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Abstract

Epidemic data inference is a key tool for the control and eradication of infectious

disease spread. In the modern data age, where epidemic surveillance makes data

abundant, the current methods of epidemic inference are no longer sufficient.

Bovine Tuberculosis is endemic in the UK and affects tens of millions of cattle

each year, with data available spanning decades (APHA, 2023c). There were 21

million confirmed cases of COVID-19 in England, from a population of roughly 56

million people, over a 3 year period (UK Health Security Agency, 2023). There

are also around 1 billion cases of seasonal Influenza per year worldwide, resulting

in up to 650; 000 deaths (World Health Organisation, 2023). The current gold-

standard methods are incapable of making timely and efficient inference on big data

epidemics at the individual level. In this thesis we introduce novel methodology

that uses discrete-time population-aggregated approximations of epidemic data to

make accurate and efficient inference for complex large-scale epidemics, whilst

vastly reducing the computational burden. We apply these methods to a case

study of Bovine Tuberculosis in England and Wales, including a novel method of

incorporating movement data. We believe the methods developed in this thesis could

form part of a multi-pronged approach for understanding and combating epidemics

and pandemics of the scale we are now experiencing.
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Chapter 1

An Introduction to Epidemic

Modelling

1.1 Introduction

The ability to produce timely, accurate, and insightful inference for epidemic and

pandemic data is of vital importance in modern society (Epstein, 2008, Isham

and Medley, 1996, Woolhouse, 2003). When performed correctly, in conjunction

with policy and communication, the insights gained through data can have a

tremendous impact on society's ability to control and eradicate disease in the

population (McBryde et al., 2020, Kao, 2002). The recent COVID 19 pandemic has

demonstrated the usefulness and necessity of inference for epidemic data (McBryde

et al., 2020), but it has also highlighted the many challenges that exist (Xiang et al.,

2021, Shinde et al., 2020, Brunsdon, 2020).

Epidemic data are highly interdependent, with events that occur in the epidemic

dependent on the infectious status of the individuals during the epidemic, however

the status of individuals is only partially observed in many cases. We can perhaps

know when an individual recovers, but not when they were infected or who infected

them. This missing data complicates the process of deriving insights from the data,

leading to the need of advanced statistical methodologies. These methodologies
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have the potential to provide useful insights, however, each epidemic requires a

bespoke solution, and for epidemic data on the scale of COVID-19 and other big-data

epidemics, combined with the complexity of the disease dynamics, these standard

methods can become prohibitively computationally expensive and ine�cient. These

challenges lead to the need for new methodologies and frameworks that can make

accurate and e�cient inference on complex large data epidemics.

The core concept of epidemic modelling involves dividing a population into

distinct states related to disease status, and modelling the transitions of individuals

between these states. They exist within the general class of State Transition Models

(STM). The form of the STM is determined by the application. Some use agent-

based models that treat every individual in the population distinctly, and some

concern themselves with population-level dynamics (Ajelli et al., 2010). Some take

into account complex social network or other covariate information (Ajelli et al.,

2010), whilst others deal with simple population counts (Zhou, Ma, and Brauer,

2004). The states of the models are sometimes simpli�ed to a small selection

(Kamrujjaman et al., 2022), and others have a large number of states to represent

di�erent infectious pathways and histories (Overton et al., 2022).

The model we choose is often based on our assumptions about the disease and

population in question, and possibly dictated by the resolution and scale of available

data. These models have the advantage that they are typically very easy to simulate

from. We use this property to gather insights on the behaviour of an epidemic, given

a set of parameters. We derive the most appropriate parameters by making inference

on an epidemic data set, under the assumptions of our model.

Fitting epidemic data to models is a di�cult task even in the simplest of cases,

due to two features that set infectious disease data apart from non-communicable

disease data; it is both highly dependent, and often only partially observable, leading

to censoring.

The dependence is between the dynamics of the epidemic and state of the

population. As an example, there can be no infections, or mechanically no
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transitions from the susceptible state to the infectious state, if the number of

individuals in the infectious state is 0. The overall rate of transitions at a given

time t is dependent on the state of the population. Unlike for instance heart disease,

where the risk of disease for individuali is independent of all other members of the

population.

The second, and arguably greater, challenge is that we often cannot observe the

transmission process of an infectious disease, only the outcome; we can see who

recovers or is removed from the population due to death or some other event, but

not who infected them or when. We call this a partially observable process. These

missing events can be divided into two groups. We know that for each observed

removal/recovery event, there must be an associated infection event. We call these

events partially observed. We know they must have happened, but we don't know

when. On the other hand, it is possible that there are individuals that are infected

but have not yet recovered, meaning we have no knowledge of their infection. We call

these occult events. These missing information make calculating the likelihood of the

epidemic di�cult, or more often than not, impossible. In these cases we can turn to

advanced statistical methodologies such as Markov Chain Monte Carlo (MCMC).

These Bayesian methods allow us to \�ll-in" the missing information and obtain

posterior distributions for the parameters we are interested in. These methods have

revolutionised the analysis of partially observed infectious disease data and have

been successfully applied to a myriad of diseases such as COVID-19 (Mbuvha and

Marwala, 2020; Taghizadeh, Karimi, and Heitzinger, 2020), Foot-and-mouth (Jewell

et al., 2009b; Streftaris and Gibson, 2004), and In
uenza (Cauchemez et al., 2004;

Huang et al., 2016).

To add to the challenge, non-standard and problem speci�c algorithms have

to be designed in each instance to optimise e�ciency and accuracy. When the

models become more complex, or the population too large, the cost of computing

the likelihood can become very high, and the scale of missing data that needs to

be imputed can make the methods highly ine�cient. Still they are one of the best
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options. Whilst there are likelihood-free alternatives available such as Approximate

Bayesian Computation that come with their own advantages (Csill�ery et al., 2010),

especially potentially when it comes to computational costs and complex big-data

problems, these methods only give approximate inference and no guarantees of

accuracy. As such, we strongly believe that likelihood-based inference methods,

even in the case of complex big-data epidemics, are still worth pursuing.

In this thesis we will be focusing on the challenge of inference for complex big-

data epidemics, using the case study of Bovine Tuberculosis in England and Wales.

The inference methodology we will be concerned with is the general family of State

Transition Models and full likelihood data inference using Markov Chain Monte

Carlo (MCMC) methods.

In this chapter we will develop the core principles and methodologies used to

make inference on epidemic data using State Transition Models and MCMC inference

techniques. This chapter forms the basis for all the work in the thesis that follows.

In Section 1.2 we develop the core methodology of State Transitions Models for

epidemics. Under these assumptions, in Section 1.3 we describe the framework

of Markov Chain Monte Carlo methodologies for making inference on epidemic

data. Finally in Section 1.4 we review some of the greatest challenges of modelling

epidemics, and highlight the direction of this Thesis for addressing these challenges

in order to make full likelihood inference for complex big-data epidemics.

1.2 Continuous-Time State Transition Models

We begin with a natural but simpli�ed model, treating the population members as

identical and assuming they mix homogeneously. This is the General Stochastic

Epidemic model introduced by Bartlett, 1949. Epidemic models can broadly be

divided into two classes, deterministic and stochastic. Whilst both are valuable

tools and have their uses, we will be focusing solely on stochastic models in this

thesis. Deterministic models can be seen as averages of large population dynamics
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of stochastic models, and as such are in continuous time and on a continuous state-

space. Stochastic models are better able to quantify the uncertainty associated with

epidemic model parameters whilst accounting for complex disease dynamics and

heterogeneity in disease spread which are often features of big-data epidemics. In

addition the gold standard methods of Markov Chain Monte Carlo for �tting these

models allow us to e�ciently augment the large amount of missing data often present

in epidemic data sets, and we intend to prove these methods are viable for big-data

epidemics. Finally, we have modelled our case-study example, Bovine Tuberculosis,

as a collection of connected but separate epidemics in small disjoint populations

(farms) - a meta-population model. The stochastic 
uctuations of epidemics in

small populations have a much more signi�cant e�ect than in larger populations,

and as such the deterministic models inability to capture this behaviour can lead to

inaccuracies. In this section we will derive the construction of the basic classes of

S-I-R model.

We begin with a natural model, treating the population members as individuals,

with their own infection and removal times on a continuous scale, who interact with

other individuals depending on their covariates such as spatial positioning. Starting

with individual level agent-based models and continuing by making simplifying

assumptions to addresses potential challenges with �tting the model.

There are a multitude of ways to model the spread of disease through a

susceptible population in the state transmission model framework. We can include

di�erent states, di�erent transition pathways, di�erent mechanisms of disease

spread, varying scale in time, space, and population (Ajelli et al., 2010, Overton

et al., 2022, Zhou, Ma, and Brauer, 2004, Kamrujjaman et al., 2022). There are

additional complexities we omit at this stage such as household models, meta-

population models, and agent-based network models. The type of model we use

depends very much on the disease in question, the situation, and the type and

detail of data we have available.
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1.2.1 The core concept of S-I-R models

Consider a population ofN individuals. This population is closed, which meansN

is �xed and there are no births, deaths, emigration, or immigration. We divide this

population into three states, each individual can only exist in one state at any given

time. The states are;

ˆ S - Susceptible. Individuals in this set are susceptible to infection, and will

become infected when they come into contact with an infectious individual.

ˆ I - Infected/Infectious. Individuals in this set are infected, and in the simplest

case, also infectious. If these individuals come into contact with a susceptible

individual they will infect them. Individuals will remain in state I until they

are removed/recover.

ˆ R - Recovered/Removed. Individuals in this set have been removed from

the epidemic, either through recovery or death or quarantine or some other

mechanism. They have no e�ect on individuals in either of the other two sets

if they come into contact with them, cannot become infected again, and will

remain in the removed state inde�nitely. Removal grants immunity.

In the simplest case the model is then parameterised by two rates;� {N is the

rate at which any given susceptible makes contact with an infectious individual

(dividing by N so that the interpretation remains constant regardless of population

size), and
 is the rate at which any given infectious individual transitions to the

removed state, which can also be thought of as the reciprocal of the duration of an

individual's infectious period. The values of these rates will be dependent on the

dynamics of the epidemic itself. When these rates are identical for all individuals,

we call this a homogeneously mixing model.

The S-I-R process concerns the sequence of transitions of individuals between

these states through time. We de�ne an epidemic as the series of infection and

removal times in continuous time.
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Figure 1.1: A diagram representing the transition of individuals between states and
the transition parameters at time t. The population is divided into three disjoint
sets;St (susceptibles),I t (infectious), andRt (removed). The number of individuals
in each set (or size) is denoted as| � |, for instance|I t |. � |I t |{N is the rate at which
any given susceptible transitions to the infectious state, and
 is the rate at which
any given infectious individual transitions to the removed state.

1.2.2 The General Stochastic Epidemic S-I-R

The General Stochastic Epidemic (GSE) model is a State Transition Model in

a closed homogeneously mixing population. In this section we consider the

common example of the S-I-R model. Let us divide the population into the three

states S, I , and R. When a susceptible individual comes into contact with an

infectious individual they become infected, and at the end of an infected individual's

infectious period they become removed. If we make the assumption of exponentially

distributed infectious periods, then the memoryless property means that the process

will be a Markov Chain (Bartlett, 1949). We de�ne � {N to be the rate of contact

between a given susceptible individual and an infected individual, and
 to be the

removal rate.

If an individual i becomes infected at time,I i , then they are infectious for a time

of length Qi � Expp
 q, and are removed at timeRi � I i � Qi . In addition we will

de�ne X t to be the number of susceptibles at timet, and Yt to be the number of

infected at time t.

At a given time t, we multiply the `force of infection', �
N � Yt , by the number of
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susceptible individuals to calculate the total `infectious pressure' in the population,

� t � �
N � X t � Yt , which is the overall population rate of S to I transition events. The

overall population rate of I to R transition events is de�ned as
 � Yt . That is to say

both depend on the states of individuals in the population. When there are no more

infectious individuals there can be no more infections, and the epidemic is over.

As such, the waiting time until the next infection event is distributed Exponen-

tially with rate �
N � X t � Yt , and the waiting time until the next removal event is

distributed Exponentially with rate 
 � Yt . These two processes are competing, and

so the next event occurs at the minimum of two Exponential distributions, which

is also an exponential distribution with the sum of the two rates. Thus the overall

rate of events at time t is thus given by �
N � X t � Yt � 
 � Yt and is Exponentially

distributed. Given we draw the waiting time until the next event from this overall

rate, the probability that the next event is an infection event is the ratio of the

susceptible to infectious transition rate to the overall rate, p� �X t �Yt q{N
p� �X t �Yt q{N � 
 �Yt

. Similarly,

the probability that the next event is an infectious to removed transition event is the

ratio of the infectious to removed transition rate to the overall rate, 
 �Yt
p� �X t �Yt q{N � 
 �Yt

.

Using these rates we can simulate easily from this epidemic using what is known

as a Gillespie algorithm (Bailey, 1975). The details of this algorithm can be found

in Algorithm 1.1.

8



1.2. Continuous-Time State Transition Models

Gillespie Algorithm:

Inputs: Population size,N ; Infection rate, � ; Removal rate,
 .

1. Initialise the states of the individuals at time t � 0. Typically with N � 1
susceptible individuals, 1 infectious individual, and 0 removed individuals.

2. While the number of infectious individuals is greater than 0,

(a) Generate the waiting time until the next event as � t � Exponentialp�
N �

X t � Yt � 
 � Ytq.

(b) The probability that the event is an S to I transition is given by
p� �X t �Yt q{N

p� �X t �Yt q{N � 
 �Yt
. The probability that the event is an I to R transition

is given by 
 �Yt
p� �X t �Yt q{N � 
 �Yt

.

(c) Generate whether the event was an infection or removal based on these
probabilities, and update an individual's state appropriately.

(d) Update the time t � t � � t.

Algorithm 1.1: An algorithm to simulate a General Stochastic S-I-R epidemic in a
closed, homogeneous population.

The overall epidemic process is thus the product of two independent but

simultaneously occurring processes, the infection process and the removal process.

Each of these processes is a Poisson process (Kingman, 1992). A Poisson process is

a model of a sequence of discrete events where the average time between events is

known, but the exact time until the next event is random. The waiting time until

the next event is independent of the event before and the occurrence of one event

does not a�ect the probability another event will occur (the memoryless property).

The average rate must be constant (though there are non-homogeneous Poisson

processes where the rate can vary through time (Cox and Isham, 1980)), and no two

events can occur at the same time.

As such, the likelihood of an epidemic that was generated under the assumptions

of the Gillespie algorithm is given by the following de�nition. In a population ofN

individuals, we havenI infected individuals, andnR removed individuals, resulting

in nI � nR total events including the initial infection. The infected individuals

9



Chapter 1. An Introduction to Epidemic Modelling

belong to the setI , and the removed individuals to the setR. The initial infected

individual is indexed by � . The infection times, I i for i P I , are contained in the set

I . The removal times,Ri for i PR, are contained in the setR.

f pI ; R|�; 
; I � q9

�

�
¹

j PtI z� u

�
N

YI j �

�

� � exp
"

�
�
N

» T

I �

pX tYtqdt
*

�

�
¹

j PR




�

� exp
"

� 

» T

I �

pYtqdt
*

;

where,

ˆ � is the infection rate,

ˆ 
 is the removal rate,

ˆ I � is the initial infection time,

ˆ X t denotes the number of susceptibles at time t,

ˆ Yt denotes the number of infectious individuals at time t.

The YI j � notation denotes the number of infectious individuals just before the

infection time of individual j , I j . Formally, YI j � denotes the left hand limit,YI j � �

limsÒI j pYsq.

The Gillespie algorithm is a powerful tool in the arsenal of epidemic modellers,

but naturally some diseases will not �t its assumption about a constant homogeneous

contact rate between individuals who are considered equally likely to be infected.

For instance the spatial locations of individuals may play a key role in their rate of

contact (Lloyd and May, 1996). Some diseases require more speci�c models where

each pair of individuals, t i; j u, has a unique pair-wise infection rate,� i;j . This is

known as a heterogeneously mixing population, where di�erent individuals make

infectious contact at di�erent rates.

10



1.2. Continuous-Time State Transition Models

1.2.3 The Heterogeneous General Stochastic Epidemic S-I-

R

An extension to the General Stochastic Epidemic (GSE) allows for the modelling

of epidemics in heterogeneous populations by taking into account the contact rate

between each pair of individuals. This means that knowledge of who infects whom

is a core part of the system.

When a susceptible individual comes into contact with an infectious individual

they become infected, and at the end of an infected individual's infectious period

they become removed. This is still true as in the previous model, however now each

pair of individuals, t i; j u, has a unique pair-wise infectious contact rate,� i;j {N .

We are interested in the infection time and removal time for each individual in

the population. Let I i denote the time at which individual i becomes infected, and

Ri is the time when individual i is removed. If an individual i becomes infected at

time, I i , then they are infectious for a time of lengthQi � Expp
 q, and are removed

at time Ri � I i � Qi . If an individual never becomes infected during an epidemic,

then we de�ne their infection and removal times to be in�nity.

At a given time t, we can de�ne the overall population rate of S to I transition

events as � t �
°

i PI t

°
j PSt

p� i;j {N q, and the overall population rate of I to R

transition events as
 � Yt . The overall rate of events at timet is thus given by
°

i PI t

°
j PSt

p� i;j {N q � 
 � Yt . Thus the probability that the next event is an S to I

transition is given by p
°

i PI t

°
j PSt

p� i;j {N qq
p

°
i PI t

°
j PSt

p� i;j {N qq� 
 �Yt
, and the probability that it is individual

k P St that is infected is given by
°

i PI t
p� i;k {N q

p
°

i PI t

°
j PSt

p� i;j {N qq. The probability that the event

is an I to R transition is given by 
 �Yt

p
°

i PI t

°
j PSt

p� i;j {N qq� 
 �Yt
.

Algorithm 1.2 presents a method of simulating an S-I-R epidemic in a closed

heterogeneous population under the General Stochastic Epidemic construction using

these rates.

11



Chapter 1. An Introduction to Epidemic Modelling

Heterogeneously Mixing General Stochastic Epidemic Simulation:

Inputs: Population size,N ; Infection rates, � i;j , for all f i; j g; Removal rate,
 .

1. Generate a set of individuals with covariates and calculate the value of� i;j for
each pair of individualst i; j u using the chosen model de�nition.

2. Chose one individual at random,� , to be the initial infected. Set I � � 0 and
generate a new infectious period,Q� , from Qi � Expp
 q, and calculateR� .

3. While the number of infectious individuals is greater than 0,

(a) Generate the waiting time until the next event as � t �
Exponentialp

°
i PI t

°
j PSt

p� i;j {N q � 
 � Ytq.

(b) The probability that the event is an S to I transition is given by
p

°
i PI t

°
j PSt

p� i;j {N qq
p

°
i PI t

°
j PSt

p� i;j {N qq� 
 �Yt
. The probability that the event is an I to R

transition is given by 
 �Yt

p
°

i PI t

°
j PSt

p� i;j {N qq� 
 �Yt
.

(c) Generate whether the event was an infection or removal based on these
probabilities.

(d) If it was an infection event, choose an individualk PSt to become infected
based on the probabilities

°
i PI t

p� i;k {N q{p
°

i PI t

°
j PSt

p� i;j {N qq.

(e) If it was a removal event, choose an individualk P I t uniformly at random.

(f) Update the state of the individual k and the variableYt .

(g) Update the time t � t � � t.

Algorithm 1.2: An algorithm to simulate a General Stochastic S-I-R epidemic in a
closed, homogeneous population.

Assuming that the data we have access to are the number of individuals in

the population, and the time when each infected individual transitions from the

infectious to removed state, but not when they became infected or who infected

them, then the likelihood of a heterogeneously mixing epidemic that was generated

under the assumptions of Algorithm 1.2 is given by the following de�nition. In

a population of N individuals, we havenI infected individuals, and nR removed

individuals, resulting in nI � nR total events including the initial infection. The

infected individuals belong to the setI , and the removed individuals to the setR.

12



1.3. Inference for S-I-R epidemics

The initial infected individual is indexed by � . The infection times, I i for i P I , are

contained in the setI . The removal times,Ri for i PR, are contained in the setR.

f pI ; R|� ; 
; I � q9

�

�
¹

j PtI T z� u

�

�
¸

i PI I j �

� i;j

N

�




�

� � exp

#

�
» T

I �

�
¸

i PI t

¸

j PSt

� i;j

N

�

dt

+

�

�
¹

j PR T




�

� exp
"

� 

» T

I �

Yt dt
*

;

where,

ˆ � i;j is the infectious contact rate between individualsi and j ,

ˆ 
 is the removal rate,

ˆ I � is the initial infection time,

ˆ St is the set of susceptible individuals at timet,

ˆ I t is the set of infected individuals at timet,

ˆ R t is the set of removed individuals at timet,

ˆ Yt denotes the number of infectious individuals at time t.

The I I j � notation denotes the number of infectious individuals just before the

infection time of individual j , I j . Formally, I j � denotes the left hand limit, I I j � �

limsÒI j pI sq.

1.3 Inference for S-I-R epidemics

We are interested in identifying the posterior distribution of our parameters - that

is the distribution of the parameters after considering our current beliefs and the

new evidence from the data. This in turn will provide us with the most likely values

of the parameters, and a measure of the uncertainty in our estimates. With a �tted

13



Chapter 1. An Introduction to Epidemic Modelling

model we can make inference on such things as how long the epidemic will last, how

many hospital beds will be needed this winter (Overton et al., 2022), or where in

the country the disease is likely to spread to next (Brooks-Pollock, Roberts, and

Keeling, 2014). It is the �tting of the model to the data that is the most complex

and challenging part of epidemic modelling.

In the models considered in this chapter, the epidemic data that is required to

�t these models include the infection times and removal times for each individual,

and potentially knowledge of the infectious pathways (who infected whom). In

many cases we assume we have the removal times, or a viable proxy such as taking

the removal time to be the diagnosis time. Most often, however, we do not have

knowledge of the infection times, or who infected whom. These components then

need to be treated as missing information, which needs to be inferred or augmented.

Data augmentation refers to the introduction of latent variables that depend on the

distribution of the existing variables in such a way that the resulting conditional

distributions are easier to sample from and/or result in more e�cient sampling

algorithms. This means that frequentist methods of inference such as maximum

likelihood estimation are inherently di�cult for epidemics. As such, we prefer to

use Bayesian methods of inference. In particular, the most common method used

for full likelihood-based inference is Markov Chain Monte Carlo (MCMC). There

are a selection of non-likelihood-based methods that will not be covered here such

as Approximate Bayesian Computation (Csill�ery et al., 2010).

1.3.1 Bayesian Methods

Bayesian methods utilise Bayes' Theorem, which is used to calculate the conditional

probabilities of events, to make inference on the posterior distributions of parame-

ters. Bayes' Theorem states that for parameters� and data X ,

� p� |X q �
f pX |� q� p� q

f pX q
;

14



1.3. Inference for S-I-R epidemics

where,� p� |X q is the posterior distribution of � , f pX |� q is the likelihood ofX given

� , and � p� q represents our prior beliefs about� . The denominator, f pX q, is called

the evidence, or the normalising constant, and is a constant that ensures that the

posterior distribution integrates to 1. The normalising constant can also be written

as

f pX q �
» 8

�8
f pX |� q� p� qd�:

For the scenarios we are interested in, it is often not possible to calculate the value

of the normalising constant. However, as it is constant, Bayes' Theorem then also

states that the posterior distribution of � is proportional to the likelihood multiplied

by the prior,

� p� |X q9f pX |� q� p� q:

This opens up the possibility of methods such as Markov Chain Monte Carlo, which

allow us to generate samples from a target distribution without needing to explicitly

compute the normalising constant.

1.3.2 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods are conceptually simple, highly

customisable and extendable, and have a rich body of research and tools behind

them. In simple terms, they are methods that allow us to draw dependent samples

from the joint posterior distribution of our parameters of interest. We can do this by

drawing samples from a known friendly distribution and accepting or rejecting that

sample based on some probability derived using the prior distribution and likelihood

of our parameters. This in turn allows us to construct an empirical distribution of

the parameters, giving us valuable insights.

There are many bene�ts to using MCMC methodology to make inference on

epidemics. Firstly, we can deal with our missing-data problem using a method

known as `data augmentation'. This involves treating each of our missing data

points as a parameter of the model, we refer to them as `nuisance parameters', and
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then making inference on them in the same way we do for our parameters of interest.

Unlike with imputing missing data, data augmentation is not intended to produce

point estimates of the most likely value for the missing data, but instead to explore

the posterior distribution of all possible values of the truth. Exploring the space of

possibilities will thus allows us to better quantify our con�dence in our estimates of

the parameters of interest and future �ndings.

Next, as stated above MCMC methods produce samples from the joint posterior

distribution of our parameters. When the conditional distributions of the parameters

are of a known form (such as a Gaussian or Gamma distribution) it is easy to produce

samples given a current set of parameter values, and we can use a method known as

a Gibbs sampler to get draws directly from them. However, in the case of epidemics,

these distributions often do not correspond to a common distributional form, which

would usually make drawing samples from them very challenging. MCMC, however,

has methods such as the Metropolis-Hastings step that allow us to make dependent

draws from any posterior distribution, as long as we can calculate the likelihood.

The conditional posterior distributions - the posterior distributions for some of the

parameters given values of the others - we are usually interested in for epidemics are

often low in dimension and typically uni-modal, so these methods have the potential

to work well.

Next, the rich body of research supporting MCMC methods, and the vast array

of tools for a multitude of problems available, equip the method well for combating

the unique and varied challenges of emerging epidemics. There are methods

to support unique distributions, improved e�ciency, rapid speed of inference for

ongoing epidemics, and countless more (O'Neill, 2002, Sherlock, Fearnhead, and

Roberts, 2010).

Finally, apart from the inherent computational costs, MCMC methods can be

reasonably simple to implement, and there are many papers, packages, and books

to support the creation and evaluation of these methods.

There are however some drawbacks. The previously mentioned computational
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costs of implementing an MCMC algorithm can be prohibitively expensive, and

methods to alleviate these burdens can become very complex. In addition, the

samples of the posterior distributions will usually be dependent on each other. In

intuitive terms this means that the amount of information in our sample set is

not equal to the amount of samples we have. We can quantify this using auto-

correlation and e�ective sample size. Auto-correlation is the correlation between two

chains o�set by t positions, i.e. the chain start at samplen and the chain starting

at sample n � t. The greater the auto-correlation within the chains, the greater

the uncertainty in our estimates, which we can measure using e�ective sample size.

E�ective sample size is the number of independent samples with the same estimation

power as N auto-correlated samples, and can be calculated as the ratio of the number

of dependent samples,N , to the sum of the auto-correlations for all lags (t) from

�8 to 8 (Gelman, Carlin, et al. (2013)). In extremely ine�cient implementations

this could mean that a million dependent samples has an e�ective sample size in the

single digits. Finally, whilst MCMC is asymptotically guaranteed (given the correct

conditions are satis�ed) to provide draws from the correct posterior distribution,

we typically expect the algorithm to take time to converge to this `stationary'

distribution, and it can be di�cult to con�rm if it has happened during a run.

The method may encounter issues such as �nding di�erent `stationary' distributions

based on how it is initialised, or getting stuck in local minima.

Even with these considerable drawbacks, MCMC is still one of the best tools for

making inference on epidemic data. Next we will lay out a general framework for

how to perform MCMC for epidemics, which will be utilised in the remainder of the

Thesis.

1.3.3 Components of MCMC

Let our data be denoted byI and R, the infection and removal times respectively,

and our model parameters by� . During this thesis we will consider models that do

not assume or require knowledge of the infectious pathways (who infected whom),
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though having observations of infectious pathways can improve the inference. To

perform MCMC inference on this data we need two core components:

ˆ The likelihood function of the epidemic,f pI ; R |� q,

ˆ Prior distributions for each parameter,� p� q,

The likelihood is constructed based on the model we have chosen for the epidemic,

which should re
ect our beliefs about the process that generated the data. The prior

distributions on the parameters we can choose freely to re
ect our prior knowledge

about the parameters, or choose a form that complements the form of our likelihood.

The joint posterior distribution can then be derived using these two components.

The joint posterior distribution of the parameters and any missing data is

proportional to the likelihood multiplied by the prior. In some cases it will be

possible to construct conditional posterior distributions for some of the parameters

and/or missing data analytically, given values of other parameters/missing data,

such that they have common distributional forms that we are familiar working

with, like Gamma or Gaussian distributions. In these instances we can sample

directly from these conditional distributions using standard statistical techniques.

Often, however, it is not possible or is undesirable to construct these conditional

distributions with common forms. In these cases methods such as a Metropolis-

Hastings step will be necessary to acquire samples from the posterior distribution,

and for those we will also need:

ˆ Proposal distributions to draw samples from,qp� 1|� q,

ˆ Metropolis-Hastings acceptance probabilities,� p�; � 1q, to help decided whether

to accept the proposed sample.

1.3.3.1 Posterior Distribution

The posterior is the distribution of a parameter vector, including nuisance parame-

ters, after we have updated our prior knowledge or assumptions with the evidence
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from our new data. Mathematically it is proportional to the product of the prior

distribution of the parameters and the likelihood of the data. If we know very

little about the parameters, we can use an `uninformative' prior, such as a uniform

distribution, that gives equal weight to all possibilities. If we know more then we

can use a distribution that can re
ect the information and uncertainty we believe

or assume to be true.

To derive the posterior distribution of a parameter, letf pX |� q be the likelihood

of some dataX that is generated from a model that is dependent on parameter

� . We �rst put a prior distribution on � , � p� q, which represents what we currently

know about the parameter. If we think� has a mean of 3, we can re
ect this in the

prior for instance, and it will contribute to our inference. By Bayes' Theorem, the

posterior is proportional to the likelihood multiplied by the prior;

� p� |X q9f pX |� q� p� q

When appropriate it can be of bene�t to choose the prior on� such that the prior

and the likelihood of the data will be \conjugate", which will result in the posterior

of � taking the form of a known, `friendly' distribution. If we have conjugacy for

the full joint posterior of all the parameters and nuisance parameters, then we don't

need to sample at all. If we have component-wise conjugacy for the joint conditional

posterior of some of the parameters/missing data given the others, then we can

sample directly from this joint conditional posterior for these elements. For those

elements that do not have conjugacy, special methodology is needed to make our

inference; the Metropolis-Hastings step.

1.3.3.2 The Metropolis-Hastings step

The Metropolis-Hastings (MH) step is a form of rejection sampling, that is used to

generate samples from a posterior distribution. Typically it is used when it is not

possible to generate samples from the distribution because we cannot calculate the
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normalising constant of the posterior. Even if we are not able to sample from the

posterior directly, we may be able to evaluate it's density for a given set of inputs.

This will tell us how likely that value of the parameter is given the data and the

prior, and possibly the current value of other parameters if there is dependency.

The Metropolis-Hastings step is made up of a proposal distribution and an

acceptance probability function which combined generate a Markov chain of

dependent samples from the stationary distribution of the chain, which once

converged is set up to be the posterior distribution of interest.

Lets say we are interested in some parameter,� . We �rst choose a proposal

distribution for the parameter, q, and setQp� 1|� qbe the cdf ofq. We can propose a

value for � 1 � Qp�|� q. Then we calculate the value of the posterior for our current

sample, � � , and our proposed sample,� 1. Lets denote these� p� � |X q and � p� 1|X q

respectively. Then, we will accept the newly proposed value with some probability

� , which is known as the Metropolis-Hastings acceptance probability.

A common choice for the proposal distribution is a Normal distribution centred

around the current value of the parameter,� � , with variance � 2, where � 2 is a

tuning parameter. Choosing this proposal distribution makes this algorithm into

the Random Walk Metropolis (RWM). Sampling from this proposal distribution

gets us a proposal draw,� 1, where� 1 � N p� � ; � 2q.

The MH acceptance probability,� , is dependent on the posterior likelihood of

the proposed parameter. It is calculated,

� � min
"

� p� 1|X q
� p� � |X q

qp� � |� 1q
qp� 1|� � q

; 1
*

; (1.1)

whereqp� � |� 1qis the probability of being at � 1and \moving to" � � on the proposal

distribution, and vice versa forqp� 1|� � q. We can note here that as we are taking the

ratio of the posterior calculated at two di�erent values, the normalising constant

would cancel, and so we have no need of calculating it.

In the case where we have chosen the proposal distribution to be Normally

distributed, these proposals will be symmetric. This means that the probability
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density of going from � 1 Ñ � � is the same as going from� � Ñ � 1, and so the

components cancel;

� � min
"

� p� 1|X q
� p� � |X q

; 1
*

� min
"

f pX |� 1q� p� 1q
f pX |� � q� p� � q

; 1
*

:

As we can see from what remains, if the new parameter is more likely than the

current one then we just accept it, otherwise we accept it with probability the ratio

of the two posteriors. If we accept it then we record the draw and update our

current value, if we reject it then we just discard the draw and record our current

value again.

We control this acceptance rate through our proposal variance,� 2, however, our

goal is not 100% acceptance, as this would just return the proposal distribution.

Instead we are balancing two goals. If� 2 is too large, then we will propose large

\jumps" (the relative distance between our current and new draws is more likely

to be large). When this happens the posterior density is likely to be very di�erent

and we are likely to reject these changes as a result (especially since the MHRW

prefers to stay in areas of high posterior probability), however, when these changes

are accepted the two draws will be a lot less dependent. On the other hand, if

we have a small� 2, then we are going to propose small \jumps" (the two draws

are likely to be relatively similar). When this happens, we are likely to accept the

new parameter as the posterior densities will be fairly similar, but there will be a

high level of dependence or `auto-correlation' between the two samples. We want to

balance the dependence/auto-correlation with the number of samples accepted.

Under theoretical conditions, the optimal acceptance rate for a univariate

Gaussian conditional posterior distribution when using a Gaussian Random Walk

Metropolis proposal is 44% (Gelman, Roberts, and Gilks, 1996). This is taken as

a rule of thumb for most single parameter inference. If we increase the number of

parameters in each MH step, and use multivariate proposal distributions with co-

variance matrices, that ideal theoretical acceptance rate tends to 23% as the number
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of parameters increases to8 (Roberts, Gelman, and Gilks, 1997).

There are many proposal distributions we could use, even a uniform distribution

is a valid choice. Changing the proposal distribution is what leads to the many

named MCMC algorithms such as MALA (Roberts and Tweedie, 1996) and

Hamiltonian Monte Carlo (Duane et al., 1987), which can improve the e�ciency

of the inference in di�erent circumstances. Many of the advanced ones depend on

gradient information. These methods could be used on the parameter space, however

they are more problematic for the data augmentation space because the likelihood

can be discontinuous when you propose changes (ie. you don't just move along the

likelihood curve, but shift the curve entirely).

1.3.4 MCMC framework

Here we will present a framework algorithm for how to perform MCMC inference

for epidemic data, using the components described above, to obtain samples from

� p� |Rq.

The most commonly encountered scenario is that we know the removal times,

R, as we can de�ne them ourselves (such as when someone gets diagnosed at the

doctors), but the infection times, I , are usually unknown, and so we assume that

the infection times will be treated as nuisance parameters which will need to be

inferred.

Assume we have an epidemic modelM with parameters � 1; : : : ; � p. Let us say

that for all parameters � 1; : : : ; � i , i   p, we have conditional posterior distributions,

conditional on the values of the other parameters, the missing infection times data,

I , and the removal times data,R, that we can easily draw samples from (Gamma

distributions for instance), and the rest of the parameters will require a Metropolis-

Hastings step.

In a population ofN individuals, we havenI infected individuals, andnR removed

individuals, resulting in nI � nR total events including the initial infection. In this

case we will assume the epidemic is complete andnI � nR . The infected individuals
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belong to the setI , and the removed individuals to the setR. The initial infected

individual is indexed by � . The infection times, I i for i P I , are contained in the set

I . The removal times,Ri for i PR, are contained in the setR.

In this scenario a framework for an MCMC algorithm is given below in Algorithm

1.3.
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MCMC framework for epidemics:

Inputs: Data, R; Likelihood, f pI ; R|� q; Prior for each � j ; � p� j q; j � 1; : : : ; d;
Prior on I , � pI |� q; Exact conditional posterior distributions for each� 1:i ; Proposal
distributions for each� pi � 1q:p, qp� 1

j |� j q; j � p i � 1q; : : : ; p; Proposal distribution for I ,
qpI 1

k |I kq; k � 1; : : : ; nI .

1. Initialise the algorithm by choosing values for the parameters and the nuisance
parameters.

2. For j � 1; : : : ; i : Generate a new realisation of� j , � 1
j , from its conditional

posterior distribution, conditional on the current value of all the other
parameters, � 1:pzj , the infection times, I , and the removal times,R. This is
known as a Gibbs sampler. Update the� vector: � j Ð � 1

j .

3. For j � p i � 1q; : : : ; p: Generate a new realisation of� j , � 1
j , from its

appropriate proposal distribution, conditional on the current value of all the
other parameters, the infection times, and the removal times. Accept this
sample with probability calculated using the Metropolis-Hastings acceptance
probability � . If the new realisation is accepted, then update the� vector:
� j Ð � 1

j , if it is rejected then discard the draw and update the� vector:
� j Ð � j . This is known as a Metropolis-Hastings step.

� � min
"

� p� 1
j |� 1:pzj ; I ; Rq

� p� |� 1:pzj ; I ; Rq

qp� j |� 1
j q

qp� 1
j |� j q

; 1
*

4. Choose a random infected individualk P I . Update the infection time of
individual k, I k , using again a MH step. If the new time is invalid for some
reason (e:g: it occurs after the last removal say) then it should automatically
be rejected as the likelihood should be 0. If the new realisations are accepted
then update the infection times vector:I k Ð I 1

k , if not then discard the new
draw and update the infection times vector:I k Ð I k .

� � min
"

� pI 1
k |I I zk ; R ; � q

� pI k |I I zk ; R ; � q
qpI k |I 1

kq
qpI 1

k |I kq
; 1

*

5. Repeat steps 2-4T times then discard the �rst B draws as \burn-in" leaving
T � B draws (approximately) from the posterior distribution.

Algorithm 1.3: A general framework for performing MCMC inference for epidemic
data.

Our output from this algorithm should be pT � Bq dependent draws from the
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joint posterior distribution of our parameters. We discard theB burn-in samples

to remove the period the algorithm spent `�nding' the stationary distribution of the

parameters. From this we can estimate features of the posterior distributions that

are of interest, such as means, medians, and variances. In addition we can feed the

joint posterior samples back into the model to estimate features of the epidemic

via simulation such as expected length, expected cases, probability of dying out

naturally via averaging the simulation results. We can also use simulations to do

projection and retrospective analyses.

Note that the framework presented here is for an MCMC method known as

Metropolis-within-Gibbs, which combines the direct conditional sampling steps of a

Gibbs sampler, with the proposed and accepted/rejected conditional sample steps of

a Metropolis-Hastings algorithms. There are many possible MCMC methods that

exist that may use signi�cantly di�erent tools to increase e�ciency, but the core

concept and goal will remain the same.

1.4 The Challenges of Epidemic Inference Ad-

dressed in this Thesis

We now have a way of building an empirical distribution of our parameters of interest

based on likelihood methods that also account for missing data. There are however

still challenges in making these methods feasible in the modern data age, and on

the scale of epidemic and pandemic data.

1.4.1 The computational costs of MCMC

Markov-Chain Monte Carlo (MCMC) methods are typically very computationally

expensive, even with optimised code implementations. For every proposed sample

of the potentially thousands of parameters drawn, when including the nuisance

parameters, typically a full recalculation of the likelihood is required. Of these
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Chapter 1. An Introduction to Epidemic Modelling

proposals, in line with the optimal rejection probabilities corresponding to the

earlier optimal acceptance probabilities, 56% to 77% of samples are rejected and

discarded in an optimally tuned algorithm. Of the accepted parameter draws, an

indeterminable amount is discarded as burn-in before the chain locates the stationary

distribution. These steps are necessary to ensure accurate inference and minimise the

dependence between samples, as the greater the dependence between samples, the

more samples need to be generated. For this reason, in complex modelling scenarios

such as epidemics, where the likelihoods are large and expensive to compute, we

may look for ways to reduce the computational burden of the algorithms at the cost

of accuracy.

1.4.2 The missing data

Computational costs can, to some degree, be mitigated through additional compute

power and intelligently designed algorithms, however, this does not get around the

issue of missing data. As pandemics break out in ever growing populations, and

epidemic data becomes easier to collect, store, and share, the scale of epidemic

data becomes unwieldy. With data available at the individual level across whole

countries, the level of missing data rises to tens or hundreds of millions of records

which need to be imputed. Finding e�cient ways of exploring the state space of

all these missing data becomes a signi�cant challenge, that more powerful hardware

simply cannot address alone, as this corresponds to the mixing and e�ciency of the

inference algorithms. For this reason too we may look at ways of aggregating the

data to di�erent resolutions, in order to reduce the number of data points that need

to be imputed, at the cost of accuracy.

If we could perform inference for an epidemic under the assumptions of the

fully heterogeneous individual-level model presented in Section 1.2.3, it would be

the gold-standard. This, however, is rarely possible, especially for anything larger

than a small epidemic. In the following chapter, we propose a potential model to

address some of the challenges presented here. We consider a model that takes
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into account additional spatial covariate data in order to discretise the data and

reduce the computational burden of computing the likelihood. We also show that

this model is still incapable of overcoming the challenges of the largest epidemic and

pandemic data sets available in the modern world, setting the scene for the rest of

the thesis, which explores methods for making full likelihood inference on big-data

epidemics with hundreds of millions of data points.

This thesis is concerned with novel methods for performing full likelihood

inference using gold-standard MCMC methods for big-data epidemics. The �rst

half of the thesis builds up the readers knowledge of making inference on epidemic

data, whilst justifying the need for new methodology, and highlighting potential

avenues of research. In Chapter 2 we introduce an individual-level continuous-

time spatial epidemic model, that attempts to deal with large quantities of data

through a simpli�ed spatial kernel we call a \Near vs. Far" model. In Chapter 3

we explore discrete approximations for State Transition Models via a discrete-time

population-level epidemic model, and how this approximation can vastly reduce the

computational burden of the inference whilst maintaining high levels of accuracy,

under the right conditions. The latter half of the thesis builds upon the previous

chapters to build a model and an e�cient full-likelihood inference scheme for a

case-study example of a big-data epidemic, Bovine Tuberculosis. In Chapter 4 we

introduce our case study example, giving an overview of the literature and previous

models, and an exploratory analysis of data provided by the Animal and Plant

Health Agency (APHA). Following this in Chapter 5 we develop our own model for

bTB and an inference scheme based on a partially simulated epidemic, which uses

some geographical, cattle, and movement data from APHA, and augments it with

simulated badger, cattle testing, and epidemic data. With this inference method

validated on simulated data, in Chapter 6 we remove the simulated data and adapt

the model and inference method for only observed data. Finally in Chapter 7 we

conclude the thesis with a review of the works completed and suggestions for future

avenues of research.
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Chapter 2

Near Vs. Far

2.1 Introduction

The gold standard of epidemic modelling is to consider every individual in continuous

time, with unique time-varying pair-wise contact rates, possibly even taking into

account each individual's time-varying covariates. However, for even small to

moderately sized epidemics this becomes infeasible. There are identi�ability issues

due to the potentially large numbers of dependent parameters and potentially large

amounts of missing data common to epidemic data sets. At the same time the

MCMC methodologies become extremely ine�cient and the computational burden

of calculating the likelihood becomes unwieldy.

A simpli�cation to the model that captures the majority of the behaviour and

yet vastly reduces the computational burden can allow the methodology to scale to

real-world challenges.

In this chapter we introduce one such example of a simpli�ed spatial S-I-R

model with heterogeneous mixing. Instead of having a unique infectious contact

rate between every pair of individuals, the pair-wise infectious contact rate will

take one of two �xed values, depending on the distance between the individuals on

a plane. We call this model the 'Near vs Far General Stochastic Epidemic'. We

also explore alternative parameterisations for the implementation of the Near vs
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2.2. Simpli�ed Heterogeneity

Far kernel to investigate the e�ect on the e�ciency of inference. Deardon et al.,

2010 investigated a similar simpli�cation for the UK 2001 FMD epidemic they call

linearising the distance kernel by taking a Taylor series expansion.

In this Chapter we apply the frameworks laid out in Chapter 1 for constructing

the model and applying MCMC methodologies to make inference for a simulated

epidemic. In Section 2.2 we explain the details of the model and give an algorithm for

simulating an epidemic in this style. Following this in Section 2.3 we provide the form

of the likelihood which is used in Section 2.4 to derive the posterior distributions. In

Section 2.5 we present three additional forms of the proposal distribution, and apply

these to the parameters and latent variables in Section 2.6. We use these components

in Section 2.7 where we explain the MCMC schema applied to make inference for

our example, and in Section 2.8 we present an alternative parameterisation of the

epidemic model and subsequent MCMC algorithm. Finally we present and compare

the results in 2.9.

2.2 Simpli�ed Heterogeneity

The general stochastic epidemic (GSE) makes the assumption of a unique rate of

infectious contact between each pair of individuals,� i;j . However, �tting a model

with a unique parameter for each pairing is often impossible. As such we tend to

make � i;j a function of the covariates of the individuals to reduce the size of the

parameter space.

There are many models we could consider to investigate heterogeneity in mixing.

Depending on the disease in question and the modelling assumptions we have

made, we could consider heterogeneity in individuals susceptibility or infectivity,

or both, based on covariates such as spatial location, age, species, occupation, social

structure, behaviour, vaccination status, and many more. Examples include,

1. An age-strati�ed model such as Balabdaoui and Mohr, 2020. For instance, let

ci be the age group covariate of individuali , then � i;j � � �f pci ; cj qis dependent
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Chapter 2. Near Vs. Far

on the contact rate between di�erent age groups, ie. school children contact a

lot of other school children but less commonly contact young adults.

2. A household model such as Neal and Roberts, 2004. The natural grouping of

individuals into small units is modelled, as an example� i;j � � � � H �1i � j where

all individuals contact at a base rate� and individuals in the same household

have additional contact rate� H , where1i � j is equal to 1 if individuals i and

j share a household, and 0 otherwise.

3. A spatial kernel that depends on the distance between individuals in space

such as Keeling et al., 2001. An example could be a Gaussian spatial kernel

where� i;j � � � f pi; j qwheref pi; j qis a Gaussian density centred on the spatial

location of individual i with standard deviations � x ; � y as tuning parameters,

which represent the scale of the Gaussian density along the x and y axes,

respectively. Depending on the shape of the kernel, typically the further

individual j is from individual i , the lower the contact rate.

There are countless more possibilities. In this section we present a simpli�ed spatial

model.

2.2.1 Near vs Far GSE S-I-R

We assume that each individual has a �xed location on a plane. When considering

a pair of individuals, i; j , an infectious individual is more likely to make infectious

contact and infect a susceptible individual if they are closer together. There are

many ways that we could incorporate this kind of spatial heterogeneity, and we have

chosen a conceptually simple one. If an infectious individual is within a Euclidean

distanced of a susceptible individual, then they make infectious contact at rate� 1,

otherwise, they make infectious contact at rate� 2. This has reduced the size of

the parameter space fromN pN � 1q to 2. We are considering cases where� 1 ¡ � 2.

Once an individual is infected they recover at rate
 . Figure 2.1 presents a visual

representation of the model.
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2.2. Simpli�ed Heterogeneity

Figure 2.1: A diagram representing the Near Vs Far GSE. The \x" represent the
positions of individuals on the 2-d plane. The red x represents an infected individual.
The individuals within distance d of the infected individual are contained in the
red circle, and make infectious contact with the infected individual at rate� 1. All
individuals outside the red circle make infectious contact with the infected individual
at rate � 2.

The General Stochastic Epidemic presented in Chapter 1 can be adapted to

this kind of heterogeneity with the appropriate setting of the� i;j . With its hard

boundary and �xed spatial positioning it will not always be appropriate, but is

viable for instance when modelling crop diseases or disease spread by cattle herds

on di�erent farms that share pastures. In cases where it is appropriate we can vastly

reduce the computational costs involved in simulating and making inference on such

data. Algorithm 2.1 presents the steps for simulating an epidemic in this framework,

based on the Gillespie algorithm (Gillespie, 1977), where

� pi;j q �

$
'&

'%

� 1; if
 
dpi;j q   d

(
;

� 2; otherwise.
(2.1)
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Near Vs. Far General Stochastic Epidemic Simulation:

Inputs: Population size,N ; Infection rates, � 1 and � 2; Removal rate, 
 ; Distance
cut-o�, d.

1. Generate the position of all individualsi on the plane. Calculate the distances
di;j between each pair of individualst i; j u. Calculate the value of� i;j for each
pair of individuals t i; j u.

2. Choose one individual at random,� , to be the initial infected. Set I � � 0
and generate a new infectious period,Q� , from Q� � Expp
 q, and calculate
R� � I � � Q� .

3. For eacht i; � u pair, i P Susceptibles, generate a time until contact,Wi;� , from
Wi;j � Expp� i;� q.

4. Then,

(a) For i P Susceptibles,j P Infectious, �nd the pair of individuals t i; j u
which has the minimumt I j � Wi;j u subject to t I j � Wi;j   I j � Qj u. Set
I i � I j � Wi;j . GenerateQi , from Qi � Expp
 q, and calculateRi � I i � Qi .

(b) Update the sets of Susceptible and Infectious individuals.

(c) For the new infectious individual, i , from step (a), and each
m P Susceptibles, generate a new time until contact,Wm;i , from
Wm;i � Expp� m;i q.

(d) Repeat steps (a) and (b) until the susceptible or infectious population
reaches size 0.

Algorithm 2.1: An algorithm to simulate a General Stochastic S-I-R epidemic in a
closed, homogeneous population.

2.3 Likelihood

The likelihood of the Near vs Far epidemic takes the form of the heterogeneous

General Stochastic Epidemic presented in Chapter 1, with the pairwise infection

rate de�ned as a function of the model parameters and the individuals covariates.

The likelihood is de�ned by its infection times and removal times, conditional

on the transition parameters and the initial infection time, with no requirement to
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2.3. Likelihood

know who infected whom. In a population ofN individuals, we havenI infected

individuals, and nR removed individuals, resulting innI � nR total events including

the initial infection. The infected individuals belong to the setI , and the removed

individuals to the set R. The initial infected individual is indexed by � . The

infection times, I i for i P I , are contained in the setI . The removal times,Ri for

i PR, are contained in the setR.

The model simpli�es the pair-wise infectious contact rate,� pi;j q, to two distinct

possibilities, � 1 or � 2 of the form given in Equation (2.1).

The value of � i;j depends ond, the distance at which the infection rate

changes, but we are only interested in the total susceptible pressure exerted on each

individual. We introduce the notation D 1
t to represent the number of susceptible-

infectious pairs within distanced of each other at timet, and D 2
t to represent the

number of susceptible-infectious pairs further than distanced from each other at

time t.

In this parameterisation the heterogeneous GSE likelihood simpli�es to,

f pI ; R |� ; 
; I � q9

�

�
¹

j PtI T z� u

�
D 1

I j �
� 1 � D 2

I j �
� 2

	
�

� � exp
"

�
» T

I �

�
D 1

t � 1 � D 2
t � 2

�
dt

*

�

�
¹

j PR T




�

� exp
"

� 

» T

I �

Yt dt
*

; (2.2)

where,

ˆ 
 is the removal rate,

ˆ � indexes the initial infective,

ˆ St is the set of susceptible individuals at timet,

ˆ I t is the set of infected individuals at timet,

ˆ R t is the set of removed individuals at timet,

33



Chapter 2. Near Vs. Far

ˆ Yt denotes the number of infectious individuals at time t.

The I I j � notation denotes the number of infectious individuals just before the

infection time of individual j , I j . Formally, I j � denotes the left hand limit, I I j � �

limsÒI j pI sq.

2.4 Posterior

In this section we present the posterior distributions of the parameters in the Near

vs. Far model, using the methodology explored in Chapter 1.

Individuals are arranged at �xed points on a plane, and the infection rate between

two individuals i and j is dependent on the Euclidean distance between them. The

infection rate takes the form given in Equation (2.1).

We have chosen the prior distribution on� 1 to be a Gammap� � 1 ; � � 1 qbecause of

its 
exibility, non-negative support, and interpretability. The prior has the form

� p� 1|� � 1 ; � � 1 q �
p� � 1 q� � 1

� p� � 1 q
� p� � 1 � 1qe� � � 1 � 1 :

The form of the Gamma distribution we are choosing to use has� ¡ 0 as the

shape parameter, and� ¡ 0 as the rate parameter.

The prior distributions for � 2 and 
 are also chosen to be Gamma distributions

with unique hyper-parameters. In the case of
 this is also because it is conjugate

and results in a conditional posterior for
 that is of a known form. We will assume

a uniform prior on d bounded by the minimum and maximum distances between all

pairs of individuals in the population.

The conditional posterior distributions are:

� p� 1|� 2; 
; d; R; I ; I � ; � � 1 ; � � 1 q9

�
n I¹

j � �

�
D 1

I j �
� 1 � D 2

I j �
� 2

	
�

�
�
�

p� � 1 � 1q
1

�

�
�
exp

"
�

» T

I �

�
D 1

t � 1

�
dt � � � 1 � 1

*�
:
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� p� 2|� 1; 
; d; R; I ; I � ; � � 2 ; � � 2 q9

�
n I¹

j � �

�
D 1

I j �
� 1 � D 2

I j �
� 2

	
�

�
�
�

p� � 2 � 1q
2

�

�
�
exp

"
�

» T

I �

�
D 2

t � 2

�
dt � � � 2 � 2

*�
:

� pd|� 1; � 2; 
; d; R; I ; I � ; � � 2 ; � � 2 q 9

�
n I¹

j � �

�
D 1

I j �
� 1 � D 2

I j �
� 2

	
� �

exp
"

�
» T

I �

�
D 1

t � 1 � D 2
t � 2

�
dt

*�
:

� p
 |� 1; � 2; d;R; I ; I � ; � 
 ; � 
 q � Gamma
��

� 
 �
» T

I �

pYtqdt
�

; rn � � 
 s



:

� pI |R; I � ; � 1; � 2; 
; d; � � 1 ; � � 1 ; � � 2 ; � � 2 ; � 
 ; � 
 q

9

�
n I¹

j � �

�
D 1

I j �
� 1 � D 2

I j �
� 2

	
�

� exp
"

�
» T

I �

�
D 1

t � 1 � D 2
t � 2

�
dt

*
� exp

"
� 


» T

I �

pYtqdt
*

:

2.5 Metropolis-Hastings Steps

Metropolis-Hastings steps are a useful tool for sampling from most of the posterior

distributions presented in Section 2.4. They will form part of our MCMC inference

schema and produce dependent samples of our parameters of interest, whilst

accounting for our missing data.

In this section, we present the proposal distributions and subsequent Metropolis-

Hastings acceptance probabilities for the parameters and unknown data from Section

2.4.
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2.5.1 The Random Walk Metropolis-Hastings step

We will be using a common Metropolis-Hastings algorithm, the Random Walk

Metropolis. The proposal distribution is a Normal distribution centred around

the current value of the parameter,� � , with variance � 2, where � 2 is a tuning

parameter. Our parameter draw is� 1, where� 1 � N p� � ; � 2q. The normal distribution

is symmetric so the probability of going from� 1 Ñ � � is the same as going from

� � Ñ � 1. Thus, the proposal distribution will cancel in the acceptance probability

and will again result in Equation (1.1).

2.5.1.1 The Multiplicative Random Walk Metropolis

In some cases we found the algorithms to be more e�cient when proposing

on the log scale, with the added bene�ts of the proposed draws can only be

positive like the parameters. Transforming to the log scale to propose is called

a Multiplicative Random Walk Metropolis (Dellaportas and Roberts, 2003). The

proposal distribution is now skewed due to the logarithmic transform, and so is

no longer symmetric. We need to consider the Jacobian of the transformation,

which accounts for the change in density due to the transformation, and adjust the

acceptance probability accordingly.

To do this we make use of the result that for two random variables� and � ,

where� � logp� q, the posterior � p� |X q � � � � p� |X q. So the acceptance probability

is given by

� � min
"

� 1 � � p� 1|X q
� � � � p� � |X q

; 1
*

2.5.1.2 The Folded Random Walk Metropolis

By taking advantage of the symmetric nature of the Random Walk proposal, we can

bound the proposal distribution whilst still maintaining a symmetric distribution.

This is especially useful for parameters that are strictly positive but are ine�ciently
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explored on the log scale, or parameters that exist within clear bounds.

First consider a Normal proposal centred on the current value of the parameter,

� � , with variance � 2, where � is a tuning parameter. We introduce a lower bound,

l , and an upper bound,u. We propose as normal from the proposal distribution,

however, if we propose a value belowl or aboveu, then we `fold' the distribution

back on itself using the following logic:

When a value� � N p� � ; � 2qis drawn, the following repeated fold operations are

performed:

Fold operations:

Inputs: Current value of � , � � ; Proposed value,� ; Lower bound,l ; Upper bound,u

while � R rl; us do
if �   l then

� Ð 2l � �
end
else if � ¡ u then

� Ð 2u � �
end

end

Algorithm 2.2: Fold operations for the Folded Random Walk.

the proposal� 1 is then set to � .

Thus � 1only has support inrl; usand it's density is the sum of an in�nite sequence

of Gaussian densities:

Denoting gp� q as the density of aN p� � ; � 2q random variable at � , then

qp� 1|� q � gp� 1q �
8̧

i � 1

�
gp2piql � 2pi � 1qu � � 1q � gp2piqu � 2piql � � 1q

� gp2piqu � 2pi � 1ql � � 1q � gp2piql � 2piqu � � 1q
�

(2.3)

Even if the bounds are not equidistant from the mean, the symmetry of the

proposal distribution is still preserved. The reason for this is non-obvious unless we
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consider the probability density function of the Gaussian distribution. We use the

form below, and consider� � 1 for simplicity:

f pxq �
1

?
2�� 2

e� px � � q2

2� 2

9 e� px � � q2

2 :

Thus we can see that comparing two distributions with� � 1 we need only

concern ourselves with thepx � � q2 term, and the evaluation of the two distributions

will have the same value ifpx1 � � 1q2 � p x2 � � 2q2. Now consider an example where

x � � and � � m, and the reverse move distribution wherex � m and � � � . Then

p� � mq2 � p � 2 � m� � m2q � p m � � q2, thus we've shown that the standard random

walk is reversible. If we then substitute� for any term in the in�nite sum, such as

� � 2l � � , then we can see thatp� � mq2 � p 2l � � � mq2 � pp 2l � mq � � q2. For

gp2piqu � 2piql � � q the reverse term will begp2piql � 2piqu � mq. Thus every term

in the in�nite sum when x � � and � � m has a matching term of equal value in

the in�nite sum when x � m and � � � , so � p� |mq � � pm|� q and the proposal is

reversible. Thus the acceptance probability is still given by Equation (1.1).

2.6 Proposal Distributions

We use a Multiplicative Random Walk for � 1 and � 2. For d we will use a Folded

Random Walk. Since 
 has a Gamma posterior we can sample directly from

the posterior using a Gibbs sampler. It is worth noting that as the product in

the posterior for � 1 (and for � 2) can be expanded to be expressed as a sum of

polynomials in� 1, it is proportional to a mixture of Gamma distributions from which

we could sample directly utilising a Gibbs sampler. We have chosen to explore the

Multiplicative Random Walk here as it is more applicable in the later chapters.
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2.6.0.1 The Infection rate parameters

The infection rate parameters,� 1 and � 2, are not independent, but their posterior

distributions have identical forms.

De�ne the random variable B1 � logp� 1q. The proposal distribution for B1 is

given by B 1
1 � N pB �

1 ; � � 1 q. The acceptance probability is given by

� B 1 � min
"

� 1
1 � � p� 1

1|� 2; d;R; I ; I � ; � � 1 ; � � 1 q
� 1 � � p� 1|� 2; d;R; I ; � ; � � 1 ; � � 1 q

; 1
*

;

and we can derive a similar result for� 2.

2.6.0.2 The distance

We bound d between the smallest distance between two individuals and the largest

distance between two individuals. We will use a Folded Normal Random Walk to

propose samples ford, using Algorithm 2.2 which gives the density in Equation (2.3)

but with l � dmin , u � dmax , and � , � 1 being d and d1.

2.6.0.3 The infection times

The missing data, the infection times, are initialised at valid values by using the

known removal times and assumptions about the underlying data generating process,

and can be updated using a Metropolis-Hastings step.

We choose an infected individual uniformly on the set of infected/removed

individuals, and then replace its infection time with a new one. The new infection

time is generated by randomly drawing a new infectious period for that individual

and subtracting it from their observed removal time.

We let Qi be the random variable denoting the infectious period of individuali .

Then the infection time of individual i , I i � Ri � Qi , so Qi � Ri � I i . In the case

where individual s is chosen, the proposal distribution is given by,
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qpI 1|I q �
1
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as we do not propose changes to the initial infection time. Then, using

the fact that exp
!
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)
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° n I
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± n I
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 pRi � I i qu, the acceptance probability of the Metropolis-Hastings step

is given by;
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Since it is only I s and I 1
s that di�er many of the terms cancel,
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.

-
:

This acceptance rate is valid regardless of the number of infection times updated

in one move, as the form of the proposal,q, expands with the additional changed

infection times, and all the same terms cancel. If any of the proposed infection times

are invalid, then the conditional posterior will be equal to 0 and the move will be

rejected automatically.
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2.7 MCMC Algorithm

Using the details of Sections 2.4 and 2.6 we now present an algorithm to perform

MCMC inference for epidemic data under the assumptions of this Near vs Far model.

We are assuming the epidemic is completed such that the total number of removed

individuals is equal to the total number of infected individuals.
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MCMC for the Near vs. Far GSE:

Inputs: Population size, N ; Removal times,R; Distance matrix, Md; Lower and
upper bounds ford, dmin and dmax ; Number of iterations, N its ; Tuning parameters,
UI ; � � 1 ; � � 2 ; � d.

1. Initialise the process by generating values for the near infection rate,� 1, the
far infection rate, � 2, the removal rate, 
 , the distance,d, and a valid set of
infection times, I , from their respective priors.

2. Draw a sample directly from the conditional posterior distribution for
 using
a Gibbs sampler, and record the new value.

3. Use a Metropolis-Hastings step to update the infection times by;

(a) Randomly selectUI of the infected individuals to have their infection
times/periods updated.

(b) Draw new values for the infectious periods,Qi , of those infected
individuals from the prior distribution for I , and calculate their new
infection times usingI i � Ri � Qi .

(c) Calculate � I , using the current and proposed sets of infection times, and
the current values of the other parameters.

(d) With probability � I , accept the proposed infection times update and
record the new infection times, otherwise reject and record the current
infection times.

4. Use a Metropolis-Hastings step to update the near infection rate,� 1, by;

(a) Draw a value from a N(logp� 1q, � � 1 ) distribution and take it's exponential,
this is the proposed value� �

1 .

(b) Calculate the MH acceptance probability, � � 1 , using the current and
proposed� 1 values, and the current values of the other parameters.

(c) With probability � � 1 , accept the proposed� 1 update and record the new
� 1, otherwise reject and record the current� 1.

5. Use a Metropolis-Hastings step to update the far infection rate,� 2, by;

(a) Draw a value from a N(logp� 2q, � � 2 ) distribution and take it's exponential,
this is the proposed value� �

2 .

(b) Calculate the MH acceptance probability, � � 2 , using the current and
proposed� 2 values, and the current values of the other parameters.

(c) With probability � � 2 , accept the proposed� 2 update and record the new
� 2, otherwise reject and record the current� 2.

6. : : :

Algorithm 2.3: The MCMC algorithm used to make inference for the Near vs. Far
GSE.
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MCMC for the Near vs. Far GSE (continued):

Inputs: Population size, N ; Removal times,R; Distance matrix, Md; Lower and
upper bounds for d, dl and du; Number of iterations, N its ; Tuning parameters,
UI ; � � 1 ; � � 2 ; � d.

5. . . .

6. Use a Metropolis-Hastings step to update the distance,d, by;

(a) Use a Folded Normal Random Walk to propose a sample ford, using
Algorithm 2.2 which gives the density in Equation (2.3) but withl � dmin ,
u � dmax , and � , � 1 being d and d1.

(b) Calculate the MH acceptance probability, � d, using the current and
proposedd values, and the current values of the other parameters.

(c) With probability � d, accept the proposedd update and record the new
d, otherwise reject and record the currentd.

7. Repeat steps 2-6 forN its iterations, and then discard the �rst B samples as
burn-in.

Algorithm 2.4: Continued: The MCMC algorithm used to make inference for the
Near vs. Far GSE.

2.8 An Alternative Parameterisation

We wish to investigate whether alternative parameterisations have an e�ect on the

e�ciency of our inference. To do this we introduce a new parameterisation that

modi�es the model to a single global infection rate,� , and a scalar,p P r0; 1s, of

that global infection rate if the individuals are greater than distanced from each

other. We will refer to this new parameterisation as parameterisation 2.

In this section we provide the details of what needs to change in the likelihood,

posteriors, proposal distributions, and Metropolis-Hastings steps to make inference

on this new parameterisation.

It is important to note the two parameterisations are not identical, as the priors

placed on� 1 and � 2 for parameterisation 1 as it will now be called allow for� 2 ¡ � 1,
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however by restrictingp to r0; 1s we ensure that� 1 � � ¥ p� � � 2.

2.8.1 Likelihood

Let Fi;j � 1 if individual i P I t is within distance d of individual j P St , and 0

otherwise. Then,

� i;j � r Fi;j � � p 1 � Fi;j qp� s:

If p � 0 then beyond distanced an individual cannot infect another, if p � 1 then

distance has no e�ect on the infectious contact rate. In this parameterisation the

GSE likelihood simpli�es to,

f pI ; R |� ; 
; I � q9

�

�
n I¹

j � �

�

� �
¸

i PI I j �

rFi;j � p 1 � Fi;j qps

�
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� exp
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�
» T
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�
¸

i PI t

¸

j PSt

rFi;j � p 1 � Fi;j qps

�

dt

+

�

�
nR¹

i � 1




�

� exp
"

� 

» T

I �

Yt dt
*

;

where,

ˆ St is the set of susceptible individuals at timet,

ˆ I t is the set of infected individuals at timet.

2.8.2 Posterior

Since� is now a common term to both infectious contact rates, we can bring it to

the front of any product, sum, or integral that it is involved in, as a common factor.

This has the potential to improve the e�ciency of our algorithm because, whilst we

still need to use a Metropolis-Hastings step forp, we can now use a Gibbs sampler

for � � � 1, and � 2 is easily recoverable.
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The prior distribution for � is a Gammap� � ; � � q with the form

� p� |� � 1 ; � � q �
p� � q� �

� p� � q
� p� � � 1qe� � � � :

We will assume a Uniform prior forp between the values of [0,1].

The conditional posterior distributions are:

� p� |p; 
; d; R; I ; I � ; � � ; � � q� Gamma
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�+�

with the posteriors for 
 , d, and the infection times having the same form as in

Section 2.4 except with the updated likelihood of the new parameterisation.

2.8.3 Proposal distributions

The MH acceptance probabilities for the infection times and the distance,d, remain

the same as in Section 2.6 with the appropriate posterior distributions from Section

2.8.2, and we still have a Gibbs sampler for
 . In addition, the MH step for

� 1 � � is no longer needed, as we can now sample directly from the conditional

posterior distribution. Thus, we just need to derive the acceptance probability for

the proportion, p, and we can recover� 2 from � and p.

2.8.3.1 The proportion

As we did with the distance, we will use a Folded Normal Random Walk forp P r0; 1s,

using Algorithm 2.2 which gives the density in Equation (2.3) but withl � 0, u � 1,
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and � , � 1 being p and p1.

2.8.4 MCMC

Here we present the full algorithm for making inference on this model under

parameterisation 2, based on the assumptions made in this section.
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MCMC for the reparameterised Near vs. Far GSE:

Inputs: Population size, N ; Removal times,R; Distance matrix, Md; Lower and
upper bounds for d, dl and du; Number of iterations, N its ; Tuning parameters,
UI ; � p; � d.

1. Initialise the process by generating values for the maximum infection rate,
� , the proportion, p, the removal rate, 
 , the distance,d, and a valid set of
infection times, I , from their respective priors.

2. Draw a sample directly from the conditional posterior distribution for
 using
a Gibbs sampler, and record the new value.

3. Draw a sample directly from the conditional posterior distribution for� using
a Gibbs sampler, and record the new value.

4. Use a Metropolis-Hastings step to update the infection times by;

(a) Randomly selectUI of the infected individuals to have their infection
times/periods updated.

(b) Draw new values for the infectious periods,Qi , of those infected
individuals from the prior distribution for I , and calculate their new
infection times usingI i � Ri � Qi .

(c) Calculate � I , using the current and proposed sets of infection times, and
the current values of the other parameters.

(d) With probability � I , accept the proposed infection times update and
record the new infection times, otherwise reject and record the current
infection times.

5. Use a Metropolis-Hastings step to update the proportion,p, by;

(a) Use a Folded Normal Random Walk to propose a sample forp, using
Algorithm 2.2 which gives the density in Equation (2.3) but with l � 0,
u � 1, and � , � 1 being p and p1.

(b) Calculate the MH acceptance probability, � p, using the current and
proposedp values, and the current values of the other parameters.

(c) With probability � p, accept the proposedp update and record the new
p, otherwise reject and record the currentp.

6. : : :

Algorithm 2.5: The MCMC algorithm used to make inference for the
reparameterised Near vs. Far GSE.
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MCMC for the reparameterised Near vs. Far GSE:

Inputs: Population size, N ; Removal times,R; Distance matrix, Md; Lower and
upper bounds for d, dl and du; Number of iterations, N its ; Tuning parameters,
UI ; � � 1 ; � � 2 ; � d.

5. . . .

6. Use a Metropolis-Hastings step to update the distance,d, by;

(a) Use a Folded Normal Random Walk to propose a sample ford, using
Algorithm 2.2 which gives the density in Equation (2.3) but withl � dmin ,
u � dmax , and � , � 1 being d and d1.

(b) Calculate the MH acceptance probability, � d, using the current and
proposedd values, and the current values of the other parameters.

(c) With probability � d, accept the proposedd update and record the new
d, otherwise reject and record the currentd.

7. Repeat steps 2-6 forN its iterations, and then discard the �rst B samples as
burn-in.

Algorithm 2.6: Continued: The MCMC algorithm used to make inference for the
reparameterised Near vs. Far GSE.

2.9 Results

We performed inference for a simulated population of 100 individuals, with one initial

infective and roughly 25% of the population infected in total. We are interested in

whether accurate and useful inference of the parameters can still be attained despite

the simpli�ed spatial kernel assumptions. We are also interested in whether the

parameterisation of the simpli�ed spatial kernel has an e�ect on the e�ciency of our

inference.

2.9.1 The Simulated Dataset

We simulated a population of 100 individuals on a 2-D plane with dimensions 20

units wide by 20 units high. Each individual was uniformly generated an x and y
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coordinate on the plane. In Figure 2.2 we show the position of the individuals on the

plane, those individuals who were eventually infected (red), and the initial infected

who was chosen at random (blue).

Figure 2.2: Heterogeneous simulated data set: Individuals were uniformly placed
on the 20x20 plane. The initial infected (blue) was chosen at random, and the
individuals infected in the course of the epidemic are denoted by red crosses.

The minimum distance between two individualsdmin � 0:078914, and the

maximum distance between two individualsdmax � 24:42934. Table 2.1 below

shows the proportions of individuals within various distances of each other, and
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proportions of infected individuals within various distances of each other.

Distance,d 1 3 5 7 10 12 15 20
Total Proportion (%) 0.67 6.00 14.40 24.80 46.52 59.58 77.94 97.33
Infected Proportion (%) 2.0 13.67 33.67 46.67 71.00 84.67 95.34 100.00

Table 2.1: A table showing the proportion of individuals within distanced of each
other, and the proportion of individuals who were eventually infected within distance
d of each other.

2.9.2 Results Overview

We ran both algorithms for 100; 000 iterations, with the same prior distributions

where possible. For parameterisation 1 we placed aGammap0:001; 1q prior on

� 1, � 2, and 
 , and a Uniformpdmin ; dmaxq prior on d. For parameterisation 2 we

placed aGammap0:001; 1q prior on � and 
 , a Uniformpdmin ; dmaxq prior on d, and a

Uniformp0; 1q prior on d.

Overall the algorithms were able to recover reasonable and informative posterior

distributions for all parameters, and the reparameterised heterogeneous model

performed better than the original with improved mixing, higher e�ective sample

sizes for most parameters, and was able to avoid� 1 becoming unbounded asd did

not get too large or too small.

It is worth noting at this stage that we are not expecting the posterior mean

to equal the true value. As epidemics are stochastic any number of parameter sets

and combinations could have generated the epidemic we observed, with di�erent

probabilities. This is part of the reason why we consider the posterior distributions.

Thus there may be a set of parameters that were more likely to generate our observed

epidemic than the parameter set that generated it. So we are just looking for the

true parameters to fall within the main mass of the posterior distribution, for the

posterior to have a nice shape (as we would expect reasonably unimodal marginal

posteriors for most of our parameters in this context) and reasonable variance, and

whether the posterior is su�ciently distinct from the prior.
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2.9.3 Parameterisation 1: Two infection parameters

This model has two distinct infection parameters,� 1 and � 2, both of which required

Metropolis-Hastings steps. The utilisation of each is dependent on the distance

parameterd, and they are correlated with the removal rate
 . The more parameters

there are in the model, especially when those parameters are strongly correlated,

the higher the potential for identi�ability issues. However, in cases such as the

Near vs Far model, where the extra parameters are related to additional covariate

information, there is the potential that the extra information can improve inference.

The following table presents the summaries of the marginal posterior distribu-

tions:

True Value Mean 95% CI Std. Dev. ESS
� 1 0.007 0.007877 (0.00303, 0.02400) 0.006170 140.40
� 2 0.00007 0.000240479 (0.0000272, 0.0007030) 0.000183 478.31

 0.11 0.08942 (0.0455, 0.1540) 0.027900 779.44
d 5 4.859 (1.84, 6.20) 1.08 97.23

Table 2.2: The summary of the marginal posterior distributions for the
Heterogeneous model.

We can see in Figure 2.3 that all the true values of all four parameters sit

comfortably within the posterior mass, with many close to the areas of high posterior

mass.

What should be noted is the threshold e�ect of some parameters. Because there is

a limited number of individuals in the population,d can vary within ranges without

signi�cantly altering the likelihood. Also when values get to a certain size the e�ect

on the likelihood becomes negligible, which to some extent explains the long tails of

� 1 and � 2.

Finally there is a level of correlation between the parameters which means that

large values in one can be accounted for by small values in others. Figure 2.4 presents

the pair-wise contour plots associated with the parameters. The red dotted lines

represent the true value, and the yellow dotted lines represent the pair of values of

highest posterior mass in the 2-D plot.
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We can see for instance that extremely large values in� 1 are accounted for byd

tending to 0, which essentially means that� 1 has no e�ect on the likelihood and is

free to take any value. Equally we can see how long the tail of� 1 extends and how

that relates the values of
 and � 2. Also, Also, Figure 2.4(a) shows that even though

the parameterisation did not constrain� 2   � 1, the 2-D plot shows no evidence of

this � 2 ¡ � 1, suggesting there is su�cient information in the data to enforce this.

As for the algorithms performance; the average acceptance probability for the

infection times was 39.9%. The average acceptance probability for� 1 was 46.6%.

The average acceptance probability for� 2 was 46.0%. The average acceptance

probability for d was 53.5%. The samples of
 were generated using a Gibbs sampler

so all samples were accepted by de�nition.

The trace plots in Figure 2.5 show the chain of parameter draws that were

accepted. The initial burn-in in orange has been discarded, and the remaining

samples are assumed to have come from the stationary distribution of the chain,

which is the posterior distribution of the parameter. The trace plots demonstrate

the correlation of some parameters, with similar behaviour for certain parts of the

chain. We can also see that the mixing ford is more sparse as the model struggles

to accept new values ford and spends time stuck.

52



2.9. Results

Figure 2.3: Heterogeneous Results: The plots show the marginal posterior
histograms for each of the parameters of interest. The value printed on the plot
is the true value of the parameter used to generate the simulation, and its location
is represented by the dashed line. The prior distribution of the parameter is shown
in blue.
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(a) � 1 against � 2. (b) � 1 against d.

(c) � 1 against 
 . (d) � 2 against d.

(e) � 2 against 
 . (f) d against 
 .

Figure 2.4: Heterogeneous Results: Contour plots of the posterior samples for each
pair of the parameters of interest. Brighter contours represent areas of higher density.
The yellow dashed lines show the pair-wise point of highest density on the contour
plots, and the red dashed lines represent the true values of the parameters that
generated the simulation.
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(a) Trace plot for � 1 and � 2.

(b) Trace plot for d and 
 .

Figure 2.5: Heterogeneous Results: Trace plots of the posterior samples. The initial
burn-in is represented in orange, which gets discarded. The remainder of the chain
in blue is assumed to represent the stationary distribution of the chain. The true
value of the parameter is shown by the dashed line.55
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2.9.4 Parameterisation 2: Scaled global infection rate

Here we present the inference results for parameterisation 2. Overall the parame-

terisation mixed better and was more e�cient than the �rst. In the plots below we

present the posterior distributions of the parameters of interest,� 1 and � 2, but we

made inference on the overall infectious contact rate,� , and a scalarp P r0; 1s, with

� 1 � � and � 2 � p� .

The following table presents the summaries of the marginal posterior distribu-

tions:

True Value Mean 95% CI Std. Dev. ESS
� 1 0.007 0.005823 (0.00267, 0.01140) 0.002340 692.01
� 2 0.00007 0.0001922 (0.0000229, 0.0005470) 0.000139 1496.02

 0.11 0.08970 (0.0457, 0.1540) 0.027900 804.44
d 5 5.328 (3.43, 6.50) 0.772 397.22

Table 2.3: The summary of the marginal posterior distributions for the
Reparmeterised Heterogeneous model.

The goal of this inference was to investigate whether the reparameterisation

would have a positive impact on our ability to make inference. The overall result

is that yes, the reparameterisation does help. By comparing Tables 2.2 and 2.3 we

can see that, with the exception of
 which remains approximately the same, the

e�ective samples sizes for all the parameters are dramatically improved under this

new parameterisation, and the credible intervals for the parameters are tighter.

From Figure 2.6 we can see that the posterior distributions produced are near

identical. Comparing the trace plots presented in Figure 2.8 to those previous, we

see a notable improvement. For all parameters the size of the jumps are much larger

and each explores the posterior much more uniformly. Ford in particular it still

struggles but there is a clear improvement and it de�nitely gets stuck less often,

with many more periods of good exploration.

Most notably by comparing the contour plots we can notice a marked improve-

ment in the spread of the data. In the� 1 vs � 2 plot for instance, the spread of values

for � 1 is clearly con�ned to areas of higher posterior mass. The mixing improved
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such that less time was spent exploring low values ofd that lead to unbounded

values of � 1, which resulted in lighter tails for � 1. Additionally the 2-D areas of

highest posterior mass are much closer to the truth, as demonstrated by the red

dotted lines in Figure 2.7 which represent the true values, and the yellow dotted

lines that represent the pair of values with the highest posterior mass.

The average acceptance probability for the infection times was 39.691%. The

average acceptance probability for p was 50.681%. The average acceptance

probability for d was 46.878%. In addition due to the reduced number of MH steps

the code for this parameterisation runs up to 25% faster than for parameterisation

1.
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Figure 2.6: Reparameterised Heterogeneous Results: The plots show the marginal
posterior histograms for each of the parameters of interest. The value printed on
the plot is the true value of the parameter used to generate the simulation, and its
location is represented by the dashed line. The prior distribution of the parameter
is shown in blue.
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(a) � 1 against � 2. (b) � 1 against d.

(c) � 1 against 
 . (d) � 2 against d.

(e) � 2 against 
 . (f) d against 
 .

Figure 2.7: Reparameterised Heterogeneous Results: Contour plots of the posterior
samples for each pair of the parameters of interest. Brighter contours represent
areas of higher density. The yellow dashed lines show the pair-wise point of highest
density on the contour plots, and the red dashed lines represent the true values of
the parameters that generated the simulation.
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(a) Trace plot for � 1 and � 2.

(b) Trace plot for d and 
 .

Figure 2.8: Reparameterised Heterogeneous Results: Trace plots of the posterior
samples. The initial burn-in is represented in orange, which gets discarded. The
remainder of the chain in blue is assumed to represent the stationary distribution
of the chain. The true value of the parameter is shown by the dashed line.60
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2.10 Discussion

In this chapter we explored a simpli�ed heterogeneous General Stochastic Epidemic,

named the Near vs Far model, and methods of inference for epidemic data assumed

to have been generated under this model. In an ideal scenario we would be able to

make epidemic inference at the resolution of unique individuals, however that is often

not possible. Models such as the Near vs Far, if they can provide accurate inference,

can act as a feasible alternative for some epidemics. Our goal with this chapter was

to explain the need for and theory behind the model, and assess using a simulated

epidemic whether the simpli�ed assumptions and discretisation of the spatial kernel

would allow for accurate and e�cient inference with reasonable computational cost.

This direct supports our goals of the thesis of identifying methods to deal with the

challenges of complex large data epidemics. We were also interested in exploring

whether the parameterisation of the model a�ects its e�ciency and accuracy, as this

could have implications for future chapters and models.

Overall we found that the simpli�ed Near vs Far model was a reasonable

alternative to the gold standard method, returning accurate inference from a

reasonably e�cient algorithm. We also found that the reparameterisation did indeed

improve the e�ciency of the algorithm, opening this as a possible route of research

for future models and challenges.

The inference did struggle however with identi�ability issues of the distance

term, d, which de�nes the threshold at which the we switch from the `near'

infectious contact rate to the `far' infectious contact rate. This in turn had e�ects

on the inference of the infection rates, though it was improved under the second

parameterisation. This could be due to the small population size of 100 individuals

with only 25 infected. This may have meant we had insu�cient data on the distances

between individuals to accurately determine the ideal threshold. Inference on a

larger population may be more e�ective. Equally we could introduce stricter bounds

on d, making dmin larger anddmax smaller, such that at least 1 to 3 pairs of infected

individuals are a�ected by each parameter. This is a reasonable assumption given
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we have chosen to use a Near Vs. Far model. Alternatively, we could use better

proposal distributions that accounted for the fact that whend is likely misspeci�ed

by being too small or too large, the value for� 1 or � 2 become unbounded as it has

no e�ect on the likelihood, leading to in
ated tails.

However, it may simply be that for a homogeneous distributed population on

a plane, this method is insu�cient. If we considered a population with a more

structured spatial distribution, such as clustering or latices, the model may more

e�ectively be able to identify d.

Overall improvement is needed but we have shown that a simpli�ed model

can made accurate and e�cient inference on epidemic data. However this model

construction would still be too computationally intensive to do for an epidemic on

the scale of tens of millions of individuals. The code for this inference was written

in R, and on average took roughly 30 minutes to generate 100,000 samples for a

population of 100 infected. Moving forward in this thesis we will be switching

to a more e�cient coding language designed for high computation costs scienti�c

simulation, models, and processes; Julia.

Now that we have veri�ed that discretised models have the potential to produce

accurate inference, in the next section we take the discretisation of models further

and look at discrete-time population-level models. These models show much more

potential for being able to make inference at the scale we are interested in.
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Chapter 3

Discrete approximations for State

Transition Models

3.1 Introduction

The population of England is roughly 56 million people, and there were 21 million

con�rmed cases of COVID-19 over a 3 year period (UK Health Security Agency,

2023). In England and Wales there were roughly 22 million cattle between 2012 and

2019, and 70 million tests were performed for Bovine Tuberculosis in that period

(see Chapter 4). Whilst the spatial discretisation presented in Chapter 2 may be

a plausible solution for moderately sized epidemic, these big-data epidemics and

pandemics make the continuous-time individual-level model infeasible, both in terms

of the computational complexity of calculating the likelihood and the e�ciency of

the MCMC with regards to updating the missing data. If we consider the term in

the continuous likelihood (Eq.(2.2)) which relates to total infectious pressure over

the epidemic,
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where � i;j is the pairwise infection rate,I i is the infection time of individual i , and

Ri is the removal time of individual i , we can clearly see that the scale of these

big-data challenges makes this model infeasible.

On top of this we have only considered one of the simplest model formations, the

S-I-R epidemic model. One of the limitations of the S-I-R model is the biological

implausibility that an individual is infectious as soon as they get infected. In

this case many models introduce any number of latent states, and other infectious

statuses, to better capture the behaviour of the epidemic. Examples range from

Brooks-Pollock, Roberts, and Keeling, 2014 who use an Exposed latent state to

represent being infected but not infectious for Bovine TB, to Overton et al., 2022

who introduce a number of di�erent states to represent exposure, symptomatic vs

non-symptomatic, hospitalisation status, recovery, and death for COVID-19. To

make inference for these more complex models and big-data challenges we may

also require more complex and computationally intensive MCMC methodologies to

improve e�ciency.

In cases such as these we can use a discrete approximation to the models

presented in Chapters 1 and 2. First we can aggregate from the individual level

to a population-level, and only consider the number of individuals in each state of

the model at a given time point, rather than the infectious history of each individual.

Then we can also discretise in time, and rather than look at the time of each event,

count the number of events that occur in a window of time. These choices change

the underlying distributional assumptions of the model, however, the parameters

are still interpretable in the same way. As a result we arrive at an approximation

for the individual level continuous-time model that has the potential to scale to the

largest big-data challenges currently faced.

In this Chapter we will derive a more complex epidemic structure; the S-E-I-R,

and present an advanced MCMC schema for making inference on it. We will then

investigate the results of our changes using simulated data sets.

In Section 3.3 we introduce the discrete-time S-E-I-R model. In Section 3.4 we
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derive the likelihood for this model, and use it in Section 3.5 to derive the posterior

distributions used in the MCMC algorithms presented in Section 3.8. In Section 3.7

we introduce new MCMC proposal functions that update multiple parameters at

once by taking advantage of the correlation structure of accepted samples, and also

adapts the tuning parameters automatically. Finally in Section 3.9 we present the

results of this inference schema on a simulated data set.

3.2 Discretising epidemic data

In contrast to the continuous-time General Stochastic epidemic, a discrete-time

model makes observations of the epidemic process at discrete intervals, and counts

the number of events that occurred within each interval. We call these intervals

time-steps, and the size of the time-steps is chosen based on the dynamics of the

disease and population in question.

If events in the epidemic occur at a relatively slow rate, say at the scale of

weeks, then discretising the data into daily or possibly weekly blocks should allow

us to signi�cantly decrease the computational burden without drastically a�ecting

the accuracy of the inference. However, if we over discretise the data then we

risk losing signi�cant information about the features of the epidemic. Figure 3.1

shows the same S-E-I-R epidemic curves under di�erent discretisation schemes. The

discrete-time model only allows each individual to make one transition during each

timestep. For instance an individual could not transition from E to I and then I to

R in the same timestep. This assumption puts a minimum bound on the waiting

time within each state equal to the discretised timestep. As the parameters can be

interpreted as the waiting time in each state, we can see that if the discretisation is

too intense when compared to the dynamics of the data, the inferred parameters can

be arti�cially in
ated. For this reason the discretisation is actually an approximation

of the epidemic, one that trades computational e�ciency for accuracy.
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(a) Discrete: � t � 0:2. (b) Discrete: � t � 1.

(c) Discrete: � t � 7. (d) Discrete: � t � 30.

Figure 3.1: Diagrams demonstrating the e�ect of di�erent discretisation scales on a continuous-
time epidemic in a population of 1000 individuals, 1 initial infected, and parametersr�; �; 
 s �
r0:25; 0:08; 0:22s.

3.3 The Chain-Binomial S-E-I-R

The Chain-Binomial S-E-I-R construction (Bailey, 1975, Lekone and Finkenst•adt,

2006, O'Neill and Roberts, 1999) is a stochastic epidemic model for homogeneous

populations. It is a discrete approximation to the continuous-time General

Stochastic Epidemic model that operates in discrete time and is primarily concerned

with the number of individuals in each state at given time pointst P r1; : : : ; Ts. It
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3.3. The Chain-Binomial S-E-I-R

does not require knowledge of the pathways of disease transmission (who infected

whom), just as the continuous-time model presented in Chapter 2.

As a result individuals are exchangeable. At each time step, the number of

transitions between each valid state pair is assumed to have come from a Binomial

distribution with probability de�ned by the state of the system. This Markov Chain

of Binomial draws de�nes the epidemic, given some starting conditions, hence the

name. This model comes with many advantages, including that it is very simple to

simulate, and the likelihood is signi�cantly easier to compute.

The S-E-I-R model introduces the latent state E, exposed, between the

susceptible and infectious states. Individuals in the exposed state are infected, and

will de�nitely transition to the infectious state after a randomly distributed amount

of time, but are currently not infectious and cannot infect others.

This additional latent state addresses the implausible biological assumption

of the S-I-R model that individuals are infectious as soon as they are infected.

Sometimes we know this is needed because of previous clinical research, in other

cases it is evident from the data, and it may be that we conclude that it must be

true once attempts at �tting the 3 state S-I-R produce poor or inconsistent results.

We are aiming for the simplest model that best explains the observed patterns.

In this section we present the details of the S-E-I-R model and an algorithm for

simulating an epidemic in this construction.

3.3.1 S-E-I-R model speci�cation

Consider a closed homogeneous population ofN individuals. The population is

divided into four independent states:

ˆ S - Susceptibles - These individuals can be infected when they come into

contact with an infectious individual.

ˆ E - Exposed - These individuals have been infected but are not yet infectious,

and exert no infectious pressure.
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ˆ I - Infectious - These individuals are infected and are capable of infecting

susceptible individuals.

ˆ R - Removed - These individuals have recovered from being infectious, are no

longer able to infect others, cannot become infected again, and will remain in

the removed state inde�nitely.

Let Sptq; Eptq; I ptq; Rptq represent the number of individuals in the susceptible,

exposed, infectious, and removed state respectively at timet. We are assuming a

closed population, meaning at any given time-step,t P r1; : : : ; Ts, the total number

of individuals in the population is equal to the sum of all the individuals in each

state; N � Sptq � Eptq � I ptq � Rptq. There are no immigration, emigration, births,

or deaths.

We initialise the epidemic with initial statesSp0q; Ep0q; I p0q; Rp0q. At each time-

step we model the transitions of individuals between the states. Individuals can only

make one transition per time-step, and once individuals reach the removed state,R,

they remain there. Individuals can transition through the states via;

S Ñ E Ñ I Ñ R

The rates of transition between the states are given by;

ˆ � - The exposure rate - The rate at which one susceptible individual becomes

exposed for each infectious individual in the population, or the rate of contact

between susceptible and infectious individuals.

ˆ � - The onset of infectiousness rate - The rate at which each exposed individual

transitions to the infectious state. It controls the length of the incubation

period.

ˆ 
 - The removal rate - The rate at which each infectious individual transitions

to the removed state. It controls the length of the infectious period.
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3.3. The Chain-Binomial S-E-I-R

The model operates in discrete time and as such uses probabilities of events in

a given timestep, rather than the rates of events occurring as in the continuous-

time model. We can transform the continuous-time rates to the probabilities of

transitioning from one state to the other in a timestep, with the size of the timestep

de�ned as � t, using the cumulative density function of the exponential distribution.

The transition probabilities are calculated using:

ˆ pexpptq � 1 � exp
 
� �

N I pt � 1q� t
(
,

ˆ pinf � 1 � expt� � � tu,

ˆ prem � 1 � expt� 
 � tu.

The model then states that the number of Susceptible to Exposed events during

timestep t, dSptq, is distributed Bin(Sptq, pexpptq), the number of Exposed to

Infectious events during timestept, dEptq, is distributed Bin(Eptq, pinf ), and the

number of Infectious to Removed events during timestept, dRptq, is distributed

Bin( I ptq, prem ).

3.3.2 Simulation

We wish to simulate an SEIR epidemic in continuous time, such that we can

discretise it under the assumptions of the Chain-Binomial model, and investigate the

accuracy and e�ciency of inference this new resolution of data, given the known true

parameters. We use an extension to the homogeneous General Stochastic Epidemic

simulator presented in Chapter 1, that includes the additional Exposed state. We

choose a population of 1000, with 1 initial infected, and rates of 0:25 for the exposure

rate � , 0:08 for the onset of infectiousness rate� , and 0:22 for the removal rate
 .

The continuous-time epidemic is then discretised at 4 resolutions; �t P r0:2; 1; 7; 30s.

Exact discretisations of the epidemic are visualised in the epidemic curve plots in

Figure 3.1. The plots show the complete epidemic. In Section 3.9 we make inference

on this dataset at the four di�erent levels of discretisation, considering an ongoing
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epidemic using data fromt � 0 to the 250th removal, and comparing the accuracy

and e�ciency of the di�erent discretisation levels for approximating inference of the

continuous-time data.

The full data of the continuous GSE SEIR epidemic cannot be exactly discretised

and match the chain Binomial formulation, because there is a chance that the same

individual undergoes two transitions within one timestep. This is possible regardless

of the timestep size, but the probability of it occurring tends to 1 as the size of

the timestep increases. In practice to discretise continuous data, or simply change

the resolution of the data, we keep the known data (removal times) �xed, and

allow the other data to change to create a valid chain Binomial epidemic from

which to initialise our inference. However, if desired it is possible to simulate an

epidemic directly from the chain Binomial data generating process, and this provides

insight into the construction of the likelihood. Algorithm 3.1 presents a method

of simulating an S-E-I-R epidemic in a closed homogeneous population under the

Chain-Binomial construction.
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Chain-Binomial Simulation:

Inputs: Population size,N ; Exposure rate,� ; Onset of infection rate,� ; Removal
rate, 
 .

1. Initialise the number of susceptible (S), exposed (E), infected (I ), and removed
(R) individuals at time t � 0, with Sptq � Eptq � I ptq � Rptq � N at all times
t P0; : : : ; T. As an example,Sp0q � N � 1, Ep0q � 0, I p0q � 1, andRp0q � 0.

2. Then for each subsequent time-step,

(a) Draw the number of S to E events in time-stept, dEptq, using

dEptq � Binomial pSpt � 1q; pexpptqq;

where Spt � 1q is the number of susceptible individuals available at the
start of time-step t. The probability of an S to I event is given bypexpptq �

1 � exp
!

� � I pt � 1q
N

)
, where � ¥ 0 is the exposure rate of the epidemic,

and I pt � 1q is the number of infectious individuals available at the start
of time-step t.

(b) Draw the number of E to I events in time-stept, dI ptq, using

dI ptq � Binomial pEpt � 1q; pinf q;

whereEpt � 1q is the number of exposed individuals available at the start
of time-step t. The probability of an E to I event is given by pinf ptq �
1 � expt� � u, where� ¥ 0 is the onset of infection rate of the epidemic.

(c) Draw the number of I to R events in time-stept, dRptq, using

dRptq � Binomial pI pt � 1q; prem q;

where I pt � 1q is the number of infected individuals available at the
start of time-step t. The probability of an I to R event is given by
prem � 1 � expt� 
 u; where
 ¥ 0 is the removal rate of the epidemic.

(d) Update the states via

Sptq � Spt � 1q � dEptq;

Eptq � Ept � 1q � dEptq � dI ptq;

I ptq � I pt � 1q � dI ptq � dRptq;

Rptq � Rpt � 1q � dRptq;

and set t � t � 1.

3. Run the process for the T time-steps, or until the exposed and infectious states
reaches size zero.

Algorithm 3.1: An algorithm to simulate a Chain-Binomial S-E-I-R epidemic in a
closed, homogeneous population.
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3.4 The likelihood of an S-E-I-R epidemic

We de�ne our data to be the vectors (S, E, I , R) which pertain to the number of

individuals in each state at each timestept P r1; : : : ; Ts. We are asking, \How likely

is it that we see this many individuals in each state at each timestep?". It is equally

valid to consider the vector of events (dE , dI , dR ) pertaining to the number ofnew

individuals in each state at each timestep, given the initial conditionsSp0q, Ep0q,

I p0q, and Rp0q, since the process is a Markov chain.

The conditional likelihood of the number of new Exposed individuals at timestep

t, dEptq, is given by;

f pdEptq|Spt � 1q; I pt � 1q; � q �
�

Spt � 1q
dEptq



ppexpptqqdE ptqp1 � pexpptqqSpt � 1q� dE ptq;

wherepexpptq � 1 � exp
!

� � I pt � 1q
N

)
as in the simulation.

Similarly, the conditional likelihood of dI ptq is given by

f pdI ptq|Ept � 1q; � q �
�

Ept � 1q
dI ptq



ppinf qdI ptqp1 � pinf qEpt � 1q� dI ptq;

wherepinf � 1 � expt� � u.

And the conditional likelihood of dRptq is given by

f pdRptq|I pt � 1q; 
 q �
�

I pt � 1q
dRptq



pprem qdRptqp1 � prem qI pt � 1q� dRptq;

whereprem � 1 � expt� 
 u.

So the joint conditional likelihood for the events at timet can be given by;
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f pdEptq; dI ptq; dRptq|Spt � 1q;Ept � 1q; I pt � 1q; Rpt � 1q; �; �; 
 q �
�

Spt � 1q
dEptq



ppexpptqqdE ptqp1 � pexpptqqSpt � 1q� dE ptq

�
�

Ept � 1q
dI ptq



ppinf qdI ptqp1 � pinf qEpt � 1q� dI ptq

�
�

I pt � 1q
dRptq



pprem qdRptqp1 � prem qI pt � 1q� dRptq

Now, given this is a Markov Chain, the joint conditional likelihood of all the

time-steps is just the product of the likelihoods for each time-step, given the initial

conditions;

f pdE ; dI ; dR |Sp0q;Ep0q; I p0q; Rp0q; �; �; 
 q �
T¹

t � 1

��
Spt � 1q
dEptq



ppexpptqqdE ptqp1 � pexpptqqSpt � 1q� dE ptq

�
�

Ept � 1q
dI ptq



ppinf qdI ptqp1 � pinf qEpt � 1q� dI ptq

�
�

I pt � 1q
dRptq



pprem qdRptqp1 � prem qI pt � 1q� dRptq

�
(3.1)

3.5 The posterior distributions of an S-E-I-R

epidemic

The posterior distribution of a parameter is proportional to the likelihood of the data

multiplied by the prior distribution of the parameter. We are interested in making

inference on our three model parameters,� , � , and 
 . We assume the removal events,

dR , to be observed, and the exposure and infection events to be unobserved. We

will treat these unknown parameters as `nuisance' parameters and augment the data

with estimated plausible values via the MCMC methodology. As such we also wish
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to derive posterior distributions for them as well. The only additional components

we need to de�ne in order to derive the posteriors is the prior distributions on the

transmission parameters.

For � we will use a Gammap� � ; � � qdistribution, where � � is the shape parameter

and � � is the scale parameter. For� we will use a Gammap� � ; � � q distribution,

where � � is the shape parameter and� � is the scale parameter. For
 we will

use a Gammap� 
 ; � 
 q distribution, where � 
 is the shape parameter and� 
 is the

scale parameter. As all three parameters are positive real numbers, these priors have

support for all possible values. In addition, the versatility of the Gamma distribution

allows us to choose hyper-parameters that can accurately represent our prior beliefs

about the parameters, whether we have strong or weak beliefs.

The joint conditional posterior of all of the parameters is thus given by:

� p�; �; 
 |pS;E; I ; Rq; � � ; � � ; � � ; � � ; � 
 ; � 
 q9

f ppS; E; I ; Rq|�; �; 
 q � � p� q � � p� q � � p
 q9
T¹

t � 1

��
Spt � 1q
dEptq



ppexpptqqdE ptqp1 � pexpptqqSpt � 1q� dE ptq

�
�

Ept � 1q
dI ptq



ppinf qdI ptqp1 � pinf qEpt � 1q� dI ptq

�
�

I pt � 1q
dRptq



pprem qdRptqp1 � prem qI pt � 1q� dRptq

�

� p � q� � � 1 e�p � { � � q � p � q� � � 1 e�p � { � � q � p 
 q� 
 � 1 e�p 
 { � 
 q

In the proposal functions presented in Section 3.7 we explain the use of a block

updater that updates all three transition parameters at once, as such we do not

require the marginal distributions in this case. We explored single site updates and

using reparameterisations to take advantage of conjugate priors, however in the test

examples the block updater was more e�ective.
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Similarly, since the events of time stept depend on the states at timestept � 1

and thus the events att � 1, the posterior for the number of new exposure events at

each timestep,dE and the posterior for the number of new infectious individuals at

each timestep,dI , is also the same as above. Depending on the form of the proposal

every time step may not be required to be calculated, as we will explore in Section

3.7.2.

3.6 Adaptive Random Walk with Transformed

Parameters

In the previous chapter we presented a simple Metropolis Random Walk MCMC

algorithm for generating samples from the posteriors of the parameters. This can

be e�ective, but we can improve the e�ciency, and �nding the optimal tuning

parameters can take multiple test runs. In the case of epidemics we have shown

in Chapter 2 that the parameters can be highly correlated. For instance if we

increase the infection rate we can make a complimentary decrease in the removal

rate and maintain a similar likelihood value. As such jumping in three random

directions when exploring the parameter space is not the most e�cient proposal

scheme. Through the choice of more intelligent proposal distributions, we can both

improve the e�ciency of our MCMC algorithms, and even automate some of the

tuning process which up until this point has been manual.

In the case of our Chain-Binomial S-E-I-R construction, none of the posteriors of

the parameters have the form of a known distribution using the parameterisations we

have chosen, so as before we will need to use a Metropolis-Hastings step to sample

conditional draws from the posterior of interest. It is possible to have conjugacy

by setting p � expt� � u and q � expt� 
 u, and placing Beta priors onp and q,

however in our exploration we found it more e�cient to propose all 3 parameters as

a set, taking advantage of the correlations. From the results in Chapter 2 we saw

that the parameters in the S-I-R model are highly dependent, and this holds true
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for the S-E-I-R model as well (Jewell et al., 2009a). With this in mind, we have

chosen a proposal distribution that allows us to use this dependence to improve the

e�ciency of the algorithm, by using a multi-site sampler and taking consideration

of the correlation between the previously accepted samples. In addition we will be

making proposals on the log-scale using a Multiplicative random walk Metropolis-

Hastings, as in Chapter 2. This ensures that the proposals for the parameters will

be positive, and also has the potential to improve the e�ciency of the algorithm.

For the examples we tested and present the results for in Section 3.9, we found that

proposals on the log-scale did improve e�ciency. As a result the Metropolis-Hastings

acceptance probability needs to take into account this transformation. Finally, we

are also able to incorporate automatic tuning of the hyperparameters of the proposal

distributions, which will aim to optimise the acceptance rate by adapting the tuning

parameters during the MCMC in response to its performance.

3.6.1 Adaptive MCMC

Adaptive MCMC algorithms address the challenge of �nding optimal tuning param-

eters for a proposal distribution without the need to rerun chains (Haario, Saksman,

and Tamminen, 2001). They achieve this by updating the hyperparameters of the

proposal distribution during the run, based on the history of the chain so far. An

issue arises in that if this process is allowed to run inde�nitely, then the algorithm

may become optimised for exploring a minor part of the distribution, such as a

tail or minor mode, and as such become more ine�cient than a manually tuned

algorithm, or may even result in the chain having a di�erent stationary distribution

(Sherlock, Fearnhead, and Roberts, 2010). To address this issue the adaption either

needs to either take place over a �nite amount of time (e.g., only for the �rst 5000

iterations) or the rate of adaption needs to tend to 0, a concept called diminishing

adaption (Sherlock, Fearnhead, and Roberts, 2010). Under these conditions the

algorithm is still guaranteed to converge to the correct stationary distribution,

though consideration should still be made for the starting conditions (Roberts and
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Rosenthal, 2009).

The adaptive schema used in this thesis is based on the Adaptive Metropolis-

Within-Gibbs algorithm adapted from Roberts and Rosenthal, 2009 and the Block

Adaptive Multiplicative Random Walk adapted from Sherlock, Fearnhead, and

Roberts, 2010. Each iteration we propose a new set of parameters from one of

two possible multivariate-normal distributions centred on the log of the current

parameters. The �rst proposal distribution does not take into account the

correlation structure of the previously accepted samples, and the second does, both

however are tuned automatically to optimise the acceptance rate. The tuning schema

for each di�ers. For the �rst �nite adaption is used, and for the second diminishing

adaption is used (the adaptation rate tends to zero). During the chain, the correlated

proposal is used to make the majority of the proposals, and the uncorrelated proposal

is included in an attempt to improve the chains ability to explore.

3.6.1.1 The proposal function for the parameters

First let � � p �; �; 
 q, the array of the parameters, and letA h be the array of

accepted samples of all of the parameters so far. We then de�ne �h as the empirical

posterior covariance matrix of the accepted samplesA h, which we will update after

each iteration, h.

We require the posterior covariance matrix to be positive de�nite which, due to

�nite sample e�ects, is not guaranteed until a reasonable number of su�ciently

distinct samples have been accepted. In addition, we also want to avoid the

covariance matrix being overly sensitive to the accepted samples before we begin

�ne tuning the tuning parameters.

Let the total number of samplesN its � N1� N2. We have chosen to setN1 � 5000

assuming the total number of iterations is su�ciently large. For the �rst N1 samples,

use the proposal distribution:

logp� 1q � Multivariate-Normal
�

logp� � q;
1
d

� 2I



;
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where � � are the current values of the parameters,d is the dimension of the

parameter space (in this cased � 3), and � is a tuning parameter, andI is the

d � d identity matrix, based on Sherlock, Fearnhead, and Roberts, 2010. In this

case we can see that we are not taking into account the correlation between the

parameters, just something akin to the average variance of the parameters.

Once we have a su�cient number of accepted samples, we can propose samples

from the joint log-proposal distribution of the parameters:

logp� 1q � Multivariate-Normal plogp� � q; m2� hq;

where � � are the current values of the parameters, andm is a tuning parameter,

based on Sherlock, Fearnhead, and Roberts, 2010. This proposal takes into account

the correlation between previous accepted samples.

After the �rst N1 samples, we can propose from either of the two distributions,

as based on Sherlock, Fearnhead, and Roberts, 2010. We propose samples using

logp� 1q � Multivariate-Normal
�

� � ;
1
d

� 2I



(we call this `Mixture 1') with probability 0.05, and propose samples using

logp� 1q � Multivariate-Normal p� � ; m2� hq

(`Mixture 2') with probability 0.95.

The idea is that we will spend the majority of our time making e�cient proposals

by taking into account the covariance of the samples, and will try to avoid `getting

stuck' by sometimes proposing jumps to di�erent areas of the posterior by not taking

into account the correlations. The hyperparameters� and m are automatically

updated using the process explained in Section 3.6.1.3. In theory we can initialise

� � 2:382{d and m � 2:38{d0:5, which follows directly from the optimal scaling limit

results reviewed in Sherlock, Fearnhead, and Roberts, 2010. In practice we used
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3.6. Adaptive Random Walk with Transformed Parameters

these are starting conditions and run a short chain to identify reasonable values

from which to initialise the �nal algorithm.

3.6.1.2 Metropolis-Hastings acceptance probability

For this multiplicative random walk the MH acceptance probability for the

parameters is de�ned as,

� � min
"

p� 1 � � 1 � 
 1q
p� � � � 
 q

� p� 1; � 1; 
 1|pS; E; I ; Rq; � � ; � � ; � � ; � � ; � 
 ; � 
 q
� p�; �; 
 |pS; E; I ; Rq; � � ; � � ; � � ; � � ; � 
 ; � 
 q

; 1
*

:

3.6.1.3 Adaptive tuning

In this new proposal we de�ned two new tuning parameters,� and m. With each

algorithm we run, we could spend time �nding the optimal values of these parameters

to attain our desired acceptance rate, and this would lead to the most e�cient

algorithm. However, epidemic modelling sometimes requires rapid solutions and

spending time manually tuning algorithms isn't ideal. In these cases one possibility is

to use adaptive algorithms that automatically tune the parameters, and are still very

e�cient given reasonable starting conditions. We present here one such adaptive

tuning methodology:

We begin with Mixture 1. We use a �nite adaption schema laid out in Roberts

and Rosenthal, 2009. Let us de�ne� k as the log-rate of adaptation of the tuning

parameter � . We let each `batch' of 25 samples be denoted by the subscriptk such

that batch k � 1 is iterations 1; : : : ; 25, k � 2 is iterations 26; : : : ; 50, and so on.

Then let  k be the proportion of Metropolis-Hastings accepted samples in batchk.

Then, at the start of each new batch, update� using the formula

logp� q � logp� q � � k
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where,

� k �

$
'&

'%

� min
�

0:05; 1?
k

	
; if  k   0:33;

� min
�

0:05; 1?
k

	
; if  k ¥ 0:33:

For detailed balance to be satis�ed and the MCMC algorithm to target the

correct posterior distribution, the tuning parameters eventually have to be �xed. In

this case we choose to stop tuning� after the �rst N1 iterations and �x it at its �nal

value. The 0:33 acceptance rate target was chosen in line with the optimal scaling

for batch updaters presented in Sherlock, Fearnhead, and Roberts, 2010.

For Mixture 2, we de�ne the rate of adaptation to be � m � m0
100. We begin to

tune m after the �rst N1 iterations, and do so every iteration. The iterations are

indexed by it . Each iteration, it , if the proposal came from Mixture 1,m does

not get updated. Otherwise, if the proposed parameters are Metropolis-Hastings

rejected, then set

m � m �
�

� m?
it




and if the proposed parameters are Metropolis-Hastings accepted, then set

m � m � 2:3
�

� m?
it



:

The forms of these update functions are chosen for acceptance rate of 30%, inline

with the optimal scaling results for batch updaters with Gaussian proposals reviewed

in Sherlock, Fearnhead, and Roberts, 2010.

3.7 Data Augmentation

In this section we present the posterior distributions, proposal distributions, and

subsequent Metropolis-Hastings acceptance probabilities we have chosen to make

inference on the discrete approximation to the S-E-I-R epidemic. For the parameters

we will use the adaptive MCMC methodology as laid out in Section 3.6. For the

data augmentation steps we will introduce a number of new proposal functions for
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the discrete-time population-level epidemic, assuming the epidemic is still on going.

Finally we explore the e�ect of updating the missing data on the likelihood, in order

to reduce the computational burden of calculating the posterior.

3.7.1 Two Kinds of Data Augmentation

We assume that we have data on the removal events,dR , but that we are missing

the data for the exposure events,dE , and the onset of infection events,dI . We

introduce the generalised notationd� ptq for � P tE; I u to represent the number of

events of type� at time t. We know that at any given time, s, that
° s

1 dEpsq ¥
° s

1 dI psq ¥
° s

1 dRpsq� 1, accounting for the initial infecteds recovery. That is, there

can only be as many removal events by timet as there have been infection events,

and there can only be as many infection events as there has been exposed events,

otherwise the epidemic is invalid.

For our data augmentation, we now consider the type of update we are going

to propose, instead of the event. We will consider two kinds of update. The �rst

is what we will denote \moving an event in time"; as we know there are
° T

1 dRptq

removal events, we know that for a completed epidemic there are also that many

exposure and infection events, and for an ongoing epidemic, at least that many. As

such, we can `move events around in time' by choosing an event that occurred at

time t and `moving' it forwards or backwards in time, whilst ensuring we maintain

a valid epidemic.

The second type of update to the events we propose is most appropriate for

epidemics which are not complete, which is \adding or removing an event". Since as

we mentioned, if an epidemic is ongoing then we do not know how many exposure and

infection events have actually occurred, just the minimum of each. For our update,

we can propose choosing a timestept and increasing or decreasing the number of

events of each type that occur there.

We then also have the possibility of improving the e�ciency of the proposals by

introducing quali�ers for which timesteps can be updated each iteration, or even the
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probability of choosing each timestep to be updated.

3.7.2 Posterior Distributions

We have two scenarios in which to consider updating events - the �rst is when

the epidemic is \complete" and we know the �nal number of removed individuals

(and as such the total number exposed and infected), and the second is when the

epidemic is \ongoing" and there are still active exposed and infectious individuals

in the population, and the number of individuals in these two states is unknown.

In the complete case we have knowledge of the removal events,dRptqfor all t, and

there are no exposed or infectious individuals left in the population at timeT. As

we know there are
° T

1 dRptqremoval events, we know that for a completed epidemic

there are also that many exposure and infection events. We call these exposure and

infection events partially observed, as we know they must have happened, we just

don't know when. This means that once we have a valid epidemic, we can't augment

it by adding new events or removing existing events, we can only move the events

around in time.

In the ongoing case, we still have knowledge of the removal events,dRptqfor all t,

but we assume there are still exposed or infectious individuals left in the population

at time T. For each removal event, we know there must also be a partially observed

exposed and infection event (except for the initial infective), but also additional

occult (unobserved) exposure and infection events, the only limit on which is the

total population size. As such we can augment the data by adding or removing

exposed and infectious events, as long as there are enough removal events at each

time-step.

The number of individuals in each state at a given time-stept, and how these

relate to the events, are expressed as:
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Sptq � Spt � 1q � dEptq;

ùñ dEptq � Spt � 1q � Sptq;

Eptq � Ept � 1q � dEptq � dI ptq;

� Ept � 1q � Spt � 1q � Sptq � dI ptq;

ùñ dI ptq � Ept � 1q � Eptq � Spt � 1q � Sptq;

I ptq � I pt � 1q � dI ptq � dRptq;

� I pt � 1q � Ept � 1q � Eptq � Spt � 1q � Sptq � dRptq;

ùñ dRptq � I pt � 1q � I ptq � Ept � 1q � Eptq � Spt � 1q � Sptq;

Rptq � Rpt � 1q � dRptq;

� Rpt � 1q � I pt � 1q � I ptq � Ept � 1q � Eptq � Spt � 1q � Sptq;

and recall that dEptq � BinomialpSpt � 1q; pexpptqq, dI ptq � BinomialpEpt � 1q; pinf q,

and dRptq � BinomialpI pt � 1q; premq.

To �nd the marginal conditional posterior likelihood of a set of events we absorb

those elements that the events do not depend on into the proportion sign. The

question then is which states and other events does each event depend on. In the

following sections we present a series of worked examples that showcase which states

and timesteps are a�ected when events are moved, added, or removed, and as such

which likelihood terms need to be computed. Following this we present the details

of the proposal distributions we utilise in our MCMC algorithm.
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3.7.2.1 The complete case - moving events in time

In this case, we are moving events in time. This means that the total number of

events remains the same, but we take an event that occurs at timet and \move" it

to time t � k. Assuming we move one event at a time, this can also be thought of as

adding or subtracting that event as appropriate from all the states fromt to t � k.

Lets consider the following farm A around timet.

A Start of timestep End of timestep
S E I R S E I R

t � 1 5 4 2 1 5 4 2 1
t 5 4 2 1 5 3 3 1

t � 1 5 3 3 1 4 3 4 1
t � 2 4 3 4 1 3 4 4 1

The events as they currently stand are;

ˆ pt � 1q: Nothing

ˆ ptq: One E Ñ I transition

ˆ pt � 1q: One S Ñ E transition and One E Ñ I transition

ˆ pt � 2q: One S Ñ E transition

Beginning with the S to E transition events, the following table shows what

happens in this example when we move an S to E transition event back in time from

u � t � 2 to time r � t.

A Start of timestep End of timestep
S E I R S E I R

t � 1 5 4 2 1 5 4 2 1
t 5 4 2 1 4 4 3 1

t � 1 4 4 3 1 3 4 4 1
t � 2 3 4 4 1 3 4 4 1

We can clearly see here that when moving an S to E transition event from time

t � 2 to t the only states that are a�ected areSptq; Spt � 1q; Eptq; and Ept � 1q, and
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the events dependent on those are the S to E and E to I transition events for times

t � 1 and t � 2, so the joint conditional posterior likelihood for the S to E transition

events is given by,

� pdE |dI ; dR ; Sp0q;Ep0q; I p0q; Rp0q; �; �; 
 q9
u¹

t �p r � 1q

��
Spt � 1q
dEptq



ppexpptqqdE ptqp1 � pexpptqqSpt � 1q� dE ptq

�
�

Ept � 1q
dI ptq



ppinf qdI ptqp1 � pinf qEpt � 1q� dI ptq

�

Similarly for the E to I transition events, moving the E to I transition event from

time r � t � 1 to time u � t � 2 (ie. k � 1), we get

A Start of timestep End of timestep
S E I R S E I R

t � 1 5 4 2 1 5 4 2 1
t 5 4 2 1 5 3 3 1

t � 1 5 3 3 1 4 4 3 1
t � 2 4 4 3 1 3 4 4 1

We can clearly see here that when moving an E to I transition event from time

t � 1 to t � 2 the only states that are a�ected areEpt � 1q and I pt � 1q, and the

events dependent on those are the S to E transition and E to I transition events for

time t � 2. Recall however that the S to E transition events at timet � 2, dEpt � 2q,

are also dependent onI pt � 1qthrough pinf pt � 2q � 1� exp
!

� � I pt � 1q
N

)
, so the joint

conditional posterior likelihood for the E to I transition events is given by,
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� pdI |dE ; dR ; Sp0q;Ep0q; I p0q; Rp0q; �; �; 
 q9
u¹

t �p r � 1q

��
Spt � 1q
dEptq



ppexpptqqdE ptqp1 � pexpptqqSpt � 1q� dE ptq

�
�

Ept � 1q
dI ptq



ppinf qdI ptqp1 � pinf qEpt � 1q� dI ptq

�
�

I pt � 1q
dRptq



pprem qdRptqp1 � prem qI pt � 1q� dRptq

�

3.7.2.2 The ongoing case - adding and removing events

From the sequence of relationships above we can see that increasing or decreasing

dEpt � 1q (to increase or decrease the total number of exposed events) will change

Spt � 1q, and a change toSpt � 1qleads to a change inEpt � 1q. A change inEpt � 1q

will lead to a change in the p.m.f ofI pt � 1q (as the new infection events will be

generated from a di�erent number of exposed individuals), which would lead to a

change in the p.m.f. ofRpt � 1q. As we can see from Eq. 3.1, all of the events after

t � 1 depend on the states att � 1 and after, and so the joint conditional posterior

likelihood of the S to E transition events, assuming an event is added or removed at

time k, will be given by:

� pdE |dI ; dR ; Sp0q;Ep0q; I p0q; Rp0q; �; �; 
 q9
T¹

t � k

��
Spt � 1q
dEptq



ppexpptqqdE ptqp1 � pexpptqqSpt � 1q� dE ptq

�
�

Ept � 1q
dI ptq



ppinf qdI ptqp1 � pinf qEpt � 1q� dI ptq

�
�

I pt � 1q
dRptq



pprem qdRptqp1 � prem qI pt � 1q� dRptq

�

Also, from the sequence of relationships above we can see that increasing or
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decreasingdI pt� 1q(to increase or decrease the total number of infectious events) will

changeEpt � 1qand I pt � 1q, and a change toI pt � 1qleads to a change in the p.m.f of

Rpt� 1q. All E to I and I to R transition events after t � 1 depend on theE; I ; R states

at t � 1 and after. Note also however thatdEpt � 1q � BinomialpSpt � 1q; pinf pt � 1qq

wherepinf pt � 1q � 1� exp
!

� � I ptq
N

)
, so all the S to E transition events aftert � 1 also

depend on theI state after t � 1. So again the joint conditional posterior likelihood

of the E to I transition events, assuming an event is added or removed at timek,

will be given by:

� pdI |dE ; dR ; Sp0q;Ep0q; I p0q; Rp0q; �; �; 
 q9
T¹

t � k

��
Spt � 1q
dEptq



ppexpptqqdE ptqp1 � pexpptqqSpt � 1q� dE ptq

�
�

Ept � 1q
dI ptq



ppinf qdI ptqp1 � pinf qEpt � 1q� dI ptq

�
�

I pt � 1q
dRptq



pprem qdRptqp1 � prem qI pt � 1q� dRptq

�

3.7.3 Proposal Functions and Metropolis-Hastings Accep-

tance Probabilities

In this section we formalise the ideas of moving, adding, and removing events, and

present proposal distributions for augmenting the epidemic data in this fashion.

3.7.3.1 \Moving an event in time" update

Begin by considering one event type,� , from the sett E; I u. Let � be the magnitude

and direction of the move int, and draw � with equal probability from the set f -1,

1g to represent a movement backwards or forwards in time.

We could then chooset arbitrarily, but this is likely to waste compute time, for

instance when we choose a timestep that does not contain any events. This is more
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likely when the magnitude of the discretisation timestep is smaller. For this reason

we can introduce quali�ers that increase the likelihood of proposing a new valid state

of the epidemic, such as ensuring there are events to move at a given timepoint. In

addition, when the number of events at a timepoint is small, it is more likely that

altering these events will result in an invalid epidemic. These are typically towards

the beginning and end of a completed epidemic. For this reason, we can also weight

each timestep by the proportion of events of type� it contains. Finally, we do not

allow movements to before timestep 1 or to after timestepT.

If � ¡ 0, choose at such that d� ptq ¡ 0, for t P r1; pT � 1qs, and if �   0, choose

a t such that d� ptq ¡ 0, for t P r2; Ts. Weight the probability that an event at t

is chosen to be moved by the number of events,d� ptq. For now, we will move only

one event at a time. So, for instance, ifd� ptq � 5, and � � � 1, then d� 1ptq � 4,

and d� 1pt � 1q � d� pt � 1q � 1. The vector of event counts at each timestep can be

represented asd� for the current set andd� 1 for the proposed set. The values � can

take, and the number of events moved, are both tuning parameters. The proposal

distribution when � � 1 is thus given by;

qpd� 1|d�; � � 1q �
1
2

�
d� ptq

°
sPr1;:::;T � 1s t d� psqu

;

and

qpd� |d� 1; � � � 1q �
1
2

�
d� 1pt � 1q

°
sPr2;:::;T s t d� 1psqu

;

where the 1{2 represents having chosen to move events forward, and
°

sPr2;:::;T s t d� 1psqu

is the total number of events of type� after proposing the move, and does not equal
°

sPr1;:::;T � 1s t d� psqu.

The proposal distribution when � � � 1 is thus given by;

qpd� 1|d�; � � � 1q �
1
2

�
d� ptq

°
sPr2;:::;T s t d� psqu

;
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and

qpd� |d� 1; � � 1q �
1
2

�
d� 1pt � 1q

°
sPr1;:::;T � 1s t d� 1psqu

;

where the 1{2 represents having chosen to move events forward, and
°

sPr1;:::;T � 1s t d� 1psqu

is the total number of events of type� after proposing the move, and does not equal
°

sPr2;:::;T s t d� psqu.

3.7.3.2 \Moving an event in time" Metropolis-Hastings acceptance

probabilities

For the exposure events, the MH acceptance probabilities will be given by

� � min
"

� pdE 1|dI ; dR ; Sp0q; Ep0q; I p0q; Rp0q; �; �; 
 q
� pdE |dI ; dR ; Sp0q; Ep0q; I p0q; Rp0q; �; �; 
 q

qupdE | dE 1q
qupdE 1 | dE q

; 1
*

� min

$
''&

''%

± u
t � r

�
� pdE1

t ; dI t |dRt ; Sp0q; Ep0q; I p0q; Rp0q; �; �; 
 q
�

± u
t � r

�
� pdEt ; dI t |dRt ; Sp0q; Ep0q; I p0q; Rp0q; �; �; 
 q

�
qpdE | dE 1q
qpdE 1 | dE q

; 1

,
//.

//-
;

where the product is only over those timesteps that are a�ected by the move, between

timestepsr and u, and for those parts of the likelihood that are a�ected as detailed in

Section 3.7.2.1. Theqp�qrepresent the proposal distributions for moving an exposure

event in time.

For the infection events, the MH acceptance probabilities will be given by

� � min
"

� pdI 1|dE ; dR ; Sp0q; Ep0q; I p0q; Rp0q; �; �; 
 q
� pdI |dE ; dR ; Sp0q; Ep0q; I p0q; Rp0q; �; �; 
 q

qupdI | dI 1q
qupdI 1 | dI q

; 1
*

� min

$
''&

''%

± u
t � r

�
� pdEt ; dI 1

t ; dRt |Sp0q; Ep0q; I p0q; Rp0q; �; �; 
 q
�

± u
t � r

�
� pdEt ; dI t ; dRt |Sp0q; Ep0q; I p0q; Rp0q; �; �; 
 q

�
qpdI | dI 1q
qpdI 1 | dI q

; 1

,
//.

//-
;

where the product is only over those timesteps that are a�ected by the move, and

for those parts of the likelihood that are a�ected as detailed in Section 3.7.2.1. The
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qp�qrepresent the proposal distributions for moving an infection event in time.

3.7.3.3 \Adding or Removing an event" update

In each iteration we only choose to either add or remove an event. Choose an event

type � , from the set t E; I u. Let � here be the change in the number of events, and

sample � from the set t� 1; 1u to represent a removal or an addition respectively.

Let p� ptqrepresent the probability of a� event at time t. For � � E , p� ptq � pexpptq,

and for � � I , p� ptq � pinf for all t. The reverse move of an addition update is a

removal update, and vice versa.

Again, we could then chooset arbitrarily, but this is likely to waste compute,

for instance adding an event that has 0 probability of occurring. We can introduce

quali�ers to ensure that at time t there are individuals that can be a�ected by the

event, and that the probability of the event is non-zero. In addition, it's possible

that altering timesteps with higher probability of events (typically in the middle of

the epidemic) are less likely to invalidate the epidemic, so we can weight eacht by

its probability of event � .

Adding an event

If � ¡ 0 (an addition), choose at such that

$
'&

'%

t Spt � 1q ¡ 0 and pexpptq ¡ 0u; if � � E;

t Ept � 1q ¡ 0 and pinf ¡ 0u; if � � I:

weighting eacht by p� ptq so that timesteps that are more likely to have events get

events proposed more often. Sincepinf is �xed in time, this is not strictly necessary

for the infection events.

As such, the proposal density is given by;
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q� � 1pd� 1 | d� q �
1
2

�
1

°
s 1 t X ps � 1q ¡ 0 and p� psq ¡ 0u

�
p� ptq

°
s p� psq

;

whereX P tS; Eu relates to the event type as appropriate, and1tu � 1 if there are

individuals that can change state and the probability of such an event is non-zero,

and 0 otherwise. This is the probability of choosing the given timestep out of all

timesteps that could have events, weighted by the probability of events occurring

at that timestep. The half represents the probability of choosing an addition event,

and the proposal density for the reverse move is given by,

q� � 1pd� 1 | d� q �
1
2

�
1

°
s 1t d1

� psq ¡ 0u
�

p1
� ptq

°
s p1

� psq
;

which is the probability of choosing this timestep to remove events from out of

all events that have timesteps, where
°

s t d� 1psq ¡ 0u is the number of timesteps

with one or more events of type� after proposing the move, and does not equal
°

s t d� psq ¡ 0u.

Removing an event

If �   0 (a removal), choose at such that d� ptq ¡ 0 for t P r1; pT � 1qs.

As such, the proposal density is given by;

q� �� 1pd� 1 | d� q �
1
2

�
1

°
s 1t d� psq ¡ 0u

�
p� ptq

°
s p� psq

;

and

q� �� 1pd� 1 | d� q �
1
2

�
1

°
s 1 t X 1ps � 1q ¡ 0 and p� psq ¡ 0u

�
p1

� ptq
°

s p1
� psq

;

where X P tS; Eu relates to the event type as appropriate and the logic is the

same as in the addition case.
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3.7.3.4 \Adding or Removing an event" Metropolis-Hastings acceptance

probabilities

For the exposure events, the MH acceptance probabilities will be given by

� � min
"

� pdE 1|dI ; dR ; Sp0q; Ep0q; I p0q; Rp0q; �; �; 
 q
� pdE |dI ; dR ; Sp0q; Ep0q; I p0q; Rp0q; �; �; 
 q

qupdE | dE 1q
qupdE 1 | dE q

; 1
*

� min

$
''&

''%

± T
t � k

�
� pdE1

t ; dI t ; dRt |Sp0q; Ep0q; I p0q; Rp0q; �; �; 
 q
�

± T
t � k

�
� pdEt ; dI t ; dRt |Sp0q; Ep0q; I p0q; Rp0q; �; �; 
 q

�
qupdE | dE 1q
qupdE 1 | dE q

; 1

,
//.

//-
;

where the product is over the timestep where the addition/removal occurred onward,

and for those parts of the likelihood that are a�ected as detailed in Section 3.7.2.2.

The qp�qrepresent the proposal distributions for adding/removing an exposure event.

For the infection events, the MH acceptance probabilities will be given by

� � min
"

� pdI 1|dE ; dR ; Sp0q; Ep0q; I p0q; Rp0q; �; �; 
 q
� pdI |dE ; dR ; Sp0q; Ep0q; I p0q; Rp0q; �; �; 
 q

qupdI | dI 1q
qupdI 1 | dI q

; 1
*

� min

$
''&

''%

± T
t � k

�
� pdEt ; dI 1

t ; dRt |Sp0q; Ep0q; I p0q; Rp0q; �; �; 
 q
�

± T
t � k

�
� pdEt ; dI t ; dRt |Sp0q; Ep0q; I p0q; Rp0q; �; �; 
 q

�
qupdI | dI 1q
qupdI 1 | dI q

; 1

,
//.

//-
;

where the product is over the timestep where the addition/removal occurred onward,

and for those parts of the likelihood that are a�ected as detailed in Section 3.7.2.2.

The qp�qrepresent the proposal distributions for adding/removing an infection event.

3.7.3.5 Augmenting the initial conditions

The greater the level of discretisation, the larger the proportion of removal events

that will occur during the �rst two timesteps. Due to the fact that events cannot

occur to the same individual in the same timestep, this means that the majority

of the exposure and infection events that preceded these removal events must have
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3.7. Data Augmentation

occurred before the �rst timestep - i.e. in the initial conditions. The number of

events that occurred in the initial conditions, however, is unknown. At the extreme,

if every event occurred in the initial conditions, the epidemic would be valid, but

the S to E and E to I rates would have to be extremely small relative the removal

rate, that none occurring `during' the epidemic. For this reason we need to be able

to augment and explore the initial conditions, moving events between them and the

main data. In conjunction with the `move' events data augmentation step, it is

su�cient and simple to just move events between the initial conditions and the �rst

timestep.

When the magnitude of the timestep is small, the resolution is likely su�cient to

allow most if not all events to occur during the epidemic, and so minimal compute

is used for this step. When the magnitude is large, it is likely that the likelihood

will need to be calculated on every iteration.

Choose an event type from the set� P tE; I u. Let � here be the direction of

movement, and sample � from the set t� 1; 1u to represent a move fromt � 1 to

the initial conditions, or a move from the initial conditions to t � 1 respectively.

As such, the proposal density is simply given by;

qpX 1
0; d� 1|X 0; d� q �

1
2

;

and the Metropolis-Hastings acceptance probability forS Ñ E events is given

by

� � min
"

� pdE1
1; dI1; dR1|Sp0q1; Ep0q1; I p0q; Rp0q; �; �; 
 q

� pdE1; dI1; dR1|Sp0q; Ep0q; I p0q; Rp0q; �; �; 
 q
; 1

*
;

and the Metropolis-Hastings acceptance probability forE Ñ I events is given

by

� � min
"

� pdE1; dI 1
1; dR1|Sp0q; Ep0q1; I p0q1; Rp0q; �; �; 
 q

� pdE1; dI1; dR1|Sp0q; Ep0q; I p0q; Rp0q; �; �; 
 q
; 1

*
:
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Chapter 3. Discrete approximations for State Transition Models

3.8 Block Adaptive MCMC for S-E-I-R

Having derived all of its components, we now lay out a more sophisticated MCMC

algorithm for making inference on epidemic data in an S-E-I-R framework. We

call this algorithm the \Adaptive Block MCMC"; \Block" refers to the idea of

sampling the parameters of interest as a set, using a multi-site sampler, taking into

account the correlation-covariance relationships, and \Adaptive" refers the process

of automatically adapting the tuning parameters to optimise the algorithm. We are

considering the case of an incomplete epidemic, so we will include the details of both

data augmentation steps.

In this section we present the algorithm and a series of subroutines for making

inference on an SEIR chain binomial epidemic. We begin with an overview of the

process, and then lay out the details of each element.

3.8.1 The Algorithms

Algorithm 1 is an overview of the MCMC schema which shows the steps taken in

each iteration. The subroutines used within it are presented in the sections that

follow. During each iteration a new set of parameters are proposed, and then the

initial conditions, S to E, and E to I transition events are augmented using \move

event" and \add/remove event" data augmentation steps. Finally the adaptive

tuning parameters are updated and results recorded.
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3.8. Block Adaptive MCMC for S-E-I-R

Algorithm 1: Block Adaptive MCMC Algorithm
Input : Nits = Total desired number of iterations eg. 106,

Data = All state and event data,

(� , m, � m ) = Initial values of the tuning parameters

Output : Results= Parameter values for each iteration

Elements: � = Epidemic parameters,ntune = Tuning block counter

1 Set up

2 Initialise � cur

3 Set it = 1, ntune = 1

4 Process

5 while it ¤ Nits do

6 Blk-Adpt-Metropolis-Hastings-Step() 's for Parameters

(Subroutine 3.1):

7 r�; �; 
 s P�

8 Metropolis-Hastings-Step() 's for Data Augmentation

(Subroutine 3.3):

9 Augment SE initial conditions (Subroutine 3.4)

10 Augment EI initial conditions (Subroutine 3.5)

11 Move SÑ E events in time (Subroutine 3.6)

12 Move EÑ I events in time (Subroutine 3.7)

13 Add/Remove SÑ E events (Subroutine 3.8)

14 Add/Remove EÑ I events (Subroutine 3.9)

15 Record theResults

16 if it � 25� pntuneq then

17 ntune = ntune � 1

18 end

19 it = it � 1

20 end
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Chapter 3. Discrete approximations for State Transition Models

Subroutine 3.1 presents the subroutine for proposing and updating the transition

parameters using the Block Adaptive schema. The parameters are drawn on the log

scale from one of two Gaussian proposal distributions, one with a scaled identity

covariance matrix, and one with a covariance matrix based on the previous accepted

samples. The proposed values are then accepted or rejected using a Metropolis-

Hastings step, and the hyper-parameters of the proposal distributions are then

automatically tuned. The subroutine of the tuning is given in the algorithms

following.
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3.8. Block Adaptive MCMC for S-E-I-R

Subroutine 3.1: Block Adaptive Metropolis-Hastings Step for Parameters
Input : (� , m, � mq = Current values of the tuning parameters, andNits,

Data, ntune

Output : � cur = Updated epidemic parameters,
(� , m, � m) = Updated tuning parameters

Elements: � p� |X q = Joint conditional posterior of parameters� given
Data X,
qp |� q = Prob. of proposing parameters given the current
parameters� ,
d = Dimension of � cur,
� = Proposal posterior co-variance matrix

1 Propose Update
2 if it ¤ minp5000; Nits{10q then

3 if it = 25 �ntune then
4 Update � using Tune � () (Subroutine 3.2)
5 end
6 Drawlog(� prime) � N(log( � cur), � 2

d Id)
7 else
8 with 5% chancethen
9 Set � = � 2

d Id (1)
10 else
11 Set � = m 2� [Current empirical Posterior Co-Variance Matrix]

(2)
12 end

13 Drawlog(� prime) � N(log( � cur), � )
14 end

15 Accept/Reject

16 Calculate � p� cur|X q, � p� prime|X q, qp� cur|� primeq, qp� prime|� curq using
Posterior fn()

17 Calculate the Metroplis-Hastings acceptance probability as

� � min
�

1;
±

d r� primes�� p� prime|X q±
d r� curs�� p� cur|X q

	

18 Accept or reject the proposal

19 if � = (2) then
20 if update acceptedthen
21 Set m = m + 2 :3p� m?

it
q

22 else
23 Set m = m - p� m?

it
q

24 end
25 end
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Chapter 3. Discrete approximations for State Transition Models

Subroutine 3.2 presents the subroutine for tuning the scaling factor of the

uncorrelated proposal distribution for the parameters. If the acceptance rate is

above the desired value then the tuning parameter is made larger, otherwise it is

made smaller. The tuning parameter is updated every 25 iterations up to the 5000th

iteration, then it is �xed.

Subroutine 3.2: Function: Tune � ()
Input : � cur = The current value of � for the parameter block of interest,

ntune = The number of tuning blocks so far,
Results= The acceptance (0/1) of the update steps so far

Output : � updated = The updated value of �
Elements: it = iterations,

accprop = Acceptance proportion for the 25 iterations in the
ntune

th block,
� = Change in the �

1 Function Tune� ()

2 Calculate accprop

3 if accprop   0:33 then
4 Set � = � minp0:05; 1?

ntune
q

5 else
6 Set � = min p0:05; 1?

ntune
q

7 end

8 logp� updatedq � logp� curq � �

9 Return( � updated)
10 end

Subroutine 3.3 presents the framework for data augmentation of the partially

observed and occult events. Depending on the data, event, and proposal function,

di�erent subroutines presented in the algorithms that follow are used. First new

data is proposed and the posteriors calculated, then the updates are accepted or

rejected based on the Metropolis-Hastings acceptance probability.
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3.8. Block Adaptive MCMC for S-E-I-R

Subroutine 3.3: Metropolis-Hastings Step for Data Augmentation
Input : Proposal fn = A function to generate the proposal,

� = Current values of the parameters,

and Nits, Data

Output : Data = Updated epidemic data

Elements: � pX |� q = Likelihood of the epidemic given parameters� ,

qpX |Y q = prob. of proposing dataX given the current dataY

1 Propose Update

2 Propose an update toData, X cur, using Proposal fn()

3 Calculate qpX cur|X primeq, qpX prime|X curq using Proposal fn()

4 Accept/Reject

5 Calculate � pX cur|� q, � pX prime|� q using Posterior fn()

6 Calculate the Metropolis-Hastings acceptance probability as

� � min
�

1; � pX prime|� q�qpX cur|X primeq
� pX cur|� q�qpX prime|X curq

	

7 Accept or reject the proposal
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Subroutine 3.4 presents the algorithm for augmenting the S and E states

by moving events between the initial conditions and the �rst timestep, and

accepting/rejecting using a Metropolis-Hastings step and recording the results.

Subroutine 3.4: Function: Propose to augment the S and E initial

conditions
Input : Data = The states and events of the epidemic at all timesteps

Output : Data1 = The states and events of the epidemic at all timesteps

after the update

Elements: � = The direction of the move.

1 Function Prop AugmentInit SE()

2 Generate � P t� 1; 1u

3 if � ¡ 0 then

4 Change an initial E to an initial S

5 Add an S to E event at t � 1

6 else

7 Change an initial S to an initial E

8 Remove an S to E event att � 1

9 end

10 Calculate the proposal probabilities using

11 qpX prime|X curq � 1
2

12 qpX cur|X primeq � 1
2

13 Return( Data1, qpX cur|X primeq, qpX prime|X curq)

14 end

Subroutine 3.5 presents the algorithm for augmenting the E and I states

by moving events between the initial conditions and the �rst timestep, and

100



3.8. Block Adaptive MCMC for S-E-I-R

accepting/rejecting using a Metropolis-Hastings step and recording the results.

Subroutine 3.5: Function: Propose to augment the E and I initial

conditions
Input : Data = The states and events of the epidemic at all timesteps

Output : Data1 = The states and events of the epidemic at all timesteps

after the update

Elements: � = The direction of the move.

1 Function Prop AugmentInit EI()

2 Generate � P t� 1; 1u

3 if � ¡ 0 then

4 Change an initial I to an initial E

5 Add an E to I event at t � 1

6 else

7 Change an initial E to an initial I

8 Remove an E to I event att � 1

9 end

10 Calculate the proposal probabilities using

11 qpX prime|X curq � 1
2

12 qpX cur|X primeq � 1
2

13 Return( Data1, qpX cur|X primeq, qpX prime|X curq)

14 end

Subroutine 3.6 presents the algorithm for augmenting the S to E transition events

by moving one through time, and accepting/rejecting using a Metropolis-Hastings

step and recording the results.
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Subroutine 3.6: Function: Propose to move an S to E event through time
Input : Data = The states and events of the epidemic at all timesteps

Output : Data1 = The states and events of the epidemic at all timesteps

after the update

Elements: t = A timestep in the data,

� = The magnitude and direction the event is moved in time

1 Function Prop MovedE()

2 Generate � P t� 1; 1u

3 if � ¡ 0 then

4 Choose a timestep,t P1 : pT � 1q, weighted bydE ptq

5 else

6 Choose a timestep,t P2 : T, weighted bydE ptq

7 end

8 Update the Data to create Data1

9 Calculate the proposal probabilities using

10 qpX prime|X curq � 1
2 � dE ptq°

s t dE psqu

11 qpX cur|X primeq � 1
2 � d1

E pt � � q°
s t d1

E psqu

12 Return( Data1, qpX cur|X primeq, qpX prime|X curq)

13 end

Subroutine 3.7 presents the algorithm for augmenting the E to I transition events

by moving one through time, and accepting/rejecting using a Metropolis-Hastings

step and recording the results.
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Subroutine 3.7: Function: Propose to move an E to I event through time
Input : Data = The states and events of the epidemic at all timesteps

Output : Data1 = The states and events of the epidemic at all timesteps

after the update

Elements: t = A timestep in the data,

� = The magnitude and direction the event is moved in time

1 Function Prop MovedI()

2 Generate � P r� 1; 1s

3 if � ¡ 0 then

4 Choose a timestep,t P1 : pT � 1q, such that dI ptq ¡ 0

5 else

6 Choose a timestep,t P2 : T, such that dI ptq ¡ 0

7 end

8 Update the Data to create Data1

9 Calculate the proposal probabilities using

10 qpX prime|X curq � 1
2 � 1°

s t dI psq¡ 0u

11 qpX cur|X primeq � 1
2 � 1°

s t d1
I psq¡ 0u

12 Return( Data1, qpX cur|X primeq, qpX prime|X curq)

13 end

Subroutine 3.8 presents the algorithm for augmenting the S to E transition events

by adding an additional event or removing an event, and accepting/rejecting using

a Metropolis-Hastings step and recording the results.
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Subroutine 3.8: Function: Propose to add or remove an S to E event
Input : Data = The states and events of the epidemic at all timesteps

Output : Data1 = The states and events of the epidemic at all timesteps

after the update

Elements : t = A timestep in the data,

Spt � 1q = The number of susceptibles used to generate the

exposure events,

pexpptq = The probability of exposure at time t

1 Function Prop AddRemdE()

2 Generate � P r� 1; 1s

3 if � ¡ 0 then

4 Choose a timestep,t P2 : T, such that

t Spt � 1q ¡ 0 and pexpptq ¡ 0u, weighted by pexpptq

5 else

6 Choose a timestep,t P2 : T, such that dE ptq ¡ 0

7 end

8 Calculate the proposal probabilities using

9 if � ¡ 0 then

10 qpX prime|X curq � 1
2 � 1°

s t Sps� 1q¡ 0 and pexp psq¡ 0u � pexp ptq°
s pexp psq

11 qpX cur|X primeq � 1
2 � 1°

s t d1
E psq¡ 0u

12 else

13 qpX prime|X curq � 1
2 � 1°

s t dE psq¡ 0u

14 qpX cur|X primeq � 1
2 � 1°

s t S1ps� 1q¡ 0 and p1
exp psq¡ 0u � p1

exp ptq
°

s p1
exp psq

15 end

16 Return( Data1, qpX cur|X primeq, qpX prime|X curq)

17 end

Subroutine 3.9 presents the algorithm for augmenting the E to I transition events

by adding an additional event or removing an event, and accepting/rejecting using
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a Metropolis-Hastings step and recording the results.

Subroutine 3.9: Function: Propose to add or remove an E to I event
Input : Data = The states and events of the epidemic at all timesteps

Output : Data1 = The states and events of the epidemic at all timesteps

after the update

Elements: t = A timestep in the data,

Ept � 1q = The number of exposed used to generate the E to I

events,

1 Function Prop AddRemdI()

2 Generate � P t� 1; 1u

3 if � ¡ 0 then

4 Choose a timestep,t P2 : T, such that t Ept � 1q ¡ 0u

5 else

6 Choose a timestep,t P2 : T, such that dI ptq ¡ 0

7 end

8 Calculate the proposal probabilities using

9 if � ¡ 0 then

10 qpX prime|X curq � 1
2 � 1°

s t Eps� 1q¡ 0u

11 qpX cur|X primeq � 1
2 � 1°

s t d1
I psq¡ 0u

12 else

13 qpX prime|X curq � 1
2 � 1°

s t dI psq¡ 0u

14 qpX cur|X primeq � 1
2 � 1°

s t E1ps� 1q¡ 0u

15 end

16 Return( Data1, qpX cur|X primeq, qpX prime|X curq)

17 end
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3.9 Results

Using the above algorithm and subroutines we ran inference for four discretisations

of an epidemic simulated in a continuous-time GSE SEIR construction. Figure 3.1

shows the simulated epidemic at the 4 levels of discretisation. produced by counting

the number of events of each type that occurred in each window of size of �t. We

use the data of this epidemic from timet � 0 to the 250th removal event at time

t � 274, which leaves us with an incomplete epidemic.

The epidemic was simulated to have 25% of the population infected by the �nal

observation, and be ongoing. We assumed the removal events were observed, but

not the exposure or infection events. We assumed the epidemic to be ongoing such

that we did not know the total number of exposure and infection events, just that

they were bounded below by the number of removals at any given timestep. There

are three parameters of interest:� , � , 
 .

The population size was 1000 individuals, initialised with one infected individual.

The priors were set to be� � Gammap5; 0:05q, � � Gammap1:6; 0:05q, and 
 �

Gammap4:4; 0:05qsuch that the mean of the prior is the true value. The form of the

Gamma distribution we are choosing to use has� ¡ 0 as the shape parameter, and

� ¡ 0 as the rate parameter.

We have chosen to explore 4 levels of discretisation that can be interpreted in

the following way: � t � 0:2 is an approximation to a continuous-time inference,

� t � 1 can be considered the standard discretisation for this epidemic, and can be

interpreted as daily observations, �t � 7 can be interpreted as weekly observations,

and � t � 30 can be interpreted as monthly observations. Simply counting the

number of continuous events that occurred in each �t window has the potential to

invalidate an assumption of the epidemic than an individual can only experience

one type of event in each timestep. As such we initialise the data for the inference

by �xing the assumed known removal timesteps, and back-generating appropriate

exposure and infection timesteps.

We ran the same MCMC process for each discretisation for 3 million samples.
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Below we present the results of 2.5 million samples after burn-in for the �t �

1 discretisation, with commentary and comparison to the results of the other

resolutions.

The � t � 0:2 inference is the most accurate, approximating the continuous-time

inference with minimal biases introduced, however it is also the most ine�cient.

In fact it is more ine�cient than the continuous-time model, as there are more

timesteps/rows in the data than there are events. This model is the baseline against

which we will compare all the results, and took 14759 seconds to run. This is

compared to the 3256 seconds for the �t � 1 model. The cost of this rapid increase

in computation by using � t � 1 was a small increase in the variance of the unimodal

posteriors. We did not explicitly make inference for a continuous-time model in

this instance, however it would have roughly 750 events/rows of data for which to

compute a likelihood, compared to the �t � 0:2 models roughly 1250, and the

� t � 1 models roughly 250 for context.

Overall the algorithm with � t � 1 recovered uni-modal posterior distributions

which contained the true values of the parameters. The true values of the parameters

lie very close the areas of highest posterior mass. The shapes of the posteriors are

uni-modal and distinct, without excessively long tails as we can see in Figure 3.2.

The mixing was good, with large jumps and time spent exploring all areas of the

posterior mass, though slightly worse than for the �t � 0:2 model, as seen in Figure

3.4. The trade o� between the exposure rate, onset of infection rate, and removal

rate can be seen in Figure 3.3 with the strong elliptical shapes of the contour plots.

The red dotted lines represent the true parameters, and the yellow dotted lines

represent the position of the pair of parameters with the highest posterior density,

calculated by dividing the state-space into a �ne grid and �nding the centroid of

the bin with the greatest density. We can see that in all cases the values are within

the main posterior mass. In particular we can see that larger S to E transition

rates, leading to more exposed individuals quicker, are matched with larger I to R

transition rates, meaning shorter infectious periods.
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Table 3.2 presents the summaries of the marginal posterior distributions. The

average acceptance rate of the parameter block draw was 30.44%. The average

acceptance rate for moving S to E exposure events was 90.06%. The average

acceptance rate for moving E to I infection events was 88.93%. The average

acceptance rate for adding or removing S to E exposure events was 58.6%. The

average acceptance rate for adding or removing E to I infection events was 21.93%.

The e�ective sample size for� was 746.85. The e�ective sample size for� was

1423.42. The e�ective sample size for
 was 677.57.

The parameter estimates for the �t � 0:2, � t � 7, and � t � 30 models are

presented in Tables 3.1, 3.3, and 3.4 respectively. The values were similar for the

� t � 0:2 model, noting that the e�ective sample sizes were reversed with� being

signi�cantly higher and the other two being lower. Overall this lends credence to

the discretisation e�orts of � t � 1, with roughly equal quality of inference and a

signi�cant speed increase.

The same cannot be said, however, for the more extreme discretisations. Whilst

it is true that there is a notable speed increase, with �t � 7 taking 831 seconds, and

� t � 30 taking a mere 237 seconds, the bias introduced has a noticeable impact on

accuracy. As expected due to the constraint of each individuals transitions having

to occur in di�erent timesteps, a minimum waiting period is enforced for each event

type equal to the timestep size. In this case those timesteps were too large, and

led to a high levels of inaccuracy, with for instance� becoming extremely in
ated

and � being severely de
ated. The acceptance rates are roughly the same, as are

the e�ective sample sizes, if not higher, but the inference is severely inaccurate,

exacerbated by the informative priors which are aligned with the continuous model

rather than each discretisation.
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True Value Mean 95% CI Std. Dev. ESS
� 0.25 0.19615 (0.101, 0.325) 0.0582 1157.63
� 0.08 0.09189 (0.0375, 0.198) 0.0410 144.73

 0.22 0.15918 (0.0801, 0.2660) 0.0478 1197.91

Table 3.1: The summary of the marginal posterior distributions for �t � 0:2.

True Value Mean 95% CI Std. Dev. ESS
� 0.25 0.2126 (0.100, 0.393) 0.0762 746.85
� 0.08 0.0979 (0.0383, 0.2130) 0.0446 1423.42

 0.22 0.1893 (0.0833, 0.3780) 0.0764 677.57

Table 3.2: The summary of the marginal posterior distributions for �t � 1.

True Value Mean 95% CI Std. Dev. ESS
� 0.25 0.11066 (0.0657, 0.2200) 0.0191 476.53
� 0.08 0.16779 (0.00835, 0.33500) 0.0686 1217.93

 0.22 0.14606 (0.0547, 0.2580) 0.0452 870.26

Table 3.3: The summary of the marginal posterior distributions for �t � 7.

True Value Mean 95% CI Std. Dev. ESS
� 0.25 0.7894 (0.0284, 1.1100) 0.1570 260.03
� 0.08 0.001818 (0.00153, 0.01110) 0.000162 1228.98

 0.22 0.13936 (0.00493, 0.40400) 0.1120 2056.68

Table 3.4: The summary of the marginal posterior distributions for �t � 30.
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