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1. Introduction 
 

Plus ça change; plus c'est la même chose! (Jean-Baptiste Alphonse Karr) 
(The more things change; the more they stay the same!) 

 

The last years have seen the theory and practice of supply chain and operations management undergo major 
changes. These changes have in part reflected the emergence of new challenges that both practitioners and 
researchers in these areas have to face. For example, the price-driven, strategically decoupled supply chain 
– a supply chain strongly built around lean principles and practices – is challenged by the COVID-19 
pandemic and systemic disruptions, which led to a transition to supply chain approaches that emphasize 
new strategic dimensions of performance, such as responsiveness, resilience or plasticity. We have also 
seen the emergence of more demands for complementary outcomes such as sustainability, innovation, and 
security (Van Wassenhove, 2019), while uncertainty has replaced risk as a major trait of the problems now 
being encountered (Browning et al., 2023). We have also encountered new tribulations such as disruptions 
to the supply chain due to ransomware attacks, cybersecurity breaches, and the complete breakdown of 
supply chains. We have seen suppliers gain increased power because of these problems. 
 
On the positive side, new methodological capabilities and resources emerged. Researchers now have access 
to big data, along with its associated problems and challenges. We also have seen advances in analytical 
techniques – developments drawn from either econometrics or machine learning or artificial intelligence. 
The combination of these new challenges and the emergence of new sources of data and analytical 
procedures has led some researchers to believe that the solution to these challenges must lie in these new 
sources of data and techniques. However, as indicated by the quote included at the beginning of this paper, 
it is our position that, while many of the problems, contexts, data sources, and methodological tools have 
changed, the fundamental issues when designing solutions for managing supply chains and operations 
remain constant. These issues include concerns of securing, accessing, and cleaning data, and retrodicting 
(explaining past events), predicting (new events or states), and understanding/explaining, i.e., answering 
the “why” and “how” questions by uncovering causal structures, relationships and their boundary 
conditions (Wacker, 1998).  
 
While it is possible to get overwhelmed or intimidated by these new problems, data sources, and analytical 
techniques, it is sometimes useful to take a step back and to take stock of the tools and procedures available 
to the modern researcher. Part of this process should include identifying and becoming reacquainted with 
past tools which are still relevant and of discarding those procedures that are no longer appropriate (for 
whatever reason). In taking stock, it is important to not only reevaluate the tools but also to re-assess the 
extent to which these tools, old and new, are complements or substitutes. Assessing the usefulness of 
simulation is the major objective of this paper. Specifically, this paper explores the following issues: 

• What are the major challenges and issues facing supply chain and operations management 
researchers in today’s environment? 

• To what extent are the ‘modern’ tools (e.g., machine learning, artificial intelligence) sufficient in 
addressing these research needs? 

• What is simulation and why should it be considered seriously as part of the researcher’s tool kit? 
 
Our goal is not simply to re-introduce simulation but rather to position it in a research framework that 
enables researchers to better understand how the various research tools fit together. We view simulation as 
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a very useful and important complement to the recent developments. It is our position that research demands 
that the researcher addresses a wide variety of problems and questions. No tool, no matter how powerful, 
can effectively address all of these demands; rather tools must be used where and when they make the most 
sense and adapted to the specific research problems. Simulation is one such tool. 
 
2. Emerging Research Challenges 
As previously noted, the last years have seen some major challenges emerge in the supply chain and 
operations management fields. While these challenges are not new, they gain in prominence compared to, 
for example, variability, which has been a focus of supply chain and operations management at least since 
the introduction of scientific management in the 19th century. Synthesizing the existing research that has 
taken place, combined with a review of actual events leads to themes such as the following. 
 
2.1 Increasing importance of uncertainty  
Risk, as noted by the extensive research into risk management in the supply chain (Sodhi et al., 2012), has 
played a major role in past research. Using the Knightian framework (Knight, 1921) of uncertainty and risk, 
risk involves situations where the researcher is faced by two distributions – the probability of an event 
taking place and the probability of its impact – which the researcher could quantify. In contrast, uncertainty 
refers to a lack of any quantifiable knowledge about either one or both of these distributions, resulting in 
challenges (such as unanticipated effects) arising from “unknown unknowns” and struggles about how to 
methodologically grasp such situations (Matos et al., 2020). 

  
A good example of uncertainty involves the ship Evergreen (Petras et al., 2021), which became stuck on 
March 23, 2021, when it lodged itself diagonally in the Suez Canal. The resulting blockage prevented ships 
from using the Suez Canal, with the result that at one point there were more than 360 ships blocked from 
using the canal. The resulting traffic jam severely impacted supply chains, preventing an estimated $9.6 
billion USD worth of trade (Harper, 2021). By any measure, this event can be viewed as an example of 
uncertainty in action. Still, it can be classified as a grey swan (Akkermans, & Van Wassenhove, 2013), 
which highlights the shear impossibility of predicting unknown unknowns. 
 
There is an adage for uncertainty – you cannot predict it, but you must prepare for it. This means that 
researcher, managers, and policy-makers have become concerned with scenario planning (e.g. Dani et al., 
2008; Desai, 2012; Johnston et al., 2008; Joglekar et al., 2021; Phadnis & Jogklekar, 2021; Lapide, 2022) 
and “what-if” analysis to evaluate potential impacts and means to buffer or prevent them. In this context, 
simulation plays an important role (Saisridhar et al., 2023). 
 
2.2 Increasing interest in the transient response(s) 
In the last years, supply chains have experienced widespread disruptions, for example, the Evergreen 
(previously discussed). Other examples include the chip shortage and its impact on the production of cars 
or the war in the Ukraine and its impact on battery and car production. Whenever a system is shocked, it 
experiences a period during which the system is no longer in steady state. During this non-steady-state 
period, the system is involved in a transient response. Figure 1 provides an example of such a transient 
response. 
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Figure 1: The Transient Response – An Example (from Melnyk et al., 2014, p. 618) 
 

This diagram identifies many of the dimensions critical to the study of how a system responds over time to 
a disruption. Prior to the disruption, the system is operating at an output level of RO. The disruption takes 
place at time TD but its impact on the organization is felt at TO. The parameters describe how the 
organization’s performance responds over time until a new steady-state is reached at TR, with the new post-
disruption steady-state being described by RR. Wieland & Durach (2021) recently redefined resilience as 
the capacity of a system to persist, adapt, or transform in the face of change. If this new state RR is 
equivalent to RO, then we talk about engineering resilience and the system persists, if RR is different from 
RO then we talk about social-ecological resilience and the system adapts or transforms. In practice, a system 
likely persists, adapts and transforms according to business need.  
 
As can be seen from Figure 1, critical to the study of disruptions is the identification of those factors that 
influence the transient response, understanding how these factors influence the characteristics of the 
transient response, and identifying what can be done to minimize the adverse impacts observed over the 
transient response. These transient responses involve both time and quantity. While quantitative methods 
are powerful in quantifying effects and determining optimal system parameters, they cannot appropriately 
capture time. Simulation provides a unique ‘simulation time’, which makes it specifically useful to assess 
transient responses. 
 
Improvements of operations and supply chains on a social and ecological scale are often driven by shock 
events that disrupt the status-quo – be it a catastrophe or a powerful civil society campaign. Shocks such as 
the Rana Plaza garment factory collapse (Huq et al., 2016) or cases of modern slavery on tomato farms 
around Immokalee, South Florida (Kunz et al., 2023) may open the opportunity to find a new steady state 
of enhanced working conditions as well as health and safety standards (Gold et al., 2020; Kunz et al., 2023). 
More generally, simulation can shed light on systemic responses after the shock has caused a normative 
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crisis regarding the legitimacy of the social and environmental impacts of supply chains (Kunz et al., 2023). 
Simulation helps analyzing time-dependent responses of key actors – including time delays and feed-back 
loops – and the effectiveness of their strategies within the context of complex cultural, political and legal 
structures along multiple stages of supply chains that might also be destabilized. It is therefore a key 
methodological tool for analyzing sustainability transformations since it can model dynamic interaction of 
multiple players.  
 
2.3 Making sense of big data 
The last years have seen the emergence of big data as a driving issue within supply chain and operations 
management research. One of the challenges offered by such data is the need to identify and describe 
underlying patterns hidden in this data. As noted by Shiffrin (2016), this is an area in which techniques 
such as machine learning, artificial learning, and analytics excel. However, it should be noted that these 
tools excel at historic patterns and they do not create a model but rather treat the system under study as a 
black box. The former questions their usefulness for low probability, high impact events that have been a 
cause of recent disruptions. The latter leads to the problems of explainable artificial intelligence, 
legitimization of decisions based on artificial intelligence and ethical failures. Most researchers agree that 
human judgment and analytics have unique, opposite strengths and weaknesses, which is called “Moravec’s 
Paradox” (Browning et al., 2023), and that the integration of both is the key to reaping the full benefits of 
big data and analytics. Simulation provides a means to combine human judgment with analytics through its 
modelling capabilities. 
 
2.4 Uncovering hidden causality 
Observation and analysis are often sufficient for prediction, but managers do not just want to predict 
disruptions or that something goes wrong. They want to take action. To predict the effect of actions, in 
addition a causal structure is required (Pearl, 2009). Causality, as described by Hunt (1991) and Pearl et al. 
(2016), is important because it uncovers and explains relationships. It identifies the independent variables, 
the dependent variables, and the nature of the relationship between the independent and dependent variables, 
as well as the factors influencing these relationships (Wacker, 1998). It also establishes the scope of the 
relationships. Causality, as will be subsequently pointed out, imposes some demanding requirements on 
researchers – requirements that cannot be satisfied by simple correlation studies. These are requirements of 
temporality, exclusivity, and precedence. Most importantly, there is a need for experiments and thus 
replication. In empirical research this is realized by subdividing the sample, since real time events just occur 
once. This introduces sampling biases about which a lot has been written. Moreover, there are always 
problems of endogeneity and common causes since the environment can never be fully controlled. 
Simulation provides a controlled environment in which (simulation) time can be replicated and experiments 
can be repeated purposefully. Using common random number streams, the same sample can be subject to 
different treatments in the same (simulation) time. 
 
3. Assessing Modern Analytical Tools 
There is little doubt that the potential of big data, machine learning, artificial intelligence, and analytics is 
significant for research and practice but it still remains to be fully realized (e.g., Ma et al., 2020; Choubey 
et al., 2021; Mullins, 2021; Mustak et al., 2021; Cadden et al., 2022). The challenges offered by big data 
(that of its sheer size) can only be effectively addressed by drawing on the capabilities of these tools and 
approaches (Shiffrin, 2016). However, it is also important to recognize that currently (as of the writing of 
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the article) what these tools excel at is finding and fitting patterns within historic data. This means that these 
capabilities are primarily backwards oriented, they may have difficulty in dealing with transient response, 
and they may be challenged by uncertainty (where the past may no longer be indicative of the future). Since 
big data and its associated tools are limited to what has been done (rather than by what could happen), these 
tools may also not be highly appropriate for carrying out “what if” analysis. While these techniques may 
excel at identifying patterns and correlations (where correlations can be regarded as a form of pattern), they 
therefore currently may not be reliably tasked with uncovering causality. These difficulties were best 
summarized by Shiffrin (2016: 7308): 
 

“However, there are enormous difficulties facing researchers trying to draw causal inference from 
or about some pattern found in Big Data: there are almost always a large number of additional and 
mostly uncontrolled confounders and covariates with correlations among them, and between them 
and the identified variables. This is particularly the case given that most Big Data are formed as a 
nonrandom sample taken from the infinitely complex real world: pretty much everything in the real 
world interacts with everything else, to at least some degree.” 

 
In other words, when dealing with big data, which is by its very nature highly confounded, we can never 
truly establish exclusivity, one of the three properties of causality (Hunt, 1991). For causality to be 
established between two variables – x and y (where x is the independent variable and y is the dependent 
variable), it must be shown that only x (and a change in its values) and nothing else caused the 
corresponding change in y. 
 
This discussion should not be interpreted as condemning big data, machine learning, artificial intelligence, 
and analytics. Rather, the discussion is aimed at recognizing their limitations. By themselves, they are 
important but they are not adequate to address all of the challenges now facing researchers in supply chain 
and operations management. If our goal, as researchers, is to address the challenges comprehensively, then 
we must be willing to look beyond these tools and identify other tools and approaches that may be 
appropriate in that they complement the capabilities offered. Sometimes, finding such tools requires us to 
look outside of our domain of study; in other cases, it may mean look forward for novel tools. In many 
cases, it may require us to rediscover tools used extensively in the past. One such tool is that of simulation. 
 
4. Re-introducing Simulation 
It can be argued that most supply chain and operations manager are concerned with establishing actions 
that change business processes towards some predefined measures. Good research establishes theory (an 
explanation) how this change happens. But to truly establish that a change was brought about by an action, 
the action must be turned on and off. This leads to the problem of sampling. Empirical research replicates 
the sample by subdividing it since we cannot go back in real time. Still, physical samples can never be 
identical. Most empirical research in supply chain and operations management does also not assess a 
treatment, such as in medicine or natural sciences, but remains descriptive (Bertrand & Fransoo, 2002). 
Simulation as method considered here, is a sampling procedure that replicates simulation time to generate 
data. This can happen in a controlled environment, and if computer with common random number streams 
are applied also the sample can be identical. Simulation can do so since sample and time are an abstraction, 
being the sample involved in a ‘play’ (or set of rules, model) that unfolds in time, similar to a theater or 
musical that creates the same past/future time and events over and over again. This play/model can be 
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repeated as often as desired creating comparable states that can receive different treatments. This 
disconnection from the real world is one of its biggest strengths, but also its biggest weakness in terms of 
validity. Note that it also distinguishes simulation from digital twins, if the twin is defined as real time 
simulation. To use the digital shadow, which is created by real time modelling of a physical system, as 
simulation model, it needs to be disconnected from the real world and run in abstract simulation time. 
Otherwise, it would just replicate the real world, being a shadow. A digital twin is consequently a cybernetic 
control device that can use simulation, not a simulation. This also explains why we do not see digital twin 
as a research method in the literature, but only as applications. 
 
Simulation is one of the most used research methods in supply chain and operations management (Shafer 
& Smunt, 2004). Simulation is essentially a model or representation that mirrors or copies the operation of 
an existing or proposed system or process. Kleijnen & Smits (2003) categorize simulations into four 
categories: business games, spreadsheet simulation, system dynamics, and discrete-event dynamic 
simulation. To these four, this paper adds a fifth category – agent-based models. Both business games and 
spreadsheet simulation are useful, given the premium they place upon ease of understanding and 
development. However, as the complexities grow, the latter three categories of simulations become more 
appropriate. All three are typically realized using a computer. Note, that we neglect Monte Carlo simulation, 
which establishes an output distribution for a given input distributions and a mathematical model, since it 
does not model time (being mainly applied for robustness analysis in analytical research) and most recent 
literature on computer simulation focusses on the other three (Borshchev, 2013). 
 
System dynamics is essentially a set of differential equations that are solved over simulation time. System-
dynamics approaches have been praised for their ability to cope with high levels of complexity (Besiou & 
Van Wassenhove, 2021), they are also often considered more rigorous given the underlying mathematical 
model, which however also limits their applicability. Discrete event and agent-based simulation use 
computer code and heuristics. Both model events (Chan et al., 2010), and which type of simulation is used 
depends on the perspective taken rather than on the model. Agent-based typically refers to modelling the 
agents that constitute the system, with the system emerging out of their interactions. This can often be 
realized with discrete event simulation software, and some discrete event simulation software adopts an 
agent-based approach (e.g., SimPy©). Discrete event simulation starts from the system. It is typically 
realized with object-oriented programming language being the main building blocks objects, such as 
capacity resources, with build in methods and variables. Meanwhile, there is also software that combines 
system dynamics, discrete event simulation and agent-based simulation (e.g. AnyLogic©). Agent-based 
models, which can be integrated into a system dynamics or discrete event environment, recognize the 
importance and impact of agents (which can be either individuals or collectives such as groups or 
organizations) and their behaviors. For example, Schwab et al. (2019) have combined agent-based with 
system dynamics modelling for simulating growth scenarios of a Swiss SME and investigating how 
financial performance and financial sustainability are influenced by managerial decision-making and 
macro-level banking regulation. Agent-based models and simulation may also be used for supporting 
decision-making, for example, as decision-support tools that help citizens and NGOs to fulfil their 
watchdog function in detecting possible misconduct in supply chains and service provision (Chesney et al., 
2017). 
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Computer simulation is widely used and generally accepted in supply chain and operations management 
(Größler et al. 2008, Shafer & Smunt 2004) because it facilitates the study of complex systems under 
controlled conditions, allows for system experimentation, and permits full information data collection – 
conditions seldom possible in real life. Simulation is unlimited in terms of experimental design and thus 
the potential to explore causality and contexts. Simulation is also arguably the only quantitative research 
method that allows for exploring the impact of transients. Simulations are also less expensive than 
experiments in real life, easily scalable, and widely applied. They may also be used where real-life 
experiments are ethically problematic, as for instance in cases of labor exploitation and human rights 
violations (Gold et al., 2020) and thus represent an excellent tool for research in sustainable supply chains 
and operations. However, simulations are also typically seen as less rigorous than mathematical models, 
and less relevant for practice than empirical research. Leading supply chain and operations management 
journals, including the International Journal of Operations and Production Management, are consequently 
often reluctant to accept simulation studies. This might be due to the fact that computer simulations are 
often not fully utilized and just used as add-on to carry out comparison studies. There is a need to unlock 
its unique potential to contribute to theory building and to theory testing. For this we need to rethink how 
simulation is applied.  
 
4.1 Empirical grounded simulation 
The goal of research, when boiled down to its basics, is simple – to generate knowledge. This goal can be 
achieved in several different ways: identify and categorizing a new phenomenon, identify the factors 
associated with this phenomenon, determine the causal links between phenomenon and its associated 
factors. It is the latter which provides an explanation, and thus creates new theory in a narrow sense (Sutton 
& Staw, 1995). Following Peirce (1998), scientific inquiry is largely based on the genesis of theory 
(abduction), the structured design of falsifiable hypothesis or experiments (deduction), and the controlled 
execution of experiments to corroborate theory and utility (induction). These three kinds of enquiry build a 
continuous research cycle (Handfield & Melnyk, 1998), an illustration of which is given in Figure 2. 
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Figure 2: The Principal Information Components, Methodological Controls, and Information 
Transformations of the Scientific Process (according to Wallace, 1971, p. 18.) 

 
Simulation as a method is the "perfect" vehicle for data generation. It allows for perfect control, complete 
reporting of data, and it is reproducible. Yet, it is simply that. Most simulation studies fail to get accepted 
at leading supply chain and operations management journals because they just generate and analyze data. 
Many authors argued for multi-method approaches combining simulation with empirical research methods 
(e.g., Bertrand & Fransoo, 2002; Chandrasekaran et al., 2018) by either building models close to practice 
or to test simulation results in practice. This is definitively one way of conducting meaningful empirical 
simulation research since, for example, findings from empirical studies (such as case studies and surveys) 
can be triangulated by findings from simulation research (Jick, 1979) in order to enhance the preciseness 
and scope of application of theory (Gold et al., 2020). But the focus is typically on the empirical part, not 
the simulation. 
 
A compelling simulation study always works with four research building blocks – research question, 
theoretical frame, experimental design, data collection, data analysis and its interpretation – which reflect 
above research cycle. The objective of simulation is not to build a model that is as close as possible to 
reality. The objective of simulation is also not to compare the performance of different algorithms or control 
solutions without any further explanation. Rather the objective of simulation is to design experiments that 
appropriately capture phenomena in practice, thus advancing our understanding of these phenomena. Davis 
et al. (2007) underline that “simulation’s primary value occurs in creative experimentation to produce novel 
theory” (p. 480). We see simulation as closely linked to intervention-based research, this is to derive new 
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theoretical and managerial insights by engaging with practice and solving complex field problems (van 
Aken et al., 2016). As intervention-based research, simulation focuses on the application of theory to 
practice (Chandrasekaran et al., 2020). But the focus is on the development of theory (Davis et al., 2007) 
for observed phenomena (rather than the development of a solution for a problem) and the intervention 
occurs in a simulation environment. Here we also distinguish empirical simulation research from 
quantitative empirical research as advocated by Bertrand & Fransoo (2002), which focus on the validation 
of axiomatic results in real-life operational processes. Simulations provide a high degree of modelling 
flexibility, and unlimited experimental designs, which provides a unique means for testing causal 
assumptions theorized in practice. It is easy to gather evidence on how an outcome was achieved, which 
allows not only for testing theory (induction), but if a “mismatch” between the expectations and reality 
occurs, for the ad-hoc development and testing of new theory (Oliva, 2019). In fact, good empirical 
simulation focusses on these “mismatches”, and thus the abductive element. It is when the simulation yields 
outcomes that do not match reality (or expectations) that new theory emerges, which leads to a continuous 
refinement of the theory and the model.  
 
4.2 Simulations that establish causality 
The focus on causality is central to supply chain and operations management research. For example, it can 
be argued that during the 1990s and early 2000s, when researchers made extensive usage of techniques 
such as structural equation modelling, they were interested primarily in understanding causality. But 
establishing causality, especially with secondary data, is not a trivial exercise. While causal inference from 
observational data is possible, it relies on the occurrence and non-occurrence of variables in practice, so 
that data for different system states can be separated, executing nature pseudo-experiments (Pearl, 2009). 
We do recognize the presence of “natural experiments”, but we also recognize that these do not occur 
frequently. One is always limited to the events that have occurred and the data that has been collected. To 
truly establish causality, one requires some form of controlled experiment where certain factors can be 
introduced or dropped to determine and isolate their impact on the overall results. Simulation allows 
repeatedly carrying out such controlled experiments, for example in the sense of sensitivity analyses (for 
examples see Kunz et al., 2014; Reiner et al., 2015), thus building new theory or elaborating and refining 
existing theory (Fisher & Aguinis, 2017).  
 
Testing causal assumptions is significantly different from quantifying causal assumptions. For example, 
deep learning is good at finding patterns but cannot explain how they are connected, which let to 
developments as explainable artificial intelligence. A causal assumption is typically expressed as x has an 
impact on y. If x is a necessary cause of y, then the presence of y necessarily implies the presence of x. The 
presence of x, however, does not imply that y will occur. If x is a sufficient cause of y, then the presence 
of x necessarily implies the presence of y. However, the presence of y does not imply the presence of x since 
another cause z may alternatively cause y. In order for an event y to be caused by x, x should be necessary 
and sufficient. This is called an active cause, which meets the three base criteria of causality (Hunt, 1991): 
simultaneity (i.e. x and y always occur together), precedence (i.e. x occurs before y), and exclusivity (i.e. 
only x --> y). A series of active causes over time results in a causal chain. Simulation that establishes 
causality assesses active causes and their propagation to develop theories for phenomena such as cascading 
failures, bullwhip effect or ripple effect (eg. Ivanov, 2017).  
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However, already Mill (1843) doubted that causes are truly sufficient or necessary for its effects. In practice, 
very often no clear cause can be identified. This is the more the case in socio-technical contexts that are of 
interest to supply chain and operations management. Rather events are due to a conjunction of a large 
number of causal factors, each one necessary but singly insufficient to achieve the outcome. This causal 
model can be considered an INUS condition, this is an “insufficient but necessary part of a condition which 
is itself unnecessary but sufficient for the result (Mackie, 1965, page 245)”, which simplified reads “a 
necessary element in a sufficient set of conditions, NESS” (Pearl, 2009). For example, while many people 
may accept an electric short-circuit as an explanation for a fire, a short-circuit is neither necessary nor 
sufficient for causing a fire. There are fires without short-circuits and there are short-circuits without fire. 
However, if the short circuit is combined with the condition that there is inflammable material and no 
efficient sprinkler, fire occurs. So, the short-circuit is a necessary element in a sufficient set of conditions 
that have to be met. To actually capture this, all elements and their behavior needs to be modeled. Discrete 
event and agent-based simulation allows for quantifying and testing different types of causes, including 
NESS conditions. This is important to advance knowledge on how to avoid accidents, disruptions, quality 
loss or errors, for example in healthcare settings which are characterized by high complexity and multiple 
players (e.g., Armitage, 2009; Collins et al. 2014; Underwood & Waterson, 2014; Tucker & Singer, 2015). 
 
4.3 Simulation as supplement to machine learning, artificial intelligence, and analytics 
A major shortcoming of machine learning, artificial intelligence and analytics, is that they are bound to data. 
In practice, this data first needs to be created and using empirical data these tools are bound to retrodiction. 
This shortcoming can be overcome by use of simulation. For example, machine learning is a subset of 
artificial intelligence, which includes reinforcement learning (Rolf, 2023) and deep learning (Kusiak, 2020). 
While deep learning is learning from a training set, and then applies that learning to a new data set, 
reinforcement learning dynamically learns by adjusting actions based on continuous feedback to maximize 
a reward. But reinforcement learning agents cannot directly learn from the physical world. They require a 
virtual environment (or simulation) to allow for replication and learning through trial and error (MacCarthy 
& Ivanov, 2022). Similar, also training and test sets for deep learning can be created through simulation. 
This provides a controlled dataset, which provides more insights, and that can be replicated by fellow 
researcher. 
 
For this, there is a need to develop standardized/generic simulation problems. During the 1970s, 1980s, 
when interest was in MRP and MRP operation, there was Factory that had been initially developed at the 
OSU. Identifying the minimum criteria that any acceptable job shop simulation model had to satisfy (e.g., 
Melnyk & Ragatz, 1989) led to broad acceptance in the community and cumulative advancement of control 
methods. Having a standard problem is important in two ways. First, it allows for replication and cumulative 
advancement of theory. Second, it ensures that the context is not fine-tuned to realize certain performance 
results. It should be noted that the objective is not to just use the standard model, but the standard model 
should be used as supplement to generalize results. It allows to identify contingency factors, i.e., contexts 
that change the relation between variables. 
 
4.4. Simulation for sensitive environments 
Simulation research should be based – at least to some extent – on qualitative and/or quantitative empirical 
data collection. Simultaneously, simulation techniques may help investigating phenomena and research 
settings in greater depth where real-life experiments are unethical or difficult to set up, or where extensive 
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primary data collection is potentially dangerous, as for example when inquiring into criminal activities such 
as corruption (Silvestre et al., 2020) and modern slavery (Caruana et al., 2021), or socially undesirable 
behaviors such as opportunism in supply chains (Lumineau & Oliveira, 2020). An example is Schelling's 
model of segregation (Schelling, 1978). Results from this model could not have been ethically obtained 
otherwise. 
 
5. Concluding Remarks 
Simulation has been around for quite some time. As somewhat expected, computer simulation emerged 
with the advent of computers, and the first wave of computer simulation emerged with the advancement of 
computing power. Computer simulation facilitates the study of complex systems under controlled 
conditions, allows for system experimentation, and permits full information data collection – conditions 
seldom possible in real life. Unfortunately, most of the simulation studies do not take full advantage of this 
potential. Computer simulation is extensively used to show the superiority of one decision rule over another 
decision rule, or to quantify the effect of changes in a decision variable, but there is a tendency to not 
provide further explanation or analysis which limits its power for developing theory. Leading supply chain 
and operations management journals are therefore often reluctant to consider simulation studies. This study 
argued that today is the time to reconsider simulation as a viable, attractive, and highly appropriate research 
methodology. It is time to reconsider simulation because the world changed and the highly dynamic, 
complex new normal is not amendable to other quantitative methods and modern analytical tools, such as 
machine learning, artificial intelligence or analytics. But for simulation studies to be accepted, they have to 
change. We outlined four types of simulation studies that hold much promise: empirical grounded 
simulation, simulations that establish causality, simulation that supplements machine learning, artificial 
intelligence, and analytics, and simulation for sensitive environments. We refrained from outlining specific 
topics. We feel that simulation as a research method applies to many different topics and highlighting a 
restricted set would limit the contribution of our paper. Our study rather outlines certain traits of problems 
that are specifically amendable to simulation. 
 
Research needs to evolve with the questions that concern management to stay meaningful. Computer 
simulation is the right tool for the right time and the types of problems that are now relevant, and likely will 
remain relevant. We therefore encourage researchers to use simulation along the lines outlined in this study, 
and leading supply chain and operations management journals to reconsider simulation. 
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