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Abstract

Performing accurate statistical inference requires high-quality datasets. However,

real-world datasets often contain missing variables of varying degrees both spatially

and temporally. Alternatively, modelled datasets can provide a complete dataset,

but these are often biased. This thesis derives a simplified approach to the skew

Kalman filter that tackles the computational issues present in the existing skew

Kalman filter by using a secondary dataset to estimate the skewness parameter. In

application, this thesis implements the skew Kalman filter using surface-level ozone

to bias-correct the modelled ozone data and use the bias-corrected data to infill

missing data in the observed dataset. Further, this thesis explores working with

large spatial datasets. When carrying out spatial inference, using all the possible

data available allows for more accurate inference. However, spatial models such

as Gaussian processes scale cubically with the number of data points and thus

quickly become computationally infeasible for moderate to large datasets. Divide-

and-conquer methods allow data to be split into subsets and inference is carried

out on each subset before recombining. While well documented in the independent

setting, these methods are less popular in the spatial setting. This thesis evaluates

the performance of divide-and-conquer methods in the spatial setting to achieve

approximate results compared to carrying out inference on the full dataset. Finally,

this is demonstrated using USA temperature data.
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Chapter 1

Introduction

Our understanding of the world around is driven by the data available to us.

Environmental monitoring is an important aspect of understanding the environment

around us and the impact it has. In 2016 as much as 24% of worldwide deaths were

related to environmental factors. Changes occur in the environment, not only in

natural cycles but from anthropogenic-based impacts as well and we observe these

changes through environmental monitoring (Pruss-Ustun et al. 2018, Forouzanfar

et al. 2016).

Networks of monitoring stations exist across the globe monitoring environmental

factors, including monitoring temperature for extreme events such as heat waves

and cold snaps, rainfall data and water levels for flood risk and air quality for

high pollution episodes that impact human health and the environment (Lovett

et al. 2007). Effects from environmental changes such as pollution on humans can

be slow or fast acting and occur at all spatial scales (Cohen et al. 2017). Pairing

statistical methods with environmental monitoring is necessary as it is impossible to

characterise environmental changes everywhere all the time. Statistical inference is

widely used to infer or interpolate information from data, such as recovering missing

data or estimating some environmental variable at unseen locations (Zhang et al.

2012), practically monitoring every street in a city or part of a river is impossible.
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Chapter 1. Introduction

Missing data is important to address since it can be a barrier to understanding.

Temporally or spatially incomplete data can result in less accurate inference and

can introduce biases into the output from statistical models. In this thesis, we

tackle two main problems, using examples from two important environmental fields.

Many methods for infilling missing data exits ranging from simple to complex

(Hartley & Hocking 1971, Little & Rubin 2002, and references therein). Simple

methods, while straightforward, and easy to use can disrupt the structure of the

data and introduce large errors in the analysis (Baraldi & Enders 2010, Donders

et al. 2006). Although more sophisticated approaches are often more accurate,

these methods can be computationally expensive or require additional covariate

information, particularly if modelling the data is required. This thesis focusses on

developing and implementing methods that are computationally efficient for working

with environmental data.

1.1 Motivating Applications

The first application of interest is temporally missing data, for this we use the

example of air pollution. The World Health Organization (2022) estimate that 4.2

million die prematurely from outdoor air pollution each year and that 99% of the

world’s population live in areas not meeting safe air quality guidelines. Therefore it

is important to be able to identify primary sources that lead to poor air quality,

quantify the impact of these sources on air quality, and reduce the threats of

detrimental air quality on human health and the environment. To do this we require

good-quality data to carry out inference. However, environmental datasets often

contain missing data due to sensor faults, maintenance, and repair. Figure 1.1.1

shows the locations of background ozone monitoring stations in Germany from the

European Environment Agency (https://www.eea.europa.eu/data-and-maps). The

amount of missing data varies across the network, for example looking at the hourly

2



1.1. Motivating Applications

Figure 1.1.1: Map of ozone monitoring stations in Germany.

time series for a site in Hannover, in 2018 there were 538 missing data points, which

is 6.14% of the data for that year. Over the same period, a site in Braunschweig

was missing 373 data points, which is 4.25%.

While physically based models can be used to produce a temporally and spatially

complete dataset these are often biased, particularly at local scales, undermining its

use as a straight alternative to monitoring data. To address this problem, we look at

infilling missing surface-level ozone data from monitoring stations using temporally

complete biased data. To do this we develop a skew Kalman filter approach that

allows us to conceptualise the bias as a skew between the reanalysis data and the

monitoring data and correct for that bias with an estimated uncertainty for the

infilled data.

3



Chapter 1. Introduction

Figure 1.1.2: Map of temperature monitoring stations in the USA.

The second application considers spatially missing data; we use the example of

temperature monitoring stations in the USA. Temperature monitoring is important

for understanding and quantifying changes in the mean and extremes. Extreme heat

events have been increasing in frequency, duration and intensity over recent decades,

which has been linked to climate change (IPCC 2014), and which is responsible for

over 600 deaths in the United States each year NCEH (2020). Figure 1.1.2 shows

the location of measurement sites in the USA that had annual temperature averages

in 2018, from 7196 locations only 5660 had an annual average temperature, which

is 21.4% missing, leaving large areas unmonitored.

For this work, we consider approaches for dealing with large spatial datasets. Large

datasets pose a challenge when carrying out inference due to limits in memory, ram,

processing speeds and data storage. Divide and conquer approaches allow the data

to be divided into subsets, and inference carried out on each subset before combining

is a popular tool for handling large datasets. Various methods for combining the

subsets through a divide-and-conquer approach exist in the independent setting,

including consensus Monte Carlo (Scott et al. 2016), Gaussian Process barycentres

(Mallasto & Feragen 2017), and SwISS (Sub-posteriors with Inflation, Scaling and

4



1.2. Thesis Structure

Shifting) (Vyner et al. 2022). However, their usefulness in the spatial setting has

not been fully evaluated. Methods which allow the full dataset to be utilised should

allow for more accurate model output across the domain.

1.2 Thesis Structure

This thesis focusses on approaches for incomplete data and the contributions of

this these are as follows: the development of a new approach to the skew Kalman

filter; the demonstration of the skew Kalman filter as a tool for bias correction

and missing data infilling; a demonstration of how existing divide and conquer

approaches perform in the spatial setting. The structure of the thesis is given below

� Chapter 2 presents a literature review of missing data approaches in environmental

monitoring.

� Chapter 3 introduces the background material for Bayesian optimal filtering

and derives the traditional Kalman filter.

� Chapter 4 introduces an extension to the traditional Kalman filter that allows

for skewness to be present in the observation noise. A new approach to the

skew Kalman filter is developed which simplifies how parameters in the skew

Kalman filter are estimated. This work is demonstrated using a simulation

study.

� Chapter 5 implements the skew Kalman filter as a tool for bias correction and

infilling missing data. Using daily mean surface level ozone data, the skew

Kalman filter is used to bias correct reanalysis data. By simulating random

missingness and periods of consecutive missing, the performance of the skew

Kalman filter as a tool for infilling missing data is evaluated before being

demonstrated on a real-world example.
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� Chapter 6 evaluates the performance of divide and conquer approaches when

fitting a Gaussian process model to spatial data. The combining strategies

considered are consensus MCMC, SwISS and Gaussian process barycentres.

First using a smaller simulated dataset, the methods are evaluated on how

well they capture the model fit when using the full data, the runtime of each

of the methods and how estimating values at unseen locations compares to

using full data to estimate the values. This work is demonstrated on a larger

dataset using USA temperature data, again evaluating runtime and how well

the model fits compared to using the full data.

� Chapter 7 concludes the thesis, reviewing the main results of the thesis and

discussing the avenues for future work.
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Chapter 2

Missing Data in Environmental

Datasets: A Review

Missing data is a pervasive problem in environmental research. This may be

the result of insufficient sampling, errors in the measurements, or faults in data

acquisition. Missing data results in discontinuities in the time series which

pose significant obstacles for time-series prediction schemes which often require

continuous data. The absence of data could cause bias in the statistical inference,

leading to invalid conclusions (Zhang & Thorburn 2022, Noor et al. 2014, Baraldi

& Enders 2010, Plaia & Bond̀ı 2006, Donders et al. 2006, Gnauck & Luther 2005,

Junninen et al. 2004). Thus, we need a method to infill missing values.

Missing data is an important and well studied problem in statistics. As such,

statisticians have a well-developed topology to describe different patterns and

mechanisms important in characterising missing data. In this chapter we will discuss

the different types of missing data and, the missing data patterns that arise. We

describe some of the well established traditional statistical methods for infilling

missing data. We will then give overview of these traditional methods and their

suitable applications. More recent methods try to address some of the issues present

in the traditional methods and we give a brief overview of popular sophisticated
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methods used to infill missing data. Finally, we give our conclusions.

2.1 Types of Missing Data

The choice of the appropriate method for handling missing data depends on the

pattern of missing data and the mechanism for why it is missing. This gives rise to

two common classifications for missing data types, as outlined in the sections below.

(1) Classification based on a missing mechanism: First proposed by Rubin

(1976), the standard classification of missing data mechanism considers missing data

as (a) Missing Completely at Random (MCAR), (b) Missing at Random (MAR), and

(c) Missing Not at Random. The relationship between missingness (no data value

is stored for the variable in an observation), completely observed variables, and

the latent variables is described in terms of probability. The specific dependencies

are shown in Figure 2.1.1, where Y represents the variables that are observed, X

represents the latent variable and M represents missingness.

(a) Missing Completely at Random: Shown in Figure 2.1.1a, MCAR is the simplest

of the three mechanisms and states that the probability of missingness is independent

of observed and latent variables. The probability of missingness is given by

P (M |Y,X) = P (M) (2.1.1)

(b) Missing at Random: Shown in Figure 2.1.1b, the probability of missingness

is dependent on the observed variable, and is given by

P (M |Y,X) = P (M |Y ) (2.1.2)
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(a) MCAR (b) MAR (c) MNAR

Figure 2.1.1: Dependencies for the different mechanisms for missing data

(c) Missing Not at Random: Shown in Figure 2.1.1c, MNAR is the most complex

mechanism. Here, the probability of MNAR is dependent on the latent variable and

is given by

P (M |Y,X) = P (M |X) (2.1.3)

Of the above classifications, missing data is most often considered as MAR or

MCAR. In monitoring systems, such as the ones used in environmental monitoring,

MCAR is the most common mechanism as a monitoring site being down is an

independent random event. MAR may result from successive missingness at several

periods, as the missingness at a location is related to its adjacent locations. MNAR

is caused by some latent factor such as limits in power or memory, MNAR is rarely

studied as it is assumed these factors can be found and solved in advance (Du et al.

2020, Plaia & Bond̀ı 2006).
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(2) Classification based on missing patterns: Collected data can be seen as a

large matrix, with the rows representing the number data and columns representing

the different dimensions in the data. This allows us to characterise the missingness

into different patterns of the matrix (Schafer & Graham 2002). The missing patterns

can be divided into four categories (a) univariate pattern, (b) multivariate pattern,

(c) monotone pattern, and (d) arbitrary pattern. These are defined as follows.

(a) Univariate missing pattern: Shown in Figure 2.1.2a missing data is limited

to one dimension, here only the 4th column shows missingness.

(b) Multivariate missing pattern: Shown in Figure 2.1.2b missing data is distributed

equally across multiple dimensions. Here columns 3 and 4 shows missingness, while

the other columns are complete.

(c) Monotone missing pattern: Shown in Figure 2.1.2c, missing data is said to

be monotone if it can be arranged to be ladder-like. This type of missing data is

typically representative of a structured missing pattern.

(d) Arbitrary missing pattern: Shown in Figure 2.1.2d, this is the most common

pattern of missingness and occurs when missing data are randomly distributed in

different rows and columns.

The missing data mechanism MCAR would correspond to the arbitrary missing

pattern and would be expected to be the missing data pattern for monitoring

systems. However, univariate or multivariate missing best describes the missing

pattern seen in monitoring systems (Du et al. 2020). This results as if a sensor is

off for a period of time it results in successive missingness in 1 or more dimensions.
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(a) univariate
missing

(b) multivariate
missing

(c) monotone
missing

(d) arbitrary
missing

Figure 2.1.2: Patterns of missing data. Grey denotes normal values and orange denotes
the missing values, where rows 1, 2, .., n represent the number or time-series of data and
x1, x2, x3, x4 represent the different dimensions in the data. Adapted from Schafer &
Graham (2002), Du et al. (2020).

2.2 Methods for Infilling Missing Data

2.2.1 Traditional Methods

Various methods for recovering missing data are used in the literature. These

methods include case deletion, mean method, nearest neighbour, linear and cubic

spline interpolation, regression based methods, expectation maximisation, K-nearest

neighbours, and multiple imputation (Allison 2001, Meijering 2002, Enders 2022, and

references therein). In this section we summarise these classical methods.

2.2.1.1 Casewise Deletion

The simplest approach for handling missing data is casewise deletion, also known

as listwise deletion. All entries with missing data are removed or discarded when

doing analysis, meaning estimating the missing value is unnecessary. Deletion can

introduce bias in the analysis, especially when the missing data is MAR or MNAR, as

opposed to MCAR where it is less likely to be an issue (Little & Rubin 2002). When

working with time-series data, deletion can disrupt the data structure (Baraldi &

Enders 2010, Donders et al. 2006). A fundamental issue with removing all missing

11



Chapter 2. Missing Data in Environmental Datasets: A Review

entries is that this will reduce the sample size which will be increasingly problematic

with increasing missing data.

2.2.1.2 Mean Method

The mean method fills in missing values with the mean of the observed data. Due

to its simplicity, it was one of the most commonly used methods in the analysis

of data from early environmental monitoring systems (Junninen et al. 2004, Noor

et al. 2014) and is considered a baseline method. Compared to casewise deletion,

the sample size is preserved. While the sample mean statistic remains unchanged

after imputation, the sample variance changes as follows

s2 =
1

n− 1

n∑
i=1

[ai(yi − ȳ)2 + (1− ai)(ŷi − ȳ)2],

=
1

n− 1

n∑
i=1

(yi − ȳ)2,

=
n1 − 1

n1

s21,

(2.2.1)

where ai is the indicator vector, when ai = 0 data are observed and when ai = 1

data as missing. n and n1 are the number of data and observed data respectively, s21

is the sample variance of the observed data and ȳ is the sample mean. This results in

a smaller estimated variance than the actual variance as the infilled results are too

concentrated about the mean. Methods such as hierarchical mean method (Kiani

& Saleem 2017) address the issues in the variance by diving the data into groups

based on similarity and then applying the mean method to each group.

2.2.1.3 Nearest Neighbour and Linear Interpolation

Univariate nearest neighbour imputation is a simple scheme for infilling missing

values. The endpoints of each gap are used as estimates for all the missing values
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such that

y = y1 if x ≤ x1 + (x2 − x1)/2,

y = y2 if x > x1 + (x2 − x1)/2,
(2.2.2)

where y is the interpolant, x is the time point of the interpolant and (x1, y1) are

the coordinates of the starting point in the gap, and (x2, y2) are the endpoint

coordinates.

Linear interpolation fits a straight line between the end points of the gap. Missing

values are calculated using the line equation

y = y1 + k(x+ x1) where k =
(y2 − y1)

x2 − x1
; x1 < x < x2 and y1 < y < y2. (2.2.3)

2.2.1.4 Regression-Based Methods

Regression-based methods are based on estimated regression models between missing

data and available data, as a predictor. Using a correlation matrix, several predictors

of the variable with missing data is identified and the best predictors are selected and

used as independent variables in a regression equation (Braak et al. 1994, Carvalho

et al. 2011, Ohba et al. 2016, Liu et al. 2017, Mirzaei et al. 2022). The underlying

model is given by

y = f(x) + ϵ (2.2.4)

where x ∈ Rd is the independent variable, y ∈ R is the variable containing missing

information, and ϵ is a noise term given by ϵ ∼ N(0, σ2). The aim is to find a model,

g(·), that approximates f(·), such that we can use the well-learned model to recover

the missing information. In the case of linear regression this will be modelled using

a linear function. However, as the relationship between variables will not always

be linear and other regression-based methods can be used, including polynomial

regression (Carvalho et al. 2011) and log-linear regression Braak et al. (1994).
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Since the correlation between the independent variables and the missing variable

cannot be known in advance, it takes time to find the optimised form of the regression

model. Thus, the main issue facing regression-based methods is determining g(·).

Also, the need that the independent variables must not contain missing information,

can limit the applications suitable for this method.

2.2.1.5 Expectation-Maximisation

The expectation-maximisation algorithm is an iterative algorithm for performing

maximum likelihood estimation in the presence of latent variables (Dempster et al.

1977, Qu et al. 2009), that can be used for infilling missing data (Ghahramani

& Jordan 1995, Schneider 2001, Baraldi & Enders 2010, Zhang et al. 2015).

Compared with the methods outlined above, it directly models incomplete data and

generates estimated values using maximum likelihood estimation. The expectation-

maximisation algorithm consists of two parts: the E-step, which calculates the

conditional expectation of missing data based on the observation data and current

model parameters, and the M-step, which uses the conditional expectation to infill

the missing values. The model parameters are updated using maximum likelihood

estimation and the algorithm iterates between the steps until the model parameters

converge. The expectation-maximisation algorithm steps are as follows:

1. The E-step calculates the conditional expectation of missing data based on all

observed values and current estimated model parameters

Q(θ|θi, y) =
∫

log(θ|Y )f(Ymissing|Yobs, θi)dYmissing. (2.2.5)

where log(θ|Y ) is the log likelihood function of the complete data and

f(Ymissing|Yobs, θi) is the predictive distribution of the missing data given θ.
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2. The M-step obtains the next estimate of θ by maximising Q(θ|θi),

θi+1 = argmax
θ
Q(θ|θi). (2.2.6)

The EM algorithm converges when ∥θi+1 − θi∥ < ϵ, where ϵ is some predefined

threshold.

The EM algorithm holds well for large-scale data. However, for practical applications,

the convergence speed is limited by the selection of initial values. When processing

severely missing data, computation slows and the expectation of missing data differs

significantly from the true value.

2.2.1.6 K-Nearest Neighbours

The K-nearest neighbours (KNN) algorithm (Cover & Hart 1967) is a simple highly

efficient algorithm that can be used to recover missing data (Kiani & Saleem 2017,

Huang & Sun 2016, Pan & Li 2010). It replaces the missing value using the K-most

similar non-missing values.

The KNN algorithm has three main steps. First, the distance between each complete

sample and the sample containing missing values is calculated across the entire

dataset. The Euclidean distance is often used to calculate this distance, the closer

the samples are the higher the similarity between the samples. Second, the K

samples closest to the samples containing missing values are selected. Third, the

values are recovered by weighting and averaging these K samples.

The KNN algorithm can be adapted well for continuous data sets. Since the recovery

process in the KNN algorithm is a self-learning process there is no need to learn a

prediction model in advance. However, the accuracy of the recovery results depends

on the artificially set parameter K. Some intelligent selection algorithms, such as grey
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relation analysis (Huang & Sun 2016), have been proposed to address this issue. For

large-scale datasets, the execution efficiency of the KNN algorithm is very low as it

needs to traverse the entire dataset when performing data recovery on each missing

datum. Thus, the main issue to address with the KNN algorithm is how to select

the optimal hyperparameter K adaptively and improve model efficiency.

2.2.1.7 Multiple Imputation

A single imputed value cannot capture all the uncertainty about which value to

implement. Multiple imputation (MI) (Rubin 1996, Meng & Rubin 1992, Rubin

2004, Schafer 1997) aims to address this by imputing multiple values rather than

a single value, and then analysing each data set with standard methods. Multiple

imputation is derived from Bayesian estimation, which considers that the values

of missing data are random and originate from the known data. First, different

methods are used to recover the missing data to form several complete datasets

and reflect the uncertainty. Second, each complete dataset is analysed using a

parameter estimation method. Finally, the missing values of the dataset are infilled

by integrating multiple recovery results. Figure 2.2.1 shows the basic pipeline for

MI method.

Figure 2.2.1: Basic pipeline for MI method (Du et al. 2020).

The MI method attempts to find potential relationships between missing variables

and other variables by simulating the distribution of missing data as much as

possible. The MI method maintains the uncertainty of the original dataset by using
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the auxiliary information rationally. Compared to single-values imputation, multiple

imputation can greatly improve recovery results (Faris et al. 2002).

2.2.1.8 Summary of Traditional Methods

Different data imputing methods are suitable for different cases. Table 2.2.1

summarises the traditional recovery methods describes and their suitability. Simple

methods, such as the mean method or case deletion, are easy to implement, however,

they are not best suited for large amounts of missing data. Methods such as EM

or MI can result in high accuracy, however this is traded with high computational

complexity. Many of the traditional methods are not suitable for large-scale data.

2.2.2 Non-Traditional Methods

While traditional methods are often limited for large-scale datasets, the development

of methods for infilling missing data is an active field of research. Here we will give

an overview of some of the common methods used in literature.

2.2.2.1 Support Vector Regression

Support vector regression (SVR) (Drucker· et al. 1996) is a regression algorithm that

supports both linear and non-linear regressions. Compared to simple regression,

where the aim is to minimise the error rate, SVR aims to find the error within

a certain threshold to approximate the best value within a given margin. The

advantages of SVR are it is relatively easy to implement, robust to outliers,

reasonably computationally efficient and the prediction accuracy can be improved

by measuring the confidence in the classification.

Data recovery methods based on SVR and extensions of SVR have been used

in a variety of applications. Feng et al. (2005) implement a SVR approach for

infilling missing SARS data. The SVR method was found to have high precision but

required that the training set be complete. The size of the training set influenced the
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accuracy of the predictions, as such as there needs to be a large enough complete

training set available. Liu et al. (2015) proposed a SVR model combined with

a genetic algorithm (GA) to address missing data due to sensor faults during

waster gas monitoring. This missing data is estimated using a multiple input single

output prediction model to include the multiple factors that influence waste gas

concentration (e.g. spatial, temporal and environmental factors. Combing SVR with

GA enhanced complementarity between sensors and improved the reliability of the

monitoring system. However, the method had a long runtime and GA tends to find

local optimums leading to early convergence. Further, Liu et al. (2016) introduced

quantum genetic strategies and simulated annealing strategies into standard GA

to solve the premature convergence and poor searchability in SVR. This method

again enhanced complementarity between sensors and was more accurate than SVR,

though it still struggled with long runtimes. Shang et al. (2018) consider a particle

swarm optimisation based SVR for missing traffic data. This method had high

input precision and good robustness. However, accuracy decreased with the amount

of missing data and the method was sensitive to spatial temporal information.

2.2.2.2 Decision Trees

Decision trees (Twala 2009) are used for both regression and classification tests.

Decision trees implement a hierarchical tree structure, which consists of a root node,

branches, internal nodes and leaf nodes. Decision tree learning employs a divide and

conquer strategy to identify optimal split points within a tree. Missing data recovery

is carried out using this method by building decision trees to observe the missing

values of each variable and, then fills the missing values of each variable by using its

corresponding tree. The missing value prediction is shown in the leaf node. Decision

trees can be used for both numerical and categorical data. Complex decision trees

can be computationally expensive but often have a low bias.

There are several studies where decision trees are used to input missing data. Gimpy
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et al. (2014) used a decision tree approach for estimating missing values from data

mining. They demonstrated that the accuracy for the classification algorithm used

on the data improved for the infilled data set compared to the incomplete dataset.

However, no work on the size of the data set or mount of missing data was discussed.

Rahman & Islam (2013) implement a decision tree and forest technique on nine

different datasets for infilling missing values. Their results indicate their method

has high accuracy but struggles with computational complexity and high memory

usage. Rahman & Islam (2011) implement a regression tree approach alongside the

EM-algorithm (see above). The EM algorithm improved the infilling on datasets

with high correlation among attributes but in cases where the dataset was small it

was often insufficient to get a good result from the EM algorithm.

2.2.2.3 Neural Network Based Methods

Neural networks (NN) are inspired by biological neural networks and can capture

and make use of the temporal information. NNs are structured with an input layer

that takes in the data and an output layer which generates the resulting outputs.

Any layers in between do not see the input or output layer directly and are called

hidden layers. Figure 2.2.2, shows the basic structure of a NN with one hidden layer.

NN have been criticised for being non transparent due to the multilayer non-linear

structure and outputs that are not traceable by humans (Buhrmester et al. 2021).

Since NN have the ability to build and learn models they can be applied to infilling

missing data. (Coulibaly & Evora 2007) consider neural network methods for

infilling missing daily weather records, comparing six NN. The methods considered

were multilayer perception network, time lagged feedforward network, generalised

radial basis function network, the recurrent neural network as well as the time delay

neural network and the counter propagation fuzzy neural network. The multilayer

perception network and time lagged feedforward network were the most accurate for

both daily precipitation and extreme temperature records, whereas the generalised
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Figure 2.2.2: univariate missing

radial basis function network was most suitable for infilling minimum and maximum

temperature but less suitable for precipitation values. This suggests the selection of

NN is sensitive to the type of data used. Lee & Park (2015) consider an endpoint

fixing method based feedforward neural network for missing data infilling for tide

stations capturing water levels in coastal and ocean areas. This method was efficient

and suitable in situations where nearly all tide stations simultaneous failed to record

water levels However, the method was sensitive to missing window parameters.

Other types of NNs include self organizing maps (SOM), which are a tool for

multivariate data, mapping data from a high dimensional input space to a low

dimensional output space, serving as a clustering tool that can interpolate between

previously encountered inputs. Experimental results show SOM can work well for

both long and short gaps of missing data and results in higher accuracy compared

to traditional methods and are less dependent on the location of the missing value

(Junninen et al. 2004). The main limitation of SOM is that they have a long

running time. Nkiaka et al. (2016) implement SOMs for infilling missing hydro-

meteorological data, the methods were robust for infilling short gaps in hydro-

meteorological time series. However, performance decreased for long periods of
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consecutive missing data.

2.2.2.4 Ensemble Methods

Ensemble methods combine outputs from multiple models with the aim to produce

a single improved result. Developing an ensemble involves creating varied models

and merging their estimates, the aim being to have an ensemble that is as diverse

as possible. Ensemble techniques are best suited to where the highest degree of

accuracy is desired, studies have shown that ensemble based methods outperform

single model approaches for imputing missing data (Zhang et al. 2019, Oehmcke

et al. 2016). Ensemble methods can be parallelised which is practical for large data

sets. Baruah et al. (2023) propose an ensemble technique for infilling missing data

across a variety of datasets, ensembling k-nearest neighbour imputation, local least

square imputation, miss forest imputation (a random forest imputation algorithm for

missing data), and k-means clustering imputation. Their methods preformed best

against compared methods the majority of the time, but not for all datasets. Their

method was also noted to decrease in performance for high dimensional datasets.

In general, ensemble methods tend to have long computational times as data needs

to pass through multiple models and the strategy for building the best ensemble is

dependent on the problem at hand Polikar (2006).

2.2.3 Summary of Non-traditional Methods

While non-traditional methods can produce excellent results for imputing missing

data, they can be more challenging to implement, requiring a higher degree of skill

to use. A common issue among the majority of the methods was long runtimes.

This may result in methods being unsuitable for some applications regardless of

accuracy if the computation time is too long. As well as the above methods, there

are many more methods for infilling missing data than just those discussed here

many methods, also many extensions or combinations of these methods all of which

are used in various applications. Often these methods are compared against each
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other and the ’best’ method varies depending on the type of data, the missing data

mechanism or pattern and how much data is missing. Emmanuel et al. (2021)

compared multiple methods of missing data imputation including KNN, Random

Forests and Ensemble methods concluding that the precision and accuracy depend

strongly on the type of data being analysed and there is no clear indication that one

method is preferred over another. Therefore, no one method is seen as the best tool

for missing data infilling.

2.3 Conclusions

Missing data is an unavoidable aspect of monitoring systems, and the estimation

of missing data is a critical task for improving the quality of the data and any

analysis carried out on that data. Here, we considered the different types of missing

data and several traditional methods and non-traditional methods for inputting

missing data. While many tools exist for handling missing data, the performance

of each method is dependent on the data size, the amount missing and the missing

pattern. Additionally, the performance of each method depends on the application.

While traditional methods are often easier to implement and have faster computation

times, they tend to be less accurate than more sophisticated models. However, the

more complex models trade higher accuracy for increased complexity and longer

runtimes.

While a large amount of research has been carried out into infilling missing data,

it remains an active field of study. For instance, a major investigation of this

thesis is considering a time series missing data problem using surface level ozone

measurements, meaning many of these methods are ill-suited as the data is not

i.i.d (independently identically distributed). We aim to tackle the issue of long

computation time by using a secondary dataset to infill the missing values. There

exist many modelled environmental datasets that use physically-based models to
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model the atmosphere at a given point. However, these datasets are often biased.

We seek to implement a missing data method that can bias correct the modelled

data and use this to estimate the missing values. By using a secondary dataset, we

can keep the model relatively simple as the pollutant has already been modelled.

This is carried out in Chapters 4 and 5, where we derive and implement a skew

Kalman approach for infilling missing ozone data using bias corrected reanalysis

data.
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Chapter 3

Optimal Bayesian Filtering

In the previous Chapter, we reviewed methods for missing data. In order to set

the foundations for the skew Kalman approach for missing data we will propose

in Chapter 5, we must first introduce the traditional Kalman filter to provide the

necessary background on which to derive the skew Kalman filter. Before deriving

the skew Kalman filter, we will first consider the traditional Kalman filter. We

observe the world through noisy measurements (e.g. sensors for air quality) and we

want to be able to understand the underlying process of the system. Bayesian filters

blend our noisy and limited knowledge of how a system behaves with limited sensor

readings to produce an estimate of the state of the system.

3.1 Introduction State Space Models

A state space model is a discrete-time, stochastic model that contains two sets of

equations, the state equation and the observation equation. Here we consider a

hidden state x0:T = {x0, x1, x2, ..., xT} over time t = {0, 1, 2..., T} that can only be

observed through noisy measurements {y1, y2, ...}. This is shown in Figure 3.1.1. In

optimal filtering, the goal is to estimate the hidden states x0:T from the observed

measurements y1:T . In the Bayesian sense, we want to compute the joint posterior

distribution of all states given all the measurements.
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x0 x1 x2 ......... xt−1 xt xt+1 ...

y1 y2 yt−1 yt yt+1

Figure 3.1.1: Dependence between variables in a state space model.

Definition 3.1.1. (Probabilistic state space model) A probabilistic state space

model, or non-linear filtering model, consists of a sequence of conditional probability

distributions:

xt ∼ p(xt|xt−1),

yt ∼ p(yt|xt),
(3.1.1)

for t = 1,2,..., where

� xt ∈ Rn is the state of the system at time step t,

� yt ∈ Rm is the measurement at time step t,

� p(xt|xt−1) is the dynamic model which describes the stochastic dynamics of the

system.

� p(yt|xt) is the measurement model, which is the distribution of measurements

given the state.

We assume the model to be Markovian and therefore the following two properties

hold.

Property 3.1.1. (Markov property of states) The states {xt : t = 0, 1, 2, ...} form a

Markov sequence or Markov chain if discrete. The Markov property means that the

evolution of xt does not depend on past history before the time step t-1,

p(xt|x1:t−1) = p(xt|xt−1), (3.1.2)
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Figure 3.1.2: Gaussian random walk from Example 3.1.1 with parameters R=S=1.

Property 3.1.2. (Conditional independence of measurements) The current measurement

yt given the current state xt is conditionally independent of the measurement and

state histories:

p(yt|x1:t) = p(yt|xt) (3.1.3)

Hence, we can think of xt as a random process, which has simple Markovian

dynamics, and we can assume that the observation yt depends only on the system at

the time of the measurement, xt. Figure 3.1.1 illustrates the dependence of variables.

The Gaussian random walk shown in Figure 3.1.2 is a Markovian sequence. We can

combine this with measurements to obtain a state space model.

Example 3.1.1. (Gaussian random walk) We write the one-dimensional Gaussian

random walk model as

xt = xt−1 + rt, rt ∼ N(0, R),

yt = xt + st, st ∼ N(0, S).
(3.1.4)

Using R = S = 1, Figure 3.1.2 shows an example of the signal xt and the

measurements yt.
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With the Markovian assumption and the filtering model (3.1.1), the joint prior

distribution of the states x0:T = {x0, ..., xT} is given by,

p(x0:T ) = p(x0)
T∏
t=1

p(xt|xt−1), (3.1.5)

and the joint likelihood of the measurements y1:T = {y1, ..., yT} is,

p(y1:T |x0:T ) =
T∏
t=1

p(yt|xt). (3.1.6)

We would look to compute the posterior distribution of the hidden state conditional

on the observations by Bayes’ rule,

p(x0:T |y1:T ) =
p(y1:T |x0:T )p(x0:T )

p(y1:T )
, (3.1.7)

where p(y1:T ) is the normalization constant defined as

p(y1:T ) =

∫
p(y1:T |x0:T )p(x0:T )dx0:T . (3.1.8)

From Equation (3.1.7) we can see that each time a new measurement is added to the

system the full posterior distribution would need to be recomputed. However, this is

computationally expensive, alternatively, we can consider the marginal distribution

of the states. The filtering distributions computed by the Bayesian filter are

the marginal distributions of the current state xt given the current and previous

measurements y1:T = {y1, ..., yT}:

p(xt, y1:T ), t = 1, ..., T. (3.1.9)
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The prediction distributions are the marginal distributions of the future state xt+n,

n steps after the current time step:

p(xt+n, y1:T ), t = 1, ..., T, n = 1, 2, .... (3.1.10)

3.2 Filtering Equations

We can write the state space model in the following form:

x0 ∼ p(x0),

xt ∼ p(xt|xt−1),

yt ∼ p(yt|xt),

(3.2.1)

where we have

� an initial distribution which specifies the prior distribution p(x0) of the hidden

state x0 at the initial time step t = 0,

� a dynamic model which describes the system dynamics, and its uncertainties as

a Markov sequence, defined in terms of the transition probability distribution

p(xt|xt−1),

� a measurement model which describes how the measurements yt depend on the

current state xt. This dependence is modelled by specifying the conditional

probability distribution of the measurement given the state which is denoted

as p(yt|xt).

We denote the information provided by the first t observations by Dt = {y1, ..., yt}.

The property of conditional independence of measurements and the Markov property

of states can be used to compute the filtered and predictive densities using a recursive

algorithm. Starting from x0 ∼ p0(x0) = p(x0|D0) for (t = 1, 2, ...) we can compute

the following:
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� the one-step ahead predictive density for xt given Dt−1, based on the filtering

density p(xt−1|Dt−1) and the transition model p(xt|xt−1);

� the one-step ahead predictive density for the next observation p(yt|Dt−1);

� the filtering density p(xt|Dt) using Bayes rule with p(xt|Dt−1) and the

likelihood of observation yt, p(yt|xt).

Proposition 3.2.1. (filtering recursions).

� The predictive density for the states can be computed from the filtered density

p(xt|Dt−1) according to

p(xt|Dt−1) =

∫
p(xt|xt−1)p(xt−1|Dt−1)dxt−1. (3.2.2)

� The predictive density for the observations can be computed from the predictive

density for the states as

p(yt|Dt−1) =

∫
p(yt|xt)p(xt|Dt−1)dxt. (3.2.3)

� The posterior filtering density can be computed from the above densities as

p(xt|Dt) =
p(yt|xt)p(xt|Dt−1)

p(yt|Dt−1)
. (3.2.4)

Proof. Looking first at the predictive density for the states,

p(xt|Dt−1) =

∫
p(xt−1, xt|Dt−1)dxt−1,

=

∫
p(xt|xt−1, Dt−1)p(xt−1|Dt−1)dxt−1,

=

∫
p(xt|xt−1)p(xt−1|Dt−1)dxt−1,

(3.2.5)

from the conditional independence xt ⊥⊥ (y1, ..., yt−1)|xt−1.
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Again, making use of the assumption of conditional independence, for the predictive

density for the observations we can use the conditional independence yt ⊥⊥
(y1, ..., yt−1)|xt to get

p(yt|Dt−1) =

∫
p(yt, xt|Dt−1)dxt,

=

∫
p(yt|xt, Dt−1)p(xt|Dt−1)dxt,

=

∫
p(yt|xt)p(xt|Dt−1)dxt.

(3.2.6)

The filtering density can be found using Bayes rule and the conditional independence

yt ⊥⊥ (y1, ..., yt−1)|xt

p(xt|Dt) =
p(xt, Dt)

p(Dt)
=

p(xt|yt, Dt−1)

p(yt|Dt−1)p(Dt−1)
=
p(xt|Dt−1)p(yt|xt, Dt−1)

p(yt|Dt−1)

=
p(yt|xt)p(xt|Dt−1)

p(yt|Dt−1)

(3.2.7)

We can then compute recursively the k-steps ahead predictive densities, starting for

k = 1 using

p(xt+k|Dt) =

∫
p(xt+k|xt+k−1)p(xt+k−1|Dt)dxt+k−1,

p(yt+k|Dt) =

∫
p(yt+k|xt+k)p(xt+k|Dt)dxt+k,

(3.2.8)

where p(xt+k|Dt) summarises the information contained in the past observation Dt,

this is sufficient for predicting yt+k. In general, the filtering equations do not have a

closed-form expression, except for the Kalman filter, where the state and observation

processes are linear-Gaussian. We will consider the Kalman filter in the following

section.
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3.3 Kalman Filter

There are many examples in which data are noisy or partially recorded, where we

want to understand the true underlying process of the data, e.g. global positioning

system (GPS), target tracking, and multiple target tracking (Särkkä 2013). We

can solve this problem using a state-space model framework, where we assume

there exists a latent process that evolves linearly with Gaussian noise, and which is

observed indirectly with additional Gaussian noise. This type of state space model

is known as the Kalman Filter (Kalman 1960). Kalman filtering is an efficient

recursive algorithm for tracking a time-dependent state vector in real-time with a

noisy evolution equation and noisy measurements. Specifically, the Kalman filter is

the closed-form solution of the Bayesian filtering equations for the filtering model,

xt = Atxt−1 + rt, (3.3.1)

yt = Htxt + st, (3.3.2)

where xt ∈ Rn is the state, yt ∈ Rm is the measurement, rt ∼ N(0, Rt) is the

process noise, and st ∼ N(0, St) is the measurement noise. The prior distribution,

x0 ∼ N(m0, P0), is Gaussian, the matrix At represents the transition matrix of the

dynamic linear model, and Ht is the measurement model matrix. The first equation

is called the state equation and the second is called the observation equation. We

can rewrite Equations (3.3.1) and (3.3.2) in terms of their distributional form as:

p(xt|xt−1) = N(xt|Atxt−1, Rt),

p(yt|xt) = N(yt|Htxt, St).
(3.3.3)

It follows from the properties of Gaussian distributions that the marginal and

conditional distributions are also Gaussian. We seek to learn the distribution of

the latent process xt, conditional on the noisy observations recorded so far, Dt.

The distribution p(xt|Dt) is referred to as the filtering distribution, and likewise,
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p(xt|Dt−1) and p(yt|Dt−1) are the predictive distribution and marginal likelihood,

respectively. The solution to the filtering problem is given by the Kalman filter.

Theorem 3.3.1. (Kalman filter) The resulting distributions from evaluating the

Bayesian filtering equations for the linear filtering model are Gaussian. For the

dynamic linear model Equations (3.3.1) and (3.3.2), if

xt−1|Dt−1 ∼ N(mt−1, Pt−1), (3.3.4)

where t ≥ 1, then

� the one-step ahead predictive density of xt, given Dt−1 Equation (3.2.2), is

Gaussian with parameters

mt|t−1 = E(xt|Dt−1) = Atmt−|t−1,

Pt|t−1 = V ar(xt|Dt−1) = AtPt−1|t−1A
′
t +Rt,

(3.3.5)

� the one-step ahead predictive density of yt given Dt−1 Equation (3.2.3), is

Gaussian, with parameters

ft = E(yt|Dt−1) = Htmt|t−1,

Qt = V ar(yt|Dt−1) = HtPt|t−1H
′
t + St,

(3.3.6)

� the filtering density of xt given Dt Equation (3.2.4), is Gaussian with

mt|t = E(xt|Dt) = mt|t−1 + Pt|t−1H
′
tQ

−1
t et,

Pt = V ar(xt|Dt) = Pt|t−1 − Pt|t−1H
′
tQ

−1
t HtPt|t−1,

(3.3.7)

where et = (yt − ft) is the forecast error.

Proof. The joint density for a random variable (x0, x1, ..., xn, y1, ..., yn) for any n ≥ 1
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is given by,

(x0, x1, ..., xn, y1, ..., yn) ∼ p0(x0)
n∏

t=1

p(yt|xt)p(xt|xt−1). (3.3.8)

As the process ((xt, yt), t = 1, 2, ...) is Markovian, we can make use of Properties

3.1.1 and 3.1.2 in Equation (3.3.8). In the linear Gaussian setting, the marginal

and conditional distributions are Gaussian. The Kalman filter can be derived using

some of the properties of Gaussian distributions given in Lemma A.1.1 and A.1.2,

hence the joint density of (x0, x1, ..., xn, y1, ..., yn) for any t ≥ 1 is Gaussian, as is

the conditional distribution of some component given another component. Then it

follows that the predictive densities and the filtering densities, Proposition 3.2.1, are

Gaussian and we can compute their means and variances. If xt−1 ∼ N(mt−1,Pt−1)

then,

� from the state space equation, xt|Dt−1 ∼ N(mt|t−1, Pt|t−1), where

mt|t−1 = E(xt|Dt−1) = E(E(xt|xt−1, Dt−1)|Dt−1) = E(Atxt−1|Dt),

= Atmt−1|t−1.

Pt|t−1 = V ar(xt|Dt−1) = E(V ar(xt|xt−1, Dt−1)|Dt−1)

+ V ar(E(xt|xt−1, Dt−1)|Dt−1),

= Rt + AtPt−1|t−1A
′
t.

(3.3.9)

� From the observation equation, yt|Dt−1 ∼ N(ft, Qt)

ft = E(yt|Dt−1) = E(E(yt|xt−1, Dt−1)|Dt−1)

= E(Ftxt−1|Dt),

= Ftmt|t−1.

Qt = V ar(yt|Dt−1) = E(V ar(yt|xt−1, Dt−1)|Dt−1)

+ V ar(E(yt|xt−1, Dt−1)|Dt−1)),

= St +HtPt|t−1H
′
t.

(3.3.10)
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� Using Bayes rule for computing the conditional density of xt|Dt, with the

density N(mt|t−1, Pt|t−1) of xt|Dt−1 as the prior and the density N(Htxt, Vt) of

yt|xt as the likelihood,

yt = Htxt + st, vt ∼ N(0, St), (3.3.11)

where the parameters of xt have a conjugate Gaussian prior N(mt|t−1, Pt|t−1)

and St are known. Then we have that

xt|Dt ∼ N(mt|t, Pt|t), (3.3.12)

where

mt|t = mt|t−1 + Pt|t−1H
′
tQ

−1
t (yt −Htmt|t−1),

Pt|t = Pt|t−1 + Pt|t−1H
′
tQ

−1
t HtPt|t−1.

(3.3.13)

The recursion is started from the prior mean m0 and covariance P0, then computing

p(x1|D1) and proceeding recursively as new data becomes available. The conditional

density of xt|Dt solves the filtering problem. Typically, we are interested in a point

estimate which is given by the conditional expected value mt = E(xt|Dt). From the

Kalman filter, mt can be expressed in terms of the prediction mean mt|t−1 plus a

correction term. The correction term is given by the Kalman gain matrix, K, which

gives a weighting between the new observation and the estimate:

Kt = Pt|t−1H
′
tQ

−1
t ,

= Pt|t−1H
′
t(St +HtPt|t−1H

′
t)

−1.
(3.3.14)

The weight of current information yt depends on the observations covariance matrix

St and on the predicted covariance matrix Pt|t−1 = V ar(xt|Dt−1) = Rt+AtPt−1|t−1A
′
t.

Using the Kalman gain matrix, often the Kalman filter is summarised as two steps:
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the time update and measurement update. Starting from the prior mean m0 and

covariance P0, the equations from these steps are outlined below.

� Time update equations. The prior state and error covariance estimates are

obtained by

mt|t−1 = Atmt−1|t−1,

Pt|t−1 = AtPt−1|t−1A
′ +Rt.

(3.3.15)

� Measurement update equations. The Kalman gain, posteriori state, and

posteriori error covariances are obtained by

Kt = Pt|t−1H
′
t[HtPt|t−1H

′
t + St]

−1,

mt|t = mt|t−1 +Kt(yt −Htmt|t−1),

Pt|t = (I −KtHt)Pt|t−1.

(3.3.16)

Example 3.3.1. (Kalman filter for a Gaussian random walk) Applying the Kalman

filter to the observations yt given by the Gaussian random walk in Example 3.1.1 to

estimate the state xt at each time step gives the following

� Time update step

mt|t−1 = mt−1|t−1,

Pt|t−1 = Pt−1|t−1 +Rt.
(3.3.17)

� Measurement update step

Kt = (Pt|t−1)(Pt|t−1 + St)
−1,

mt|t = mt|t−1 +Kt(yt −mt|t−1),

Pt|t = Pt|t−1 −KtPt|t−1.

(3.3.18)
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Figure 3.3.1 shows the Kalman filter applied to the Gaussian random walk. The filter

is showing the underlying process of the data reasonably well, with a mean squared

error of 0.6 when comparing the underlying process and Kalman filter estimate.

Figure 3.3.1: Kalman filter applied to the Gaussian random walk from Example 3.1.1 with
parameters R=S=1.

We can also use this example to better understand the role of the Kalman gain

matrix and how it applies a weighting between the measurement and estimated

value. The signal-to-noise ratio, given by the ratio between the two error variances

r = R/S, greatly influences the behaviour of the process yt. We can express mt|t =

Ktyt + (1−Kt)mt−1|t−1 as a weighted average of yt and mt−1 with weight

Kt =
Pt|t−1

Qt

=
Pt−1|t−1 +R

(Pt−1|t−1 +R) + S
, 0 < Kt < 1. (3.3.19)

If the signal-to-noise ratio, r = R/S is small, then Kt is also small since S is larger

than R meaning the measurement noise is larger and yt is given little weight. If

S = 0, we have the one-step ahead forecast given by the most recent data point as

all the weighting goes to yt since Kt = 1.
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The Kalman filter steps are shown in Figure 3.3.2. The filter is started with an

initial state m0, and covariance matrix P0 which feeds in from the previous step,

from this a new state mt|t−1 and covariance matrix Pt|t−1 are calculated. Next, the

Kalman gain matrix Kt is calculated and the new predicted state is updated with

the measurement at the current time step and the Kalman gain is used to give the

new state estimate mt|t. The Kalman gain is then used to find the new covariance

matrix Pt|t at the current time step. The new state and covariance matrix are then

entered as the previous state for the process to repeat.

Figure 3.3.2: Recursive Kalman filter algorithm

3.4 Parameter Estimation in State Space Models

In state space models there are often unknown parameters that should be estimated

along with the state itself.
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3.4.1 Bayesian Approach

A state space model with unknown parameters θ ∈ Rd, modelled as random variables

with a certain prior distribution p(θ), can be written in the form (Särkkä 2013)

θ ∼ p(θ),

x0 ∼ p(x0|θ),

xt ∼ p(xt|xt−1, θ),

yt ∼ p(yt|xt, θ),

(3.4.1)

using Bayes’ rule the joint posterior distribution is

p(x0:T , θ|y1:T ) =
p(y1:T |x0:T , θ)p(x0:T |θ)p(θ)

p(y1:T |θ)
, (3.4.2)

where

p(x0:T , θ) = p(x0|θ)
T∏
t=1

p(xt|xt−1, θ), (3.4.3)

and from the Markov property of states,

p(y1:T |x0:T , θ) =
T∏
t=1

p(yt|xt, θ). (3.4.4)

If we are only interested in the parameters θ, then the marginal posterior of

parameters given by integrating out the states is

p(θ|y1:T ) =
∫
p(x0:T , θ|y1:T )dx0:T . (3.4.5)

However, this integral would be computationally challenging to compute, increasing

in complexity as we obtain more measurements. Alternatively, a recursive maximum

likelihood approach is faster and discussed in the next section.
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3.4.2 Maximum Likelihood Estimation

The parameters in the state space model Equations (3.3.1) and (3.3.2) can be

estimated using θ to represent the vector of unknown parameters in the initial mean

m0, initial covariance P0, the transition matrix A, and the state and observation

covariance matrices R and S. The likelihood function is given by the joint density

of the observation for a particular value of the parameter, p(y1, ..., yn; θ), up to a

constant factor such that L(θ) = c × p(y1, ..., yn; θ), where c is a constant. For the

dynamic linear model, it is convenient to write the joint density of the observations

in the form (Petris et al. 2009)

p(y1, ..., yn; θ) =
n∏

t=1

p(yt|Dt−1; θ), (3.4.6)

where p(yt|Dt−1; θ) is the conditional density of yt given the data up to time t− 1,

assuming that θ is the value of the unknown parameter. Since we know the terms

in the RHS of Equation (3.4.6) are Gaussian densities with mean ft and variance

Qt, Theorem 3.3.1, we can write the log-likelihood as

l(θ) = −1

2

n∑
t=1

log |Qt(θ)| −
1

2

n∑
t=1

(yt − ft(θ))
′Qt(θ)

−1(yt − ft(θ)), (3.4.7)

which can be numerically maximised to obtain the maximum likelihood estimator

(MLE) of θ. Computationally, rather than maximising the likelihood function it is

equivalent to minimising the negative of the likelihood. The log-likelihood function

can be minimised by setting up a set of recursions for the log-likelihood function and

its first two derivatives. Newton’s method can be used to update the parameters

until the negative log-likelihood is minimised. Newton’s method looks to find the

root of a continuous, differentiable function l(θ) by looking at a point close to the

root and obtaining a better estimate from it. Consider the point θ = θ(0) which

you know to be near the root, then using Newton’s method a better estimate θ(1) is
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given by

θ(1) = θ(0) − l(θ(0))

l′(θ(0))
. (3.4.8)

This can be carried out iteratively,

θ(k) = θ(k−1) − l(θ(k−1))

l′(θ(k−1))
, (3.4.9)

until a desired level of accuracy is met.

The parameters in the Kalman filter can be estimated with the following steps

using Newton’s method:

1. Set initial parameters, θ(0).

2. Run the Kalman filter with initial parameters, to obtain the forecast errors

yt − ft(θ) and error covariances Qt.

3. Minimise the negative log-likelihood Equation (3.4.7), with Newton’s method,

to obtain estimates for the parameters θ(1).

4. Repeat steps 2 and 3 with the new parameters until the estimates or likelihood

stabilise.

Example 3.4.1. Consider a similar case to Example 3.1.1. We have

yt = xt + st, st ∼ N(0, S)

xt = xt−1 + rt, rt ∼ N(0, R)
(3.4.10)

where st, rt, and x0 are independent, and t = 1, 2, .... Using the same notation we

have, R = 0.5 and S = 1. The parameter estimation was accomplished using the

optimize function in Python. The final estimates for R=0.46 and S = 1.04 in 31

iterations.
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Chapter 3. Optimal Bayesian Filtering

3.5 Kalman Filtering for Bias Correction and

Recovering Missing Data

Kalman filters and extensions of are used in a variety of applications, including

i) post-processing, where Kalman filters are used after forecasts have been made

using climate models to reduce the errors and improve the accuracy of the results

(Djalalova et al. 2015, Heemink & Segers 2002, Ridder et al. 2012); ii) forecasting

using observational data and suitable covariates (Hoi et al. 2008, Zolghadri &

Cazaurang 2006); and iii) inverse modelling, where the model parameters used to

produce the data are determined (Napelenok et al. 2008, Metia et al. 2020).

There are many examples of the Kalman filter in various forms that are used for bias

correction and recovering missing data. The Kalman filter has been used to improve

the analysis and prediction results of ground ozone concentrations by reconstructing

the emissions. The results of the analysis procedure were found to be less sensitive

to fluctuations in the data (Heemink & Segers 2002). Kalman filtering has also

been used along with historical forecast analogues to improve surface PM forecasts

from air quality models that contained large, seasonally varying biases (Djalalova

et al. 2015). Kalman filter approaches have been used alongside air quality models,

resulting in a reduction in the error of ozone estimation at measurement sites

(Agudelo et al. 2011). The Kalman filter is also used to reduce the bias and lower

the error between estimation and measurements by applying a Kalman filter-based

bias correction method to the output from air quality models (Ridder et al. 2012).

Inverse modelling methods using Kalman filters are also used to identify biases in

emission inventories using satellite observations (Napelenok et al. 2008).

The next Chapter will consider an extension to the Kalman filter that allows

for skewness to be present in the observation noise. This additional information

incorporated from the skewness can be used to capture the bias between two
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datasets to provide a Kalman filtering approach for bias correction. In Chapter 5

we implement the skew Kalman filter using ozone measurement data and reanalysis

data to both correct the bias between two datasets and recover missing data on the

unbiased dataset.
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Chapter 4

The Skew Kalman Filter

Following from the previous chapter which discussed the background for the Kalman

filter. We will now look at extending the Kalman filter to allow for skewness to be

present in the observation noise. This allows for additional flexibility compared to

the traditional filter.

4.1 Introduction

As discussed in the previous chapter, the Kalman filter is a useful tool for analysing

and forecasting time series data. One key assumption of the Kalman filter is

normality in the observation noise. This allows for the Kalman filtering steps to

be performed quickly and efficiently, since the multivariate normal distribution is

completely characterised by its mean and variance. When this normality assumption

holds, the properties of the multivariate normal means the Kalman filter is tractable.

When the observation noise is normally distributed the measurements are assumed to

be symmetric about the mean. However, if there are biases present, this assumption

may not hold, for example, if the measurements of the system are consistently too

high or too low compared to the true value, the observations will not be symmetric

about the mean. This non symmetric distribution about the mean can be captured

using a skew distribution, this is shown in Figure 4.1.1. We seek to capture this bias
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4.1. Introduction

(a) Skew normal
distribution with mean =
0, variance = 1 and skew =
3.

(b) Skew normal
distribution with mean =
0, variance = 1 and skew =
0.

(c) Skew normal
distribution with mean =
0, variance = 1 and skew =
-3.

Figure 4.1.1: Distribution plots of (a) a skew normal distribution with positive skew, (b)
a normal distribution (i.e. no skew present), and (c) a skew normal distribution with
negative skew. The mean is shown as a dashed line in each plot.

as a skewness on the observation noise such that we can use a skew Kalman filter to

correct for that skew. This chapter proposes a simplified version of the skew normal

Kalman filter that follows a multivariate skew normal distribution.

The skew normal Kalman filter is an extension to the typical Kalman filter (see

Chapter 3) that accounts for the skewness present in the observational data to

produce more accurate forecasts. While the skew Kalman filter was first proposed

in 2005 (Naveau et al. 2005), it has failed to gain the same popularity in applications.

This is despite its additional usefulness in that it removes the limit that the

data need to be normally distributed and so reduces the need to transform data.

Incorporating skewness into the traditional Kalman filter aims to improve its

applicability by extending its usefulness to a wider range of data distributions but

without compromising its low cost computational benefits. The benefits of a skew

normal Kalman filter have been demonstrated using simulated data, as well as with

a limited number of applications (Arellano-Valle et al. 2019, Fasano et al. 2019).

Current versions of the skew Kalman filter use an extension to the multivariate skew

normal, either the univariate skew normal (SUN) (Arellano-Valle & Azzalini 2006)
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or closed skew normal distributions (González-Faŕıas et al. 2004). Compared to the

multivariate skew normal family, which preserves just the marginal distribution, the

univariate skew normal also preserves the conditional distributions (Arellano-Valle &

Azzalini 2020). Estimating the parameters can be more computationally challenging

than the basic filter due to the use of the unified skew normal distribution. Here, we

develop a simplified approach to the skew Kalman filter, building on that proposed

by Arellano-Valle et al. (2019), that reduces the unified skew normal to a standard

skew normal. This results in a skew filter that is more similar to the basic filter,

such that we are simply left with basic filtering equations plus an additional term.

The main advantage of using our simplified approach is seen in the estimation of the

model parameters, which is typically more complex and computationally expensive

in the skew Kalman filter.

This chapter is outlined as follows, Section 4.2 introduces the skew Kalman filter,

the challenges with estimating the parameters using maximum likelihood estimation

and presents our simplified approach to the skew Kalman filter to address this

issue. Section 4.3 is a simulation study, looking at varying levels of skewness in

the observation noise and evaluates the skew Kalman filters performance compared

to the standard Kalman filter. Finally, we give our conclusions in Section 4.4.

4.2 Skew Normal Kalman Filter

The traditional Kalman filter performs well under Gaussian noise. However, the

observation noise is not always Gaussian.

Example 4.2.1. (Gaussian random walk with skewed noise) Looking again at the

Gaussian random walk from Example 3.1.1, we can now include skewness in the
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4.2. Skew Normal Kalman Filter

Figure 4.2.1: Gaussian random walk from Example 4.2.1 with parameters W = V = 1
and λ = 2.

observation noise and write the one-dimensional Gaussian random walk model as

xt = xt−1 + wt, wt ∼ N(0,W ),

yt = xt + vt, vt ∼ SN(0, V, λ),
(4.2.1)

where SN(0, V, λ) denotes a skew normal with location parameter 0, scale V and

skew λ. UsingW = V = 1 and λ = 2, Figure 4.2.1 shows an example of the signal xt

and the measurements yt. Figure 4.2.2 shows the Kalman filter applied to the first

100 time steps of the data shown in Figure 4.2.1. Applying the traditional Kalman

filter to these data results in the filter estimate consistently being higher than the

signal. This is the result of the filter trying to fit to the mean of the data. However,

due to the skewness present in the data the underlying process is lower than the

mean. Therefore, we need to be able to account for this skewness in our Kalman

filter to be able to capture the underlying signal.
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Chapter 4. The Skew Kalman Filter

Figure 4.2.2: The standard Kalman filter applied to the Gaussian random walk from
Example 4.2.1 with parameters W = V = 1 and λ = 2.

4.2.1 The Skew Normal Distribution

Before deriving the simplified skew Kalman filter, we will explore the issues currently

present with the skew Kalman filter in the literature when using maximum likelihood

estimation to estimate the parameters.

The unified skew normal (SUN) or closed skew normal distributions have been

the preferred choice for the skew Kalman filter as compared to the multivariate

skew normal family which preserves just the marginal distribution, the unified skew

normal also preserves the conditional distributions (Arellano-Valle & Azzalini 2020).

However, estimating the parameters can be more computationally challenging than

the basic filter due to the use of the unified skew normal distribution. Following

Arellano-Valle & Azzalini (2006), a random vector X ∈ Rp has a multivariate SUN

distribution,

X ∼ SUNp,q(ξ,Ω,Λ, τ,Γ), (4.2.2)

with location vector ξ ∈ R, positive definite scale matrix Ω ∈ Rp×p, skewness/shape

matrix Λ ∈ Rq×p, extension vector τ ∈ Rq and positive definite extension matrix
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Γ ∈ Rq×q. The pdf is given by

f(x|ξ,Ω,Λ, τ,Γ) = ϕp(x|ξ,Ω)Φq(Λ(x− ξ) + τ |Γ)
Φq(τ |Γ + ΛΩΛ′)

, x ∈ Rp. (4.2.3)

Where, ϕ(·) and Φ(·) represent a normal probability density function (pdf) and

cumulative density function (cdf), respectively. The unified skew normal is difficult

to estimate using maximum likelihood estimation. Sampling from Equation (4.2.2),

the distribution parameters can only be estimated for certain parameter values.

Figure 4.2.3 shows log likelihood plots for the parameters when τ = 0, τ = 1, and

τ = −1. The remaining parameters are kept fixed for each value for τ . While

the parameters can be correctly estimated when τ = 0, this does not hold well for

other values of τ . If τ is limited to 0, it is logical to simplify to the multivariate

skew normal, as when q = 1, τ = 0 and Λ = η Equation (4.2.3) simplifies to the

multivariate SN pdf,

f(x|ξ,Ω, η) = 2ϕp(x|ξ,Ω)Φ1(η(x− ξ)|Ω) (4.2.4)

Thus, we will present a simplified approach to the unified skew normal Kalman

filter, as proposed by Arellano-Valle et al. (2019). We can simplify the unified skew

normal to a multivariate skew normal by fixing q = 1, τ = 0 and Λ = η, allowing

the filtering equations to also follow a multivariate skew normal and thus drastically

reducing the computational complexity of the pdf. The computational complexity of

the SUN pdf is due to the two multivariate normal cdf terms in the pdf. As a result,

the filtering equations for the unified skew normal Λ, τ and Γ increase in dimension

with time and thus the cdf terms quickly become computationally intractable.

4.2.2 Filtering Equations

Following Arellano-Valle et al. (2019), the linear model given by Equations (3.3.1)

and (3.3.2), can be represented using the skew-normal dynamic linear model
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(a)

(b)

(c)

Figure 4.2.3: Log likelihood plots for 100 data sets sampled from Equation (4.2.2) with
ξ = 0, Ω = 4, λ = 1, Γ = 0.5 and (a) τ = 0, (b) τ = −1, and (c) τ = 1. The dashed green
line indicated the true values of each parameter. Each plot shows on parameter varied
while the remaining parameters are fixed at the correct value.
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(SNDLM), with state θt and measurement yt, is given by

θt|θt−1,Wt ∼ Np(Gtθt−1,Wt), (4.2.5)

yt|θt, Vt, λt ∼ SNn(F
′
tθt −

√
2

π
∆t, Vt, λt), (4.2.6)

where ∆t = Vtηt/(1 + η′tVtηt)
1/2 = V

1/2
t δt, ηt = V

−1/2
t λt, δt = λt/(1 + λ′tλt)

1/2.

This means vt and wt have mean zero and variance-covariance matrices, V [vt] =

Vt − 2
π
∆t∆

′
t and V [wt] = Wt. This can be equivalently written as

xt = Gtxt−1 + wt, (4.2.7)

yt = Ftxt +∆tZt + ut, (4.2.8)

where Zt ∼ HN1(b, 1) with b = −
√

2
π
, where HN is the half-normal distribution,

which is independent of ut ∼ Nn(0, Vt − ∆t∆
′
t) and wt ∼ Nm(0,Wt). Equations

(4.2.7) and (4.2.8) give the skew normal dynamic linear model. Similar to before,

the filtering equations are split into two steps.

Time update equations.

mt|t−1 = Gtmt−1|t−1,

Ct|t−1 = GtCt−1|t−1G
′
t +W,

ηt|t−1 = ηt−1|t−1Bt−1(1 + ηt−1|t−1Htη
′
t−1|t−1)

−1/2,

(4.2.9)
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With Ht = Ct−1|t−1 −Bt−1Ct|t−1B
′
t−1 and Bt = Ct|tG

′
t+1C

−1
t+1|t.

Measurement update equations.

ft = F ′
tmt|t−1 − b∆t,

Qt = F ′
tCt|t−1Ft + V,

mt|t = mt|t−1 + Ct|t−1FtQ
−1
t (yt − ft),

Ct|t = Ct|t−1 − Ct|t−1FtQ
−1
t F ′

tCt|t−1,

ηt|t =

−ΛtF
′
t

ηt|t−1

+

 ΛtVtQ
−1
t

Ct|t−1FtQt−1

 (yt − ft)(θt −mt|t)
−1,

(4.2.10)

Using properties of the multivariate normal distribution, we can prove this using

induction.

Property 4.2.1. Let Z ∼ Nk(µ,Σ). Then for any fixed vector u ∈ Rm and matrix

A ∈ Rmxk (Arellano-Valle & Genton 2005),

E[Φm(AZ + u|Ω)] = ϕm(u|Ω + AΣA′). (4.2.11)

Property 4.2.2. We also make use of the marginal-conditional relation:

ϕk(x|µ,Σ)ϕm(y|η+A(x−µ),Ψ) = ϕk(x|µ,ΣA′Ω−1(y−η),Σ−ΣA′Ω−1AΣ)ϕm(y|η,Ω)

(4.2.12)

The prior distribution of the state model parameters at time t− 1 is

θt−1|Dt−1 ∼ SN(mt−1|t−1, Ct−1|t−1, ηt−1|t−1).

Supposing this is true, then the state model parameters at time t given the

information at time t− 1 is

θt|Dt−1 ∼ SN(mt|t−1, Ct|t−1, ηt|t−1).
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Proof.

p(θt|Dt−1) =

∫
Rp

p(θt|θt−1)p(θt−1|Dt−1)dθt−1

∝
∫
Rp

ϕp(θt|Gtθt−1,Wt)×

ϕp(θt−1|mt−1|t−1, Ct−1|t−1)Φt−1(ηt−1|t−1(θt−1 −mt−1|t−1))dθt−1

by equation 4.2.12

= ϕp(θt|mt|t−1, Ct|t−1)

∫
Rp

ϕp(θt−1 −mt−1|t−1|Ct−1|t−1G
′
tC

−1
t|t−1(θt −mt|t−1),

Ct−1|t−1 − Ct−1|t−1G
′
tC

−1
t|t−1GtCt−1|t−1)Φt−1(ηt−1|t−1(θt−1 −mt−1|t−1))dθt−1

by equation 4.2.11

= ϕp(θt|mt|t−1, Ct|t−1)Φt−1(ηt−1|t−1Bt−1(1 + ηt−1|t−1Htη
′
t−1|t−1)

−1/2(θt −mt|t−1))dθt

where ηt|t−1 = ηt−1|t−1Bt−1(1 + ηt−1|t−1Htη
′
t−1|t−1)

−1/2. Thus, this gives the kernel of

the pdf of θt|Dt−1 ∼ SN(mt|t−1, Ct|t−1, ηt|t−1).

The one-step forecast distribution at time t given the information at t− 1 is

Yt|Dt−1 ∼ N(ft, Qt).

Proof.

p(yt|Dt−1) =

∫
Rp

p(yt|θt, Dt−1)p(θt|Dt−1)dθt

∝
∫
Rp

ϕr(yt|F ′
tθt −

√
2

π
, Vt)Φ1(Λt(yt − F ′

tθt −
√

2

π
))

× ϕp(θt|mt|t−1, Ct|t−1)Φt−1(ηt|t−1(θt −mt|t−1))dθt
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by equation 4.2.12

= ϕr(yt|ft, Qt)

∫
Rp

ϕp(θt|mt|t, Ct|t)Φt(ηt|t(θt −mt|t))dθt

where

ηt|t =

−ΛtF
′
t

ηt|t−1

+

 ΛtVtQ
−1
t

Ct|t−1FtQt−1

 (yt − ft)(θt −mt|t)
−1. (4.2.13)

Now, by equation 4.2.11 we have

= ϕr(yt|ft, Qt)Φt(0|ηt|tCt|tη
′
t|t + I),

where I is the identity matrix. Since Φt(0|ηt|tCt|tη
′
t|t + I) = 1/2 we have

p(yt|Dt−1) ∝ ϕr(yt|ft, Qt),

which is the kernel of the pdf of yt|Dt−1 ∼ N(ft, Qt).

The state parameters at time t given the information at time t is given by

θt|Dt ∼ SN(mt|t, Ct|t, ηt|t).

Proof. Using the relations Λt(yt−F ′
tθt+

√
2
pi
∆) = −ΛtF

′
t(θt−mt|t)+ΛtVtQ

−1
t (yt−ft)
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and mt|t −mt|t−1 = Ct|t−1FtQ
−1
t (yt − ft). Similar to before

p(θt|yt, Dt−1) ∝p(yt|θt, Dt−1)p(θt|Dt−1)

∝ϕr(yt|F ′
tθt −

√
2

π
, Vt)×

Φ1(Λt(yt − F ′
tθt −

√
2

π
))ϕp(θt|mt|t−1, Ct|t−1)Φt−1(ηt|t−1(θt −mt|t−1))

∝ϕp(θt|mt|t, Ct|t)Φ1(Λt(yt − F ′
tθt −

√
2

π
))Φt−1(ηt|t−1(θt −mt|t−1))

=ϕp(θt|mt|t, Ct|t)Φt


−ΛtF

′
t

ηt|t−1

 (θt −mt|t) +

 ΛtVtQ
−1
t

Ct|t−1FtQt−1

 (yt − ft)


which we can rewrite as

= ϕp(θt|mt|t, Ct|t)Φt



−ΛtF

′
t

ηt|t−1

+

 ΛtVtQ
−1
t

Ct|t−1FtQt−1

 (yt − ft)(θt −mt|t)
−1

 (θt −mt|t)


= ϕp(θt|mt|t, Ct|t)Φt(ηt|t(θt −mt|t))

Thus, this gives the kernel of the pdf of θt|Dt ∼ SN(mt|t, Ct|t, ηt|t), concluding the

proof.

As a result of deriving the Kalman filter for the skew normal distribution, the latent

variable is present in ηt|t. However, this should not be an issue as η does not appear

in the filtering equations for m or C, nor the likelihood.

Example 4.2.2. (Skew Kalman filter for a Gaussian random walk with skewed

noise) Now, applying the skew Kalman filter to the observations yt, given by the

Gaussian random walk in Example 4.2.1, we can estimate the state xt. Figure 4.2.4

shows the Skew Kalman filter applied to the Gaussian random walk. Compared to

the traditional filter, shown in Figure 4.2.2, the skew filter is able to correct for the

skew present and visually captures the underlying signal better than the traditional
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Figure 4.2.4: Skew Kalman filter applied to the Gaussian random walk from Example
4.2.1 with parameters W=V=1 and λ = 2.

Kalman filter.

4.2.3 Parameter Estimation

Following our notation from Chapter 3, the likelihood for the basic filter is given by

L =
n∏

t=1

ϕ(yt|mt,t−1, Pt,t−1 + S), (4.2.14)

where S is the observation noise parameter, mt,t−1 and Pt,t−t are the estimated state

and covariance at time t. For the skew normal Kalman filter, we need to estimate

the noise parameters W and V as well as the skew parameter λ. From our proof of

the one-step forecast distribution we have that the likelihood for the skew normal

Kalman filter is given by

L =
n∏

t=1

ϕ(yt|F ′
tmt,t−1 − b∆t, F

′
tCt|t−1Ft + V ), (4.2.15)

where V is the observation noise parameter and mt,t−1 and Ct,t−t are the estimated

state and covariance at time t, F is the observation matrix, and b = −
√

2
π
. The
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additional skew information is given by ∆t = V
1/2
t δt, where δt = λt/(1 + λ′tλt)

1/2

and λ is the skewness parameter. This is no more complicated than the basic

Kalman filter likelihood. Thus, this preserves the computational efficiency and

simplicity of the basic filter while still incorporating the additional skew information.

Furthermore, compared to the unified skew normal pdf given in Equation (4.2.3),

this is more computationally tractable as we have avoided the high dimensional

matrices in the cdf.

Likelihood plots for W , V and λ are shown in Figure 4.2.5. While we can easily

estimate W using this likelihood, V and λ are linked parameters and more difficult

to estimate. From the right most plots we can see that the range over which the

likelihood varies for different values of λ is very small. Therefore, W and V will

produce the same estimates regardless of the value of λ. If the true parameters are

W = V = 1 and λ = 0, if λ is fixed at any value it will still estimate the noise

parameters W and V close to 1.

If Y ∼ SN(η,Ω, λ) then we can rewrite the likelihood for the skew Kalman filter as

a skew normal using

Y = η +∆Z + U (4.2.16)

where ∆ = Ω1/2δ, Z is a half normal Z ∼ N(0, 1), and δ = λ/
√
1 + λ2. We find

that given η = ft and Ω = Qt(1− 2/πδ2)1/2 we can rewrite our normal likelihood as

a skew normal given by

yt ∼ SN(ft, Qt(1−
2

π
δ2)−1, λ), (4.2.17)

if the skewness parameter λ = 0 we have yt ∼ SN(ft, Qt, 0), which is equivalent to

the Gaussian likelihood, yt ∼ N(ft, Qt) as expected.

Likelihood plots for the new likelihood are shown in Figure 4.2.6. While this
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(a) Data generated using W = 1, V = 1, λ = 0.

(b) Data generated using W = 1, V = 1, λ = 3.

Figure 4.2.5: Log likelihood plots for the skew Kalman filter using the log of the likelihood
given in Equation (4.2.15). 1000 data points were simulated using W = V = 1 and (a)
λ = 0 and (b) λ = 3. The green dashed lines show the true values, and the optimised
result for the estimated parameter is given in the titles of each plot. We optimate over the
exponential of the noise parameters so we can estimate them over the real line. Therefore,
data generated with W = V = 1 corresponds to a true value of 0.
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has addressed the short range over which the likelihood varies for changing λ, the

parameter λ still always estimates close to 0. The relationship between the basic

filter parameters and the skew filter parameters is as follows:

R = W, (4.2.18)

S = V (1− 2δ2

π
) with δ =

λ√
1 + λ2

. (4.2.19)

Thus, when λ = 0 we have that S=V, which is simply the standard Kalman filter.

Due to the relationship between V and λ, V is also being incorrectly estimated, if

λ were to be fixed at the correct value V would also be correct. Thus, we seek an

alternative method in which to estimate the skewness parameter λ.

Since there is only one parameter to estimate this can be done using a grid search

over possible parameters and choosing the parameter that minimises some chosen

metric. Here we will use the mean square error between the filter estimate and

underlying signal as this is known in the simulation study we carry out below.

The steps for obtaining the skew Kalman filter estimate are as follows:

1. Run the skew Kalman filter with λ = 0 to estimate W and V .

2. Carry out a grid search over values of λ, updating V according to Equation

4.2.19, to find the value of λ that minimises MSE.

3. Obtain skew filter estimate using new parameters.

4.3 Simulation Study

In this section we consider a simulation study to evaluate the performance of the

skew normal Kalman filter and the proposed method to estimate the skew Kalman
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(a) Data generated using W = 1, V = 1, λ = 0.

(b) Data generated using W = 1, V = 1, λ = 3.

Figure 4.2.6: Log likelihood plots for the skew Kalman filter using the log of the likelihood
given in Equation (4.2.17). 1000 data points were simulated using W = V = 1 and (a)
λ = 0 and (b) λ = 3. The green dashed lines show the true values and he optimised
result for the estimated parameter is given in the titles of each plot. We optimate over the
exponential of the noise parameters so we can estimate them over the real line. Therefore,
data generated with W = V = 1 corresponds to a true value of 0.
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filter parameters. For this we consider the following skew normal DLM

θt = θt−1 + wt, (4.3.1)

Yt = θt + vt, (4.3.2)

with vt ∼ SN(0, V, λ) and wt ∼ (0,W ), for t = 1, ..., 1000. We compare the

performance of the skew Kalman filter to the traditional Kalman filter both in

the presence of skew and when there is no skew. In the absence of skewness, the

skew Kalman filter reduces to the traditional Kalman filter. Equations (4.2.18)

and (4.2.19) are used to calculate the true parameters for the traditional Kalman

filter. We consider 3 cases: λ = 0, to ensure the skew filter performs the same

as the traditional Kalman filter when there is no skew, a positive skew case where

λ = 2, and a negative skew case where λ = −0.5. As by the proposed steps for

estimating parameters using the skew Kalman filter the underlying process is used to

estimate the skewness parameter and minimise the error between the 2 datasets. The

traditional Kalman filter is not using the information from the underlying process

and is estimating the parameters from the observation data only.

4.3.1 Case 1: λ = 0

First, we simulate a signal using Equation (4.3.1) and W = 1. Second, we simulate

100 series of measurements from Equation (4.3.2) with V = 1 and λ = 0.

Figure 4.3.1 shows the filter results for both the basic and skew filter using the

mean parameter estimates. Both the basic filter and the skew filter perform similarly,

which is to be expected in the absence of any skew in the data as the skew Kalman

filter reduces to the basic filter. The MSE for the basic filter and skew filter is

0.60 for both, which further confirms they are performing similarly. Table 4.3.1

summarises the MLE results for the SKF and the basic KF. The parameter estimates

for each filter are reasonably close to the true value, with the skew Kalman filter
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Table 4.3.1: MLE results based on 100 generated data sets for W = V = 1 and λ = 0.

Parameter True Value Mean Estimate SD Estimate

W 1 0.955 0.080

V 1 1.001 0.105

λ 0 0.045 0.059

R 1 0.970 0.080

S 1 0.997 0.105

Mean and standard deviation of the parameter estimates for the 100 simulated data sets.
Upper box shows the parameter estimates for the skew normal Kalman filter and the lower
box shows the parameter estimates for the traditional Kalman filter.

mean estimate being between 0.001 and 0.045 of the true value and the traditional

Kalman filter being between 0.003 and 0.3 of the true value.

4.3.2 Case 2: λ = 2

We repeat the same experiment again but with λ = 2.

Figure 4.3.2 shows the filter results for both the basic and skew filter using the

mean parameter estimates. In Figure 4.3.2a, the basic filter estimate is consistently

higher than the true underlying signal. This is because the basic filter is unable to

capture the skew in the data and returns a state estimate which closely represents

the mean of the data rather than the underlying signal. Comparing this to the skew

filter estimate in Figure 4.3.2b, since the skew filter is able to adjust for the skew in

the data it captures the underlying signal better. This results in a lower MSE for the

SKF of 0.60, compared to the standard KF where it is 0.89. Table 4.3.2 summarises

the MLE results for the SKF and the basic KF. The true parameter values for the
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(a) Filter results for basic filter. (b) Filter results for skew filter.

Figure 4.3.1: Filter results for basic and skew filter (dashed, blue line). Simulated signal
using Equation (4.3.1) and W = 1 (solid, orange line). 100 simulated measurement series
from Equation (4.3.2) with V = 1 and λ = 0 (shaded region, yellow) and the mean of the
simulated measurement series at each time (dashed line, grey).

Table 4.3.2: MLE results based on 100 generated data sets for W = V = 1 and λ = 2.
Mean and standard deviation of the parameter estimates for the 100 simulated data sets.
Upper box shows the parameter estimates for the skew normal Kalman filter and the lower
box shows the parameter estimates for the basic Kalman filter.

Parameter True Value Mean Estimate SD Estimate

W 1 0.937 0.055

V 1 0.980 0.073

λ 2 1.78 0.322

R 1 0.950 0.055

S 0.491 0.509 0.065
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(a) Filter results for basic filter with
simulated data.

(b) Filter results for skew filter with
simulated data.

Figure 4.3.2: Filter results for basic and skew filter (dashed, blue line). Simulated signal
using Equation (4.3.1) and W = 1 (solid, orange line). 100 simulated measurement series
from Equation (4.3.2) with V = 1 and λ = 2 (shaded region, yellow) and the mean of the
simulated measurement series at each time (dashed line, grey).

basic KF are adjusted using Equations 4.2.18 and 4.2.19. The mean estimated skew

is slightly lower than the true value at 1.78 with a std of 0.3. However, this has not

had a large impact on the estimate of V and the SKF still performs better compared

to the basic KF.

4.3.3 Case 3: λ = −0.5

Finally, we repeat the same experiment again but with λ = −0.5. Figure 4.3.3

shows the filter results for both the basic and skew filter using the mean parameter

estimates. Now, due to the negative skew, the traditional Kalman filter estimate is

consistently lower than the underlying signal, whereas the skew Kalman filter is able

to adjust for this. Again, this results in a lower MSE for the SKF, 0.60, compared

to the standard KF, 0.68. Table 4.3.3 summarises the MLE results for the SKF

and the basic KF. Again, true parameter values for the basic KF are adjusted using

64



4.4. Discussion and Conclusion

Table 4.3.3: MLE results based on 100 generated data sets for W = V = 1 and λ = −0.5.
Mean and standard deviation of the parameter estimates for the 100 simulated data sets.
Upper box shows the parameter estimates for the skew normal Kalman filter and the lower
box shows the parameter estimates for the basic Kalman filter.

Parameter True Value Mean Estimate SD Estimate

W 1 0.969 0.073

V 1 1.026 0.113

λ -0.5 -0.43 0.076

R 1 0.975 0.072

S 0.873 0.924 0.072

Equations 4.2.18 and 4.2.19. The mean parameter estimates are close to the true

value for each of the parameters for both filters.

4.4 Discussion and Conclusion

The simulation study demonstrates that correctly estimating the skewness allows

for a better capturing of the underlying signal and a reduction in error. We can

see from Cases 2 and 3 that a higher value in skew leads to a greater MSE in the

basic KF, whereas the SKF performs similarly across all the cases. Thus, the higher

values in skewness lead to a greater improvement using the SKF compared to the

basic KF. To evaluate the suitability for higher values of skewness we look at the

estimated skewness over a range of values. Similar to the simulation study, 25 sets

of noisy measurements were simulated for the same underlying signal. The true

value of skew is increased at equal intervals from -5 to 5 and we consider the mean

estimate of the skew from the 25 simulated measurement sets. From Figure 4.4.1

we can see the estimates perform best when close to 0 and as you move away from
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(a) Filter results for basic filter with
simulated data.

(b) Filter results for skew filter with
simulated data.

Figure 4.3.3: Filter results for basic and skew filter (dashed, blue line). Simulated signal
using Equation (4.3.1) and W = 1 (solid, orange line). 100 simulated measurement series
from Equation (4.3.2) with V = 1 and λ = −0.5 (shaded region, yellow) and the mean of
the simulated measurement series at each time (dashed line, grey).

zero the skew estimate moves further away from the true value. While the best

performance is seen between (−2, 2), even with the estimated skew being too low

for the higher values of skewness, there will still be an improvement compared to

the basic KF.

The main limitation of the simplified skew Kalman filter is that estimating the

parameters using the 2-step method proposed here requires the underlying process

to be known to be able to estimate the skew parameter. While knowledge of the

underlying signal is limiting in terms of applications, the simplified skew Kalman

filter would be suitable for bias correction, which we consider in Chapter 5. If

the skew was relatively constant, the underlying process may only be needed for a

training portion of the data. However, in the absence of anything to indicate the

skew or some informed assumptions as to what it should be, the skew will always

estimate close to 0.
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Figure 4.4.1: Mean estimate of the skewness parameter (solid line), from 25 simulated
measurement sets, and the true value (dashed line) using a grid search to estimate the
parameters.

Recent work by Wang et al. (2023), which shares authors with the paper which

motivated this research (Arellano-Valle et al. 2019), has explored the identifiability

issue with the unified skew normal distribution. They propose to constraining

parameters to enforce identifiability. One possible option being to limit τ = 0 which

corresponds with our initial investigation of the distribution. Further, by limiting τ

and reducing the skew Kalman filter to the multivariate skew normal we are able to

avoid the computational problems in the unified skew normal Kalman filter caused

by large matrices in the SUN pdf and successfully estimate the parameters using

a combination of MLE and a grid search, all of which preserves the simplicity of

the standard Kalman filter. Thus, we have successfully implemented a simplified

version of the skew Kalman filter, that is still relatively simple and computationally

efficient.
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Chapter 5

A Skew Kalman Filter Approach

for Bias Correction and Infilling

Missing Data, Demonstrated for

Surface Ozone

Abstract

Incomplete data is a common issue in air quality monitoring, and often results from

instrument failure or maintenance. Reanalysis data offers a time complete picture

of air quality providing an attractive source to infill gaps in the observation data.

Since it is often biased, using ‘raw’ reanalysis data to infill missing data is likely to

introduce errors into any statistical inference based on the in-filled dataset. Here,

we propose a method for infilling missing data that considers the bias between the

datasets as a skewness allowing for the use of a skew Kalman filter, an extension

to the traditional filter that allows for skewness to be present in the observation

noise. The Kalman filter is a simple, computationally efficient tool for estimating the

underlying process of a system under noisy measurements and provides an associated

uncertainty in the estimate. For our real-world missing data scenario using surface
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level ozone, the reduction in RMSE was 0.1 ppb - 1.3 ppb across 8 measurement sites

compared to ‘raw’ reanalysis data. By resolving the bias issue, we can implement a

computationally efficient statistical method for an improved way in which to infill

the missing data that is transferable to other applications.

5.1 Introduction

Environmental time series from measurement sites often contain missing data due

to events like instrument failures, power cuts or instrument calibration issues. At

the same time, we often need a complete time series from a given location to

inform site-specific inference (e.g., crop damage or health impacts from pollution).

While there are lots of infilling methods, (e.g. linear interpolation, regression based

methods (Junninen et al. 2004) or neural networks (Zhang & Thorburn 2022)),

each have advantages as well as drawbacks. Here, we describe a novel approach

for infilling missing data using a skew Kalman filter (Naveau et al. 2005), which we

demonstrate with measurement time series of the air pollutant ozone. This approach

has the advantage of being computationally efficient, relatively straight forward to

implement and able to produce uncertainty estimates for the infilled data.

Methods for infilling missing data range from simple to complex (Hartley & Hocking

1971, Little & Rubin 2002, and references therein). Simple methods include linear

interpolation, which connects the end points of the gap with a straight line, infilling

with the mean or median of non-missing observations, and case deletion, where

missing data is simply ignored. While straight forward to use, these methods can

disrupt the structure of the data and introduce large errors into the analysis (Baraldi

& Enders 2010, Donders et al. 2006). Other more sophisticated approaches include

regression-based imputation methods, which are based on estimated regression

models between missing and available data (Mirzaei et al. 2022); the expectation-

maximisation method, which is an iterative method for estimating missing data
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(Schneider 2001, Baraldi & Enders 2010); neural networks, which are inspired

by biological neural networks and can capture and make use of the temporal

information, as well as computing other correlated predictors to infill missing data

(Choudhury & Pal 2019, Coulibaly & Evora 2007); self organizing maps, which are a

tool for multivariate data mapping data from a high dimensional input space to a low

dimensional output space, serving as a clustering tool that can interpolate between

previously encountered inputs (Lamrini et al. 2011, Folguera et al. 2015, Nkiaka et al.

2016); and singular spectrum analysis, which is a non-parametric technique for time

series analysis that aims to reproduce the original time series from its principle

components (Shen et al. 2015, Schoellhamer 2001). However, these methods can be

computationally expensive or require additional covariate information, particularly

if modelling the data is required.

Aside from infilling the data based on covariates, we could alternatively make use

of output from physically based process models, which provide a spatiotemporally

complete picture of the measured variable. Reanalysis data is a data assimilation

product that assimilates multiple observations into a physically based process model

of the atmosphere to give a best estimate of the state of the atmosphere, including

for physical parameters not measured or not measurable (Kanamitsu et al. 2002,

Dee et al. 2014, Hersbach et al. 2020). Despite being calibrated to observational

data, reanalyses still contain biases, particularly when compared to local scale

measurement data (Casciaro et al. 2022, Wagner et al. 2020).

Here, we demonstrate a method that uses reanalysis output to infill missing data

from measurement sites, while also correcting the bias between the two datasets.

Our approach conceptualises the bias as a ‘skewness’, between the two datasets,

which facilitates the use of an extension to the standard Kalman filter to correct

the bias. The standard Kalman filter itself is a useful tool for analysing time series

data and continues to be well used across various disciplines long after it was first
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proposed by Kalman (1960). Examples of work implementing the Kalman filter

alongside air pollution data fall into three main categories: 1) post processing,

where a Kalman filter is applied to climate model forecasts to reduce the errors

and improve the accuracy of the forecasts (Djalalova et al. 2015, Heemink & Segers

2002, Ridder et al. 2012); 2) inverse modelling methods, where Kalman filters are

used to identify biases and improve emission inventories using satellite observations

(Napelenok et al. 2008, Metia et al. 2020); and 3) producing forecasts, which use

Kalman filters with observational data and covariates, such as meteorological effects

and human activity (Hoi et al. 2008, Zolghadri & Cazaurang 2006). While the

standard Kalman filter assumes normality in the observation noise, the skew Kalman

filter allows for greater flexibility in the noise distribution, through inclusion of an

additional skewness parameter. This extends the applicability of the Kalman filter to

a wider range of datasets without compromising the low-cost computational benefits

(Arellano-Valle et al. 2019, Fasano et al. 2019). Here, we use a skew Kalman filter

that follows a multivariate skew normal distribution, allowing information from the

skew between two datasets to be included in the filter estimate. Section 5.2 further

explains the use of the skew between the datasets as a bias correction technique.

We demonstrate our method using surface ozone data, for which reanalysis and

measurement data are freely available. Ozone is an air pollutant that has negative

impacts on human health (Huangfu & Atkinson 2020) and ecosystems (Wittig

et al. 2009), as well as crop yields (Feng et al. 2008). The analysis of surface

level observations is vital to improving the understanding of the spatiotemporal

distribution of ozone and its trends (Tarasick et al. 2019). The recent Tropospheric

Ozone Assessment Report (TOAR) collated surface ozone from ∼ 10,000 monitoring

stations globally (Schultz et al. 2017). Like other environmental measurement

data, these surface ozone measurements are often incomplete, which can present

issues for analysing and characterising the data as well as utilising it as an input

to site-level models. Here, we demonstrate and evaluate our method for the
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years 2015-2017, inclusive, using 15 sites in Germany from the TOAR database

and reanalysis data from the Copernicus Atmospheric Modelling System (CAMS;

https://atmosphere.copernicus.eu).

The rest of this paper is organised as follows. In Section 5.2, we describe our

skew Kalman filter approach to infilling and bias correction and introduce CAMS

and TOAR data. In Section 5.3, we assess the ability of our skew Kalman method

for correcting the bias in the reanalysis data and as a method for infilling randomly

missing data. Finally, in Section 5.4 we discuss the comparative advantages and

potential extensions to our approach.

5.2 Methods and Data

5.2.1 Skew Normal Kalman Filter

The bias between the two datasets can be considered as an unknown skew term,

where a positive skew arises from an overestimate from the biased dataset and

conversely, a negative skew arises from an underestimate. A skewness of zero implies

no skewness, and thus no bias. The skew normal Kalman filter (SKF) (Naveau et al.

2005) is an extension of the Kalman filter (KF), which is a computationally efficient

recursive algorithm for tracking a time-dependent state vector in real time, θt, with

a noisy evolution equation and noisy measurements, yt (Kalman 1960). A KF seeks

to estimate the true underlying process of a system under noisy measurements. The

SKF extends the assumption of normality on the observation noise to include skew

normal distributed observations, with state and measurement equations are given

by

θt = Gtθt−1 + wt, (5.2.1)

yt = Ftθt + vt, (5.2.2)
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respectively, where the process noise, wt ∼ Nn(0,W ), is normally distributed and

vt ∼ SNn(0, V, λ) is a skew normal distribution with skew parameter λ. Matrices W

and V are positive semi-definite covariance matrices. The matrix Gt is the transition

matrix and Ft is the measurement model matrix.

Figure 5.2.1a compares the reanalysis data from CAMS and the surface observation

data from TOAR for a suburban background site located in Broitzem, Braunschwieg

2015 to 2017. By treating the reanalysis data as noisy measurements of some

underlying system, assumed to be represented by the observation data, the

resulting Kalman filter estimate should be closer to the observation data than the

reanalysis data itself. Figure 5.2.1b shows the difference between the CAMS and

TOAR concentrations, the mean difference between the datasets is 1.0, as this is

greater than 0, this indicates there is a bias present and the reanalysis data is

overestimating the ozone concentrations compared to TOAR. Across the sites that

will be discussed is this paper the mean difference between the reanalysis data

and the observation data ranges between 0.2 and 2.7. Thus, the reanalysis ozone

concentrations are not symmetric about the observation ozone concentrations. The

skew normal distribution is not symmetric about the mean and thus is a more

suitable approximation for the noise present in this system.

Current literature for the SKF uses an extension to the multivariate skew normal,

the univariate skew normal (SUN) (Arellano-Valle & Azzalini 2006) or closed skew

normal. This has been the preferred choice since the univariate skew normal

preserves the conditional and marginal distributions (Arellano-Valle & Azzalini

2020) whilst the multivariate skew normal family preserves only the marginal

distribution. However, these distributions can be computationally intractable

making it difficult to estimate the fixed parameters (Wang et al. 2023). Here,

we adopt a simplified approach to the SKF, as proposed by Arellano-Valle et al.

(2019), which reduces the unified skew normal to a standard skew normal. We then
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(a)

(b)

Figure 5.2.1: (a) CAMS and TOAR daily mean ozone and (b) the difference in ozone
concentrations (ppb) between CAMS and TOAR at Braunschweig B during 2015 to 2017.
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implement a two-step approach to estimate the parameters. The filtering equations

for the SKF can be written as two steps, the time update and the measurement

update.

We assume an initial skew normal distribution for θ0, at time t = 0, with mean

m0 and covariance C0. Using equations 5.2.3 and 5.2.4 we can recursively update

the mean and variance of θt. We use the time update equations to obtain a mean

and covariance at time t using information up to time t− 1, denoted by t|t− 1:

Time update equations

mt|t−1 = Gtmt−1|t−1,

Ct|t−1 = GtCt−1|t−1G
′
t +W.

(5.2.3)

The measurement update equations are then used to obtain a mean and covariance

at time t using the information up to time t, including the measurement at time t,

denoted by t|t:

Measurement update equations

ft = F ′
tmt|t−1 − b∆t,

Qt = F ′
tCt|t−1Ft + V,

mt|t = mt|t−1 + Ct|t−1FtQ
−1
t (yt − ft),

Ct|t = Ct|t−1 − Ct|t−1FtQ
−1
t F ′

tCt|t−1,

(5.2.4)

where b = −(2/π)1/2, ∆t = Vtηt(1 + η′tVtηt)
−1/2 = V

1/2
t δt, ηt = V

−1/2
t λt, and

δt = λt(1 + λ′tλt)
−1/2. These parameters result from the reparametrisation used

by Arellano-Valle et al. (2019).
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Compared to the KF we now have an additional term in the measurement update

equations, −b∆t, which acts as a correction term for the skew present in the

measurement noise vt, shifting the filter estimate to account for the skewness. The

likelihood for the SKF is given by

L(ψ) =
n∏

t=1

2

ω
ϕ

(
yt − ft
ω

)
Φ

(
λ

(
yt − ft
ω

))
, (5.2.5)

where yt denotes the observations, ft is the location parameter and ω is the scale

parameter Qt(1 − (2/π)δ2)−1. Here, ϕ(·) and Φ(·) represent a normal probability

density function (pdf) and cumulative density function (cdf), respectively. Our

parameters of interest are ψ = (W,V, λ).

While using maximum likelihood estimation would be a relatively efficient way to

estimate parameters, a limitation for this model is that the skew parameter cannot

be correctly estimated with that method as only the biased dataset is used in the

likelihood function. Thus, a two-step process is needed to first estimate the noise

parameters, followed by the skewness parameter separately.

The estimate of the process noise W is independent of the value of the skewness

parameter. However, V changes with respect to λ according to the relationship

Vλ=0 = Vλ=α

(
1− 2δ2

π

)
with δ =

λ√
1 + λ2

, (5.2.6)

where α is some unknown constant. To estimate λ we seek to minimise the mean

square error (MSE) between the biased and unbiased datasets. We do this by a

grid search over λ, updating V using Equation (5.2.6), and choosing the value of λ

that minimises the MSE between the datasets. From Equation (5.2.6), δ follows a

logistic curve, meaning that −1 ≤ δ ≤ 1 for large λ. Hence, we constrain λ between

-10 and 10, which is sufficient to reach the upper and lower limit of δ and allowing
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larger λ offers no additional information to the model.

Similarly to the traditional filter, the skew filter estimate, mt|t, has an associated

variance, Ct|t, which can be used to calculate confidence intervals for the estimate.

However, while the traditional filter has a symmetric confidence interval, the skew

filter confidence interval does not. This is due to the skew normal distribution

not being symmetric about the mean, we calculate the 95% confidence interval

numerically using the SciPy package in Python (Virtanen et al. 2020).

5.2.2 Data Description

The observational data used in this study consist of measured surface ozone data

from the TOAR database (Schultz et al. 2017). This is the world’s largest database

of hourly surface ozone observations, combining data from over 10,000 measurement

sites with particularly high spatial coverage in Europe, North America, South Korea

and Japan (Schultz et al. 2017). The database contains a mixture of site types,

including background urban, rural, suburban, roadside and industrial sites, and

the measurement data are used for policy evaluation and determining compliance

with pollutant safe levels. Spatiotemporally reanalysis surface ozone data was taken

from the CAMS reanalysis dataset. CAMS ozone data is produced by the European

Centre for Medium-Range Weather Forecasting using a 4D-Var data assimilation

system, which combines ozone data from satellite retrievals with a process-based

model of atmospheric physics and chemistry (Inness et al. 2019, 2015). Three-

hourly CAMS data is currently available for the period January 2003 to December

2021 with a horizontal resolution of 80km.

We demonstrate our infilling method using daily mean surface ozone levels. We

consider only TOAR sites with a temporally complete set of data such that we can

subsequently compare our infilled data against the true value. As no sites have a

complete hourly record, we choose sites for which a minimum of two thirds of the
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hourly observations are present for each 24-hour period, starting from 00:00. Finally,

we restrict ourselves to sites where the root mean squared error (RMSE) between

the measurements and CAMS is less than 6 ppb (parts per billion); i.e., sites where

the CAMS data is representative of the TOAR data. The CAMS data was sampled

from the nearest grid square to the TOAR data and converted to TOAR’s mixing

ratio units (multiplying by the molecular weight of ozone divided by the molecular

weight of air).

Following our site selection criteria, we used 15 TOAR sites in Germany, of which

there are 4 urban, 5 rural, and 6 suburban sites. The locations of these sites

are shown in Figure (5.2.2). Two of the sites have measurements in different

networks (Stendal Stadstee and Braunschweig) and treat the members of each pair

as different sites, suffixing them with A or B if they are on the AIRBASE or UBA

network, respectively. The AIRBASE network (https://www.eea.europa.eu/data-

and-maps) is the European air quality database maintained by the European

Environment Agency and the German Environment Agency, Umweltbundesamt

(UBA; https://www.umweltbundesamt.de/en/data), provides data about the concentration

of pollutants in Germany.

5.3 Results

The results are split into two sections. First, a comparison between the KF and the

SKF was carried out at each site to demonstrate the SKF approach for correcting

the bias present between the CAMS and TOAR datasets. Next, the performance of

the SKF was evaluated for infilling missing data. Three types of missing data are

considered: random missingness, consecutive missingness and a real world scenario,

which provides a combination of random and consecutive missingness.
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Figure 5.2.2: Map of measurement site locations in Germany, colour indicates site type.
Sites in bold are on both the Airbase and UBA networks, remaining sites are on the
Airbase network only.

5.3.1 Correcting the Bias

Figure 5.2.1b shows the difference between the CAMS and TOAR concentrations

for a suburban background site located in Broitzem, Braunschwieg 2015 to 2017.

The average CAMS bias is highest in the summer months, June to September, and

while CAMS is able to capture ozone levels reasonably well in the winter months,

December to February, it is still biased. Similar trends are seen across all sites, with

the site specific RMSE between CAMS and TOAR varying between 5.1 ppb and 5.9

pbb.

The CAMS data, which we treat as noisy observations of the TOAR ozone data, are

not symmetric around the TOAR data due to the bias present, which means that

the KF is fundamentally unable to capture the underlying process as it requires the

observations to be normally distributed. Figure 5.3.1a shows the results for the KF
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when applied to the CAMS dataset. The RMSEs between CAMS and TOAR and

between the KF and TOAR are 5.1 ppb and 5.2 ppb, respectively. Therefore, there

is no benefit in using a KF as it does not reduce the bias. Figure 5.3.1b shows the fit

of the SKF, which results in a marginal improvement in RMSE, 5.0 ppb compared

to CAMS, 5.1 ppb. This small improvement is due to the temporal variability in

the skewness.

As the accuracy of CAMS varies throughout the year, a sliding window approach

was used to vary the skew over time. After considering window lengths, 10 days was

chosen as it gave the greatest reduction in error when compared to the observation

data. The noise parameters, W and V , are estimated across the whole dataset,

the skew parameter, λ, is then estimated over a 10 day window starting from 1st

January 2015, followed by a 10 day window starting on 2nd January 2015 etc. The

noise parameters are then updated accordingly, and this is repeated for the length

of the dataset resulting in a skew estimate for each day. Figure 5.3.1c shows the

SKF applied to the CAMS data with varying skew. This results in a SKF estimate

that corrects the CAMS concentrations to a level more consistent with the TOAR

data, with the RMSE between the variable skew Kalman filter and TOAR being 4.6

ppb.

Both SKFs perform better than the raw CAMS data and the KF. As expected,

the varying SKF performs best overall. Figure 5.3.1d shows the results for all filters

from the beginning of March 2016 to end of September 2016. From this we can see

the KF often sits too high to capture the TOAR concentrations. This is because it

is fitting to the mean of the CAMS data and so cannot correct for any bias present.

The reduction in RMSE between the raw CAMS and the constant SKF is 0.1 ppb.

This is due to an invalid assumption that the skew is constant, resulting in a low

estimated skew across the entire dataset. This is further shown in the estimated

skew in Figure 5.3.1d for the sliding window approach: while the skew is often close
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Table 5.3.1: Comparison of RMSEs for CAMS and two filters for all sites. Lowest values
for each method in bold.

Station Name
RMSE raw

CAMS (ppb)

RMSE Constant

SKF (ppb)

RMSE Variable

SKF (ppb)

Emsland 5.2 5.4 5.0

Stendal Stadtsee B 5.4 5.4 4.8

Göttingen 5.7 5.5 5.2

Domäne Bobbe 5.7 5.8 5.0

Cottbus 5.4 5.4 5.0

Lüneburger Heide 5.8 5.7 5.1

Altes Land 5.9 5.2 4.4

Elbmündung 5.5 5.4 4.7

Göhlen 5.7 5.5 4.7

Altendeich 5.9 5.4 4.6

Stendal Stadtsee A 5.5 5.5 4.9

Braunschweig B 5.1 5.1 4.6

Hannover 5.7 5.3 4.9

Braunschweig A 5.2 5.1 4.7

Nauen 5.8 5.2 4.5

to zero, it has periods of high and low skew that cannot be captured by a constant

skew parameter. The reduction in RMSE between the raw CAMS and the varying

skew Kalman filter is 0.5 ppb. Visually this improvement can be seen in Figure

5.3.1d, where the variable SKF is often sitting much lower that the constant SKF in

sections where there is a greater bias, notably at the beginning of May and August.

Lastly, Table 5.3.1 shows a comparison of the RMSE error for the raw CAMS,
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(a)

(b)

(c)

(d)

Figure 5.3.1: Output of filter estimates (a) traditional Kalman filter, (b) skew Kalman
filter where the skew is assumed to be constant in time, (c) skew Kalman filter where the
skew is calculated over a 10 day sliding window, (d) comparison of the three filters and
skew varying in time. The 95% confidence interval for each filter is given by the shaded
area.
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constant and variable skew Kalman filter for all 15 sites in Germany. The varying

skew filter performs the best, reducing the error with TOAR at every site. The

mean improvement to RMSE between the raw CAMS and the variable skew filter

estimate is 0.76 ppb.

5.3.2 Infilling Missing Data

5.3.2.1 Randomly Missing Data

Next we demonstrate an infilling method for missing data obtained from the

corrected observations from CAMS with the varying SKF model. Starting from a

complete dataset, using the same site and time period as before, we removed varying

percentages of the data at random. Any days with missing data were ignored and

the model was fit to the remaining data using the varying skew approach outlined

above, giving a skew estimate at each time step of available TOAR data. The day

of year mean is then used to produce a complete set of skew estimates. The bias

between the datasets varies seasonally, as shown in Figure 5.2.1b, meaning that, the

skew also follows seasonal trend. In the event that the same day is missing from

every year we simply linear interpolate the data to ensure we have a skew estimate

for every day.

Four scenarios are considered with either 5%, 10%, 15% or 20% of the data missing

at random, with the SKF estimate compared to both the CAMS raw data and linear

interpolation. Performance is evaluated using 25 or 100 runs of randomly missing

data at each percentage, with the difference between the RMSE of the skew Kalman

method and the RMSE of each of the raw CAMS or linear interpolation used to

determine which method performs best.

Figure 5.3.2 shows the infilling results for 15% missing data for a 2 month period

at the Braunsweig site. An immediate advantage to using the SKF approach as
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Figure 5.3.2: Comparing infilling methods (dashed lines) for 15% randomly missing
data. The TOAR data (grey) is shown with the known missing data plotted as dotted
line. CAMS purple, linear interpolation orange, skew filter estimate green, and the 95%
confidence interval for the skew filter is shown as the shaded green area.

opposed to linear interpolation, is that we have an associated uncertainty with the

infilled values. Further linear interpolation fails to match the structure of the data,

which will result in increasing errors longer periods of missingness; both CAMS and

the SKF estimate are able to better capture this.

Figure 5.3.3 shows histograms of the difference in RMSE between each of linear

interpolation and CAMS and the filter estimate for each run of missing data for the

Braunsweig site. Positive values indicate when the skew filter estimate is performing

better than the compared method. We also consider the mean difference in error,

which is the difference in the mean RMSE over the runs of the compared method

with the SKF. Here, a positive value again implies the SKF is performing better

and indicates the magnitude of the improvement. With 5% missingness the SKF

estimate performs better in 66% and 79% of cases compared to linear interpolation

and CAMS respectively, with a mean difference of 0.2 ppb and 0.3 ppb. With

20% missing data, the SKF performs best in 77% and 65% of cases compared to

linear interpolation and CAMS respectively, with a mean difference of 0.3 ppb and

0.1 ppb. Thus, while the skew filter method does not always perform better, it
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(a) (b)

(c) (d)

Figure 5.3.3: Difference in RMSE for (a) 5%, (b) 10%, (c) 15% and (d) 20% missing
data. The difference between linear interpolation and the skew filter estimate is shown in
green, the difference between CAMS and the skew filter estimate is shown in grey. Positive
values indicated the skew filter estimate has a lower RMSE when compared to the known
missing TOAR data.

85



Chapter 5. A Skew Kalman Filter Approach for Bias Correction and Infilling
Missing Data, Demonstrated for Surface Ozone

performs better more often than not. The differences between the errors show that

when the SKF method is performing better it is often by a non-negligible amount,

i.e. there are tangible gains compared to using the CAMS data directly or by linear

interpolation of the TOAR observations.

Extending our analysis to more sites, Figures 5.3.4a and 5.3.4b show the percentage

of times the filter estimate had a lower error than each of the comparison method.

The SKF approach consistently performs better than the raw CAMS data, with a

mean difference of between 0.1 ppb and 1.2 ppb across sites. Performance compared

to linear interpolation was more mixed, with the mean difference between -0.5 ppb

and 0.6 ppb, although the SKF approach performed better the majority of the

time at 5 of the 8 sites. Figure 5.3.5 compares performance of each method for

the varying amounts of missing data. For the majority of sites, as the amount of

missing data is increased the SKF approach shows an increasing improvement over

linear interpolation, whereas performance remains the same or starts to decrease

compared to CAMS.

5.3.2.2 Consecutive Missing Days

In practice, consecutive missing days are more often seen in air quality datasets

than single missing values. For Ashton Hill, a UK based site, 31% of the missing

observations are single incidences of missing data over the same time period. The

performance for 3, 5 and 7 days of consecutive missing days throughout the dataset

is evaluated. As before, we consider 25 runs using data over the same time period

as before, although this time where 5 incidences of consecutive missing days are

removed at random. Incidences are constructed so as not to overlap. As before,

the difference in error between the SKF estimate and both CAMS and linear

interpolation are considered.

Using the same sites, Figure 5.3.6 summarises the results across the three periods
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(a) (b)

Figure 5.3.4: Percentage the skew Kalman filter performed better than (a) linear
interpolation or (b) for randomly missing data of 5%, 10%, 15% and 20%. The dashed
grey line indicates 50%, where sites falling below this line the skew Kalman filter performs
better less than half the time.

of missing data. The SKF method consistently performs better than linear

interpolation at each site with a mean difference in error between 0.8 ppb and

1.8 ppb for 3 day periods, 1.1 ppb and 2.4 ppb for 5 day periods, and 1.6 ppb and

2.6 ppb for 7 day periods. Compared to the raw CAMS data, the SKF performs

better at 5 of the 8 sites across the increasing periods of missing data. For 3 days

consecutive missing the SKF performs best at all sites, with a mean difference in

error between 0.2 ppb and 1.0 ppb. The mean difference in error is between −0.2 ppb

and 1.4 ppb for 5 day periods and −0.1 ppb and 1.2 ppb for 7 day periods. Figure

5.3.7 compares the performance of each method for the varying amounts of missing

data. When compared to linear interpolation, the SKF performs increasingly better

or stays the same as the length of consecutive missing days is increased. Conversely,

the SKF performs worse or the same as the length of consecutive missing days is

increased compared to the raw CAMS data.
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(a) (b)

(c) (d)

Figure 5.3.5: Performance of CAMS (green), linear interpolation (LI) (orange) and the
skew Kalman filter (purple) for infilling randomly missing data of (a) 5%, (b) 10%, (c)
15% and (d) 20%.
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(a) (b)

Figure 5.3.6: Percentage the skew Kalman filter performed better than (a) linear
interpolation or (b) for consecutive missing data of 3, 5, and 7 days. The dashed grey line
indicates 50%, where sites falling below this line the skew Kalman filter performs better
less than half the time.

(a) (b) (c)

Figure 5.3.7: Performance of CAMS (green), linear interpolation (LI) (orange) and the
skew Kalman filter (purple) for infilling consecutively missing data of (a) 3, (b) 5, and
(c) 7 days.
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5.3.2.3 Real World Scenario

Typically, datasets with missing data contain both singular missing values as well as

periods of consecutively missing data. To demonstrate our approach for real world

missing data we take the occurrences of missing data from another site over the same

time period and overlay that over the 8 sites considered before. Aston Hill is a rural

background site on the Automatic Urban and Rural network (AURN; https://uk-

air.defra.gov.uk/data/), which is an hourly air quality database in the UK. This site

was chosen because it has considerable missing data, yet does not exceed more than

7 consecutive days of missing data and has at least 80% data coverage. Between

2015-2017, 5.7% of the data is missing, with 29 incidences of missing data, of which

9 are single missing values. The longest gap is 5 days and there are two occurrences

at this length.

The incidences of missing data are generated in each of the 8 sites used in the

previous sections and performance is evaluated using RMSE. The results are given

in Table 5.3.2. The SKF approach performs best at every site, with the largest

improvement seen compared to linear interpolation with a difference in error between

1.0 ppb and 2.0 ppb. Compared to the raw CAMS data there is a reduction in error

between 0.1 ppb and 1.3 ppb.

5.4 Discussion and Conclusion

We have proposed a method for infilling missing measurement data using bias

corrected reanalysis data, conceptualising the bias as a skew facilitating implementation

of a SKF. We have demonstrated our method using surface ozone data. We explored

the performance of the method at 8 different measurement sites. The performance

varied across measurement sites types, which warrants further exploration and

potentially using covariates.

91



Chapter 5. A Skew Kalman Filter Approach for Bias Correction and Infilling
Missing Data, Demonstrated for Surface Ozone

Our method consistently performed better in comparison to linear interpolation for

consecutive missing data and when compared with the raw CAMS data, performed

better for randomly missing data. While compared to linear interpolation it does

not always perform better for random missingness it does have the added benefit

of quantifying the uncertainty in the estimate which linear interpolation lacks. The

performance compared to CAMS decreased as the amount of missing data increased.

For the real world scenario, which offers a realistic combination of single and

consecutive missing values, our skew Kalman approach performed better at every

site. The greatest improvement was seen when compared to linear interpolation.

The lowest reduction in error was at sites which the skew Kalman method did not

perform as well for consecutive missing data.

As this method has not been tailored to the air quality problem it is applicable across

other applications in which a secondary bias dataset is available. The simplicity and

computational efficiency of this method is the main benefit of this approach, as well

as the transferability to other applications. One drawback to the varying skew

approach is that it increases the computational time of the model as a result of

calculating the skew estimate at each time step. However, it is still relatively quick,

and fits on the order of minutes.

While our current implementation prioritises the simplicity of using the two datasets

without additional information, there is scope to further improve the method with

the inclusion of covariates, in the case of ozone, useful covariates include temperature

and other meteorological variables (Otero et al. 2016). Another natural extension

would be to make use of the information around the gap in the observation data.

Again, to preserve the simplicity of the skew Kalman filter approach we only used

the reanalysis data when infilling the missing data.

Thus, when selecting methods for infilling missing data, suitability of the application
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should be considered. For large amounts of missing data, or long periods of

consecutive missing data, this method may not be the best. However, for data with

reasonable coverage and short periods of missing data, this method can perform

well.
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Chapter 6

A Comparison of Approximate

Methods for Big Data Spatial

Inference

6.1 Introduction

Large datasets can be problematic for modern statistical applications using standard

computational techniques for Bayesian inference as estimating the model parameters

requires repeated evaluations of the likelihood function which is computationally

expensive. Often large datasets are too big to process on a single machine due to the

processor, memory or disk limits. Processor bottlenecks can be handled by a graphics

processing unit, however, memory or disk limits can only be alleviated by splitting

data across multiple machines. Thus, to carry out Bayesian inferences on large

datasets it is practical to divide the data into subsets and carry out the inference

on the subsets. Thus, we require methods in which we can combine the output

from these subsets. Communication between machines is expensive regardless of

how much data is being communicated, thus algorithms must be able to perform

distributed Bayesian analyses with minimal communication.
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Gaussian processes have been the main tool used for analysing geospatial data. The

appealing properties of the Gaussian distribution have led to Gaussian processes

becoming an indispensable tool for any spatial data analyst to perform tasks such

as spatial prediction and proper uncertainty quantification. Gaussian processes

struggle with computation intractability for large data sets. Evaluating the density

requires O(N3) operations which can become challenging for moderately large N,

where N is the number of data points. An alternative is to build a low rank

approximation to the covariance matrix based around ‘inducing variable’ (Quiñonero

et al. 2005, Titsias 2009). For these low rank approximations, the computational

complexity is now O(nm2) where m is the number of inducing variables selected by

the user (Hensman et al. 2013).

Recent work has focussed on the efficient use of modern computational platforms and

the development of methods that are parallelize-able. These include using parallel

computing to calculate the density function for spatial Gaussian processes, the use

of a basis function approach that lends itself to distributed computing and using

only nearest neighbours to factorise the density function as a series of conditional

distributions. Another approach looks at dividing the data in a large number of

subsets, doing inference on the subsets in parallel and then combining the inference,

Guhaniyogi et al. (2019) present a divide and conquer approach called distributed

Krigging for GP-based spatial models to alleviate the computational challenges of

large scale spatial inference.

Various methods for combining the subsets through a divide and conquer approach

exist in the independent setting, including consensus Monte Carlo (Scott et al. 2016),

Gaussian Process barycentres (Mallasto & Feragen 2017), and SwISS (Sub-posteriors

with Inflation, Scaling and Shifting) (Vyner et al. 2022). However, as these make

assumptions around independence between the data subsets which do not hold in

the spatial setting, the combined inference will not be exact. A necessary first step in
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establishing a method for large-scale spatial inference is evaluating the performance

of these methods in the spatial setting. In this work, we consider a GP-based model

and evaluate the performance of the combining methods consensus Monte Carlo,

Gaussian Process barycentres, and SwISS for approximate inference carried out on

the full data set. While this is not the intended use for these algorithms, and the

independence assumption is not satisfied, we demonstrate that these methods offer

a reasonable approximation for carrying out parameter inference on the full dataset.

Initially, we evaluate the methods on a small to moderate-sized simulated data set

with 625 spatially referenced data points. We use a Gaussian Process to model the

data, and the kernel length scale and variance are estimated using Markov Chain

Monte Carlo (MCMC). Performance is evaluated by considering the runtime of each

method and how well it captures the full data fit. We also consider the predictive

accuracy of the methods by splitting the data into training and test portions and

evaluating how well it captures the unseen data. For our divide and conquer

approach the training portion of the data is then divided into subsets. We then

demonstrate our method on a larger real-world data set. Here we use average USA

temperature data as this offers a reasonably large dataset, 5660 spatially referenced

data points, where it is still feasible to fit the full dataset but implementing a divide

and conquer approach significantly alleviates the computational time.

This chapter is structured as follows, Section 6.2 introduces the model and briefly

describes each of the combining methods, Section 6.3 evaluates the perforce of the

methods for simulated data and a real world example. Finally, in Section 6.4 we

discuss our results and present our conclusions.
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6.2 Methods

6.2.1 Gaussian Process Regression

Gaussian process regression (GPR) (Rasmussen & Williams 2006) is a Bayesian

approach to regression that works well for small datasets and also provides

uncertainty measurements on the predictions. Rather than learn exact values for

each parameter we infer a probability distribution over all possibly values. We are

interested in modelling the relationship between N observations y = {y1, y2, ..., yn}

at corresponding inputs X = {x1,x2, ...,xn} using a model f with which we can

make predictions at an unseen set of test points X∗. f(x) ∼ GP (µ, k) means that

for any finite collection of functions values f = f(X)

f = [f(x1), f(x2, ..., f(xn)] ∼ N(µ,K) (6.2.1)

To make predictions at unobserved test points based on observed training points we

assume the following f
f∗

 ∼ N

(
µ,

Kf,f + σ2In Kf∗,f

Kf,f∗ Kf∗,f∗


)
, (6.2.2)

where In denotes an n × n identity matrix. We denote function values at the

test points as f ∗ = f(X∗). Using the properties of the normal distribution, the

conditional distribution of the test data is

Cov(f ∗) = Kf∗,f∗ −Kf,f∗(Kf,f + σ2In)
−1Kf∗,f ,

µ(f ∗) = Kf,f∗(Kf,f + σ2In)
−1f.

(6.2.3)

From these we can obtain the predictive mean and covariances at the test points

conditioned on the training data. To use the equations above we must model the
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covariances and cross-covariances between training and test data. To do this we

must specify a GP with a mean function, m(xi), and covariance function, k(xi, xj),

f(xi) ∼ GP (m(xi), k(xi, xj)). (6.2.4)

Within this GP prior, we can incorporate prior knowledge about the space of

functions through the selection of the mean and covariance functions. The covariance

function k(x, x′), models the dependence between the function values at input points

xi and xj. The function k is commonly called the kernel. The appropriate choice of

kernel is based on assumptions such as smoothness and likely patterns expected in

the data. A sensible assumption is that the correlation between data points decays

with the distance between the points, thus a common choice on kernel is the radial

basis function kernel, which is defined as

k(xi, xj) = σ2
f exp

(
− ||xi − xj||2

2λ2

)
. (6.2.5)

The radial basis function provides an expressive kernel to model smooth and

stationary functions. The two hyper-parameters, length-scale λ, and signal variance

σ2
f can be varied to increase or reduce the a priori correlation between points

and consequently the variability of the resulting function. In practice, these

parameters are estimated using Markov Chain Monte Carlo or MLE and optimising

the likelihood function. This is carried out by minimising the negative log likelihood

of the hyper parameters θ = (σf , λ)

p(θ|y) =
∫
p(y|f, X)p(f|X)df

= −1

2
y′(Kθ + σ2

nI)
−1 − 1

2
log |Kθ + σ2

nI| −
n

2
log 2π

(6.2.6)

Once the parameters are optimised this can be used in the predictive equations for

the mean and covariance to obtain estimates at the test points. Since both the prior

and likelihood are Gaussian, the integral can be evaluated in the closed form to give
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the Gaussian predictive distribution,

p(f ∗|y) = N(Kf∗,f (Kf,f + σϵI)
−1y, Kf∗,f∗ −Kf∗,f (Kf ,f + σ2

ϵ I)
−1Kf,f∗). (6.2.7)

Calculating p(f ∗|y) requires the inversion of an n× n matrix which requires O(n3)

operations, where n is the number of training data points. Due to the high

computational cost involved in inverting this matrix an exact implementation can

only handle problems at most of a few thousand training cases practically on today’s

machines (Quiñonero-Candela et al. 2007). Our GPR is carried out using the GPJax

package (Pinder & Dodd 2022).

6.2.2 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a class of algorithms for sampling from a

posterior distribution. To achieve this, we start from some initial point and draw

samples from a proposal distribution which is some easy to simulate distribution. We

determine whether this sample is from the posterior using the Metropolis-Hastings

acceptance probability. These steps are repeated forming a Markov chain where

the next sample depends on the previous. Samples are drawn until the Markov

chain forms a stationary distribution which is the posterior. The earlier samples

are discarded, often referred to as ’burn in’. We implement the No U-turn sampler

Hoffman & Gelman (2014) using the Blackjax package (Lao & Louf 2020).

6.2.3 Methods of Combining

Let f(y|θ) be the likelihood for a statistical model, parametrised by θ ∈ Rd, for a

data set y = {y1, y2, ..., yn} of length n. Let p0(θ) denote the prior density for the

parameter vector θ, then our posterior density is, up to a constant of proportionality,

p(θ|y) ∝ p0(θ)p(y|θ). (6.2.8)
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We assume that y is independent and can be partitioned into S subsets, y1, ...,yS,

such that the likelihood for the full data is the product of the likelihoods for the

individual subsets. The posterior density for θ given y is, up to a constant of

proportionality

p(θ|y) ∝ p0(θ)
S∏

s=1

ps(ys|θ). (6.2.9)

We will focus on three methods of combining, Gaussian process barycentres,

Consensus Monte Carlo, and SwISS. Here, we will give a brief introduction to each

method.

6.2.3.1 Consensus Monte Carlo

The Consensus Monte Carlo Algorithm (Scott et al. 2016) describes a method

of performing approximate Monte Carlo simulation from a Bayesian posterior

distribution based on very large data sets.

The data is split into groups called ‘subsets’, each subset is given to a worker machine

which does a full Monte Carlo simulation from a posterior distribution given its own

data, and then the posterior simulations from each worker are combined to produce

a set of global draws representing the consensus belief among all the workers.

Let y represent the full data and ys denote a subset, and let θ denote the model

parameters. For a model with the appropriate independence structure the posterior

density can be written

p(θ|y) ∝
S∏

s=1

p(ys|θ)p(θ)1/S (6.2.10)

The prior is broken into S components to preserve the total amount of prior

information in the posterior. It is assumed that the batches of observations are

independent across the subsets, given the parameters, but it allows for arbitrary
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dependence within the elements of ys.

If each worker s generates G draws θs1, ..., θsG from ps(θ|y) ∝ p(ys|θ)p(θ)1/S,

we can combine draws using weighted averages. If each worker is assigned a

weight represented as a matrix Ws the consensus posterior for draw g is θg =

(V ar(θ|ys)Ws)
−1(V ar(θ|ys)Wsθsg).

The weight Ws =
∑−1

s is optimal for Gaussian models.

Algorithm:

1. Divide y into subsets y1, ...,ys.

2. Run S separate Monte Carlo algorithms to sample θsg ∼ p(θ|ys) for g =

1, ..., G, with each subset using the fractioned prior p0(θ)
1/S.

3. Combine the draws across the subset using weighted averages:

θg = (V ar(θ|ys)Ws)
−1(V ar(θ|ys)Wsθsg).

The algorithm is exact only for Gaussian posteriors. However, it does work well

when applied to non-Gaussian posteriors (Scott et al. 2016).

6.2.3.2 SwISS

The SwISS algorithm (Vyner et al. 2022) is an alternative to the consensus Monte

Carlo algorithm which recombines the data differently but is still computationally

quick to run, exact in the Gaussian case, does not require tuning and scales well to

higher dimensions.

Compared to the consensus approach, SwISS does not merge samples, but instead

applies a transformation to the posterior samples that are generated from a

stochastic approximation of the full posterior. The stochastic approximation is
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referred to as the inflated sub-posterior, which is a posterior density, conditional on

a subset of the data, raised to a positive power.

ps(θ|ys) ∝ p0(θ)p(ys|θ)S (6.2.11)

Inflating the sub-posterior in this manner has the effect of approximately preserving

the shape of the posterior density conditional on the full data. Affine transformations

(shift and re-scale) are applied to the algorithm of (Wu & Robert 2017) which shifts

each sub-posterior.

1. Divide y into subsets y1, ...,ys.

2. Run S separate Monte Carlo algorithms to get J samples {θjs}Jj=1 from each

of the S inflated posteriors ps(θ|ys) ∝ p0(θ)p(ys|θ)S

3. Calculate the mean µs and variance Vs for each inflated sub posterior

4. Set the global mean µ and variance V and calculate the matrix square root

µ = V
1

S

S∑
s=1

V −1
s µs V = (

1

S

S∑
s=1

V −1
s )−1 M = SPSQ(V ) (6.2.12)

where SPSQ(V ) denotes the symmetric positive-definite square root of the

matrix V.

5. For each s ∈ {1, ..., S} apply the affine transformations to the inflated posterior

samples

� Ṽs =M−1VsM
−1

� M̃s = SPSQ(Ṽs)

� As =MM̃−1
s M−1

� θ1:Js = As(θs − µs) + µ

6. Concatenate the transformed samples θ1:Js to give a Monte Carlo approximation

of the full posterior distribution p(θ|y)
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6.2.3.3 Barycentres

The 2-Wasserstein distance metric between two probability measures µ and ν is

defined as the optimal cost required to transport the unit mass from µ to ν, or

vice-versa. When µ and ν are both multivariate Gaussian distributions the solution

is analytically given by

W 2
2 (µ, ν) = ||m1 −m2||22 + Tr(V1 + V2 − 2(V

1/2
1 V2V

1/2
1 )1/2) (6.2.13)

where µ ∼ N(m1, V1) and ν ∼ N(m2, V2)

For a collection of T measure {µi}Tt=1 ∈ P2(θ), the Warrestein barycentre µ̄ is the

measure that minimises the average Wasserstein distance to all other measures in

the set. We can write this as the Fréchet mean on a Wasserstein space

µ̄ = argminµ∈P2(θ)

T∑
t=1

αtW
2
2 (µ, µt), (6.2.14)

where αt is a weight vector that sums to 1. The Wasserstein barycentre, µ̄, is often a

computationally demanding optimisation problem. As with consensus Monte Carlo,

when the measures are multivariate Gaussian, the barycentre µ̄ = N(m̄, V̄ ) has

analytical solution

m̄ =
T∑
t−1

αtmt,

V̄ =
T∑
t−1

αt(V̄
1/2VtV̄

1/2)1/2.

(6.2.15)

We can identify V̄ using a fixed-point iterative update.

Mallasto & Feragen (2017) show that the barycentre f̂ of a collection of Gaussian

processes {fi} such that fi ∼ GP (m̄i, V̄i) is non degenerate for any finite set of GPs
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{ft}Tt=1 i.e., T <∞. Thus, for an n-dimensional finite Gaussian distribution fi,n, the

Wasserstein metric between any two Gaussian distributions fi,n, fj,n converges to the

Wasserstein metric between GPs as n → ∞. Assuming a Gaussian approximation

for each inflated sub-posterior, the barycentre is the geometric centre of the inflated

sub-posterior distributions. The R library waspr (Cremers 2020) was used to

combine the subsets.

6.3 Results

6.3.1 Simulation Study

Before implementing the divide and conquer approaches with real data, we evaluate

the effectiveness of each combining method using simulated data. The data, shown

in Figure 6.3.1, is simulated from a GP using a Matern kernel over a grid with 625

points. We use x and y for our coordinate space to simulate the observations, both

are fixed between -5 and 5. While 625 points is well within the limit of data points

that can be fit on a single machine it allows us to easily compare the output from

each of the combining methods to the full data fit. For each of our approximate

methods we divide the data into subsets. We will consider 2 cases, splitting the data

into 2 subsets of 312 and 313 data points and splitting the data into 5 equal subsets

of 125 data points. Each subset is a randomly sampled, non-overlapping subset of

the full dataset.

Figure 6.3.2 shows the expected value for the GP fit to the full data and to each

of the approaches for combining 5 subsets. Visually each method does a reasonable

job of capturing the full data fit, but the approximate methods are smoother and

vary over a smaller range than if the full data had been used. The full data ranges

between -1.9 and 3.1 whereas for the approximated fit using the divide and conquer

approaches the range is -1.36 to 2.71 when combing with SwISS or consensus Monte

Carlo algorithm. The barycentre approach varies over and shorter range of between
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Figure 6.3.1: Simulated data over a grid.

-1.0 and 1.9. Therefore, the approximated methods are not capturing the higher

and lower values as well as fitting the data to the full model. Figure 6.3.3 compares

the standard deviations of the full data fit and the approximate methods, again

for 5 subsets, compared to the full data fit the approximate methods over estimate

the uncertainty. We consider the distribution plots of the values from Figures 6.3.2

and 6.3.3 to better compare how each method is performing. Figure 6.3.4 shows

distribution plots of the expected value and standard deviation for each of the

approximate methods and the full data fit. In both the 2 and 5 subset case the

barycentre approach is failing to capture the tails. Whereas both the SwISS and

consensus Monte Carlo algorithms only fail to capture the tails in the 5 subset case.

This is not an issue in the 2 subset case shown in Figure 6.3.4a, implying the more we

split the data the less accurate the approximate fit will be. We can also clearly see

that SwISS is capturing the standard deviation better than the other approximate

methods for both the 2 and 5 subset cases. Both consensus and the barycentre

approach are resulting in much higher standard deviations. While SwISS is slightly

higher it is capturing the full data fit standard deviation well. Comparing the

Wasserstein distances in Table 6.3.1, as expected, SwISS is closest for the standard

deviation in both cases at 0.01 and 0.03 for 2 and 5 subsets, respectively. The SwISS

and consensus Monte Carlo algorithms both perform similarly for the expected value

with a Wasserstein distance of 0.03 for 2 subsets, 0.09 for the Consensus Monte Carlo

algorithm and 0.11 for SwISS for 5 subsets. The barycentre approach is notably
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(a) (b)

(c) (d)

Figure 6.3.2: Expected values from the GP’s predictive distribution for (a) the full data,
and divide and conquer approaches using (b) Gaussian process barycentres, (c) consensus
Monte Carlo and, (d) SwISS.

poorer with a Wasserstein distance of 0.19 and 0.34 for 2 and 5 subsets respectively.

When comparing our methods we consider 3 metrics, (i) the run time (ii) how

well it captures the full data fit and (iii) the predictive error. We evaluate how

well it captures the full data by considering the RMSE and R2 score between the

expected values from the GP’s predictive distribution for the full data approach and

each of the approximate approaches. The predictive error is calculated by holding

back 65 data points as a test portion of the data, the remaining 560 points are used

to train the model. We compare the estimated values at the 65 unseen locations and

compute the mean squared error. This is repeated 10 times and the average of these
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(a) (b)

(c) (d)

Figure 6.3.3: Standard deviation from the GP’s predictive distribution for (a) the full
data, and divide and conquer approaches using (b) Gaussian process barycentres, (c)
consensus Monte Carlo and, (d) SwISS.

Table 6.3.1: Wasserstein distances for the expected values and standard deviations from
the GP’s predictive distribution of each of the approximate methods and the full data.

Barycentre Consensus SwISS

2 Subsets
Expected

Value
0.19 0.03 0.03

Standard

Deviation
0.17 0.08 0.01

5 Subsets
Expected

Value
0.34 0.09 0.11

Standard

Deviation
0.13 0.23 0.03
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(a)

(b)

Figure 6.3.4: Distribution plots of expected value and standard deviation for (a) 2 subsets
and (b) 5 subsets of the data. The full data distribution plots are shown in both figures.
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10 runs is the predictive error. Table 6.3.2 summarises the comparison between the

methods for 2 and 5 subsets. Fitting to the full data takes 18.5 minutes, the SwISS

algorithm is slightly faster than the other methods at 4.5 minutes and 2.6 minutes

for 2 and 5 subsets respectively. Consensus Monte Carlo is similar at 4.6 minutes

and 2.9 minutes for 2 and 5 subsets respectively. The Barycentre approach has a

longer combining time compared to SwISS and consensus Monte Carlo, and this

combining time increases with the number of subsets, 0.91 seconds for 2 subsets and

3.1 seconds for 5 subsets. Therefore, even though the barycentre approach fits in the

same time as the SwISS algorithm it does take slightly longer due to the combining

time. When compared to the fit of the full data for the 2 subset case, both the

SwISS and consensus Monte Carlo algorithms achieve a similar R2 score of 0.97 and

RMSE of 0.17. The barycentre approach performs worse at 0.86 and 0.37 for the

R2 score and RMSE respectively.The predictive error when fitting to the full data is

0.09, the barycentre approach has the highest prediction error at 0.30 compared to

0.16 and 0.15 for consensus Monte Carlo and SwISS, respectively. For the 5 subset

case, when compared to the fit of the full data, the Barycentre approach performs

the poorest with an R2 score of 0.70 and RMSE 0.57. Both the Consensus Monte

Carlo and SwISS algorithms performed similarly with R2 scores of 0.84 and 0.85,

respectively, and RMSE of 0.41 and 0.40, respectively. The Barycentre approach

again performs worse with a prediction error of 0.55 and Consensus Monte Carlo

and SwISS algorithms performed similarly with a prediction error of 0.33 and 0.32.

Overall, SwISS preformed marginally better in terms of computational speed and

accuracy compared to the consensus Monte Carlo algorithm and thus could be seen

as the preferred choice. Also, as previously discussed, SwISS captures the standard

deviation better than the other methods. However, compared to the SwISS and

consensus Monte Carlo algorithms the barycentre approach fails to capture the full

data fit as well as the other methods.
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Figure 6.3.5: Map of 2018 annual average temperature in USA.

6.3.2 Real data study: USA Temperature Data

To demonstrate the accuracy of the combination methods using real data, we

consider temperature data at measurement sites in the USA. Data is taken from the

National Centers for Environmental Information (https://www.ncei.noaa.gov/access).

Due to our focus on spatial modelling, we can ignore the temporal component and

we will consider annual average temperature for 2018. After removing any sites with

missing data we are left with 5660 measurement sites. While fitting a GP to over

5000 data points is feasible it will still have a considerable run time, thus this is

an appropriate size of dataset to implement these methods on. Figure 6.3.5 shows

the locations of the monitoring stations, the data is fairly smooth with warmer

temperatures in the south and lower temperatures in the north. There are some

lower temperatures to the west of the map, which can be associated with a higher

elevation at these locations. However, in the interest of simplicity in the model, and

retaining the focus of the combining aspect of this work, we will not be including

elevation data in the model.

As before, we will compare the full data fit to the approximate methods using
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the same criteria as before. Due to the larger, dataset we will split the data into 5

and 10 equal subsets, again randomly sampled and non-overlapping. We standardise

the data by subtracting the mean and dividing by the standard deviation to avoid

numerical instabilities when fitting the GP. Following on from the results of the

previous section we will focus on the consensus Monte Carlo and SwISS algorithms.

Combining the posteriors using barycentres is less accurate than the chosen methods.

Figure 6.3.6 shows the expected value for the full data fit and the approximate

methods using the consensus Monte Carlo and SwISS algorithms for 10 subsets.

Visually we can see that the approximate methods are much smoother that the full

data fit. We can also note that the range of values is shorter for the approximate

methods, between 1.6 ◦C and 25 ◦C for consensus Monte Carlo and 4 ◦C and 23.5

◦C for SwISS compared to between 1 ◦C and 26 ◦C for the full data. This implies

that consensus Monte Carlo is performing better at capturing the range of values.

We can further see this in Figure 6.3.10b when comparing the distribution plots of

the expected values at each location; the tails for SwISS do not capture the tails

of the full data distribution. Now considering the 5 subset case in Figure 6.3.7,

consensus Monte Carlo is less smooth and able to capture more of the features than

the full data fit has and both consensus Monte Carlo and SwISS show a larger

range of values with SwISS overestimating the temperature in places. This matches

with Figure 6.3.10a, where the tails of each of the methods are much closer together.

Figure 6.3.8 shows the standard deviation for the full data fit and the approximate

methods using consensus Monte Carlo and SwISS for 10 subsets. We can also see

that the range of values is larger for the approximate methods, between 0.45 ◦C

and 4.05 ◦C for consensus Monte Carlo and 0.4 ◦C and 5.3 ◦C for SwISS compared

to between 0.3 ◦C and 3.0 ◦C for the full data. This implies both methods are

overestimating the standard deviation. We can further see this in Figure 6.3.10
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(a)

(b)

(c)

Figure 6.3.6: Expected values from the GP’s predictive distribution for (a) the full data,
and divide and conquer approaches using (b) consensus Monte Carlo and, (c) SwISS for
10 subsets.

113



Chapter 6. A Comparison of Approximate Methods for Big Data Spatial
Inference

(a)

(b)

Figure 6.3.7: Expected values from the GP’s predictive distribution for divide and conquer
approaches using (a) consensus Monte Carlo and, (b) SwISS for 5 subsets.
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(a)

(b)

(c)

Figure 6.3.8: Standard deviations from the GP’s predictive distribution for (a) the full
data, and divide and conquer approaches using (b) consensus Monte Carlo and, (c) SwISS.
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(a)

(b)

Figure 6.3.9: Standard deviations from the GP’s predictive distribution for divide and
conquer approaches using (a) consensus Monte Carlo and, (c) SwISS.
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(a)

(b)

Figure 6.3.10: Distribution plots of expected value and standard deviation for (a) 5 subsets
and (b) 10 subsets of the data. The full data distribution plots are shown in both figures.

when comparing the distribution plots of the standard deviation at each location

SwISS does a better job than consensus Monte Carlo for capturing the lower values

of standard deviation. However, SwISS has a much longer tail to the right leading

to higher overestimates compared to SwISS. Looking at the 5 subset case in Figure

6.3.9, we have a smaller ranger over which the uncertainties are varying. We can see

in Figure 6.3.10a the approximate methods are still overestimating the uncertainty

and not capturing the lower values.

Table 6.3.3 shows the Wasserstein distances for the distribution plots in Figure

6.3.10. When comparing the expected values to the full data fit we have a

Wasserstein distance of 0.63 and 1.07 for consensus Monte Carlo and SwISS,

respectively, for 10 subsets. Thus, we can conclude consensus Monte Carlo better

captures the expected value compared to the full data fit. Conversely, SwISS better
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Table 6.3.3: Wasserstein distances for the expected value and standard deviation of each
of the approximate methods and the full data for USA temperature data for 5 and 10
subsets.

5 subsets 10 subsets

Consensus SwISS Consensus SwISS

Expected Value 0.32 0.69 0.63 1.07

Standard Deviation 1.66 1.63 1.80 1.50
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captures the standard deviation with a Wasserstein distance of 1.50 compared to

1.80 for consensus Monte Carlo for 10 subsets. The ability of SwISS to capture

the standard deviation better aligns with our previous results in the simulated

data study. The results are similar for 5 subsets with consensus having a lower

Wasserstein distance for the expected value, 0.32 compared to 0.69 for SwISS. SwISS

had a slightly lower Wasserstein distance of 1.63 compared to 1.66 for consensus

Monte Carlo.

As before, we evaluate our methods by considering the runtime and how well they

capture the full data. Table 6.3.4 summaries our results, the full data takes around

2 days to fit, both SwISS and consensus Monte Carlo fit in a similar amount of time

with SwISS being slightly faster in 3.7 hours compared to 3.8 hours for consensus

Monte Carlo. Both approximate methods have a similar R2 score 0.86 and 0.88

for consensus Monte Carlo and SwISS, respectively. Again, we compare how well it

captures the full data by considering the RMSE and R2 score between the expected

values from the GP’s predictive distribution for the full data approach and the

approximate methods. Consensus Monte Carlo has the lower RMSE at 1.82 ◦C

compared to 1.96 ◦C for SwISS for the 10 subset case. Again, for the 5 subset case

they fit in a similar time with SwISS being slightly faster at 6.4 hours, consensus

Monte Carlo has a higher R2 score of 0.94 compared to SwISS at 0.90 and consensus

Monte Carlo has a lower RMSE at 1.32 ◦C compared to SwISS at 1.62 ◦C.

6.4 Discussion and Conclusion

Dividing the data into more subsets is more computationally efficient, but the

approximate methods perform worse as the number of subsets increases. Sub-setting

the data also risks losing information when recombining, this was noticeable in the

real data case where the approximate methods were noticeably smoother. This

could be addressed through additional covariates such as elevation which we did not
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consider here.

The barycentre method performed the poorest compared to the other methods.

SwISS performed best at capturing the standard deviation in both the simulated

and real data. For the simulated data, SwISS and Consensus performed similarly at

capturing the expected value. Consensus Monte Carlo performed slightly better for

the real data with 5 and 10 subsets. However, SwISS was still better at capturing

the standard deviation.

Further work could look at extending these methods to produce an exact result,

as well as considering methods of best practice when sub-setting the data. Here we

randomly sampled from the data, but depending on the application it may make

more sense to subset by region, or another criterion related to the application.
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Chapter 7

Conclusions

The aim of this thesis was to contribute to methods for efficient handling

of environmental data, addressing the common issue of incomplete data, with

applications looking at missing time-series data and a large data spatial problem

with unseen locations. This thesis is concluded by summarising the main results of

this work and discussing the limitations of this work and possible ways to address

them. Finally, this thesis presents potential future extensions to this work.

7.1 Summary of Main Results

This thesis proposed an extension to the traditional Kalman filter that provides

a computationally efficient method for bias-correcting data by conceptualising the

bias as a skew between the biased data set and a second dataset that is assumed to

be unbiased. Further, this thesis has shown there are identification issues with the

unified skew-normal distribution and computational issues using this distribution

for the skew Kalman filter. Additionally, this thesis demonstrated the feasibility of

reducing the skew Kalman filter to a multivariate skew normal and implemented an

efficient method to accurately estimate the parameters. In Chapter 4 we derived

a new simplified approach to the skew Kalman filter currently proposed in the

literature which allows us to retain the simplicity and computational efficiency that
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the traditional Kalman filter is known for. This was achieved by deriving the skew

Kalman filter using a multivariate skew-normal distribution instead of the unified

skew-normal distribution. To address the difficulty of estimating the parameters

we proposed a two-step approach using the unbiased dataset to estimate the skew

Kalman filter parameters that insured the computational efficiency of the method

was retained.

Extending this work, this thesis demonstrated how to implement the skew Kalman

filter as a tool for bias correction and missing data. Chapter 5 implemented the

skew Kalman filter approach to use the bias corrected data to infill missing data

in the unbiased dataset. This method allowed for a relatively simple approach to

infilling missing data that had a short computational time and was effective at

infilling the missing data. The method was demonstrated using surface level ozone

data and shown to perform well for data which had a combination of randomly and

consecutively missing data in the real world scenario presented. As this method is

not modelling the ozone data it would be straight forward to implement in a range of

different applications provided a suitable secondary bias dataset was available. Using

a real world scenario of missing data, the skew Kalman approach out performed the

compared methods for estimating the missing data.

Further, this thesis presents the necessary foundations for implementing divide-

and-conqueror approaches for spatial data by evaluating existing methods from the

independent setting in Chapter 6. While divide-and-conquer methods are popular in

the independent setting, this thesis explored their effectiveness in the spatial setting

where assumptions of independence no longer hold. Three methods are compared

and evaluated based on computationally efficiency and how well they capture the

full data fit. It has been shown the both the consensus Monte Carlo algorithm and

SwISS can be used in the spatial setting to approximate the full data fit for large

datasets, significantly reducing the computational time compared to using the full
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data.

7.2 Future Work

The work presented in this thesis can be further extended in ways that are both

interesting from a methods point of view and an application focus. Despite the

difficulties for parameter estimation in the skew Kalman filter, Kalman filtering

for non-Gaussian data is still an interesting field of research. In Chapter 4, we

reduced the skew Kalman filter to follow a multivariate skew normal distribution

and this thesis proposed a 2-step approach for estimating the parameters when the

underlying signal was known. This decision was made to preserve the simplicity

and computational efficiency of the Kalman filter and while there are still situations

where this would be useful it is naturally limiting for this to be the case. One of

the main reasons for reducing the filter to the multivariate skew normal was the

computational challenges in estimating parameters using the unified skew-normal

distribution. However, this results in the filtering equations that do not have a

closed form and as such one of the filtering equations is incalculable. While this was

not a problem for the implementation used in this thesis as the incalculable equation

did not feature in the likelihood, a closed-form version would be more robust.

Traditionally, extensions of the multivariate skew-normal distribution such as the

closed skew normal or unified skew normal are used in the skew Kalman filter,

as these results in filtering equations with a closed form. However, working

with the unified skew normal or closed skew normal in the skew Kalman filter is

computationally challenging as there are multivariate normal cdf terms in the pdf

which increase in dimension with each time step and evaluating high-dimensional

multivariate normal cdfs is very expensive computationally. One possible option

would be to address this growing dimension problem, recent work by (Guljanov

et al. 2022) proposes a pruning algorithm to the updating step of the skew Kalman
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filter to overcome the increasing dimension issue.

The work in Chapter 4 also highlighted issues in parameter identification using

the unified skew normal, and Guljanov et al. (2022) refer to identification issues

with the closed skew normal also. Addressing these identification issues in these

distributions would be a sensible next step for the skew Kalman filter, recent work

by Wang et al. (2023) explored some of the issues of the non-identifiability of the

unified skew-normal distribution. This work discussed some identifiable sub-models

of the unified skew normal and it may be possible to derive a closed-form version

of the skew Kalman filter using these that would not suffer from the identification

issues found in the unified skew normal. Another proposed solution is fixing some of

the terms of the unified skew normal, in our approach in Chapter 4 we fixed some of

the parameters of the unified skew normal such that it reduced to the multivariate

skew normal, alternatively, we could fix certain parameters through the filtering

steps but retain the unified skew normal distribution instead of reducing it to the

multivariate skew-normal.

Next, looking at the skew Kalman filter approach for missing data, aside from

implementing the skew Kalman filter with the methods discussed above, possible

next steps for this model would be improving how the skewness between the datasets

is estimated in the presence of missing data. In Chapter 5 a seasonal approach is

used to estimate the skewness, taking the average skewness from other years. While

this is suitable in the air quality setting, as many air pollutants follow an annual

cycle, the generalisability of the model could be improved by further refining this.

If the skew is relatively constant a mean skewness could be used, or another option

would be to also model the skewness between the datasets. The model could be

further refined by incorporating additional information from the dataset that has

the missing dataset to further improve the estimate for the missing data. This could

be achieved by combing the skew Kalman filter with another missing data method,
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such as one of the methods discussed in Chapter 2, and using a weighting between

them.

An immediate extension to the divide-and-conquer work in Chapter 6 would be to

achieve an exact posterior for the combined subsets compared to the approximate

posterior currently presented. This could be achieved using an importance sampling

technique (Geweke 1989) where the results from the combining strategy could be

used as the proposal and the weighting between this and the full data posterior used

to achieve an exact result.

While this work primarily focussed on how to combine the subsetted data, another

aspect of this approach is how the data is subsetted to begin with. Alternatives

could include splitting the data regionally as this could be most practical depending

on the application. One possible method to achieve this would be to use Gaussian

Markov random fields (Rue & Held 2005), which is an undirected graphical model

where each edge represents a dependency. Representing the data with this structure

could allow for more natural subsetting of the data depending on the application

domain. Another consideration when subsetting the data is that if there are features

present in only a small number of locations, ensuring that information is suitably

preserved so that it is not lost in the combining stage.
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Appendix

A.1 Properties of the Gaussian distribution

Definition A.1.1. (Gaussian distribution) A random variable x ∈ Rn has a

Gaussian distribution with mean m ∈ Rn and covariance P ∈ Rn×n if its probability

density function has the form Särkkä (2013)

N(x|m,P ) = 1

(2π)n/2 det(P )1/2
exp−1

2
(x−m)TP−1(x−m). (A.1.1)

Lemma A.1.1. (Joint distribution of Gaussian variables) If random variable x ∈

Rn and y ∈ Rm have the Gaussian probability distributions (Särkkä 2013)

x ∼ N(m,P )

y|x ∼ N(Hx+ u,R),
(A.1.2)

then the joint distribution of x, y is given byx
y

 ∼ N

( m

Hm+ u

 ,

 P PHT

HP HPHT +R


)
, (A.1.3)
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and the marginal distribution of y is

y ∼ N(Hm+ u,HPHT +R). (A.1.4)

Lemma A.1.2. (Conditional distribution of Gaussian variable) If the random

variables x and y have the joint Gaussian probability distributionx
y

 ∼ N

(µx

µy

 ,

σxx σxy

σyx σyy


)
, (A.1.5)

where as before x ∈ Rn, y ∈ Rm and the dimensions of the mean vectors and

covariance matrix sub-blocks are chosen to match x and y. Then the marginal and

conditional distributions of x and y are (Särkkä 2013)

x ∼ N(µx, σxx)

y ∼ N(µy, σyy)

x|y ∼ N(µx + σxyσ
−1
yy (y − µy), σxx − σxyσ

−1
yy σyx)

y|x ∼ N(µy + σyxσ
−1
xx (x− µx), σyy − σyxσ

−1
xx σxy)

(A.1.6)

Proof. (Conditional of a joint Gaussian is Gaussian)

We want to show conditional densities given by

p(x|y) = p(x, y;µ, σ)∫
x∈Rn p(x, y;µ, σ)dx

p(y|x) = p(x, y;µ, σ)∫
y∈Rm p(x, y;µ, σ)dy

(A.1.7)

are also Gaussian such that

x|y ∼ N(µx + σxyσ
−1
yy (y − µy), σxx − σxyσ

−1
yy σyx)

y|x ∼ N(µy + σyxσ
−1
xx (x− µx), σyy − σyxσ

−1
xx σxy).

(A.1.8)
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First we write the conditional density explicitly

p(y|x) = p(x, y;µ, σ)∫
y∈Rm p(x, y;µ, σ)dy

=
1

Z
exp

(
− 1

2

x− µx

y − µy


T σxx σxy

σyx σyy


−1 x− µx

y − µy


) (A.1.9)

where Z is a normalisation constant containing any terms that do not depend on y.

Next we rewrite our inverse covariance matrix σ−1 such that

σ−1 = V =

Vxx Vxy

Vyx Vyy

 (A.1.10)

then,

p(y|x) = 1

Z
exp

(
− 1

2

x− µx

y − µy


T Vxx Vxy

Vyx Vyy


x− µx

y − µy


)

p(y|x) = 1

Z
exp

(
−
[
1

2
(x− µx)

TVxx(x− µx)

+
1

2
(x− µx)

TVxy(y − µy)

+
1

2
(y − µy)

TVyx(x− µx)

+
1

2
(y − µy)

TVyy(y − µy)

])

(A.1.11)

Next we look to use the completion of squares method. Consider the quadratic

function

zTAz + bT z + c (A.1.12)
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where A is a symmetric and non singular matrix. Then,

zTAz + bT z + c =
1

2
(z + A−1b)TA(z + A−1b) + c− 1

2
bTA−1b. (A.1.13)

To apply completion of squares we let

z = y − µy

A = Vyy

b = Vyx(x− µx)

c =
1

2
(x− µx)

TVxx(x− µx)

(A.1.14)

and we can now rewrite Equation (A.1.11) as follows

p(y|x) = 1

Z
exp

(
−
[
1

2
(y − µy + V −1

yy Vyx(x− µx))
TVyy(y − µy + V −1

yx (x− µx))

+
1

2
(x− µx)

TVxx(x− µx)−
1

2
(x− µx)

TVxyV
−1
yy Vyx(x− µx)

])
(A.1.15)

pulling all the terms that do not depend on y into a new normalisation constant

gives.

p(y|x) = 1

Z ′ exp

(
−
[
1

2
(y − µy + V −1

yy Vyx(x− µx))
TVyy(y − µy + V −1

yx (x− µx))

])
(A.1.16)

Equation (A.1.16) has the form of a Gaussian density with mean µy−V −
yy1Vyx(x−µx)

and covariance V −1
yy . To show this is the same as Equation (A.1.8) we have

σxx σxy

σyx σyy

 =

 (Vxx − VxyV
−1
yy Vyx)

−1 −(Vxx − VxyV
−1
yy Vyx)

−1VxyV
−1
yy

−V −1
yy Vyx(Vxx − VxyV

−1
yy Vyx)

−1 (Vyy − VyxV
−1
xx Vxy)

−1


(A.1.17)
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which gives

µy|x = µy − V −1
yy Vyx(x− µx) = µy − σyxσ

−1
xx (x− µx). (A.1.18)

Conversely, we haveVxx Vxy

Vyx Vyy

 =

 (σxx − σxyσ
−1
yy σyx)

−1 −(σxx − σxyσ
−1
yy σyx)

−1σxyσ
−1
yy

−σ−1
yy σyx(σxx − σxyσ

−1
yy σyx)

−1 (σyy − σyxσ
−1
xx σxy)

−1


(A.1.19)

which gives

σy|x = V −1
yy = σyy − σyxσ

−1
xx σxy. (A.1.20)
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Y., Liu, S., Wang, L., Ye, P., Liang, X., Azzopardi, P., Patton, G. C., Meretoja,

A., Alam, K., Borschmann, R., Colquhoun, S. M., Weintraub, R. G., Szoeke,

C. E., Ademi, Z., Taylor, H. R., Wijeratne, T., Batis, C., Barquera, S., Campos-

Nonato, I. R., Contreras, A. G., Cuevas-Nasu, L., De, V., Gomez-Dantes, H.,

Heredia-Pi, I. B., Medina, C., Mejia-Rodriguez, F., Hernandez, J. C. M., Razo-
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J., Chiang, P. P., Chibalabala, M., Chimed-Ochir, O., Jiang, Y., Takahashi, K.,

Chisumpa, V. H., Mapoma, C. C., Chitheer, A. A., Choi, J. J., Christensen, H.,

Christopher, D. J., Cooper, L. T., Crump, J. A., Poulton, R. G., Damasceno, A.,

Dargan, P. I., das Neves, J., Davis, A. C., Newton, J. N., Steel, N., Davletov,

K., de Castro, E. F., De, D., Dellavalle, R. P., Des, D. C., Dharmaratne, S. D.,

Dhillon, P. K., Lal, D. K., Zodpey, S., Diaz-Torné, C., Dorsey, E. R., Doyle,
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M., Frolova, M., Gadhavi, H., Gheusi, F., Gilge, S., Gonzalez, M. Y., Gros, V.,

Hamad, S. H., Helmig, D., Henriques, D., Hermansen, O., Holla, R., Hueber, J.,

Im, U., Jaffe, D. A., Komala, N., Kubistin, D., Lam, K.-S., Laurila, T., Lee,

H., Levy, I., Mazzoleni, C., Mazzoleni, L. R., McClure-Begley, A., Mohamad,

M., Murovec, M., Navarro-Comas, M., Nicodim, F., Parrish, D., Read, K. A.,

Reid, N., Ries, L., Saxena, P., Schwab, J. J., Scorgie, Y., Senik, I., Simmonds,

P., Sinha, V., Skorokhod, A. I., Spain, G., Spangl, W., Spoor, R., Springston,

S. R., Steer, K., Steinbacher, M., Suharguniyawan, E., Torre, P., Trickl, T.,

Weili, L., Weller, R., Xiaobin, X., Xue, L. & Zhiqiang, M. (2017), ‘Tropospheric

ozone assessment report: Database and metrics data of global surface ozone

observations’, Elementa: Science of the Anthropocene 5.

Scott, S. L., Blocker, A. W., Bonassi, F. V., Chipman, H. A., George, E. I.

& McCulloch, R. E. (2016), ‘Bayes and big data: The consensus monte

carlo algorithm’, International Journal of Management Science and Engineering

Management 11, 78–88.

Shang, Q., Yang, Z., Gao, S. & Tan, D. (2018), ‘An imputation method for missing

traffic data based on fcm optimized by pso-svr’.

URL: https://doi.org/10.1155/2018/2935248

Shen, Y., Peng, F. & Li, B. (2015), ‘Improved singular spectrum analysis for time

series with missing data’, Nonlin. Processes Geophys 22, 371–376.

URL: www.nonlin-processes-geophys.net/22/371/2015/
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