The Structural and Electronic Properties of the Ag5 Atomic Quantum Cluster Interacting with CO2, CH4, and H2O Molecules

Alotaibi, Moteb and Alotaibi, Turki and Alshammari, Majed and Ismael, Ali K. (2023) The Structural and Electronic Properties of the Ag5 Atomic Quantum Cluster Interacting with CO2, CH4, and H2O Molecules. Crystals, 13 (12): 1691. ISSN 2073-4352

Full text not available from this repository.

Abstract

Recent advancements in experimental approaches have made it possible to synthesize silver (Ag5) atomic quantum clusters (AQCs), which have shown a great potential in photocatalysis. This study employs the generalized gradient approximation (GGA) density functional theory (DFT) to explore the adsorption of CO2, CH4, and H2O molecules on the Ag5 AQC. Our investigations focus on the structural and electronic properties of the molecules in Ag5 AQC systems. This involves adsorption energy simulations, charge transfer, charge density difference, and the density of states for the modelled systems. Our simulations suggest that CH4 and H2O molecules exhibit higher adsorption energies on the Ag5 AQC compared to CO2 molecules. Remarkably, the presence of CH4 molecule leads to a significant deformation in the Ag5 AQC structure. The structure reforms from a bipyramidal to trapezoidal shape. This study also reveals that the Ag5 AQC donates electrons to CO2 and CH4 molecules, resulting in an oxidation state. In contrast, gaining charges from H2O molecules results in a reduced state. We believe the proposed predictions provide valuable insights for future experimental investigations of the interaction behaviour between carbon dioxide, methane, water molecules, and Ag5 sub-nanometre clusters.

Item Type:
Journal Article
Journal or Publication Title:
Crystals
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/3100/3104
Subjects:
?? inorganic chemistrycondensed matter physicsgeneral materials sciencegeneral chemical engineeringcondensed matter physicsinorganic chemistrymaterials science(all)chemical engineering(all) ??
ID Code:
212164
Deposited By:
Deposited On:
04 Jan 2024 11:30
Refereed?:
Yes
Published?:
Published
Last Modified:
26 Jan 2024 01:32