the LEO satellites either directly or via the semantic

encoder-equipped TST.

ˆ A PSFed approach for SemCom coder updating for the SemCom-SEC frame-

work enabling computation o�oading is then presented. PSFed adaptively

\splits" and \prunes" the semantic coders for federated aggregation subject to

various users' personalised conditions. In contrast to the conventional \split"

and \prunes" models, the semantic coder model components remain intact

after updating. PSFed reduces the consumption of training communication

resources and improves the privacy of the trained encoder while enhancing the

training convergence speed and model accuracy.

ˆ A novel CTPS mechanism is proposed by jointly considering user privacy, de-

lay, energy consumption and fairness to solve the new incomplete information

task processing scheduling problem in SemCom-SEC. The CTPS performs in

two steps. A game theoretic model is �rst designed to convert this mixed

integer nonlinear programming (MINLP) problem from an incomplete infor-

mation problem due to privacy concerns to a complete information problem.

In the second step, the converted complete information MINLP problem

is decomposed and solved by adopting the Lagrangian dual decomposition

method etc.

1.3 Thesis outline

The rest of the thesis is organised as the following. Chapter 2 presents the

background knowledge of this thesis with a brief literature review. In Chapter 3,

Chapter 4, and Chapter 5, SemCom systems for terrestrial vehicular networks, air-

terrestrial networks and SAT networks are presented separately. Finally, conclusions

and future works are discussed in Chapter 6.
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Chapter 2

Theoretical Background and

Literature Review

2.1 Semantic communication

The recent development of ML technologies enabled the integration of semantic

communication into 6G as a promising solution for improving channel spectrum

e�ciency. In contrast to the Shannon paradigm that focuses on the accuracy of

symbol transmission, semantic communication exploits ML to extract the actual

meaning of information to reduce the transmission information quantity [7]. In

semantic communication, the conventional coder is substituted by a semantic DLJSC

that compresses and transmits semantic information, where the coder is an ML-

based Autoencoder model [8].

The Autoencoder model (Figure 2.1) is a type of ML used for unlabeled data,

i.e., unsupervised learning. It learns the implicit features, i.e., semantic features,

of the input data, which is called coding from the encoder, and reconstructs the

original input data with the learned new features, which is called decoding from the

decoder. The Autoencoder thus can function as a feature/semantic extractor.

It can be seen in Figure 2.1, there are three main components required for the

construction of an Autoencoder, i.e., encoder, decoder and loss function. Encoder

8



2.1. Semantic communication

Figure 2.1: Autoencoder model.

and decoder are parametric equations that form the Autoencoder model. Normally,

they are based on neural networks, which are derivable with respect to the loss

function based on stochastic gradient descent etc. Furthermore, the loss function

is a metric that measures the volume of information lost after compression and

decompression. Mathematically, the input convert process of Autoencoder can be

expressed as:

~x1 = A1(x); (2.1)

~x2 = A2( ~x1); (2.2)

whereA1(�) is the coding andA2(�) is decoding,x is the input of the autoencoder

and ~x1 is the compression output of the encoder, i.e., feature/semantic information.

Moreover, ~x2 is the output recovered by decompression through the decoder. The

loss function thus is the comparison betweenx and ~x2.

In SemCom studies, the encoder part of the Autoencoder can be deployed at the

transmitter and the decoder part can be deployed at the receiver. Encoders and

decoders can also adopt di�erent neural network models. The transmitter merely

transmits the semantic feature of the input encoded by the ML-based encoder to

the ML-based receiver decoder for recovery. The number of transmission bits is

signi�cantly reduced. SemCom thus goes beyond the Shannon capacity limit by

shifting the proportion of the work to computational resources from communication

and signi�cantly increases the spectral e�ciency [14].

9
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To do this, various semantic communication studies have been developed for

image transmission [15]{[18], text transmission [10], [19], [20], video transmission

[21],[22], speech [23], and visual question answering transmission [24]. These e�orts

demonstrated the excellent performance of the SemCom systems in upgrading

communication e�ciency and transmission accuracy. The SemCom is hence

considered one of the emerging and promising techniques for 6G.

2.2 Edge cloud in 3D networks

Next-generation communication networks are considered to be not only networks

supported by terrestrial cellular devices but also 3D networks coordinated by space

(satellites), air (unmanned aerial vehicles (UAVs), airships, and balloons) and

terrestrial communication devices [25]. The development of 3D communications

is necessary for the following reasons:

1. The service area of terrestrial cellular networks generally cannot reach 100%

global coverage. For instance, in mountainous areas and deserts, infrastructures are

di�cult to deploy.

2. Natural disasters may destroy the communication entities, resulting in

complete destruction of the terrestrial facilities. In this case, it is crucial to use space

and air networks to improve the robustness of the entire communication system and

to react quickly to the information.

3. Terrestrial facilities' service capabilities are subject to the constraints of

limited local resources such as spectrum, power or cache capacity, thus requiring


exible equipment assistance.

Therefore, the integration of space, air and terrestrial networks is necessary. It

extends the coverage of the service area, provides QoS-guaranteed services, balances

ine�cient communication resource allocation, and delivers content to the edge of

the network.

Deploying cloud facilities at these edge devices of the 6G networks, i.e., edge

10
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cloud, is also emerging as one of the key techniques for next-generation wireless

communication systems [26]. Cloud facilities with powerful computation and

storage capabilities are devolved to the edge of the network, allowing for providing

subscribers with abundant cloud computational resources. Subscribers are allowed

to access these edge facilities to o�oad computationally sensitive tasks for rapid

processing or acquire massive image/video information etc. [3].

Figure 2.2: SemCom coder updating in edge networks based on central learning.

In terrestrial networks, the TECs can be deployed on the base stations (BSs)

and roadside units (RSUs) etc. Vehicles can access these resources by o�oading

their tasks (e.g. object/image recognition and processing tasks, etc.) to the TEC in

real-time via a communication link. The aerial facilities, e.g. UAVs, airships, and

balloons, with edge clouds, i.e., AECs, are anticipated to provide abundant storage

and computing resources to subscribers alongside the TECs.

In addition, subscribers located in remote areas or disaster zones might not

be able to connect to TEC infrastructures. The arrival cost of AEC facilities

is also prohibitive. Alternatively, such under-served users may o�oad their

computationally intensive tasks to remote core cloud servers via Geosynchronous

11
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Equatorial Orbit (GEO) or Medium Earth Orbit (MEO) satellites. In addition to

the costs, the corresponding propagation latency to and from the satellite platforms

however impedes the delay requirements of these users. Using Low Earth Orbit

(LEO) satellites can partly address this issue by providing lower propagation latency

as their orbits are much closer to the ground compared to GEO and MEO satellites.

Comparing to GEO and MEO, constellations of LEO satellites also provide low-

cost, high-throughput services and extensive radio coverage. To further reduce the

propagation delay, the SEC setting was proposed, where the o�oaded processing is

conducted on board the LEO satellite, hence reducing the propagation delay by a

factor of 2 [27], [28].

2.3 Distributed learning

Central learning (Figure 2.2) is a conventional collaborative learning approach

developed based on the conventional approach of training neural networks on a

single server. The training data from distributed users are collected by a central

server, e.g. edge cloud. Subsequently, all training data on the central server is

integrated and used as input to jointly train an ML model. The trained model is

then returned to the participating users. Since in central learning, the training data

are trained directly by the ML model, it is therefore capable of obtaining higher

accuracy relative to other distributed learning methods.

However, central learning is not applicable to edge computing [29]. Because

moving heavy training data over the network implies signi�cant transmission delays,

let alone potential privacy breaches during training data transmission. Nevertheless,

allowing distributed users to update/train the ML model locally would su�er from

insu�cient performance, energy and few-shot samples.

FL (Figure 2.3) [30] is a promising distributed learning framework for collabora-

tive training in edge cloud networks. In each training epoch, distributed users �rst

train the entire model on the user side using their individual training data and then

12
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Figure 2.3: SemCom coder updating in edge networks based on federated learning.

upload the model weights to a central server for aggregation. The aggregated model

is then sent back to the participating users. This enables individual clients to keep

their private training data locally, hence preserving their data privacy and avoiding

the problems associated with centralised data collection.

2.4 SemCom in networks

Di�erent from point-to-point SemCom techniques research, the existing system

designing and collaborative learning frameworks for SemCom in terrestrial networks

are limited. Xie and Qin [10] proposed a pruned lite ML model for distributed

semantic coders. Their proposed method is a learning model for trained learning

models rather than for coder updating. Furthermore, Shi et al. [11] and Qin et

al. [12] suggested general FL frameworks for semantic coder updating in networks.

Nonetheless, these frameworks incur long service interruptions, energy consumption,

and privacy risks in SEC networks. The above research works highlight the

importance of designing e�cient collaborative learning methods for updating the
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semantic coders in 6G networks is essential.

Several studies investigate the employment of SemCom for AEC devices. Kang

et. al [31] proposed a new aerial semantic image transmission paradigm based on

deep reinforcement learning (DRL) to improve the transmission accuracy of UAVs.

In [32], semantic communication was integrated into their presented DRL framework

for increasing communication reliability and decreasing the latency of air-terrestrial

networks. Kang et. al [33] introduced a task-oriented semantic communication

framework for UAVs. The UAV sends only the necessary images to the required

users rather than all images, thus reducing its energy consumption. Nevertheless,

these existing studies for semantic communication much more concentrate on AEC

devices but neglect to take into account the in
uence of SemCom in AENs.

In SAT networks, adopting SEC for users in remote areas or disaster zones has

been recently investigated in [34] and [35]. The authors in [34], and [35] mainly

focused on developing o�oading decisions that minimise o�oading delay or energy

consumption for cases where users have direct radio links to the satellites. (e.g.,

in C-Band). An alternative access scenario is proposed in [36], where the user

transmits to the SEC indirectly through an intermediary TST. In this approach,

the user transmission to the TST is on a C-band radio link and TST communicates

to the SEC through a K-band radio link. Wang et al. [37] also proposed a dual-edge

cloud network, where the edge servers are placed on both BSs and LEO satellites.

In this approach, a BS acts as a TST to assist users with computation o�oading to

the SEC. Similarly, [38] proposed an energy-e�cient strategy for terrestrial users to

o�oad computing tasks to the SEC via TSTs. Tang et al. [39] further investigated

the impact of the core cloud on users' o�oading decisions. They then proposed

a minimal energy consumption computing o�oading decision method, where users

access SEC directly. The above approaches often limit their investigations to one

connectivity scenario between the users and the SEC, while considering only part

of the performance (e.g., energy or latency) and overlooking the potential privacy

issues associated with o�oading users' tasks elsewhere. Further, SemCom was also
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not integrated.

A few resource-optimal studies have also been proposed for SemCom-assisted

networks. Yan et. al [40] de�ned the semantic spectral e�ciency optimisation for

resource allocation in terms of channel assignment and the number of transmitted

semantic symbols. In [41], compression ratio and resource allocation were optimised

jointly to maximize the success probability of tasks. Furthermore, quality-of-

experience aware resource allocation in terms of the number of transmitted semantic

symbols, channel assignment, and power allocation was introduced in [42]. However,

these allocation strategies focus more on communication cost than on computation

cost. In addition, they also ignore the privacy, the resource variations associated

with online training of semantic coders and the di�erences in the speci�c application

scenarios of SemCom.

2.5 Summaries

Therefore, there are extremely limited studies on integrating SemCom systems in

6G networks. In addition, SemCom deployment in networks faces the problem of

semantic coder updates and the new problematic resource allocation concerns it

entails that also urgently need to be resolved. In this thesis, SemCom systems

for various potential 6G 3D networks will hence proposed and developed. Moreover,

SemCom coder updating mechanisms and resource allocation schemes will presented

for proposed SemCom systems with comprehensive consideration of communications

and computing costs, as well as potential privacy risks.
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Chapter 3

Terrestrial Vehicular SemCom

System

3.1 Introduction

In this chapter, the challenges of SemCom in terrestrial vehicular networks are

analysed and investigated. How to e�ciently update semantic coders in the

network in real-time is amongst the main challenges for the SemCom system design.

Nevertheless, the existing studies are extremely limited in addressing this challenge

of SemCom as mentioned in Chapter 2. I can summarise the deployment of

the existing frameworks for SemCom, i.e., frameworks based on FL, in vehicular

SemCom networks for task o�oading faces the following challenging questions:

Q1: Encoders that extract semantic information from di�erent vehicles may

have di�erent models. This prevents the vehicle from participating in coder model

aggregation for FL.

Q2: FL requires the entire coder (encoder and decoder) to be trained on the

vehicle. This however signi�cantly increases the computational workload on the

vehicle. In addition, the required storage of the trained decoder model for each type

of transmission content increases the vehicle's storage overhead.

Q3: The high mobility of vehicles also presents the challenge of selecting
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appropriate vehicles for collaborative training. There is also a trade-o� to be made

in terms of technical factors such as training delays, and energy costs.

In this chapter, I provide tractable solutions to these questions. Split learning

(SL) [43] is a new distributed training approach proposed in the ML domain recently.

However, it is also not applicable to vehicular semantic networks. The loss value

required for trained coder updating is unavailable in a dynamic vehicle environment

due to the SL splitting the training model to be trained on di�erent devices. In

this chapter, I show that combining the advantages of FL with SL is a potential

scheme for semantic coder updating in mobile vehicular networks. I propose a

mobility-aware split-federated learning framework to address these urgent needs for

considered vehicular SemCom networks. A TL [13] paradigm for vehicular SemCom

is then proposed to be integrated into the presented framework by employing part

of the trained encoder. I refer to our proposed mobility-aware split-federated with

transfer learning framework as MSFTL. Moreover, a high-mobility training energy

optimisation mechanism for MSFTL is also presented based on the Stackelberg game.

The rest of this chapter is organised as follows: Section 3.2 presents the vehicle

SemCom system model. The proposed MSFTL framework and the analysis of its

computing and communication overhead are presented in Section 3.3. In Section

3.4, the game theoretical mechanism design is proposed for resource optimisation.

Section 3.5 presents the simulation results showing that our proposed framework

and mechanism achieve excellent performance. Finally, this chapter is concluded in

Section 3.6.

3.2 System model

In this section, I �rst introduce the vehicular SemCom network tra�c model, and

then the vehicle computational and communication workload models are presented.
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3.2.1 Vehicle SemCom model

In this chapter, I assume a set of TECs,f 1; 2; :::; m; :::; M g, is deployed on roadside

units (RSUs) or base stations (BSs) and a set of vehiclesf 1; 2; :::; n; :::; Nmg is in

the service range of TECm (Figure 3.1). Further, there are I m vehicles in TEC

m's range that participate in the DLJSC coder model training. Di�erent vehicles

transmit the o�oading content via various models of DLJSC encoder to the TEC,

where the TEC receives it via a DLJSC decoder. When the vehicle or TEC semantic

knowledge base is scarce, vehicles need to be selected for participation in the training

based on the vehicle`s velocity. According to [44], I can have the average velocity

(km/h) �vm of Nm vehicles in the service range of TECm as:

�vm = maxf vmmax = (1 �
Nm

Nmmax

); vmmin g; (3.1)

wherevmmax is the maximum vehicle velocity that can be driven within the service

range of TECm. I assume roads in the TEC service range are uniform and have the

same permissible maximum vehicle velocity. Similarly,vmmin is the vehicle velocity

when the road is congested. Further,Nmmax is the maximum allowable number

of vehicles in TEC m's service range on the road. In the case of free-
ow tra�c

conditions, the velocity of a vehiclen in the service range of TECm, vn;m is a

normally distributed random variable with the probability density function given by

[44]

f (vn;m ) =
1

p
2��

e�
( vn;m � �vm )

2� 2 ; (3.2)

where � = k�vm and vmmin = �vm � l �vm . The two-tuple (k; l ) is subject to the tra�c

activity observed in real-time. I can also rewrite it as:

f̂ (vn;m ) =
f (vn;m )

Rvm max
vm min

f (vn;m )dvn;m
=

2f (vn;m )

erf(vm max � �vmp
2�

) � erf(vm min � �vmp
2�

)
: (3.3)

3.2.2 Computing and communication model

I consider a vehicle computing o�oading scenario, where vehiclen in the service

range of TEC m has a task with data sizekn;m to o�oad. Further, I assume the
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Figure 3.1: Vehicles in the network.

size of training data to be computed by this vehicle during coder model training is

dn;m . I write the training delay of one epoch as:

Tn;m =
dn;m

f n;m
; (3.4)

where f n;m is the CPU-cycle frequency of vehiclen with the unit cycles/s. The

energy cost is [38]

En;m = pc
n;m Tn;m = "f 3

n;m
dn;m

f n;m
= "dn;m f 2

n;m ; (3.5)

where" is the energy parameter depending on chip [45] andpc
n;m is computing power.

According to the Shannon theory, the communication delay for transmitting a

task kn;m should be

tn;m =
kn;m

rn;m
=

kn;m

Bn;m log2(1 + pn;m gn;m

� 2
0

)
; (3.6)

where rn;m is the transmission rate. Further, Bn;m is the bandwidth, pn;m is

transmission power andgn;m is the channel gain. Thus, the transmission energy

cost is

en;m = pn;m tn;m : (3.7)

SemCom di�ers from traditional communication in spectral e�ciency research

[40],[46]. Conventional communications focus on unit bandwidth rates, while

SemComs focus on e�ective semantic information delivered per second. I also

consider that in practical signal transmission, the transmission process of SemCom

is still based on traditional communication theory as described above.
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3.3 MSFTL for vehicle SemCom

In this section, the new TL-based approach for the vehicle network QoS enhancement

is presented. I also present the details of our proposed MSFTL framework. Finally,

I compare the computational and communication cost of the proposed MSFTL

framework with that of the conventional FL framework.

3.3.1 Transfer learning for vehicle SemCom network

The successful application of Autoencoder, a deep unsupervised learning model,

has recently been demonstrated in the design of SemCom architectures [16], [47],

[48]. It extracts the input features by downscaling features via the encoder and

subsequently the image is recovered through the decoder. The autoencoder training

process entails converting inputs,x , into intermediate feature variablesy via the

encoder part. Therefore, variables,y , are converted into ~x by the decoder part.

Finally, inputs x and outputs ~x are compared to ensure that they are both in�nitely

close. Nevertheless, training from scratch often takes a long time and a signi�cant

number of samples. Depending on the network composition of the autoencoder,

such as based on transformer [20] or convolutional neural network (CNN) [15], the

training time varies.

To address these challenges, I propose a TL approach. In this approach, I develop

the un-updated DLJSC encoder model in two parts: the pre-training model, and

�ne-tuning layers. Every vehicle allows having various types of the pre-training

model. The pre-training model is a part of the encoder model which is the vehicle

encoder that has been trained over a long period of time with a large amount of

data. However, this model is not well suited to the required training task of feature

extraction. Hence, in our model, the last layers of the vehicle semantic encoder

are replaced with the same type of untrained layers. The replaced layers are called

�ne-tuning layers which are trained for a speci�c task. The vehicle does not need

to retrain the pre-trained model again. Only the last few layers of the encoder need
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to be trained. Furthermore, to alleviate the small sample size issues, �ne-tuning

layers are trained together at the edges, as speci�ed below. Therefore, vehicles only

need to ensure the last few layers of the encoder have the same model. The storage

resource required and training costs for di�erent missions are thus reduced.

3.3.2 MSFTL design

Considering the pervasive case of semantic coders update, I propose a novel training

framework based on split-federated learning for vehicle SemCom networks. SL is a

collaborative learning approach in distributed systems designed to learn models for

clients [43]. SL splits the model into two parts, one on the decentralised clients and

another one on a centralised server. Multiple clients jointly train a shared model on

the centralised server together with their part of the model. Therefore, it enables

data information sharing and reduces the computational load. FL [30],[49] is also

a distributed collaborative learning approach, where clients train the entire model

and �nally aggregate the model weight on the server. Thus protecting privacy and

enabling the indirect sharing of data. The aggregation method generally employs

the widely adopted Federated Averaging (FedAVG) algorithm [50],[51]. It is based

on the weighted average for weight aggregation.

Nevertheless, SL is not very suitable for training server models as the calculation

of loss values requires private raw data that is not available at the same place

as the loss value calculation. Further, FL requires identical models for federated

aggregation which means FL require the same encoder model in our considered

vehicular semantic networks. Therefore, based on the above, neither of these

traditional frameworks can be applied to the vehicle SemCom network as they

face the Q1-Q3 and privacy challenges. In our proposed MSFTL (Figure 3.2),

the advantages of both SL and FL are sustained, while the mentioned challenges

are also tackled. The coder is split into four parts during training, including the

pre-training model P1, the �ne-tuning layers P2, the TEC private decoder (part of

the decoder)P3 and the last layer of the decoderP4. The entire model is split but
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Algorithm 1 MSFTL for vehicular semantic communication
After con�rming trainable vehicles

Vehicle Execution:

Batch size: J

1: for each local epocha = 1; 2; :::A

2: From EC m get Pm
4 weight parametersW a� 1

4

3: for each vehicle involved in trainingn = 1; 2; :::I

4: From EC m get Pm
3 forward propagation output ~x n

3

5: for each local batchbn = 1; 2; :::

6: Forward propagation in Pm
4 and get output ~x i

4

7: Lossy  � 1
J

P J
j =1 (xn

j � ~x n
4;j )

8: Get backpropagation output ~x i 0

4 and send back~x i 0

4

9: Update W a
4;n

10: end for

11: Transmit W a
4;n to EC m

12: end for

13: end for

EC m Execution:

1: From each vehiclen involved in training get Pn;m
1 output ~x n

1

2: for each epocha = 1; 2; :::; A

3: Forward propagation in Pm
2 and Pm

3 , and get output ~x n
3 for each vehiclen

4: After vehicles training ...

5: Get ~x n 0

4 from vehicles and perform backpropagation

6: Update W a
2 & W a

3

7: Get W a
4;n from vehicles

8: Update W a
4;n

9: end for
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Figure 3.2: The functional block diagram of the proposed MSFTL.

trained together. Trainable vehicles are selected based on factors such as velocity,

and computational capability. I will elaborate on the details in the next section.

The SemCom model update algorithm is shown in Algorithm 3.1. Firstly,

the trainable vehicles and training data are identi�ed. These are based on the

Stackelberg game based resource optimisation mechanism. We will elaborate on the

details in the next section.

In the coders' training process, the pre-training model,P1, and the last layer of

the decoder,P4, are trained on the vehicle while �ne-tuning layersP2 and the EC

private decoderP3 are trained on the EC.

For a trainable vehicle n in EC m's range, the fuzzy features~x n;m
1 are �rst

extracted from training samplesx n;m . The features ~x n;m
1 are obtained through a

freezing pre-training modelPn;m
1 and transmitted to the EC m. Subsequently, the

EC m treats fuzzy features~x n;m
1 as inputs and start the training cycle. In one epoch,

the EC uses~x n;m
1 performing forward propagation training of the �ne-tuning layer

Pm
2 and the EC private decoderPm

3 . The results of the forward propagation from
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Pm
3 , i.e., ~x n;m

3 , are sent to the corresponding vehiclen. The corresponding vehicle

n then trains the last layer of decoderPn;m
4 and gets output ~x n;m

4 . Thereafter, the

vehicle gets the loss valueLn;m by comparing the variability between source message

x n;m and forward propagation output ~x n;m
4 . The backpropagation process is then

carried out based onLn;m and returning along with the same path until �ne-tuning

layersPm
2 . Finally, since the last layer of the encoderPn;m

4 has only been trained for

a single vehicle, a federated aggregation is required to guarantee that the decoders

are identical.

The vehicles participating in the training send it to ECm for aggregation, which

then returns the aggregation resultPm
4 to each sending vehicle. All vehicles involved

in the training complete a training epoch after performing the process once. After

the training, Pn;m
1 and Pm

2 forms the vehiclen's DLJSC encoder. Similarly,Pm
3 and

Pm
4 forms the EC's DLJSC decoder. During the whole process, the user's private

information Pn;m
1 and x n;m is not leaked, i.e., the client encoder models can be

di�erent, and the privacy of clients is protected. The vehicle only needs to replace

the �ne-tuning layer for di�erent transmission contents, thus reducing the vehicle's

storage load.

3.3.3 Comparison of computing and communication over-

head

For vehicles, regardless of the employed collaborative learning framework, a certain

degree of computational and communication load is expected. Neither FL nor SL is

applicable to the vehicle SemCom network due to theQ1-Q3 and privacy challenges.

However, to enable making the employment of FL, I can assume that the vehicle

encoder models are the same. To further validate the advantages of our MSFTL in

the following, I compare the computational and communication load of the existing

FL framework with the proposed MSFTL for the same encoder model.

I assume the total number of training epochs ise. The computational delay of

the vehiclen in the service range of TECm to be consumed by the model update
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in the FL framework is expressed as:

TF L
n;m = Dn;m

dP

f n;m
e; (3.8)

wheredP is the size of the computation required for the coder model of one training

data in one epoch andDn;m is the number of training data from vehiclen. Therefore,

the required energy for computations is

E F L
n;m = �D n;m dP f 2

n;m e: (3.9)

In contrast to FL, the imposed computational delay and energy of the proposed

MSFTL can be expressed as:

TMSF T L
n;m = Dn;m (

dP n;m
4

f n;m
e+

dP n;m
1

f n;m
); (3.10)

E MSF T L
n;m = �D n;m (dP n;m

4
f 2

n;m e+ dP n;m
1

f 2
n;m ); (3.11)

where dP n;m
1

is the size of the computation needed to derive the output ~xn;m
1 from

the pre-trained model. Furthermore,dP n;m
4

is the training computation load of the

�nal layer of the decoder. Hence, for the same coder model,

dP > d P n;m
1

+ dP n;m
4

: (3.12)

I can also write:

TF L
n;m > T MSF T L

n;m ; (3.13)

E F L
n;m > E MSF T L

n;m : (3.14)

Therefore, our proposed framework requires a lower computational cost in

vehicles than FL.

I express the communication cost during training in terms of communication

rounds for visual representation. FL requires clients to o�oad the trained model

weights to the TEC and return them after TEC aggregation in each training epoch.

FL therefore communication load of vehiclen is

CF L
n;m = 2! pe; (3.15)
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where ! p is the size of coder model weights. Therefore, the communication cost of

federated the last layer of the decoder is

C1MSF T L
n;m = 2! pn;m

4
e; (3.16)

where! pn;m
4

is the size of the last layer of the decoder weights. As MSFTL requires

the client to �rst send the pre-trained model output ~xn;m
1 to the TEC, the TEC and

client need to perform forward and backpropagation of the �nal layer of the decoder.

The split training communication load is therefore

C2MSF T L
n;m = On;m

1 Dn;m + 2On;m
3 Dn;m ep; (3.17)

whereOn;m
1 and On;m

3 are the number of output layer neurons of pre-trained model

Pn;m
1 and partial decoder modelPm

4 , respectively. Thus, the total communication

load of the proposed MSFTL is

CMSF T L
n;m = C1MSF T L

n;m + C2MSF T L
n;m = 2e(! pn;m

4
+ On;m

3 Dn;m ) + On;m
1 Dn;m : (3.18)

Sincee is usually a large number, I have 2e(! pn;m
4

+ On;m
3 Dn;m ) >> O n;m

1 Dn;m .

Therefore, I ignoreOn;m
1 Dn;m in the comparison. Hence, the comparison of the

communication cost of the FL and MSFTL can be expressed as! p versus! pn;m
4

+

On;m
3 Dn;m . I can conclude that MSFTL is more communication e�cient in case

the amount of the coder model weight is larger, otherwise, FL performs better.

Nevertheless, FL only applies to special cases where the encoders of all vehicle

models are the same. In contrast, our proposed MSFTL not only adapts to variable

network environments but also performs better in terms of computational load.

3.4 Stackelberg game based resource optimisa-

tion mechanism

In this section, I present a high-mobility training energy optimisation mechanism

for the MSFTL. The mechanism is based on the Stackelberg game, which jointly
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takes into account vehicle mobility and minimises training energy costs. First, I

present the game at vehicles in the mechanism and the selection of training vehicles

considering mobility. I then introduce the design of the game at the TEC and

present mechanism optimisation formulation and its solution.

3.4.1 Game design at the vehicles

It is important to ensure that the vehicle has su�cient training time before training.

First, I analyse the available training time for the vehicle. I assumeDn;m is the

number of training data participants training from vehiclen in the range of TECm

and D max
n;m is the maximum available training data from vehiclen. Further, I assume

that the communication status of vehiclen remains constant during training. The

duration of the training can be expressed as:

	 n;m = Dn;m (
dP n;m

4

f n;m
e+

dP n;m
1

f n;m
+

zOn;m
1 + 2zOn;m

3 e
Bn;m log2(1 + pn;m gn;m

� 2
0

)
) +

P I m
n Dn;m (

dP m
2;3

+ dP m
4

f m
)e;

(3.19)

wherez is the parameter to convert the data number to the size to be transmitted

and f m is the CPU-cycle frequency of TECm. Further, dP m
2;3

is the training

computation size ofPm
2 and Pm

3 , and dP m
4

is federated aggregation computation

load. Moreover,I m is the number of trainable vehicles and
P I m

n Dn;m denotes the

total number of training data submitted from the trainable vehicles. For simplicity,

I set

	 n;m = Dn;m � n;m +
I mX

n

Dn;m (
dP m

2;3
+ dP m

4

f m
)e: (3.20)

The vehicle residence time can be estimated as:

K n;m =
hn;m

�vm
; (3.21)

where hn;m is the distance that the vehiclen travels out of the TEC m's service

range. Moreover, �vm is the vehicles' average velocity in TECm's service range

mentioned in Section 3.2. To ensure learning e�ciency,hn;m is considered as the

shortest distance at multiple forks in the road. Therefore, trainable vehicles should
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satisfy 	 n;m � K n;m , that is

D min
n;m � Dn;m � Dn;m

K n;m

	 n;m
; (3.22)

whereD min
n;m is the minimum training data required to guarantee accuracy.

Once suitable trainable vehicles have been identi�ed, semantic coder model

training can be initiated. I mainly consider the computational and communication

energy cost of the vehicle during training. Energy cost is de�ned as cost and the

cost of vehiclen can be denoted by

� n;m = E MSF T L
n;m + Dn;m

zpn;m On;m
1 + 2zpn;m On;m

3 e
Bn;m log2(1 + pn;m gn;m

� 2
0

)
: (3.23)

Nevertheless, the vehicle is not necessarily willing to participate in the training

due to the di�erent situations faced. Su�cient data is one of the guarantees of

model accuracy. I hence set a pricing function and design a game for the vehicles

to incentivise the vehicles to participate in the training. To ensure fair allocation of

bonuses, I use a weight-sharing model commonly used in the game bonuses design.

I write

Rn;m =
! n;m Dn;m

P I m
n ! n;m Dn;m

Rm ; (3.24)

whereRm is the total bonus from the TEC and! n;m is the coe�cient depending on

the quality of vehicle communication as it a�ects the quality of transmitted data.

Here, Rn;m and Rm have no unit, they are numerical values and they are judged

by comparing the magnitudes. The corresponding coe�cient of vehiclen is ! n;m .

Hence, I have the utility function of the game at vehicles as:

� n;m = �R n;m � � � n;m ; (3.25)

where � and � are normalisation factors enable�R n;m � 1 and � � n;m � 1. This

allows the utility function to be a pure numerical function and the utility value is a

unitless number. I can further de�ne the vehicles' game problem as:
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Problem 3.1:

max
D n;m

�R n;m � � � n;m ; (3.26a)

s:t: D n;m � D min
n;m ; (3.26b)

Dn;m � Dn;m
K n;m

� n;m
: (3.26c)

3.4.2 Game design at the TEC

In this subsection, I design the game at the TEC and its utility function. I assume

the accuracy of the model is related to the amount of training data. The objective

of the TEC is to minimise the reward o�ered while satisfying the minimum QoS

(accuracy) after training. Without loss of generality, the TECm's utility is de�ned

as:

Um , 
 
 � �R m ; (3.1)

where
 and � are normalisation factors and 
 is a function related to the accuracy

of the training model. As the relationship between the amount of training data and

the accuracy of the model shows an increasing trend with a gradual decrease in the

rate of growth in our simulation (Figure 3.7). I thus use a logarithmic function to

model the 
 as:


 , ln(1 + �
I mX

n

Dn;m ); (3.2)

where� is a parameter related to the training model. Further, it is limited to more

than minimum permissible the accuracy 
min and less than the maximum accuracy


 max possible for the model. The game problem at the TEC thus can be written as:

Problem 3.2:

max
Rm


 ln(1 + �
I mX

n

Dn;m ) � �R m ; (3.3a)

s:t: Rm > 0; (3.3b)


 min < ln(1 + �
I mX

n

Dn;m ) � 
 max : (3.3c)
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3.4.3 Optimal solutions and equilibrium analysis

NE Existence: Problem 3.1 (follower) and Problem 3.2 (leader) form a Stackelberg

game. I assumeD �
n;m andR�

m are the optimal solutions for Problem 3.1, and Problem

3.2, respectively. Thus, the game needs to satisfy the following equation to reach

Stackelberg Equilibrium (SE) point(s)

� (D �
n;m ; R�

m ) � � (Dn;m ; R�
m ); (3.1)

U(D �
n;m ; R�

m ) � U(D �
n;m ; Rm ): (3.2)

It is found from Problem 3.1 that the strategy set at vehicles is compact and

convex. Further, as the second order partial derivative is less than zero, i.e.,
@2 � u;m

@D2
n;m

= �
2! 2

n;m Rm
P I m

j;j 6= n ! j;m D j;m

(
P I m

j;j 6= n ! j;m D j;m + D n;m ! n;m )3 < 0, the utility function is continuous and

concave inDn;m . Thus, according to the Debreu-Glicksberg-Fan theorem a pure NE

exists [52].

I then employ classic backward induction to �nd SE points. The optimal

strategies for vehicles are obtained �rst, followed by the optimal strategy for the

TEC. If the vehicle residence time is less than the minimum trainable time, i.e.,

K n;m < 	 n;m (D min
n;m ). Then Dn;m � = 0. If K n;m � 	 n;m (D min

n;m ), by deriving the �rst

order partial derivative of (3.26a) with respect toDn;m , I have

@�n;m

@Dn;m
= �

! n
P I m

j;j 6= n ! j;m D j;m

(
P I m

n ! n;m Dn;m )2
Rm �

� � n;m

Dn;m
: (3.3)

For simplicity of presentation, I set Hn;m = � � n;m

D n;m
. In case that (32) equals

0, the optimal training data obtained as f n;m (D �
n;m Rm ) =

r
�R

P I m
j;j 6= n ! j;m D j;m

! n;m H n;m
�

P I m
j;j 6= n ! j;m D j;m

! n;m
and the TEC's utility function can be written as:

Um = 
ln (1 + �
I mX

n

f n;m (D �
n;m ; Rm )) � �R m : (3.4)

Due to the high complexity and multiple constraints, sub-games NE cannot be

derived in a closed form. Therefore, I solve the game in two segments through

numerical search. In the �rst step, I employ the simplicial method [53] to achieve
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Algorithm 3.2 Stackelberg game-based energy optimisation mechanism

1: Set the maximum number of iterationsK , and learning rate�

2: Set initial positive numbers forR and D i

3: while k < K

4: D i (k)  �

r
�R

P I m
j;j 6= n ! j D j

! i H i
�

P I m
j;j 6= n ! j D j

! i

5: D �
i (k)  � constraints andD i

6: U(k)  � R(k) and D �
i (k)

7: R(k + 1) = R(k) + �

8: end while

9: Find the maximum U(k) and correspondingR(k) and D �
i (k)

10: return R(k) and D �
i (k)

each Dn;m `s optimal decision by solving a piecewise linear approximation of the

problem while holding Rm �xed. Subsequently, f n;m (Dn;m ; Rm ) is substituted in

(3.33), Rm is updated using the two-dimension grid search, andRm is substituted

back into the �rst step. Dn;m and Rm thus iteratively tighten until convergence.

The solution algorithm is shown in Algorithm 3.2.

3.4.4 MSFTL

3.5 Simulation results

In this section, I evaluate the performance of the proposed MSFTL and optimisation

mechanism. First, I compare the proposed MSFTL framework with the existing FL

framework for SemComs in terms of convergence speed, and accuracy. Then, the

advantage of the presented optimisation mechanism based on the Stackelberg game

is assessed in a variety of di�erent scenarios.

I �rst elaborate on the simulation settings in evaluating the performance of

our proposed framework and ignore the communication noise when training. The
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Table 3.1: The setting of the CAE in the proposed semantic network framework.

LayerName Number of neurons

Conv+ReLU 128

Pre-training model Conv+Pool+ReLU 64

Conv+Pool+ReLU 32

Fine-tuning layer Conv+Sigmoid 10

transConv+ ReLU 10

TEC private decoder transConv+ ReLU 32

transConv+ ReLU 64

Final layer of decoder transConv+ Sigmoid 128

adopted SemCom model is based on convolutional autoencoder (CAE) [15], the

details of the CAE setting are shown in Table 3.1. Since the baseline frameworks

for SemCom networks are limited and all based on FL, e.g., [30],[49], to enable

the FL to operate in a vehicle SemCom network, I assume all users have the same

encoder model and the same degree of pre-training. Further, training and pre-

training datasets employed are CIFAR 10 and CIFAR 100 [54], respectively. They

are both composed of a 50,000-image training set and a 10,000-image test set. The

di�erence is that CIFAR 10 has 10 classes, while CIFAR 100 has 100 classes.

In order to more realistically verify the performance of the proposed framework

in the case of vehicle task o�oading, I set the experimental environment to

object/image recognition after computing o�oading. I validate the classi�cation

of the transmitted images using a fully trained VGG16 [55] network, and its

accuracy comparison with the images before transmission visualizes the performance

of the frameworks. I also assume the similarity of the recognition accuracy of the

object/image after transmission in VGG16 compared to before transmission as the

SemCom model accuracy. In addition, the number of users involved in the training

of our network is 10 and the sample set is divided randomly and equally into 10

copies, if not stated in particular.
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Figure 3.3: Convergence speed comparison of di�erent frameworks.

Figure 3.3 illustrates the performance of the proposed MSFTL in terms of

convergence speed. I set the batch size as 64 and compared the proposed MSFTL

with the FL framework and the MSFTL without the TL model. I can observe

that as the number of training times increases, the loss values of each approach

gradually decrease and eventually plateau. The decrease curve of the MSFTL

without TL almost coincides with FL, proving that both sides can achieve almost

similar performance in terms of convergence. Nevertheless, our proposed MSFTL

convergence rate and the �nal loss values achieve a very signi�cant outperformance.

This is because the pre-training model accelerates the training and a well improves

the model feature extraction capability.

Figure 3.4 presents the image o�oading accuracy of CAEs trained by di�erent

training frameworks for di�erent numbers of participating vehicles. It can be

seen that the accuracy of all the training frameworks increases as the number of

participating vehicles increases. This is because the increase in the number of

participating vehicles leads to an increase in the total training sample. Furthermore,
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Figure 3.4: Accuracy of di�erent frameworks.

our proposed MSFTL consistently achieves the optimal transmission/o�oading

accuracy as varying numbers of vehicles are involved in the training. This increases

the QoS of vehicle task o�oading. Moreover, although the accuracy is not smoothly

increasing as the number of vehicles (samples) increases due to the stochastic

property of machine learning, it is still noticeable that the trend is similar to the

log function. It validates Eq. (3.28) in our game design.

Figure 3.5 shows the computing cost of the vehicle under di�erent training

frameworks. For comparison purposes, I de�ne the computing cost as the number

of neurons that need to be computed in the forward and backpropagation of the

vehicle in one Epoch. Vehicles are not limited to aggregating only the last layer

of the encoder. Furthermore, FL is set to a constant value due to its aggregation

of all weights. It can be observed that the vehicle computing cost increases as the

number of layers to be aggregated increases. When all the last �ve layers need to be

aggregated, it has the same computing cost as FL. This is because all the network

models are trained on the vehicles at that moment. Our proposed MSFTL reduces
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Figure 3.5: Computing cost of di�erent frameworks.

the backpropagation overhead of the pre-training model due to the presence of TL

so that the vehicle computing cost is always kept at the lowest of all frameworks.

Further, the aggregation of the last layer decreases the computing cost for the vehicle

and simultaneously mitigates the risk of model privacy leakage.

Figure 3.6 evaluates the communication cost of the di�erent frameworks in one

Epoch. As the analysis in Session III-C, our proposed framework communication

cost involves the federated aggregation communication costC1 versus the split

training communication cost. For simplicity in examining communication overhead

trends, I still assume that the federated aggregation communication cost is related

to the number of neurons. In addition, I set� as a weighting parameter indicating

the split training communication overhead versus the number of neurons for di�erent

amounts of training data. Thus,C2 , � � number of neurons. The increase of�

implies an increase in the amount of training data.

It can be seen in Figure 3.6, similar to Figure 3.5, that the FL communication

cost is independent of the amount of training data and thus remains �xed to a

constant value. As� increases, the communication cost of proposed MSFTL and
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MSFTL without TL also increases. Moreover, in case� is small, our proposed

MSFTL achieves less communication cost, otherwise, FL achieves less. This is

because as the amount of training data increases, the number of samples transmitted

by the vehicle to the edge for training increases. Therefore, the communication

cost incurred during forward propagation versus backpropagation communication is

increasing. Furthermore, our proposed MSFTL always has less communication cost

than without TL due to the reduced times of backpropagation.

Figure 3.6: Communication cost of di�erent frameworks.

Figure 3.7 evaluates the performance of the novel TL approach for the proposed

learning framework in the presence of sparse training samples. The proposed

MSFTL is comparable to the MSFTL without TL in the case of only one vehicle.

It can be viewed from the �gure that as the number of samples increases, all the

frameworks' accuracy increases. However, compared to the MSFTL without TL,

the MSFTL achieves a performance that far exceeds MSFTL without TL accuracy.

This demonstrates the signi�cant contribution of the proposed TL-based learning

approach to improving the system performance in the case of sparse training samples.
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3.5.1 Optimisation mechanism

I show the simulation results in evaluating the performance of our optimisation

mechanism in this subsection. To demonstrate the e�ectiveness of our game

theoretical mechanism more intuitively, I assume all vehicles involved in the training

have the same conditions (such as CPU cycles, velocity etc. Thus, in case Eq. (3.32)

equals 0, Eq. (3.33) can be written as

Um = 
ln (1 + �
�R m (I � 1)

I mHn;m
) � �R m : (3.5)

I set 
 = 0:13, � = 10, � = 0:08 and� = 8:5 to approximate the simulation results

in Figure 3.4. The maximum accuracy is set as 98% and the training epoch is set

as 100 simulation results above. Similarly, the data set is divided into 100 parts,

D min
n;m = 1 and D max

n;m = 2:5. In addition, I use Hn;m to denote the data unit training

cost and � (n;m ) = 20 s. The computation capability f m allocated to each vehicle is

3 Gcycles/s [39] and computational size requireddP m
2;3

+ dP m
4

of TEC m is 30 MB.

Figure 3.7: Accuracy of di�erent frameworks with sparse samples.
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Figure 3.8: Reward impact on training data number.

In Figure 3.8, I investigate the in
uence of bonuses on the number of training

data in di�erent unit costs. I assume that the residence time of all vehicles is

su�cient. It is seen that vehicles are less to participate in training at low bonus

values. Because low bonus results in low motivation. As the bonus value increases,

the vehicles perform more training data, with higher-cost vehicles willing to train

fewer data. Eventually, the same amount of data is trained and remains the same

for vehicles with di�erent unit costs. This is because, at a high bonus value, the

TEC is limited by the maximum accuracy, so the amount of training data no longer

changes.

Figure 3.9 illustrates the variation in training unit cost for di�erent residence

times and mechanisms. It is seen that the vehicle does not have enough time to train

the most appropriate amount of data at a short residence time and therefore vehicles

with di�erent costs provide the same training data. The amount of data increases

as the residence time increases, but the proposed mechanism in di�erent costs

reaches stability successively at di�erent residence times. This is because the optimal
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Figure 3.9: Total training time versus various residence time.

number of data for vehicle participation in training has been reached. The method

without the game continues to grow and results in more energy costs. Moreover, our

mechanism is less than or equal to the non-game theoretical mechanism in all cases.

This demonstrates the e�ectiveness of our mechanism in reducing energy costs.

3.6 Summaries

In this chapter, I designed a new vehicle SemCom framework, named MSFTL. It

divides the trained DLJSC coder into four parts and utilises the proposed split

federated learning for training, which can adapt to complex and various vehicle

o�oading scenarios. Further, in the proposed framework, I presented a novel

approach based on TL to speed up training as well as increase its accuracy. In

particular, this approach performs excellently in a low training sample environment

and reduces computing and communication costs. Moreover, an e�cient high-

mobility energy optimisation mechanism for MSFTL was proposed. It was designed
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based on the Stackelberg game theoretic by jointly taking into account vehicle

mobility and semantic model accuracy. I have also conducted simulation experiments

to evaluate our proposed framework and energy optimisation mechanism. The

simulation results demonstrated the e�ectiveness of our learning framework and

mechanism. In the next chapter, the optimisation mechanisms for one of the

extended 6G networks, i.e., air-terrestrial networks, will be investigated.
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Air-terrestrial SemCom System

4.1 Introduction

In this section, the challenges of SemCom in air-terrestrial networks are analysed

and investigated. We �rst summarised several signi�cant outstanding challenges

for SemCom in AENs. First, the implementation of SemCom in AENs raises the

sophisticated network energy optimisation challenge. Because SemCom shifts part

of the communication load to the computational load to increase spectral e�ciency.

The transformation of energy utilisation locations poses an extra energy optimisation

issue to AENs that inherently require energy e�ciency improvements. How to

develop an energy-e�cient SemCom architecture for the air network and how to

optimise the energy e�ciency of SemCom is hence an essential concern.

Furthermore, SemCom requires real-time updating ML-based semantic coders

for various speci�c content [7]. The existing FL framework for updating semantic

coders in general networks [11], [12] however faces several challenges in AENs. For

instance, the distributions of training data from di�erent coder owners are frequently

not independent and identically distributed (Non-IID) [56]. Furthermore, as the

AEN is sophisticated and AECs are energy-limited, the energy e�ciency of the

learning framework has to be considered. How to timely update the semantic coder

accurately and energy-e�ciently in an AEN with Non-IID training data thus is a
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challenge for SemCom to apply in AENs.

In this chapter, we propose a novel energy-e�cient SemCom system for AENs.

We also discuss the resource allocation problem during SemCom usage. A new

EGTIM based on the proposed system is presented to optimise the network energy

e�ciency fairly. In addition, we propose a GEDL framework for semantic coders

updating in AENs. It renews the proposed EGTIM and combines EGTIM with

a conventional distributed learning approach to update semantic coders accurately

and e�ciently in terms of energy consumption.

The remainder of this chapter is organised as follows. We describe the proposed

system model in Section 4.2. In Section 4.3, the game problem formulation and

the proposed EGTIM are presented. Section 4.4 describes the presented GEDL

framework for semantic coder updating in AENs. Simulation results are shown in

Section 4.5. Finally, we conclude this chapter in Section 4.6.

4.2 System model

In this chapter, I consider a three-dimensional edge network aided by an AECj

(Figure 4.1). The TECs provide edge services via semantic coders to subscribers on

the terrestrial. An AEC j with semantic coders hovers in the air and assists TECs

to provide edge services to subscribers. It communicates with subscribers via TECs

which act as relay nodes. The network thus does not share the same spectrum

resources between AEC-TECs and TECs-subscribers. Furthermore, to optimise

the allocation of network energy resources, semantic extraction task locations allow

for replacement by conventional communication transmission, followed by SemCom

calculations and transmission to the subscribers.

I assume that the energy power of AECj lingers in the air is P l
j . The free

computational capability (free CPU-cycle frequency) of AECj is f j . Moreover,

there are I TECs within the service range of AECj that provide edge service to

subscribers. I denote the data size of tasks that each TECi prepare to transmit to
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Figure 4.1: Proposed system model.

subscribers asmi bits. The semantic encoder execution latency of TECi for these

tasks can be expressed as:

TC
i =

ami

f i
: (4.1)

wheref i is the CPU-cycle frequency of TECi to process these semantic compression

tasks and the unit is cycles/s. Further,a is the pure number of CPU-cycle consumed

to calculate each 1-bit [57]. According to [38], the computing power of the TECi

can be denoted by

PC
i = �f 3

i ; (4.2)

where� is the CPU architecture-related coe�cient. I thus have the execution energy

consumption of TEC i for these semantic compression tasks as:

E C
i = �am i f 2

i : (4.3)
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Similarly, in the case of the TECi provides part of the semantic compression

task bits mi;j to the AEC j , the execution latency and energy consumption of AEC

j can be expressed as:

TC
j =

ami;j

f j;i
; (4.4)

E C
j = �am i;j f 2

j;i ; (4.5)

where f j;i is the CPU-cycle frequency that AECj allocate to the task bits mi;j .

To ensure the QoS, in this chapter, we assumef j;i = f i . In addition, during the

semantic compression task providing process, the data transmission rate of the TEC

i to the AEC j can be denoted by

r T
i = B i log2(1 +

pi gi

� 2
); (4.6)

where B i is the bandwidth of the communication channel between the TECi and

the AEC j . Further, pi , gi and � are the transmission power, channel gain and

additive white Gaussian noise (AWGN) power in this channel, respectively. I then

can have the transmission delay as:

TT
i =

mi;j

r T
i

=
mi;j

B i log2(1 + pi gi
� 2 )

: (4.7)

Thus, the transmission energy consumption is

E T
i = pi TT

i =
pi mi;j

B i log2(1 + pi gi
� 2 )

: (4.8)

As the completed semantic extraction task result size is much smaller than the

task size. Resembling [58], [39], we hence ignore the transmit delay and energy

consumption of transmission tasks after semantic compression.
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4.3 Stackelberg game theoretic mechanism design

To improve the AEN energy e�ciency, the fairness optimising assignment of the

number of semantic compression tasks processed by the TECs and the AEC is

essential. I identify that when AEC edge resources are underutilised, more energy

is consumed on air hover. This results in a signi�cant amount of energy being

wasted rather than performing edge services. Therefore, I construct the TECs and

the AEC interaction as a Stackelberg game [52] from the economic perspective.

It incentivises TECs to provide partial semantic extraction tasks to the AEC in

fairness, where the AEC is trusted, thus improving the network energy e�ciency.

The Stackelberg game is comprised of a leader and followers, where the followers

change their policies according to the policies developed by the leader. Thus, the

proposed incentive mechanism consists of the game at the AEC (leader) and the

game at TECs (followers), which I elaborate on in detail in the following two

subsections.

4.3.1 Game at the AEC

Without loss of generality, I de�ne the monetary utility Uj of the AEC j as:

Uj = N j + Rj � B j � Gj : (4.9)

where N j is the net income of AECj to transmit semantic compression tasks to

subscribers andRj is the additional energy cost revenue of AECj gained as a

result of performing provided semantic compression tasks from TECi . Further,

Gj is the gain loss of AECj due to the transfer of some holdup energy to the

additional semantic transmission execution resulting in a reduction of the holdup

time. Moreover, B j is the bonus paid to TECs providing the tasks. I consider the

monetary salaryN j as the energy consumption similar to the previous study [59].

Thus, I have
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N j (m i ;j ) + Rj (m i ;j ) = ( � + � )
IX

i =1

�am i;j f 2
j;i ; (4.10)

where � is the net income monetary parameter and� is the energy cost monetary

parameter.

The gain lossGj depends on the aerial hover time and I de�ne it as gain loss

of not performing its regular tasks. To obtain theGj , I �rst formula the residence

time of AEC j without additional semantic compression tasks as:

T0
j (m i ;j ) =

E j

P l
j + Pn

j + �f 3
j 0

; (4.11)

whereE j is the hover energy of AECj and f j 0 is the CPU-cycle frequency required

for the AEC j to perform its regular tasks. Further,Pn
j is the AEC utilising power

with no economic bene�t. I then have the residence time of AECj with additional

semantic compression tasks as:

T1
j (m i ;j ) =

E j � ej

P l
j + Pn

j + �f 3
j 0

; (4.12)

whereej =
P I

i =1 �am i;j f 2
j;i is the energy consumption of the AECj to execute the

provided tasks. Therefore, I can �nd theGj as:

Gj (m i ;j ) = 
�f 3
j 0(T0

j � T1
j ); (4.13)

where
 is the income monetary parameter. As the energy bene�t that would have

been gained by the sale disappears,
 = � + � .

In addition, I set the unit price of each task bit being transmitted from the TEC

to the AEC to b. The bonus paidB j to TECs providing the tasks can be expressed

by

B j (b;m i ;j ) =
IX

i =1

bmi;j : (4.14)

Therefore, I have
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Uj (b;m i ;j ) = ( � + � )
IX

i =1

�am i;j f 2
j;i �

IX

i =1

bmi;j � 
�f 3
j 0(T0

j � T1
j ): (4.15)

Mathematically, the AEC's game problem can be presented as:

Problem 4.1:

max
b

(� + � )
IX

i =1

�am i;j f 2
j;i �

IX

i =1

bmi;j � 
�f 3
j 0(T0

j � T1
j ) (4.16a)

s:t:
IX

i =1

f j;i � f j (4.16b)

b > 0 (4.16c)

E j > e j : (4.16d)

4.3.2 Game at TECs

Similarly, I can de�ne the utility of a TEC i as:

Ui = B j + Cc
i � N i � Ct

i � Si : (4.1)

I will explain the meaning of this formula in turn. First, B i is the bonus gain of

TEC i from the AEC j . Based on Eq. (4.14), I have

B j (b; mi;j ) = bmi;j : (4.2)

Further, Cc
i is the revenue of the saved computing energy cost of TECi . As it

not performing the provided task locally and save the cost. I can expressCc
i by

Cc
i (mi;j ) = ��am i;j f 2

i : (4.3)

The N i from Eq. (4.17) is the net income forgone of TECi to transmit semantic

compression tasks to subscribers. The net income is transferred to the AEC.

Therefore, similar to Eq. (4.10), I have the net income forgone of TECi as:
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N i (mi;j ) = ��am i;j f 2
i : (4.4)

In addition, Ct
i is the transmission energy income loss from the TECi to the

AEC. As no economic bene�t is generated from this energy, I denoted theCt
i by

Ct
i (mi;j ) = 


pi mi;j

B i log2(1 + pi gi
� 2 )

: (4.5)

Particularly, Si is set as the satisfaction revenue change of TECi due to

the semantic transmission tasks transfer from the TEC to the AEC. The lower

satisfaction results in a lower motivation for subscribers to access the edge services,

resulting in lower gains. In this chapter, I argue that subscriber satisfaction is related

to task processing delay. I hence model the satisfaction revenue as a logarithmic

function related to execution delay. Because the logarithmic function based on

execution delay precisely expresses the satisfaction of subscribers with the edge

services [60], [61]. TheSi can be denoted by

Si (mi;j ) = ' (ln(1 + � � TC
i ) � ln(1 + � � TC

i � TT
i )) ; (4.6)

where ' is the monetary parameter and� � TC
i + TT

i to ensure the satisfaction is

positive. Therefore, I have

Ui (b; mi;j ) = bmi;j + ( � � � )�am i;j f 2
i � 


pi mi;j

B i log2(1 + pi gi
� 2 )

� ' (ln(1 + � � TC
i ) � ln(1 + � � TC

i � TT
i )) : (4.7)

Problem 4.2:

max
m i;j

bmi;j + ( � � � )�am i;j f 2
i � 


pi mi;j

B i log2(1 + pi gi
� 2 )

� ' (ln(1 + � � TC
i ) � ln(1 + � � TC

i � TT
i )) (4.8a)

s:t: 0 � mi;j (4.8b)

pr
i � � (4.8c)
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Algorithm 4.1 EGTIM

1: Initialization: semantic transmission tasksmi , CPU-cycle frequencyf i , the

maximum number of iteration K , the stopping criterion threshold � > 0, and

learning rate �

2: for eachi = 1; 2; :::; I

3: Derive optimal m�
i;j , i.e., f i (b) by @Ui

@mi;j
= 0

4: end for

5: Substitute f i (b) in Uj (b)

6: while k < K

7: b
0
= b� � 5 Uj (b)

8: b
00

= b; b= b
0

9: until b
00

� b < �

10: end while

11: Derive optimal mi;j according to optimal b

12: return b and mi;j

where pr
i is the TEC i 's privacy concern and� is the privacy leakage threshold.

Because even though the AEC is trusted, setting a TEC privacy breach tolerance

value is necessary to prevent possible attacks. It indicates the maximum acceptable

providing task bits. According to [62], I can denote the relationship between transfer

tasks bits and privacy leakage value as:

pr
i = log2(1 + e

1� m i +1
m i;j ): (4.1)

4.3.3 Nash equilibrium for the game

The game of TECs and the AEC can model as a Stackelberg game. To guarantee

fairness, the objective of the TECs is to maximise their utility by simultaneously

selecting the most appropriatemi;j when given the known unit priceb. Meanwhile,
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the AEC's objective is to maximise its utility by varying b, for a known mi;j . The

game can be expressed by

Ui (b � ; m�
i;j ) � Ui (b � ; mi;j ); (4.2)

Uj (b� ; m �
i ;j ) � Uj (b;m �

i ;j ); (4.3)

Where b� and m�
i;j are solutions in which the parties jointly pursue the optimal

strategies, i.e., the NE point(s). First, I demonstrate the existence of NE in this

game.

Existence of NE:

The second-order partial derivative ofUi (b � ; mi;j ) can be denoted by

@2Ui

@m2
i;j

= ' ((
a
f i

� � TC
i + 1

)2 � (
a
f i

+ 1
r T

i

� � TC
i � TT

i + 1
)2): (4.4)

Since� � TC
i +1 > � � TC

i � TT
i +1 and a

f i
< a

f i
+ 1

r T
i

. I can observe that @2Ui
@m2

i;j
< 0.

Hence,Ui is concave inmi;j . As the strategy set of the TECi is also compact

and convex, based on the Debreu-Glicksberg-Fan theorem [52], the NE of this game

exists.

In order to achieve NE, I utilise the backward induction approach in game theory

and obtain the optimal strategies of followers (TECs) �rst. Subsequently, based on

these TECs' strategies, the leader's (AEC's) optimal strategy is developed. Thus, I

�rst derive the �rst-order partial derivative of Ui as:

@Ui
@mi;j

= b+ ( � � � )�af 2
i � 


pi

r T
i

�
'f 2

i (� + 1)
(f i � ami;j + �f i )(r T

i f i � f i mi;j � r T
i ami;j + r T

i �f i )
: (4.5)

As Ui is concave inmi;j , the maximum of Ui and correspondingmi;j thus can be

derived by @Ui
@mi;j

= 0. Due to it being hard to be expressed, I simply denoted the

optimal m�
i;j = f i (b). Therefore, the utility function of Uj can be rewritten as:
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Uj (b) = ( � + � )
IX

i =1

�af i (b)f 2
j;i �

IX

i =1

bf i (b) � 
�f 3
j 0(T0

j � T1
j ): (4.6)

If I can derive the maximum Uj and correspondingb, I therefore can obtain

the correspondingm�
i;j in a closed-form based on Eq. (4.29). However, due to the

complexity of Eq. (4.30), I cannot derive the NE closed form. Fortunately,b and

mi;j both have boundaries. The NE thus can be obtained by performing a gradient

descent method [63] overb and mi;j . The solution step is shown in Algorithm 4.1.

4.4 E�cient distributed Learning Design

The application of SemCom signi�cantly improves the network QoS. Nevertheless,

how to update users' ML-based semantic coders e�ciently and accurately in real-

time becomes one of the biggest challenges of SemCom studies. FL is a potential

approach to cope with the challenge of semantic coder updates in the network [12].

Nevertheless, the 3D network environment is sophisticated, and energy limited. In

particular, the case where the users' training data are Non-IID signi�cantly reduces

the SemCom QoS. FL thus is not the optimal solution for AENs.

To address these challenges, I propose a GEDL framework for AENs (Figure

4.2). Speci�cally, TECs �rst transmit some Non-IID SemCom transmission tasks to

the AEC based on our proposed renewed EGTIM for semantic coder updating. The

TECs then update the semantic coder based on their training data and transmit the

new coder model to the AEC for the federated aggregation. Subsequently, the AEC

performs the federated aggregation and retrains the aggregated model utilising the

tasks provided by TECs. This is because AEC is 
exible in terms of data collection,

it is often used as a federated aggregation node [64]. Finally, the AEC sends back the

model to participate in TECs and complete one training epoch. The model accuracy

thus can be improved while maximising energy e�ciency. I will demonstrate these

in our simulations.
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Figure 4.2: The process of proposed GEDL.

I �rst renew the EGTIM for semantic coder updating. As increased semantic

coder accuracy can improve the network QoS, it enhances network revenue. Similar

to [65], I utilise a logarithmic function to model the relationship between training

accuracy and training task size. The revenue of model accuracy improvement thus

can be denoted by

A t
j = � (ln(1 +

IX

i =1

mt
i;j ) + � ); (4.7)

where mt
i;j is the proving task bits from the TEC i to the AEC j before training

and � is the monetary parameter. Further,� is the basic accuracy of FL.

Therefore, I should update the utility function of the AEC j as:

Ut
j = A t

j + Rt
j � B t

j � Gt
j : (4.8)

Similar to Eq. (4.9), in Eq. (4.32), Rt
j is the additional energy cost revenue of
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AEC j gained during training andB t
j is the bonus paid from the AECj to TECs

providing the tasks. Further, Gj is the gain loss of the AECj due to the transfer

of some holdup energy to additional training.

Therefore, the game problem for AECj when coder training can be presented

as:

Problem 4.3:

max
b

� (ln(1 +
IX

i =1

mt
i;j ) + � ) + ��af t2

j

IX

i =1

mt
i;j

�
IX

i =1

bmt
i;j � 
�f 3

j 0(T0
j � T1

j ) (4.9a)

s:t: f t
j � f j (4.9b)

b > 0 (4.9c)

E j � ej (4.9d)

where f t
j is the CPU-cycle frequency of the AECj to perform the additional

training after federated aggregation. Due to the requirement to perform federated

aggregation, the power of AECj for the regular task without economic bene�t also

needs to be plus the aggregation power. Furthermore, the reduction in training

sample size reduces the model accuracy and thus a�ects the accuracy of the model

after federated aggregation. Therefore, TECs still train the number of new tasks

they have. The utility function of proving semantic transmission tasks thus can be

changed from Eq. (4.17) by

Ut
i = B t

i � Ct
i ra � St

i : (4.1)

where B t
i is the training bonus gain of TEC i from the AEC j and Ctra

i is the

transmission energy consumption. Further,St
i is the revenue change due to the

satisfaction change. As satisfaction is associated with training time, I have

St
i = ' (ln(1 + � t � T t

i ) � ln(1 + � t � T t
i � Ta

i )) ; (4.2)
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whereT t
i is the distributed learning training computing time without AEC additional

training, i.e., FL training computing time. Further, Ta
i is the AEC additional

training time. Since the training time tends to be much greater than the training

data transmission time, I ignore the variation in satisfaction due to the transmission

time. Hence, I have the game problem for the TECi during training new coders as:

Problem 4.4:

max
m t

i;j

bmt
i;j � 


pi mt
i;j

B i log2(1 + pi gi
� 2 )

� ' (ln(1 + � t � T t
i )

� ln(1 + � t � T t
i � Ta

i )) ; (4.3a)

s:t: 0 � mi;j (4.3b)

%log2(1 + e
1�

1+ m t
i;j

m t
i;j ) � � (4.3c)

where%is the weight parameter. It measures the increased risk of privacy leakage

arising from the transmission ofmt
i;j as it relates to the new coder. Furthermore,

mt
i is the total training task bits of the TEC i . It can be found from Problem 4.4

that the strategy set of the TEC i is also compact and convex as same as Problem

4.2. In addition, the second di�erentiation ofUt
i is similar to Ui and concave inmt

i;j .

Thus, the NE of this game is still existing and the NE point can be achieved by

Algorithm 4.1.

4.5 Simulation results

In this section, I provide simulation results to validate the performance of the

proposed EGTIM and GEDL. First, I elaborate on the energy e�ciency of our

EGTIM. The advantage of our GED framework is then assessed by comparing it

with baseline distributed learning in image transmission scenarios [11], [12].
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4.5.1 EGTIM

I �rst elaborate on the simulation settings in assessing the performance of our

proposed EGTIM. I assume there are 5 TECs in the service range of the AEC

j . To better demonstrate our proposed mechanism, I assume that all TECs have

the same conditions. Similar to [38] and [39], I seta = 120; pi = 0:2w; � = 10� 26;

f i = 0:5 � 109cycles=s; f j 0 = 0:5 � 109cycles=s. Further, I assume the monetary

parameter� = 1, � = 1 and thus 
 = 2. If not mentioned, the hold-up power of the

AEC is set as 1 w and by default the constraints are all satis�ed.

Figure 4.3: NE existence under the proposed EGTIM.

In Figure 4.3, the existence of NE is demonstrated. It can be observed that as the

unit reward value increases, the optimal task size that TECs are willing to provide

also increases. This is due to the increased transfer task size allowing TECs to earn

greater bene�ts as the unit rewards increase. However, the utility function of the

AEC shows an increasing trend followed by a decreasing trend. There is therefore

an NE point that maximises the utility of the ATC while ensuring that the utilities

of TECs are maximised (i.e., optimal transfer task size).
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Figure 4.4: Energy saving of proposed EGTIM in various scenarios.

Figure 4.4 illustrates the energy savings in joules (J) at di�erent amounts of TECs

and di�erent hover consumption power. I de�ne energy saving as the reduction in

wasted hover consumption minus the lost energy consumption for regular AEC tasks

and the power consumption of TECs transmitting. Mathematically, the energy

saving equalsR j

� � G j + C t
i


 . As can be observed, more energy can be saved as the

number of TECs increases. This is due to the fact that the increase in the number

of TECs decreases the energy consumption in hover and outweighs the resulting

loss raise. It is notable that the number of TECs does not grow inde�nitely as the

AEC has a �nite computing capacity. In addition, the higher the hover power, the

greater the energy saving, but the magnitude of the increase is decreasing. Because

the hover power increase means consuming the same energy for additional semantic

transmission tasks, the AEC can be maintained on air for a longer time. The

corresponding cost loss thus falls and the magnitude of the increase is decreasing as

the percentage of hover energy consumption of the AEC becomes larger.

In Figure 4.5, I evaluate the in
uence of di�erent CPU-cycle on providing task
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Figure 4.5: E�ect of di�erent CPU-cycle on providing task size.

size from TECs to the AEC. It is observed that more CPU-cycle frequency required

for semantic task transmission makes TECs more inclined to transfer more task

bits. However, the increase in CPU-cycle frequency required for regular tasks results

in lower providing task sizes. This is because the increased CPU-cycle frequency

required for tasks increases the e�ciency of AEC hover energy utilisation. Therefore,

TECs are biased towards providing more tasks for more revenue. Further, the

increasedf j 0 increases the hover time reduction bene�t loss and therefore reduces

the overall data transfer revenue and hence the unit reward.

4.5.2 GEDL

To estimate our GEDL, I employ the convolutional neural network (CNN) as

the semantic coder and set the application scenario as an image transmission

environment, similar to [17]. Further, I train models on the CIFAR-10 [54] dataset

with 60000 training data and 10000 test data, which all have 10 class images. As in

the same previous subsection, I assume there are 5 TECs involved in the training.
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To create the Non-IID training environment, I enable each TEC in training to have

only four classes of the training data in the di�erent 10000 CIFAR-10 data. The

transmission accuracy is determined by the PSNR, which is a criterion for the quality

of image transmission in SemCom [17]. I have

PSNR = 10lg
MAX 2

kx � x̂ j k
2 ; (4.1)

whereMAX is the maximum value for a pixel andx is the input of the image and

x̂ j is the output via the semantic coder.

Figure 4.6: The accuracy of various training frameworks with the AEC input samples

grows.

Figure 4.6 demonstrates the comparison of accuracy under di�erent learning

frameworks. I compare the di�erent learning frameworks together when the training

data is IID. Furthermore, I also add the FL model with IID training data as a

reference. It is seen that as the training data obtained by the AEC increases, the

coder accuracy also increases. In particular, the trend of the increase exhibits a

trend of the logarithmic function, thus verifying our hypothesis in Eq. (31). In
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addition, with the increase in the volume of data, the accuracy of the proposed

GEDL increased and even exceeded the performance of FL trained with the IID

model. The accuracy of our proposed GEDL without FL also rapid growth. This

is because the greater the amount of data AEC has, the more the training process

approaches central learning. The training data is mixed together for training and

therefore the accuracy increases. Nevertheless, it is noteworthy that due to privacy,

AEC's available computing resources and energy constraints, the data AEC obtains

is limited. However, our proposed GEDL is always more accurate than FL with the

Non-IID training scenario.

Figure 4.7: Convergence speed of di�erent training frameworks.

Figure 4.7 shows the comparison of the convergence speed of FL and our proposed

distributed learning. I also included FL trained with the IID data as a reference.

It can be observed that all learning eventually reaches convergence and the time to

reach convergence is almost the same. However, our proposed GEDL is always more

accurate than FL after each communication round. This is because our proposed

GEDL is based on the FL for accuracy improvement and thus it increases the training
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accuracy but needs the FL process to reach convergence.

Figure 4.8: Energy saving of proposed GEDL in various scenarios.

In Figure 4.8, the energy savings in joules (J) at di�erent amounts of TECs

and di�erent hover consumption power are shown. I set the training epoch is

200. I can see that in contrast to Figure 4.4, there is a declining trend in energy

savings as the number of TECs increases. This is because accuracy revenue shows

a logarithmic function trend. Providing more data when there are more TECs may

increase energy savings, but not the corresponding accuracy gains. As a result, the

total task size provided by TECs is decreasing and thus decreases the total energy

saving. However, the GEDL I propose can always improve energy e�ciency and save

energy. Furthermore, the magnitude of the energy saving increase with the hover

power increase is decreasing varies from Figure 4.4. It is likewise due to the existence

of the trend in the logarithmic function of accuracy revenue. The decrease in regular

task revenue due to time reduction makes the task size increase dramatically in order

to reach the NE point.

Figure 4.9 illustrates the impact of changes in� value on energy saving. I evaluate
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