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Abstract

Epidemic data inference is a key tool for the control and eradication of infectious

disease spread. In the modern data age, where epidemic surveillance makes data

abundant, the current methods of epidemic inference are no longer sufficient.

Bovine Tuberculosis is endemic in the UK and affects tens of millions of cattle

each year, with data available spanning decades (APHA, 2023c). There were 21

million confirmed cases of COVID-19 in England, from a population of roughly 56

million people, over a 3 year period (UK Health Security Agency, 2023). There

are also around 1 billion cases of seasonal Influenza per year worldwide, resulting

in up to 650, 000 deaths (World Health Organisation, 2023). The current gold-

standard methods are incapable of making timely and efficient inference on big data

epidemics at the individual level. In this thesis we introduce novel methodology

that uses discrete-time population-aggregated approximations of epidemic data to

make accurate and efficient inference for complex large-scale epidemics, whilst

vastly reducing the computational burden. We apply these methods to a case

study of Bovine Tuberculosis in England and Wales, including a novel method of

incorporating movement data. We believe the methods developed in this thesis could

form part of a multi-pronged approach for understanding and combating epidemics

and pandemics of the scale we are now experiencing.
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Chapter 1

An Introduction to Epidemic

Modelling

1.1 Introduction

The ability to produce timely, accurate, and insightful inference for epidemic and

pandemic data is of vital importance in modern society (Epstein, 2008, Isham

and Medley, 1996, Woolhouse, 2003). When performed correctly, in conjunction

with policy and communication, the insights gained through data can have a

tremendous impact on society’s ability to control and eradicate disease in the

population (McBryde et al., 2020, Kao, 2002). The recent COVID 19 pandemic has

demonstrated the usefulness and necessity of inference for epidemic data (McBryde

et al., 2020), but it has also highlighted the many challenges that exist (Xiang et al.,

2021, Shinde et al., 2020, Brunsdon, 2020).

Epidemic data are highly interdependent, with events that occur in the epidemic

dependent on the infectious status of the individuals during the epidemic, however

the status of individuals is only partially observed in many cases. We can perhaps

know when an individual recovers, but not when they were infected or who infected

them. This missing data complicates the process of deriving insights from the data,

leading to the need of advanced statistical methodologies. These methodologies
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have the potential to provide useful insights, however, each epidemic requires a

bespoke solution, and for epidemic data on the scale of COVID-19 and other big-data

epidemics, combined with the complexity of the disease dynamics, these standard

methods can become prohibitively computationally expensive and inefficient. These

challenges lead to the need for new methodologies and frameworks that can make

accurate and efficient inference on complex large data epidemics.

The core concept of epidemic modelling involves dividing a population into

distinct states related to disease status, and modelling the transitions of individuals

between these states. They exist within the general class of State Transition Models

(STM). The form of the STM is determined by the application. Some use agent-

based models that treat every individual in the population distinctly, and some

concern themselves with population-level dynamics (Ajelli et al., 2010). Some take

into account complex social network or other covariate information (Ajelli et al.,

2010), whilst others deal with simple population counts (Zhou, Ma, and Brauer,

2004). The states of the models are sometimes simplified to a small selection

(Kamrujjaman et al., 2022), and others have a large number of states to represent

different infectious pathways and histories (Overton et al., 2022).

The model we choose is often based on our assumptions about the disease and

population in question, and possibly dictated by the resolution and scale of available

data. These models have the advantage that they are typically very easy to simulate

from. We use this property to gather insights on the behaviour of an epidemic, given

a set of parameters. We derive the most appropriate parameters by making inference

on an epidemic data set, under the assumptions of our model.

Fitting epidemic data to models is a difficult task even in the simplest of cases,

due to two features that set infectious disease data apart from non-communicable

disease data; it is both highly dependent, and often only partially observable, leading

to censoring.

The dependence is between the dynamics of the epidemic and state of the

population. As an example, there can be no infections, or mechanically no
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transitions from the susceptible state to the infectious state, if the number of

individuals in the infectious state is 0. The overall rate of transitions at a given

time t is dependent on the state of the population. Unlike for instance heart disease,

where the risk of disease for individual i is independent of all other members of the

population.

The second, and arguably greater, challenge is that we often cannot observe the

transmission process of an infectious disease, only the outcome; we can see who

recovers or is removed from the population due to death or some other event, but

not who infected them or when. We call this a partially observable process. These

missing events can be divided into two groups. We know that for each observed

removal/recovery event, there must be an associated infection event. We call these

events partially observed. We know they must have happened, but we don’t know

when. On the other hand, it is possible that there are individuals that are infected

but have not yet recovered, meaning we have no knowledge of their infection. We call

these occult events. These missing information make calculating the likelihood of the

epidemic difficult, or more often than not, impossible. In these cases we can turn to

advanced statistical methodologies such as Markov Chain Monte Carlo (MCMC).

These Bayesian methods allow us to “fill-in” the missing information and obtain

posterior distributions for the parameters we are interested in. These methods have

revolutionised the analysis of partially observed infectious disease data and have

been successfully applied to a myriad of diseases such as COVID-19 (Mbuvha and

Marwala, 2020; Taghizadeh, Karimi, and Heitzinger, 2020), Foot-and-mouth (Jewell

et al., 2009b; Streftaris and Gibson, 2004), and Influenza (Cauchemez et al., 2004;

Huang et al., 2016).

To add to the challenge, non-standard and problem specific algorithms have

to be designed in each instance to optimise efficiency and accuracy. When the

models become more complex, or the population too large, the cost of computing

the likelihood can become very high, and the scale of missing data that needs to

be imputed can make the methods highly inefficient. Still they are one of the best
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options. Whilst there are likelihood-free alternatives available such as Approximate

Bayesian Computation that come with their own advantages (Csilléry et al., 2010),

especially potentially when it comes to computational costs and complex big-data

problems, these methods only give approximate inference and no guarantees of

accuracy. As such, we strongly believe that likelihood-based inference methods,

even in the case of complex big-data epidemics, are still worth pursuing.

In this thesis we will be focusing on the challenge of inference for complex big-

data epidemics, using the case study of Bovine Tuberculosis in England and Wales.

The inference methodology we will be concerned with is the general family of State

Transition Models and full likelihood data inference using Markov Chain Monte

Carlo (MCMC) methods.

In this chapter we will develop the core principles and methodologies used to

make inference on epidemic data using State Transition Models and MCMC inference

techniques. This chapter forms the basis for all the work in the thesis that follows.

In Section 1.2 we develop the core methodology of State Transitions Models for

epidemics. Under these assumptions, in Section 1.3 we describe the framework

of Markov Chain Monte Carlo methodologies for making inference on epidemic

data. Finally in Section 1.4 we review some of the greatest challenges of modelling

epidemics, and highlight the direction of this Thesis for addressing these challenges

in order to make full likelihood inference for complex big-data epidemics.

1.2 Continuous-Time State Transition Models

We begin with a natural but simplified model, treating the population members as

identical and assuming they mix homogeneously. This is the General Stochastic

Epidemic model introduced by Bartlett, 1949. Epidemic models can broadly be

divided into two classes, deterministic and stochastic. Whilst both are valuable

tools and have their uses, we will be focusing solely on stochastic models in this

thesis. Deterministic models can be seen as averages of large population dynamics

4



1.2. Continuous-Time State Transition Models

of stochastic models, and as such are in continuous time and on a continuous state-

space. Stochastic models are better able to quantify the uncertainty associated with

epidemic model parameters whilst accounting for complex disease dynamics and

heterogeneity in disease spread which are often features of big-data epidemics. In

addition the gold standard methods of Markov Chain Monte Carlo for fitting these

models allow us to efficiently augment the large amount of missing data often present

in epidemic data sets, and we intend to prove these methods are viable for big-data

epidemics. Finally, we have modelled our case-study example, Bovine Tuberculosis,

as a collection of connected but separate epidemics in small disjoint populations

(farms) - a meta-population model. The stochastic fluctuations of epidemics in

small populations have a much more significant effect than in larger populations,

and as such the deterministic models inability to capture this behaviour can lead to

inaccuracies. In this section we will derive the construction of the basic classes of

S-I-R model.

We begin with a natural model, treating the population members as individuals,

with their own infection and removal times on a continuous scale, who interact with

other individuals depending on their covariates such as spatial positioning. Starting

with individual level agent-based models and continuing by making simplifying

assumptions to addresses potential challenges with fitting the model.

There are a multitude of ways to model the spread of disease through a

susceptible population in the state transmission model framework. We can include

different states, different transition pathways, different mechanisms of disease

spread, varying scale in time, space, and population (Ajelli et al., 2010, Overton

et al., 2022, Zhou, Ma, and Brauer, 2004, Kamrujjaman et al., 2022). There are

additional complexities we omit at this stage such as household models, meta-

population models, and agent-based network models. The type of model we use

depends very much on the disease in question, the situation, and the type and

detail of data we have available.
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1.2.1 The core concept of S-I-R models

Consider a population of N individuals. This population is closed, which means N

is fixed and there are no births, deaths, emigration, or immigration. We divide this

population into three states, each individual can only exist in one state at any given

time. The states are;

• S - Susceptible. Individuals in this set are susceptible to infection, and will

become infected when they come into contact with an infectious individual.

• I - Infected/Infectious. Individuals in this set are infected, and in the simplest

case, also infectious. If these individuals come into contact with a susceptible

individual they will infect them. Individuals will remain in state I until they

are removed/recover.

• R - Recovered/Removed. Individuals in this set have been removed from

the epidemic, either through recovery or death or quarantine or some other

mechanism. They have no effect on individuals in either of the other two sets

if they come into contact with them, cannot become infected again, and will

remain in the removed state indefinitely. Removal grants immunity.

In the simplest case the model is then parameterised by two rates; β{N is the

rate at which any given susceptible makes contact with an infectious individual

(dividing by N so that the interpretation remains constant regardless of population

size), and γ is the rate at which any given infectious individual transitions to the

removed state, which can also be thought of as the reciprocal of the duration of an

individual’s infectious period. The values of these rates will be dependent on the

dynamics of the epidemic itself. When these rates are identical for all individuals,

we call this a homogeneously mixing model.

The S-I-R process concerns the sequence of transitions of individuals between

these states through time. We define an epidemic as the series of infection and

removal times in continuous time.
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S I R
β|I |/N γ
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t t t

Figure 1.1: A diagram representing the transition of individuals between states and
the transition parameters at time t. The population is divided into three disjoint
sets; St (susceptibles), It (infectious), and Rt (removed). The number of individuals
in each set (or size) is denoted as | ¨ |, for instance |It|. β|It|{N is the rate at which
any given susceptible transitions to the infectious state, and γ is the rate at which
any given infectious individual transitions to the removed state.

1.2.2 The General Stochastic Epidemic S-I-R

The General Stochastic Epidemic (GSE) model is a State Transition Model in

a closed homogeneously mixing population. In this section we consider the

common example of the S-I-R model. Let us divide the population into the three

states S, I, and R. When a susceptible individual comes into contact with an

infectious individual they become infected, and at the end of an infected individual’s

infectious period they become removed. If we make the assumption of exponentially

distributed infectious periods, then the memoryless property means that the process

will be a Markov Chain (Bartlett, 1949). We define β{N to be the rate of contact

between a given susceptible individual and an infected individual, and γ to be the

removal rate.

If an individual i becomes infected at time, Ii, then they are infectious for a time

of length Qi „ Exppγq, and are removed at time Ri “ Ii ` Qi. In addition we will

define Xt to be the number of susceptibles at time t, and Yt to be the number of

infected at time t.

At a given time t, we multiply the ‘force of infection’, β
N

¨ Yt, by the number of

7
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susceptible individuals to calculate the total ‘infectious pressure’ in the population,

λt “
β
N

¨Xt ¨ Yt, which is the overall population rate of S to I transition events. The

overall population rate of I to R transition events is defined as γ ¨ Yt. That is to say

both depend on the states of individuals in the population. When there are no more

infectious individuals there can be no more infections, and the epidemic is over.

As such, the waiting time until the next infection event is distributed Exponen-

tially with rate β
N

¨ Xt ¨ Yt, and the waiting time until the next removal event is

distributed Exponentially with rate γ ¨ Yt. These two processes are competing, and

so the next event occurs at the minimum of two Exponential distributions, which

is also an exponential distribution with the sum of the two rates. Thus the overall

rate of events at time t is thus given by β
N

¨ Xt ¨ Yt ` γ ¨ Yt and is Exponentially

distributed. Given we draw the waiting time until the next event from this overall

rate, the probability that the next event is an infection event is the ratio of the

susceptible to infectious transition rate to the overall rate, pβ¨Xt¨Ytq{N
pβ¨Xt¨Ytq{N`γ¨Yt

. Similarly,

the probability that the next event is an infectious to removed transition event is the

ratio of the infectious to removed transition rate to the overall rate, γ¨Yt

pβ¨Xt¨Ytq{N`γ¨Yt
.

Using these rates we can simulate easily from this epidemic using what is known

as a Gillespie algorithm (Bailey, 1975). The details of this algorithm can be found

in Algorithm 1.1.

8



1.2. Continuous-Time State Transition Models

Gillespie Algorithm:

Inputs: Population size, N ; Infection rate, β; Removal rate, γ.

1. Initialise the states of the individuals at time t “ 0. Typically with N ´ 1
susceptible individuals, 1 infectious individual, and 0 removed individuals.

2. While the number of infectious individuals is greater than 0,

(a) Generate the waiting time until the next event as ∆t „ Exponentialp β
N

¨

Xt ¨ Yt ` γ ¨ Ytq.

(b) The probability that the event is an S to I transition is given by
pβ¨Xt¨Ytq{N

pβ¨Xt¨Ytq{N`γ¨Yt
. The probability that the event is an I to R transition

is given by γ¨Yt

pβ¨Xt¨Ytq{N`γ¨Yt
.

(c) Generate whether the event was an infection or removal based on these
probabilities, and update an individual’s state appropriately.

(d) Update the time t “ t ` ∆t.

Algorithm 1.1: An algorithm to simulate a General Stochastic S-I-R epidemic in a
closed, homogeneous population.

The overall epidemic process is thus the product of two independent but

simultaneously occurring processes, the infection process and the removal process.

Each of these processes is a Poisson process (Kingman, 1992). A Poisson process is

a model of a sequence of discrete events where the average time between events is

known, but the exact time until the next event is random. The waiting time until

the next event is independent of the event before and the occurrence of one event

does not affect the probability another event will occur (the memoryless property).

The average rate must be constant (though there are non-homogeneous Poisson

processes where the rate can vary through time (Cox and Isham, 1980)), and no two

events can occur at the same time.

As such, the likelihood of an epidemic that was generated under the assumptions

of the Gillespie algorithm is given by the following definition. In a population of N

individuals, we have nI infected individuals, and nR removed individuals, resulting

in nI ` nR total events including the initial infection. The infected individuals

9



Chapter 1. An Introduction to Epidemic Modelling

belong to the set I, and the removed individuals to the set R. The initial infected

individual is indexed by κ. The infection times, Ii for i P I, are contained in the set

I. The removal times, Ri for i P R, are contained in the set R.

fpI,R|β, γ, Iκq9

»

–

ź

jPtIzκu

β

N
YIj´

fi

fl ¨ exp

"

´
β

N

ż T

Iκ

pXtYtq dt

*

¨

«

ź

jPR
γ

ff

¨ exp

"

´γ

ż T

Iκ

pYtq dt

*

,

where,

• β is the infection rate,

• γ is the removal rate,

• Iκ is the initial infection time,

• Xt denotes the number of susceptibles at time t,

• Yt denotes the number of infectious individuals at time t.

The YIj´
notation denotes the number of infectious individuals just before the

infection time of individual j, Ij. Formally, YIj´
denotes the left hand limit, YIj´

“

limsÒIjpYsq.

The Gillespie algorithm is a powerful tool in the arsenal of epidemic modellers,

but naturally some diseases will not fit its assumption about a constant homogeneous

contact rate between individuals who are considered equally likely to be infected.

For instance the spatial locations of individuals may play a key role in their rate of

contact (Lloyd and May, 1996). Some diseases require more specific models where

each pair of individuals, ti, ju, has a unique pair-wise infection rate, βi,j. This is

known as a heterogeneously mixing population, where different individuals make

infectious contact at different rates.
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1.2.3 The Heterogeneous General Stochastic Epidemic S-I-

R

An extension to the General Stochastic Epidemic (GSE) allows for the modelling

of epidemics in heterogeneous populations by taking into account the contact rate

between each pair of individuals. This means that knowledge of who infects whom

is a core part of the system.

When a susceptible individual comes into contact with an infectious individual

they become infected, and at the end of an infected individual’s infectious period

they become removed. This is still true as in the previous model, however now each

pair of individuals, ti, ju, has a unique pair-wise infectious contact rate, βi,j{N .

We are interested in the infection time and removal time for each individual in

the population. Let Ii denote the time at which individual i becomes infected, and

Ri is the time when individual i is removed. If an individual i becomes infected at

time, Ii, then they are infectious for a time of length Qi „ Exppγq, and are removed

at time Ri “ Ii ` Qi. If an individual never becomes infected during an epidemic,

then we define their infection and removal times to be infinity.

At a given time t, we can define the overall population rate of S to I transition

events as λt “
ř

iPIt

ř

jPSt
pβi,j{Nq, and the overall population rate of I to R

transition events as γ ¨ Yt. The overall rate of events at time t is thus given by
ř

iPIt

ř

jPSt
pβi,j{Nq ` γ ¨ Yt. Thus the probability that the next event is an S to I

transition is given by
p
ř

iPIt

ř

jPSt
pβi,j{Nqq

p
ř

iPIt

ř

jPSt
pβi,j{Nqq`γ¨Yt

, and the probability that it is individual

k P St that is infected is given by
ř

iPIt
pβi,k{Nq

p
ř

iPIt

ř

jPSt
pβi,j{Nqq

. The probability that the event

is an I to R transition is given by γ¨Yt

p
ř

iPIt

ř

jPSt
pβi,j{Nqq`γ¨Yt

.

Algorithm 1.2 presents a method of simulating an S-I-R epidemic in a closed

heterogeneous population under the General Stochastic Epidemic construction using

these rates.
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Heterogeneously Mixing General Stochastic Epidemic Simulation:

Inputs: Population size, N ; Infection rates, βi,j, for all {i, j}; Removal rate, γ.

1. Generate a set of individuals with covariates and calculate the value of βi,j for
each pair of individuals ti, ju using the chosen model definition.

2. Chose one individual at random, κ, to be the initial infected. Set Iκ “ 0 and
generate a new infectious period, Qκ, from Qi„Exppγq, and calculate Rκ.

3. While the number of infectious individuals is greater than 0,

(a) Generate the waiting time until the next event as ∆t „

Exponentialp
ř

iPIt

ř

jPSt
pβi,j{Nq ` γ ¨ Ytq.

(b) The probability that the event is an S to I transition is given by
p
ř

iPIt

ř

jPSt
pβi,j{Nqq

p
ř

iPIt

ř

jPSt
pβi,j{Nqq`γ¨Yt

. The probability that the event is an I to R

transition is given by γ¨Yt

p
ř

iPIt

ř

jPSt
pβi,j{Nqq`γ¨Yt

.

(c) Generate whether the event was an infection or removal based on these
probabilities.

(d) If it was an infection event, choose an individual k P St to become infected
based on the probabilities

ř

iPIt
pβi,k{Nq{p

ř

iPIt

ř

jPSt
pβi,j{Nqq.

(e) If it was a removal event, choose an individual k P It uniformly at random.

(f) Update the state of the individual k and the variable Yt.

(g) Update the time t “ t ` ∆t.

Algorithm 1.2: An algorithm to simulate a General Stochastic S-I-R epidemic in a
closed, homogeneous population.

Assuming that the data we have access to are the number of individuals in

the population, and the time when each infected individual transitions from the

infectious to removed state, but not when they became infected or who infected

them, then the likelihood of a heterogeneously mixing epidemic that was generated

under the assumptions of Algorithm 1.2 is given by the following definition. In

a population of N individuals, we have nI infected individuals, and nR removed

individuals, resulting in nI ` nR total events including the initial infection. The

infected individuals belong to the set I, and the removed individuals to the set R.

12
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The initial infected individual is indexed by κ. The infection times, Ii for i P I, are

contained in the set I. The removal times, Ri for i P R, are contained in the set R.

fpI,R|β, γ, Iκq9
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˝
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˛
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fi
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ż T
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˜

ÿ
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jPSt
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N

¸

dt

+

¨

«

ź

jPRT

γ

ff

¨ exp

"

´γ

ż T

Iκ

Yt dt

*

,

where,

• βi,j is the infectious contact rate between individuals i and j,

• γ is the removal rate,

• Iκ is the initial infection time,

• St is the set of susceptible individuals at time t,

• It is the set of infected individuals at time t,

• Rt is the set of removed individuals at time t,

• Yt denotes the number of infectious individuals at time t.

The IIj´
notation denotes the number of infectious individuals just before the

infection time of individual j, Ij. Formally, Ij´ denotes the left hand limit, IIj´
“

limsÒIjpIsq.

1.3 Inference for S-I-R epidemics

We are interested in identifying the posterior distribution of our parameters - that

is the distribution of the parameters after considering our current beliefs and the

new evidence from the data. This in turn will provide us with the most likely values

of the parameters, and a measure of the uncertainty in our estimates. With a fitted
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model we can make inference on such things as how long the epidemic will last, how

many hospital beds will be needed this winter (Overton et al., 2022), or where in

the country the disease is likely to spread to next (Brooks-Pollock, Roberts, and

Keeling, 2014). It is the fitting of the model to the data that is the most complex

and challenging part of epidemic modelling.

In the models considered in this chapter, the epidemic data that is required to

fit these models include the infection times and removal times for each individual,

and potentially knowledge of the infectious pathways (who infected whom). In

many cases we assume we have the removal times, or a viable proxy such as taking

the removal time to be the diagnosis time. Most often, however, we do not have

knowledge of the infection times, or who infected whom. These components then

need to be treated as missing information, which needs to be inferred or augmented.

Data augmentation refers to the introduction of latent variables that depend on the

distribution of the existing variables in such a way that the resulting conditional

distributions are easier to sample from and/or result in more efficient sampling

algorithms. This means that frequentist methods of inference such as maximum

likelihood estimation are inherently difficult for epidemics. As such, we prefer to

use Bayesian methods of inference. In particular, the most common method used

for full likelihood-based inference is Markov Chain Monte Carlo (MCMC). There

are a selection of non-likelihood-based methods that will not be covered here such

as Approximate Bayesian Computation (Csilléry et al., 2010).

1.3.1 Bayesian Methods

Bayesian methods utilise Bayes’ Theorem, which is used to calculate the conditional

probabilities of events, to make inference on the posterior distributions of parame-

ters. Bayes’ Theorem states that for parameters θ and data X,

πpθ|Xq “
fpX|θqπpθq

fpXq
,
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where, πpθ|Xq is the posterior distribution of θ, fpX|θq is the likelihood of X given

θ, and πpθq represents our prior beliefs about θ. The denominator, fpXq, is called

the evidence, or the normalising constant, and is a constant that ensures that the

posterior distribution integrates to 1. The normalising constant can also be written

as

fpXq “

ż 8

´8

fpX|θqπpθqdθ.

For the scenarios we are interested in, it is often not possible to calculate the value

of the normalising constant. However, as it is constant, Bayes’ Theorem then also

states that the posterior distribution of θ is proportional to the likelihood multiplied

by the prior,

πpθ|Xq9fpX|θqπpθq.

This opens up the possibility of methods such as Markov Chain Monte Carlo, which

allow us to generate samples from a target distribution without needing to explicitly

compute the normalising constant.

1.3.2 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods are conceptually simple, highly

customisable and extendable, and have a rich body of research and tools behind

them. In simple terms, they are methods that allow us to draw dependent samples

from the joint posterior distribution of our parameters of interest. We can do this by

drawing samples from a known friendly distribution and accepting or rejecting that

sample based on some probability derived using the prior distribution and likelihood

of our parameters. This in turn allows us to construct an empirical distribution of

the parameters, giving us valuable insights.

There are many benefits to using MCMC methodology to make inference on

epidemics. Firstly, we can deal with our missing-data problem using a method

known as ‘data augmentation’. This involves treating each of our missing data

points as a parameter of the model, we refer to them as ‘nuisance parameters’, and

15



Chapter 1. An Introduction to Epidemic Modelling

then making inference on them in the same way we do for our parameters of interest.

Unlike with imputing missing data, data augmentation is not intended to produce

point estimates of the most likely value for the missing data, but instead to explore

the posterior distribution of all possible values of the truth. Exploring the space of

possibilities will thus allows us to better quantify our confidence in our estimates of

the parameters of interest and future findings.

Next, as stated above MCMC methods produce samples from the joint posterior

distribution of our parameters. When the conditional distributions of the parameters

are of a known form (such as a Gaussian or Gamma distribution) it is easy to produce

samples given a current set of parameter values, and we can use a method known as

a Gibbs sampler to get draws directly from them. However, in the case of epidemics,

these distributions often do not correspond to a common distributional form, which

would usually make drawing samples from them very challenging. MCMC, however,

has methods such as the Metropolis-Hastings step that allow us to make dependent

draws from any posterior distribution, as long as we can calculate the likelihood.

The conditional posterior distributions - the posterior distributions for some of the

parameters given values of the others - we are usually interested in for epidemics are

often low in dimension and typically uni-modal, so these methods have the potential

to work well.

Next, the rich body of research supporting MCMC methods, and the vast array

of tools for a multitude of problems available, equip the method well for combating

the unique and varied challenges of emerging epidemics. There are methods

to support unique distributions, improved efficiency, rapid speed of inference for

ongoing epidemics, and countless more (O’Neill, 2002, Sherlock, Fearnhead, and

Roberts, 2010).

Finally, apart from the inherent computational costs, MCMC methods can be

reasonably simple to implement, and there are many papers, packages, and books

to support the creation and evaluation of these methods.

There are however some drawbacks. The previously mentioned computational
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costs of implementing an MCMC algorithm can be prohibitively expensive, and

methods to alleviate these burdens can become very complex. In addition, the

samples of the posterior distributions will usually be dependent on each other. In

intuitive terms this means that the amount of information in our sample set is

not equal to the amount of samples we have. We can quantify this using auto-

correlation and effective sample size. Auto-correlation is the correlation between two

chains offset by t positions, i.e. the chain start at sample n and the chain starting

at sample n ` t. The greater the auto-correlation within the chains, the greater

the uncertainty in our estimates, which we can measure using effective sample size.

Effective sample size is the number of independent samples with the same estimation

power as N auto-correlated samples, and can be calculated as the ratio of the number

of dependent samples, N , to the sum of the auto-correlations for all lags (t) from

´8 to 8 (Gelman, Carlin, et al. (2013)). In extremely inefficient implementations

this could mean that a million dependent samples has an effective sample size in the

single digits. Finally, whilst MCMC is asymptotically guaranteed (given the correct

conditions are satisfied) to provide draws from the correct posterior distribution,

we typically expect the algorithm to take time to converge to this ‘stationary’

distribution, and it can be difficult to confirm if it has happened during a run.

The method may encounter issues such as finding different ‘stationary’ distributions

based on how it is initialised, or getting stuck in local minima.

Even with these considerable drawbacks, MCMC is still one of the best tools for

making inference on epidemic data. Next we will lay out a general framework for

how to perform MCMC for epidemics, which will be utilised in the remainder of the

Thesis.

1.3.3 Components of MCMC

Let our data be denoted by I and R, the infection and removal times respectively,

and our model parameters by θ. During this thesis we will consider models that do

not assume or require knowledge of the infectious pathways (who infected whom),
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though having observations of infectious pathways can improve the inference. To

perform MCMC inference on this data we need two core components:

• The likelihood function of the epidemic, fpI,R|θq,

• Prior distributions for each parameter, πpθq,

The likelihood is constructed based on the model we have chosen for the epidemic,

which should reflect our beliefs about the process that generated the data. The prior

distributions on the parameters we can choose freely to reflect our prior knowledge

about the parameters, or choose a form that complements the form of our likelihood.

The joint posterior distribution can then be derived using these two components.

The joint posterior distribution of the parameters and any missing data is

proportional to the likelihood multiplied by the prior. In some cases it will be

possible to construct conditional posterior distributions for some of the parameters

and/or missing data analytically, given values of other parameters/missing data,

such that they have common distributional forms that we are familiar working

with, like Gamma or Gaussian distributions. In these instances we can sample

directly from these conditional distributions using standard statistical techniques.

Often, however, it is not possible or is undesirable to construct these conditional

distributions with common forms. In these cases methods such as a Metropolis-

Hastings step will be necessary to acquire samples from the posterior distribution,

and for those we will also need:

• Proposal distributions to draw samples from, qpθ1|θq,

• Metropolis-Hastings acceptance probabilities, αpθ, θ1q, to help decided whether

to accept the proposed sample.

1.3.3.1 Posterior Distribution

The posterior is the distribution of a parameter vector, including nuisance parame-

ters, after we have updated our prior knowledge or assumptions with the evidence
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from our new data. Mathematically it is proportional to the product of the prior

distribution of the parameters and the likelihood of the data. If we know very

little about the parameters, we can use an ‘uninformative’ prior, such as a uniform

distribution, that gives equal weight to all possibilities. If we know more then we

can use a distribution that can reflect the information and uncertainty we believe

or assume to be true.

To derive the posterior distribution of a parameter, let fpX|θq be the likelihood

of some data X that is generated from a model that is dependent on parameter

θ. We first put a prior distribution on θ, πpθq, which represents what we currently

know about the parameter. If we think θ has a mean of 3, we can reflect this in the

prior for instance, and it will contribute to our inference. By Bayes’ Theorem, the

posterior is proportional to the likelihood multiplied by the prior;

πpθ|Xq9fpX|θqπpθq

When appropriate it can be of benefit to choose the prior on θ such that the prior

and the likelihood of the data will be “conjugate”, which will result in the posterior

of θ taking the form of a known, ‘friendly’ distribution. If we have conjugacy for

the full joint posterior of all the parameters and nuisance parameters, then we don’t

need to sample at all. If we have component-wise conjugacy for the joint conditional

posterior of some of the parameters/missing data given the others, then we can

sample directly from this joint conditional posterior for these elements. For those

elements that do not have conjugacy, special methodology is needed to make our

inference; the Metropolis-Hastings step.

1.3.3.2 The Metropolis-Hastings step

The Metropolis-Hastings (MH) step is a form of rejection sampling, that is used to

generate samples from a posterior distribution. Typically it is used when it is not

possible to generate samples from the distribution because we cannot calculate the
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normalising constant of the posterior. Even if we are not able to sample from the

posterior directly, we may be able to evaluate it’s density for a given set of inputs.

This will tell us how likely that value of the parameter is given the data and the

prior, and possibly the current value of other parameters if there is dependency.

The Metropolis-Hastings step is made up of a proposal distribution and an

acceptance probability function which combined generate a Markov chain of

dependent samples from the stationary distribution of the chain, which once

converged is set up to be the posterior distribution of interest.

Lets say we are interested in some parameter, θ. We first choose a proposal

distribution for the parameter, q, and set Qpθ1|θq be the cdf of q. We can propose a

value for θ1 „ Qp¨|θq. Then we calculate the value of the posterior for our current

sample, θ˚, and our proposed sample, θ1. Lets denote these πpθ˚|Xq and πpθ1|Xq

respectively. Then, we will accept the newly proposed value with some probability

α, which is known as the Metropolis-Hastings acceptance probability.

A common choice for the proposal distribution is a Normal distribution centred

around the current value of the parameter, θ˚, with variance σ2, where σ2 is a

tuning parameter. Choosing this proposal distribution makes this algorithm into

the Random Walk Metropolis (RWM). Sampling from this proposal distribution

gets us a proposal draw, θ1, where θ1 „ Npθ˚, σ2q.

The MH acceptance probability, α, is dependent on the posterior likelihood of

the proposed parameter. It is calculated,

α “ min

"

πpθ1|Xq

πpθ˚|Xq

qpθ˚|θ1q

qpθ1|θ˚q
, 1

*

, (1.1)

where qpθ˚|θ1q is the probability of being at θ1 and “moving to” θ˚ on the proposal

distribution, and vice versa for qpθ1|θ˚q. We can note here that as we are taking the

ratio of the posterior calculated at two different values, the normalising constant

would cancel, and so we have no need of calculating it.

In the case where we have chosen the proposal distribution to be Normally

distributed, these proposals will be symmetric. This means that the probability
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density of going from θ1 Ñ θ˚ is the same as going from θ˚ Ñ θ1, and so the

components cancel;

α “ min

"

πpθ1|Xq

πpθ˚|Xq
, 1

*

“ min

"

fpX|θ1qπpθ1q

fpX|θ˚qπpθ˚q
, 1

*

.

As we can see from what remains, if the new parameter is more likely than the

current one then we just accept it, otherwise we accept it with probability the ratio

of the two posteriors. If we accept it then we record the draw and update our

current value, if we reject it then we just discard the draw and record our current

value again.

We control this acceptance rate through our proposal variance, σ2, however, our

goal is not 100% acceptance, as this would just return the proposal distribution.

Instead we are balancing two goals. If σ2 is too large, then we will propose large

“jumps” (the relative distance between our current and new draws is more likely

to be large). When this happens the posterior density is likely to be very different

and we are likely to reject these changes as a result (especially since the MHRW

prefers to stay in areas of high posterior probability), however, when these changes

are accepted the two draws will be a lot less dependent. On the other hand, if

we have a small σ2, then we are going to propose small “jumps” (the two draws

are likely to be relatively similar). When this happens, we are likely to accept the

new parameter as the posterior densities will be fairly similar, but there will be a

high level of dependence or ‘auto-correlation’ between the two samples. We want to

balance the dependence/auto-correlation with the number of samples accepted.

Under theoretical conditions, the optimal acceptance rate for a univariate

Gaussian conditional posterior distribution when using a Gaussian Random Walk

Metropolis proposal is 44% (Gelman, Roberts, and Gilks, 1996). This is taken as

a rule of thumb for most single parameter inference. If we increase the number of

parameters in each MH step, and use multivariate proposal distributions with co-

variance matrices, that ideal theoretical acceptance rate tends to 23% as the number
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of parameters increases to 8 (Roberts, Gelman, and Gilks, 1997).

There are many proposal distributions we could use, even a uniform distribution

is a valid choice. Changing the proposal distribution is what leads to the many

named MCMC algorithms such as MALA (Roberts and Tweedie, 1996) and

Hamiltonian Monte Carlo (Duane et al., 1987), which can improve the efficiency

of the inference in different circumstances. Many of the advanced ones depend on

gradient information. These methods could be used on the parameter space, however

they are more problematic for the data augmentation space because the likelihood

can be discontinuous when you propose changes (ie. you don’t just move along the

likelihood curve, but shift the curve entirely).

1.3.4 MCMC framework

Here we will present a framework algorithm for how to perform MCMC inference

for epidemic data, using the components described above, to obtain samples from

πpθ|Rq.

The most commonly encountered scenario is that we know the removal times,

R, as we can define them ourselves (such as when someone gets diagnosed at the

doctors), but the infection times, I, are usually unknown, and so we assume that

the infection times will be treated as nuisance parameters which will need to be

inferred.

Assume we have an epidemic model M with parameters θ1, . . . , θp. Let us say

that for all parameters θ1, . . . , θi, i ă p, we have conditional posterior distributions,

conditional on the values of the other parameters, the missing infection times data,

I, and the removal times data, R, that we can easily draw samples from (Gamma

distributions for instance), and the rest of the parameters will require a Metropolis-

Hastings step.

In a population ofN individuals, we have nI infected individuals, and nR removed

individuals, resulting in nI ` nR total events including the initial infection. In this

case we will assume the epidemic is complete and nI “ nR. The infected individuals
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1.3. Inference for S-I-R epidemics

belong to the set I, and the removed individuals to the set R. The initial infected

individual is indexed by κ. The infection times, Ii for i P I, are contained in the set

I. The removal times, Ri for i P R, are contained in the set R.

In this scenario a framework for an MCMC algorithm is given below in Algorithm

1.3.
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Chapter 1. An Introduction to Epidemic Modelling

MCMC framework for epidemics:

Inputs: Data, R; Likelihood, fpI,R|θq; Prior for each θj, πpθjq, j “ 1, . . . , d;
Prior on I, πpI|θq; Exact conditional posterior distributions for each θ1:i; Proposal
distributions for each θpi`1q:p, qpθ

1
j|θjq, j “ pi` 1q, . . . , p; Proposal distribution for I,

qpI1
k|Ikq, k “ 1, . . . , nI .

1. Initialise the algorithm by choosing values for the parameters and the nuisance
parameters.

2. For j “ 1, . . . , i: Generate a new realisation of θj, θ
1
j, from its conditional

posterior distribution, conditional on the current value of all the other
parameters, θ1:pzj, the infection times, I, and the removal times, R. This is
known as a Gibbs sampler. Update the θ vector: θj Ð θ1

j.

3. For j “ pi ` 1q, . . . , p: Generate a new realisation of θj, θ1
j, from its

appropriate proposal distribution, conditional on the current value of all the
other parameters, the infection times, and the removal times. Accept this
sample with probability calculated using the Metropolis-Hastings acceptance
probability α. If the new realisation is accepted, then update the θ vector:
θj Ð θ1

j, if it is rejected then discard the draw and update the θ vector:
θj Ð θj. This is known as a Metropolis-Hastings step.

α “ min

"

πpθ1
j|θ1:pzj, I,Rq

πpθ|θ1:pzj, I,Rq

qpθj|θ
1
jq

qpθ1
j|θjq

, 1

*

4. Choose a random infected individual k P I. Update the infection time of
individual k, Ik, using again a MH step. If the new time is invalid for some
reason (e.g. it occurs after the last removal say) then it should automatically
be rejected as the likelihood should be 0. If the new realisations are accepted
then update the infection times vector: Ik Ð I 1

k, if not then discard the new
draw and update the infection times vector: Ik Ð Ik.

α “ min

"

πpI 1
k|IIzk,R, θq

πpIk|IIzk,R, θq

qpIk|I 1
kq

qpI 1
k|Ikq

, 1

*

5. Repeat steps 2-4 T times then discard the first B draws as “burn-in” leaving
T ´ B draws (approximately) from the posterior distribution.

Algorithm 1.3: A general framework for performing MCMC inference for epidemic
data.

Our output from this algorithm should be pT ´ Bq dependent draws from the
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1.4. The Challenges of Epidemic Inference Addressed in this Thesis

joint posterior distribution of our parameters. We discard the B burn-in samples

to remove the period the algorithm spent ‘finding’ the stationary distribution of the

parameters. From this we can estimate features of the posterior distributions that

are of interest, such as means, medians, and variances. In addition we can feed the

joint posterior samples back into the model to estimate features of the epidemic

via simulation such as expected length, expected cases, probability of dying out

naturally via averaging the simulation results. We can also use simulations to do

projection and retrospective analyses.

Note that the framework presented here is for an MCMC method known as

Metropolis-within-Gibbs, which combines the direct conditional sampling steps of a

Gibbs sampler, with the proposed and accepted/rejected conditional sample steps of

a Metropolis-Hastings algorithms. There are many possible MCMC methods that

exist that may use significantly different tools to increase efficiency, but the core

concept and goal will remain the same.

1.4 The Challenges of Epidemic Inference Ad-

dressed in this Thesis

We now have a way of building an empirical distribution of our parameters of interest

based on likelihood methods that also account for missing data. There are however

still challenges in making these methods feasible in the modern data age, and on

the scale of epidemic and pandemic data.

1.4.1 The computational costs of MCMC

Markov-Chain Monte Carlo (MCMC) methods are typically very computationally

expensive, even with optimised code implementations. For every proposed sample

of the potentially thousands of parameters drawn, when including the nuisance

parameters, typically a full recalculation of the likelihood is required. Of these
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Chapter 1. An Introduction to Epidemic Modelling

proposals, in line with the optimal rejection probabilities corresponding to the

earlier optimal acceptance probabilities, 56% to 77% of samples are rejected and

discarded in an optimally tuned algorithm. Of the accepted parameter draws, an

indeterminable amount is discarded as burn-in before the chain locates the stationary

distribution. These steps are necessary to ensure accurate inference and minimise the

dependence between samples, as the greater the dependence between samples, the

more samples need to be generated. For this reason, in complex modelling scenarios

such as epidemics, where the likelihoods are large and expensive to compute, we

may look for ways to reduce the computational burden of the algorithms at the cost

of accuracy.

1.4.2 The missing data

Computational costs can, to some degree, be mitigated through additional compute

power and intelligently designed algorithms, however, this does not get around the

issue of missing data. As pandemics break out in ever growing populations, and

epidemic data becomes easier to collect, store, and share, the scale of epidemic

data becomes unwieldy. With data available at the individual level across whole

countries, the level of missing data rises to tens or hundreds of millions of records

which need to be imputed. Finding efficient ways of exploring the state space of

all these missing data becomes a significant challenge, that more powerful hardware

simply cannot address alone, as this corresponds to the mixing and efficiency of the

inference algorithms. For this reason too we may look at ways of aggregating the

data to different resolutions, in order to reduce the number of data points that need

to be imputed, at the cost of accuracy.

If we could perform inference for an epidemic under the assumptions of the

fully heterogeneous individual-level model presented in Section 1.2.3, it would be

the gold-standard. This, however, is rarely possible, especially for anything larger

than a small epidemic. In the following chapter, we propose a potential model to

address some of the challenges presented here. We consider a model that takes
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1.4. The Challenges of Epidemic Inference Addressed in this Thesis

into account additional spatial covariate data in order to discretise the data and

reduce the computational burden of computing the likelihood. We also show that

this model is still incapable of overcoming the challenges of the largest epidemic and

pandemic data sets available in the modern world, setting the scene for the rest of

the thesis, which explores methods for making full likelihood inference on big-data

epidemics with hundreds of millions of data points.

This thesis is concerned with novel methods for performing full likelihood

inference using gold-standard MCMC methods for big-data epidemics. The first

half of the thesis builds up the readers knowledge of making inference on epidemic

data, whilst justifying the need for new methodology, and highlighting potential

avenues of research. In Chapter 2 we introduce an individual-level continuous-

time spatial epidemic model, that attempts to deal with large quantities of data

through a simplified spatial kernel we call a “Near vs. Far” model. In Chapter 3

we explore discrete approximations for State Transition Models via a discrete-time

population-level epidemic model, and how this approximation can vastly reduce the

computational burden of the inference whilst maintaining high levels of accuracy,

under the right conditions. The latter half of the thesis builds upon the previous

chapters to build a model and an efficient full-likelihood inference scheme for a

case-study example of a big-data epidemic, Bovine Tuberculosis. In Chapter 4 we

introduce our case study example, giving an overview of the literature and previous

models, and an exploratory analysis of data provided by the Animal and Plant

Health Agency (APHA). Following this in Chapter 5 we develop our own model for

bTB and an inference scheme based on a partially simulated epidemic, which uses

some geographical, cattle, and movement data from APHA, and augments it with

simulated badger, cattle testing, and epidemic data. With this inference method

validated on simulated data, in Chapter 6 we remove the simulated data and adapt

the model and inference method for only observed data. Finally in Chapter 7 we

conclude the thesis with a review of the works completed and suggestions for future

avenues of research.
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Chapter 2

Near Vs. Far

2.1 Introduction

The gold standard of epidemic modelling is to consider every individual in continuous

time, with unique time-varying pair-wise contact rates, possibly even taking into

account each individual’s time-varying covariates. However, for even small to

moderately sized epidemics this becomes infeasible. There are identifiability issues

due to the potentially large numbers of dependent parameters and potentially large

amounts of missing data common to epidemic data sets. At the same time the

MCMC methodologies become extremely inefficient and the computational burden

of calculating the likelihood becomes unwieldy.

A simplification to the model that captures the majority of the behaviour and

yet vastly reduces the computational burden can allow the methodology to scale to

real-world challenges.

In this chapter we introduce one such example of a simplified spatial S-I-R

model with heterogeneous mixing. Instead of having a unique infectious contact

rate between every pair of individuals, the pair-wise infectious contact rate will

take one of two fixed values, depending on the distance between the individuals on

a plane. We call this model the ’Near vs Far General Stochastic Epidemic’. We

also explore alternative parameterisations for the implementation of the Near vs
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2.2. Simplified Heterogeneity

Far kernel to investigate the effect on the efficiency of inference. Deardon et al.,

2010 investigated a similar simplification for the UK 2001 FMD epidemic they call

linearising the distance kernel by taking a Taylor series expansion.

In this Chapter we apply the frameworks laid out in Chapter 1 for constructing

the model and applying MCMC methodologies to make inference for a simulated

epidemic. In Section 2.2 we explain the details of the model and give an algorithm for

simulating an epidemic in this style. Following this in Section 2.3 we provide the form

of the likelihood which is used in Section 2.4 to derive the posterior distributions. In

Section 2.5 we present three additional forms of the proposal distribution, and apply

these to the parameters and latent variables in Section 2.6. We use these components

in Section 2.7 where we explain the MCMC schema applied to make inference for

our example, and in Section 2.8 we present an alternative parameterisation of the

epidemic model and subsequent MCMC algorithm. Finally we present and compare

the results in 2.9.

2.2 Simplified Heterogeneity

The general stochastic epidemic (GSE) makes the assumption of a unique rate of

infectious contact between each pair of individuals, βi,j. However, fitting a model

with a unique parameter for each pairing is often impossible. As such we tend to

make βi,j a function of the covariates of the individuals to reduce the size of the

parameter space.

There are many models we could consider to investigate heterogeneity in mixing.

Depending on the disease in question and the modelling assumptions we have

made, we could consider heterogeneity in individuals susceptibility or infectivity,

or both, based on covariates such as spatial location, age, species, occupation, social

structure, behaviour, vaccination status, and many more. Examples include,

1. An age-stratified model such as Balabdaoui and Mohr, 2020. For instance, let

ci be the age group covariate of individual i, then βi,j “ β ¨fpci, cjq is dependent
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Chapter 2. Near Vs. Far

on the contact rate between different age groups, ie. school children contact a

lot of other school children but less commonly contact young adults.

2. A household model such as Neal and Roberts, 2004. The natural grouping of

individuals into small units is modelled, as an example βi,j “ β`βH ¨1i„j where

all individuals contact at a base rate β and individuals in the same household

have additional contact rate βH , where 1i„j is equal to 1 if individuals i and

j share a household, and 0 otherwise.

3. A spatial kernel that depends on the distance between individuals in space

such as Keeling et al., 2001. An example could be a Gaussian spatial kernel

where βi,j “ β ¨fpi, jq where fpi, jq is a Gaussian density centred on the spatial

location of individual i with standard deviations σx, σy as tuning parameters,

which represent the scale of the Gaussian density along the x and y axes,

respectively. Depending on the shape of the kernel, typically the further

individual j is from individual i, the lower the contact rate.

There are countless more possibilities. In this section we present a simplified spatial

model.

2.2.1 Near vs Far GSE S-I-R

We assume that each individual has a fixed location on a plane. When considering

a pair of individuals, i, j, an infectious individual is more likely to make infectious

contact and infect a susceptible individual if they are closer together. There are

many ways that we could incorporate this kind of spatial heterogeneity, and we have

chosen a conceptually simple one. If an infectious individual is within a Euclidean

distance d of a susceptible individual, then they make infectious contact at rate β1,

otherwise, they make infectious contact at rate β2. This has reduced the size of

the parameter space from NpN ´ 1q to 2. We are considering cases where β1 ą β2.

Once an individual is infected they recover at rate γ. Figure 2.1 presents a visual

representation of the model.
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2.2. Simplified Heterogeneity

β1

β2

Figure 2.1: A diagram representing the Near Vs Far GSE. The “x” represent the
positions of individuals on the 2-d plane. The red x represents an infected individual.
The individuals within distance d of the infected individual are contained in the
red circle, and make infectious contact with the infected individual at rate β1. All
individuals outside the red circle make infectious contact with the infected individual
at rate β2.

The General Stochastic Epidemic presented in Chapter 1 can be adapted to

this kind of heterogeneity with the appropriate setting of the βi,j. With its hard

boundary and fixed spatial positioning it will not always be appropriate, but is

viable for instance when modelling crop diseases or disease spread by cattle herds

on different farms that share pastures. In cases where it is appropriate we can vastly

reduce the computational costs involved in simulating and making inference on such

data. Algorithm 2.1 presents the steps for simulating an epidemic in this framework,

based on the Gillespie algorithm (Gillespie, 1977), where

βpi,jq “

$

’

&

’

%

β1, if
␣

dpi,jq ă d
(

,

β2, otherwise.

(2.1)
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Near Vs. Far General Stochastic Epidemic Simulation:

Inputs: Population size, N ; Infection rates, β1 and β2; Removal rate, γ; Distance
cut-off, d.

1. Generate the position of all individuals i on the plane. Calculate the distances
di,j between each pair of individuals ti, ju. Calculate the value of βi,j for each
pair of individuals ti, ju.

2. Choose one individual at random, κ, to be the initial infected. Set Iκ “ 0
and generate a new infectious period, Qκ, from Qκ„Exppγq, and calculate
Rκ “ Iκ ` Qκ.

3. For each ti, κu pair, i P Susceptibles, generate a time until contact, Wi,κ, from
Wi,j„Exppβi,κq.

4. Then,

(a) For i P Susceptibles, j P Infectious, find the pair of individuals ti, ju
which has the minimum tIj `Wi,ju subject to tIj `Wi,j ă Ij `Qju. Set
Ii “ Ij `Wi,j. Generate Qi, from Qi„Exppγq, and calculate Ri “ Ii `Qi.

(b) Update the sets of Susceptible and Infectious individuals.

(c) For the new infectious individual, i, from step (a), and each
m P Susceptibles, generate a new time until contact, Wm,i, from
Wm,i„Exppβm,iq.

(d) Repeat steps (a) and (b) until the susceptible or infectious population
reaches size 0.

Algorithm 2.1: An algorithm to simulate a General Stochastic S-I-R epidemic in a
closed, homogeneous population.

2.3 Likelihood

The likelihood of the Near vs Far epidemic takes the form of the heterogeneous

General Stochastic Epidemic presented in Chapter 1, with the pairwise infection

rate defined as a function of the model parameters and the individuals covariates.

The likelihood is defined by its infection times and removal times, conditional

on the transition parameters and the initial infection time, with no requirement to
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2.3. Likelihood

know who infected whom. In a population of N individuals, we have nI infected

individuals, and nR removed individuals, resulting in nI ` nR total events including

the initial infection. The infected individuals belong to the set I, and the removed

individuals to the set R. The initial infected individual is indexed by κ. The

infection times, Ii for i P I, are contained in the set I. The removal times, Ri for

i P R, are contained in the set R.

The model simplifies the pair-wise infectious contact rate, βpi,jq, to two distinct

possibilities, β1 or β2 of the form given in Equation (2.1).

The value of βi,j depends on d, the distance at which the infection rate

changes, but we are only interested in the total susceptible pressure exerted on each

individual. We introduce the notation D1
t to represent the number of susceptible-

infectious pairs within distance d of each other at time t, and D2
t to represent the

number of susceptible-infectious pairs further than distance d from each other at

time t.

In this parameterisation the heterogeneous GSE likelihood simplifies to,

fpI,R|β, γ, Iκq9

»

–

ź

jPtIT zκu

´

D1
Ij´
β1 ` D2

Ij´
β2

¯

fi

fl ¨ exp

"

´

ż T

Iκ

`

D1
t β1 ` D2

t β2
˘

dt

*

¨

«

ź

jPRT

γ

ff

¨ exp

"

´γ

ż T

Iκ

Yt dt

*

, (2.2)

where,

• γ is the removal rate,

• κ indexes the initial infective,

• St is the set of susceptible individuals at time t,

• It is the set of infected individuals at time t,

• Rt is the set of removed individuals at time t,
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• Yt denotes the number of infectious individuals at time t.

The IIj´
notation denotes the number of infectious individuals just before the

infection time of individual j, Ij. Formally, Ij´ denotes the left hand limit, IIj´
“

limsÒIjpIsq.

2.4 Posterior

In this section we present the posterior distributions of the parameters in the Near

vs. Far model, using the methodology explored in Chapter 1.

Individuals are arranged at fixed points on a plane, and the infection rate between

two individuals i and j is dependent on the Euclidean distance between them. The

infection rate takes the form given in Equation (2.1).

We have chosen the prior distribution on β1 to be a Gammapνβ1 , λβ1q because of

its flexibility, non-negative support, and interpretability. The prior has the form

πpβ1|νβ1 , λβ1q “
pλβ1qνβ1

Γpνβ1q
βpνβ1´1qe´λβ1

β1 .

The form of the Gamma distribution we are choosing to use has ν ą 0 as the

shape parameter, and λ ą 0 as the rate parameter.

The prior distributions for β2 and γ are also chosen to be Gamma distributions

with unique hyper-parameters. In the case of γ this is also because it is conjugate

and results in a conditional posterior for γ that is of a known form. We will assume

a uniform prior on d bounded by the minimum and maximum distances between all

pairs of individuals in the population.

The conditional posterior distributions are:

π pβ1|β2, γ, d,R, I, Iκ, νβ1 , λβ1q9

«

nI
ź

j‰κ

´

D1
Ij´
β1 ` D2

Ij´
β2

¯

ff

¨

”

β
pνβ1´1q

1

ı

¨

„

exp

"

´

ż T

Iκ

`

D1
t β1

˘

dt ´ λβ1β1

*ȷ

.
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π pβ2|β1, γ, d,R, I, Iκ, νβ2 , λβ2q9

«

nI
ź

j‰κ

´

D1
Ij´
β1 ` D2

Ij´
β2

¯

ff

¨

”

β
pνβ2´1q

2

ı

¨

„

exp

"

´

ż T

Iκ

`

D2
t β2

˘

dt ´ λβ2β2

*ȷ

.

π pd|β1, β2, γ, d,R, I, Iκ, νβ2 , λβ2q 9

«

nI
ź

j‰κ

´

D1
Ij´
β1 ` D2

Ij´
β2

¯

ff

„

exp

"

´

ż T

Iκ

`

D1
t β1 ` D2

t β2
˘

dt

*ȷ

.

π pγ|β1, β2, d,R, I, Iκ, νγ, λγq „ Gamma

ˆ„

λγ `

ż T

Iκ

pYtq dt

ȷ

, rn ` νγs

˙

.

πpI|R, Iκ, β1, β2, γ, d, νβ1 , λβ1 , νβ2 , λβ2 , νγ, λγq

9

«

nI
ź

j‰κ

´

D1
Ij´
β1 ` D2

Ij´
β2

¯

ff

¨ exp

"

´

ż T

Iκ

`

D1
t β1 ` D2

t β2
˘

dt

*

¨ exp

"

´γ

ż T

Iκ

pYtq dt

*

.

2.5 Metropolis-Hastings Steps

Metropolis-Hastings steps are a useful tool for sampling from most of the posterior

distributions presented in Section 2.4. They will form part of our MCMC inference

schema and produce dependent samples of our parameters of interest, whilst

accounting for our missing data.

In this section, we present the proposal distributions and subsequent Metropolis-

Hastings acceptance probabilities for the parameters and unknown data from Section

2.4.
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2.5.1 The Random Walk Metropolis-Hastings step

We will be using a common Metropolis-Hastings algorithm, the Random Walk

Metropolis. The proposal distribution is a Normal distribution centred around

the current value of the parameter, θ˚, with variance σ2, where σ2 is a tuning

parameter. Our parameter draw is θ1, where θ1 „ Npθ˚, σ2q. The normal distribution

is symmetric so the probability of going from θ1 Ñ θ˚ is the same as going from

θ˚ Ñ θ1. Thus, the proposal distribution will cancel in the acceptance probability

and will again result in Equation (1.1).

2.5.1.1 The Multiplicative Random Walk Metropolis

In some cases we found the algorithms to be more efficient when proposing

on the log scale, with the added benefits of the proposed draws can only be

positive like the parameters. Transforming to the log scale to propose is called

a Multiplicative Random Walk Metropolis (Dellaportas and Roberts, 2003). The

proposal distribution is now skewed due to the logarithmic transform, and so is

no longer symmetric. We need to consider the Jacobian of the transformation,

which accounts for the change in density due to the transformation, and adjust the

acceptance probability accordingly.

To do this we make use of the result that for two random variables θ and ϕ,

where ϕ “ logpθq, the posterior πpϕ|Xq “ θ ¨ πpθ|Xq. So the acceptance probability

is given by

α “ min

"

θ1 ¨ πpθ1|Xq

θ˚ ¨ πpθ˚|Xq
, 1

*

2.5.1.2 The Folded Random Walk Metropolis

By taking advantage of the symmetric nature of the Random Walk proposal, we can

bound the proposal distribution whilst still maintaining a symmetric distribution.

This is especially useful for parameters that are strictly positive but are inefficiently
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explored on the log scale, or parameters that exist within clear bounds.

First consider a Normal proposal centred on the current value of the parameter,

θ˚, with variance σ2, where σ is a tuning parameter. We introduce a lower bound,

l, and an upper bound, u. We propose as normal from the proposal distribution,

however, if we propose a value below l or above u, then we ‘fold’ the distribution

back on itself using the following logic:

When a value ϕ „ Npθ˚, σ2q is drawn, the following repeated fold operations are

performed:

Fold operations:

Inputs: Current value of θ, θ˚; Proposed value, ϕ; Lower bound, l; Upper bound, u

while ϕ R rl, us do
if ϕ ă l then

ϕ Ð 2l ´ ϕ
end
else if ϕ ą u then

ϕ Ð 2u ´ ϕ
end

end

Algorithm 2.2: Fold operations for the Folded Random Walk.

the proposal θ1 is then set to ϕ.

Thus θ1 only has support in rl, us and it’s density is the sum of an infinite sequence

of Gaussian densities:

Denoting gpθq as the density of a Npθ˚, σ2q random variable at θ, then

qpθ1
|θq “ gpθ1

q `

8
ÿ

i“1

„

g p2piql ´ 2pi ´ 1qu ´ θ1
q ` g p2piqu ´ 2piql ` θ1

q

` g p2piqu ´ 2pi ´ 1ql ´ θ1
q ` g p2piql ´ 2piqu ` θ1

q

ȷ

(2.3)

Even if the bounds are not equidistant from the mean, the symmetry of the

proposal distribution is still preserved. The reason for this is non-obvious unless we
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consider the probability density function of the Gaussian distribution. We use the

form below, and consider σ “ 1 for simplicity:

fpxq “
1

?
2πσ2

e´
px´µq2

2σ2

9e´
px´µq2

2 .

Thus we can see that comparing two distributions with σ “ 1 we need only

concern ourselves with the px´µq2 term, and the evaluation of the two distributions

will have the same value if px1 ´µ1q
2 “ px2 ´µ2q2. Now consider an example where

x “ θ and µ “ m, and the reverse move distribution where x “ m and µ “ θ. Then

pθ´mq2 “ pθ2 ´mθ`m2q “ pm´ θq2, thus we’ve shown that the standard random

walk is reversible. If we then substitute θ for any term in the infinite sum, such as

ϕ “ 2l ´ θ, then we can see that pϕ ´ mq2 “ p2l ´ θ ´ mq2 “ pp2l ´ mq ´ θq2. For

g p2piqu ´ 2piql ` θq the reverse term will be g p2piql ´ 2piqu ` mq. Thus every term

in the infinite sum when x “ θ and µ “ m has a matching term of equal value in

the infinite sum when x “ m and µ “ θ, so πpθ|mq “ πpm|θq and the proposal is

reversible. Thus the acceptance probability is still given by Equation (1.1).

2.6 Proposal Distributions

We use a Multiplicative Random Walk for β1 and β2. For d we will use a Folded

Random Walk. Since γ has a Gamma posterior we can sample directly from

the posterior using a Gibbs sampler. It is worth noting that as the product in

the posterior for β1 (and for β2) can be expanded to be expressed as a sum of

polynomials in β1, it is proportional to a mixture of Gamma distributions from which

we could sample directly utilising a Gibbs sampler. We have chosen to explore the

Multiplicative Random Walk here as it is more applicable in the later chapters.
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2.6.0.1 The Infection rate parameters

The infection rate parameters, β1 and β2, are not independent, but their posterior

distributions have identical forms.

Define the random variable B1 “ logpβ1q. The proposal distribution for B1 is

given by B1
1 „ NpB˚

1 , σβ1q. The acceptance probability is given by

αB1 “ min

"

β1
1 ¨ π pβ1

1|β2, d,R, I, Iκ, νβ1 , λβ1q

β1 ¨ π pβ1|β2, d,R, I, κ, νβ1 , λβ1q
, 1

*

,

and we can derive a similar result for β2.

2.6.0.2 The distance

We bound d between the smallest distance between two individuals and the largest

distance between two individuals. We will use a Folded Normal Random Walk to

propose samples for d, using Algorithm 2.2 which gives the density in Equation (2.3)

but with l “ dmin, u “ dmax, and θ, θ
1 being d and d1.

2.6.0.3 The infection times

The missing data, the infection times, are initialised at valid values by using the

known removal times and assumptions about the underlying data generating process,

and can be updated using a Metropolis-Hastings step.

We choose an infected individual uniformly on the set of infected/removed

individuals, and then replace its infection time with a new one. The new infection

time is generated by randomly drawing a new infectious period for that individual

and subtracting it from their observed removal time.

We let Qi be the random variable denoting the infectious period of individual i.

Then the infection time of individual i, Ii “ Ri ´ Qi, so Qi “ Ri ´ Ii. In the case

where individual s is chosen, the proposal distribution is given by,
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This acceptance rate is valid regardless of the number of infection times updated

in one move, as the form of the proposal, q, expands with the additional changed

infection times, and all the same terms cancel. If any of the proposed infection times

are invalid, then the conditional posterior will be equal to 0 and the move will be

rejected automatically.
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2.7 MCMC Algorithm

Using the details of Sections 2.4 and 2.6 we now present an algorithm to perform

MCMC inference for epidemic data under the assumptions of this Near vs Far model.

We are assuming the epidemic is completed such that the total number of removed

individuals is equal to the total number of infected individuals.
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MCMC for the Near vs. Far GSE:

Inputs: Population size, N ; Removal times, R; Distance matrix, Md; Lower and
upper bounds for d, dmin and dmax; Number of iterations, Nits; Tuning parameters,
UI , σβ1 , σβ2 , σd.

1. Initialise the process by generating values for the near infection rate, β1, the
far infection rate, β2, the removal rate, γ, the distance, d, and a valid set of
infection times, I, from their respective priors.

2. Draw a sample directly from the conditional posterior distribution for γ using
a Gibbs sampler, and record the new value.

3. Use a Metropolis-Hastings step to update the infection times by;

(a) Randomly select UI of the infected individuals to have their infection
times/periods updated.

(b) Draw new values for the infectious periods, Qi, of those infected
individuals from the prior distribution for I, and calculate their new
infection times using Ii “ Ri ´ Qi.

(c) Calculate αI , using the current and proposed sets of infection times, and
the current values of the other parameters.

(d) With probability αI , accept the proposed infection times update and
record the new infection times, otherwise reject and record the current
infection times.

4. Use a Metropolis-Hastings step to update the near infection rate, β1, by;

(a) Draw a value from a N(logpβ1q, σβ1) distribution and take it’s exponential,
this is the proposed value β˚

1 .

(b) Calculate the MH acceptance probability, αβ1 , using the current and
proposed β1 values, and the current values of the other parameters.

(c) With probability αβ1 , accept the proposed β1 update and record the new
β1, otherwise reject and record the current β1.

5. Use a Metropolis-Hastings step to update the far infection rate, β2, by;

(a) Draw a value from a N(logpβ2q, σβ2) distribution and take it’s exponential,
this is the proposed value β˚

2 .

(b) Calculate the MH acceptance probability, αβ2 , using the current and
proposed β2 values, and the current values of the other parameters.

(c) With probability αβ2 , accept the proposed β2 update and record the new
β2, otherwise reject and record the current β2.

6. . . .

Algorithm 2.3: The MCMC algorithm used to make inference for the Near vs. Far
GSE.
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MCMC for the Near vs. Far GSE (continued):

Inputs: Population size, N ; Removal times, R; Distance matrix, Md; Lower and
upper bounds for d, dl and du; Number of iterations, Nits; Tuning parameters,
UI , σβ1 , σβ2 , σd.

5. . . .

6. Use a Metropolis-Hastings step to update the distance, d, by;

(a) Use a Folded Normal Random Walk to propose a sample for d, using
Algorithm 2.2 which gives the density in Equation (2.3) but with l “ dmin,
u “ dmax, and θ, θ

1 being d and d1.

(b) Calculate the MH acceptance probability, αd, using the current and
proposed d values, and the current values of the other parameters.

(c) With probability αd, accept the proposed d update and record the new
d, otherwise reject and record the current d.

7. Repeat steps 2-6 for Nits iterations, and then discard the first B samples as
burn-in.

Algorithm 2.4: Continued: The MCMC algorithm used to make inference for the
Near vs. Far GSE.

2.8 An Alternative Parameterisation

We wish to investigate whether alternative parameterisations have an effect on the

efficiency of our inference. To do this we introduce a new parameterisation that

modifies the model to a single global infection rate, β, and a scalar, p P r0, 1s, of

that global infection rate if the individuals are greater than distance d from each

other. We will refer to this new parameterisation as parameterisation 2.

In this section we provide the details of what needs to change in the likelihood,

posteriors, proposal distributions, and Metropolis-Hastings steps to make inference

on this new parameterisation.

It is important to note the two parameterisations are not identical, as the priors

placed on β1 and β2 for parameterisation 1 as it will now be called allow for β2 ą β1,
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however by restricting p to r0, 1s we ensure that β1 “ β ě pβ “ β2.

2.8.1 Likelihood

Let Fi,j “ 1 if individual i P It is within distance d of individual j P St, and 0

otherwise. Then,

βi,j “ rFi,jβ ` p1 ´ Fi,jqpβs .

If p “ 0 then beyond distance d an individual cannot infect another, if p “ 1 then

distance has no effect on the infectious contact rate. In this parameterisation the

GSE likelihood simplifies to,

fpI,R|β, γ, Iκq9

»

–

nI
ź

j‰κ

¨

˝β
ÿ

iPIIj´
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‚

fi

fl

¨ exp

#

´

ż T
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β
ÿ
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¸

dt

+

¨

«

nR
ź

i“1

γ

ff

¨ exp

"

´γ

ż T

Iκ

Yt dt

*

,

where,

• St is the set of susceptible individuals at time t,

• It is the set of infected individuals at time t.

2.8.2 Posterior

Since β is now a common term to both infectious contact rates, we can bring it to

the front of any product, sum, or integral that it is involved in, as a common factor.

This has the potential to improve the efficiency of our algorithm because, whilst we

still need to use a Metropolis-Hastings step for p, we can now use a Gibbs sampler

for β “ β1, and β2 is easily recoverable.
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The prior distribution for β is a Gammapνβ, λβq with the form

πpβ|νβ1 , λβq “
pλβqνβ

Γpνβq
βpνβ´1qe´λββ.

We will assume a Uniform prior for p between the values of [0,1].

The conditional posterior distributions are:

π pβ|p, γ, d,R, I, Iκ, νβ, λβq „ Gamma

˜«
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with the posteriors for γ, d, and the infection times having the same form as in

Section 2.4 except with the updated likelihood of the new parameterisation.

2.8.3 Proposal distributions

The MH acceptance probabilities for the infection times and the distance, d, remain

the same as in Section 2.6 with the appropriate posterior distributions from Section

2.8.2, and we still have a Gibbs sampler for γ. In addition, the MH step for

β1 “ β is no longer needed, as we can now sample directly from the conditional

posterior distribution. Thus, we just need to derive the acceptance probability for

the proportion, p, and we can recover β2 from β and p.

2.8.3.1 The proportion

As we did with the distance, we will use a Folded Normal RandomWalk for p P r0, 1s,

using Algorithm 2.2 which gives the density in Equation (2.3) but with l “ 0, u “ 1,
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and θ, θ1 being p and p1.

2.8.4 MCMC

Here we present the full algorithm for making inference on this model under

parameterisation 2, based on the assumptions made in this section.
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MCMC for the reparameterised Near vs. Far GSE:

Inputs: Population size, N ; Removal times, R; Distance matrix, Md; Lower and
upper bounds for d, dl and du; Number of iterations, Nits; Tuning parameters,
UI , σp, σd.

1. Initialise the process by generating values for the maximum infection rate,
β, the proportion, p, the removal rate, γ, the distance, d, and a valid set of
infection times, I, from their respective priors.

2. Draw a sample directly from the conditional posterior distribution for γ using
a Gibbs sampler, and record the new value.

3. Draw a sample directly from the conditional posterior distribution for β using
a Gibbs sampler, and record the new value.

4. Use a Metropolis-Hastings step to update the infection times by;

(a) Randomly select UI of the infected individuals to have their infection
times/periods updated.

(b) Draw new values for the infectious periods, Qi, of those infected
individuals from the prior distribution for I, and calculate their new
infection times using Ii “ Ri ´ Qi.

(c) Calculate αI , using the current and proposed sets of infection times, and
the current values of the other parameters.

(d) With probability αI , accept the proposed infection times update and
record the new infection times, otherwise reject and record the current
infection times.

5. Use a Metropolis-Hastings step to update the proportion, p, by;

(a) Use a Folded Normal Random Walk to propose a sample for p, using
Algorithm 2.2 which gives the density in Equation (2.3) but with l “ 0,
u “ 1, and θ, θ1 being p and p1.

(b) Calculate the MH acceptance probability, αp, using the current and
proposed p values, and the current values of the other parameters.

(c) With probability αp, accept the proposed p update and record the new
p, otherwise reject and record the current p.

6. . . .

Algorithm 2.5: The MCMC algorithm used to make inference for the
reparameterised Near vs. Far GSE.
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MCMC for the reparameterised Near vs. Far GSE:

Inputs: Population size, N ; Removal times, R; Distance matrix, Md; Lower and
upper bounds for d, dl and du; Number of iterations, Nits; Tuning parameters,
UI , σβ1 , σβ2 , σd.

5. . . .

6. Use a Metropolis-Hastings step to update the distance, d, by;

(a) Use a Folded Normal Random Walk to propose a sample for d, using
Algorithm 2.2 which gives the density in Equation (2.3) but with l “ dmin,
u “ dmax, and θ, θ

1 being d and d1.

(b) Calculate the MH acceptance probability, αd, using the current and
proposed d values, and the current values of the other parameters.

(c) With probability αd, accept the proposed d update and record the new
d, otherwise reject and record the current d.

7. Repeat steps 2-6 for Nits iterations, and then discard the first B samples as
burn-in.

Algorithm 2.6: Continued: The MCMC algorithm used to make inference for the
reparameterised Near vs. Far GSE.

2.9 Results

We performed inference for a simulated population of 100 individuals, with one initial

infective and roughly 25% of the population infected in total. We are interested in

whether accurate and useful inference of the parameters can still be attained despite

the simplified spatial kernel assumptions. We are also interested in whether the

parameterisation of the simplified spatial kernel has an effect on the efficiency of our

inference.

2.9.1 The Simulated Dataset

We simulated a population of 100 individuals on a 2-D plane with dimensions 20

units wide by 20 units high. Each individual was uniformly generated an x and y
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coordinate on the plane. In Figure 2.2 we show the position of the individuals on the

plane, those individuals who were eventually infected (red), and the initial infected

who was chosen at random (blue).

Figure 2.2: Heterogeneous simulated data set: Individuals were uniformly placed
on the 20x20 plane. The initial infected (blue) was chosen at random, and the
individuals infected in the course of the epidemic are denoted by red crosses.

The minimum distance between two individuals dmin “ 0.078914, and the

maximum distance between two individuals dmax “ 24.42934. Table 2.1 below

shows the proportions of individuals within various distances of each other, and
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proportions of infected individuals within various distances of each other.

Distance, d 1 3 5 7 10 12 15 20
Total Proportion (%) 0.67 6.00 14.40 24.80 46.52 59.58 77.94 97.33
Infected Proportion (%) 2.0 13.67 33.67 46.67 71.00 84.67 95.34 100.00

Table 2.1: A table showing the proportion of individuals within distance d of each
other, and the proportion of individuals who were eventually infected within distance
d of each other.

2.9.2 Results Overview

We ran both algorithms for 100, 000 iterations, with the same prior distributions

where possible. For parameterisation 1 we placed a Gammap0.001, 1q prior on

β1, β2, and γ, and a Uniformpdmin, dmaxq prior on d. For parameterisation 2 we

placed a Gammap0.001, 1q prior on β and γ, a Uniformpdmin, dmaxq prior on d, and a

Uniformp0, 1q prior on d.

Overall the algorithms were able to recover reasonable and informative posterior

distributions for all parameters, and the reparameterised heterogeneous model

performed better than the original with improved mixing, higher effective sample

sizes for most parameters, and was able to avoid β1 becoming unbounded as d did

not get too large or too small.

It is worth noting at this stage that we are not expecting the posterior mean

to equal the true value. As epidemics are stochastic any number of parameter sets

and combinations could have generated the epidemic we observed, with different

probabilities. This is part of the reason why we consider the posterior distributions.

Thus there may be a set of parameters that were more likely to generate our observed

epidemic than the parameter set that generated it. So we are just looking for the

true parameters to fall within the main mass of the posterior distribution, for the

posterior to have a nice shape (as we would expect reasonably unimodal marginal

posteriors for most of our parameters in this context) and reasonable variance, and

whether the posterior is sufficiently distinct from the prior.
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2.9.3 Parameterisation 1: Two infection parameters

This model has two distinct infection parameters, β1 and β2, both of which required

Metropolis-Hastings steps. The utilisation of each is dependent on the distance

parameter d, and they are correlated with the removal rate γ. The more parameters

there are in the model, especially when those parameters are strongly correlated,

the higher the potential for identifiability issues. However, in cases such as the

Near vs Far model, where the extra parameters are related to additional covariate

information, there is the potential that the extra information can improve inference.

The following table presents the summaries of the marginal posterior distribu-

tions:

True Value Mean 95% CI Std. Dev. ESS
β1 0.007 0.007877 (0.00303, 0.02400) 0.006170 140.40
β2 0.00007 0.000240479 (0.0000272, 0.0007030) 0.000183 478.31
γ 0.11 0.08942 (0.0455, 0.1540) 0.027900 779.44
d 5 4.859 (1.84, 6.20) 1.08 97.23

Table 2.2: The summary of the marginal posterior distributions for the
Heterogeneous model.

We can see in Figure 2.3 that all the true values of all four parameters sit

comfortably within the posterior mass, with many close to the areas of high posterior

mass.

What should be noted is the threshold effect of some parameters. Because there is

a limited number of individuals in the population, d can vary within ranges without

significantly altering the likelihood. Also when values get to a certain size the effect

on the likelihood becomes negligible, which to some extent explains the long tails of

β1 and β2.

Finally there is a level of correlation between the parameters which means that

large values in one can be accounted for by small values in others. Figure 2.4 presents

the pair-wise contour plots associated with the parameters. The red dotted lines

represent the true value, and the yellow dotted lines represent the pair of values of

highest posterior mass in the 2-D plot.
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We can see for instance that extremely large values in β1 are accounted for by d

tending to 0, which essentially means that β1 has no effect on the likelihood and is

free to take any value. Equally we can see how long the tail of β1 extends and how

that relates the values of γ and β2. Also, Also, Figure 2.4(a) shows that even though

the parameterisation did not constrain β2 ă β1, the 2-D plot shows no evidence of

this β2 ą β1, suggesting there is sufficient information in the data to enforce this.

As for the algorithms performance; the average acceptance probability for the

infection times was 39.9%. The average acceptance probability for β1 was 46.6%.

The average acceptance probability for β2 was 46.0%. The average acceptance

probability for d was 53.5%. The samples of γ were generated using a Gibbs sampler

so all samples were accepted by definition.

The trace plots in Figure 2.5 show the chain of parameter draws that were

accepted. The initial burn-in in orange has been discarded, and the remaining

samples are assumed to have come from the stationary distribution of the chain,

which is the posterior distribution of the parameter. The trace plots demonstrate

the correlation of some parameters, with similar behaviour for certain parts of the

chain. We can also see that the mixing for d is more sparse as the model struggles

to accept new values for d and spends time stuck.
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Figure 2.3: Heterogeneous Results: The plots show the marginal posterior
histograms for each of the parameters of interest. The value printed on the plot
is the true value of the parameter used to generate the simulation, and its location
is represented by the dashed line. The prior distribution of the parameter is shown
in blue.
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(a) β1 against β2. (b) β1 against d.

(c) β1 against γ. (d) β2 against d.

(e) β2 against γ. (f) d against γ.

Figure 2.4: Heterogeneous Results: Contour plots of the posterior samples for each
pair of the parameters of interest. Brighter contours represent areas of higher density.
The yellow dashed lines show the pair-wise point of highest density on the contour
plots, and the red dashed lines represent the true values of the parameters that
generated the simulation.

54



2.9. Results

(a) Trace plot for β1 and β2.

(b) Trace plot for d and γ.

Figure 2.5: Heterogeneous Results: Trace plots of the posterior samples. The initial
burn-in is represented in orange, which gets discarded. The remainder of the chain
in blue is assumed to represent the stationary distribution of the chain. The true
value of the parameter is shown by the dashed line.55
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2.9.4 Parameterisation 2: Scaled global infection rate

Here we present the inference results for parameterisation 2. Overall the parame-

terisation mixed better and was more efficient than the first. In the plots below we

present the posterior distributions of the parameters of interest, β1 and β2, but we

made inference on the overall infectious contact rate, β, and a scalar p P r0, 1s, with

β1 “ β and β2 “ pβ.

The following table presents the summaries of the marginal posterior distribu-

tions:

True Value Mean 95% CI Std. Dev. ESS
β1 0.007 0.005823 (0.00267, 0.01140) 0.002340 692.01
β2 0.00007 0.0001922 (0.0000229, 0.0005470) 0.000139 1496.02
γ 0.11 0.08970 (0.0457, 0.1540) 0.027900 804.44
d 5 5.328 (3.43, 6.50) 0.772 397.22

Table 2.3: The summary of the marginal posterior distributions for the
Reparmeterised Heterogeneous model.

The goal of this inference was to investigate whether the reparameterisation

would have a positive impact on our ability to make inference. The overall result

is that yes, the reparameterisation does help. By comparing Tables 2.2 and 2.3 we

can see that, with the exception of γ which remains approximately the same, the

effective samples sizes for all the parameters are dramatically improved under this

new parameterisation, and the credible intervals for the parameters are tighter.

From Figure 2.6 we can see that the posterior distributions produced are near

identical. Comparing the trace plots presented in Figure 2.8 to those previous, we

see a notable improvement. For all parameters the size of the jumps are much larger

and each explores the posterior much more uniformly. For d in particular it still

struggles but there is a clear improvement and it definitely gets stuck less often,

with many more periods of good exploration.

Most notably by comparing the contour plots we can notice a marked improve-

ment in the spread of the data. In the β1 vs β2 plot for instance, the spread of values

for β1 is clearly confined to areas of higher posterior mass. The mixing improved
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such that less time was spent exploring low values of d that lead to unbounded

values of β1, which resulted in lighter tails for β1. Additionally the 2-D areas of

highest posterior mass are much closer to the truth, as demonstrated by the red

dotted lines in Figure 2.7 which represent the true values, and the yellow dotted

lines that represent the pair of values with the highest posterior mass.

The average acceptance probability for the infection times was 39.691%. The

average acceptance probability for p was 50.681%. The average acceptance

probability for d was 46.878%. In addition due to the reduced number of MH steps

the code for this parameterisation runs up to 25% faster than for parameterisation

1.
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Figure 2.6: Reparameterised Heterogeneous Results: The plots show the marginal
posterior histograms for each of the parameters of interest. The value printed on
the plot is the true value of the parameter used to generate the simulation, and its
location is represented by the dashed line. The prior distribution of the parameter
is shown in blue.
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(a) β1 against β2. (b) β1 against d.

(c) β1 against γ. (d) β2 against d.

(e) β2 against γ. (f) d against γ.

Figure 2.7: Reparameterised Heterogeneous Results: Contour plots of the posterior
samples for each pair of the parameters of interest. Brighter contours represent
areas of higher density. The yellow dashed lines show the pair-wise point of highest
density on the contour plots, and the red dashed lines represent the true values of
the parameters that generated the simulation.
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(a) Trace plot for β1 and β2.

(b) Trace plot for d and γ.

Figure 2.8: Reparameterised Heterogeneous Results: Trace plots of the posterior
samples. The initial burn-in is represented in orange, which gets discarded. The
remainder of the chain in blue is assumed to represent the stationary distribution
of the chain. The true value of the parameter is shown by the dashed line.60
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2.10 Discussion

In this chapter we explored a simplified heterogeneous General Stochastic Epidemic,

named the Near vs Far model, and methods of inference for epidemic data assumed

to have been generated under this model. In an ideal scenario we would be able to

make epidemic inference at the resolution of unique individuals, however that is often

not possible. Models such as the Near vs Far, if they can provide accurate inference,

can act as a feasible alternative for some epidemics. Our goal with this chapter was

to explain the need for and theory behind the model, and assess using a simulated

epidemic whether the simplified assumptions and discretisation of the spatial kernel

would allow for accurate and efficient inference with reasonable computational cost.

This direct supports our goals of the thesis of identifying methods to deal with the

challenges of complex large data epidemics. We were also interested in exploring

whether the parameterisation of the model affects its efficiency and accuracy, as this

could have implications for future chapters and models.

Overall we found that the simplified Near vs Far model was a reasonable

alternative to the gold standard method, returning accurate inference from a

reasonably efficient algorithm. We also found that the reparameterisation did indeed

improve the efficiency of the algorithm, opening this as a possible route of research

for future models and challenges.

The inference did struggle however with identifiability issues of the distance

term, d, which defines the threshold at which the we switch from the ‘near’

infectious contact rate to the ‘far’ infectious contact rate. This in turn had effects

on the inference of the infection rates, though it was improved under the second

parameterisation. This could be due to the small population size of 100 individuals

with only 25 infected. This may have meant we had insufficient data on the distances

between individuals to accurately determine the ideal threshold. Inference on a

larger population may be more effective. Equally we could introduce stricter bounds

on d, making dmin larger and dmax smaller, such that at least 1 to 3 pairs of infected

individuals are affected by each parameter. This is a reasonable assumption given

61



Chapter 2. Near Vs. Far

we have chosen to use a Near Vs. Far model. Alternatively, we could use better

proposal distributions that accounted for the fact that when d is likely misspecified

by being too small or too large, the value for β1 or β2 become unbounded as it has

no effect on the likelihood, leading to inflated tails.

However, it may simply be that for a homogeneous distributed population on

a plane, this method is insufficient. If we considered a population with a more

structured spatial distribution, such as clustering or latices, the model may more

effectively be able to identify d.

Overall improvement is needed but we have shown that a simplified model

can made accurate and efficient inference on epidemic data. However this model

construction would still be too computationally intensive to do for an epidemic on

the scale of tens of millions of individuals. The code for this inference was written

in R, and on average took roughly 30 minutes to generate 100,000 samples for a

population of 100 infected. Moving forward in this thesis we will be switching

to a more efficient coding language designed for high computation costs scientific

simulation, models, and processes; Julia.

Now that we have verified that discretised models have the potential to produce

accurate inference, in the next section we take the discretisation of models further

and look at discrete-time population-level models. These models show much more

potential for being able to make inference at the scale we are interested in.
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Chapter 3

Discrete approximations for State

Transition Models

3.1 Introduction

The population of England is roughly 56 million people, and there were 21 million

confirmed cases of COVID-19 over a 3 year period (UK Health Security Agency,

2023). In England and Wales there were roughly 22 million cattle between 2012 and

2019, and 70 million tests were performed for Bovine Tuberculosis in that period

(see Chapter 4). Whilst the spatial discretisation presented in Chapter 2 may be

a plausible solution for moderately sized epidemic, these big-data epidemics and

pandemics make the continuous-time individual-level model infeasible, both in terms

of the computational complexity of calculating the likelihood and the efficiency of

the MCMC with regards to updating the missing data. If we consider the term in

the continuous likelihood (Eq.(2.2)) which relates to total infectious pressure over

the epidemic,

ż T

I1

˜

ÿ

iPIt

ÿ

jPSt

βi,j

¸

dt “

nI
ÿ

i“1

N
ÿ

j“1

βi,jrpRi ^ Ijq ´ pIi ^ Ijqs
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where βi,j is the pairwise infection rate, Ii is the infection time of individual i, and

Ri is the removal time of individual i, we can clearly see that the scale of these

big-data challenges makes this model infeasible.

On top of this we have only considered one of the simplest model formations, the

S-I-R epidemic model. One of the limitations of the S-I-R model is the biological

implausibility that an individual is infectious as soon as they get infected. In

this case many models introduce any number of latent states, and other infectious

statuses, to better capture the behaviour of the epidemic. Examples range from

Brooks-Pollock, Roberts, and Keeling, 2014 who use an Exposed latent state to

represent being infected but not infectious for Bovine TB, to Overton et al., 2022

who introduce a number of different states to represent exposure, symptomatic vs

non-symptomatic, hospitalisation status, recovery, and death for COVID-19. To

make inference for these more complex models and big-data challenges we may

also require more complex and computationally intensive MCMC methodologies to

improve efficiency.

In cases such as these we can use a discrete approximation to the models

presented in Chapters 1 and 2. First we can aggregate from the individual level

to a population-level, and only consider the number of individuals in each state of

the model at a given time point, rather than the infectious history of each individual.

Then we can also discretise in time, and rather than look at the time of each event,

count the number of events that occur in a window of time. These choices change

the underlying distributional assumptions of the model, however, the parameters

are still interpretable in the same way. As a result we arrive at an approximation

for the individual level continuous-time model that has the potential to scale to the

largest big-data challenges currently faced.

In this Chapter we will derive a more complex epidemic structure; the S-E-I-R,

and present an advanced MCMC schema for making inference on it. We will then

investigate the results of our changes using simulated data sets.

In Section 3.3 we introduce the discrete-time S-E-I-R model. In Section 3.4 we
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derive the likelihood for this model, and use it in Section 3.5 to derive the posterior

distributions used in the MCMC algorithms presented in Section 3.8. In Section 3.7

we introduce new MCMC proposal functions that update multiple parameters at

once by taking advantage of the correlation structure of accepted samples, and also

adapts the tuning parameters automatically. Finally in Section 3.9 we present the

results of this inference schema on a simulated data set.

3.2 Discretising epidemic data

In contrast to the continuous-time General Stochastic epidemic, a discrete-time

model makes observations of the epidemic process at discrete intervals, and counts

the number of events that occurred within each interval. We call these intervals

time-steps, and the size of the time-steps is chosen based on the dynamics of the

disease and population in question.

If events in the epidemic occur at a relatively slow rate, say at the scale of

weeks, then discretising the data into daily or possibly weekly blocks should allow

us to significantly decrease the computational burden without drastically affecting

the accuracy of the inference. However, if we over discretise the data then we

risk losing significant information about the features of the epidemic. Figure 3.1

shows the same S-E-I-R epidemic curves under different discretisation schemes. The

discrete-time model only allows each individual to make one transition during each

timestep. For instance an individual could not transition from E to I and then I to

R in the same timestep. This assumption puts a minimum bound on the waiting

time within each state equal to the discretised timestep. As the parameters can be

interpreted as the waiting time in each state, we can see that if the discretisation is

too intense when compared to the dynamics of the data, the inferred parameters can

be artificially inflated. For this reason the discretisation is actually an approximation

of the epidemic, one that trades computational efficiency for accuracy.
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(a) Discrete: ∆t “ 0.2. (b) Discrete: ∆t “ 1.

(c) Discrete: ∆t “ 7. (d) Discrete: ∆t “ 30.

Figure 3.1: Diagrams demonstrating the effect of different discretisation scales on a continuous-
time epidemic in a population of 1000 individuals, 1 initial infected, and parameters rβ, δ, γs “

r0.25, 0.08, 0.22s.

3.3 The Chain-Binomial S-E-I-R

The Chain-Binomial S-E-I-R construction (Bailey, 1975, Lekone and Finkenstädt,

2006, O’Neill and Roberts, 1999) is a stochastic epidemic model for homogeneous

populations. It is a discrete approximation to the continuous-time General

Stochastic Epidemic model that operates in discrete time and is primarily concerned

with the number of individuals in each state at given time points t P r1, . . . , T s. It
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does not require knowledge of the pathways of disease transmission (who infected

whom), just as the continuous-time model presented in Chapter 2.

As a result individuals are exchangeable. At each time step, the number of

transitions between each valid state pair is assumed to have come from a Binomial

distribution with probability defined by the state of the system. This Markov Chain

of Binomial draws defines the epidemic, given some starting conditions, hence the

name. This model comes with many advantages, including that it is very simple to

simulate, and the likelihood is significantly easier to compute.

The S-E-I-R model introduces the latent state E, exposed, between the

susceptible and infectious states. Individuals in the exposed state are infected, and

will definitely transition to the infectious state after a randomly distributed amount

of time, but are currently not infectious and cannot infect others.

This additional latent state addresses the implausible biological assumption

of the S-I-R model that individuals are infectious as soon as they are infected.

Sometimes we know this is needed because of previous clinical research, in other

cases it is evident from the data, and it may be that we conclude that it must be

true once attempts at fitting the 3 state S-I-R produce poor or inconsistent results.

We are aiming for the simplest model that best explains the observed patterns.

In this section we present the details of the S-E-I-R model and an algorithm for

simulating an epidemic in this construction.

3.3.1 S-E-I-R model specification

Consider a closed homogeneous population of N individuals. The population is

divided into four independent states:

• S - Susceptibles - These individuals can be infected when they come into

contact with an infectious individual.

• E - Exposed - These individuals have been infected but are not yet infectious,

and exert no infectious pressure.
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• I - Infectious - These individuals are infected and are capable of infecting

susceptible individuals.

• R - Removed - These individuals have recovered from being infectious, are no

longer able to infect others, cannot become infected again, and will remain in

the removed state indefinitely.

Let Sptq, Eptq, Iptq,Rptq represent the number of individuals in the susceptible,

exposed, infectious, and removed state respectively at time t. We are assuming a

closed population, meaning at any given time-step, t P r1, . . . , T s, the total number

of individuals in the population is equal to the sum of all the individuals in each

state; N “ Sptq ` Eptq ` Iptq `Rptq. There are no immigration, emigration, births,

or deaths.

We initialise the epidemic with initial states Sp0q, Ep0q, Ip0q,Rp0q. At each time-

step we model the transitions of individuals between the states. Individuals can only

make one transition per time-step, and once individuals reach the removed state, R,

they remain there. Individuals can transition through the states via;

S Ñ E Ñ I Ñ R

The rates of transition between the states are given by;

• β - The exposure rate - The rate at which one susceptible individual becomes

exposed for each infectious individual in the population, or the rate of contact

between susceptible and infectious individuals.

• δ - The onset of infectiousness rate - The rate at which each exposed individual

transitions to the infectious state. It controls the length of the incubation

period.

• γ - The removal rate - The rate at which each infectious individual transitions

to the removed state. It controls the length of the infectious period.
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The model operates in discrete time and as such uses probabilities of events in

a given timestep, rather than the rates of events occurring as in the continuous-

time model. We can transform the continuous-time rates to the probabilities of

transitioning from one state to the other in a timestep, with the size of the timestep

defined as ∆t, using the cumulative density function of the exponential distribution.

The transition probabilities are calculated using:

• pexpptq “ 1 ´ exp
␣

´
β
N
Ipt ´ 1q∆t

(

,

• pinf “ 1 ´ exp t´δ∆tu,

• prem “ 1 ´ exp t´γ∆tu.

The model then states that the number of Susceptible to Exposed events during

timestep t, dSptq, is distributed Bin(Sptq, pexpptq), the number of Exposed to

Infectious events during timestep t, dEptq, is distributed Bin(Eptq, pinf ), and the

number of Infectious to Removed events during timestep t, dRptq, is distributed

Bin(Iptq, prem).

3.3.2 Simulation

We wish to simulate an SEIR epidemic in continuous time, such that we can

discretise it under the assumptions of the Chain-Binomial model, and investigate the

accuracy and efficiency of inference this new resolution of data, given the known true

parameters. We use an extension to the homogeneous General Stochastic Epidemic

simulator presented in Chapter 1, that includes the additional Exposed state. We

choose a population of 1000, with 1 initial infected, and rates of 0.25 for the exposure

rate β, 0.08 for the onset of infectiousness rate δ, and 0.22 for the removal rate γ.

The continuous-time epidemic is then discretised at 4 resolutions; ∆t P r0.2, 1, 7, 30s.

Exact discretisations of the epidemic are visualised in the epidemic curve plots in

Figure 3.1. The plots show the complete epidemic. In Section 3.9 we make inference

on this dataset at the four different levels of discretisation, considering an ongoing

69



Chapter 3. Discrete approximations for State Transition Models

epidemic using data from t “ 0 to the 250th removal, and comparing the accuracy

and efficiency of the different discretisation levels for approximating inference of the

continuous-time data.

The full data of the continuous GSE SEIR epidemic cannot be exactly discretised

and match the chain Binomial formulation, because there is a chance that the same

individual undergoes two transitions within one timestep. This is possible regardless

of the timestep size, but the probability of it occurring tends to 1 as the size of

the timestep increases. In practice to discretise continuous data, or simply change

the resolution of the data, we keep the known data (removal times) fixed, and

allow the other data to change to create a valid chain Binomial epidemic from

which to initialise our inference. However, if desired it is possible to simulate an

epidemic directly from the chain Binomial data generating process, and this provides

insight into the construction of the likelihood. Algorithm 3.1 presents a method

of simulating an S-E-I-R epidemic in a closed homogeneous population under the

Chain-Binomial construction.
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Chain-Binomial Simulation:

Inputs: Population size, N ; Exposure rate, β; Onset of infection rate, δ; Removal
rate, γ.

1. Initialise the number of susceptible (S), exposed (E), infected (I), and removed
(R) individuals at time t “ 0, with Sptq ` Eptq ` Iptq ` Rptq “ N at all times
t P 0, . . . , T . As an example, Sp0q “ N ´ 1, Ep0q “ 0, Ip0q “ 1, and Rp0q “ 0.

2. Then for each subsequent time-step,

(a) Draw the number of S to E events in time-step t, dEptq, using

dEptq „ Binomial pSpt ´ 1q, pexpptqq ,

where Spt ´ 1q is the number of susceptible individuals available at the
start of time-step t. The probability of an S to I event is given by pexpptq “

1 ´ exp
!

´β Ipt´1q

N

)

, where β ě 0 is the exposure rate of the epidemic,

and Ipt´ 1q is the number of infectious individuals available at the start
of time-step t.

(b) Draw the number of E to I events in time-step t, dIptq, using

dIptq „ Binomial pEpt ´ 1q, pinf q ,

where Ept´1q is the number of exposed individuals available at the start
of time-step t. The probability of an E to I event is given by pinf ptq “

1 ´ exp t´δu, where δ ě 0 is the onset of infection rate of the epidemic.

(c) Draw the number of I to R events in time-step t, dRptq, using

dRptq „ Binomial pIpt ´ 1q, premq ,

where Ipt ´ 1q is the number of infected individuals available at the
start of time-step t. The probability of an I to R event is given by
prem “ 1 ´ exp t´γu , where γ ě 0 is the removal rate of the epidemic.

(d) Update the states via

Sptq “ Spt ´ 1q ´ dEptq,

Eptq “ Ept ´ 1q ` dEptq ´ dIptq,

Iptq “ Ipt ´ 1q ` dIptq ´ dRptq,

Rptq “ Rpt ´ 1q ` dRptq,

and set t “ t ` 1.

3. Run the process for the T time-steps, or until the exposed and infectious states
reaches size zero.

Algorithm 3.1: An algorithm to simulate a Chain-Binomial S-E-I-R epidemic in a
closed, homogeneous population.
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3.4 The likelihood of an S-E-I-R epidemic

We define our data to be the vectors (S, E, I, R) which pertain to the number of

individuals in each state at each timestep t P r1, . . . , T s. We are asking, “How likely

is it that we see this many individuals in each state at each timestep?”. It is equally

valid to consider the vector of events (dE, dI, dR) pertaining to the number of new

individuals in each state at each timestep, given the initial conditions Sp0q, Ep0q,

Ip0q, and Rp0q, since the process is a Markov chain.

The conditional likelihood of the number of new Exposed individuals at timestep

t, dEptq, is given by;

fpdEptq|Spt ´ 1q, Ipt ´ 1q, βq “

ˆ

Spt ´ 1q

dEptq

˙

ppexpptqq
dEptq

p1 ´ pexpptqq
Spt´1q´dEptq,

where pexpptq “ 1 ´ exp
!

´β Ipt´1q

N

)

as in the simulation.

Similarly, the conditional likelihood of dIptq is given by

fpdIptq|Ept ´ 1q, δq “

ˆ

Ept ´ 1q

dIptq

˙

ppinf q
dIptq

p1 ´ pinf q
Ept´1q´dIptq,

where pinf “ 1 ´ exp t´δu.

And the conditional likelihood of dRptq is given by

fpdRptq|Ipt ´ 1q, γq “

ˆ

Ipt ´ 1q

dRptq

˙

ppremq
dRptq

p1 ´ premq
Ipt´1q´dRptq,

where prem “ 1 ´ exp t´γu.

So the joint conditional likelihood for the events at time t can be given by;
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fpdEptq, dIptq, dRptq|Spt ´ 1q,Ept ´ 1q, Ipt ´ 1q,Rpt ´ 1q, β, δ, γq “
ˆ

Spt ´ 1q

dEptq

˙

ppexpptqq
dEptq

p1 ´ pexpptqq
Spt´1q´dEptq

ˆ

ˆ

Ept ´ 1q

dIptq

˙

ppinf q
dIptq

p1 ´ pinf q
Ept´1q´dIptq

ˆ

ˆ

Ipt ´ 1q

dRptq

˙

ppremq
dRptq

p1 ´ premq
Ipt´1q´dRptq

Now, given this is a Markov Chain, the joint conditional likelihood of all the

time-steps is just the product of the likelihoods for each time-step, given the initial

conditions;

fpdE,dI,dR|Sp0q,Ep0q, Ip0q,Rp0q, β, δ, γq “

T
ź

t“1

„ˆ

Spt ´ 1q

dEptq

˙

ppexpptqq
dEptq

p1 ´ pexpptqq
Spt´1q´dEptq

ˆ

ˆ

Ept ´ 1q

dIptq

˙

ppinf q
dIptq

p1 ´ pinf q
Ept´1q´dIptq

ˆ

ˆ

Ipt ´ 1q

dRptq

˙

ppremq
dRptq

p1 ´ premq
Ipt´1q´dRptq

ȷ

(3.1)

3.5 The posterior distributions of an S-E-I-R

epidemic

The posterior distribution of a parameter is proportional to the likelihood of the data

multiplied by the prior distribution of the parameter. We are interested in making

inference on our three model parameters, β, δ, and γ. We assume the removal events,

dR, to be observed, and the exposure and infection events to be unobserved. We

will treat these unknown parameters as ‘nuisance’ parameters and augment the data

with estimated plausible values via the MCMC methodology. As such we also wish
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to derive posterior distributions for them as well. The only additional components

we need to define in order to derive the posteriors is the prior distributions on the

transmission parameters.

For β we will use a Gammapϕβ, σβq distribution, where ϕβ is the shape parameter

and σβ is the scale parameter. For δ we will use a Gammapϕδ, σδq distribution,

where ϕδ is the shape parameter and σδ is the scale parameter. For γ we will

use a Gammapϕγ, σγq distribution, where ϕγ is the shape parameter and σγ is the

scale parameter. As all three parameters are positive real numbers, these priors have

support for all possible values. In addition, the versatility of the Gamma distribution

allows us to choose hyper-parameters that can accurately represent our prior beliefs

about the parameters, whether we have strong or weak beliefs.

The joint conditional posterior of all of the parameters is thus given by:

πpβ, δ, γ|pS,E , I,Rq, ϕβ, σβ, ϕδ, σδ, ϕγ, σγq9

fppS, E , I,Rq|β, δ, γq ˆ πpβq ˆ πpδq ˆ πpγq9

T
ź

t“1

„ˆ

Spt ´ 1q

dEptq

˙

ppexpptqq
dEptq

p1 ´ pexpptqq
Spt´1q´dEptq

ˆ

ˆ

Ept ´ 1q

dIptq

˙

ppinf q
dIptq

p1 ´ pinf q
Ept´1q´dIptq

ˆ

ˆ

Ipt ´ 1q

dRptq

˙

ppremq
dRptq

p1 ´ premq
Ipt´1q´dRptq

ȷ

ˆ pβq
ϕβ´1 e´pβ{σβq

ˆ pδqϕδ´1 e´pδ{σδq
ˆ pγq

ϕγ´1 e´pγ{σγq

In the proposal functions presented in Section 3.7 we explain the use of a block

updater that updates all three transition parameters at once, as such we do not

require the marginal distributions in this case. We explored single site updates and

using reparameterisations to take advantage of conjugate priors, however in the test

examples the block updater was more effective.
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Similarly, since the events of time step t depend on the states at timestep t ´ 1

and thus the events at t´ 1, the posterior for the number of new exposure events at

each timestep, dE and the posterior for the number of new infectious individuals at

each timestep, dI, is also the same as above. Depending on the form of the proposal

every time step may not be required to be calculated, as we will explore in Section

3.7.2.

3.6 Adaptive Random Walk with Transformed

Parameters

In the previous chapter we presented a simple Metropolis Random Walk MCMC

algorithm for generating samples from the posteriors of the parameters. This can

be effective, but we can improve the efficiency, and finding the optimal tuning

parameters can take multiple test runs. In the case of epidemics we have shown

in Chapter 2 that the parameters can be highly correlated. For instance if we

increase the infection rate we can make a complimentary decrease in the removal

rate and maintain a similar likelihood value. As such jumping in three random

directions when exploring the parameter space is not the most efficient proposal

scheme. Through the choice of more intelligent proposal distributions, we can both

improve the efficiency of our MCMC algorithms, and even automate some of the

tuning process which up until this point has been manual.

In the case of our Chain-Binomial S-E-I-R construction, none of the posteriors of

the parameters have the form of a known distribution using the parameterisations we

have chosen, so as before we will need to use a Metropolis-Hastings step to sample

conditional draws from the posterior of interest. It is possible to have conjugacy

by setting p “ expt´δu and q “ expt´γu, and placing Beta priors on p and q,

however in our exploration we found it more efficient to propose all 3 parameters as

a set, taking advantage of the correlations. From the results in Chapter 2 we saw

that the parameters in the S-I-R model are highly dependent, and this holds true
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for the S-E-I-R model as well (Jewell et al., 2009a). With this in mind, we have

chosen a proposal distribution that allows us to use this dependence to improve the

efficiency of the algorithm, by using a multi-site sampler and taking consideration

of the correlation between the previously accepted samples. In addition we will be

making proposals on the log-scale using a Multiplicative random walk Metropolis-

Hastings, as in Chapter 2. This ensures that the proposals for the parameters will

be positive, and also has the potential to improve the efficiency of the algorithm.

For the examples we tested and present the results for in Section 3.9, we found that

proposals on the log-scale did improve efficiency. As a result the Metropolis-Hastings

acceptance probability needs to take into account this transformation. Finally, we

are also able to incorporate automatic tuning of the hyperparameters of the proposal

distributions, which will aim to optimise the acceptance rate by adapting the tuning

parameters during the MCMC in response to its performance.

3.6.1 Adaptive MCMC

Adaptive MCMC algorithms address the challenge of finding optimal tuning param-

eters for a proposal distribution without the need to rerun chains (Haario, Saksman,

and Tamminen, 2001). They achieve this by updating the hyperparameters of the

proposal distribution during the run, based on the history of the chain so far. An

issue arises in that if this process is allowed to run indefinitely, then the algorithm

may become optimised for exploring a minor part of the distribution, such as a

tail or minor mode, and as such become more inefficient than a manually tuned

algorithm, or may even result in the chain having a different stationary distribution

(Sherlock, Fearnhead, and Roberts, 2010). To address this issue the adaption either

needs to either take place over a finite amount of time (e.g., only for the first 5000

iterations) or the rate of adaption needs to tend to 0, a concept called diminishing

adaption (Sherlock, Fearnhead, and Roberts, 2010). Under these conditions the

algorithm is still guaranteed to converge to the correct stationary distribution,

though consideration should still be made for the starting conditions (Roberts and
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Rosenthal, 2009).

The adaptive schema used in this thesis is based on the Adaptive Metropolis-

Within-Gibbs algorithm adapted from Roberts and Rosenthal, 2009 and the Block

Adaptive Multiplicative Random Walk adapted from Sherlock, Fearnhead, and

Roberts, 2010. Each iteration we propose a new set of parameters from one of

two possible multivariate-normal distributions centred on the log of the current

parameters. The first proposal distribution does not take into account the

correlation structure of the previously accepted samples, and the second does, both

however are tuned automatically to optimise the acceptance rate. The tuning schema

for each differs. For the first finite adaption is used, and for the second diminishing

adaption is used (the adaptation rate tends to zero). During the chain, the correlated

proposal is used to make the majority of the proposals, and the uncorrelated proposal

is included in an attempt to improve the chains ability to explore.

3.6.1.1 The proposal function for the parameters

First let θ “ pβ, δ, γq, the array of the parameters, and let Ah be the array of

accepted samples of all of the parameters so far. We then define Σh as the empirical

posterior covariance matrix of the accepted samples Ah, which we will update after

each iteration, h.

We require the posterior covariance matrix to be positive definite which, due to

finite sample effects, is not guaranteed until a reasonable number of sufficiently

distinct samples have been accepted. In addition, we also want to avoid the

covariance matrix being overly sensitive to the accepted samples before we begin

fine tuning the tuning parameters.

Let the total number of samplesNits “ N1`N2. We have chosen to setN1 “ 5000

assuming the total number of iterations is sufficiently large. For the first N1 samples,

use the proposal distribution:

logpθ1
q „ Multivariate-Normal

ˆ

logpθ˚
q,
1

d
λ2I

˙

,
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where θ˚ are the current values of the parameters, d is the dimension of the

parameter space (in this case d “ 3), and λ is a tuning parameter, and I is the

d ˆ d identity matrix, based on Sherlock, Fearnhead, and Roberts, 2010. In this

case we can see that we are not taking into account the correlation between the

parameters, just something akin to the average variance of the parameters.

Once we have a sufficient number of accepted samples, we can propose samples

from the joint log-proposal distribution of the parameters:

logpθ1
q „ Multivariate-Normalplogpθ˚

q,m2Σhq,

where θ˚ are the current values of the parameters, and m is a tuning parameter,

based on Sherlock, Fearnhead, and Roberts, 2010. This proposal takes into account

the correlation between previous accepted samples.

After the first N1 samples, we can propose from either of the two distributions,

as based on Sherlock, Fearnhead, and Roberts, 2010. We propose samples using

logpθ1
q „ Multivariate-Normal

ˆ

θ˚,
1

d
λ2I

˙

(we call this ‘Mixture 1’) with probability 0.05, and propose samples using

logpθ1
q „ Multivariate-Normalpθ˚,m2Σhq

(‘Mixture 2’) with probability 0.95.

The idea is that we will spend the majority of our time making efficient proposals

by taking into account the covariance of the samples, and will try to avoid ‘getting

stuck’ by sometimes proposing jumps to different areas of the posterior by not taking

into account the correlations. The hyperparameters λ and m are automatically

updated using the process explained in Section 3.6.1.3. In theory we can initialise

λ “ 2.382{d and m “ 2.38{d0.5, which follows directly from the optimal scaling limit

results reviewed in Sherlock, Fearnhead, and Roberts, 2010. In practice we used
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3.6. Adaptive Random Walk with Transformed Parameters

these are starting conditions and run a short chain to identify reasonable values

from which to initialise the final algorithm.

3.6.1.2 Metropolis-Hastings acceptance probability

For this multiplicative random walk the MH acceptance probability for the

parameters is defined as,

α “ min

"

pβ1 ¨ δ1 ¨ γ1q

pβ ¨ δ ¨ γq

πpβ1, δ1, γ1|pS, E , I,Rq, ϕβ, σβ, ϕδ, σδ, ϕγ, σγq

πpβ, δ, γ|pS, E , I,Rq, ϕβ, σβ, ϕδ, σδ, ϕγ, σγq
, 1

*

.

3.6.1.3 Adaptive tuning

In this new proposal we defined two new tuning parameters, λ and m. With each

algorithm we run, we could spend time finding the optimal values of these parameters

to attain our desired acceptance rate, and this would lead to the most efficient

algorithm. However, epidemic modelling sometimes requires rapid solutions and

spending time manually tuning algorithms isn’t ideal. In these cases one possibility is

to use adaptive algorithms that automatically tune the parameters, and are still very

efficient given reasonable starting conditions. We present here one such adaptive

tuning methodology:

We begin with Mixture 1. We use a finite adaption schema laid out in Roberts

and Rosenthal, 2009. Let us define νk as the log-rate of adaptation of the tuning

parameter λ. We let each ‘batch’ of 25 samples be denoted by the subscript k such

that batch k “ 1 is iterations 1, . . . , 25, k “ 2 is iterations 26, . . . , 50, and so on.

Then let ψk be the proportion of Metropolis-Hastings accepted samples in batch k.

Then, at the start of each new batch, update λ using the formula

logpλq “ logpλq ` νk
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where,

νk “

$

’

&

’

%

´min
´

0.05, 1?
k

¯

, if ψk ă 0.33,

`min
´

0.05, 1?
k

¯

, if ψk ě 0.33.

For detailed balance to be satisfied and the MCMC algorithm to target the

correct posterior distribution, the tuning parameters eventually have to be fixed. In

this case we choose to stop tuning λ after the first N1 iterations and fix it at its final

value. The 0.33 acceptance rate target was chosen in line with the optimal scaling

for batch updaters presented in Sherlock, Fearnhead, and Roberts, 2010.

For Mixture 2, we define the rate of adaptation to be ∆m “ m0

100
. We begin to

tune m after the first N1 iterations, and do so every iteration. The iterations are

indexed by it. Each iteration, it, if the proposal came from Mixture 1, m does

not get updated. Otherwise, if the proposed parameters are Metropolis-Hastings

rejected, then set

m “ m ´

ˆ

∆m
?
it

˙

and if the proposed parameters are Metropolis-Hastings accepted, then set

m “ m ` 2.3

ˆ

∆m
?
it

˙

.

The forms of these update functions are chosen for acceptance rate of 30%, inline

with the optimal scaling results for batch updaters with Gaussian proposals reviewed

in Sherlock, Fearnhead, and Roberts, 2010.

3.7 Data Augmentation

In this section we present the posterior distributions, proposal distributions, and

subsequent Metropolis-Hastings acceptance probabilities we have chosen to make

inference on the discrete approximation to the S-E-I-R epidemic. For the parameters

we will use the adaptive MCMC methodology as laid out in Section 3.6. For the

data augmentation steps we will introduce a number of new proposal functions for
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3.7. Data Augmentation

the discrete-time population-level epidemic, assuming the epidemic is still on going.

Finally we explore the effect of updating the missing data on the likelihood, in order

to reduce the computational burden of calculating the posterior.

3.7.1 Two Kinds of Data Augmentation

We assume that we have data on the removal events, dR, but that we are missing

the data for the exposure events, dE, and the onset of infection events, dI. We

introduce the generalised notation dκptq for κ P tE, Iu to represent the number of

events of type κ at time t. We know that at any given time, s, that
řs

1 dEpsq ě

řs
1 dIpsq ě

řs
1 dRpsq´1, accounting for the initial infecteds recovery. That is, there

can only be as many removal events by time t as there have been infection events,

and there can only be as many infection events as there has been exposed events,

otherwise the epidemic is invalid.

For our data augmentation, we now consider the type of update we are going

to propose, instead of the event. We will consider two kinds of update. The first

is what we will denote “moving an event in time”; as we know there are
řT

1 dRptq

removal events, we know that for a completed epidemic there are also that many

exposure and infection events, and for an ongoing epidemic, at least that many. As

such, we can ‘move events around in time’ by choosing an event that occurred at

time t and ‘moving’ it forwards or backwards in time, whilst ensuring we maintain

a valid epidemic.

The second type of update to the events we propose is most appropriate for

epidemics which are not complete, which is “adding or removing an event”. Since as

we mentioned, if an epidemic is ongoing then we do not know how many exposure and

infection events have actually occurred, just the minimum of each. For our update,

we can propose choosing a timestep t and increasing or decreasing the number of

events of each type that occur there.

We then also have the possibility of improving the efficiency of the proposals by

introducing qualifiers for which timesteps can be updated each iteration, or even the
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Chapter 3. Discrete approximations for State Transition Models

probability of choosing each timestep to be updated.

3.7.2 Posterior Distributions

We have two scenarios in which to consider updating events - the first is when

the epidemic is “complete” and we know the final number of removed individuals

(and as such the total number exposed and infected), and the second is when the

epidemic is “ongoing” and there are still active exposed and infectious individuals

in the population, and the number of individuals in these two states is unknown.

In the complete case we have knowledge of the removal events, dRptq for all t, and

there are no exposed or infectious individuals left in the population at time T . As

we know there are
řT

1 dRptq removal events, we know that for a completed epidemic

there are also that many exposure and infection events. We call these exposure and

infection events partially observed, as we know they must have happened, we just

don’t know when. This means that once we have a valid epidemic, we can’t augment

it by adding new events or removing existing events, we can only move the events

around in time.

In the ongoing case, we still have knowledge of the removal events, dRptq for all t,

but we assume there are still exposed or infectious individuals left in the population

at time T . For each removal event, we know there must also be a partially observed

exposed and infection event (except for the initial infective), but also additional

occult (unobserved) exposure and infection events, the only limit on which is the

total population size. As such we can augment the data by adding or removing

exposed and infectious events, as long as there are enough removal events at each

time-step.

The number of individuals in each state at a given time-step t, and how these

relate to the events, are expressed as:
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Sptq “ Spt ´ 1q ´ dEptq,

ùñ dEptq “ Spt ´ 1q ´ Sptq,

Eptq “ Ept ´ 1q ` dEptq ´ dIptq,

“ Ept ´ 1q ` Spt ´ 1q ´ Sptq ´ dIptq,

ùñ dIptq “ Ept ´ 1q ´ Eptq ` Spt ´ 1q ´ Sptq,

Iptq “ Ipt ´ 1q ` dIptq ´ dRptq,

“ Ipt ´ 1q ` Ept ´ 1q ´ Eptq ` Spt ´ 1q ´ Sptq ´ dRptq,

ùñ dRptq “ Ipt ´ 1q ´ Iptq ` Ept ´ 1q ´ Eptq ` Spt ´ 1q ´ Sptq,

Rptq “ Rpt ´ 1q ` dRptq,

“ Rpt ´ 1q ` Ipt ´ 1q ´ Iptq ` Ept ´ 1q ´ Eptq ` Spt ´ 1q ´ Sptq,

and recall that dEptq „ BinomialpSpt´ 1q, pexpptqq, dIptq „ BinomialpEpt´ 1q, pinfq,

and dRptq „ BinomialpIpt ´ 1q, premq.

To find the marginal conditional posterior likelihood of a set of events we absorb

those elements that the events do not depend on into the proportion sign. The

question then is which states and other events does each event depend on. In the

following sections we present a series of worked examples that showcase which states

and timesteps are affected when events are moved, added, or removed, and as such

which likelihood terms need to be computed. Following this we present the details

of the proposal distributions we utilise in our MCMC algorithm.
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3.7.2.1 The complete case - moving events in time

In this case, we are moving events in time. This means that the total number of

events remains the same, but we take an event that occurs at time t and “move” it

to time t`k. Assuming we move one event at a time, this can also be thought of as

adding or subtracting that event as appropriate from all the states from t to t ` k.

Lets consider the following farm A around time t.

A Start of timestep End of timestep
S E I R S E I R

t ´ 1 5 4 2 1 5 4 2 1
t 5 4 2 1 5 3 3 1

t ` 1 5 3 3 1 4 3 4 1
t ` 2 4 3 4 1 3 4 4 1

The events as they currently stand are;

• pt ´ 1q : Nothing

• ptq : One E Ñ I transition

• pt ` 1q : One S Ñ E transition and One E Ñ I transition

• pt ` 2q : One S Ñ E transition

Beginning with the S to E transition events, the following table shows what

happens in this example when we move an S to E transition event back in time from

u “ t ` 2 to time r “ t.

A Start of timestep End of timestep
S E I R S E I R

t ´ 1 5 4 2 1 5 4 2 1
t 5 4 2 1 4 4 3 1

t ` 1 4 4 3 1 3 4 4 1
t ` 2 3 4 4 1 3 4 4 1

We can clearly see here that when moving an S to E transition event from time

t` 2 to t the only states that are affected are Sptq,Spt` 1q, Eptq, and Ept` 1q, and
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the events dependent on those are the S to E and E to I transition events for times

t` 1 and t` 2, so the joint conditional posterior likelihood for the S to E transition

events is given by,

πpdE|dI,dR,Sp0q,Ep0q, Ip0q,Rp0q, β, δ, γq9

u
ź

t“pr`1q

„ˆ

Spt ´ 1q

dEptq

˙

ppexpptqq
dEptq

p1 ´ pexpptqq
Spt´1q´dEptq

ˆ

ˆ

Ept ´ 1q

dIptq

˙

ppinf q
dIptq

p1 ´ pinf q
Ept´1q´dIptq

ȷ

Similarly for the E to I transition events, moving the E to I transition event from

time r “ t ` 1 to time u “ t ` 2 (ie. k “ 1), we get

A Start of timestep End of timestep
S E I R S E I R

t ´ 1 5 4 2 1 5 4 2 1
t 5 4 2 1 5 3 3 1

t ` 1 5 3 3 1 4 4 3 1
t ` 2 4 4 3 1 3 4 4 1

We can clearly see here that when moving an E to I transition event from time

t ` 1 to t ` 2 the only states that are affected are Ept ` 1q and Ipt ` 1q, and the

events dependent on those are the S to E transition and E to I transition events for

time t` 2. Recall however that the S to E transition events at time t` 2, dEpt` 2q,

are also dependent on Ipt`1q through pinfpt`2q “ 1´ exp
!

´β Ipt`1q

N

)

, so the joint

conditional posterior likelihood for the E to I transition events is given by,
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πpdI|dE,dR,Sp0q,Ep0q, Ip0q,Rp0q, β, δ, γq9

u
ź

t“pr`1q

„ˆ

Spt ´ 1q

dEptq

˙

ppexpptqq
dEptq

p1 ´ pexpptqq
Spt´1q´dEptq

ˆ

ˆ

Ept ´ 1q

dIptq

˙

ppinf q
dIptq

p1 ´ pinf q
Ept´1q´dIptq

ˆ

ˆ

Ipt ´ 1q

dRptq

˙

ppremq
dRptq

p1 ´ premq
Ipt´1q´dRptq

ȷ

3.7.2.2 The ongoing case - adding and removing events

From the sequence of relationships above we can see that increasing or decreasing

dEpt ` 1q (to increase or decrease the total number of exposed events) will change

Spt`1q, and a change to Spt`1q leads to a change in Ept`1q. A change in Ept`1q

will lead to a change in the p.m.f of Ipt ` 1q (as the new infection events will be

generated from a different number of exposed individuals), which would lead to a

change in the p.m.f. of Rpt` 1q. As we can see from Eq. 3.1, all of the events after

t` 1 depend on the states at t` 1 and after, and so the joint conditional posterior

likelihood of the S to E transition events, assuming an event is added or removed at

time k, will be given by:

πpdE|dI,dR,Sp0q,Ep0q, Ip0q,Rp0q, β, δ, γq9

T
ź

t“k

„ˆ

Spt ´ 1q

dEptq

˙

ppexpptqq
dEptq

p1 ´ pexpptqq
Spt´1q´dEptq

ˆ

ˆ

Ept ´ 1q

dIptq

˙

ppinf q
dIptq

p1 ´ pinf q
Ept´1q´dIptq

ˆ

ˆ

Ipt ´ 1q

dRptq

˙

ppremq
dRptq

p1 ´ premq
Ipt´1q´dRptq

ȷ

Also, from the sequence of relationships above we can see that increasing or
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decreasing dIpt`1q (to increase or decrease the total number of infectious events) will

change Ept`1q and Ipt`1q, and a change to Ipt`1q leads to a change in the p.m.f of

Rpt`1q. All E to I and I to R transition events after t`1 depend on the E , I,R states

at t`1 and after. Note also however that dEpt`1q „ BinomialpSpt`1q, pinfpt`1qq

where pinfpt`1q “ 1´exp
!

´β Iptq
N

)

, so all the S to E transition events after t`1 also

depend on the I state after t` 1. So again the joint conditional posterior likelihood

of the E to I transition events, assuming an event is added or removed at time k,

will be given by:

πpdI|dE,dR,Sp0q,Ep0q, Ip0q,Rp0q, β, δ, γq9

T
ź

t“k

„ˆ

Spt ´ 1q

dEptq

˙

ppexpptqq
dEptq

p1 ´ pexpptqq
Spt´1q´dEptq

ˆ

ˆ

Ept ´ 1q

dIptq

˙

ppinf q
dIptq

p1 ´ pinf q
Ept´1q´dIptq

ˆ

ˆ

Ipt ´ 1q

dRptq

˙

ppremq
dRptq

p1 ´ premq
Ipt´1q´dRptq

ȷ

3.7.3 Proposal Functions and Metropolis-Hastings Accep-

tance Probabilities

In this section we formalise the ideas of moving, adding, and removing events, and

present proposal distributions for augmenting the epidemic data in this fashion.

3.7.3.1 “Moving an event in time” update

Begin by considering one event type, κ, from the set tE, Iu. Let ∆ be the magnitude

and direction of the move in t, and draw ∆ with equal probability from the set {-1,

1} to represent a movement backwards or forwards in time.

We could then choose t arbitrarily, but this is likely to waste compute time, for

instance when we choose a timestep that does not contain any events. This is more
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likely when the magnitude of the discretisation timestep is smaller. For this reason

we can introduce qualifiers that increase the likelihood of proposing a new valid state

of the epidemic, such as ensuring there are events to move at a given timepoint. In

addition, when the number of events at a timepoint is small, it is more likely that

altering these events will result in an invalid epidemic. These are typically towards

the beginning and end of a completed epidemic. For this reason, we can also weight

each timestep by the proportion of events of type κ it contains. Finally, we do not

allow movements to before timestep 1 or to after timestep T .

If ∆ ą 0, choose a t such that dκptq ą 0, for t P r1, pT ´1qs, and if ∆ ă 0, choose

a t such that dκptq ą 0, for t P r2, T s. Weight the probability that an event at t

is chosen to be moved by the number of events, dκptq. For now, we will move only

one event at a time. So, for instance, if dκptq “ 5, and ∆ “ ´1, then dκ1ptq “ 4,

and dκ1pt ´ 1q “ dκpt ´ 1q ` 1. The vector of event counts at each timestep can be

represented as dκ for the current set and dκ1 for the proposed set. The values ∆ can

take, and the number of events moved, are both tuning parameters. The proposal

distribution when ∆ “ 1 is thus given by;

qpdκ1
|dκ,∆ “ 1q “

1

2
¨

dκptq
ř

sPr1,...,T´1s
tdκpsqu

,

and

qpdκ|dκ1,∆ “ ´1q “
1

2
¨

dκ1pt ` 1q
ř

sPr2,...,T s
tdκ1psqu

,

where the 1{2 represents having chosen to move events forward, and
ř

sPr2,...,T s
tdκ1psqu

is the total number of events of type κ after proposing the move, and does not equal
ř

sPr1,...,T´1s
tdκpsqu.

The proposal distribution when ∆ “ ´1 is thus given by;

qpdκ1
|dκ,∆ “ ´1q “

1

2
¨

dκptq
ř

sPr2,...,T s
tdκpsqu

,
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and

qpdκ|dκ1,∆ “ 1q “
1

2
¨

dκ1pt ´ 1q
ř

sPr1,...,T´1s
tdκ1psqu

,

where the 1{2 represents having chosen to move events forward, and
ř

sPr1,...,T´1s
tdκ1psqu

is the total number of events of type κ after proposing the move, and does not equal
ř

sPr2,...,T s
tdκpsqu.

3.7.3.2 “Moving an event in time” Metropolis-Hastings acceptance

probabilities

For the exposure events, the MH acceptance probabilities will be given by

α “ min

"

πpdE1
|dI,dR,Sp0q, Ep0q, Ip0q,Rp0q, β, δ, γq

πpdE|dI,dR,Sp0q, Ep0q, Ip0q,Rp0q, β, δ, γq

qupdE | dE1
q

qupdE1
| dEq

, 1

*

“ min

$

’

’

&

’

’

%

śu
t“r

„

πpdE 1
t, dIt|dRt,Sp0q, Ep0q, Ip0q,Rp0q, β, δ, γq

ȷ

śu
t“r

„

πpdEt, dIt|dRt,Sp0q, Ep0q, Ip0q,Rp0q, β, δ, γq

ȷ

qpdE | dE1
q

qpdE1
| dEq

, 1

,

/

/

.

/

/

-

,

where the product is only over those timesteps that are affected by the move, between

timesteps r and u, and for those parts of the likelihood that are affected as detailed in

Section 3.7.2.1. The qp¨q represent the proposal distributions for moving an exposure

event in time.

For the infection events, the MH acceptance probabilities will be given by

α “ min

"

πpdI1
|dE,dR,Sp0q, Ep0q, Ip0q,Rp0q, β, δ, γq

πpdI|dE,dR,Sp0q, Ep0q, Ip0q,Rp0q, β, δ, γq

qupdI | dI1
q

qupdI1
| dIq

, 1

*

“ min

$

’

’

&

’

’

%

śu
t“r

„

πpdEt, dI
1
t, dRt|Sp0q, Ep0q, Ip0q,Rp0q, β, δ, γq

ȷ

śu
t“r

„

πpdEt, dIt, dRt|Sp0q, Ep0q, Ip0q,Rp0q, β, δ, γq

ȷ

qpdI | dI1
q

qpdI1
| dIq

, 1

,

/

/

.

/

/

-

,

where the product is only over those timesteps that are affected by the move, and

for those parts of the likelihood that are affected as detailed in Section 3.7.2.1. The
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qp¨q represent the proposal distributions for moving an infection event in time.

3.7.3.3 “Adding or Removing an event” update

In each iteration we only choose to either add or remove an event. Choose an event

type κ, from the set tE, Iu. Let ∆ here be the change in the number of events, and

sample ∆ from the set t´1, 1u to represent a removal or an addition respectively.

Let pκptq represent the probability of a κ event at time t. For κ “ E, pκptq “ pexpptq,

and for κ “ I, pκptq “ pinf for all t. The reverse move of an addition update is a

removal update, and vice versa.

Again, we could then choose t arbitrarily, but this is likely to waste compute,

for instance adding an event that has 0 probability of occurring. We can introduce

qualifiers to ensure that at time t there are individuals that can be affected by the

event, and that the probability of the event is non-zero. In addition, it’s possible

that altering timesteps with higher probability of events (typically in the middle of

the epidemic) are less likely to invalidate the epidemic, so we can weight each t by

its probability of event κ.

Adding an event

If ∆ ą 0 (an addition), choose a t such that

$

’

&

’

%

tSpt ´ 1q ą 0 and pexpptq ą 0u , if κ “ E,

tEpt ´ 1q ą 0 and pinf ą 0u , if κ “ I.

weighting each t by pκptq so that timesteps that are more likely to have events get

events proposed more often. Since pinf is fixed in time, this is not strictly necessary

for the infection events.

As such, the proposal density is given by;
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q∆“1pdκ1
| dκq “

1

2
¨

1
ř

s 1 tX ps ´ 1q ą 0 and pκpsq ą 0u
¨

pκptq
ř

s pκpsq
,

where X P tS, Eu relates to the event type as appropriate, and 1tu “ 1 if there are

individuals that can change state and the probability of such an event is non-zero,

and 0 otherwise. This is the probability of choosing the given timestep out of all

timesteps that could have events, weighted by the probability of events occurring

at that timestep. The half represents the probability of choosing an addition event,

and the proposal density for the reverse move is given by,

q∆“1pdκ1
| dκq “

1

2
¨

1
ř

s 1td1
κpsq ą 0u

¨
p1
κptq

ř

s p
1
κpsq

,

which is the probability of choosing this timestep to remove events from out of

all events that have timesteps, where
ř

s tdκ1psq ą 0u is the number of timesteps

with one or more events of type κ after proposing the move, and does not equal
ř

s tdκpsq ą 0u.

Removing an event

If ∆ ă 0 (a removal), choose a t such that dκptq ą 0 for t P r1, pT ´ 1qs.

As such, the proposal density is given by;

q∆“´1pdκ1
| dκq “

1

2
¨

1
ř

s 1tdκpsq ą 0u
¨

pκptq
ř

s pκpsq
,

and

q∆“´1pdκ
1

| dκq “
1

2
¨

1
ř

s 1 tX 1ps ´ 1q ą 0 and pκpsq ą 0u
¨

p1
κptq

ř

s p
1
κpsq

,

where X P tS, Eu relates to the event type as appropriate and the logic is the

same as in the addition case.
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3.7.3.4 “Adding or Removing an event” Metropolis-Hastings acceptance

probabilities

For the exposure events, the MH acceptance probabilities will be given by

α “ min

"

πpdE1
|dI,dR,Sp0q, Ep0q, Ip0q,Rp0q, β, δ, γq

πpdE|dI,dR,Sp0q, Ep0q, Ip0q,Rp0q, β, δ, γq

qupdE | dE1
q

qupdE1
| dEq

, 1

*

“ min

$

’

’

&

’

’

%

śT
t“k

„

πpdE 1
t, dIt, dRt|Sp0q, Ep0q, Ip0q,Rp0q, β, δ, γq

ȷ

śT
t“k
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where the product is over the timestep where the addition/removal occurred onward,

and for those parts of the likelihood that are affected as detailed in Section 3.7.2.2.

The qp¨q represent the proposal distributions for adding/removing an exposure event.

For the infection events, the MH acceptance probabilities will be given by

α “ min

"

πpdI1
|dE,dR,Sp0q, Ep0q, Ip0q,Rp0q, β, δ, γq

πpdI|dE,dR,Sp0q, Ep0q, Ip0q,Rp0q, β, δ, γq

qupdI | dI1
q

qupdI1
| dIq
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where the product is over the timestep where the addition/removal occurred onward,

and for those parts of the likelihood that are affected as detailed in Section 3.7.2.2.

The qp¨q represent the proposal distributions for adding/removing an infection event.

3.7.3.5 Augmenting the initial conditions

The greater the level of discretisation, the larger the proportion of removal events

that will occur during the first two timesteps. Due to the fact that events cannot

occur to the same individual in the same timestep, this means that the majority

of the exposure and infection events that preceded these removal events must have
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3.7. Data Augmentation

occurred before the first timestep - i.e. in the initial conditions. The number of

events that occurred in the initial conditions, however, is unknown. At the extreme,

if every event occurred in the initial conditions, the epidemic would be valid, but

the S to E and E to I rates would have to be extremely small relative the removal

rate, that none occurring ‘during’ the epidemic. For this reason we need to be able

to augment and explore the initial conditions, moving events between them and the

main data. In conjunction with the ‘move’ events data augmentation step, it is

sufficient and simple to just move events between the initial conditions and the first

timestep.

When the magnitude of the timestep is small, the resolution is likely sufficient to

allow most if not all events to occur during the epidemic, and so minimal compute

is used for this step. When the magnitude is large, it is likely that the likelihood

will need to be calculated on every iteration.

Choose an event type from the set κ P tE, Iu. Let ∆ here be the direction of

movement, and sample ∆ from the set t´1, 1u to represent a move from t “ 1 to

the initial conditions, or a move from the initial conditions to t “ 1 respectively.

As such, the proposal density is simply given by;

qpX1
0,dκ

1
|X0,dκq “

1

2
,

and the Metropolis-Hastings acceptance probability for S Ñ E events is given

by

α “ min

"

πpdE 1
1, dI1, dR1|Sp0q1, Ep0q1, Ip0q,Rp0q, β, δ, γq

πpdE1, dI1, dR1|Sp0q, Ep0q, Ip0q,Rp0q, β, δ, γq
, 1

*

,

and the Metropolis-Hastings acceptance probability for E Ñ I events is given

by

α “ min

"

πpdE1, dI
1
1, dR1|Sp0q, Ep0q1, Ip0q1,Rp0q, β, δ, γq

πpdE1, dI1, dR1|Sp0q, Ep0q, Ip0q,Rp0q, β, δ, γq
, 1

*

.
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Chapter 3. Discrete approximations for State Transition Models

3.8 Block Adaptive MCMC for S-E-I-R

Having derived all of its components, we now lay out a more sophisticated MCMC

algorithm for making inference on epidemic data in an S-E-I-R framework. We

call this algorithm the “Adaptive Block MCMC”; “Block” refers to the idea of

sampling the parameters of interest as a set, using a multi-site sampler, taking into

account the correlation-covariance relationships, and “Adaptive” refers the process

of automatically adapting the tuning parameters to optimise the algorithm. We are

considering the case of an incomplete epidemic, so we will include the details of both

data augmentation steps.

In this section we present the algorithm and a series of subroutines for making

inference on an SEIR chain binomial epidemic. We begin with an overview of the

process, and then lay out the details of each element.

3.8.1 The Algorithms

Algorithm 1 is an overview of the MCMC schema which shows the steps taken in

each iteration. The subroutines used within it are presented in the sections that

follow. During each iteration a new set of parameters are proposed, and then the

initial conditions, S to E, and E to I transition events are augmented using “move

event” and “add/remove event” data augmentation steps. Finally the adaptive

tuning parameters are updated and results recorded.
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3.8. Block Adaptive MCMC for S-E-I-R

Algorithm 1: Block Adaptive MCMC Algorithm

Input : Nits = Total desired number of iterations eg. 106,

Data = All state and event data,

(λ, m, ∆m) = Initial values of the tuning parameters

Output : Results = Parameter values for each iteration

Elements: θ = Epidemic parameters, ntune = Tuning block counter

1 Set up

2 Initialise θcur

3 Set it = 1, ntune = 1

4 Process

5 while it ď Nits do

6 Blk-Adpt-Metropolis-Hastings-Step()’s for Parameters

(Subroutine 3.1):

7 rβ, δ, γs P θ

8 Metropolis-Hastings-Step()’s for Data Augmentation

(Subroutine 3.3):

9 Augment SE initial conditions (Subroutine 3.4)

10 Augment EI initial conditions (Subroutine 3.5)

11 Move SÑE events in time (Subroutine 3.6)

12 Move EÑI events in time (Subroutine 3.7)

13 Add/Remove SÑE events (Subroutine 3.8)

14 Add/Remove EÑI events (Subroutine 3.9)

15 Record the Results

16 if it “ 25 ¨ pntuneq then

17 ntune = ntune ` 1

18 end

19 it = it`1

20 end
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Chapter 3. Discrete approximations for State Transition Models

Subroutine 3.1 presents the subroutine for proposing and updating the transition

parameters using the Block Adaptive schema. The parameters are drawn on the log

scale from one of two Gaussian proposal distributions, one with a scaled identity

covariance matrix, and one with a covariance matrix based on the previous accepted

samples. The proposed values are then accepted or rejected using a Metropolis-

Hastings step, and the hyper-parameters of the proposal distributions are then

automatically tuned. The subroutine of the tuning is given in the algorithms

following.
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3.8. Block Adaptive MCMC for S-E-I-R

Subroutine 3.1: Block Adaptive Metropolis-Hastings Step for Parameters

Input : (λ, m, ∆mq = Current values of the tuning parameters, and Nits,
Data, ntune

Output : θcur = Updated epidemic parameters,
(λ, m, ∆m) = Updated tuning parameters

Elements: πpϕ|Xq = Joint conditional posterior of parameters ϕ given
Data X,
qpψ|ϕq = Prob. of proposing parameters ψ given the current
parameters ϕ,
d = Dimension of θcur,
Σ = Proposal posterior co-variance matrix

1 Propose Update
2 if it ď minp5000,Nits{10q then

3 if it = 25¨ntune then
4 Update λ using Tune λ() (Subroutine 3.2)
5 end

6 Draw log(θprime) „ N(log(θcur),
λ2

d
Id)

7 else
8 with 5% chance then

9 Set Σ = λ2

d
Id (1)

10 else
11 Set Σ = m2ˆ[Current empirical Posterior Co-Variance Matrix]

(2)

12 end

13 Draw log(θprime) „ N(log(θcur), Σ)

14 end

15 Accept/Reject

16 Calculate πpθcur|Xq, πpθprime|Xq, qpθcur|θprimeq, qpθprime|θcurq using
Posterior fn()

17 Calculate the Metroplis-Hastings acceptance probability as

α “ min
´

1,
ś

drθprimes¨πpθprime|Xq
ś

drθcurs¨πpθcur|Xq

¯

18 Accept or reject the proposal

19 if Σ = (2) then
20 if update accepted then
21 Set m = m + 2.3p∆m?

it
q

22 else
23 Set m = m - p∆m?

it
q

24 end

25 end
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Chapter 3. Discrete approximations for State Transition Models

Subroutine 3.2 presents the subroutine for tuning the scaling factor of the

uncorrelated proposal distribution for the parameters. If the acceptance rate is

above the desired value then the tuning parameter is made larger, otherwise it is

made smaller. The tuning parameter is updated every 25 iterations up to the 5000th

iteration, then it is fixed.

Subroutine 3.2: Function: Tune λ()

Input : λcur = The current value of λ for the parameter block of interest,
ntune = The number of tuning blocks so far,
Results = The acceptance (0/1) of the update steps so far

Output : λupdated = The updated value of λ
Elements: it = iterations,

acc prop = Acceptance proportion for the 25 iterations in the
ntune

th block,
ν = Change in the λ

1 Function Tuneλ()

2 Calculate acc prop

3 if acc prop ă 0.33 then
4 Set ν = ´minp0.05, 1

?
ntune

q

5 else
6 Set ν = minp0.05, 1

?
ntune

q

7 end

8 logpλupdatedq “ logpλcurq ` ν

9 Return(λupdated)

10 end

Subroutine 3.3 presents the framework for data augmentation of the partially

observed and occult events. Depending on the data, event, and proposal function,

different subroutines presented in the algorithms that follow are used. First new

data is proposed and the posteriors calculated, then the updates are accepted or

rejected based on the Metropolis-Hastings acceptance probability.
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3.8. Block Adaptive MCMC for S-E-I-R

Subroutine 3.3: Metropolis-Hastings Step for Data Augmentation

Input : Proposal fn = A function to generate the proposal,

θ = Current values of the parameters,

and Nits, Data

Output : Data = Updated epidemic data

Elements: πpX|θq = Likelihood of the epidemic given parameters θ,

qpX|Y q = prob. of proposing data X given the current data Y

1 Propose Update

2 Propose an update to Data, Xcur, using Proposal fn()

3 Calculate qpXcur|Xprimeq, qpXprime|Xcurq using Proposal fn()

4 Accept/Reject

5 Calculate πpXcur|θq, πpXprime|θq using Posterior fn()

6 Calculate the Metropolis-Hastings acceptance probability as

α “ min
´

1,
πpXprime|θq¨qpXcur|Xprimeq

πpXcur|θq¨qpXprime|Xcurq

¯

7 Accept or reject the proposal
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Chapter 3. Discrete approximations for State Transition Models

Subroutine 3.4 presents the algorithm for augmenting the S and E states

by moving events between the initial conditions and the first timestep, and

accepting/rejecting using a Metropolis-Hastings step and recording the results.

Subroutine 3.4: Function: Propose to augment the S and E initial

conditions
Input : Data = The states and events of the epidemic at all timesteps

Output : Data1 = The states and events of the epidemic at all timesteps

after the update

Elements: ∆ = The direction of the move.

1 Function Prop Augment Init SE()

2 Generate ∆ P t´1, 1u

3 if ∆ ą 0 then

4 Change an initial E to an initial S

5 Add an S to E event at t “ 1

6 else

7 Change an initial S to an initial E

8 Remove an S to E event at t “ 1

9 end

10 Calculate the proposal probabilities using

11 qpXprime|Xcurq “ 1
2

12 qpXcur|Xprimeq “ 1
2

13 Return(Data1, qpXcur|Xprimeq, qpXprime|Xcurq)

14 end

Subroutine 3.5 presents the algorithm for augmenting the E and I states

by moving events between the initial conditions and the first timestep, and
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3.8. Block Adaptive MCMC for S-E-I-R

accepting/rejecting using a Metropolis-Hastings step and recording the results.

Subroutine 3.5: Function: Propose to augment the E and I initial

conditions
Input : Data = The states and events of the epidemic at all timesteps

Output : Data1 = The states and events of the epidemic at all timesteps

after the update

Elements: ∆ = The direction of the move.

1 Function Prop Augment Init EI()

2 Generate ∆ P t´1, 1u

3 if ∆ ą 0 then

4 Change an initial I to an initial E

5 Add an E to I event at t “ 1

6 else

7 Change an initial E to an initial I

8 Remove an E to I event at t “ 1

9 end

10 Calculate the proposal probabilities using

11 qpXprime|Xcurq “ 1
2

12 qpXcur|Xprimeq “ 1
2

13 Return(Data1, qpXcur|Xprimeq, qpXprime|Xcurq)

14 end

Subroutine 3.6 presents the algorithm for augmenting the S to E transition events

by moving one through time, and accepting/rejecting using a Metropolis-Hastings

step and recording the results.
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Subroutine 3.6: Function: Propose to move an S to E event through time

Input : Data = The states and events of the epidemic at all timesteps

Output : Data1 = The states and events of the epidemic at all timesteps

after the update

Elements: t = A timestep in the data,

∆ = The magnitude and direction the event is moved in time

1 Function Prop Move dE()

2 Generate ∆ P t´1, 1u

3 if ∆ ą 0 then

4 Choose a timestep, t P 1 : pT ´ 1q, weighted by dEptq

5 else

6 Choose a timestep, t P 2 : T , weighted by dEptq

7 end

8 Update the Data to create Data1

9 Calculate the proposal probabilities using

10 qpXprime|Xcurq “ 1
2

¨
dEptq

ř

s tdEpsqu

11 qpXcur|Xprimeq “ 1
2

¨
d1
Ept`∆q

ř

s td1
Epsqu

12 Return(Data1, qpXcur|Xprimeq, qpXprime|Xcurq)

13 end

Subroutine 3.7 presents the algorithm for augmenting the E to I transition events

by moving one through time, and accepting/rejecting using a Metropolis-Hastings

step and recording the results.
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3.8. Block Adaptive MCMC for S-E-I-R

Subroutine 3.7: Function: Propose to move an E to I event through time

Input : Data = The states and events of the epidemic at all timesteps

Output : Data1 = The states and events of the epidemic at all timesteps

after the update

Elements: t = A timestep in the data,

∆ = The magnitude and direction the event is moved in time

1 Function Prop Move dI()

2 Generate ∆ P r´1, 1s

3 if ∆ ą 0 then

4 Choose a timestep, t P 1 : pT ´ 1q, such that dIptq ą 0

5 else

6 Choose a timestep, t P 2 : T , such that dIptq ą 0

7 end

8 Update the Data to create Data1

9 Calculate the proposal probabilities using

10 qpXprime|Xcurq “ 1
2

¨ 1
ř

s tdIpsqą0u

11 qpXcur|Xprimeq “ 1
2

¨ 1
ř

s td1
Ipsqą0u

12 Return(Data1, qpXcur|Xprimeq, qpXprime|Xcurq)

13 end

Subroutine 3.8 presents the algorithm for augmenting the S to E transition events

by adding an additional event or removing an event, and accepting/rejecting using

a Metropolis-Hastings step and recording the results.
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Subroutine 3.8: Function: Propose to add or remove an S to E event

Input : Data = The states and events of the epidemic at all timesteps

Output : Data1 = The states and events of the epidemic at all timesteps

after the update

Elements : t = A timestep in the data,

Spt ´ 1q = The number of susceptibles used to generate the

exposure events,

pexpptq = The probability of exposure at time t

1 Function Prop AddRem dE()

2 Generate ∆ P r´1, 1s

3 if ∆ ą 0 then

4 Choose a timestep, t P 2 : T , such that

tSpt ´ 1q ą 0 and pexpptq ą 0u, weighted by pexpptq

5 else

6 Choose a timestep, t P 2 : T , such that dEptq ą 0

7 end

8 Calculate the proposal probabilities using

9 if ∆ ą 0 then

10 qpXprime|Xcurq “ 1
2

¨ 1
ř

s tSps´1qą0 and pexppsqą0u
¨

pexpptq
ř

s pexppsq

11 qpXcur|Xprimeq “ 1
2

¨ 1
ř

s td1
Epsqą0u

12 else

13 qpXprime|Xcurq “ 1
2

¨ 1
ř

s tdEpsqą0u

14 qpXcur|Xprimeq “ 1
2

¨ 1
ř

s tS1ps´1qą0 and p1
exppsqą0u

¨
p1
expptq

ř

s p
1
exppsq

15 end

16 Return(Data1, qpXcur|Xprimeq, qpXprime|Xcurq)

17 end

Subroutine 3.9 presents the algorithm for augmenting the E to I transition events

by adding an additional event or removing an event, and accepting/rejecting using

104



3.8. Block Adaptive MCMC for S-E-I-R

a Metropolis-Hastings step and recording the results.

Subroutine 3.9: Function: Propose to add or remove an E to I event

Input : Data = The states and events of the epidemic at all timesteps

Output : Data1 = The states and events of the epidemic at all timesteps

after the update

Elements: t = A timestep in the data,

Ept ´ 1q = The number of exposed used to generate the E to I

events,

1 Function Prop AddRem dI()

2 Generate ∆ P t´1, 1u

3 if ∆ ą 0 then

4 Choose a timestep, t P 2 : T , such that tEpt ´ 1q ą 0u

5 else

6 Choose a timestep, t P 2 : T , such that dIptq ą 0

7 end

8 Calculate the proposal probabilities using

9 if ∆ ą 0 then

10 qpXprime|Xcurq “ 1
2

¨ 1
ř

s tEps´1qą0u

11 qpXcur|Xprimeq “ 1
2

¨ 1
ř

s td1
Ipsqą0u

12 else

13 qpXprime|Xcurq “ 1
2

¨ 1
ř

s tdIpsqą0u

14 qpXcur|Xprimeq “ 1
2

¨ 1
ř

s tE 1ps´1qą0u

15 end

16 Return(Data1, qpXcur|Xprimeq, qpXprime|Xcurq)

17 end
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3.9 Results

Using the above algorithm and subroutines we ran inference for four discretisations

of an epidemic simulated in a continuous-time GSE SEIR construction. Figure 3.1

shows the simulated epidemic at the 4 levels of discretisation. produced by counting

the number of events of each type that occurred in each window of size of ∆t. We

use the data of this epidemic from time t “ 0 to the 250th removal event at time

t “ 274, which leaves us with an incomplete epidemic.

The epidemic was simulated to have 25% of the population infected by the final

observation, and be ongoing. We assumed the removal events were observed, but

not the exposure or infection events. We assumed the epidemic to be ongoing such

that we did not know the total number of exposure and infection events, just that

they were bounded below by the number of removals at any given timestep. There

are three parameters of interest: β, δ, γ.

The population size was 1000 individuals, initialised with one infected individual.

The priors were set to be β „ Gammap5, 0.05q, δ „ Gammap1.6, 0.05q, and γ „

Gammap4.4, 0.05q such that the mean of the prior is the true value. The form of the

Gamma distribution we are choosing to use has ν ą 0 as the shape parameter, and

λ ą 0 as the rate parameter.

We have chosen to explore 4 levels of discretisation that can be interpreted in

the following way: ∆t “ 0.2 is an approximation to a continuous-time inference,

∆t “ 1 can be considered the standard discretisation for this epidemic, and can be

interpreted as daily observations, ∆t “ 7 can be interpreted as weekly observations,

and ∆t “ 30 can be interpreted as monthly observations. Simply counting the

number of continuous events that occurred in each ∆t window has the potential to

invalidate an assumption of the epidemic than an individual can only experience

one type of event in each timestep. As such we initialise the data for the inference

by fixing the assumed known removal timesteps, and back-generating appropriate

exposure and infection timesteps.

We ran the same MCMC process for each discretisation for 3 million samples.
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Below we present the results of 2.5 million samples after burn-in for the ∆t “

1 discretisation, with commentary and comparison to the results of the other

resolutions.

The ∆t “ 0.2 inference is the most accurate, approximating the continuous-time

inference with minimal biases introduced, however it is also the most inefficient.

In fact it is more inefficient than the continuous-time model, as there are more

timesteps/rows in the data than there are events. This model is the baseline against

which we will compare all the results, and took 14759 seconds to run. This is

compared to the 3256 seconds for the ∆t “ 1 model. The cost of this rapid increase

in computation by using ∆t “ 1 was a small increase in the variance of the unimodal

posteriors. We did not explicitly make inference for a continuous-time model in

this instance, however it would have roughly 750 events/rows of data for which to

compute a likelihood, compared to the ∆t “ 0.2 models roughly 1250, and the

∆t “ 1 models roughly 250 for context.

Overall the algorithm with ∆t “ 1 recovered uni-modal posterior distributions

which contained the true values of the parameters. The true values of the parameters

lie very close the areas of highest posterior mass. The shapes of the posteriors are

uni-modal and distinct, without excessively long tails as we can see in Figure 3.2.

The mixing was good, with large jumps and time spent exploring all areas of the

posterior mass, though slightly worse than for the ∆t “ 0.2 model, as seen in Figure

3.4. The trade off between the exposure rate, onset of infection rate, and removal

rate can be seen in Figure 3.3 with the strong elliptical shapes of the contour plots.

The red dotted lines represent the true parameters, and the yellow dotted lines

represent the position of the pair of parameters with the highest posterior density,

calculated by dividing the state-space into a fine grid and finding the centroid of

the bin with the greatest density. We can see that in all cases the values are within

the main posterior mass. In particular we can see that larger S to E transition

rates, leading to more exposed individuals quicker, are matched with larger I to R

transition rates, meaning shorter infectious periods.
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Table 3.2 presents the summaries of the marginal posterior distributions. The

average acceptance rate of the parameter block draw was 30.44%. The average

acceptance rate for moving S to E exposure events was 90.06%. The average

acceptance rate for moving E to I infection events was 88.93%. The average

acceptance rate for adding or removing S to E exposure events was 58.6%. The

average acceptance rate for adding or removing E to I infection events was 21.93%.

The effective sample size for β was 746.85. The effective sample size for δ was

1423.42. The effective sample size for γ was 677.57.

The parameter estimates for the ∆t “ 0.2, ∆t “ 7, and ∆t “ 30 models are

presented in Tables 3.1, 3.3, and 3.4 respectively. The values were similar for the

∆t “ 0.2 model, noting that the effective sample sizes were reversed with δ being

significantly higher and the other two being lower. Overall this lends credence to

the discretisation efforts of ∆t “ 1, with roughly equal quality of inference and a

significant speed increase.

The same cannot be said, however, for the more extreme discretisations. Whilst

it is true that there is a notable speed increase, with ∆t “ 7 taking 831 seconds, and

∆t “ 30 taking a mere 237 seconds, the bias introduced has a noticeable impact on

accuracy. As expected due to the constraint of each individuals transitions having

to occur in different timesteps, a minimum waiting period is enforced for each event

type equal to the timestep size. In this case those timesteps were too large, and

led to a high levels of inaccuracy, with for instance β becoming extremely inflated

and δ being severely deflated. The acceptance rates are roughly the same, as are

the effective sample sizes, if not higher, but the inference is severely inaccurate,

exacerbated by the informative priors which are aligned with the continuous model

rather than each discretisation.
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True Value Mean 95% CI Std. Dev. ESS
β 0.25 0.19615 (0.101, 0.325) 0.0582 1157.63
δ 0.08 0.09189 (0.0375, 0.198) 0.0410 144.73
γ 0.22 0.15918 (0.0801, 0.2660) 0.0478 1197.91

Table 3.1: The summary of the marginal posterior distributions for ∆t “ 0.2.

True Value Mean 95% CI Std. Dev. ESS
β 0.25 0.2126 (0.100, 0.393) 0.0762 746.85
δ 0.08 0.0979 (0.0383, 0.2130) 0.0446 1423.42
γ 0.22 0.1893 (0.0833, 0.3780) 0.0764 677.57

Table 3.2: The summary of the marginal posterior distributions for ∆t “ 1.

True Value Mean 95% CI Std. Dev. ESS
β 0.25 0.11066 (0.0657, 0.2200) 0.0191 476.53
δ 0.08 0.16779 (0.00835, 0.33500) 0.0686 1217.93
γ 0.22 0.14606 (0.0547, 0.2580) 0.0452 870.26

Table 3.3: The summary of the marginal posterior distributions for ∆t “ 7.

True Value Mean 95% CI Std. Dev. ESS
β 0.25 0.7894 (0.0284, 1.1100) 0.1570 260.03
δ 0.08 0.001818 (0.00153, 0.01110) 0.000162 1228.98
γ 0.22 0.13936 (0.00493, 0.40400) 0.1120 2056.68

Table 3.4: The summary of the marginal posterior distributions for ∆t “ 30.
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(a) Histogram for β, δ and γ with ∆t “ 0.02.

(b) Histogram for β, δ and γ with ∆t “ 1.

(c) Histogram for β, δ and γ with ∆t “ 7.

(d) Histogram for β, δ and γ with ∆t “ 30.

Figure 3.2: Results: The plots show the marginal posterior histograms for each of
the parameters of interest with (a) ∆t “ 0.02, (b) ∆t “ 1, (c) ∆t “ 7, (d) ∆t “ 30.
The true value of the parameter used to generate the simulation is represented by
the dashed line. The prior distribution of the parameter is shown in blue.
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3.9. Results

Figure 3.3: Results: Contour plots of the posterior samples for each pair of the parameters of interest with
∆t “ 1. Brighter contours represent areas of higher density. The yellow dashed lines show the pair-wise
point of highest density on the contour plots, and the red dashed lines represent the true values of the
parameters that generated the simulation. From top to bottom the plots show β vs δ, β vs γ, and δ vs γ.
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(a) Trace plot for β, δ and γ with ∆t “ 0.02.

(b) Trace plot for β, δ and γ with ∆t “ 1.

Figure 3.4: Results: Trace plots of the posterior samples for (a) ∆t “ 0.02 and (b)
∆t “ 1. The initial burn-in is represented in orange, which gets discarded. The
remainder of the chain in blue is assumed to represent the stationary distribution
of the chain. The true value of the parameter is shown by the dashed line.112
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(a) Trace plot for β, δ and γ with ∆t “ 7.

(b) Trace plot for β, δ and γ with ∆t “ 30.

Figure 3.5: Results: Trace plots of the posterior samples for (a) ∆t “ 7 and (b)
∆t “ 30. The initial burn-in is represented in orange, which gets discarded. The
remainder of the chain in blue is assumed to represent the stationary distribution
of the chain. The true value of the parameter is shown by the dashed line.113
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3.10 Discussion

In this chapter we explored the Chain-Binomial discrete-time population-level

epidemic model, and made inference on a continuous-time SEIR epidemic discretised

at different resolutions. Following from Chapter 2 it was clear that we needed yet

further methods for dealing with the challenges presented by big-data epidemics. Of

most concern are the prohibitive computation costs and algorithm inefficiency arising

from huge amounts of missing data. Our proposition is to discretise the epidemic

data using an appropriate timestep size, and trade a small amount of accuracy for

a large boost in performance. Our results showed that indeed we could still make

accurate inference on the epidemic whilst realising a huge speed up. They also made

it clear that over-discretising would lead to wild inaccuracies and uncertainty due to

the differing assumptions in the construction of the continuous-time and discrete-

time epidemic models. There is clearly an optimal level of discretisation that will

balance accuracy and computational efficiency, which will likely be dependent on

the dynamics of the epidemic, or more simply, the rates of events.

It must be noted however that the efficiency of the algorithm was poor overall,

with an effective sample size of less than 700 for 2.5 million samples in some cases,

which also may lead one to question the accuracy of the inference, however, there

are lots of avenues for improvement. Better tuning of the data augmentation steps

is likely to improve efficiency. In this demonstrative example we allowed for the

minimum change possible during each update, moving, adding, or removing one

event at one timestep, and we only allowed for one update of each type per sampling

of the parameters. With acceptance rates of roughly 90% for the moving of events,

and 59% for adding or removing S to E events, clearly we could update more at

any given time, and run multiple updates between parameter draws. It is unlikely

that the acceptance rate will scale linearly with these tuning parameters, and it is

possible that any increase would lead to unacceptably low acceptance rates, but this

does not prohibit running multiple sequential updates between parameter updates.

The other option is to improve the proposal distributions of the data augmen-
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tation. For instance for moving S to E events in time, we weight each timestep,

t, by the proportion of the total S to E events that occur during time t. We also

considered a scenario where we weighted each timestep the probability of S to E

events at time t, pexpptq, which we found to be less efficient. The basic alternative

is to just sample t uniformly at random, which would be the least efficient method

as described in Section 3.7. A more sophisticated proposal distribution would likely

improve the efficiency of the algorithm, though without experimentation it is not

obvious which would be best.

The inference between the different discretisations should not necessarily produce

the same estimates however. This is in part due to the fact that each discretisation

has different assumptions about the minimum time that is spent in each state,

equal to the size of timestep, which then imposes a minimum amount of time each

individual spends as part of the epidemic before recovery. With ∆t “ 1 this is 2

(1 in S, 1 in E, then removal), but with ∆t “ 30 this is 60 (30 in S, 30 in E, then

removal). This could explain why the E to I transition rate, γ, has such a small

posterior mean for ∆t “ 30, to ensure that individuals transition to the infectious

state quick enough to align with the recoveries, especially with β being estimated

so large.

Now that we have established that discretising the epidemic is a valid potential

method for reducing the computational burden of making inference on epidemics

whilst maintaining accuracy, we wish to explore it’s effectiveness for complex big-

data epidemics, for which we will need an example. In the following chapter we

introduce our case study example, Bovine Tuberculosis in England and Wales, which

consists of 100s of millions of records and complex disease dynamics and testing

schemes. We explore the historic context of this disease, the work on this disease

done by others, and finally explore the datasets provided to us by APHA with the

intention of building our own epidemic model.
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Bovine Tuberculosis

4.1 Introduction

With over 20 million cattle, complex disease dynamics, multi-host populations, and

a rich detailed data set, Bovine Tuberculosis in England and Wales serves as a great

example of a large scale complex big data epidemic. In this chapter we introduce

the context on which the rest of the thesis is based. We explore the historical and

current state of Bovine Tuberculosis in England and Wales, its mechanisms and

dynamics, and provide an overview of previous work that has attempted to model

it’s spread. This lays the foundation for our novel work presented in the following

chapters making inference using full likelihood-based MCMC methods.

In Section 4.2 we provide an overview of the current literature around Bovine

Tuberculosis and modelling its epidemics. In Section 4.2.3 we give a summary

of Brooks-Pollock, Roberts, and Keeling, 2014 from which this work is inspired.

Following this in Sections 4.3, 4.4, 4.5, 4.6, and 4.7 we present and explore the data

provided to us by the Animal and Plant Health Agency (APHA) and explain its

influence on our modelling choices. In the following chapters we go on to extend the

methodologies presented in Chapters 1 and 3 and apply it to make inference on this

data and our model.
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4.2 Literature Review

4.2.1 Bovine Tuberculosis

In this subsection, unless otherwise specified, information was obtained from the

Animal and Plant Health Agency (APHA, 2021). Bovine Tuberculosis is a chronic

bacterial infectious disease of animals. It is primarily associated with cattle however

all mammals are susceptible, including humans. It is caused by a bacterium called

Mycobacterium bovis (M. bovis).

Transmission can occur directly through nose-to-nose contact and through

contact with saliva, urine, faeces, and milk. It transmits very slowly between

cattle, but has a high potential for spread due to the chronic nature of infection

(Gordon and Barrow, 2018). The disease is transmissible to humans through

unpasteurised milk or dairy products, inhaling bacteria breathed out by infected

animals, or inhaling bacteria released from the carcasses or excretions of infected

animals. Indeed the majority of humans infected with bTB each year in the UK work

with cattle (Kirchhelle, 2020). Being a bacterial disease means that the pathogen

can also survive outside of the host (Gordon and Barrow, 2018), with some studies

suggesting M. bovis could remain on pastures, alive and virulent, for at least 49

days (Maddock, 1933). No study to date has successfully quantified the relative

importance of direct contact, aerosol spread and indirect environmental spread on

the risk of infection (Gordon and Barrow, 2018).

Bovine Tuberculosis is also hard to identify as symptoms often only develop in

advanced stages of infection, and these symptoms can be similar to other diseases.

The symptoms typically include wasting/getting thinner, light recurring fever, and

cattle are weak, with a reduced appetite. However symptoms do not present in

all infected cattle before slaughter, and the disease itself can have greatly varying

incubation periods (Gordon and Barrow, 2018).

The long incubation periods and asymptomatic nature of the disease, combined

with the workings of the cattle industry, mean that the majority of cases cannot
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be observed naturally and need to be tested for. The primary test for bTB in

cattle is Tuberculin testing (Gordon and Barrow, 2018). Tuberculin was discovered

in 1890 and causes an immune reaction in cattle (Kirchhelle, 2020). Animals are

given an injection of both bovine and avian tuberculin and animals that react to the

bovine more than the avian tuberculin are considered as skin test reactors (Welsh

Government, 2018). Skin test reactors are cattle that are considered to have tested

positive for Bovine Tuberculosis. Post-mortems are also carried out at the abattoir,

and the organisms are attempted to be cultured (Welsh Government, 2018). In rare

cases Interferon-gamma blood tests are used to confirm suspected cases. Tuberculin

skin tests are well known for having imperfect sensitivity, only being able to identify

an estimated 70%-90% of infected cattle (Brooks-Pollock, Roberts, and Keeling,

2014; Green and Cornell, 2005; Monaghan et al., 1994; Conlan et al., 2012; de

la Rua-Domenech et al., 2006). In addition, the test has reduced sensitivity for

a period of time following infection (Brooks-Pollock, Roberts, and Keeling, 2014;

Gordon and Barrow, 2018; Pollock et al., 2001).

In the early part of the 20th century Bovine Tuberculosis was considered a

substantial risk to consumers due to contaminated milk and meat (Waddington,

2004). Between 25 and 40% of cattle in the UK were estimated to be infected with

bTB (Waddington, 2004). Efforts to detect and eradicate the disease became an

important part of public health policy as annual death rates in humans associated

with bTB reached 3,000 with many more crippled, with children at greater risk

(Waddington, 2004). In addition it was also a huge financial burden for the farming

industry (Waddington, 2004). Tuberculin was adopted as the main diagnostic

test for the disease and a test-and-slaughter scheme was introduced in the 1950s

(Waddington, 2004). Eventually the transmission routes to humans were eradicated

through the use of pasteurisation (Waddington, 2004). By the mid-1960s, bTB

was restricted to a few pockets of infection in southwest England (Reynolds, 2006)

and incidence fell to around 0.22% of herds (Brooks-Pollock, Roberts, and Keeling,

2014).
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However between 1990 and the mid-2010s the level of Bovine Tuberculosis in the

UK showed a rising trend, with the number of confirmed herd incidents increasing

at a rate of 18% per year until 2001 (Reynolds, 2006). In 2001 a foot-and-mouth

disease (FMD) epidemic majorly disrupted the testing and slaughter associated with

bTB. Atypical movements to restock FMD-affected farms resulted in a huge spike

in bTB cases across the country (Gopal et al., 2006), which increased the rate of

spread across the UK dramatically (Reynolds, 2006). As shown in Figures 4.1 and

4.2, since around the mid-2010s the trend has plateaued or shown a minor decrease,

but levels of infection remain high across the UK.

Bovine TB has been found in a number of wild animals including foxes, stoat,

common shrew, yellow-necked mouse, wood mouse, field vole, grey squirrel, roe

deer, red deer, fallow deer, muntjac (DEFRA, 2004) and badgers (Krebs et al.,

1997, The Ministry of Agriculture, Fisheries, and Food, 1976). Studies have shown

that the strains of the disease found in cattle and badgers in the same area are

usually identical (Biek et al., 2012; Goodchild et al., 2012). It has also been

shown that incidence of badger bTB infections are highly correlated with, and much

more likely to occur around, confirmed cases in cattle (Goodchild et al., 2012).

However the question of whether badgers are a driver of disease spread in cattle,

and whether culling them is an effective strategy to reduce spread, is still highly

contested (Kirchhelle, 2020).

Bovine TB was first found in wild badgers in 1971, and by 1975 a full-scale

badger culling policy was introduced (Kirchhelle, 2020). The policy was marred

by controversy and as the years went on animal advocates won legal protections

for badgers and policy changed many times as evidence was deemed inconclusive

(Kirchhelle, 2020). Over the decades changes in government led to repeated back and

forths in badger culling policy and huge media outcry (Kirchhelle, 2020). Current

policy is dedicated to a badger culling plan to reduce the spread of bTB, with licences

being granted to different areas based on need (Natural England, 2022).

A randomised control trial on the culling of badgers to affect bovine TB spread
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was conducted in 2007 by the Independent Scientific Group on Cattle TB (The

Independent Scientific Group on Cattle TB, 2008). The trial concluded that

“reactive” culling, targeting specific badger social groups which could have caused

TB breakdowns in cattle, appeared to increase the incidence of confirmed cattle

breakdowns (herds where at least one cow tested positive for Bovine Tuberculosis)

by 27% due to increased badger displacement. On the other hand “proactive”, or

widespread, culling was associated with a reduction in the number of TB breakdowns

by 23% inside the culling areas, but lead to increased levels in neighbouring areas.

In addition they state that sustained culling over 5 years would lead to the beneficial

effects outweighing the negative ones, but the costs associated greatly outweighed the

modest beneficial effect. Indeed Jenkins, Woodroffe, and Donnelly, 2010 continued

to monitor the sites and found that after a 5 year culling period farms within the

culling area had roughly 30% lower incidence compared to non-culled areas, but 3

years post-culling any benefits inside culled areas were no longer detectable, and that

the financial cost of sustained culling was up to 3.5 times higher than the savings

from culling. It has been shown that repeated badger culling can in fact lead to an

increase in bTB incidence in badgers, especially when the geography allows badgers

from nearby lands to recolonise culled areas (Woodroffe et al., 2006). Separately it

has been shown via the use of GPS tracking collars on badgers that culling can lead

to badgers visiting 45% more fields each month, and a 20-fold increase in the odds

of trespassing into neighbouring badger group territories, increasing contact (Ham

et al., 2019).

The importance of each transmission pathway: cattle-to-cattle, badger-to-cattle,

and environment-to-cattle, is still a highly contested topic. Using the randomised

clinical trial for badger culling data, it has been estimated that up to 52% of herd-

level infections were contributed to by badgers, but only 5.7% were directly caused

by badgers (Donnelly and Nouvellet, 2013). In addition, increased herd size may

correlate with increased risk of disease incidence and persistence (Brooks-Pollock

and Keeling, 2009). Another analysis of outbreak and movement data suggested
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that 16% of herd infections were due directly to cattle movements, and there was

low cattle-to-cattle transmission but high local environmental effects (Green et al.,

2008). Other sources examined roadkill of badgers in areas of emerging bTB spread,

and equally struggle to identify links between bTB spread and badgers (Swift et al.,

2021). Nor is it a simply a challenge of data availability, with models of the effect of

culling depending on the social responses of badgers, but robust to the population

density of cattle and badgers (Smith et al., 2016).

Current testing policy splits the country up into 3 areas; High Risk, Low Risk,

and Edge. Regular testing is performed with intervals determined by the risk area

of the county. There are 48-month cycles of testing for farms in the low risk area, 6-

month cycles in the high risk area, and 6 to 12-month cycles in the Edge area (APHA,

2023a). A map of the risk areas can be found here: https://assets.publishing.

service.gov.uk/government/uploads/system/uploads/attachment_data/file/

1029652/pti-map.pdf. We are unable to recreate this map in the thesis due to

licensing agreements with Ordnance Survey.

If one or multiple reactors (cattle that react more to the bovine tuberculin

injection than to the avian tuberculin injection) are found during routine testing,

then the reactors are slaughtered and the farm is put under movement restrictions

(APHA, 2022). The farm will then be required to conduct follow up tests every 60

days. After 2 consecutive tests with negative results the farm will regain Officially

TB Free status and movement restrictions will be lifted. After this the herd will

be required to be tested again after 6 and 18 months, before returning to its usual

testing intervals (APHA, 2022).

Testing can also occur for other reasons. If bTB is suspected in the farm due

to clinical signs in an animal, slaughter house inspection, or inconclusive reactors

(IRs) found in the herd, the farm is put under movement restrictions until a negative

culture result and a clear herd level test. If the culture is positive, or any TB skin

test reactors are found, the farm will become a breakdown herd (APHA, 2023b) and

follow the procedure above. Pre-movement and post-movement tests also occur for
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individual animals.

Herd incidence, herd prevalence, new herd incidents, Non-Officially-TB-Free

(NOTF), and number of animals slaughtered are the key metrics the APHA use

to measure Bovine TB in the country. The following definitions are cited from

APHA (APHA, 2023c):

• Herd incidence is the rate of new herd incidents per 100 herd years at risk.

The rate is based around the total amount of time that herds tested were

unrestricted and at risk of infection since the end of their last TB incident or

negative herd test, rather than the total number of tests carried out on those

herds.

• Herd prevalence is defined as the percentage of all registered herds which

were not Officially TB Free (OTF) due to a TB incident.

According to the latest government reports available (APHA, 2023c), showcased

in Figures 4.1 and 4.2, the herd incident rate was 8.4% between January 2022 and

December 2022 in England overall and 6.5% in Wales. These were down in both

cases compared to 2021. Herd prevalence was 4.5% in England and 5.3% in Wales,

again down since 2021.
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Figure 4.1: Long term view of new herd incidents per 100
herd years at risk of infection during the year. Recreated with
permission from (https://www.gov.uk/government/statistics/
historical-statistics-notices-on-the-incidence-of-tuberculosis-tb-in-cattle-in-great-britain-2022-quarterly/

figures-to-december-2022-published-08-march-2023) under the Open
Government Licence v3.0 (https://www.nationalarchives.gov.uk/doc/
open-government-licence/version/3/).
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Figure 4.2: Long term view of number of herds which were non-OTF at the end
of the period due to a TB incident as a percentage of registered and active herds.
Recreated with permission from (https://www.gov.uk/government/statistics/
historical-statistics-notices-on-the-incidence-of-tuberculosis-tb-in-cattle-in-great-britain-2022-quarterly/

figures-to-december-2022-published-08-march-2023) under the Open
Government Licence v3.0 (https://www.nationalarchives.gov.uk/doc/
open-government-licence/version/3/).

However the number of new herd incidents increased by 3% in England from
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2021 to 2022. In Wales there was a 10% decrease. Overall the number of herds

NOTF decreased by 3% in England and 5% in Wales year on year.

At the same time was a 20% decrease in the number of cattle slaughtered due to

a TB incident in England from 2021 to 2022, and an 11% decrease for Wales.

Estimates of the basic reproductive number, the number of additional expected

cases caused by each infected animal, range from 1.01 - 4.9 for cattle (Cox et al.,

2005; Conlan et al., 2012; Brooks-Pollock, Conlan, et al., 2013; Brooks-Pollock,

Roberts, and Keeling, 2014), and 1.03 - 1.35 for badgers (Smith, 2001; Mathews

et al., 2005; Wilkinson et al., 2004; Delahay et al., 2013). These numbers suggest

we would expect the epidemic to continue to grow, though the extent and nature of

the expected growth would depend on the model used.

4.2.2 The modelling landscape

There have been a large number of models presented for Bovine Tuberculosis, both

in the UK and around the world. The main research questions of interest for

bTB are the pathways of transmission - whether spread is mainly due to within

farm cattle spread, cattle movements, or environmental reservoirs like badgers, and

thus what intervention strategies will be most effective. The approaches to these

questions vary significantly, but deterministic mathematical models dominate the

literature over stochastic models. The models can be categorised in a number of

different ways - some are population based (Brooks-Pollock, Roberts, and Keeling,

2014; Mathews et al., 2005; Cox et al., 2005; Brooks-Pollock, Conlan, et al., 2013),

and some are agent based models (Moustakas and Evans, 2017; Wilkinson et al.,

2004) dealing with individual cattle and badgers. Some models are mathematical

and deterministic (Cox et al., 2005; Brooks-Pollock and Wood, 2015; Donnelly

and Nouvellet, 2013; Mathews et al., 2005; Brooks-Pollock, Conlan, et al., 2013),

and some are stochastic (Brooks-Pollock, Roberts, and Keeling, 2014; Dawson,

Werkman, and Brooks-Pollock, 2015; Wilkinson et al., 2004; Moustakas and Evans,

2017). Of the stochastic models, some are simulation studies that aim to explore
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qualities of the disease through simulating epidemics using a range of possible

parameter values (Dawson, Werkman, and Brooks-Pollock, 2015; Wilkinson et al.,

2004), and some are models that infer properties of the epidemics through identifying

their best fitting parameters (Moustakas and Evans, 2017; Brooks-Pollock, Roberts,

and Keeling, 2014). For those models that are fitted to data, the methods range from

sensitivity analyses with latin hyper-cubes of parameters (Moustakas and Evans,

2017; Donnelly and Nouvellet, 2013) to approximate methods like Approximate

Bayesian Computation (ABC) (Conlan et al., 2012; Brooks-Pollock, Roberts, and

Keeling, 2014). At the time of writing we have yet to find a paper that uses a

full likelihood based approach, or Bayesian fitting methods such as Markov Chain

Monte Carlo (MCMC).

Further still are models that incorporated genetic information and testing to

attempt to model the pathways of disease spread in cattle and badgers (Kao, Price-

Carter, and Robbe-Austerman, 2016, Crispell et al., 2019, Rossi et al., 2022). We

do not consider these methods in this thesis but incorporation of such data could

provide a powerful tool for validating and improving the inference.

The models have a wide array of goals. Some focus on the network aspect of

the disease created by the movements of cattle (Dawson, Werkman, and Brooks-

Pollock, 2015), whilst others focus of the dynamics of the disease itself (Conlan

et al., 2012; Mathews et al., 2005; Cox et al., 2005). Some focus primarily on the

cattle and perhaps an abstract background infection (Green et al., 2008), whilst

others explicitly model badger populations (Conlan et al., 2012; Brooks-Pollock,

Roberts, and Keeling, 2014; Mathews et al., 2005; Wilkinson et al., 2004; Cox et al.,

2005). Some focus on the disease burden in cattle (Cox et al., 2005; Brooks-Pollock,

Roberts, and Keeling, 2014), whilst others opt to consider the economic factors

(Brooks-Pollock and Keeling, 2009), or intervention schemes (Wilkinson et al., 2004).

Some models are simple, aiming to give some insight into realistic boundaries of

disease behaviour (Mathews et al., 2005; Cox et al., 2005), whilst others try to

capture the complex dynamics of the disease in order to answer important questions
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(Wilkinson et al., 2004; Brooks-Pollock, Roberts, and Keeling, 2014).

Our model can be considered a population level discrete time compartmental

model. It is inspired by and goes beyond work presented by Brooks-Pollock, Roberts,

and Keeling, 2014.

There are many supporting studies which help inform the modelling. For

instance when tracked with GPS collars, badgers prefer cattle pastures but avoid

cattle (Rosie Woodroffe et al., 2016). This gives support to models which have an

environmental reservoir background infection but don’t have direct spread between

badger and cattle. When the 2001 FMD epidemic reduced bTB testing across the

country, an increase in the prevalence of the disease in both badgers and cattle

was observed - suggesting possible multi-directional pathways of disease spread

(Woodroffe et al., 2006). In the case of big data epidemics where cattle movements

play a key role, it has been shown that by targeting farms with the highest number

of movements, accurate predictions on the size and spatial spread of epidemics can

be made (Dawson, Werkman, and Brooks-Pollock, 2015), which may be one way

to reduce computational burden. There is also another layer of questioning asking

how much of infection is driven by animal movements, environmental reservoirs, and

missed infectives due to low testing sensitivity. Some models estimate that 24-50%

of recurrent breakdowns can be attributed to infection missed by tuberculin testing

(Conlan et al., 2012).

4.2.3 Brooks-Pollock et al, 2014

Our model for the spread of Bovine Tuberculosis in UK farms is influenced by

Brooks-Pollock, Roberts, and Keeling, 2014. In the following section we will detail

the model and fitting methods used by Brooks-Pollock, Roberts, and Keeling, 2014

for reference. We will refer to this model as the BP-Model.

The BP-Model is a dynamic stochastic spatial model for Bovine Tuberculosis. It

is a discrete time meta-population model that combines within-farm and between

farm spread.
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Within each farm there is an SEI process for the cattle driven by cattle-to-

cattle transmission, and a local farm environmental reservoir effect for background

infection. Between farm spread is primarily driven by cattle movements between

farms, and a parish level environmental reservoir. The environmental reservoirs

capture contaminated pastures and infected wildlife, though the two are inseparable.

Animals are removed from farms through a testing process that mimics historical

government policy.

The states of each farm are updated at the day level using the following equations:
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Where Siptq, Eiptq, Iiptq are the number of Susceptible, Exposed, and Infectious

cattle on farm i at the start of day t, biptq is the recorded number of births on farm

i during day t. Then Λi,t and Ai,t are the number of newly exposed and newly

infectious cattle on farm i during day t, DE
i,t and D

I
i,t are the number of exposed and

infectious cattle on farm i removed due to testing on day t. FinallyMS
i,j,t,M

E
i,j,t,M

I
i,j,t

are the number of susceptible, exposed, and infectious cattle that are moved from

farm i to farm j during day t.

When the model is simulated, only the initial conditions (based on detections),

the births, and the number of cattle movements between each pair of farms each

week are considered known. Λ, A, D, and M are independent random variables and

represent exposure, transition from exposed to infectious, detections, and movement

states. The events are generated with the following independent distributions

assumed:
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Λi,t „ BinomialpSiptq, λiq

Ai,t „ BinomialpEiptq, αq

DE
i,t „ BinomialpEiptq, ρρEq

DI
i,t „ BinomialpIiptq, ρq

pMS
i,j,t,M

E
i,j,t,M

I
i,j,tq „ Multinomialpmi,j,t, p

S
i,t, p

E
i,t, p

I
i,tq

where the force of infection on farm i is given by λi “ 1´exp
!

´
βIiptq
Niptq

´ fviptq ´ FViptq
)

,

mi,j,t is the total number of moves from farm i to j on day t, and pXi,t “
Xiptq

Siptq`Eiptq`Iiptq

is the probability of picking an animal of type X P tS,E, Iu to move.

The parameters are defined as β, the cattle-to-cattle infection rate, f , the farm-

to-cattle transmission scalar, and F , the parish-to-cattle transmission scalar. The

detection parameter ρ represents the probability of detecting an infectious cow that

is tested, and ρE is a scalar multiplier for ρ between 0 and 1 that represents the

reduction in effectiveness of the test for exposed cattle. If ρE “ 0 then exposed cattle

cannot be detected, and if ρE “ 1 then exposed cattle have the same probability of

being detected as infectious cattle.

The environmental reservoir at the farm level is denoted vi and at the parish

level is denoted Vi. The environmental reservoirs decay at a constant rate of ϵ.

Each timestep the current environmental reservoir decays with constant rate ϵ, and

additional environmental reservoir is contributed by the proportion of infectious

animals in the parish, and are updated using:

vipt ` 1q “ viptq expt´ϵu `
Iiptq

ϵNiptq
r1 ´ expt´ϵus

Vipt ` 1q “ Viptq expt´ϵu `

ř

jPPpiq Ijptq

ϵ
ř

jPPpiq Njptq
r1 ´ expt´ϵus

where Ppiq is the parish of farm i, and
ř

jPPpiq is the sum across all farms j in

parish Ppiq, which includes farm i.

The reservoirs are a weighted average of the current and historical fraction
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of the creatures in the farm/parish that are infectious, with the weight decaying

exponentially.

The tests are a combination of real data and procedures informed by government

policy. They included all surveillance tests which concern tests for the whole herd

(WHT, WHT2, RHT, CT, CON, see Table 4.8 for details) and follow up tests (SI),

but discluded any tests on individual cattle such as pre-movement tests, retests

after inconclusive reactions, and all Interferon-gamma blood tests, an alternative

to the Tuberculin skin test. Less than 1% of all reactors are disclosed during

individual animal tests. The BP-model utilises the test dates for any routine tests,

and generates follow up tests as appropriate inline with government policy.

The model is initialised by seeding with data from 1996-1998 due to the uncertain

completeness of this data. The model is then run forward such that by the time of

the relevant simulated data only secondary cases exist.

The movements are aggregated such that each cow only has a start and end

location for each day, no transient moves are considered.

The model parameters are estimated using Sequential Monte Carlo Approximate

Bayesian Computation. The method works by drawing a parameter set from a prior

distribution and simulating an epidemic. If the epidemic is close enough to the true

data based on a handful of summary statistics then the parameter set is accepted

into a sample that forms an approximation to the posterior. In addition this process

is repeated a number of times with the prior of each round being the posterior of the

previous round, with the sample parameter sets weighted based on how well they

fit the data, and the acceptance conditions becoming more strict. This results in an

approximate inference of parameters which is not guaranteed to be accurate unless

certain conditions of the posterior and model error are satisfied (Wilkinson, 2013, Li

and Fearnhead, 2018, Frazier et al., 2018). The summary metrics used to evaluate

the fit of a simulation were the “Number of reactors per county per year” and the

“Number of failed herd tests per county per year”, for the years 1999-2007. The

authors state that least squares error and approximate likelihood produced similar
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results.

The parameter estimates given by the model are as follows:

Parameter: Meaning Prior Posterior Estimate (CI)
β: cattle-to-cattle transmission rate (years´1) Gammap1, 3.65q 0.61 (0.0503, 1.54)
Γ´1: average latent period (years) Gammap1, 22q 11.1 (3.29, 25.7)
ϵ: environmental decay rate (years´1) Gammap1, 18.25q 7.23 (3.57, 12.6)
f : farm environment-to-cattle transmission rate (years´1) Gammap1, 0.73q 0.154 (0.0488, 0.309)
F : parish environment-to-cattle transmission rate (years´1) Gammap1, 0.073q 0.0136 (0.00288, 0.0337)
ρ: test sensitivity Betap11.5, 5q 0.72 (0.633, 0.806)
ρE: relative test sensitivity for latent cattle Uniformp0, 1q 0.276 (0.136, 0.488)

Table 4.1: The biological meanings, prior distributions, point estimates (expected
value from the posterior) and 95% intervals calculated from the marginal posterior
distributions, recreated from Brooks-Pollock, Roberts, and Keeling, 2014. The
Gamma distributions are defined by their shape and scale.

Brooks-Pollock, Roberts, and Keeling, 2014 modelled the spread of Bovine

Tuberculosis from 1999 to 2007, which encapsulated a highly disruptive Foot and

Mouth disease epidemic. We are looking at the same data sources but for the period

2012 to 2019. As such the modelling assumptions will be different and evaluated

from first principles in light of this new context, though inspiration is taken from this

previous work. In addition we must consider that we are using different inference

methods to any used previously, and as shown in Chapter 2 the parameterisation

and form of our model can have an effect on the efficiency of our algorithm. In the

following sections we provide the reader an overview of the data sources provided to

us by APHA and the highlights of an exploratory data analysis used to inform our

model presented in Chapter 5. The features of most importance to us are location,

movements (including births and deaths), and testing.

4.3 Data Description

The data is supplied by the Animal and Plant Health Agency (APHA). The data

consists of 5 files. Below we list the files, a short description, and a description of

their contents. In the next section we provide dictionaries of the contents of the
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data sources. Where there are data that we have not utilised in our model, we omit

some detail.

The file data sets include:

• Location data containing the details of each farm

• Historic Herd data which concerns a count of the number of animals on each

farm at the beginning of each month

• Animal Details data containing the unique attributes of every cow

• Births, Deaths, and Movements data taken from the Cattle Tracing System

(CTS)

• Test details and results taken from the VetNet national testing database.

We have the location of every holding (of the county-parish-holding sense) in

England and Wales that held, traded, or tested animals between 01-Jan-2012 and

01-Jul-2019. There are 57 counties, 10, 337 parishes, and 79, 559 holdings (unique

CPH ids) total. There are 82, 208 location entries in the data, which in addition

to holdings includes data on slaughter-houses, showgrounds, and others detailed in

Table 4.7.

4.4 Data Dictionary

This section presents an overview of the contents of each data set we have, in the

form of a data dictionary. The information presented here is intended to give the

reader an in depth insight into what information was available on which to build

our model.

4.4.1 CTS Locations

The CTS Locations table (Table 4.2) includes the details of locations with cattle

present during the data range. It includes the unique identifier of each holding, their
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geographic location coordinates, and the premises type of the holding. The different

premises types are detailed in Table 4.7.

Location Database
Field Name Data Type Description
CPH FMT nvarchar(11) Holding identifier with formatting
CPH nvarchar(9) Holding Identifier (no formatting)
MapX Integer X Map co-ordinate
MapY Integer Y Map co-ordinate
PremisesType nvarchar(2) Premises type

Table 4.2: CTS Locations.

Having the map co-ordinate of every farm allows us the potential to explore

spatial kernels for spread at the farm level, however the vast quantity of farms in

the database makes this infeasible, even if we introduced a locality effect, and to

reference the Near vs Far model from Chapter 2, make the scalar of the infection

rate beyond distance d equal to 0. In addition, we are not provided the geometry

of the farm, just the centroid or the farmhouse, and this does not inform where

cattle are housed or graze, and how likely they are to interact with other farms. For

instance farms within proximity to each other could border, or even share pastures,

making spread more likely, or could be separated by a road or a river. For this reason

we have chosen to instead look at spatial spread using the County-Parish-Holding

number of the farms, treating farms in the same parish as being spatially connected.

This of course has its flaws, as farms on opposite side of the parish are less likely

to affect each other than farms on the borders of neighbouring parishes, however,

the computational burden can be vastly reduced compared to using a continuous

spatial kernel, and by grouping by parish our model aligns well with testing policy.

Finally the inclusion of premises type suggests the potential for different premises

purposes to be more correlated with disease spread - depending on the distribution

of premises type it may make sense to treat them differently, or focus on only a

subset of premises types that make up the majority of locations.
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4.4.2 Historic Herd Data

The Historic Herd Data table (Table 4.3) includes the details of the estimated

number of cattle on each premises for each Month/Year. It includes the unique

identifier of each holding, the month, the year, and the estimated number of cattle

present on the farm at the beginning of the month.

Historic Herd Database
Field Name Data Type Description
CPH FMT nvarchar(11) Holding identifier with formatting
CPH nvarchar(9) Holding Identifier (no formatting)
HistoricYear Integer Year
MonthNumber Integer Month
NumberOfAnimals Integer Number of animals present on first day of the

month

Table 4.3: Historic Herd Data.

The historic herd data will be of limited use beyond initialising the epidemic,

as the first record plus the movement, testing removals, births, and deaths should

result in the same counts, adjusting for artefacts in the data. That said it does allow

us to initialise the data at any date, and sense check our work for consistency.

4.4.3 Animal Details

The Animal Details table (Table 4.4) includes the details of the animal details for

animals tested or moved during the date range. It includes the unique identifier of

each cattle, their date of birth, their date of death, sex, and breed type.
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Animal Details Database
Field Name Data Type Description
Eartag varchar(35) Animal Identifier (Unique ID)
DoB Date Date of Birth
DoD Date Date of Death
Sex Char(1) Male (M) or Female (F)
BreedCode varchar(15) Breed code (Details omitted)

Table 4.4: Animal Details.

As an individual level model of this scale is infeasible, we have limited use for

individual level data on cattle. However, it is worth exploring in the initial phase to

understand if there is a need to treat any breed (for instance, which in turn is likely

to correlate with farm or location) differently. In our exploration we did not find a

sufficient benefit to incorporating this data.

4.4.4 CTS Movements

The CTS Movements table (Table 4.5) includes the details of the movement of cattle

between premises. It includes the unique identifier of each cattle, and the unique

identifiers of the farms they moved off of and on to. It also includes details of any

intermediate farms where they stayed during the movement, and how long they

stayed at their ‘onto’ destination. It also includes when the movement occurred,

whether it was a cattle movement, a birth event, or a death event. And finally the

age at which they moved.
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Movements Database
Field Name Data Type Description
Eartag varchar(25) Animal Identifier (Unique ID)
MovementID Integer Movement ID (Move sequence if ą1 on a

single day)
MovementDate Date Date of Move
OffCPH varchar(9) Departing CPH (no formatting)
OnCPH varchar(9) Destination CPH (no formatting)
Birth bit Birth Move (1), Non-Birth Move (0)
Death bit Death Move (1), Non-Death Move (0)
TransCPH varchar(9) CPH of Transitory premises e.g. Market
TransPremType nvarchar(2) Premises type for Transitory premises
StayLength Integer Time spent on the Destination CPH (days)
AgeAtMove Integer Age in Months at time of move

Table 4.5: CTS Movements.

The level of detail in the movement records opens up a wide array of possibilities,

both in terms of the individual level data and the choices of aggregation. Knowing

the full path of each cow allows us to extract only those locations we think of as

being the most relevant. For instance due to the slow spreading nature of the disease

we may view transitory premises or stays of less than a day to be inconsequential.

Or as mentioned in Section 4.2 there are studies that show only using the most active

nodes in the network can still give accurate inference. Either way it is likely that we

will need to reduce the data in some way for computational reasons. Aggregating

the data to the weekly level, we can choose to only consider the first and last farm

of a cow each week. Equally for births and deaths we can just take the count of

each on each farm each week.

4.4.5 Animal Test

The Animal Test table (Table 4.6) includes the details of the cattle Bovine

Tuberculosis tests. It includes the unique identifier of each cow, the unique identifier

of the farm they were tested on, the date of their test, and the outcome. It also

contain details on the test itself such as the reason for testing and the testing method.
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The coding for the reasons for testing is given in Table 4.8. The coding for the testing

methods is given in Section 4.5.3. The coding for the results of the test is given in

Table 4.9. The coding for the actions following the test is given in Table 4.10.

Testing Database
Field Name Data Type Description
Eartag varchar(35) Animal Identifier (Unique ID)
CPH char(9) Test CPH (no formatting)
TestDate Date Date of test
TestType varchar(20) Reason for test (See Table 4.8)
Category varchar(50) Testing method (See Section 4.5.3)
TestRes varchar(5) Test Result (See Table 4.9)
TestRes2 varchar(5) Original Test Result if superseded
Action char(1) Action following Test Result (See Table 4.10)
LesSH varchar(3) Lesions found at Slaughterhouse (Details

omitted)
AvianResult Integer Avian Skin test difference in mm
BovineResult Integer Bovine Skin Test difference in mm
ReactorType varchar(2) Standard or Severe
AgeAtTest Integer Age at test in months

Table 4.6: Animal Test.

Another data set of great interest, again the level of detail in the testing data

opens up a wide array of possibilities. We have chosen to not incorporate any genetic

testing data in the model, due to the limited number of records that were processed.

In addition whilst many of the details of each test are present, including the presence

of lesions and the results of follow up tests, due to the subjectivity of the test and

the dependence on the clinicians judgement, we have chosen to simply focus on the

action taken following the test. We can then aggregate this as a per farm per week

count. The data allow us to explore in detail, however, the different tests used and

how many cases can be attributed to each. This allows us to choose whether to

model each or to focus on only the most relevant.
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4.5 Data Coding

This section provides further details on the coding of the data. The information

presented here is intended to give the reader a deeper understanding of the

categorical data provided by the APHA.

4.5.1 Premises Type

The premises type is the designation of the farm and its purpose. A farm in the

sense that most people would imagine it is an Agricultural Holding, but there are

many other premises that hold cattle.

Premises Type Coding
Coding Premises Type Description
AH Agricultural Holding
AI AI Sub Centre
CA Calf Collection Centre
CC Collection Centre (for BSE material)
EX Export Assembly Centre
HK Hunt Kennel
KY Knackers Yard
LK Landless Keeper
MA Market
SG Showground
SR Slaughterhouse (Red Meat)
SW Slaughterhouse (White Meat)
TH Temporary Holding

Table 4.7: Premises Type.

4.5.2 Reason for test

The reason for testing is the reason why the test was performed. This typically is

either because of routine testing, or testing because of an event, such as before and

after movement. Tests occur to either the Whole Herd (WH) or to Individual cattle

(IA).
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Test Reason Coding
Coding Coding Test Reason Description
VE-12M WH 12 months post-6M test
VE-6M WH 6 Month test
VE-AI IA AI animal test
VE-CLINICAL IA Ancillary blood test
VE-CON WH Contiguous test
VE-CON12 WH 12 months post CON6-Contiguous test
VE-CON6 WH 6 months post Contiguous test
VE-CT WH Check test
VE-CT(EM) WH Carried out outside the normal testing

frequency for the herd, to determine its
disease status when there is a suspicion of
infection.

VE-CT-HS1 WH 1st hotspot check test
VE-CT-HS2 WH 2nd hotspot check test
VE-CT-NH1 WH 1st new herd check test
VE-CT-NH2 WH 2nd new herd check test
VE-IFN ANOM IA IFN Anomalous Reactions Procedure
VE-IR IA Inconclusive Reactor Retest
VE-OT WH Other test
VE-POSTMT IA Post movement testing
VE-PRMT IA Pre-movement testing
VE-RAD WH Radial Herd Test. Stock eligibility will be as

with CON tests - all bovines except calves
under 6 weeks old

VE-RAD12 WH 12 months post Radial Herd Test. Stock
eligibility will be as with CON tests - all
bovines except calves under 6 weeks old

VE-RAD6 WH 6 months post Radial Herd Test. Stock
eligibility will be as with CON tests - all
bovines except calves under 6 weeks old

VE-RHT WH Routine Whole herd test
VE-RHT12 (S) WH For herds that are on 12 monthly testing

intervals. Eligibility is as per 48 month
Routine Herd Tests

VE-RHT24/36 WH Carried out in parishes with a 24, 36 month
testing interval

VE-RHT48 WH Routine surveillance test carried out every 48
months

VE-SI WH Short Interval test
VE-SLH IA Slaughterhouse case
VE-TR IA Traced Bovine Test
VE-WHT WH Whole herd test
VE-WHT2 WH Yearly test in 2 yearly testing parishes

Table 4.8: Reason for test.
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4.5.3 Test Method

There are 4 kinds of testing methods in the data set. We will only concern ourselves

with the TBSKINTEST which accounts for over 98% of all tests. The TB Skin Test

is a tuberculin test where cattle are injected with both bovine and avian tuberculin,

and cattle that have a stronger reaction to the bovine are considered reactors. The

test has imperfect sensitivity and relies somewhat on subjective clinical decisions.

The others tests are an antibody test, a gamma interferon test, and a slaughter

house post-mortem.

4.5.4 Test Result

The result of the test describes the clinical outcome of the test. This is typically a

positive, negative, or inconclusive, but different test types have different coding.

Test Result Coding
Coding Test Result Description
CLEAR Clear tested
CLIN Clinical Case
DC Dangerous Contact
IR Inconclusive
N Negative blood test (Gamma Only)
OTH Not tested but slaughtered for other reasons.

Being wild and unmanageable is one.
P Blood test with pending result(Gamma

Only)
R Reactor (Skin or Gamma test)
SL Slaughterhouse suspect case
UNK This predates the OTH category so they can

be taken as that

Table 4.9: Test Result.

4.5.5 Action following Test Result

The TB SKINTEST in particular is somewhat subjective, so the clinical test results

don’t always lead to the same outcome for the cattle if the clinician deems it so.

139



Chapter 4. Bovine Tuberculosis

This is the reason for the distinction, and Action following Test Result represent

what actually happened to the cattle.

Action Coding
Coding Action Description
N None
S Slaughter e.g. reactor or animal taken as

reactor or dangerous contact
I Isolate i.e. an inconclusive reactor (IR) will

be isolated from the rest of the herd until it
is retested (after 60 days)

Table 4.10: Action following Test Result.

4.6 Descriptive Statistics

In this section we provide a summary of the data we received from the APHA. The

purpose of this section is to give the reader an insight into the scale and nature of

the data, as well as how much information is relevant to the model we are intending

to build and fit.

By choosing to model the spatial spread of the disease, given the movements of

cattle, in parish units, we are able to introduce an independence between parishes,

given movements. This allows us to scale down our inference to only one parish

or collection of farms to assess the spread of the disease in one area, or to divide

computation. For this reason we also present here the statistics for the parish of

Cheshire, our chosen example. Cheshire was chosen due to its moderate size and its

location in the ‘Edge-risk’ policy region.

4.6.1 Locations

The data is for England and Wales and ranges between the 01-Jan-2012 and 01-

Jul-2019. The data consists of a total 57 counties, broken into 10337 parishes, and

further broken into 79559 unique holdings. In the county of Cheshire there are 311
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parishes, divided into 2172 unique holdings.

There are 10 types of premises, with the three most common premises types

being Agricultural Holding p76, 348 { 94.45%q, Landless Keeper p2, 046 { 2.56%q, and

Temporary Holding p1, 482 { 1.85%q. In Cheshire there are only 5 types of premises,

with the top three being Agricultural Holding p2, 072 { 95.18%q, Temporary Holding

p53 { 2.43%q, and Landless Keeper p47 { 2.16%q.

Due to the overwhelming proportion of premises types being Agricultural

Holding, and the slow spreading nature of the disease making Temporary Holdings

and Landless Keepers unlikely to be contributing significantly to disease spread, its

makes sense for us to focus our efforts on Agricultural Holdings - or rather for the

sake of simplicity - not distinguish between premises type.

4.6.2 Cattle

There are 21, 977, 071 unique cattle that were born, died, moved or tested in the

data set. In Cheshire there are 2, 811, 616 unique cattle that were born, died, moved

into or out of, or were tested there.

As explored in Chapter 2 and 3, 22 million, or even 3 million, individuals is too

many to be able to make inference on, even for the simplest of models. Due to

the nature of Bovine Tuberculosis the model will need complexities beyond those

explored thus far. As a result it is clear we will need to use a population level model

that only considers the number of individuals in each state. That said there are

clear geographic differences, so it should not be as extreme as one population for

the whole country.

4.6.3 Movements

There are 32, 476, 152 total movements in the data set that are associated with

17, 377, 240 total unique animals that have been moved. There are 1, 660, 178 unique

movements into, within, and out of Cheshire, which is divided as 1, 005, 472 unique

movements out of Cheshire, 344, 148 unique movements into Cheshire, and 310, 558
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unique movements within Cheshire. There are 1, 052, 263 total unique animals

moved into, out of, or within Cheshire.

There are 16, 534, 913 total births and 16, 409, 722 total deaths in the data set.

There are 787, 135 unique births and 119, 711 unique deaths that occur within

Cheshire.

We require animal movement data to model the movements which relate to

the spread of the disease. However, as mentioned in Section 4.2 it may not be

necessary to use every movement. Following Brooks-Pollock, Roberts, and Keeling,

2014 there is no necessity to associate any parameters with the movements, though

over 60 million records will still be a challenging task to accommodate and can still

affect the inference of the other parameters. We can certainly operate in a discrete

population and concern ourselves with only the counts of the number of movements

between each pair of farms. We can also operate in discrete time and only concern

our model with the first and last farm of each cow during a timestep. From the

counts it appears that on average each cow moves twice, and given the difference

in births and deaths in Cheshire, it is likely one of those movements is a move to a

designated slaughter location.

4.6.4 Testing

There are 69, 309, 947 total unique tests performed attributed to 16, 025, 845 total

unique animals tested in the data set. There are 4 methods of testing which divide

the tests as ‘TB Skin Test’ with 68, 426, 837 accounting for 98.73%, ‘Gamma Test’

with 868, 884 accounting for 1.25%, ‘Postmortem Exam’ with 10, 911 accounting for

0.02%, and ‘Antibody Test’ with 3, 312 accounting for 0.00%. There are 57 possible

reasons that a test is administered, the top 10 reasons for the whole data set are

given in the table below. The other 47 test reasons account for the other 7.44%.
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Test Reasons (Whole data set)
Code Description Units Proportion
VE-SI Short Interval test (Whole Herd) 26,573,580 38.34%
VE-WHT Whole herd test (Whole Herd) 14,622,920 21.10%
VE-6M 6 Month test (Whole Herd) 6,192,727 8.93%
VE-PRMT Pre-movement testing (Individual Animal) 4,718,895 6.81%
VE-CON Contiguous test (Whole Herd) 4,076,907 5.88%
VE-12M 12 months post-6M test (Whole Herd) 2,985,597 4.31%
VE-CT(I-I) Carried out outside the normal testing

frequency for the herd, to determine its
disease status after voluntary slaughter
(Whole Herd)

1,652,173 2.38%

VE-RHT48 Routine surveillance test carried out every 48
months (Whole Herd)

1,464,542 2.11%

VE-CON12 12 months post CON6-Contiguous test
(Whole Herd)

964,761 1.39%

VE-RAD6 6 months post Radial Herd Test (Whole
Herd)

900,897 1.30%

Table 4.11: Top 10 Test Reasons.

There are 3, 519, 067 unique tests attributed to 750, 660 total unique animals

tested in Cheshire. There are 4 methods of testing which divide the tests as ‘TB Skin

Test’ with 3, 377, 149 accounting for 95.97%, ‘Gamma Test’ with 141, 629 accounting

for 4.02%, ‘Postmortem Exam’ with 258 accounting for 0.01%, and ‘Antibody

Test’ with 31 accounting for 0.00%. There are 39 possible reasons that a test is

administered, the top 5 reasons for the whole data set are given in the table below.

The other 34 test reasons account for the other 13.94%.
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Test Reasons (Cheshire)
Code Description Units Proportion
VE-WHT Whole herd test (Whole Herd) 1,419,991 40.35%
VE-SI Short Interval test (Whole Herd) 990,253 28.14%
VE-6M 6 Month test (Whole Herd) 260,277 7.40%
VE-PRMT Pre-movement testing (Individual Ani-

mal)
225,237 6.40%

VE-
IFN LOW IN

IFN OTFW TB Breakdown in Lower
TB Incidence Area - Investigation and
Interpretation (Whole Herd)

132,704 3.77%

Table 4.12: Top 5 test reasons in Cheshire.

As the disease is a chronic bacterial disease which is asymptomatic on the

timescales we are concerned with, testing is the only way of identifying infected

cattle, and acts as an alternative to I to R transitions, with the distinction that

they no longer occur at a given rate, but on a testing schedule which varies by

location. Less than 1% of infected cattle are detected through individual level tests,

and since Whole Herd Tests make up the vast majority of testing, we can follow

Brooks-Pollock, Roberts, and Keeling, 2014 and focus solely on whole herd tests,

which also restricts us to TB Skin Tests. We can take the testing dates from the data,

and assuming all animals are tested, the reason for testing is no longer necessary to

consider in the model.

4.7 Exploratory Data Analysis

4.7.1 Historic Herd

The historic herd data set contains counts on the number of animals on each farm

each month. From these observations we can get an idea of the size of farms. The

size of farms may contribute to the disease dynamics. For instance in larger farms

the disease may spread more easily, as opposed to the same number of cattle divided

between multiple farms. We can see from Figure 4.3 that the majority of farms have
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between 21 and 200 cattle, but the majority of cattle reside on farms that have a

population of 201 to 500 cattle compared to any other group.

Figure 4.3: Average number of animals per farm

These unit sizes support the idea of dividing the population into discrete farm

units, and modelling the epidemics within each farm and the movements of cattle

between farms.

For Figure 4.4 we can see that the number of cattle kept in each county varies

wildly, with Devon being the largest county and Greater London being one of the

smallest. Our chosen case study, Cheshire, is one of the larger ones whilst still being

of a manageable size for computations.
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Figure 4.4: Average number of animals per county

This supports the modelling assumption of grouping the population of farms

into parishes. Clearly North Yorkshire contains a large number of cattle and the

surrounding counties don’t, as such there is likely more infectious pressure coming

from within North Yorkshire than without, and as such parish grouping makes more

sense than geographic grouping for border farms.

As might be expected there is also a seasonality trend in the number of cattle,

with more in the summer and less in the winter, in line with deaths. There is also

a slow growth in the total number of cattle year on year. We have chosen not to

adjust for this yearly seasonality as we do not believe it will have significant effect

on the inference.
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4.7.2 Movements

Of the animals that moved, Figure 4.5 shows that the majority of animals only

move once or twice during their lifetime. These movements in many cases are also

movements for slaughter. This has implications for the modelling of the spread of

the disease. If movements are generally rare then this will affect how much they

contribute to the spread.

There are however a handful of cattle that move a very large number of times,

most likely bulls. If the disease were to spread easily this could be a cause for

super spreading events, however, its well known that Bovine TB is very slow

spreading disease, so this is unlikely to be a factor that needs much consideration.

Equally it could contribute to persistence of the disease, or its introduction into new

populations, but given the limited time a bull would spend on each farm and the

slow spreading nature of disease, plus the small number of cattle that exhibit this

movement behaviour, this is also unlikely to be a necessary consideration for our

model.

Therefore most of the movements that actually relate the spread of the disease

are the singular trade that most moved cattle experience in their life. These still

total in the tens of millions, and so it is worth considering each, though as animals

typically aren’t hoping between farms weekly, it is less likely that we need concern

ourselves with super spreaders or pathways. Thus the total counts of movements

of animals in each state can just be considered, and in a sense the animals are

exchangeable.
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Figure 4.5: Total number of movements per animal

The number of animals moved into and out off each county, as seen in Figures

4.6 and 4.7, is clearly directly proportional to the number of animals within in each

county. Rationally the number of movements off should have the same total mass

as the number of movements on, however the graph clearly shows far fewer ons than

offs. This is because most of the final destinations of cattle, such as slaughter houses

and non-agricultural holdings, do not follow the same ID (CPH number for farms)

pattern and so the counties of these destinations are not identifiable to us using the

key provided by APHA. As such this plot should be interpreted as the number of

movements into the county not for slaughter, ie. for animal trade. The bright yellow

patch in the North east is North Yorkshire. The movement counts are not scaled by

county size or farm density, so this is certainly a contributing factor.

As such the computation burden will scale proportional to the number of cattle

in the county for all elements. Thus when considering how to scale the model, or

where to apply it, starting with Cheshire is a reasonable action due to its size.
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Figure 4.6: Total number of movements in per county
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Figure 4.7: Total number of movements out per county

Figure 4.8 shows there is a clear seasonality trend in the movements per month

with peaks just before the summer months and just before the Christmas period,

though they don’t directly align with the seasonality in births and deaths. We

don’t anticipate this having much effect on our inference, and the patterns seems

consistent year on year.
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Figure 4.8: Total Movements per Month

Of those movements, we see that movements can happen every day, but there is

definitely a strong preference for weekdays as seen in Figure 4.9. There is benefit

here to aggregating the weekly level to remove this cycle.

Figure 4.9: Total Movements per Day of the Week
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4.7.3 Births and Deaths

The births naturally are proportional to the number of cattle in each county, as are

the deaths.

There is clear seasonality in the number of births, with a large peak in March

and April, and a small bump again in August and September as seen in 4.10. This

is clearly an intentional process by the farms.

Figure 4.10: Total Births per Month

The deaths per month, as seen in Figure 4.11, however, have the most variability

of any of the trends. There tends to be a peak in October or November following

a lull in the middle of the year, but the number of deaths can change a lot from

month to month. This could be due to changing demand in the population.
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Figure 4.11: Total Deaths per Month

4.7.4 Testing

Seasonality can be seen in the number of cattle tested as well. In Figure 4.12 we can

see that this strangely follows the reverse relationship of the number of cattle in the

country. The dip mostly happens in the summer months. This could be related to

the peak in deaths at the end of the previous year and the peak of births a few months

prior combining with testing policy typically not testing cattle less than 6 months

old and the reductions in movements. Without further data or understanding of the

cattle industry it would not be possible to say what is the causal effect.
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Figure 4.12: Total Tests per Month

From Figure 4.13 we can see that testing mostly occurs on Mondays or Tuesdays.

This means aggregating these to one weekly testing event per farm is a reasonable

assumption to make for our model, as the majority of other events such as movements

and deaths are likely to take place on a different day to testing, before or after during

the week.

Figure 4.13: Total Tests per Day of the Week
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Table 4.13 shows that almost all tests were TB Skin Tests. This justifies

the generalising of the testing process in our model to only one kind. Of those

68, 426, 837 TB Skin Tests 67, 986, 890 of them were Negative p99.36%q, 189, 204

were inconclusive p0.28%q, and 250, 743 were positive p0.37%q. This shows the low

level of the sensitivity of the TB Skin Test, with almost as many inconclusive tests

and positive tests.

Year ANTIBODY GAMMA POSTMORTEXAM TBSKINTEST
2012 - 30527 1736 7855115
2013 38 36895 1651 8292178
2014 - 72963 1494 8773117
2015 - 87454 1652 9207162
2016 - 90778 1318 9508833
2017 - 126809 1084 9465956
2018 884 234514 1248 9690454
2019 2390 188944 728 5634022
Total 3312 868884 10911 68426837

Table 4.13: Total Tests per Category per Year

4.8 Discussion

In this chapter we have laid out the context of Bovine Tuberculosis, our case

study example for large scale complex epidemics. With data spanning 7 years, 20

million cattle, 60 million movements, and 70 million tests, the scale of the epidemic

is challenging for even discretised models. Previous work has given insight into

dynamics but none have used MCMC.

We have explored data from the APHA to inform the model choices presented

in Chapter 5. Based on the number of animals in the population we choose to

discretise the population, treating all individuals as identical and exchangeable, and

only concerning ourselves with the number of individuals in each infectious state

at any given time. Given the different prevalence’s, testing policy, and populations

across the country we wish to split the population into sub-populations. These

could range anywhere from the county to farm level. We have chosen units of the
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farm level to align with the reported statistics of herd breakdowns, herd incidence,

and herd prevalence, as well as to better model movements. Testing also occurs on

a farm-by-farm basis and as such is better analysed with farm units. We concern

ourselves with only those premises with the type ‘Agricultural Holding’, which make

up the vast majority. Similarly we only consider whole herd tests done using the TB

Skin Test, which accounts for over 90% of tests and over 99% of detections. This

reduces the computation burden of 20 million cattle to 80,000 farms. As for the

spatial spread of the disease, there will be within farm spread, between farm spread

due to movements, and between farm spread due to environment as evidenced in the

literature. Brooks-Pollock, Roberts, and Keeling, 2014 choose to have environmental

effects within the farm and the parish, however we do not see a reason for a within

farm environmental effect and indeed in tests it lead to identifiability issues. With

80,000 farms a spatial kernel that takes into account the distance of between farms

is impractical, combined with not having boundary data or data on where cattle

are within a farm, we have chosen to have a group of farms share an environmental

reservoir of infection, inline with Brooks-Pollock, Roberts, and Keeling, 2014. The

default size of a group of farms is a parish, which aligns well with testing policy.

The data is already aggregated at the day level, with some additional data on

the order of movements. As such a discrete time model is the natural choice, but

the level of discretisation is still up for discussion. The larger the timesteps, the

less computational burden, but the more inaccuracies introduced, however it is not

a linear scale. Due to the slow spreading nature of the disease, it is reasonable to

consider timesteps longer than 1 day. In addition, there are cycles in the movements

and testing that can be removed by aggregating to the week level. At this level we

can also reduce the number of movements by just considering the first and last

location of a cattle each week. This is acceptable because of the unlikeliness of

super spreaders and an average of one trade per lifetime per cattle.

With small adjustments we can also focus our analysis on a subset of farms

initially to reduce the computational burden, and then scale up the methodology.
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Cheshire, or a subset of Cheshire, appears a good choice due to its geographic

location in the edge-risk zone, and its medium scale cattle population.

In Chapter 5 following, we introduce our first model for Bovine Tuberculosis

based on the findings of this chapter, which utilises a simulated badger population

and partially simulated testing to get a partially simulated epidemic with known pa-

rameters. From this we develop an MCMC inference methodology and demonstrate

its efficiency in this context.

157



Chapter 5

Our Bovine Tuberculosis Model

5.1 Introduction

In this chapter we demonstrate how we model the spread of a large scale big data

epidemic, using full likelihood methods to fit the model to partially simulated data.

Our case study disease is Bovine Tuberculosis (bTB). The challenges are many;

the disease has complex dynamics, we have vast quantities of data on all the cattle

in England and Wales, and there is a question of the role of Badgers as a reservoir

for the disease, which is of particular political interest, but data on this aspect is

scarce.

In this chapter we explore how we have processed the cattle movement, testing,

birth, and death data into weekly batches, developed a model inspired by that

of Brooks-Pollock, Roberts, and Keeling, 2014, simulated an epidemic in this

framework guided by data, and developed an MCMC inference scheme.

We begin in Section 5.2 with a description of our model and justify our modelling

decisions based on research and our previous data exploration in Section 5.3. In

Section 5.4 we provide a glossary of model terms to aid the reader before explaining

in Section 5.6 how we simulate new epidemics that are guided by the real data.

We present our likelihood and subsequent posterior distributions for this new model

in Sections 5.7 and 5.8 respectively. In Section 5.9 we walk through our MCMC
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inference schema, with the methods of data augmentation explored in 5.10. Finally

we present the result of running this MCMC schema for our simulated data and

validate the effectiveness of its inference in Section 5.11, laying the foundations for

the following chapter where we apply it to the full real data. In the appendix we

present functions and algorithms for MCMC schema.

5.2 Our Bovine Tuberculosis Model

In this section we describe our model for Bovine Tuberculosis in England and Wales.

Our model is

• Discrete-time: Each of the processes - epidemic, movement, testing, births,

and deaths - is considered at the week level.

• Hierarchical: Due to the discrete time nature of the model, each event set is

considered in turn. First the movements, then the infection process in each

population, then testing (if it occurs), then births and deaths.

• Meta-population: Each farm is a distinct population of cattle and badgers that

generates its own epidemic process. The populations are connected through

a network of movements and an environmental reservoir of infection at the

parish level (collection of farms).

• Population-level: Within each farm only the counts of cattle in each infectious

state on each farm are considered, and the cattle are considered identical and

exchangeable.

• SEI(R): The epidemic process within each farm divides the population into

4 groups based on infectious status and models the transitions between the

groups.

• Testing: The disease is asymptomatic on the timescales concerned, so a testing

process is required to identify infectious cattle and remove them.
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• Badgers: There is also a population of badgers on each farm with their own

SEIR process independent of the cattle, but also contribute to the background

environmental reservoir of infection.

The model is concerned with modelling the spread of Bovine Tuberculosis

in England and Wales whilst taking account of the movements of cattle and

environmental reservoirs of disease. The model is composed of 4 stochastic processes;

the movement process (cattle), the epidemic process (cattle and badger), the testing

process (cattle), and the birth and death process (cattle and badger), with the

number of cattle movements, births, and deaths being based on data. The processes

are parameterised by 9 parameters of interest - 5 are associated with the infection

process, 2 with the testing process, and 2 with the badger birth and death process.

Within each farm we have a count of the number of susceptible (S), exposed but

not infectious (E), and infectious (I) cattle. We model the transitions between these

groups. The rate at which cattle move from susceptible to exposed is given by the

infectious pressure on farm i at time t which is calculated using:

λci,t “

#

´βc
xIi,t
N c

i,t

´ F
Vppiq,t

Appiq

+

,

where βc is the within-farm infectious contact rate of cattle, xIi,t is the number of

infectious cattle on farm i at the beginning of time step t, N c
i,t is the total number

of cattle, Vppiq,t is the environmental pressure on farm i in parish p at time t, Appiq

is the size of the parish p with i P p, and F is the scalar of the environmental

reservoir infectious pressure. And similarly the infectious pressure within the badger

infectious process is given by

λbi,t “

#

´βb
yIi,t
N b

i,t

´ F
Vppiq,t

Appiq

+

,

where βb is the within-farm (assuming one social-group of badgers per farm)

infectious contact rate of badgers, yIi,t is the number of infectious badgers on farm i

at the beginning of time step t, and similarly N b
i,t is the total number of badgers.
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The rate of transition of cattle from the exposed to infectious state is dependent

on the parameter δc, and the rate at which badgers move from the exposed state

to the infectious state is given by δb. We make the assumption that there is no

difference between species and that δc “ δb “ δ. This is reasonable as the literature

shows that the badger-to-badger infection rate may be higher due to the confined

living situation of badgers in setts, like a household effect, but the long incubation

periods are still present, with up to 80% being outwardly asymptomatic (Bhuachalla

et al., 2014). We only refer to δ from this point forward.

The environmental reservoir is represented by a scalar in R` that represents

the background level of infection in each parish contributed to by both cattle

and badgers. It represents the bacterial presence of bTB on pastures, in water,

in excrement, and so forth, in and around the farm. Each week an amount of

additional environmental infectious pressure is generated by the infectious animals

in the parish and is added to the current amount, in addition, the current amount

decays and is reduced by a random amount. The amount of infectious pressure that

remains from one week to the next is dependent on the parameter ϵ, which is the

environmental reservoir decay probability. This is inspired by the Brooks-Pollock,

Roberts, and Keeling, 2014 model described in Chapter 4, however we have changed

it from a deterministic process to a stochastic process, to improve the efficiency of

our inference methods (see details in Section 5.6.3.8).

Unlike the typical epidemic models, our epidemic process for Bovine Tuberculosis

does not include the natural transition of cattle from the infectious state to the

removed state. The disease is chronic and eventually fatal, however due to the

government testing programme, the disease is in most cases externally asymptomatic

on the timescales we are considering. With this in mind the transition from the

infectious to removed state is driven through an independent observation based

detection process. An entire herd of cattle is tested for bTB using an insensitive

Tuberculin test as described in Chapter 4. The tests occur based on national testing

policy, with a frequency of approximately once every 6 - 24 months, with follow up
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tests more frequent on farms where bTB is detected. The true sensitivity of the test

is unknown and as such we have two parameters that define the process. The first

is ρ which is the test sensitivity for cattle in the infectious state. However, cattle in

the exposed state are less likely to be detected, thus we suggest a scalar ρE between

0 and 1 which generates the detection probability of exposed cattle as ρρE, given

they are tested.

Finally, data on badger populations is unavailable at this time, and as such the

badger populations we refer to in this chapter are fully simulated. Along side the

epidemic process, we also introduce a badger birth and death process to manage the

populations. The deaths are unrelated to the epidemic process. We again assume

that badgers do not die due to Bovine Tb infection on the scales we are interested

in, but die for other reasons before that is possible. The badger rate of birth is given

by ηb and the badger rate of death is given by ηd.

Table 5.1 below summarises the parameters of the model.

Parameter Description
βc The within-farm infectious contact rate of cattle
βb The within-farm infectious contact rate of badgers
δ The exposed to infectious transition rate
ϵ The environmental reservoir decay probability
F The scalar of the environmental reservoir infectious pressure
ρ The detection probability for a infectious cattle
ρE The scalar of the detection probability for cattle in the exposed state
ηb The birth rate of badgers
ηd The death rate of badgers

Table 5.1: The parameters of interest of our Bovine Tuberculosis model for partially
simulated data.

5.2.1 Model updating process

At time t for farm i in parish p, we generate the states of the animals on farm i at

t ` 1 in the following way:

1. Use the initial states of the farm at time t to generate the states of the animals

that were moved off given the known number of movements.
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2. Update the initial states with the movements off of and onto the farm.

3. Use the post movements states to generate the number of newly exposed and

infectious animals.

4. Update the states with the newly exposed and infectious animals.

5. If it is a test week, use the post Exposure and Infection states to generate the

number of newly detected Exposed and Infectious animals.

6. Update the states with the newly detected Exposed and Infectious animals.

7. Use the post detection states to generate the states of the animals that died

of non-testing causes, given the known number of deaths.

8. Finally, update the states with the newly born (all Susceptible) animals and

the newly died animals to get the final states.

Figure 5.1 provides a diagram for the typical week on a farm, assuming that testing

occurs. Figure 5.2 shows how this farm interacts with the wider parish, including

movements and the environmental reservoir effect.
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Figure 5.1: A visual representation of the events on one farm for one timestep. The
red and yellow arrows relate to the infection process, the dark blue arrows relate to
the detection process, and the black arrows relate to non-disease related death. The
parameters of the model are detailed in Table 5.1.
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Figure 5.2: A visual representation of the events on one parish for one timestep. The
light blue arrows are movements, the red and yellow arrows relate to the infection
process, the dark blue arrows relate to the detection process, and the black arrows
relate to non-disease related death. The parameters of the model are detailed in
Table 5.1.

5.3 Modelling Decisions

The two greatest challenges of modelling an epidemic of this scale are the

computational burden of calculating the likelihood, and augmenting the missing

data. Our initial choice to address both of these elements is to consider the epidemic

as discrete time, aggregating at the week level. This reduces both the size the of

the likelihood and the number of nuisance parameters. Alongside this we chose

to operate at the farm level, as opposed to an individual level. This makes cattle

exchangeable which in many ways simplifies the construction of the likelihood, and

allows us to focus on aggregate statistics like counts, rather than the individual states

of 20 million cattle. As we are not considering cattle at the individual level we did

not take into account any co-variate information such as breed, sex, or genetics.

By aggregating the data and considering the process at the week level, we
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have removed the ability to have different processes happening concurrently in our

likelihood function. As such we have introduced a hierarchical structure to the

events that happen each week. Each week begins with the cattle in an initial set

of states; the first events that occur are the movements and create an intermediate

set of states. This is followed by the infectious process and further updates to the

states, then the testing process and another update if it is a test week, and finally

the births and deaths.

Aggregating to week level we simplify the movements such that we only consider

the first and last farm a cattle is on each week. This means we do not consider stays

on farms for short durations, due to the slow spreading nature of the disease these

stays are unlikely to affect the epidemic process. It also addresses weekly cycles in

the moving and testing.

Within each farm we chose to implement an SEI process for each cattle

population. The majority of cattle in the UK are detected through a testing scheme

so we did not consider natural I to R transitions as part of the model. The badger

population has their own SEI, with deaths occurring at the their own rate unrelated

to the epidemic process, again due to the long time scales of the epidemic and

evidence in the literature that suggests the majority of badgers are killed by causes

unrelated to the disease (Bhuachalla et al., 2014). The disease is cross-species

communicable but we decided not to have the two populations interact directly

because of research done by Rosie Woodroffe et al., 2016, which tracked badgers

and cattle using GPS collars and showed that badgers prefer cattle pastures but

tend to avoid cattle. For this reason, as well as the inspiration of Brooks-Pollock,

Roberts, and Keeling, 2014, we introduced an environmental reservoir term at the

parish level. This reservoir is contributed to by both infectious badger and cattle

populations, and then contributes to the force of infection for both. An additional

farm-level environmental reservoir term for each farm had identifiability issues with

the parish-level term, and we could not find a strong reason to justify its presence

in the model beyond the parish level term. We make the assumption that the
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environmental reservoir decays stochastically at some rate each week, but is also

added to by any infectious animals in the parish each week.

For the testing, we chose to focus on herd level tests and assume that at all

test events every cattle on a farm is tested. This is due to less than 1% of cattle

being detected via individual tests. It is known from the literature that the TB

Skin Test has imperfect sensitivity and cattle must be infected for a time before the

test becomes effective. For this reason we introduced the probability of detecting

an infectious cattle upon testing through parameter ρ, and scaled this by ρE for

exposed cattle.

We made the assumption that cattle births create susceptible cattle, as there is

very little evidence that the disease can be transmitted in-utero. We assumed deaths

can occur to cattle in any state and are unrelated to disease status or testing, as the

disease is asymptomatic on the time scales we are considering.

5.4 Notation

In this section we present a consolidated list of short hand notation used throughout

the chapter to represent different states and events associated with the epidemic

model. The first table, Table 5.2, presents the notation for the different intermediate

sets of states of the cattle on each farm at each time point. Similar notation exist for

the badgers. The second table, Table 5.4, presents the notation used for the events

associated with the process. These events may be randomly generated as part of

the process, or may depend on known data. The purpose of this glossary is to make

further explanations, equations, and derivations more compact and readable.
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States

Starting Conditions

Vppiq,0 The level of infection in the parish environment at time t “ 0, i P p
xSi,0 The number of Susceptible cattle on farm i at the beginning of the simulation
xEi,0 The number of Exposed cattle on farm i at the beginning of the simulation
xIi,0 The number of Infectious cattle on farm i at the beginning of the simulation
Xi,0 rxSi,0, x

E
i,0, x

I
i,0s

Initial States

xSi,t The number of Susceptible cattle on farm i at the beginning of time t
xEi,t The number of Exposed cattle on farm i at the beginning of time t
xIi,t The number of Infectious cattle on farm i at the beginning of time t
Xi,t rxSi,t, x

E
i,t, x

I
i,ts

ySi,t The number of Susceptible badgers on farm i at the beginning of time t
yEi,t The number of Exposed badgers on farm i at the beginning of time t
yIi,t The number of Infectious badgers on farm i at the beginning of time t
Yi,t rySi,t, y

E
i,t, y

I
i,ts

Post Movement States

x1S
i,t The number of Susceptible cattle on farm i after movements have occurred during time t

x1E
i,t The number of Exposed cattle on farm i after movements have occurred during time t

x1I
i,t The number of Infectious cattle on farm i after movements have occurred during time t

X 1
i,t rx1S

i,t, x
1E
i,t, x

1I
i,ts

Post Exposures and Infections States

x2S
i,t The number of Susceptible cattle on farm i after the epidemic process during time t

x2E
i,t The number of Exposed cattle on farm i after the epidemic process during time t

x2I
i,t The number of Infectious cattle on farm i after the epidemic process during time t

X2
i,t rx2S

i,t, x
2E
i,t, x

2I
i,ts

y1S
i,t The number of Susceptible badgers on farm i after the epidemic process during time t

y1E
i,t The number of Exposed badgers on farm i after the epidemic process during time t

y1I
i,t The number of Infectious badgers on farm i after the epidemic process during time t

Y 1
i,t ry1S

i,t, y
1E
i,t, y

1I
i,ts

Table 5.2: The notation for the different intermediate sets of states of the cattle on
each farm at each time point.
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States

Post Detections States

x3S
i,t The number of Susceptible cattle on farm i after the testing process during time t

x3E
i,t The number of Exposed cattle on farm i after the testing process during time t

x3I
i,t The number of Infectious cattle on farm i after the testing process during time t

X3
i,t rx3S

i,t, x
3E
i,t, x

3I
i,ts

Post Births and Deaths States

x4S
i,t The number of Susceptible cattle on farm i after the birth-death process during time t

x4E
i,t The number of Exposed cattle on farm i after the birth-death process during time t

x4I
i,t The number of Infectious cattle on farm i after the birth-death process during time t

X4
i,t rx4S

i,t, x
4E

i,t, x
4I

i,ts

y2S
i,t The number of Susceptible badgers on farm i after the birth-death process during time t

y2E
i,t The number of Exposed badgers on farm i after the birth-death process during time t

y2I
i,t The number of Infectious badgers on farm i after the birth-death process during time t

Y 2
i,t ry2S

i,t, y
2E
i,t, y

2I
i,ts

Table 5.3: The notation for the different intermediate sets of states of the cattle on
each farm at each time point.
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Events

Movement Events

mi,j,t The total number of animals that farm i moved to farm j during time t

Infection Events

dEc
i,t The number of Exposed cattle that farm i generated during time t

dIci,t The number of Infectious cattle that farm i generated during time t

dEb
i,t The number of Exposed badgers that farm i generated during time t

dIbi,t The number of Infectious badgers that farm i generated during time t

Detection Events

HE
i,t The number of Exposed cattle that were detected on farm i during time t

HI
i,t The number of Infectious cattle that were detected on farm i during time t

Birth and Death Events

bci,t The total number of cattle births that occurred on farm i during time t
dci,t The total number of cattle deaths that occurred on farm i during time t
DcS

i,t The number of Susceptible cattle that died on farm i during time t
DcE

i,t The number of Exposed cattle that died on farm i during time t.
DcI

i,t The number of Infectious cattle that died on farm i during time t.
Dc

i,t rDcS
i,t , D

cE
i,t , D

cI
i,ts

Bb
i,t The total number of badger births (Susceptibles) on farm i during time t

DbS
i,t The number of Susceptible badger that died on farm i during time t

DbE
i,t The number of Exposed badger that died on farm i during time t.

DbI
i,t The number of Infectious badger that died on farm i during time t.

Db
i,t rDbS

i,t , D
bE
i,t , D

bI
i,ts

Table 5.4: The notion used for the events associated with the process.

5.5 Computational Considerations

The data in most instances are at the resolution of cow and day. Due to the slow

moving nature of the disease, and other aspects of the cattle movement network and
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testing schema, a modelling decision has been made to reduce the computational

burden of the inference by modelling at the population and discrete-time week level.

For this reason we need to aggregate the data. The aggregation depends on the data

source, but the aim in each is to have a combined count for each variable of interest

for each farm each week. The data provided to us by the APHA includes the details

of each cow, a record of every movement for each cow, the details and result of every

test done on each cow, and the birth and death date of each cow. Later in this

chapter some testing data are replaced with simulated records for the purpose of

validating the inference methodology, but are used in Chapter 6 when fitting to the

full data. The following section details the data cleaning and aggregation choices

made to process the data into this new format.

We used the same week batching schema across all data sources, where weeks

run Sunday - Saturday, with the first week starting on Sunday 1st of January 2012.

We chose to start weeks on Sunday as it aligns well with all data sources.

5.5.1 Movements

The raw movement data contains one record for each cow (eartag) movement from

one farm (CPH) to another, possibly with a transition farm (CPH). For each week,

for each farm pair we are interested in identifying how many cattle initialised the

week on Farm A and ended the week on Farm B. Due to the slow spreading nature

of the disease we have elected to ignore short stays on farms, including in-between

destinations and transition farms. We also chose to remove any movements that

occurred after a cow was assigned the slaughter action after testing positive, as

most of these movements took the cattle outside of Cheshire and would indirectly

include data in the simulation that is not intended.

First we removed any identical duplicate records. Next we grouped records by

eartag and week, and identified the first CPH that each cattle left that week, and

the last CPH that they arrived at, and aggregated these results into one record.

Finally we removed any records that did not start or end their weeks movement in
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Cheshire, and removed any records that had cattle start and end at the same farm.

After this we grouped by first off CPH, last on CPH, and week, and counted

the number of movements between each directional farm pair. Note here A Ñ B in

week t is a unique record to B Ñ A in week t.

The final aggregated data has one record for each A Ñ B farm pair that contains

the number of cattle that started on A and ended on B that week.

5.5.2 Births

The raw births data is very clean and contains one record per eartag that was born

in Cheshire, and the date and week.

We aggregated the data to have each record be the number of cattle born on

each farm (CPH) during each week.

5.5.3 Deaths

The raw deaths data is very clean and contains one record per eartag that died in

Cheshire, and the date and week. Death could be due to multiple reasons, the main

ones being processed for meat and testing positive for Bovine TB.

In our simulation, testing will be a randomly generated process and will not rely

on historic data except for the initial conditions. For this reason we first removed

any deaths that occur after a cow (eartag) had been assigned the “Slaughter” action

following a test.

We then aggregated the data to have each record be the number of cattle that

died on each farm (CPH) during each week.

5.5.4 Testing

The raw testing data contains one record for each test applied to a cow (eartag).

These tests can vary based on date applied, reason for testing, type of test, outcome

of test, action following test, and many other variables. Multiple tests of the same
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cattle can occur on the same day such as when multiple different test methods are

used.

First we grouped by many variables and removed any identical duplicate tests.

The majority of records indicated only one test per cattle per CPH per week. In a

small number of cases cattle would have multiple tests. The reasons for this could

include a follow up test due to uncertainty in the result, or with a higher sensitivity

test. We rationalised that we are mostly interested in how many cattle were tested,

and how many were detected. For this reason we reduced these records to one per

cow per CPH per week, favouring records that had the “Slaughter” action and used

the TB Skin Test method.

After we had one record per cattle per CPH per week, we aggregated the records

to count the number of cattle tested, and the number of cattle assigned the slaughter

action, on each CPH each week.

5.5.5 Initial Conditions

We will not use the testing data during the simulation, as the epidemic and testing

process will be stochastic. We will however use the testing data along with the

historic herd data to initialise the process. Testing of farms can occur anywhere

between once every 6 months and 4 years, so not all farms have a testing set from

near the beginning of the process. Equally, testing of large farms may occur over

several weeks, or sporadic tests may be ordered. We needed to choose a way of

decided how many cattle are infected on each farm at the beginning of the process.

A number of methods were explored, ranging from simple to complex. The final

decision chose a simple transparent solution. After processing the testing data into

week batches, we added up the total number of tests and total number of slaughter

actions from the first 26 weeks. The test does not have perfect sensitivity, roughly

around 70% according to previous studies, but the data consists of a small number

of higher sensitivity tests and some cattle may have been tested more than once in

those first 6 months. For this reason when estimating the proportion of infected
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cattle on each farm we assumed an 80% detection rate.

Finally we multiplied this adjusted proportion infected by historical herd record

of the number of cattle on each farm, and rounded up. We made the choice to be

conservative and potentially over-estimate the number of initial infected cattle.

5.6 Data Generating Process

In this chapter our aim is to make inference on a partially simulated epidemic dataset

in order to build and validate our inference method. In this section we detail how

to simulate from the data generating process for our bovine Tuberculosis epidemic

model to build our partially simulated dataset, whilst also providing the likelihood

term for each subprocess. The overall likelihood is then defined in section 5.7 based

on the data generating process.

5.6.1 Initialising the simulation

The first step is to initialise every farm with the number of cattle on the farm at

the beginning of the first week, and the number of those cattle that are infectious.

We take the historic herd data from each farm in January 2012 as the number of

animals. As described in Section 5.5 we estimate the number of infected cattle based

on the testing data.

In addition we are also considering a situation with an explicit badger population

on each farm. We have no data on the badger populations, so we randomly generate

the population of between 10 and 100 susceptible badgers per farm, and a random

number of initial infected badgers based on the size of the susceptible badger

population and the proportion of infectious cattle.

Then during each timestep we evolve the population of cattle and badgers on

each farm using 4 processes; the epidemic process, the movement process, the testing

process, and the birth and death process. The epidemic process is fully simulated.

In this chapter we replace the observed testing process with a simulated testing

174



5.6. Data Generating Process

process, but assume the same data is observed. That is we assume all cattle are

tested, simulate how many exposed and infectious cattle are detected, and only

observe the total number of detections. The birth data comes directly from APHA,

and the non-testing related deaths do as well.

For the testing process we only make use of the the initial testing date and its

results for each farm provided by APHA to initialise the simulation, and generate

future test dates in line with government policy, and simulate the test results. We

do this because aligning the data from the testing, movement, and historic herd

sources with the stochastic elements of the simulation is a very challenging task,

and the testing is easy to simulate. On the initial testing date, we simulate the

number of number of detections of cattle in each state, and from then on generate

future testing dates based on government policy, assuming all cattle are tested at

each timestep.

We use as much of the cattle movement data (mt) as possible given the

stochasticity of the process. How much of the cattle movements can be used depends

partially on the testing process. Stochastically generated test results mean that

some movements will not occur, as farms that test positive are put under movement

restrictions where the APHA did not have them under movement restrictions.

Likewise there is a possibility that some farms that did not have moves occur in

the real data due to movement restrictions are able to move cattle in this simulated

data. We have chosen not to simulate or otherwise adapt the movements to account

for this as it introduces uncertainty into the model arising from the simulation

choices. Instead this simulated data set can be thought of as having a less dense

movement network than the observed APHA data.

The model is parameterised by 9 parameters; [βc, βb, δ, F , ϵ] relating to the

infection process, [ρ, ρE] relating to the testing process, and [ηb, ηd] relating to the

badger birth and death process.

This simulation process will generate a data set that partially contains data from

APHA, and partially simulated data, with the noted advantage that we know the
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unobserved data values not present in the APHA data, such as the infectious states

of all the cattle, and the states of the cattle that are detected during testing and

that die, as well as the values of the parameters that generated those data. This

allows us to validate the inference method at various levels of data availability, but

making different assumptions about what data is observed and what are unobserved

latent variables.

5.6.2 Kernels

In this section we define the overall process for simulating from the data generating

process in terms of transmission kernels. Transition kernels, K, apply a series of

operations to a set of states to produce a new set of states; K :: Xt Ñ Xt`1

The kernels are,

• KM :: X Ñ X 1 (Cattle Movements)

• KE :: X Ñ X 1 (Cattle Epidemic)

• KT :: X Ñ X 1 (Cattle Testing)

• KD :: X Ñ X 1 (Cattle Births and Deaths)

• KI :: Y Ñ Y 1 (Badger Epidemic)

• KL :: Y Ñ Y 1 (Badger Births and Deaths)

• KV :: V Ñ V 1 (Environmental Reservoir)

In addition there is also the supporting function, P , to calculate event

probabilities; P :: rXt, Yt, Vts Ñ Qt.

Using these kernels we can now define K0 to be the kernel for generating a new

timestep in the epidemic; K0 “ KM ˝KE ˝KT ˝KD ˝KI ˝KL ˝KV :: rXt, Yt, Vts Ñ

rXt`1, Yt`1, Vt`1s. The details of K0 are given in Algorithm 11. The details of the

other kernels are given in Section 5.6.3.

176



5.6. Data Generating Process

Algorithm 2: Generate states for timestep t ` 1

Input : Xt = Cattle states at beginning of timestep t,

Yt = Badger states at beginning of timestep t,

Vt = Environmental reservoir at beginning of timestep t,

θ = Model parameters,

Mt, ht, bt, dt = Data during timestep t.

Output : Xt`1 = Cattle states at beginning of timestep t ` 1,

Yt`1 = Cattle states at beginning of timestep t ` 1,

Vt`1 = Cattle states at beginning of timestep t ` 1.

Elements: Qt = Event probabilities during timestep t,

X 1, X2, X3, X4, Y 1, Y 2, V 1 = Intermediate states.

1 K0pXt, Yt, Vtq::

2 Probabilities

3 Qt “ P pXt, Yt, Vtq

4 Cattle

5 X 1 “ KMpXt, Mtq

6 X2 “ KEpX 1, Qtq

7 X3 “ KT pX2, htq

8 X4 “ KDpX3, bt, dtq

9 Badgers

10 Y 1 “ KIpYt, Qtq

11 Y 2 “ KLpY 1q

12 Environment

13 V 1 “ KV pVt, X
4, Y 2q

14 Return X4, Y 2, V 1

5.6.3 Details of Kernels

In this section we provide the context and details of each of the subroutine

and transition kernels necessary for Algorithm 11. We also define the likelihood

177



Chapter 5. Our Bovine Tuberculosis Model

component for each function.

5.6.3.1 The Probability Function

For each farm, i, we first calculate the exposure and infection probabilities during

timestep t given the animal states at beginning of timestep t.

Algorithm 3: Generate event probabilities for timestep t

Input : Xt = Cattle states at beginning of timestep t,

Yt = Badger states at beginning of timestep t,

Vt = Environmental reservoir at beginning of timestep t,

rβc, βb, δ, F s P θ = Model parameters.

Output : Qt = Event probabilities during timestep t.

Elements: pcexppi, tq, pbexppi, tq, pinf = Event probabilities during timestep t,

ω = The set of farms of interest.

1 P pXt, Yt, Vt, βc, βb, δ, F q::

2 foreach i P ω do

3 pcexppi, tq “ 1 ´ exp
!

´βc
xI
i,t

Nc
i,t

´ F
Vppiq,t

Appiq

)

4 pbexppi, tq “ 1 ´ exp
!

´βb
yIi,t
Nb

i,t
´ F

Vppiq,t

Appiq

)

5 end

6 pinf “ 1 ´ exp t´δu

7 Qt “ rpcexppi, tq, pbexppi, tq, pinf s @ i

8 Return Qt

5.6.3.2 The Cattle Movement Kernel

We know the number of movements off of each farm i during each timestep, and

their destination farm j. For the movements off of farm i at time t, given there are

enough cattle on farm i, and we know their infectious status, then the simulation

process is straightforward, and the subsequent likelihood is simple. The process

would be, given m movements off of farm i, decide on the states of those cattle

moved, and assign those cattle to their destination farms. For this we use a series of
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Multivariate Hypergeometric draws, denoted MHGpN, nq where N is the population

vector and n is the number of draws. However, in reality due to the discretisation

and imperfect data, the true subroutine is necessarily more complex.

The full set of movement data has been processed into records containing the

number of animals moved from farm i to farm j during time step t, with j to i being

a distinct record.

The movements can then be processed into four disjoint sets:

M “ tpωc
Ñ ωc

q Y pωc
Ñ ωq Y pω Ñ ωq Y pω Ñ ωc

qu .

where,

• ωc Ñ ωc represent movements from a farm outside our set of interest to another

farm outside our set of interest. We don’t track these farms so these movements

can be ignored.

• ωc Ñ ω represent movements from outside our set of interest to a farm

inside our set of interest. These movements only add animals to our tracked

population.

• ω Ñ ω represent movements from inside to inside. These movements maintain

the total number of animals in the tracked population.

• ω Ñ ωc represent movements from inside to outside. These movements remove

animals from the tracked population to farms that are untracked.

The movement data is recorded on the day scale at the individual cattle level,

with additional data on the order of movements for each cattle. By aggregating to

the farm and week level, we lose this implicit ordering. We process all movements

from a farm in a timestep at once, however in reality there is a flow of animals

between farms during each week. For this reason we will encounter circumstances

where the number of animals on a farm at the beginning of a timestep are insufficient

to complete its movements - they have to receive animals from other farms first. This
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is made worse by artefacts in the data leading to misalignments, some moves not

occurring due to movement restrictions resulting from the stochastic testing process

in the partially simulated data, and the potentially cascading effect of incomplete

movements. Thus our goals when utilising the aggregated movements is to do so in

a way that enables the most movements to occur, that is, get the farm populations

as large as possible before attempting to move animals off, and utilise intermediary

states that allow farms to move animals that moved on during that timestep.

For this reason, we discard the pωc Ñ ωcq movement, process the pωc Ñ ωq

first, then the pω Ñ ωq movement, noting that if a movement isn’t possible when

processing is attempted, to skip it and try it again after more farms have been

processed, and them finally process the pω Ñ ωcq movements, as these only remove

animals, as since ωc is not tracked and will have the least impact on the simulation

if they are unable to occur.

We define Mt to be the full set of movements during time t, with mi,jptq being

the number of animals moved from farm i to farm j during time t.

The kernel can then be written as:
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Algorithm 4: Generate event probabilities for timestep t
Input : Xt = Cattle states at beginning of timestep t,

Mt = Movement data during timestep t.
Output : X 1 = Post movement cattle states during timestep t.
Elements: X˚ = Intermediate cattle states,

R = Set of farms that were unable to be processed during the previous loop,
R1 = Set of farms that were unable to be processed during the current loop,
ω = The set of farms of interest.

1 KM pXt, Mtq::
2 Step 1: pωc Ñ ωq

3 foreach i P ωc, j P ω do
4 ai,j,t “ Multinomial pmi,j,t, r0.9, 0.05, 0.05sq

5 X˚ “ Xt ` at
6 end

7 Step 2: pω Ñ ωq

8 Set R “ H, R1 “ H

9 for i P ω do
10 if

ř

jPω mi,j,t ą N˚
i,t then

11 R1 “ tR1 Y iu
12 next

13 else

14 bi,t “ MHG
´

rx˚S
i,t, x˚E

i,t, x˚I
i,ts,

ř

jPω mi,j,t

¯

15 x˚
i,t “ x˚

i,t ´ bi,t
16 for j P ω do
17 ci,j,t “ MHG pbi,t, mi,j,tq

18 bi,t “ bi,t ´ ci,j,t
19 x˚

j,t “ x˚
j,t ` ci,j,t

20 end

21 end

22 end

23 Step 3: Retry farms that did not work
24 while R ‰ R1 do
25 Set R “ R1, R1 “ H

26 for i P R do
27 Do Step 2: pω Ñ ωq

28 and generate x˚˚

29 Note: If R “ R1 ‰ H, discard the moves for i P R as the movements cannot occur.

30 end

31 end

32 Step 4: pω Ñ ωcq

33 for i P ω do
34 if

ř

jPωc mi,j,t ą N˚
i,t then

35 skip, and discard the moves for i P ω, j P ωc

36 else

37 di,t “ MHG
´

rx˚˚S
i,t, x˚˚E

i,t, x˚˚I
i,ts,

ř

jPωc mi,j,t

¯

38 x˚˚
i,t “ x˚˚

i,t ´ di,t
39 for j P ω do
40 ei,j,t “ MHG pdi,t, mi,j,tq

41 di,t “ di,t ´ ei,j,t
42 x˚˚

j,t “ x˚˚
j,t ` ei,j,t

43 end

44 end

45 end

46 X 1 “ x˚˚

47 Return X 1
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The number of cattle moved off of each farm i at time t, and their destination

farm j, is set by the data. The random variable we are concerned with is the states

of the animals moved.

The movements are generated in sequence, with movements potentially depend-

ing on those that have been processed before in the same timestep. However, if

we know the initial states of the system at the beginning of the timestep, and the

details of every event, then we also know the states that generated every event. If

we know the state of each farm when its movement events were generated, then

the likelihood of this process simplifies to a series of Multinomial and Multivariate

HyperGeometric distributions,

P rMi,t | Xi,ts “
m´1,i,t!

aS´1,i,t! a
E
´1,i,t! a

I
´1,i,t!

¨ p0.9q
aS´1,i,t ¨ p0.05q

aE´1,i,t ¨ p0.05q
aI´1,i,t

ˆ

`x˚S
i,t

bSi,t

˘`x˚E
i,t

bEi,t

˘`x˚I
i,t

bIi,t

˘

`x˚S
i,t `x˚E

i,t `x˚I
i,t

ř

jPω mi,j,t

˘

ˆ
ź

jPω

`bSi,t
cSi,t

˘`bEi,t
cEi,t

˘`bIi,t
cIi,t

˘

`

bSi,t`bEi,t`bIi,t
mi,j,t

˘

ˆ

`x˚˚S
i,t

dSi,t

˘`x˚˚E
i,t

dEi,t

˘`x˚˚I
i,t

dIi,t

˘

`x˚˚S
i,t `x˚˚E

i,t `x˚˚I
i,t

ř

jPωc mi,j,t

˘

ˆ
ź

jPωc

`dSi,t
eSi,t

˘`dEi,t
eEi,t

˘`dIi,t
eIi,t

˘

`

dSi,t`dEi,t`dIi,t
mi,j,t

˘

The assumption for 5% of the external population being in the exposed and

infectious state respectively is derived from the average herd breakdowns across the

country. Small changes in this value is unlikely to have much impact, as if the values

are a bit low for instance, then the overall likelihood will prefer draws with more

exposed and infected, and vice versa.

5.6.3.3 The Cattle Epidemic Kernel

Using the post movement states and the epidemic process probabilities calculated

using the initial states, we can generate the number of new exposed and infectious

cattle.
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Algorithm 5: Generate cattle epidemic events for timestep t

Input : X 1 = Post movement cattle states during timestep t,

Qt = Event probabilities during timestep t.

Output : X2 = Post infection process cattle states during timestep t.

Elements: dEc
i,t = S to E events on farm i during timestep t,

dIci,t = E to I events on farm i during timestep t,

ω = The set of farms of interest.

1 KEpX 1, Qtq::

2 foreach i P ω do

3 dEc
i,t “ Bin

´

x1S
i,t, p

c
exppi, tq

¯

4 dIci,t “ Bin
´

x1E
i,t, pinf

¯

5 X2 “ X 1 ` r´dEc
i,t, dE

c
i,t ´ dIci,t, dI

c
i,ts

6 end

7 Return X2

The likelihood for this subprocess that generates the number of newly exposed

and infectious cattle on farm i at time t has the form of two binomial draws,

P
“

dEc
i,t, dI

c
i,t | X 1, Qt

‰

“

ˆ

x1S
i,t

dEc
i,t

˙

¨ ppcexppi, tqq
dEc

i,t ¨ p1 ´ pcexppi, tqq
x1S

i,t´dEc
i,t

ˆ

ˆ

x1E
i,t

dIci,t

˙

¨ ppinf
dIci,tq ¨ p1 ´ pinf q

x1E
i,t´dIci,t

where

pcexppi, tq “ 1 ´ exp

"

´βc
xI
i,t

Nc
i,t

´ F
Vppiq,t

Appiq

*

is the probability of a susceptible cattle transitioning to the exposed state, and

pinf “ 1 ´ expt´δu

is the probability of an exposed cattle transitioning to the infectious state.
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5.6.3.4 The Cattle Testing Kernel

The initial test week for each farm is set based on the data. After this, if infected

animals were detected, the next test week is set for 4 weeks time and movement

restrictions are put in place, otherwise the next test week is set for 24 weeks time.

Given a test week occurs, the whole herd is assumed to be tested, and the number of

cattle in the exposed and infectious states, respectively, that are detected are drawn

from Binomial distributions with the appropriate detection rate parameters.

Algorithm 6: Generate cattle detection states for timestep t

Input : X2 = Post infection process cattle states during timestep t,

rρ, ρEs P θ = Model parameters.

Output : X3 = Post testing process cattle states during timestep t.

Elements: Hi,t = Cattle detection states during timestep t,

ω = The set of farms of interest.

1 KT pX2, ρ, ρEq::

2 foreach i P ω do

3 HE
i,t “ Bin

´

x2E
i,t, ρρE

¯

4 HI
i,t “ Bin

´

x2I
i,t, ρ

¯

5 X3 “ X2 ´ r0, HE
i,t, H

I
i,ts

6 end

7 Return X3

The likelihood for this subprocess that generates the number of animals that

are detected from each state on farm i at time t has the form of a Multivariate

Hyper-Geometric. The test days are known, but the number of animals that are

detected from each state are unknown and generated from binomial distributions.

The probability is only valid on days when tests occur, as we assume all cattle present

on the farm at the time of testing are tested once. Exposed cattle are detected at

rate ρ ˆ ρE and infectious cattle are detected at rate ρ. So the probability of the

detections is given by:
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P
“

HE
i,t, H

I
i,t | X2, ρ, ρE

‰

“

«

ˆ

x2E
i,t

HE
i,t

˙

¨ pρρEq
HE

i,t ¨ p1 ´ ρρEq
x2E

i,t´HE
i,t

ˆ

ˆ

x2I
i,t

HI
i,t

˙

¨ pρq
HI

i,t ¨ p1 ´ ρq
x2I

i,t´HI
i,t

ff

1i,t

The indicator function, 1i,t, here is equal to 1 if it is a test day on farm i, and 0

otherwise.

5.6.3.5 The Cattle Births and Deaths Kernel

The number of cattle births and cattle deaths are taken directly from the data. All

cattle births produce new susceptible cattle. Cattle deaths can come from any of

the states on the farm, and as such are drawn from a Multivariate-Hypergeometric

distribution.
Algorithm 7: Generate cattle death states for timestep t

Input : X3 = Post detection cattle states during timestep t,

bci,t = Total number of cattle births on farm i during timestep t,

dci,t = Total number of deaths on farm i during timestep t.

Output : X4 = Post births and deaths cattle states during timestep t.

Elements: Di,t = Cattle states for deaths during timestep t,

ω = The set of farms of interest.

1 KDpX3, bct , d
c
tq::

2 foreach i P ω do

3 Dc
i,t “ rDcS

i,t , D
cE
i,t , D

cI
i,ts “ MHG

´

rx3S
i,t, x

3E
i,t, x

3I
i,ts, d

c
i,t

¯

4 X4 “ X3 ` rbct , 0, 0s ´ rDcS
t , D

cE
t , DcI

t s

5 end

6 Return X4

The likelihood for this subprocess that generates the number and states of cattle

births and deaths on farm i at time t has the form of a Multivariate Hyper-

Geometric. The cattle births are known. The number of cattle deaths, dci,t, are

known but not the states of the animals that died. The probability of the observed
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death states is given by

P
“

Dc
i,t | X3, bct , d

c
t

‰

“

`x3S
i,t

DcS
i,t

˘`x3E
i,t

DcE
i,t

˘`x3I
i,t

DcI
i,t

˘

`

N3c
i,t

dci,t

˘ .

5.6.3.6 The Badger Epidemic Kernel

Using the initial badger states and the calculated epidemic transition probabilities,

we can generate the number of new exposed and infectious badgers.

Algorithm 8: Generate badger epidemic events for timestep t

Input : Yt = Badger states at beginning of timestep t,

Qt = Event probabilities during timestep t.

Output : Y 1 = Post infection events badger states during timestep t.

Elements: dEb
i,t = S to E events on farm i during timestep t,

dIbi,t = E to I events on farm i during timestep t,

ω = The set of farms of interest.

1 KIpYt, Qtq::

2 foreach i P ω do

3 dEb
i,t “ Bin

`

ySi,t, p
b
exppi, tq

˘

4 dIbi,t “ Bin
`

yEi,t, pinf
˘

5 Y 1 “ Yt ` r´dEb
i,t, dE

b
i,t ´ dIbi,t, dI

b
i,ts

6 end

7 Return Y 1

The likelihood for this subprocess that generates the number of newly exposed

and infectious badgers on farm i at time t has the form of two binomial draws,

P
“

dEb
i,t, dI

b
i,t | Yt, Qt

‰

“

ˆ

ySi,t
dEb

i,t

˙

¨ ppbexppi, tqq
dEb

i,t ¨ p1 ´ pbexppi, tqq
ySi,t´dEb

i,t

ˆ

ˆ

yEi,t
dIbi,t

˙

¨ ppinf q
dIbi,t ¨ p1 ´ pinf q

yEi,t´dIbi,t
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where

pbexppi, tq “ 1 ´ exp

"

´βb
yIi,t
Nb

i,t
´ F

Vp,t
Appiq

*

is the probability of a susceptible badgers transitioning to the exposed state, and

pinf “ 1 ´ expt´δu

is the probability of an exposed badgers transitioning to the infectious state.

5.6.3.7 The Badger Births and Deaths Kernel

We have no data on the badger birth and death process, so we can generate events

based on the current population of badgers on each farm. The births are always

susceptible and are generated from a Poisson distribution parameterised by the

number of badgers and the badger birth rate, ηb. The deaths can come from any

state, but the number is unknown, so we generate the number of deaths in each

state through Binomial distributions parameterised by the badger death rate ηd.

This is an simplification and in reality it is likely that both processes are seasonal -

for instance the birth rate would be noticeably higher in spring.
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Algorithm 9: Generate badger birth and death events for timestep t

Input : Y 1 = Post infection process badger states during timestep t,

rηb, ηds P θ = Model parameters.

Output : Y 2 = Post births and deaths badger states during timestep t.

Elements: Bi,t = Number of badger births on farm i during timestep t,

Di,t = States of badger deaths on farm i during timestep t,

ω = The set of farms of interest.

1 KLpY 1q::

2 foreach i P ω do

3 Bb
i,t “ Po

´

py1S
i,t ` y1E

i,t ` y1I
i,tq ˆ ηb

¯

4 DbS
i,t “ Bin

´

y1S
i,t, ηd

¯

5 DbE
i,t “ Bin

´

y1E
i,t, ηd

¯

6 DbI
i,t “ Bin

´

y1I
i,t, ηd

¯

7 end

8 Y 2 “ Y 1 ` rBb
t , 0, 0s ´ rDbS

t , D
bE
t , DbI

t s

9 Return Y 2

The likelihood for this subprocess that generates the number and states of badger

births and deaths on farm i at time t has the form of a Poisson distribution multiplied

by three Binomial distributions. All badger births and deaths are unknown.. The

probability of the observed births and death events is given by

P
“

Bb
i,t, D

b
i,t | Y 1

‰

“

e´ppy1S
i,t`y1E

i,t`y1I
i,tqˆηbq ¨

´

py1S
i,t ` y1E

i,t ` y1I
i,tq ˆ ηb

¯Bb
i,t

Bb
i,t!

ˆ

ˆ

y1S
i,t

DbS
i,t

˙

¨ ηd
DbS

i,t ¨ p1 ´ ηdq
y1S

i,t´DbS
i,t

ˆ

ˆ

y1E
i,t

DbE
i,t

˙

¨ ηd
DbE

i,t ¨ p1 ´ ηdq
y1E

i,t´DbE
i,t

ˆ

ˆ

y1I
i,t

DbI
i,t

˙

¨ ηd
DbI

i,t ¨ p1 ´ ηdq
y1I

i,t´DbI
i,t
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5.6.3.8 The Environmental Kernel

Finally once the states of all farms have been updated to the final set for that

time step, we calculate the change in the background infection environmental parish

reservoir for each parish. The environmental reservoir is an integer that is then

scaled by the size of the parish. In each time-step the environmental reservoir,

represented by a cumulative sum of infectious pressure, will decay and be reduced,

and will be added to by the current infected animals. We generate how much of

the current time steps environmental pressure will remain to the next time step

by drawing the remaining pressure from a Binomial distribution with the n “ (The

current environmental pressure) and p “ 1´(the decay rate), which is then scaled by

the size of the parish again. The new pressure is drawn from a Poisson distribution

with mean equal to the total number of infectious cattle and badgers in the parish,

which is then scaled by the size of the parish again, and added to the remaining

pressure.

Thus, this stochastic environmental pressure, Vppiq,t, is (approximately) the

deterministic environmental pressure of Brooks-Pollock, Roberts, and Keeling, 2014,

multiplied by the parish population. We made these changes for two primary

reasons. The first is that a stochastic model allows for a more efficient MCMC

algorithm. In a deterministic setting, a single change to the environmental pressure

at one farm at one time-step, would lead to a cascading effect that required the

recalculation of the entire likelihood. A stochastic process allows one to alter the

value of the environmental pressure at a time point and reflect that as a different

random draw on the event, thus only needing to recalculate a small section of the

likelihood. The second reason follows from the first, in that pulling out one over the

size of the parish as a common factor makes generating the events and calculating

the likelihood simpler.
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Algorithm 10: Generate the environmental reservoir for timestep t ` 1

Input : X4 = Post births and deaths cattle states during timestep t,

Y 2 = Post births and deaths badger states during timestep t,

Vt = Environmental reservoir at beginning of timestep t,

ϵ P θ = Model parameters.

Output : V 1 = Environmental reservoir at the end of timestep t.

Elements: Rp,t = Remaining environmental pressure on farm i at the end

of timestep t,

Np,t = New environmental pressure on farm i at the end of

timestep t,

ω = The set of farms of interest, with p being the parish

groupings.

1 KV pVt, X
4, Y 2q::

2 foreach p P ω do

3 Rp,t “ Bin pVp,t, 1 ´ ϵq

4 Np,t “ Po
´

ř

iPpX
4
i,t `

ř

iPp Y
2
i,t

¯

5 end

6 V 1 “ Rt ` Nt

7 Return V 1

The likelihood for this subprocess that generates the infectious pressure in the

environmental reservoir for parish p at time t has the form of a Poisson distribution

multiplied by a Binomial distribution. The environmental reservoir is generated by

choosing a random amount to remain from the previous time step based on the

decay rate, and a random amount to be added based on the infectious animals in

the parish. The probability of the environmental reservoir pressure is thus given by
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P
“

Vppiq,pt`1q| Vppiq,t, X
4, Y 2

‰

“

e´p
ř

iPp X4
i,t`

ř

iPp Y 2
i,tq ¨

´

ř

iPpX
4
i,t `

ř

iPp Y
2
i,t

¯Rppiq,t

Rppiq,t!

ˆ

ˆ

Vppiq,t

Nppiq,t

˙

¨ p1 ´ ϵqNppiq,t ¨ pϵqVppiq,t´Nppiq,t

It is worth noting that all the farms i in parish p share the value of Vppiq,t.

5.7 Likelihood

The likelihood of the epidemic defines the probability of observing the given states

of the cattle. For all farms i over times t, assuming that all the data are observed,

the likelihood is given by:

T
ź

t“1

„ NH
ź

i“1

L
ˆ

Xi,pt`1q Yi,pt`1q, Vppiq,pt`1q | Xi,t, Yi,t, Vppiq,t rβc, βb, δ, ϵ, F, ρ, ρE, ηb, ηds, mi,t, testi,t, d
c
i,t

˙ȷ

,

where NH is the total number of farms, test is true if testing occurred during

timestep t and false otherwise, and all other parameters can be found in the glossary

in Section 5.2.

We can represent the likelihood here in terms of the number of transitions

between each of the state pairs at timestep t, given the initial state.

Let θ denote the parameters of the model. The likelihood above is also equivalent

to,

“ L
ˆ

M, dEc, dIc, dEb, dIb, HE, HI , Dc, Bb, Db, V |

X0, Y0, V0, θ, m, test, bc, dc

˙

.

That is, the joint likelihood of all the events from t “ 1 : T , given the initial

states and the counts of each event.
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5.7.1 The form of the likelihood

The likelihood, assuming all data is known, can thus be broken down as the product

over all timesteps t P 1 : T for:

L
ˆ

Mt, dE
c
t , dI

c
t , dE

b
t , dI

b
t , H

E
t, H

I
t, D

c
t, B

b
t, D

b
t, Vt`1 |

Xt, Yt, Vt, θ, mt, testt, b
c
t , d

c
t

˙

“ P rMt | Xt, mts

ˆ P
“

dEc
t , dI

c
t , dE

b
t , dI

b
t | Mt, Xt, Yt, Vt, θ

‰

ˆ P
“

HE
t, H

I
t | Mt, dE

c
t , dI

c
t , dE

b
t , dI

b
t , testt, Xt, Yt, Vt, θ

‰

ˆ P
“

Dc
t, B

b
t, D

b
t | Mt, dE

c
t , dI

c
t , dE

b
t , dI

b
t , H

E
t, H

I
t, d

c
t , Xt, Yt, Vt, θ

‰

ˆ P
“

Vpt`1q | Mt, dE
c
t , dI

c
t , dE

b
t , dI

b
t , H

E
t, H

I
t, D

c
t, B

b
t, D

b
t, Xt, Yt, Vt, θ

‰

5.8 Posteriors

Using the likelihood derived in Section 5.7 we can derive the conditional posterior

distribution, assuming all data is observed, used in the MCMC algorithm explored

in Section 5.9 by specifying priors for the parameters.

The full joint conditional posterior is given by

π pβc, βb, δ, ϵ, F, ρ, ρE, ηb, ηd | Xt,Yt,Vtq “L
ˆ

M, dEc, dIc, dEb, dIb, HE, HI , Dc, Bb, Db, V |

X0, Y0, V0, θ, m, test, bc, dc

˙

ˆ π pβcq ˆ π pβbq ˆ π pδq ˆ π pϵq ˆ π pF q

ˆ π pρq ˆ π pρEq ˆ π pηbq ˆ π pηdq

where we are setting the priors to be:

192



5.8. Posteriors

• π pβcq „ Gammapϑβc , σβcq

• π pβbq „ Gammapϑβb
, σβb

q

• π pδq „ Gammapϑδ, σδq

• π pϵq „ Gammapϑϵ, σϵq

• π pF q „ GammapϑF , σF q

• π pρq „ Betapϑρ, σρq

• π pρEq „ BetapϑρE , σρEq

• π pηbq „ Gammapϑηb , σηbq

• π pηdq „ Betapϑηd , σηdq

The form of the Gamma distribution has ϑ ą 0 as the shape parameter, and

σ ą 0 as the rate parameter. The gamma priors align with the positive real support

of the parameters, whilst also being malleable to adapt to weak or strong prior

knowledge. The detection parameters, ρ (a probability) and ρE (a scalar in [0,1]),

both have support on the real line between 0 and 1, so a Beta prior is an appropriate

choice, combined with it’s malleability. The choice of Gamma and Beta prior for

the badger birth and death rate respectively is due to being conjugate priors for the

likelihood terms, and as such open up the possibility for sampling directly from the

posterior using a Gibbs sampler in our MCMC algorithm. A death rate for badgers

greater than 1 seems extremely unlikely in this context, so a Beta distribution is

appropriate.

5.8.1 The Infection Process Parameters; [βc, βb, δ, F , ϵ]

The conditional joint posterior likelihood of the infection process parameters is given

by the product for t P 1 : T of:

π pβc, βb, δ, ϵ, F |Xt, Yt, Vtq “P
”

dEc
t , dIct , dEb

t , dIbt | Mt, Xt, Yt, Vt, θ
ı

ˆ P
”

Vpt`1q | Mt, dEc
t , dIct , dEb

t , dIbt , HE
t, HI

t, Dc
t, Bb

t, Db
t, Xt, Yt, Vt, θ

ı

ˆ π pβcq ˆ π pβbq ˆ π pδq ˆ π pϵq ˆ π pF q .
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5.8.2 The Detection Process Parameters; [ρ, ρE]

The conditional joint posterior likelihood of the detection process parameters is

given by the product for t P 1 : T of:

π pρ, ρE|Xt, Yt, Vtq “P
“

HE
t, H

I
t | Mt, dE

c
t , dI

c
t , dE

b
t , dI

b
t , testt, Xt, Yt, Vt, θ

‰

ˆ π pρq ˆ π pρEq

5.8.3 The Badger Birth/Death Process Parameters; [ηb, ηd]

The conditional joint posterior likelihood of the badger birth and death process

parameters is given by the product for t P 1 : T of:

π pηb, ηd|Xt, Yt, Vtq “P
“

Bb
t, D

b
t | Mt, dE

c
t , dI

c
t , dE

b
t , dI

b
t , H

E
t, H

I
t, d

c
t , Xt, Yt, Vt, θ

‰

ˆ π pηbq ˆ π pηdq

The Gamma prior for ηb is conjugate, thus we get,

π pηb|Xt, Yt, Vtq 9 Gamma

¨

˝

˜

T
ÿ

t“1

Bb
t ` ϕηb

¸

,

¨

˝

1
řT

t“1 Y
1
t ` 1

σηb

˛

‚

˛

‚

The Beta prior for ηd is also conjugate, thus,

π pηd|Xt, Yt, Vtq 9 Beta

˜˜

T
ÿ

t“1

Db
t ` ϕηd

¸

,

˜

T
ÿ

t“1

“

Y 1
t ´ Db

t

‰

` σηd

¸¸

5.8.4 Data Augmentation

Thus far we have presented the likelihood assuming that all of the data is observed.

This is not the case in the real data, and whilst we have access to the true data for
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the partially simulated dataset, we will be assuming some of the data is unobserved

to validate the methodology. For missing event data, as demonstrated in chapter

3, if we augment the data using the ‘moving an event in time’ method then we will

need to calculate all posterior terms between the time the event moved from to the

time an event moved to. If we augment the data using the ‘adding/removing an

event’ method, then well will need to calculate all posterior terms from the time the

event was added to the end of the process. Further details are given in Section 5.10.

5.9 MCMC Methodology

5.9.1 Adaptive Block MCMC

The MCMC schema for making inference on our model of Bovine Tuberculosis is an

adaptive block random walk metropolis on the log scale, as explained in Chapter 3.

First we group parameters into sets. The sets are made up of parameters that

contribute to the same process(es), or that will be strongly correlated. Thus they will

benefit from a proposal distribution that takes into account the inter-dependence.

The two groups are the infection process parameters [βb, βc, δ, F, ϵ] and the

parameters related to the detection process, [ρ, ρE]. A third group is the badger

birth-death process parameters, [ηb, ηd], but for now we will not consider them.

Let θ be a set of parameters, with θ˚ being the current accepted values, and θ1

being the proposed values. For each group we run an adaptive block random walk

Metropolis MCMC on the log scale that occurs in two stages. For the first 5000

samples we propose updates from the following joint log-proposal distributions of

the parameters, which we call Mixture 1:

logpθ1
q „ Multivariate-Normalplogpθ˚

q,
1

d
λ2Iq,

where d is the dimension of the parameter space, and λ is a tuning parameter specific

to the parameter set, and I is the d ˆ d identity matrix.
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For the infection parameters d “ 5 and λ “ λinf , and for the detection

parameters d “ 2 and λ “ λdet. We update the value of λinf and λdet every 25

samples for the first 5000 samples, and then they are fixed.

After the first 5000 samples, with probability 0.95 we propose from the following

joint log-proposal distributions of the parameters, which we call Mixture 2, else we

propose from Mixture 1:

logpθ1
q „ Multivariate-Normalpθ˚,m2Σitq,

where m is a tuning parameter specific to the parameter set, and Σ is the covariance

matrix for the accepted parameters in the parameter set.

For the infection parameters m “ minf and Σ “ Σinf , and for the detection

parameters m “ mdet and Σ “ Σdet. We update minf , Σ
inf , mdet, and Σdet after

every sample.

5.9.2 Updating the tuning parameters

We have two classes of tuning parameters to update, λ and m.

For λ, let us define δk as the log-rate of adaptation of the tuning parameter λ.

We let each ‘batch’ of 25 samples be denoted by the subscript k. Then let ψk be the

proportion of Metropolis-Hastings samples that were accepted in batch k. Then, at

the start of each new batch, update λ using the formula:

logpλq “ logpλq ` νk

where,

νk “

$

’

&

’

%

´min
´

0.05, 1?
k

¯

, if ψk´1 ă 0.33,

`min
´

0.05, 1?
k

¯

, if ψk´1 ě 0.33,

Then for m, define the rate of adaptation to be ∆m “ m0

100
. We begin to tune m

after the first 5000 iterations, and do so every iteration. Each iteration, it, if the

proposal came from Mixture 1, m does not get updated. Otherwise, if the proposed
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parameters are Metropolis-Hastings rejected, then set

m “ m ´

ˆ

∆m
?
it

˙

and if the proposed parameters are Metropolis-Hastings accepted, then set

m “ m ` 2.3

ˆ

∆m
?
it

˙

.

We use a unique value of νk, ∆m, and batch acceptance rate for each set of

parameters. The forms of these update functions are chosen to optimise for an

acceptance rate of 30% as per Sherlock, Fearnhead, and Roberts, 2010.

This is the core methodology we will use to make inference on the parameters

given all data is known, however there are a number of events in this process that

are not observed. In the next section we explain which events are not observed, and

the methodology we will use to augment this missing data.

5.10 Data Augmentation

Thus far we have assumed all data was observed and available, but in reality

this is not the case. There are a number of unobserved elements of the process

that the posterior of the parameters depends on. In this section we distinguish

between what data we are fitting our model to (observations) and what is unobserved

and augmented through data augmentation (latent variables). We also distinguish

between data that is observed by APHA, data that is simulated but assumed

observed, and data that is unobserved but necessary for fitting the model (latent

variables).

5.10.1 Data, Latent Variables, and Parameters

We categorise the model components into one of three classes which are relevant

to the fitting process; data is observed and used the fit the model, latent variables
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are unobserved but inferred using data augmentation during the MCMC process,

and parameters are inferred through the MCMC process. Some of the data is taken

directly from APHA, other parts are simulated but taken to be observed in this

example, and some are simulated and considered unobserved.

The data that we are fitting the model to include, for each farm i at time t in our

set of farms of interest, ω: The number of cattle and badgers (Ci,t, Bi,t), the number

of cattle movements from farm i to j (mi,j,t), whether or not it is a test day (testi,t),

assuming all cattle are tested, the number of cattle that were detected (Hi,t), the

number of cattle births (bci,t), the number of cattle deaths (dci,t), the number of badger

births (bbi,t), and the number of badger deaths (dbi,t).

The latent variables that we infer through data augmentation include, for each

farm i at time t in our set of farms of interest, ω: The initial states of the cattle

(Xi,0), the initial states of the badgers (Yi,0), the initial level of environmental

infection (Vppiq,0), the states of the animals that moved to each destination (Mi,j,t),

the number of newly exposed and infectious cattle and badgers (dEc
i,t, dI

c
i,t, dE

b
i,t,

dIbi,t), the number of detected exposed and infectious cattle from testing (HE
i,t, H

I
i,t),

the states of the cattle and badgers that died (Dc
i,t, D

b
i,t), and the additional and

remaining environmental pressure (Nppiq,t, Rppiq,t).

The model is parameterised by 9 parameters; [βc, βb, δ, F , ϵ] relating to the

infection process, [ρ, ρE] relating to the testing process, and [ηb, ηd] relating to the

badger birth and death process. The parameters are as in Table 5.1.

Thus we can reformulate the posterior presented in Section 5.8 to distinguish

between the observed data, the latent variables, and the parameters. Denote the

parameters θ. For the product of times t in 1 : T :
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π pθ | Xt,Yt,Vtq “L
ˆ

C, B, m, test, H, bc, dc, Bb, Db
|

X0, Y0, V0, M, dEc, dIc, dEb, dIb, HE, HI , Dc, N, R, θ

˙

ˆ π
`

X0, Y0, V0, M, dEc, dIc, dEb, dIb, HE, HI , Dc, N, R | θ
˘

ˆ π pθq

As a rough summary, for the cattle we know how many animals there are, and

how many of each type of event, and the latent variables are the states of the animals

and the states of the animals affected by the events. The increase and decay of the

environmental reservoir are also latent variables.

5.10.2 Missing Data

We now assume that much of the process is not observed and as such we do not

have data through which to calculate the likelihood. These data are called nuisance

parameters and we will need to use data augmentation MCMC methodologies to fill

in the missing pieces intelligently. From this point forward we will assume that all

data relating to badgers is still known. Given the form of the likelihood in Section

5.7, we can see that our list of nuisance parameters will consist of:

5.10.2.1 Initial Conditions

• Vppiq,0 - The level of infection in the parish environment for each parish at time

t “ 0.

• Xi,0 “ rxSi,0, x
E
i,0, x

I
i,0s - The initial states of each farm i.

5.10.2.2 Events

• Mi,t - All data relating to the movements off of farm i, including animal states

and populations that generated movements.

199



Chapter 5. Our Bovine Tuberculosis Model

• dEc
i,t - The number of Exposed cattle that farm i generated during each of the

timesteps t P 1 : T .

• dIci,t - The number of Infectious cattle that farm i generated during each of

the timesteps t P 1 : T .

• HE
i,t - The number of Exposed cattle that were detected through testing on

farm i during each of the timesteps t P 1 : T .

• HI
i,t - The number of Infectious cattle that were detected through testing on

farm i during each of the timesteps t P 1 : T .

• Dc
i,t “ rDcS

i,t , D
cE
i,t , D

cI
i,ts - The states of the animals that died of causes

unrelated to testing at each timestep t P 1 : T for each farm i.

• Remaining environmental pressure = Rppiq,t - The amount of environmental

pressure remaining at timestep t after decaying from timestep t ´ 1 for the

parish of farm i.

• New environmental pressure = Nppiq,t - The additional environmental pressure

resulting from the infectious animals in the parish at time step t for farm i.

If we assume we have the 2172 farms of Cheshire, and a process run for 360

timesteps (weeks), the 15 nuisance parameters per timestep per farm (treating the

movements as only 6 nuisances parameters) which represent the transitions, and the

additional 4 nuisance parameters of the initial states, results in 2172ˆp4`360ˆ15q “

11, 737, 488 nuisance parameters for Cheshire alone. There are in fact closer to

80, 000 farms in the dataset. Even with all of the discretisation this is still an

exceptionally challenging and computationally expensive problem.

5.10.3 Update Steps

We are interested in using two distinct data augmentation update steps to

thoroughly explore the state space. Given we have initialised the inference scheme
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with a valid set of nuisance parameters (unknown data), we can update them

either by moving the events that already exist through time, or by adding or

removing events (sometimes referred to as exchanging animal states depending on

the event). This is fundamentally the methodology presented in Chapter 3, though

the complexity of this model adds additional considerations as we will explore.

When we move an event in time, we take an event that occurs at time t “ τ and

change it to occur at time t “ τ ` ∆, and update the data accordingly. In this case

only the animal states between τ and τ `∆ will be affected, as the total number of

events remains the same. This is demonstrated in Figure 5.3.

  

t = 0 t = T

t = τ t = τ + Δ

Change
(Moving an event)

New 
Position

Only in this part will the states 
be affected by the update

Figure 5.3: A timeline representing moving an event in time. Only states between
τ and τ ` ∆ will be affected by the update.

When we add or remove an event, we are changing the total number of events.

We choose a timestep τ and add or remove an event there, after which point the

total number of events has changed, and as such there are no guarantees the states

of the farm will remain the same at any future timestep. This is demonstrated in

figure 5.4.
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t = 0 t = T

t = τ

Change 
(Addition/Removal)

The states will most likely never match up again after 
this point, as there is an additional state changing event

Figure 5.4: A timeline demonstrating the changes from an addition/removal data
update. All states after time τ are assumed to be affected, as there is an additional
state changing event.

We are mainly concerned with three aspects here, especially as they relate to

computational complexity: Which types of update can be used for each type of

event? What timesteps of the likelihood need to be calculated for each event-update

type pair? Which farms in the likelihood need to be calculated for each event-update

type pair? We will considered each of the event types in turn addressing these three

questions.

5.10.4 Movement events

For a given timestep, t, the number of movements is taken directly from the data.

Our nuisance parameters (our missing data) are the states of the animals that were

moved. For this reason, we are unable change when events occur by moving them

through time. We can only exchange the states of the animals that were moved, for

instance, we can remove a susceptible movement and add an exposed movement. To

do this we generate a new set of movement states from its distribution.
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The elements of the likelihood that need to be calculated depend on the farms

involved in the movement, and the states of the animals. We consider here the

most extreme case of moving infectious animals between two farms in two different

parishes within our collection of farms of interest. This update requires us to

calculate the full likelihood for both farms from time t onward as per Figure 5.4, and

due to moving infectious animals between parishes, the total counts of infectious

animals on each will change, and as such the parish level terms of the likelihood

(environmental reservoir) will need to be recalculated.

5.10.5 Exposure and Infection transition events

For both S to E transition events, and E to I transition events, we can both move

the existing events through time and add/remove events, as long as all following

events of every kind are still valid.

When moving an event from t to t ` ∆ we only need to calculate the likelihood

between the time it was moved from and the time it was moved to. When we

add/remove events at time t, we will again need to calculate the full likelihood for

all events from that time forward.

The infection process is local to each farm, so we will only need to calculate the

likelihood for the given farm. In the case of E to I transition events, the number of

infectious cattle will also change, and so the parish level likelihood terms will also

need to calculated for this farms parish.

5.10.6 Detection events

In this partially simulated example, we took the initial test dates from each farm

from the data, and then simulated the test results and future test dates based on

government policy. To align with the real data scenario, we will assume we know

when the events occurs (the simulated test dates), how many animals were tested

(all animals present on the farm), and how many animals were detected (total), but

not the states of the animals on the farm or how many were detected in each state.
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This means similarly to the movement events, detection events cannot be moved

through time, as the number per day are observed, and we can only exchange the

detection of an exposed cattle with the detection of an infectious cattle, as the states

are unobserved latent variables. Again we would do this by generating a new set of

detections from an appropriate distribution.

As it is an add/remove step, we need to calculate all the likelihood terms for the

test farm from the test date onwards. As long as the epidemic remains valid after

the update this will not effect other farms, but the number of infectious cattle on

the farm will change and so the parish level likelihood terms for that farms parish

will need to be updated also.

5.10.7 Birth and Death events

Cattle birth events all come from the data, and they always produce a susceptible

individual, so there is nothing to augment here.

The number of death events also come from the data, so again it is the states

of the animals that died that are our nuisance parameters. As with movements

and detections, these cannot be moved through time, but the states of the animals

detected can be exchanged by generating a new realisation from the appropriate

distribution. We will again need to calculate the full likelihood for all events on that

farm from that time forward. It is possible for the number of infectious cattle to

change as well so the parish level terms will also need to be updated.

5.11 Results for Partially Simulated Data

Using the process in Section 5.6 we generated a partially simulated epidemic data

set, utilising the initial conditions from the real data and the real movement data.

Thus we knew the true states of all animals at all timesteps, the events of the

epidemic process, and the true parameters that generated the epidemic.

Using the processes laid out in Section 5.9 onwards we performed inference
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for this simulated epidemic. As previously stated we assumed all data relating

to badgers to be known, and did not make inference on the badger birth and death

parameters. All other data that was considered unknown is detailed in Section

5.10.2.

We made inference on the parameters using the block adaptive MCMC method-

ology, grouping the parameters into two groups; the infection process parameters

rβc, βb, δ, F, ϵs and the detection process parameters rρ, ρEs.

We focused our inference on 307 farms, in 24 parishes, in the county of Cheshire,

for the 360 weeks from the 1st January 2012. The algorithm was initialised with the

true data.

The true values of the parameters were rβc, βb, δ, F, ϵs = r0.002, 0.004, 0.015, 0.004, 0.05s

and rρ, ρEs = r0.75, 0.2s.

The priors were set to be:

• βc „ Gammap2, 0.001q

• βb „ Gammap2, 0.002q

• δ „ Gammap3, 0.005q

• F „ Gammap2, 0.002q

• ϵ „ Gammap1, 0.05q

• ρ „ Betap1.5, 0.5q

• ρE „ Betap0.4, 1.6q

The below results are the output of 400, 000 samples after burn-in. The following

table presents the summaries of the marginal posterior distributions:

True Value Mean 95% CI Std. Dev ESS
βc 0.002 0.00269 (0.0016, 0.0040) 0.000624 694.3
βb 0.004 0.00386 (0.0027, 0.0052) 0.000634 1548.5
δ 0.015 0.01099 (0.0099, 0.0123) 0.000613 4969.9
F 0.004 0.00389 (0.0035, 0.0044) 0.000233 1573.5
ϵ 0.05 0.0496 (0.0491, 0.0503) 0.000305 73456.6
ρ 0.75 0.7461 (0.719, 0.773) 0.013700 9636.9
ρE 0.2 0.1402 (0.123, 0.159) 0.009230 6869.2

Table 5.5: The summary of the marginal posterior distributions.

Overall the algorithm recovered tight uni-modal and symmetric posteriors around

each of the parameters, as we can see in Figures 5.5 and 5.6. In most cases the true
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parameter values lie well within the posterior mass and usually very close to the

posterior mode. However, for δ and ρE the true values are well outside the posterior

mass. The parameters however are still within realistic bounds, and due to the

stochastic nature of the epidemic process it is reasonable that events would occur

like this. We feel the posterior estimates are valid.

From Figures 5.7 and 5.8 we can see that the mixing was good, with large jumps

and time spent exploring all areas of the posterior mass. The algorithm struggled

the most with βc, but still performed well overall.

Figures 5.9 and 5.10 show the pairwise contour plots for all parameters in the

infection process set, and then the detection process set. The red dotted lines

represent the true parameters, and the yellow dotted lines represent the position of

the pair of parameters with the highest posterior mass. Again we see that the areas

of highest posterior mass align well with the true parameters except for the E to I

transition rate, δ. The correlation between the parameters does not present strongly

in these plots, nor did it in the trace plots inspected.

The effective sample sizes for each of the parameters is given in Table 5.5.

The average acceptance rate of the infection parameters was 31.01%. The average

acceptance rate of the detection parameters was 30.10%.

For the data augmentation, the average acceptance rate for: moving S to E

exposure events was 94.52%, moving E to I infection events was 56.53%, adding or

removing S to E exposure events was 0.13%, adding or removing E to I infection

events was 0.04%, exchanging detection events was 0.12%, exchanging cattle death

events was 0.00%, adding or removing environmental reservoir pressure was 0.56%,

and exchanging movement events was 91.41%.
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Figure 5.5: Results: The posterior samples of the infection process parameters displayed as their marginal
distributions represented in a histogram. The dashed line represents the true value that generated the
partially simulated data set. The priors are shown in blue.
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Figure 5.6: Results: The posterior samples of the detection process parameters displayed as their marginal
distributions represented in a histogram. The dashed line represents the true value that generated the
partially simulated data set. The priors are shown in blue.
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Figure 5.7: Results: Trace plot for βc, βb, δ, F, and ϵ. The orange area represents a portion of the burn-in,
and the dashed line represents the true value that generated the partially simulated data set.
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Figure 5.8: Results: Trace plot for ρ and ρE. The orange area represents a portion of the burn-in, and the
dashed line represents the true value that generated the partially simulated data set.
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Figure 5.9: Results: Contour plots of the posterior samples for each pair of the infection parameters.
Brighter contours represent areas of higher density. The yellow dashed lines show the pair-wise point of
highest density on the contour plots, and the red dashed lines represent the true values of the parameters
that generated the simulation. From left to right, top to bottom, the plots show βc vs βb, βc vs δ, βc vs F ,
βc vs ϵ, βb vs δ, and βb vs F .
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Figure 5.10: Results: Contour plots of the posterior samples for each pair of the infection parameters.
Brighter contours represent areas of higher density. The yellow dashed lines show the pair-wise point of
highest density on the contour plots, and the red dashed lines represent the true values of the parameters
that generated the simulation. From left to right, top to bottom, the plots show βb vs ϵ, δ vs F , δ vs ϵ,
F vs ϵ, and ρ vs ρE.
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5.12 Discussion

In this Chapter we simulated a Bovine Tuberculosis epidemic on 307 farms, in 24

parishes, in the county of Cheshire, for the 360 weeks, based on real population

and movement data, with the addition of a fully simulated badger population.

We developed an MCMC algorithm to make inference on the parameters of the

model, except the badger birth and death rates, whilst augmenting the missing data.

Overall the algorithm was effective at exploring the posterior distributions, with well

mixed trace plots, distinct uni-modal histograms, and recovered the parameters that

generated the epidemic, however given an inference of 400, 000 samples, some of the

effective sample sizes are rather low. Now that we have validated that an MCMC

scheme like this can be effective at making inference on a bTB epidemic of this scale,

we can build upon it to make inference for the real data.

There are some areas of improvement to explore. Firstly the code is written

in Julia, optimised as much as possible, which over the course of development

saw speed ups in hundreds of thousands of times. To do this we both optimised

the implementation in line with Julia’s design principles, and used methodological

improvements such as ‘online’ co-variance matrices which can update with new

observations rather than need full recalculations, and caching likelihood terms that

do not needed to be updated between two steps. To run this inference now takes

roughly one week per million samples on a virtual machine. This is acceptable

for this thesis, but will not scale to the 80,000 farms in the data set. Faster

implementations could be adopted through the use of other programming languages

and more powerful technology like GPUs. The MCMC scheme is linear, limiting

speed ups, but calculations like the likelihood can be parallelised, and further

improvements to data storage and access can be explored. We don’t explore these

ideas in this thesis.

Other than speed the other consideration is the efficiency of the algorithm and

the data it relies on. It’s true that the algorithm performed well but there are two

notable points of discussion. The acceptance rates performed as intended for the
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parameters of the model, achieving the desired average of a 30% acceptance rate,

however the acceptance rate for the data augmentation is less consistent. Updating

this discrete data we have less room for tuning, so guaranteeing the ideal 44%

acceptance rate in every case would be challenging, but it should be possible to

improve the acceptance rates based on different proposal distributions. With the

majority of acceptance rates close to 0 or 100%, and the process being initialised at

the true data, there is concern that the data augmentation process did not sufficiently

explore the missing data. There are further parameters within the current proposal

distributions that could be explored, such as the number of farms or timesteps

updated during each proposal, which should hopefully improve the acceptance rate

of moving events and exchanging cattle movements by making it lower. Currently

an update to only one timestep for one farm is proposed for each data augmentation

method between updates of the parameters. A change to one farm can knock onto

others, but large changes to the whole population are likely to result in invalidating

the epidemic. To improve the acceptance rates of the other proposals in this case it

is likely we would need a new proposal function. One issue is that a large proportion

of the updates are being rejected because they invalidate the epidemic, or in some

cases lead to no change. With such a complex epidemic it is challenging to conceive

a computational efficient proposal distribution that guarantees a valid proposal.

The more conditions and states that need to checked before proposing a timestep

and a farm, such as the infection rate or the number of exposed cattle, the more

costly the proposal becomes, but likely the higher the acceptance rate, so there is

a trade off. Likewise the no change proposals can happen simply because certain

events are rare. If one animal is detected on a farm with 100 infectious cattle and

1 exposed cattle, over 99% of proposals are going to return the same state of an

infectious cattle being detected. If we manage to reduce this by making proposals

that are distinct more often, then we run the risk of those proposals being invalid

or unlikely, and its true that in all cases the vast majority of proposals that aren’t

rejected because of no change are rejected simply because of the Metropolis-Hastings
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acceptance probability.

The second area of improvement concerns the data assumed known. We

introduced a simulated badger population and assumed all but the S to E and E

to I transition rates, and the states of the animals, to be known. This includes

the size of the populations, assumptions that the badgers don’t move between

farms, a constant birth rate, when births and deaths occur, and the death rate.

The first issue is that without a large concentrated effort, and even then, it is

likely impossible to have accurate data of this level. The largest bTB in badgers

investigation was the Randomised Badger Culling Trial (RBCT) in badger by The

Independent Scientific Group on Cattle TB, 2008 which culled badgers and looked at

the effect on bTB in local cattle herds, and the majority of investigations into bTB in

badgers look primarily at roadkill (Chantrey et al., 2018). This data however gives

a solid constraint on which to build the cattle epidemic off of, and as such no doubt

improves the algorithms ability to make inference. We investigated an algorithm

that also made inference on the badger data and parameters at the same time, and

the effect was a markedly worse efficiency and identifiability issues. This could be

related to a potential confounding issue between F , ϵ, and V , especially in badgers.

On the surface if V is specified to be double its true value, then F can be halved

and give the same infectious pressure. If we consider that Vt`1 is generated based

on a random removal from V ptq based on its decay rate ϵ, and a random addition

from the proportion of infected animals in the parish, then we can see its a little

more robust. The addition is unaffected by the parameters, but if V is initialised too

large, then the decay rate ϵ may increase to get it to decay faster. We see a similar

trade off relationship with β and γ in the basic SIR model, and the parameters are

still identifiable as long as there is sufficient data, but when there isn’t, for instance

because of the limited badger data, this potential confounding issue can exacerbate

the challenges of fitting the model. From this we conclude that if efforts are made

to collect rigorous population and epidemic data on badgers then this can greatly

help the inference of a model for Bovine Tuberculosis in cattle, but trying to make
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inference about both populations at once, including augmenting data, is ineffective.

When it comes to making inference on the real cattle data in Chapter 6 we will

abstract the consideration of the badger population.

As for the model overall, there were a number of simplifying assumptions and

modelling choices that were made that could be explored further. Unlike Brooks-

Pollock, Roberts, and Keeling, 2014 we did not consider a within-farm environmental

effect that is distinct from the parish one - farm-level effects could be an area of

further research. In addition our badger population was very simple - most notably

there was only one sett per farm, every farm most likely had badgers, and the birth

and death processes were constant rather than seasonal or related to disease status.

This means for instance that whilst we propose separate parameters for the birth

rate and death rate, unless they are equal the population will most likely either die

out naturally or continue to grow in size. The dynamics in reality are likely to be

far more complex and nuanced. However there was a purpose to the simplifying

assumptions, which was to make the inference methods more efficient. For instance

by abstracting the movements of cattle to just be the counts in each state, updates

to the infection process are much less likely to invalidate the movement process,

and if they do invalidate the movements they will be automatically rejected as the

likelihood will be zero.

In the following chapter we will take the learnings from this algorithm and apply

them to the real data set with no simulated data assumed known. We do not have

data on badgers so we will present a new model that abstracts out this population.

In addition there are different considerations for the real data which need to be

accounted for, including how we initialise the epidemic.
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Real Data Model

6.1 Introduction

In this chapter we adapt the methodology of Chapter 5 to make full likelihood

inference for the true epidemic data including all movements, herd tests, births,

deaths, and slaughtered cattle in a subset of farms in Cheshire. The model has been

updated in line with the unavailability of badger data and we present these changes

in Section 6.2. We made slight changes to how we processed the data in light of this

model which is explained in Section 6.3, and adapted the data generating process

in Section 6.4. In Section 6.6 we explain a new method of initialising the MCMC

with a valid epidemic that is conditioned on all of the available data. With the data

initialised we explain how we have adapted the MCMC schema for the real data in

Section 6.7, including data augmentation steps of the initial conditions to account

for uncertainty. Finally in Section 6.8 we interpret the model results for two runs,

one with all of the parameters unknown, and one with the detection parameters

fixed. We discuss these results in Section 6.9.
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6.2 Model Changes

Our previous model for Bovine Tuberculosis is a spatial discrete-time meta-

population compartmental model of disease spread. The populations are the farms

which contain a herd of cattle and are potentially associated with other wildlife

such as badgers. There are cattle movements between farms, and an environmental

reservoir effect at the parish level. This model relies on knowledge of the badger

populations associated with each farm, which is not data we have access to, especially

at a national scale. The following model is an adaptation of the previous model to

account for the missing data by removing the explicit dependence on the knowledge

of badgers, and combining their effect with the parish level environmental reservoir.

6.2.1 The Observed Data Bovine Tuberculosis Model

The model is parameterised by 6 parameters which are associated with the infection

process or the testing process.

Parameter Description
βc The within-farm infectious contact rate of cattle
γ The cattle exposed to infectious transition rate
ϵ The environmental reservoir decay probability
F The scalar of the environmental reservoir infectious pressure
ρ The detection probability for a infectious cattle
ρE The scalar of the detection probability for cattle in the exposed state

Table 6.1: The parameters of the full data model.

We subsume the badger dynamics into the background environment. The effect

of the previous βb parameter, which represented the badger-to-badger infectious

contact rate, will be absorbed into the environmental parameter F . Note however

that these effects are inseparable, no badger population is modelled or data used, nor

is there any longer a specific contribution from badgers to the environmental effect.

Equally we have removed parameters related to badger birth rates and badger death

rates.
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Given these parameters the infectious pressure for the cattle on farm i at time t

is given by

λci,t “

"

´βc
xI
i,t

Nc
i,t

´ F
Vppiq,t

Appiq

*

where Vppiq,t is the parish level environmental effect (i P p), which is scaled by

the size of the parish, Appiq, for i P p. The parish level environment, Vppiq,t no

longer depends of the level of badger infection in the parish, and is generated using

Algorithm 14.

6.3 Data Pre-processing

Our goal in this chapter is to make inference on as full a data set as possible. In the

last chapter, for the partially simulated epidemic, we set the initial conditions based

on the data, matched the date of the first testing event, and used all movements

that were still valid in our simulated epidemic. However future tests were not from

the data, but generated in line with policy. Many movements had to be thrown out

meaning that the inference would not be able to identify the true effect of movements

in the real epidemic. Finally all test results were randomly generated. We wished

to build an epidemic dataset which utilised all of the movements, all of the testing

events, all of the testing results, all of the births, and all of the deaths.

First we processed the data into the desired aggregation. Again we aggregated

to week timesteps and focused on the initial 360 weeks. Births and deaths were

tallied per farm. Movements were aggregated such that each cattle only had at

most one movement event per week which detailed the farm where the cattle began

the week, and the farm where it ended the week. These individual movements were

then aggregated for the total number of movements off of Farm i onto Farm j at

time t, for all farms.

In line with Brooks-Pollock, Roberts, and Keeling, 2014 we have elected to only

focus on Whole Herd Tests - those in the categories of 6M, 12M, CON, RHT, WHT,
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CT, and SI - as less than 1% of reactors are detected from individual level testing.

This means that pre-movement and post-movement tests are not included. The

testing model implemented assumes all animals on the farm are being tested. We

assumed this instead of matching the number of animals tested at each testing event

due to the level of aggregation and ordinal structure of events, and the challenges

with exact matching this introduced, but the total number of slaughtered animals

were matched exactly. We aggregated the total number of slaughtered cattle for

each farm each week, and took this as a proxy for positive tests.

Apart from testing results, we have no data on the infectious status of animals,

or the infectious process, and so no data regarding infection events is available or

utilised, nor did we use confirmation of infection data.

6.4 Data Generating Process

We can now build the epidemic model that we are assuming generated this

aggregated epidemic, and derive the likelihood components of each sub-process. The

core systems of the model work in much the same way as the previous data generating

process in Chapter 5, however we have removed the dependence on the badger data.

We are also making the assumption that all observed events are possible, and that

all data is utilised. As such we are no longer discarding movement data or assuming

simulated testing events.

In this section we define the overall process for simulating from the data

generating process in terms of transmission kernels. Transition kernels, K, apply a

series of operations to a set of states to produce a new set of states; K :: Xt Ñ Xt`1

The kernels are,

• KM :: X Ñ X 1 (Cattle Movements)

• KE :: X Ñ X 1 (Cattle Epidemic)

• KT :: X Ñ X 1 (Cattle Testing)
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• KD :: X Ñ X 1 (Cattle Births and Deaths)

• KV :: V Ñ V 1 (Environmental Reservoir)

In addition there is also the supporting function, P , to calculate event

probabilities; P :: rXt,Vts Ñ Qt. Details of the kernels can be found in Chapter 5

if they remain the same as in the previous model, and in Section 6.4.1 if they have

been updated.

We define K0 to be the kernel for generating a new timestep in the epidemic;

K0 “ KM ˝ KE ˝ KT ˝ KD ˝ KV :: rXt,Vts Ñ rXt`1,Vt`1s. The details of K0 are

given in Algorithm 11.
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Algorithm 11: Generate states for timestep t ` 1

Input : Xt = Cattle states at beginning of timestep t,

Vt = Environmental reservoir at beginning of timestep t,

θ = Model parameters,

Mt, ht, bt, dt = Data during timestep t.

Output : Xt`1 = Cattle states at beginning of timestep t ` 1,

Vt`1 = Cattle states at beginning of timestep t ` 1.

Elements: Qt = Event probabilities during timestep t,

X 1, X2, X3, X4, V 1 = Intermediate states.

1 K0pXt, Vtq::

2 Probabilities

3 Qt “ P pXt, Vtq

4 Cattle

5 X 1 “ KMpXt, Mtq

6 X2 “ KEpX 1, Qtq

7 X3 “ KT pX2, htq

8 X4 “ KDpX3, bt, dtq

9 Environment

10 V 1 “ KV pVt, X
4, Y 2q

11 Return X4, V 1

6.4.1 Details of Kernels

In this section we provide the context and details of each of the subroutine and

transition kernels necessary for Algorithm 11 where they are different to Chapter 5.

We also define the likelihood component for each function.

6.4.1.1 The Probability Function

For each farm, i, we first calculate the exposure and infection probabilities during

timestep t given the animal states at beginning of timestep t. We are no longer
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calculating probabilities related to events in the badger population.

Algorithm 12: Generate event probabilities for timestep t

Input : Xt = Cattle states at beginning of timestep t,

Vt = Environmental reservoir at beginning of timestep t,

rβc, δ, F s P θ = Model parameters.

Output : Qt = Event probabilities during timestep t.

Elements: pcexppi, tq, pinf = Event probabilities during timestep t,

ω = The set of farms of interest.

1 P pXt, Vt, βc, δ, F q::

2 foreach i P ω do

3 pcexppi, tq “ 1 ´ exp
!

´βc
xI
i,t

Nc
i,t

´ F
Vppiq,t

Appiq

)

4 end

5 pinf “ 1 ´ exp t´δu

6 Qt “ rpcexppi, tq, pinf s @ i

7 Return Qt

6.4.1.2 The Cattle Movement Kernel

As in Chapter 5, dividing the movements into 4 distinct sets, we can process the

movement data. The distinction with this model is that instead of throwing out

movements that didn’t work, we assume that all events are possible. There is still

the possibility that certain farms need to be processed before others, and of artefacts

in the data leading to misalignments, and as such the loops in the process to try

and retry farms are still present. This is essentially in lieu of using finer data that

maintains the order of movements, and as such may be slower to process as farms

need to be tested and retested, but shouldn’t affect convergence as it should get to

the correct state.

We define Mt to be the full set of movements during time t, with mi,jptq being

the number of animals moved from farm i to farm j during time t. We still assume

the states of the animals moved are generated using a Multivariate Hypergeometric,
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denoted MHGpN, nq where N is the population vector and n is the number of draws.

The kernel can then be written as:

224



6.4. Data Generating Process

Algorithm 13: Generate event probabilities for timestep t
Input : Xt = Cattle states at beginning of timestep t,

Mt = Movement data during timestep t.
Output : X 1 = Post movement cattle states during timestep t.
Elements: X˚ = Intermediate cattle states,

R = Set of farms that were unable to be processed during the previous loop,
R1 = Set of farms that were unable to be processed during the current loop,
ω = The set of farms of interest.

1 KM pXt, Mtq::
2 Step 1: pωc Ñ ωq

3 foreach i P ωc, j P ω do
4 ai,j,t “ Multinomial pmi,j,t, r0.9, 0.05, 0.05sq

5 X˚ “ Xt ` at
6 end

7 Step 2: pω Ñ ωq

8 Set R “ H, R1 “ H

9 for i P ω do
10 if

ř

jPω mi,j,t ą N˚
i,t then

11 R1 “ tR1 Y iu
12 next

13 else

14 bi,t “ MHG
´

rx˚S
i,t, x˚E

i,t, x˚I
i,ts,

ř

jPω mi,j,t

¯

15 x˚
i,t “ x˚

i,t ´ bi,t
16 for j P ω do
17 ci,j,t “ MHG pbi,t, mi,j,tq

18 bi,t “ bi,t ´ ci,j,t
19 x˚

j,t “ x˚
j,t ` ci,j,t

20 end

21 end

22 end

23 Step 3: Retry farms that did not work
24 while R ‰ R1 do
25 Set R “ R1, R1 “ H

26 for i P R do
27 Do Step 2: pω Ñ ωq

28 and generate x˚˚

29 Note: We make the assumption that eventually R “ R1 “ H.

30 end

31 end

32 Step 4: pω Ñ ωcq

33 for i P ω do

34 di,t “ MHG
´

rx˚˚S
i,t, x˚˚E

i,t, x˚˚I
i,ts,

ř

jPωc mi,j,t

¯

35 x˚˚
i,t “ x˚˚

i,t ´ di,t
36 for j P ω do
37 ei,j,t “ MHG pdi,t, mi,j,tq

38 di,t “ di,t ´ ei,j,t
39 x˚˚

j,t “ x˚˚
j,t ` ei,j,t

40 end

41 end

42 X 1 “ x˚˚

43 Return X 1
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The number of cattle moved off of each farm i at time t, and their destination

farm j, is set by the data. The random variable we are concerned with is the states

of the animals moved. We can still calculate the likelihood using,

P rMi,t | Xi,ts “
m´1,i,t!

aS´1,i,t! a
E
´1,i,t! a

I
´1,i,t!

¨ p0.9q
aS´1,i,t ¨ p0.05q

aE´1,i,t ¨ p0.05q
aI´1,i,t

ˆ

`x˚S
i,t

bSi,t

˘`x˚E
i,t

bEi,t

˘`x˚I
i,t

bIi,t

˘

`x˚S
i,t `x˚E

i,t `x˚I
i,t

ř

jPω mi,j,t

˘

ˆ
ź

jPω

`bSi,t
cSi,t

˘`bEi,t
cEi,t

˘`bIi,t
cIi,t

˘

`

bSi,t`bEi,t`bIi,t
mi,j,t

˘

ˆ

`x˚˚S
i,t

dSi,t

˘`x˚˚E
i,t

dEi,t

˘`x˚˚I
i,t

dIi,t

˘

`x˚˚S
i,t `x˚˚E

i,t `x˚˚I
i,t

ř

jPωc mi,j,t

˘

ˆ
ź

jPωc

`dSi,t
eSi,t

˘`dEi,t
eEi,t

˘`dIi,t
eIi,t

˘

`

dSi,t`dEi,t`dIi,t
mi,j,t

˘

As in Chapter 5 the assumption for 5% of the external population being in

the exposed and infectious state respectively is derived from the average herd

breakdowns across the country.

6.4.1.3 The Environmental Kernel

The parish level environment, Vppiq,t no longer depends on the level of badger

infection in the parish, and is generated using Algorithm 14.
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Algorithm 14: Generate the environmental reservoir for timestep t ` 1

Input : X4 = Post births and deaths cattle states during timestep t,

Vt = Environmental reservoir at beginning of timestep t,

ϵ P θ = Model parameters.

Output : V 1 = Environmental reservoir at the end of timestep t.

Elements: Rp,t = Remaining environmental pressure on farm i at the end

of timestep t,

Np,t = New environmental pressure on farm i at the end of

timestep t,

ω = The set of farms of interest, with p being the parish

groupings.

1 KV pVt, X
4q::

2 foreach p P ω do

3 Rp,t “ Bin pVp,t, 1 ´ ϵq

4 Np,t “ Po
´

ř

pX
4
t

¯

5 end

6 V 1 “ Rt ` Nt

7 Return V 1

The likelihood for this subprocess that generates the infectious pressure in the

environmental reservoir for parish p at time t has the form of a Poisson distribution

multiplied by a Binomial distribution. The environmental reservoir is generated by

choosing a random amount to remain from the previous time step based on the

decay rate, and a random amount to be added based on the infectious cattle in the

parish. The probability of the environmental reservoir pressure is thus given by

P
“

Vppiq,pt`1q| Vppiq,t, X
4
‰

“

e´p
ř

iPp X4
i,tq ¨

´

ř

iPpX
4
i,t

¯Nppiq,t

Nppiq,t!

ˆ

ˆ

Vppiq,t

Rppiq,t

˙

¨ p1 ´ ϵqRppiq,t ¨ pϵqVppiq,t´Rppiq,t
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It is worth noting that for all the farms in the same parish P the value of Vppiq,t

will be the same.

6.5 Likelihood and Posteriors

6.5.1 Likelihood

As in Chapter 5 the likelihood (previously Function (5.7.1)) can thus be broken down

as the product over all timesteps t P 1 : T , with the removal of the dependence on

the badger population, and assuming that all data is observed:

L
ˆ

Mt, dE
c
t , dI

c
t , H

E
t, H

I
t, D

c
t, Vt`1 |

Xt, θ, Vt, mt, testt, d
c
t

˙

“ P rMt | Xt, mts

ˆ P rdEc
t , dI

c
t , | Mt, Xt, θ, Vts

ˆ P
“

HE
t, H

I
t | Mt, dE

c
t , dI

c
t , testt, Xt, θ

‰

ˆ P
“

Dc
t, | Mt, dE

c
t , dI

c
t , testt, H

E
t, H

I
t, Xt, d

c
t

‰

ˆ P
“

Vt`1| Mt, dE
c
t , dI

c
t , H

E
t, H

I
t, D

c
t, Xt, θ, Vt

‰

6.5.2 Posteriors

Using the likelihood derived in Section 6.5 we can derive the posterior distributions

used in the MCMC algorithm explored in Section 6.7 by specifying priors for the

parameters, and assuming all data is observed.

The full joint conditional posterior is given by

π pβc, δ, ϵ, F, ρ, ρE|X,Vq “

T
ź

t“1

L
ˆ

Mt, dE
c
t , dI

c
t , H

E
t, H

I
t, D

c
t, Vt`1 | Xt, θ, Vt, mt, testt, d

c
t

˙

ˆ π pβcq ˆ π pδq ˆ π pϵq ˆ π pF q ˆ π pρq ˆ π pρEq
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where we are setting the priors to be:

• π pβcq „ Gammapϑβc , σβcq

• π pδq „ Gammapϑδ, σδq

• π pϵq „ Gammapϑϵ, σϵq

• π pF q „ GammapϑF , σF q

• π pρq „ Betapϑρ, σρq

• π pρEq „ BetapϑρE , σρEq

The form of the Gamma distribution has ϑ ą 0 as the shape parameter, and

σ ą 0 as the rate parameter. The gamma priors align with the positive real support

of the parameters, whilst also being malleable to adapt to weak or strong prior

knowledge. The detection parameters, ρ (a probability) and ρE (a scalar in [0,1]),

both have support on the real line between 0 and 1, so a Beta prior is an appropriate

choice, combined with it’s malleability.

6.5.2.1 The Infection Process Parameters; [βc, δ, F , ϵ]

The conditional joint posterior likelihood of the infection process parameters is given

by the product for t P 1 : T of:

π pβc, δ, ϵ, F |Xt,Vtq “P rdEc
t , dI

c
t , | Mt, Xt, θs

ˆ P
“

Vt`1| Mt, dE
c
t , dI

c
t , testt, H

E
t, H

I
t, D

c
t, Xt, θ, Vt

‰

ˆ π pβcq ˆ π pδq ˆ π pϵq ˆ π pF q .

6.5.2.2 The Detection Process Parameters; [ρ, ρE]

The conditional joint posterior likelihood of the detection process parameters is

given by the product for t P 1 : T of:

π pρ, ρE|Xt,Vtq “P
“

HE
t, H

I
t | Mt, dE

c
t , dI

c
t , testt, Xt, θ

‰

ˆ π pρq ˆ π pρEq
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6.5.3 Observed data, latent variables, and parameters

In this chapter the data is that is observed and the data that are latent variables

is defined for us by the problem, though the core idea remains the same. We know

the number of animals on each farm, the number of movement, test, birth, and

death events on each farm, and the number of cattle sent to slaughter (a proxy for

detection), but we don’t know the states of the animals at any time, including the

initial states, or that of the environmental reservoir.

Again we categorise the model components into one of three classes which are

relevant to the fitting process; data is observed and used the fit the model, latent

variables are unobserved but inferred using data augmentation during the MCMC

process, and parameters are inferred through the MCMC process. In this case all of

the data is provided by APHA, and none is simulated.

The data that we are fitting the model to include, for each farm i at time t in

our set of farms of interest, ω: The number of cattle (Ci,t), the number of cattle

movements from farm i to j (mi,j,t), whether or not it is a test day (testi,t), assuming

all cattle are tested, the number of cattle that were sent to slaughter (Hi,t), the

number of cattle births (bci,t), and the number of cattle deaths (dci,t).

The latent variables that we infer through data augmentation include, for each

farm i at time t in our set of farms of interest, ω: The initial states of the cattle

(Xi,0), the initial level of environmental infection (Vppiq,0), the states of the animals

that moved to each destination (Mi,j,t), the number of newly exposed and infectious

cattle (dEc
i,t, dI

c
i,t), the number of detected exposed and infectious cattle from testing

(HE
i,t, H

I
i,t), the states of the cattle that died (Dc

i,t), and the additional and remaining

environmental pressure (Nppiq,t, Rppiq,t).

The model is parameterised by 6 parameters; [βc, δ, F , ϵ] relating to the infection

process, and [ρ, ρE] relating to the testing process.

Thus we can again reformulate the posterior presented in Section 6.5.2 to

distinguish between the observed data, the latent variables, and the parameters.

Denote the parameters θ. For the product of times t in 1 : T :
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π pθ | Xt,Vtq “L
ˆ

C, m, test, H, bc, dc, |

X0, V0, M, dEc, dIc, HE, HI , Dc, N, R, θ

˙

ˆ π
`

X0, V0, M, dEc, dIc, HE, HI , Dc, N, R | θ
˘

ˆ π pθq

6.5.3.1 Data Augmentation

For missing event data, as demonstrated in chapter 3, if we augment the data using

the ‘moving an event in time’ method then we will need to calculate all posterior

terms between the time the event moved from to the time an event moved to. If

we augment the data using the ‘adding/removing an event’ method, then well will

need to calculate all posterior terms from the time the event was added to the end

of the process.

6.6 Initialising the MCMC

In this section we discuss an overview of how we generated a valid epidemic data

set from the full data to initialise the MCMC. The challenge remains that the

discretisation and artefacts in the data leads to inconsistencies and misalignment’s,

however this time we cannot discard data that doesn’t work, and instead have to

assume an issue with the initial conditions or randomly generated events or states.

There are two processes where this is cause of concern - the movement data and

testing data.

Movements can fail when there are less animals on a farm than the data says are

moving. This can be due to other movements needing to occur first, or because of

issues with the initial conditions. As in chapter 5 we loop through all movements,

updating the intermediate states until all moves have been processed. In this case,

if there remains a set of movements that are unable to be processed, instead of
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discarding them we alter the initial conditions of the epidemic to add the minimum

number of additional animals to make these movements valid, and propagate the

changes forward. The animals are added to the susceptible class to minimise their

effect on the epidemic.

Similarly, detection events fail when there are insufficient exposed and infectious

animals on the farm. This can occur for multiple reasons, mostly due to the random

additions and removals of infected animals. For instance in reality a susceptible

animal was moved, but since we have no data on the states of the animals, we

generated that an exposed animal was moved, which resulted in that animal not

being present on the farm when testing occurred. There are multiple ways of

dealing with this challenge, but we chose a simple method that would take minimal

computation to identify a valid epidemic. After we generate the number of newly

exposed and infectious animals, if there is a detection event coming up in the

near future and there currently are not enough animals to detect, then replace the

generated events when valid with another set that guarantees enough animals will be

available to detect. This will lead to an epidemic that does not follow the epidemic

generating process, but it will have a non-zero likelihood. As such after a potentially

longer burn-in period, the data augmentation steps of the MCMC algorithm should

be able to move to an areas of higher posterior mass and a more likely epidemic.

This method to initialise the epidemic worked, though improvement is possible to

reduce the computational burden of the MCMC.

6.7 MCMC Algorithm

The MCMC schema closely matches that of Chapter 5, with some notable changes

which can be summarised as removing any dependence on badger data, and

introducing methods to augment the initial conditions.

Firstly we naturally change the parameters that are being inferred due to the

removal of badger data, but otherwise the methodology stays the same, with two
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sets; infection parameters and detection parameters.

For the data augmentation, all of the steps relating to cattle remain, and all of

the steps specifically relating to badgers are removed, however an additional set of

data augmentations are introduced. In the previous chapter we assumed that the

initial conditions of the epidemic were accurate when making inference, and in that

case it was true. In fact the inference was initialised with the true data. In the case

of this real data however, we are not aware of the true initial conditions, and the

inference is initialised with an epidemic that is merely valid in the sense that it has

a non-zero likelihood, and is unlikely to have a high posterior likelihood.

The new class of data augmentation step we introduce concerns updating the

initial conditions of the epidemic. That is, the states of the cattle on every farm

at the beginning of time step t “ 1, and the level of background infection present

in each parish. There are 7 new data augmentation steps introduced, 6 of which

concern changing the initial state of animals on a farm, and one relates to update

the level of environmental reservoir in a parish.

For the changing of cattle states, the first updater is changing a Susceptible

(S) cattle to an Exposed (E) cattle. This change affects all the states of the farm

for the entire during of the epidemic. This then requires that the likelihood of

every event in the epidemic for that farm be recalculated. The second update

step concerns changing a Susceptible (S) cattle to and infected (I) cattle. This

change also results in changing all the states and recalculating the full likelihood

in that farm. However in addition the new infected cattle will contribute infectious

pressure during the epidemic, and will alter the likelihood of the new pressure added

to the parish environmental reservoir each timestep, so the likelihood of the parish

environmental reservoir will also need to be recalculated. The other augmentation

steps are: changing an Exposed (E) to a Susceptible (S) which requires the same

updates as the former example, and changing an Exposed (E) to an infected (I),

an infected (I) to a Susceptible (S), and an infected (I) to an Exposed (E), all of

which require the same changes as the latter example due to changing the number
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of infected individuals.

6.8 Results

We made inference on the parameters using the block adaptive MCMC method-

ology, grouping the parameters into two groups; the infection process parameters

rβc, δ, F, ϵs and the detection process parameters rρ, ρEs. We focused our inference

on 307 farms, in 24 parishes, in the county of Cheshire, for the 360 weeks from the

1st January 2012. The parishes are shown in Figure 6.1.
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Figure 6.1: A map of the parishes in Cheshire that are used in the inference of the
real data parameters.

Below we present two sets of inference. The first is inference on the full set

of parameters, however the algorithm clearly struggled to identify the detection

parameters. As a result we ran another inference set with the detection parameters

fixed at the values identified by Brooks-Pollock, Roberts, and Keeling, 2014; ρ “ 0.72

and ρE “ 0.276. We discuss why this issue may have occurred in Section 6.9.

The priors were set to be:
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• βc „ Gammap2, 0.001q

• δ „ Gammap3, 0.005q

• F „ Gammap2, 0.002q

• ϵ „ Gammap1, 0.05q

• ρ „ Betap1.5, 0.5q

• ρE „ Betap0.4, 1.6q

6.8.1 Infection and Testing Parameters

The below results are the output of 900, 000 samples after burn-in. The following

table presents the summaries of the marginal posterior distributions:

Mean 95% CI Std. Dev. ESS
βc 0.00302 (0.00232, 0.00362) 0.0003390 28.6
δ 0.0224 (0.0207, 0.0243) 0.0009090 1073.0
F 0.00151 (0.00132, 0.00169) 0.0000979 24.9
ϵ 0.0529 (0.0513, 0.0545) 0.0008220 41.8
ρ 0.935 (0.901, 0.955) 0.0156000 199.7
ρE 0.997 (0.991, 1.000) 0.0024900 12258.0

Table 6.2: The summary of the marginal posterior distributions.

Overall the algorithm recovered tight uni-modal and symmetric posteriors around

the infection parameters, but struggled to identify the detection parameters, pushing

each to their upper limit of 1, as we can see in Figures 6.2 and 6.3. Trace plots of

the chains also show a trend towards 1. Given perfect sensitivity for the tests, these

results for the epidemic parameters are reasonable, however we know that the tests

do not have perfect sensitivity.

As seen in Figure 6.4 the mixing for δ was good, with large jumps and time spent

exploring the posterior mass, however, the algorithm struggled with all the other

parameters, with thin chains that slowly explored the posterior. The algorithm

also took a long time to converge, which we suspect is due to a very low posterior

likelihood for the initial conditions, and the number of update steps required to

move the chain towards higher posterior mass.

Figures 6.6 and 6.7 show the pairwise contour plots for all parameters in the

infection process set, and then the detection process set. The yellow dotted lines

represent the position of the pair of parameters with the highest posterior mass.
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The correlation between the parameters does not present strongly in these plots,

though there was some minor correlation present between the chains of βc, δ, and

F .

The effective sample sizes for each of the parameters is given in Table 6.2.

The average acceptance rate of the infection parameters was 29.57%. The average

acceptance rate of the detection parameters was 28.65%.

For the data augmentation, the average acceptance rate for: moving S to E

exposure events was 89.47%, moving E to I infection events was 77.08%, adding or

removing S to E exposure events was 0.42%, adding or removing E to I infection

events was 1.12%, exchanging detection events was 0.12%, exchanging cattle death

events was 1.54%, adding or removing environmental reservoir pressure was 43.64%,

and exchanging movement events was 3.12%.

6.8.2 The Infection Parameters

The below results are the output of 900, 000 samples after burn-in for the inference

run with ρ fixed at 0.72 and ρE fixed at 0.276. The following table presents the

summaries of the marginal posterior distributions:

Mean 95% CI Std. Dev. ESS
βc 0.00520 (0.00449, 0.00579) 0.000335 154.1
δ 0.00531 (0.00492, 0.00567) 0.000193 1004.8
F 0.00116 (0.00106, 0.00128) 0.000056 91.6
ϵ 0.05258 (0.0514, 0.0540) 0.000707 98.2

Table 6.3: The summary of the marginal posterior distributions.

Overall the algorithm recovered tight uni-modal and symmetric posteriors around

the infection parameters, as we can see in Figure 6.8, however the effective sample

sizes are very small, and the mixing was poor as can be seen in Figure 6.9, suggesting

high levels of autocorrelation. With a lower sensitivity test the detected animals will

make up a smaller proportion of the total infected population, and by consequence

it implies an epidemic with greater numbers of infected animals. As such there is a
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noticeable increase in the estimate of βc, leading to more infections. In particular δ

has a mean 4 times smaller than in the previous inference, leading to much longer

waiting times for the onset of infection. Interestingly F did not increase as much as

βc, meaning the cattle to cattle infectious played a greater role than the environment.

The variance in the posteriors remains about equal or is slightly lower. These values

seem reasonable.

The mixing for δ was still good, and the mixing for βc showed a small

improvement, but overall the mixing of the algorithm was still poor and took a

long time to converge. This again could be due to the starting conditions and

tuning of the update steps.

Figure 6.10 show the pairwise contour plots for all parameters in the infection

process set. The yellow dotted lines represent the position of the pair of parameters

with the highest posterior mass. The correlation between the parameters does not

present strongly in these plots.

The effective sample sizes for each of the parameters is given in Table 6.3. The

average acceptance rate of the infection parameters was 30.1%.

For the data augmentation, the average acceptance rate for: moving S to E

exposure events was 91.79%, moving E to I infection events was 78.68%, adding or

removing S to E exposure events was 1.48%, adding or removing E to I infection

events was 0.75%, exchanging detection events was 0.80%, exchanging cattle death

events was 4.41%, adding or removing environmental reservoir pressure was 43.73%,

and exchanging movement events was 6.39%.
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Figure 6.2: Results: The posterior samples of the infection process parameters displayed as their marginal
distributions represented in a histogram. The priors are shown in blue.

239



Chapter 6. Real Data Model

Figure 6.3: Results: The posterior samples of the detection process parameters displayed as their marginal
distributions represented in a histogram. The priors are shown in blue.
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Figure 6.4: Results: Trace plot for β, δ, F, and ϵ. The orange area represents a portion of the burn-in.
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Figure 6.5: Results: Trace plot for ρ and ρE. The orange area represents a portion of the burn-in.
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Figure 6.6: Results: Contour plots of the posterior samples for each pair of the infection parameters.
Brighter contours represent areas of higher density. The yellow dashed lines show the pair-wise point of
highest density on the contour plots. From left to right, top to bottom, the plots show β vs δ, β vs F ,
β vs ϵ, δ vs F , δ vs ϵ, and F vs ϵ.
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Figure 6.7: Results: Contour plots of the posterior samples for the detection parameters, ρ vs ρE. Brighter
contours represent areas of higher density. The yellow dashed lines show the pair-wise point of highest
density on the contour plots.
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Figure 6.8: Results: The posterior samples of the infection process parameters, assuming the detection
parameters known, displayed as their marginal distributions represented in a histogram. The priors are
shown in blue.

245



Chapter 6. Real Data Model

Figure 6.9: Results: Trace plot for β, δ, F, and ϵ, assuming the detection parameters known. The orange
area represents a portion of the burn-in.
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Figure 6.10: Results: Contour plots of the posterior samples for each pair of the infection parameters,
assuming detection parameters known. Brighter contours represent areas of higher density. The yellow
dashed lines show the pair-wise point of highest density on the contour plots. From left to right, top to
bottom, the plots show β vs δ, β vs F , β vs ϵ, δ vs F , δ vs ϵ, and F vs ϵ.

247



Chapter 6. Real Data Model

6.9 Discussion

Overall we believe this algorithm performed well, returning reasonable posterior

distributions for the infection parameters with, in essence, the detection parameters

roughly fixed at particularly values. This lends credence to the feasibility of discrete

level models for making computationally efficient inference on epidemic data of this

scale. There are some notable aspects for improvement however.

Despite the code being written in a language optimised for speed, Julia, and then

being further optimised to the best of our ability, the inference still took roughly

5 to 7 days per million samples to run for 300 farms. There are in actuality over

80,000 farms in England and Wales that housed cattle. Not only would this increase

the time taken for a million samples to over 1250 days assuming linear scaling

with the number of farms, the current burn-in was 4 million samples to augment

the initial conditions. Making likelihood calculations on the full country with the

current implementation impossible. A faster calculation of the likelihood and more

efficient updating of the data both from an MCMC perspective and implementation

perspective would be necessary. In addition parallel updates and calculations would

likely be necessary where possible.

Further to this issue, with the current data augmentation methods and tuning,

the burn-in would not scale linearly, as a single change at a single farm at a single

timestep will have less and less effect on the likelihood as the number of farms

increases. This will be the greatest challenge of making inference for data of this

scale.

Some of these issues can be addressed by starting with better initial conditions.

The method chosen to create the initial conditions worked, but had a noticeable

effect on the effectiveness and accuracy of the algorithm. Because we added exposed

animals manually to match detection events it means that a large proportion of

detected animals were exposed and all animals added were detected. Both of these

choices inflated the posterior means of the detection parameters for the initial

conditions, which the algorithm found it very difficult to escape from, which we
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think is a large part of the reason for the parameters tending to 1. It will be

especially challenging given the complexity of the process, but a better method of

simulating an epidemic condition on the events in the data that follows the data

generating process more accurately will likely be vital for practical applications of

these algorithms.

These issues can also be addressed through improvements to the data augmenta-

tion process. Taking lessons from the previous chapter, the data augmentation steps

were adapted to reduce the number of proposals that resulted in no change, however,

the tuning remained the same. This means that for each data augmentation action

the minimum change possible was made. This is likely a contributing factor to the

poor effective sample size and mixing of the parameters. Better tuning could help

for moving events in time, however given the low acceptance rates of many of the

other proposal functions it is likely they would need to be replaced. We would need

something more intelligent, that considered more data to make proposals that were

more likely to be accepted. The challenge derives from the complexity of the data

generating process and the interconnectedness of farms and effect of propagating

changes. The long time frames of the disease and relatively low level of infection

within farms results in very small numbers of valid changes at any given data point.

A more effective method may regenerate whole chains of events in a way that is

valid. There is a wealth of potential research that can be explored here.

There are still a number of modelling decisions that could be reconsidered in

future work. For instance we found it challenging to match the number of tests,

the number of cattle detected/sent to slaughter, and the populations of the farms

whilst working at this population level. As a result we made the assumption that

all animals on the farm were tested when a Whole Herd Test (WHT) occurred,

however this is not strictly true in reality. The result would mean that in a well

initialised epidemic, we would essentially find the same number of infectives whilst

testing more animals, and so the sensitivity of the test may be underestimated.

Finally, though the two can’t be directly compared, it is clear with comparisons
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to Chapter 5 that the badger data added a significant grounding element to the data

inference. The additional data on badgers would be extremely effective in helping

to make inference on the cattle parameters, given it were collected and available.
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Chapter 7

Conclusion

In this thesis we have demonstrated the possibility of accurate and efficient full

likelihood inference for complex big data epidemics.

We began in Chapter 1 by exploring the standard methods for the common form

of epidemic data, describing the S-I-R epidemic model, and Markov Chain Monte

Carlo for making inference. At the end of this chapter we stated the two main

challenges we wish to address in this thesis - 1) The huge computational burden of

making full likelihood inference for the Heterogeneous General Stochastic Epidemic,

and 2) The reducing efficiency of the algorithm as the epidemic (and thus missing

data) increases in scale and complexity.

In Chapter 2 we introduced our first method to potentially address these

challenges. We introduced the Near vs Far model, a novel heterogeneous General

Stochastic Epidemic for individuals on a plane with x and y coordinates as covariates.

The model attempted to reduce the complexity of the epidemic by discretising the

distance kernel with relation to the infection rate into two rates; one for individuals

that were ‘near’ an infected individual, and another for individuals that were ‘far’

from an infected individual. This is a simplification of reality, and as such introduced

inaccuracies. Our goal was to assess whether we could still make accurate inference

whilst also increasing efficiency and reducing computational burden. Based on

inference for a simulated epidemic it was shown that it was possible to make accurate
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inference, and furthermore the parameterisation of the model had a noticeable effect

of the efficiency of the algorithm. It was noted at the end of the chapter, however,

that this model would still be incapable of making efficient and timely inference

for epidemic data of the scale of modern epidemics and pandemics such as Bovine

Tuberculosis and COVID-19.

To address these challenges, in Chapter 3 we introduced the methodology of the

S-E-I-R Chain Binomial epidemic model - a model in discrete time, that concerns

itself not with individuals but only with the counts of individuals in each state

during each timestep. This model has the potential to vastly reduce the complexity

of the likelihood, though there was a question of what size of discrete timestep

would be appropriate to maintain accuracy. We also introduced extensions to

the MCMC methodology, including an automatic adaptive tuning algorithm, block

updates of parameters, and new proposal distributions associated with the discrete

Chain Binomial construction. We simulated an epidemic and discretised it at

four levels, making inference on each level. We found that with an appropriate

level of discretisation, we could vastly reduce the computational burden whilst still

generating accurate inference, but over-discretising lead to wild inaccuracies. The

inference methods could be improved through tuning and more efficient proposal

functions, but they succeeded in showing that accurate inference was possible for

larger more complex epidemics. With this in mind we wished to apply these methods

to a real big data epidemic dataset.

We chose Bovine Tuberculosis as our case study example of a big data epidemic,

and introduced the context in Chapter 4. We reviewed the literature around the

dynamics of the disease, and the work of Brooks-Pollock, Roberts, and Keeling,

2014 which inspired the model we developed in Chapters 5 and 6. We received data

from the APHA which consisted of over 150 million rows of records, for 20 million

cattle across 80, 000 farms. We presented an exploratory analysis of this data, which

combined with our review of the literature, we used to guide the development of an

epidemic model for Bovine Tuberculosis in England and Wales.
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In Chapter 5 we developed the overview and intricacies of our model for Bovine

Tuberculosis, assuming data on badger populations in addition to the cattle data

provided by APHA. The model is a discrete-time meta-population SEI epidemic

model, with a movement subprocess, a test and slaughter subprocess, and a

background environmental infection subprocess, in two animal populations (cattle

and badgers). We used the cattle data from APHA and a simulated badger

population with its own SEIR process to generate a partially-simulated epidemic

data set representative of the Bovine Tuberculosis epidemic in England and Wales,

using a data generating process that we developed, including a novel method of

processing cattle movement data. We then extended the MCMC methodologies

introduced in Chapter 3 and made full likelihood inference on this epidemic data

set for a subpopulation of Cheshire, assuming the badger data to be known. We

showed that given detailed badger data, it was possible to make accurate inference

for the epidemic in cattle and badgers for this data set. In reality the badger data

is currently unavailable, so with the method validated we wished to apply it to as

complete a set of the real data as possible.

Finally, in Chapter 6, we combined the learnings of all the previous chapters,

and modified the work of Chapter 5 to make full likelihood inference for a subset

of parishes in Cheshire using as much of the real data as possible. We removed

from the model the dependence on the badger data, and developed a method of

initialising the MCMC with a valid epidemic data set that contained all of the

observed data. To the MCMC we introduced new data augmentation steps that

updated the initial conditions of the epidemic. We ran two sets of inference. The

first made inference on all 6 of the parameters, and struggled to identify the detection

probabilities, which can be interpreted as the specificity of the tests. We believe we

can attribute this in part to the initial conditions of the epidemic, and that starting

the inference with data that produces a higher posterior mass will improve the

efficiency of the inference. This said, we can interpret these results as those assuming

a test of perfect specificity, and under that assumption the results looked reasonable.
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The literature shows that the test does not have perfect specificity however, so

we then ran an additional inference with the detection parameters fixed at those

inferred by Brooks-Pollock, Roberts, and Keeling, 2014 which aligned well with

the literature. This inference also provided reasonable inference. The algorithm has

room for improvement through better tuning and more efficient proposal algorithms,

and it is unlikely to scale to make efficient inference on the scale of the whole country,

and the implementation would take years to run. That said, we have shown that it

is possible to make accurate full likelihood inference for a large scale epidemic data,

and that these methods are worth further investigation.

Future work should be concerned with increasing both the computational

efficiency and methodological efficiency of these inference methods. For the

computational efficiency, we implemented this algorithm in Julia, a language

designed for its speed and aptitude with complex processes. Without the capabilities

of this language, or another high speed language such as C, we would not have been

able to achieve the computational efficiency that we did. However, it is clear that

these implementations are not capable of scaling to the level of inference we are

interested in. The most likely path of investigation is that of Graphical Processing

unit (GPU) powered methods, allowing parallelisation that will vastly improve the

speed of the algorithm, and possible the efficiency of the inference if implemented

in line with inference methods that can take advantage of the parallelisation (Funk

and King, 2020). Such methods have been effectively used to make inference on the

recent COVID-19 pandemic (Jewell et al., 2023).

Methodological efficiency can be improved on two fronts. The first is by

utilising the swathe of sophisticated MCMC methodologies that exist in the

research to improve the efficiency of the algorithm. For instance, the use of

MCMC algorithms that take into account gradient information such as Hamiltonian

MCMC (Duane et al., 1987) can be used to improve the efficiency of sampling the

parameters (Chatzilena et al., 2019). The second is by utilising and developing

novel methodology to augment the states of a complex discrete time epidemic. The
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algorithm struggled most with accepting changes at singular timesteps, when those

changes cascaded through the remainder of the epidemic. The minimal changes

possible were made, only allowing changes to be proposed in locations where it was

locally possible for a different state to occur, and still the acceptance rates for many

data augmentation steps were well less than 5%. This challenge will only increase as

the scale of epidemic data gets larger, either with accepted changes having less and

less effect on the likelihood, leading to poor mixing and an inefficient algorithm, or

changes not being accepted because of cascading changes to the 1000s of farms and

timesteps that are connected indirectly to this state. New methodologies are needed

that can make large changes to the states that are conditioned on the cascading

effect of the complex process and are as such valid. This may be a method that

intelligently updates the states by conditioning the update on the process, or it

may be a method that takes advantage of simulation methods to ‘re-simulate’ a

segment of the process, conditional on the remainder of the process, such that it

will always be valid. We believe this area of research is rich for exploration, and

the key element to unlocking the potential of these methods to make an impact for

modern and future epidemic inference.

We believe that this thesis presents novel methodology for the accurate and

efficient inference of big data epidemics, and future work is of value to pursue to

realise the full potential of these novel methods.
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Appendix A

Our Bovine Tuberculosis Model

A.1 MCMC Algorithms

Below we lay out the Adaptive Block MCMC algorithm and it subroutines as detailed
in Section 5.9 onward. The details below are given in a general form, which when
combined with the details of Chapter 5 can recover the full algorithm used to make
inference.
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Algorithm 15: Block Adaptive MCMC Algorithm

Input : Nits = Total desired number of iterations eg. 106,
Data = All state and event data,
(λinf , minf , ∆minf

) = Initial values of the infection tuning
parameters,
(λdet, mdet, ∆mdet

) = Initial values of the detection tuning
parameters

Output : Results = Parameter values for each iteration
Elements: θ = Epidemic parameters, ntune = Tuning block counter

1 Set up
2 Initialise θcur
3 Set it = 1, ntune = 1

4 Process
5 while it ď Nits do
6 Blk-Adpt-Metropolis-Hastings-Step()’s for Parameters

(Subroutine A.1):

7 rβc, βb, δ, F, ϵs P θinf

8 rρ, ρEs P θdet

9 Metropolis-Hastings-Step()’s for Data Augmentation
(Subroutine A.3):

10 Move SÑE events in time (Subroutine A.4)
11 Move EÑI events in time (Subroutine A.5)
12 Add/Remove SÑE events (Subroutine A.6)
13 Add/Remove EÑI events (Subroutine A.7)
14 Add/Remove Detection events (Subroutine A.8)
15 Add/Remove Cattle Death events (Subroutine A.9)
16 Add/Remove Parish Environmental Reservoir events (Subroutine

A.10)
17 Add/Remove Movement events (Subroutine A.11)

18 Record the Results

19 if it “ 25 ¨ pntuneq then
20 ntune = ntune ` 1
21 end

22 it = it`1

23 end
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Subroutine A.1: Block Adaptive Metropolis-Hastings Step for Parameters

Input : (λinf , λdet, minf , mdet, ∆minf
, ∆minf

) = Current tuning
parameters, and Nits, Data, ntune

Output : θcur = Updated epidemic parameters,
(λinf , λdet, minf , mdet, ∆minf

, ∆minf
) = Updated tuning

parameters
Elements: πpX|θ˚q = Likelihood of the epidemic given parameters θ˚,

πpθ˚|Xq = Joint conditional posterior of parameters θ˚ given
Data X,
qpθ1|θ˚q = Prob of proposing parameters θ1 given the current parameters θ˚,
dinf , ddet = Dimension of θcur for each block,
Σinf , Σdet = Proposal posterior co-variance matrices

1 Repeat for each block of parameters:

2 Propose Update
3 if it ď min(5000, Nits/10) then

4 if it = 25¨ntune then
5 Update λ using Tune λ() (Subroutine A.2)
6 end

7 Draw log(θprime) „ N(log(θcur),
λ2

d
Id)

8 else
9 with 5% chance then

10 Set Σ = λ2

d
Id (1)

11 else
12 Set Σ = m2ˆ[Current empirical Posterior Co-Variance Matrix]

(2)

13 end

14 Draw log(θprime) „ N(log(θcur), Σ)

15 end

16 Accept/Reject

17 Calculate πpθcur|Xq, πpθprime|Xq, qpθcur|θprimeq, qpθprime|θcurq using
Posterior fn()

18 Calculate the Metroplis-Hastings acceptance probability as

α “ minp1,
ś

drθprimes¨πpθprime|Xq¨qpθcur|θprimeq
ś

drθcurs¨πpθcur|Xq¨qpθprime|θcurq
)

19 Accept or reject the proposal

20 if Σ = (2) then
21 if update accepted then
22 Set m = m + 2.3p∆m?

it
q

23 else
24 Set m = m - p∆m?

it
q

25 end
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Subroutine A.2: Function: Tune λ()

Input : λcur = The current value of λ for the parameter block of interest,
ntune = The number of tuning blocks so far,
Results = The acceptance (0/1) of the update steps so far

Output : λupdated = The updated value of λ
Elements: it = iterations,

acc prop = Acceptance proportion for the 25 iterations in the
ntune

th block,
δ = Change in the λ

1 Function Tuneλ()

2 Calculate acc prop

3 if acc prop ă 0.33 then
4 Set δ = ´minp0.05, 1

?
ntune

q

5 else
6 Set δ = minp0.05, 1

?
ntune

q

7 end

8 logpλupdatedq “ logpλcurq ` δ

9 Return(λupdated)

10 end

Subroutine A.3: Metropolis-Hastings Step for Data Augmentation

Input : Proposal fn = A function to generate the proposal,
θ = Current values of the parameters,
and Nits, Data

Output : Data = Updated epidemic data
Elements: πpX|θq = Likelihood of the epidemic given parameters θ,

qpX 1|Xq = prob. of proposing data X 1 given the current data
X

1 Propose Update
2 Propose an update to Data, Xcur, using Proposal fn()

3 Calculate qpXcur|Xprimeq, qpXprime|Xcurq using Proposal fn()

4 Accept/Reject

5 Calculate πpXcur|θq, πpXprime|θq using Posterior fn()

6 Calculate the Metropolis-Hastings acceptance probability as

α “ minp1,
πpXprime|θq¨qpXcur|Xprimeq

πpXcur|θq¨qpXprime|Xcurq
)

7 Accept or reject the proposal
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Subroutine A.4: Function: Propose to move an S to E event through time

Input : Data = The states and events of the epidemic at all timesteps
Output : Data1 = The states and events of the epidemic at all timesteps

after the update
Elements: t = A timestep in the data,

∆ = The magnitude and direction the event is moved through
time
i = The unique ID of the updated farm

1 Function Prop Move dE()

2 Generate ∆ P t´1, 1u

3 if ∆ ą 0 then
4 Choose a timestep, t P 1 : pT ´ 1q, and a farm i such that dEi,t ą 0
5 else
6 Choose a timestep, t P 2 : T , and a farm i such that dEi,t ą 0
7 end

8 Update the Data to create Data1

9 Calculate the proposal probabilities using
10 qpXprime|Xcurq “ 1

2
¨ 1
ř

s tdEi,są0u

11 qpXcur|Xprimeq “ 1
2

¨ 1
ř

s tdE1
i,są0u

12 Return(Data1, qpXcur|Xprimeq, qpXprime|Xcurq)

13 end
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Subroutine A.5: Function: Propose to move an E to I event through time

Input : Data = The states and events of the epidemic at all timesteps
Output : Data1 = The states and events of the epidemic at all timesteps

after the update
Elements: t = A timestep in the data,

∆ = The magnitude and direction the event is moved through
time
i = The unique ID of the updated farm

1 Function Prop Move dI()

2 Generate ∆ P r´1, 1s

3 if ∆ ą 0 then
4 Choose a timestep, t P 1 : pT ´ 1q, and a farm i such that dI i,t ą 0
5 else
6 Choose a timestep, t P 2 : T , and a farm i such that dI i,t ą 0
7 end

8 Update the Data to create Data1

9 Calculate the proposal probabilities using
10 qpXprime|Xcurq “ 1

2
¨ 1
ř

s tdIi,są0u

11 qpXcur|Xprimeq “ 1
2

¨ 1
ř

s tdI 1
i,są0u

12 Return(Data1, qpXcur|Xprimeq, qpXprime|Xcurq)

13 end
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Subroutine A.6: Function: Propose to add or remove an S to E event

Input : Data = The states and events of the epidemic at all timesteps
Output : Data1 = The states and events of the epidemic at all timesteps

after the update
Elements: t = A timestep in the data,

Si,t = The number of susceptibles used to generate the exposure
events,
pexppi, tq = The probability of exposure at time t,
dEi,t = The number of exposure events at time t on farm i

1 Function Prop AddRem dI()

2 Generate ∆ P r´1, 1s

3 if ∆ ą 0 then
4 Choose a timestep, t P 1 : T , and a farm i such that

tSi,t ą 0 and pexppi, tq ą 0u;
5 else
6 Choose a timestep, t P 1 : T , and a farm i such that dEi,t ą 0
7 end

8 Update the Data to create Data1

9 Calculate the proposal probabilities using
10 if ∆ ą 0 then
11 qpXprime|Xcurq “ 1

2
¨ 1
ř

s tSi,są0 and pexppi,sqą0u

12 qpXcur|Xprimeq “ 1
2

¨ 1
ř

s tdE1
i,są0u

13 else
14 qpXprime|Xcurq “ 1

2
¨ 1
ř

s tdEi,są0u

15 qpXcur|Xprimeq “ 1
2

¨ 1
ř

s tS1
i,są0 and p1

exppi,sqą0u

16 end
17 Return(Data1, qpXcur|Xprimeq, qpXprime|Xcurq)

18 end
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Subroutine A.7: Function: Propose to add or remove an E to I event

Input : Data = The states and events of the epidemic at all timesteps
Output : Data1 = The states and events of the epidemic at all timesteps

after the update
Elements: t = A timestep in the data,

Ei,t = The number of exposed used to generate the E to I
events,
dI i,t = The number of infection events at time t on farm i

1 Function Prop AddRem dI()

2 Generate ∆ P t´1, 1u

3 if ∆ ą 0 then
4 Choose a timestep, t P 1 : T , and a farm i such that Ei,t ą 0
5 else
6 Choose a timestep, t P 1 : T , and a farm i such that dI i,t ą 0
7 end

8 Update the Data to create Data1

9 Calculate the proposal probabilities using
10 if ∆ ą 0 then
11 qpXprime|Xcurq “ 1

2
¨ 1
ř

s tEi,są0u

12 qpXcur|Xprimeq “ 1
2

¨ 1
ř

s tdI 1
i,są0u

13 else
14 qpXprime|Xcurq “ 1

2
¨ 1
ř

s tdIi,tą0u

15 qpXcur|Xprimeq “ 1
2

¨ 1
ř

s tE1
i,są0u

16 end
17 Return(Data1, qpXcur|Xprimeq, qpXprime|Xcurq)

18 end
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Subroutine A.8: Function: Propose to add or remove a detection event

Input : Data = The states and events of the epidemic at all timesteps
Output : Data1 = The states and events of the epidemic at all timesteps

after the update
Elements: t = A timestep in the data,

Ei,t, Ii,t = The number of cattle tested in each state,
HE

i,t, H
I
i,t = The number of detection events on farm i for each

state

1 Function Prop AddRem Det()

2 Choose a timestep, t P 1 : T , and a farm i such that
tEi,t ą 0 and Ii,t ą 0 and HE

i,t ` HI
i,t ą 0u;

3 Calculate the probability of each permutation of detections, ζ

4 Randomly select a new permutation weighted by it’s probability

5 Update the Data to create Data1

6 Calculate the proposal probabilities using

7 qpXprime|Xcurq “
ζ1
i

ř

ζ

8 qpXcur|Xprimeq “
ζi
ř

ζ

9 Return(Data1, qpXcur|Xprimeq, qpXprime|Xcurq)

10 end
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Subroutine A.9: Function: Propose to add or remove a Death event

Input : Data = The states and events of the epidemic at all timesteps
Output : Data1 = The states and events of the epidemic at all timesteps

after the update
Elements: t = A timestep in the data,

di,t = The known number of deaths,
Xi,t = The states of animals used to generate the deaths,
Di,t = The number of death events on farm i for each state

1 Function Prop AddRem Deaths()

2 Choose a timestep, t P 1 : T , and a farm i such that
tat least 2 states of Xi,t ą 0 and di,t ą 0u;

3 Generate a new set of Death events using D1
i,t „ MHGpXi,t, di,tq

4 Update the Data to create Data1

5 Calculate the proposal probabilities using

6 qpXprime|Xcurq “ pdfpD1
i,t;MHGpXi,t, di,tqq

7 qpXcur|Xprimeq “ pdfpDi,t;MHGpXi,t, di,tqq

8 Return(Data1, qpXcur|Xprimeq, qpXprime|Xcurq)

9 end
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Subroutine A.10: Function: Propose to add or remove Environmental
Pressure
Input : Data = The states and events of the epidemic at all timesteps
Output : V 1

p,t = The current environmental pressure
Elements: t = A timestep in the data,

Vp,t = The current environmental pressure,
Np,t = The additional environmental pressure generated,
Rp,t = The remaining environmental pressure

1 Function Prop AddRem Env()

2 Choose a timestep, t P 1 : T , and a parish p

3 Generate an amount of Environmental pressure remaining using
4 R1

p,t „ Bin pVp,t, 1 ´ ϵq

5 Generate an amount of additional Environmental pressure using

6 N 1
p,t “ Po

´

ř

iPpXi,t

¯

7 Update the Vi,t

8 Calculate the proposal probabilities using

9 qpXprime|Xcurq “ pdfpR1
p,t; BinpVp,t, 1 ´ ϵqq ˆ pdfpN 1

p,t; Po
´

ř

iPpXi,t

¯

q

10 qpXcur|Xprimeq “ pdfpRp,t; BinpV 1
p,t, 1 ´ ϵqq ˆ pdfpNp,t; Po

´

ř

iPpXi,t

¯

q

11 Return(V 1
p,t, qpXcur|Xprimeq, qpXprime|Xcurq)

12 end
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Subroutine A.11: Function: Propose to add or remove a Movement event

Input : Data = The states and events of the epidemic at all timesteps
Output : Data1 = The states and events of the epidemic at all timesteps

after the update
Elements: t = A timestep in the data,

mi,t = The known number of movments off the farm,
Xi,t = The states of cattle used to generate the deaths

1 Function Prop AddRem Deaths()

2 Choose a timestep, t P 1 : T , and a farm i such that
tat least 2 states of Xi,t ą 0 and mi,t ą 0u;

3 Generate a new set of Movement events

4 Update the Data to create Data1

5 Calculate the proposal probabilities using

6 qpXprime|Xcurq “ pdfpM 1
i,sq

7 qpXcur|Xprimeq “ pdfpMi,sq

8 Return(Data1, qpXcur|Xprimeq, qpXprime|Xcurq)

9 end
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Appendix B

Real Data Model

B.1 MCMC Algorithms

The majority of the methods used align with those presented in Chapter 5, making
the necessary adjustments for the removal of badger data. Here we present the
additional subroutines for augmenting the initial conditions of the epidemic in a
generic form, which can be combined with the details of Chapter 6 to recover the
algorithm used to make inference.
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B.1. MCMC Algorithms

Algorithm 16: Block Adaptive MCMC Algorithm for Real Data

Input : Nits = Total desired number of iterations eg. 106,
Data = All state and event data,
(λinf , minf , ∆minf

) = Initial values of the infection tuning
parameters,
(λdet, mdet, ∆mdet

) = Initial values of the detection tuning
parameters

Output : Results = Parameter values for each iteration
Elements: θ = Epidemic parameters, ntune = Tuning block counter

1 Set up
2 Initialise θcur
3 Set it = 1, ntune = 1

4 Process
5 while it ď Nits do
6 Blk-Adpt-Metropolis-Hastings-Step()’s for Parameters

(Subroutine A.1):

7 rβc, δ, F, ϵs P θinf

8 rρ, ρEs P θdet

9 Metropolis-Hastings-Step()’s for Data Augmentation
(Subroutine A.3):

10 Move SÑE events in time (Subroutine A.4)
11 Move EÑI events in time (Subroutine A.5)
12 Add/Remove SÑE events (Subroutine A.6)
13 Add/Remove EÑI events (Subroutine A.7)
14 Add/Remove Detection events (Subroutine A.8)
15 Add/Remove Cattle Death events (Subroutine A.9)
16 Add/Remove Parish Environmental Reservoir events (Subroutine

A.10)
17 Add/Remove Movement events (Subroutine A.11)
18 Change Initial S to E (Subroutine B.1
19 Change Initial S to I (Subroutine B.1
20 Change Initial E to S (Subroutine B.1
21 Change Initial E to I (Subroutine B.1
22 Change Initial I to S (Subroutine B.1
23 Change Initial I to E (Subroutine B.1
24 Change Initial Parish Environmental Reservoir (Subroutine B.2

25 Record the Results

26 if it “ 25 ¨ pntuneq then
27 ntune = ntune ` 1
28 end

29 it = it`1

30 end
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Subroutine B.1: Function: Propose to change the initial state of an animal

Input : Data = The states and events of the epidemic at all timesteps
Output : Data1 = The states and events of the epidemic at all timesteps

after the update
Elements: ∆ = The magnitude and direction the event is moved through

time
i = The unique ID of the updated farm

1 Function Change init states()

2 Choose a state κ P tS,E, Iu

3 Choose a farm i such that Xκ
i,1 ą 0

4 Update the Data to create Data1 by changing an

5 Calculate the proposal probabilities using
6 qpXprime|Xcurq “ 1

2
¨ 1
ř

i tXκ
i,1ą0u

7 qpXcur|Xprimeq “ 1
2

¨ 1
ř

itX
1κ
i,1ą0u

8 Return(Data1, qpXcur|Xprimeq, qpXprime|Xcurq)

9 end

Subroutine B.2: Function: Propose a change to the initial parish
environmental reservoir
Input : Data = The states and events of the epidemic at all timesteps
Output : Data1 = The states and events of the epidemic at all timesteps

after the update
Elements: t = A timestep in the data,

∆ = The magnitude and direction the event is moved through
time
i = The unique ID of the updated farm

1 Function Prop Change penv()()

2 Choose a parish p and a farm i,

3 Generate random variable ∆ „ Up´0.001, 0.001q

4 Update the Data to create Data1

5 Calculate the proposal probabilities using
6 qpVprime|Vcurq “ 1

0.002

7 qpVcur|Vprimeq “ 1
0.002

8 Return(Data1, qpVcur|Vprimeq, qpVprime|Vcurq)

9 end
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