Edge Solution for Real-time Motor Fault Diagnosis Based on Efficient Convolutional Neural Network

An, Kang and Lu, Jingfeng and Zhu, Quanjing and Wang, Xiaoxian and De Silva, Clarence W. and Xia, Min and Lu, Siliang (2023) Edge Solution for Real-time Motor Fault Diagnosis Based on Efficient Convolutional Neural Network. IEEE Transactions on Instrumentation and Measurement, 72: 3516912. pp. 1-12. ISSN 0018-9456

Full text not available from this repository.

Abstract

Real-time motor fault diagnosis can detect motor faults on time and prompt the repair or replacement of faulty motors, which minimizes the potential losses caused by motor faults. Deep learning (DL) methods have been intensively applied in motor fault diagnosis. Most DL algorithms need to be trained with sufficient computation resources on cloud or local servers. However, uploading the raw data and downloading the command instructions to the edge will cause inevitable time delays and security concerns. This article develops a DL algorithm based on efficient convolutional neural networks (ECNNs) that can be deployed on an edge computing node for real-time motor fault diagnosis and dynamic control. The effectiveness, efficiency, and robustness of the ECNN model have been validated by experiments, and the results indicate that the ECNN model can achieve 100% accuracy in recognition of ten types of motor conditions, with the inference time and memory usage less than 14 ms and 44 KiB, respectively. The comparison results demonstrate that the ECNN model yields higher accuracy than the classical shallow neural networks, and it also presents the advantages of smaller model volume, lower prediction time, and higher accuracy as compared with the DL models. The proposed method shows significant potential for practical application in real-time motor fault detection and control.

Item Type:
Journal Article
Journal or Publication Title:
IEEE Transactions on Instrumentation and Measurement
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/3100/3105
Subjects:
?? electrical and electronic engineeringinstrumentationinstrumentationelectrical and electronic engineering ??
ID Code:
212715
Deposited By:
Deposited On:
11 Jan 2024 13:45
Refereed?:
Yes
Published?:
Published
Last Modified:
15 Jul 2024 23:51