On-line analysis of volatile organic compound emissions from Sitka spruce (Picea sitchensis).

Hayward, Sean and Tani, Akira and Owen, Sue M. and Hewitt, CN (2004) On-line analysis of volatile organic compound emissions from Sitka spruce (Picea sitchensis). Tree Physiology, 24 (7). pp. 721-728. ISSN 1758-4469

Full text not available from this repository.

Abstract

Volatile organic compound (VOC) emissions from Sitka spruce (Picea sitchensis Bong.) growing in a range of controlled light and temperature regimes were monitored online with a proton transfer reaction–mass spectrometer (PTR–MS) operating at a temporal resolution of ~1 min. Isoprene emissions accounted for an average of more than 70% of measured VOCs and up to 3.5% of assimilated carbon. Emission rates (E) for isoprene correlated closely with photosynthetic photon flux (PPF) and temperature, showing saturation at a PPF of between 300 and 400 µmol m–2 s–1 and a maximum between 35 and 38 °C. Under standard conditions of 30 °C and 1000 µmol m–2 s–1 PPF, the mean isoprene E was 13 µg gdm–1 h–1, considerably higher than previously observed in this species. Mean E for acetaldehyde, methanol and monoterpenes at 30 °C were 0.37, 0.78 and 2.97 µg gdm–1 h–1, respectively. In response to a sudden light to dark transition, isoprene E decreased exponentially by > 98% over about 3 h; however, during the first 7 min, this otherwise steady decay was temporarily but immediately depressed to ~40% of the pre-darkness rate, before rallying during the following 7 min to rejoin the general downward trajectory of the exponential decay. The sudden sharp fall in isoprene E was mirrored by a burst in acetaldehyde E. The acetaldehyde E maximum coincided with the isoprene E minimum (7 min post-illumination), and ceased when isoprene emissions resumed their exponential decay. The causes of, and linkages between, these phenomena were investigated.

Item Type:
Journal Article
Journal or Publication Title:
Tree Physiology
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/1100/1110
Subjects:
?? acetaldehydeisoprenemethanolmonoterpenespost-illumination burstpost-illumination depressionptr–mspyruvatevocs.plant sciencephysiologyge environmental sciences ??
ID Code:
21319
Deposited By:
Deposited On:
08 Jan 2009 16:55
Refereed?:
Yes
Published?:
Published
Last Modified:
15 Jul 2024 09:54