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Investigating the role of attentional biases on language development in autistic children 

and neurotypical children 

Charlotte Rothwell 

Thesis abstract 

From their first year of life, neurotypical children learn words rapidly and with 

apparent ease. However, many autistic children experience delays in language development 

and struggle to acquire vocabulary. To learn a word, children must identify the intended 

referent (referent selection) and then store the word-referent association in memory for later 

retrieval (retention). In light of recent evidence that referent selection and retention 

mechanisms are unimpaired in autism, difficulties acquiring vocabulary may be attributed to 

differences in attention to stimuli. Autistic children often focus intensely on preferred 

stimulus categories, potentially disregarding stimuli that do not align with their preferential 

interests. Therefore, the purpose of this thesis was to examine how attentional salience of 

stimuli influences autistic and neurotypical children’s novel word learning. 

The three studies that comprise this thesis investigated how children’s stimulus 

preferences and interests influence their referent selection and retention after delays of 5 

minutes and 24 hours. Participants were neurotypical and autistic children with delayed 

language development matched on receptive vocabulary (age equivalent ~5 years). All 

studies utilised touch-screen technology to capture children’s response times and accuracy. 

Studies 1 and 2 examined how children’s word learning is impacted by the presence of target 

and distractor stimuli related to a preferred stimulus category. ‘High interest’ stimuli in these 

studies were novel animals, as they are often favoured by both neurotypical and autistic 

children. Participants’ interest in animals was confirmed via a questionnaire. Study 3 

investigated how children’s individual preferences for novel objects (i.e. generic experimental 

stimuli) affect novel word learning. Studies 2 and 3 employed a novel combination of 
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accuracy and looking measures, exploring children’s in-trial visual attention and how this 

predicted children’s response accuracy. 

In Study 1, autistic and neurotypical children were taught novel words associated with 

unfamiliar animals (high interest stimuli) and objects (neutral interest stimuli) in the presence 

of high interest animal distractors during referent selection. This manipulation enabled us to 

investigate how salient non-target stimuli affect novel word learning. The presence of 

interesting distractor stimuli enhanced autistic children’s encoding of novel word-referent 

associations by increasing attention across the whole visual scene. Study 2 studied how 

children’s categorical interests influenced their word learning. Children learnt names for 

novel animals and novel objects, but the distractor stimuli presented at referent selection were 

neutral interest familiar objects, allowing us to identify how perceptual distinctions between 

stimulus categories influences novel word-referent encoding. Categorically interesting novel 

stimuli, that stood out from less interesting distractors, enhanced autistic children’s retention 

of novel words after 5 minutes. However, autistic children demonstrated a substantial 

increase in their retention of novel object labels between 5 minutes and 24 hours, 

outperforming neurotypical peers in both conditions following sleep consolidation. Study 3 

examined how children’s individual preferences for novel objects impacts word learning 

(labels were taught for liked and disliked objects, identified by children in a preceding task). 

The findings showed that idiosyncratic preferences for novel experimental stimuli, an object 

category that is unlikely to align with children’s pre-existing interests, do not affect autistic or 

neurotypical children’s attention allocation to an extent that is sufficient to impact retention 

after 5 minutes or 24 hours. Our looking data in Studies 2 and 3 indicated that greater visual 

attention towards stimuli predicted novel word retention. Moreover, observed population 

differences in visual attention did not directly translate to diminished behavioural accuracy.  



 
 

18 

 

This thesis advances understanding of relationships between word learning processes 

and attentional mechanisms in autism and neurotypical development. Our data demonstrate 

that categorically interesting stimuli aid novel word learning in autistic children. This finding, 

coupled with observed relationships between visual input at referent selection and novel word 

retention, confirm that increased attentional allocation to stimuli during encoding leads to 

more robust novel word-referent representations. Contrasts between population differences in 

visual attention and response accuracy outcomes suggest that autistic children potentially 

achieve similar results through a different route than neurotypical peers. Our novel 

combination of visual attention and accuracy measures highlight the importance of choosing 

dependent variables that appropriately target mechanisms of interest and the risk of drawing 

inaccurate conclusions based on looking behaviour alone. Given that stimulus categories 

influenced autistic and neurotypical children’s learning to different extents, researchers 

should carefully select experimental stimuli that appeal to different populations comparably. 

Overall, our findings have the potential to inform practice in clinical and educational settings, 

providing insight into how learning contexts can be optimised for maximally efficient 

language acquisition. 
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Chapter 1: Introduction and Literature Review 

1.1. Thesis Introduction  

Language development is one of the most significant milestones in a young child’s 

cognitive and social development (Carpenter et al., 1998), and word learning is a crucial part 

of this process. Acquiring language is necessary for children to be able to understand and 

engage with the world around them (Nelson, 2007). Neurotypical children acquire language 

rapidly in the early years, uttering their first words at around 12 months (Samuelson & 

McMurray, 2017), and learning the meanings of over two hundred words before two years of 

age (Dale & Fenson, 1996). By school-age, neurotypical children are thought to learn as 

many as ten new words per day (Bloom, 2002a), enriching their social development as well 

as academic achievement (Durkin et al., 2012). However, this process can present challenges 

for some children, including those with neurodevelopmental delays (Luyster et al., 2008; 

Weismer et al., 2010).  

Autism is a pervasive neurodevelopmental disorder that affects around 1% of the 

population (Lai et al., 2014). It is characterised by a broad range of symptoms which manifest 

in various ways, including social and communicative difficulties, restricted and repetitive 

interests and behaviours, and language delay (Kjelgaard & Tager-Flusberg, 2001). Autism is 

up to four times more likely to be diagnosed in males than females (Baron-Cohen et al., 

2011). This may be partially attributed to the fact that autistic females are more likely to mask 

certain diagnosis-defining characteristics, leading to a decreased likelihood of receiving a 

diagnosis (e.g. Goldman, 2013; Hull et al., 2017). Some research also suggests that females 

may be genetically less likely to develop autism (Robinson et al., 2013; Skuse, 2000). While 

a single identifiable cause of autism is yet unknown, genetic factors such as differences in 

chromosomal makeup and brain structures have been identified in autistic people (De Fossé 

et al., 2004; Hyde et al., 2010; Volkmar et al., 2005). 

https://link.springer.com/article/10.1007/s10803-020-04615-z#ref-CR26
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The vastly heterogenous nature of autism means that autistic individuals experience 

symptoms to varying degrees (Abrahams & Geschwind, 2008). One significant area of 

symptomatology in autism impacts attentional mechanisms. Restricted, Repetitive Patterns of 

Behaviour, Interests, or Activities (RRBIs) have been included as a core feature of autism 

since its first conceptualisation (Kanner, 1943), and remain a key diagnostic domain in the 

most recent revision of the Diagnostic and Statistical Manual of Mental Disorders (DSM-V; 

American Psychiatric Association, 2013). These behaviours are high in frequency, and often 

pertain to very narrow topics or focal points (Richler et al., 2007). They can manifest in 

several ways, but some examples include insistency on sameness in the environment or 

routines, or intense perseverative focus on specific topics, interests, and activities (Kanner, 

1943). These behaviours influence autistic children’s daily lives in numerous ways and can 

relate to poorer social cognition and language development (Larkin et al., 2017; Ray-

Subramanian & Weismer, 2012). Studies suggest that language acquisition may be affected 

by RRBIs due to children not flexibly attending to the correct audio-visual stimuli, and 

instead retaining focus on their specific interests (Venker et al., 2018). This potentially creates 

limited or spurious associations between novel words and referents (Elsabbagh et al., 2009; 

Tenenbaum et al., 2017), a point that will be revisited later in this chapter.  

Whereas neurotypical children commonly begin to speak around their first birthday, this 

is often delayed until around preschool age in autism (Ellis Weismer & Kover, 2015; Howlin, 

2003). Consequently, autistic children demonstrate a varied range of language proficiencies, 

with language delay defined as one of three categories: non-verbal, minimally verbal, and 

pre-verbal (DiStefano & Kasari, 2016; Norrelgen et al., 2015). Language use differs across 

these categories, with minimally verbal children using five or fewer functional words in 

speech (excluding echolalia, repetitions of recently heard or scripted speech; Kasari et al., 

2008; Tager-Flusberg & Kasari, 2013; Tek et al., 2014). Although many autistic children do 
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acquire functional spoken language eventually (Lord et al., 2004), a significant number 

remain minimally verbal throughout their lifetime, presenting profound difficulties in the 

acquisition and usage of spoken words (Anderson et al., 2007; Pickles et al., 2014). Delays in 

receptive vocabulary are often more profound than expressive language difficulties, 

suggesting that some autistic children have problems acquiring novel words (Charman et al., 

2003; Ellis Weismer et al., 2020; Volden et al., 2011). However, language impairments in 

autism depend largely upon age and developmental level, with receptive vocabulary 

impairments often appearing within the first two years of life (Mody & Belliveau, 2013).  

Promisingly, the overall proportion of minimally verbal children in the autistic 

population appears to be reducing. Earlier studies suggest approximately 50% of autistic 

children are minimally verbal (Prizant, 1983; Sigman & McGovern, 2005), but more recent 

studies highlight proportions of around 25-30% (Tager-Flusberg & Kasari, 2013). This could 

be due to earlier diagnosis and intervention (Goldstein, 2002), as well as more effective 

intervention programmes due to advancements in knowledge and healthcare (Rogers & 

Vismara, 2008; Smith & Eikeseth, 2011). In the DSM-IV, autism could be diagnosed in the 

absence of language difficulties (e.g. Asperger’s; American Psychiatric Association, 1994), 

and in the DSM-V, language difficulties were removed from the diagnostic criterion 

altogether (American Psychiatric Association, 2013). This change was made due to the broad 

trajectory language acquisition can follow for both autistic and non-autistic individuals 

(Matson & Neal, 2010; Solomon et al., 2011). Despite this, while verbally able individuals 

are now more likely to receive an autism diagnosis (Centers for Disease Control and 

Prevention, 2012), language delay remains evident in many autistic children, noted both by 

caregivers and teachers, as well as through assessment by professionals (Coonrod & Stone, 

2004; Eigsti et al., 2011; Tager-Flusberg et al., 2001). As such, we must continue to strive to 
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understand how word learning processes compare across neurotypical and autistic children, to 

discover how we can advance children’s learning further.  

When investigated experimentally, some studies show that autistic children present word 

learning deficits under controlled conditions (e.g. McDuffie et al., 2006a; Parish-Morris et al., 

2007), whereas other studies suggest that autistic children can learn words with comparable 

accuracy to neurotypical children (e.g. Haebig et al., 2017; Hartley et al., 2019). Indeed, 

recent studies consistently find that fundamental word learning mechanisms of autistic 

children are unimpaired (e.g. Hartley et al., 2019, 2020). Several studies highlight that 

language delays may result from atypical attention to information in the social environment 

(Arunachalam & Luyster, 2015). For instance, some autistic children demonstrate difficulties 

in attending to external social cues, such as joint attention and intention, and applying these 

to word learning contexts (Baron-Cohen et al., 1997; Fletcher-Watson et al., 2009; Leekam & 

Ramsden, 2006, Parish-Morris et al., 2007).  

The course of language development for autistic children is diverse. Therefore, it remains 

unclear exactly why many autistic children present delayed receptive language skills. If it is a 

consequence of diminished attention, then perhaps discovering ways in which children’s 

attention can be increased or maintained in learning contexts would highlight strengths that 

can be utilised to scaffold word learning. It is important to address these language difficulties 

early in childhood as language proficiency can predict longer term outcomes, so examining 

how we can increase language acquisition is imperative for promoting the developmental 

trajectory of autistic children (Lord & Paul, 1997; Stone & Yoder, 2001). 

Indeed, the RRBIs that autistic children demonstrate can present in a variety of forms, 

including focus on a circumscribed range of topics of interest, insistence on sameness, and 

stereotyped behaviours and motor movements (Honey et al., 2012). This attunes autistic 

children’s attention to specific, narrowed focal points. Prior research emphasises that RRBIs 

https://link.springer.com/article/10.1007/s10803-017-3098-0#ref-CR4
https://link.springer.com/article/10.1007/s10803-017-3098-0#ref-CR45
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cause autistic children to focus on a constrained range of specific stimuli, restricting intake of 

information from the environment (e.g. Akechi et al., 2011, 2013; Arunachalam & Luyster, 

2018). This can be detrimental for word learning, as it may mean that children lose important 

informants from the environment or focus on incorrect target referents during novel word 

learning, limiting novel word acquisition or causing incorrect information to be encoded 

(Elsabbagh et al., 2009; Tenenbaum et al., 2014, 2017; Venker et al., 2018). Despite the clear 

relationship between attention and word learning, and autistic children’s atypical attentional 

mechanisms, little research has directly investigated how attention allocation influences novel 

word learning in autism.  

Whilst previous studies suggest that autistic children focus on stimuli, or aspects of 

stimuli, that appeal to their circumscribed interests (Sasson et al., 2008, 2011), it remains 

unclear how children’s specific interests impact their word learning. This thesis therefore 

aims to investigate how children’s interests affect their attentional allocation, and how this 

impacts word learning. Given the importance of language acquisition for children’s 

development, investigating under what conditions autistic children can learn words, and how 

individual characteristics and interests can influence word learning, allows us to decipher 

exactly how we can facilitate their language learning. These discoveries have the potential to 

impact interventions in clinical and educational settings.  

This literature review begins with an overview of word learning in neurotypical 

development, followed by a review of how attentional allocation influences word learning in 

this population. Once these areas are addressed in neurotypical development, an overview of 

how word learning manifests in autism is provided, and how attention affects autistic 

children’s word learning. Finally, an outline of the studies that comprise the thesis are 

presented. Overall, this literature review will highlight gaps within the literature that will be 

explored within the studies that comprise the thesis. 
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1.2. Word Learning  

 Words are the fundamental building blocks of language (Pinker & Jackendoff, 2005). 

Undoubtedly, word learning is a crucial developmental achievement that is necessary for 

children to understand the world around them (Carpenter et al., 1998). Neurotypical children 

acquire a new word every day between the ages of one and two years, with this increasing to 

over ten new words per day by eight years of age (Bloom & Markson, 1998; Fenson et al., 

1994). This process appears effortless in neurotypical development; however, it is 

deceptively complex. Word learning is a multi-stage process and requires children to form a 

lasting relationship between the phonological word and its meaning. To learn a new word, 

children must 1. Segment the novel word from a speech stream, 2. Identify the meaning of 

the novel word (referent selection), and 3. Store the word-meaning mapping in memory for 

later retrieval (retention; Gleitman, 1990). This thesis targets the second and third stages of 

the word learning process (referent selection and retention). 

1.2.1. Referent Selection 

Determining the meanings of novel words is one of the biggest challenges for young 

language learners. Quine’s (1960) seminal research originally highlighted the complexity of 

novel word disambiguation. Quine likened infants to ‘naïve linguists’ studying a community 

who converse in a foreign language. To learn this foreign language, we must draw 

conclusions about the meaning of the spoken words in the moment. For example, if someone 

from the community shouts ‘gavagai’ as a rabbit hops past, how do we decipher what 

‘gavagai’ means? It could refer to the rabbit, but it could also refer to properties describing 

the rabbit or its activities (e.g. hopping, fluffy), amongst a host of alternative meanings. How 

then, does the naïve linguist overcome this referential uncertainty and determine the correct 

meaning of this word? 
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Word learning requires children to understand that during a naming event, numerous 

potential novel words can refer to a plethora of potential objects, actions, or categories of 

objects (Monaghan & Mattock, 2012). Thus, to learn a word, children must overcome 

referential ambiguity, narrowing their attention to a single target and label, correctly 

identifying the novel word-referent mapping (Markman & Wachtel, 1988). Research 

demonstrates that neurotypical children can perform referent selection from incredibly early 

on in development, identifying and encoding novel word-referent mappings from as young as 

six months of age by utilising statistical learning mechanisms (Bergelson & Swingley, 2012).  

To successfully identify a correct word-referent mapping, children’s attentional focus to 

both auditory and visual input must be narrowed through either intrinsic or extrinsic sources 

of information (Hollich et al., 2000). This process is facilitated by children applying 

heuristics and lexical assumptions, utilising many internal and external sources of 

information to drive their learning (e.g. Baldwin 1991, 1993; Markman, 1989; Yu & Smith, 

2007). These information sources support a process of ‘fast mapping’ which refers to rapid 

‘in the moment’ mapping of novel words to novel referents (Carey and Bartlett, 1978).  

Markman (1994) initially posited three constraints that the child places upon potential word 

meanings: the taxonomic assumption, the whole object assumption, and the mutual 

exclusivity assumption.  

The taxonomic assumption suggests that words should be extended to objects of the 

same taxonomic category, such as vehicles, foods, or animals, rather than objects that are 

thematically related (Markman & Hutchinson, 1984). Children therefore quickly learn that 

‘pig’ not only refers to a pig on a farm, but also to Peppa Pig on the television, rather than 

thematically related aspects like a curly tail (Waxman & Kosowski, 1990). This assumption 

allows children to quickly expand their knowledge in order to make sense of the dynamic 

world around them. More recently, children have been found to apply a ‘shape bias’ alongside 
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this principle. The shape bias assumes that a novel word applies to other items of the same 

shape, rather than grouping items based on texture, size, or colour (Landau et al., 1988; 

Smith, 2000). This bias emerges at approximately two years of age in neurotypical children, 

or after children have acquired at least fifty count nouns in their productive vocabularies 

(Jones et al., 1991; Samuelson & Smith, 1999, 2000; Tek et al., 2008).  

The whole object assumption posits that children assume each novel label must refer 

to one whole object, rather than its constituent parts or properties (Macnamara, 1972; 

Markman & Wachtel, 1988). For example, the word ‘car’ refers to the car as a whole, rather 

than the wheel or door of the car. This principle also emerges at around two years in 

neurotypical toddlers (Samuelson & Smith, 1999; Smith et al., 2002), and guides children to 

generalise novel words to other contexts and exemplars of the same category, allowing their 

language development to advance rapidly (Gelman, 2003; Kalashnikova et al., 2014; 

Markman, 1991). 

1.2.1.1. Mutual Exclusivity. The mutual exclusivity principle (ME; also known as 

disjunctive syllogism) is a lexical heuristic that informs correct word-referent mappings. To 

utilise ME, children assume that only one word relates to each referent (a one-to-one 

mapping), thus knowing the name of one object drives the mapping of an alternative label to 

another unfamiliar object (MacWhinney, 1991; Monaghan & Mattock, 2012). This 

assumption is based on a process of elimination and is driven by prior knowledge. Crucially, 

children can successfully decipher the correct novel referent from an array of known 

competitors by narrowing down the one unfamiliar object, and correctly creating a novel 

word-referent mapping. For example, if a child has a pre-existing label for all but one animal 

in an array of toy animals, they can assume that on first hearing the novel label ‘Okapi’, this 

must refer to the label-less animal (rather than animals with known labels ‘cat’ and ‘dog’, for 

example). Experimentally, this principle is commonly tested by presenting an unfamiliar 
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object amongst familiar objects and asking children to identify the referent of a novel word 

(e.g. Dautriche et al., 2015). Neurotypical children have been shown to successfully apply the 

ME principle and spontaneously create novel word-object associations by two years of age 

(Carey & Bartlett, 1978; Markman & Wachtel, 1998).  

Fast mapping was initially coined by Carey and Bartlett (1978), and relates to 

children’s ability to immediately identify a novel word, using the linguistic and non-linguistic 

context to acquire information about its meaning and apply the principle of ME. In Carey and 

Bartlett’s (1978) study, children were asked to retrieve a tray “the chromium one, not the red 

one, the chromium one” (p. 18). Children used their prior knowledge of the colour red to 

infer that the teacher was requesting the olive-green tray, determining in that moment that 

chromium must refer to olive green. This was deciphered to be ‘fast mapping.’ Together, the 

lexical heuristics operate in tandem to allow children to acquire information from their 

environment, both immediately and over time, generating robust novel word-referent 

mappings which can be embedded within the lexicon.  

1.2.1.2. Social Cues. Children’s developing social cognitive skills also help them to 

acquire language. By the age of 9 to 12 months, infants develop gaze following and social 

referencing skills (Brooks & Meltzoff, 2002; Phillips et al., 2002; Woodward, 2003). The 

social pragmatic account of word learning suggests that children decipher word meanings by 

inferring the intentions and referential focus of others (Baldwin et al., 1996; Bloom 1997). 

Children’s social environments contain a variety of social cues from other people, including 

eye-gaze and gestures (e.g. Bannard & Tomasello, 2012; Booth et al., 2008; Tomasello, 

2000). Studies experimentally investigating the influence of social cues on language 

development demonstrate that infants as young as 18-months-old follow an adult’s gaze to 

infer correct novel word-referent mappings (Baldwin, 1993). Moreover, children’s 

understanding of social intention to inform their word learning can be even more 
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sophisticated, with the ability to infer correct word-referent associations even when the novel 

word was uttered prior to the introduction of the object (Tomasello, 2000). Children can 

follow multiple social cues (e.g. gaze and point concurrently) but research establishes that 

novel word learning is optimal when a single informative cue is utilised (Booth et al., 2008). 

Clearly, in the correct context social cues can be successfully utilised by neurotypical 

children from an early age to inform their word learning.  

1.2.1.3. Statistical Learning Mechanisms. Although lexical constraints guide 

learning, sometimes accurate fast mapping is impossible due to the number of potential 

referents or lack of cues present in the environment. In this case, statistical cross-situational 

learning can occur (Gleitman, 1990; Pinker, 1989). This method of learning suggests that on 

hearing a novel word, a child can hypothesise a set of potential meanings for that word from 

the non-linguistic context. Initially, multiple ambiguous naming events occur (Yurovsky & 

Frank, 2015). However, over time the child will continue to hear the word in several different 

contexts. They will therefore identify which of the potential meanings remain consistent 

across multiple cooccurrences, rejecting previously incorrect pairings (Yu & Ballard, 2007). 

For example, on hearing an unfamiliar word ‘bird’ whilst viewing two novel animals, a bird 

and a horse, children have no way of deciphering the correct referent without external cues. 

However, on hearing ‘bird’ again in a different context, this time in the presence of a dog, 

they can use cross-situational occurrences to accurately identify what, in fact, ‘bird’ refers to 

(Yurovsky et al., 2013a, 2013b). Neurotypical children have been demonstrated to 

successfully utilise cross-situational statistics to inform their word learning from as young as 

one year of age (Smith & Yu, 2008). Cross-situational learning is thought to be particularly 

successful, as when children learn word-object associations incrementally, the connections 

become strengthened due to numerous exposures to the mapping (McMurray et al., 2012; 

Plunkett, 1997).  
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1.2.2. Retention 

Whilst identification of novel word meanings through referent selection is a crucial 

step towards word learning, these novel word mappings need to be integrated into the 

lexicon. In a pivotal study, Horst and Samuelson (2008) identified the requirement to study 

word learning as a multi-stage process involving both referent selection and retention. They 

highlighted that although many studies demonstrated children’s abilities to map a novel label 

to a novel stimulus during referent selection (e.g. Mervis & Bertrand, 1994; Halberda, 2003; 

Wilkinson et al., 2003), research investigating children’s ability to retain these novel word-

referent mappings was limited. Indeed, since retention represents ‘true’ word learning, 

investigating this process is vital. As such, Horst and Samuelson (2008) taught 24-month-olds 

novel names via a fast-mapping task. When toddlers were required to identify novel targets 

after merely 5 minutes, they failed to recall this information with above-chance accuracy. 

However, when the salience of the word-referent mapping was enhanced following referent 

selection through ostensive naming accompanied by a pointing cue, children’s retention 

increased to above chance levels. This suggests that accurate referent selection alone is not 

enough to facilitate novel word retention, and other factors alongside accurate fast mapping 

are required for successful retention (Horst & Samuelson, 2008).  

The dynamic associative account is a theory of word learning which aims to explain 

how referent selection and retention inter-relate. The theory posits that word learning 

comprises separate ‘fast mapping’ and ‘slow associative learning’ processes that operate on 

different timescales (Kucker et al., 2015; McMurray et al., 2012; Samuelson & McMurray, 

2017). Whilst fast mapping refers to the ability to identify a referent in the moment, 

associative learning involves acquiring knowledge through repeated occurrences of novel 

words and referents over multiple learning instances (McMurray et al., 2012; Smith et al., 

2011). Associative learning means that the child can apply the new word-object mapping 
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across multiple contexts, and thus slow learning is thought to afford more accurate retention 

than a single disambiguation event like fast mapping (Axelsson et al., 2012). The dynamic 

associative theory posits that accurate fast mapping alone is not sufficient to afford successful 

retention. In accord with empirical evidence (e.g. Horst & Samuelson, 2008; Horst et al., 

2010, 2011; Kucker & Samuelson, 2012; Kucker et al., 2016), this framework proposes that 

multiple factors (e.g. prior knowledge and external cues) must interact to afford successful 

retention (McMurray et al., 2012). As such, research continues to investigate under what 

conditions novel word retention can be optimised. 

Crucially, effective retention is constrained by external inputs and cues, which support 

the integration of novel words into the lexicon (Arunachalam & Luyster, 2016; Dumay & 

Gaskell, 2007). Kucker and Samuelson (2012) taught 24-month-olds novel labels in a 

paradigm similar to Horst and Samuelson (2008). However, prior to referent selection, in one 

condition children had two minutes to explore the novel objects that would be presented 

during referent selection and retention. In the other condition, children were pre-familiarised 

with the novel words (but not objects). Their results indicated that this brief object pre-

familiarisation period was enough to boost retention of novel words learnt during referent 

selection. An impressive 73% of the 24-month-olds who experienced the object pre-

familiarisation demonstrated accurate retention. However, children who experienced word 

pre-familiarisation did not demonstrate retention at levels significantly above chance. The 

researchers also investigated the impact of novel object pre-familiarisation with 18-month-old 

children and determined that their retention performance did not increase significantly. They 

concluded that increasing 24-month-old children’s represented knowledge of objects is 

sufficient to create a significant change in novel word retention. This is because Kucker and 

Samuelson’s (2012) study targets both fast mapping processes at referent selection, and slow-
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mapping processes due to repeated exposure (including initial familiarisation). Thus, the 

relationship between these mechanisms affords more robust learning.  

Moreover, Kucker et al. (2020) determined that the strength of prior knowledge of 

familiar items at referent selection influences retention of new word-object mappings. 

Specifically, they used referent selection to teach novel words to 18- and 24-month-old 

children in the presence of competitor stimuli that parents identified as being either ‘well 

known’ (e.g. shoe, dog) or ‘weakly known’ (e.g. whisk, slinky). Perhaps surprisingly, they 

found that both 18- and 24-month-olds demonstrated better retention of the mappings taught 

in the context of weakly known foils, although this effect was greater for the 18-month-olds 

(83% correct) compared to the 24-month-olds (52% correct). Clearly, children could map 

novel words even when knowledge was not robust. The authors concluded that challenging 

referent selection contexts may result in deeper processing at encoding and thus better long-

term outcomes for novel word retention (McMurray et al., 2012; Vlach & Sandhofer, 2014).  

Further, some studies demonstrate that knowledge can attune learners to similarities 

between novel and known items, and therefore increase learning when these features are 

shared (Smith et al., 2002). For example, Twomey et al. (2014) found that in comparison to 

consistently presenting a novel object of the same colour, children retained novel labels only 

when the novel object varied in colour across exposures. It is suggested here that moderate 

variability in the novel objects allowed children to recognise the commonalities between 

objects. Thus, children could compare each new exemplar to their stored memory 

representation for that object category, drawing upon these commonalities to aid retrieval of 

key category-defining information after a short delay. Twomey et al. (2018) then examined 

whether this effect remains when the background colour of the learning environment differs, 

but stimuli properties stay the same. Two-year-olds learnt names for novel objects presented 

on either a uniform white background, or on backgrounds that differed in colour. Overall, 

https://www.sciencedirect.com/science/article/pii/S0022096519300487?casa_token=i_ifyQhWHMYAAAAA:ThRlfDGxZ12mvnG0ypYqUDn1WIL-zTxEUAJcbqUORRJfZ2gIbWGR1IK2NP5ss7fqg2DEEkeKLfej#b0250
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only children who learnt in the presence of varying background colours retained novel word-

object pairings. Potentially, this variation in background context allowed children to learn 

more about stimuli than when a uniform background was present. In line with adult research 

(e.g. Smith & Handy, 2014), it is possible that when children learn with a uniform 

background, they learn about the whole context and consequently encode more information 

than required. However, when learning in a varied background, children decipher that they 

only need to encode information about the object, not the background, encoding more 

information about the novel object for successful retrieval. Overall, these studies reveal the 

importance of stimuli for novel word retention.  

1.2.2.1. Sleep and Retention. A plethora of studies have investigated the effect of 

sleep on neurotypical children’s word retention both after napping and overnight sleep (e.g. 

Brown et al., 2012; Friedrich et al., 2015). Axelsson et al. (2018) demonstrated that sleep can 

enhance declarative memories for novel words in children. They taught 2-year-olds novel 

words via referent selection, and tested their retention immediately after referent selection, 4-

hours later, and the following morning. Half of the toddlers napped prior to the 4-hour test, 

and half remained awake. They discovered that for the children who napped, retention scores 

remained steady at each of the three retention stages. However, for the wake group, retention 

scores declined, and were significantly lower than those of the nap group. Nap duration also 

predicted better retention scores within the children who napped. Overall, these findings 

suggest that sleep protects novel word-object associations from decay.  

Williams and Horst (2014) also investigated the effects of sleep on word learning in 3-

year-old children using a shared storybook reading task. Novel word retention following 

storybook reading was tested after delays of 2.5 hours, 24 hours, and 7 days. Half of the 

participants napped after storybook reading, prior to the 2.5-hour retention test, and the other 

half remained awake prior to the retention test. They found that napping was beneficial for 
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novel word retention, with effects persisting across the different retention time points. In a 

similar study, Horváth et al. (2015) taught novel words to neurotypical infants and retested 

them after a 2-hour delay following either a nap or no nap. Infants who napped demonstrated 

a greater increase in word learning performance compared to those who remained awake, 

demonstrating that sleep, even in the form of a nap, helps to consolidate word learning in 

infancy (see also Horváth et al., 2016; Horváth & Plunkett, 2018 for similar results). 

Following this, Horváth and Plunkett (2016) studied the role of sleep on neurotypical 

children’s general language development. They revealed a longitudinal relationship between 

napping and language development – in particular, children who napped more had greater 

receptive and expressive vocabularies. Taken together, these studies indicate the importance 

of napping on young children’s vocabulary development both within and outside of an 

experimental context.  

Horváth et al. (2016) suggested that greater overnight sleep efficiency, including less 

fragmented sleep, was associated with larger expressive and receptive vocabulary scores. 

Empirical research investigating the role of overnight sleep on word learning also indicate a 

facilitative role of sleep on novel word consolidation. For example, Henderson and 

colleagues have consistently shown that school-aged neurotypical children’s novel word 

retention improves after a night’s sleep (Henderson et al., 2012; see also Brown et al., 2012). 

In their 2013 study, Henderson et al. establish the robustness of sleep consolidation, with 

consolidatory effects persisting after one week. They discovered that when children learn 

semantic knowledge alongside novel words, there is a particularly strong effect of sleep 

consolidation (Henderson et al., 2013). Overall, they highlight that a period of off-line 

consolidation is required for children to strengthen new vocabulary knowledge and integrate 

it within the lexicon, with the presence of semantic information, alongside the consolidatory 

effects of sleep, being particularly beneficial to develop stable long-term lexical 
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representations for easy retrieval (Henderson et al., 2013). These studies demonstrate a robust 

positive effect of sleeping, both napping and overnight sleep, on novel word consolidation. 

Moreover, Henderson et al. (2012) investigated sleep-associated consolidation effects 

in the declarative memories of neurotypical 7- to 12-year-olds. Children were exposed to 

non-word lexical competitors (that sounded like words in their pre-existing lexicons), but 

their recognition and recall of these words only improved after sleep. This improvement in 

performance remained stable after one week. Henderson and colleagues explain their findings 

utilising the dual memory system approach. This approach suggests that novel words must 

firstly be integrated into the lexicon to reshape existing neocortical networks in order for 

consolidation to occur. Then, competition during word recognition between novel words and 

similar sounding well-established lexical neighbours occurs. This acts to protect the 

developing lexicon from overwriting existing information, and ultimately affords better novel 

word consolidation. 

How sleep benefits word learning can be explained by ‘active system consolidation 

theory’ (Diekelmann & Born, 2010). This theory posits that sleep reactivates recently 

encoded declarative memories, such as word-referent representations. Whilst initial novel 

word representations are fragile, synaptic connections are pruned and strengthened during 

sleep, implicating them in hippocampal-neocortical consolidation (Diekelmann & Born, 

2010; Gais & Born, 2004). This means that novel word-referent associations are reactivated 

and integrated into memory networks, enabling longer-term retention (Drosopoulos et al., 

2007; Gais & Born, 2004). This theory would therefore suggest that memory representations 

for novel words are less likely to decay following sleep as they have been consolidated into 

the lexicon through these refining processes. 
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1.3. Attention and Word Learning 

Word learning is moderated by attention, a network of systems that work together 

across different brain regions to maintain alertness and sustain and shift focus (Posner, 1988; 

Posner & Dehaene, 1994). Word learning involves paying attention to visual and auditory 

stimuli, identifying competitor and target objects, and encoding information about targets to 

inform novel word-referent mappings (Twomey et al., 2016; Zosh et al., 2013). Consequently, 

the strength of associations and likelihood of retention is affected by attention (Samuelson & 

Smith, 2000). A growing body of word learning research has investigated how word learning 

is mediated by attention. Studies have examined the extent to which attention is important for 

word learning by intentionally manipulating children’s attention towards, or away from, 

target stimuli. Initially, Horst and Samuelson (2008) report poor retention across their 

experiments (as described in section 1.2.2). However, they discovered that when the saliency 

of the novel object and novel label was increased immediately following referent selection 

through ostensive naming accompanied by a pointing gesture, retention improved 

significantly to above-chance levels. Here, increased attention to the novel object as it is 

labelled determined the likelihood that a novel word-referent association is retained. 

Imperatively, this study also demonstrates that neurotypical children were able to utilise 

external social cues to identify novel words and improve their learning. 

Further, Axelsson et al. (2012) sought to increase neurotypical 2-year-old children’s 

attention during word learning to improve novel word retention. Here, they either illuminated 

the target stimuli, covered the competitor stimuli, or both. These conditions were compared to 

a control group who were given a social cue (pointing). Overall, children successfully 

retained novel word-referent mappings if the target object was illuminated, and when the 

target was illuminated, and competitors simultaneously dampened. By comparison, children 

who received the social pragmatic cue did not demonstrate retention. This contrasts with 
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Horst and Samuelson’s (2008) findings, who found that a similar social pragmatic cue 

enhanced retention in 2-year-olds. The potential disparity here could be due to a slight 

difference in methodology – Horst and Samuelson (2008) lifted the object away from 

competitors whilst pointing to it, whereas Axelsson et al. (2012) left the object in place. This 

act of changing the spatial location in Horst and Samuelson (2008) may have drawn 

children’s attention towards the target, and away from competitors, akin to the illumination 

condition in Axelsson et al. (2012) which yielded comparable findings. Axelsson and 

colleagues concluded that manipulating children’s attention to increase focus on a target aids 

novel word retention. Directing children’s attention away from competitors and 

simultaneously directing attention toward a target also assisted novel word retention. Given 

that ME requires children to exclude competitor objects and attend to the target object to 

encode the correct novel word-referent mapping, the mechanisms used in this study help 

children to apply these key components of ME. These attentional manipulations reduce the 

cognitive demands required to utilise ME, thus enabling children to allocate their cognitive 

resources to encoding stronger novel word-referent associations. 

A study by Bion et al. (2013) examined how children’s visual attention influences 

novel word retention. They demonstrated that between the ages of 18 and 30 months, 

children’s abilities to disambiguate and retain novel word meanings increased. Interestingly, 

children who looked relatively more at the novel object after hearing the novel label achieved 

more accurate retention (defined as proportionally greater looking towards the target at 

retention). They suggested that neurotypical toddlers’ greater looking towards a novel object 

afforded more robust encoding of information about the word-referent mapping and thus 

more successful retention. 

1.3.1. Manipulating Attention Through Target Stimuli  
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Additionally, the actual properties of to-be-learned stimuli influence word-learning. 

Brandone et al. (2007) manipulated stimuli saliency by altering the outcome of an action 

during children’s learning. Two- and three-year-old children were shown two actions which 

were accompanied by a label. In one condition, the labelled action led to no result, and in 

another condition, the labelled action caused a light to illuminate. Their findings revealed that 

2-year-olds learned a novel verb when the experimenter labelled the action that had a salient 

result, but not when the action produced no result. However, 3-year-olds performed well in 

both conditions. Overall, this study suggests that perceptual salience is a valuable cue that is 

particularly important to aid early word learning.  

To investigate salience of stimuli, Hollich et al. (2000) studied word learning in 

neurotypical 12-, 19-, and 24-month-olds, examining how perceptual and social cues interact. 

In their studies, children were required to follow social eye gaze to learn novel labels via 

referent selection. For 19- and 24-month-olds, attention to social information was sufficient 

to afford word learning irrespective of whether the speaker labelled the object that was more, 

or less, perceptually salient. However, 12-month-olds only succeeded when both social and 

perceptual cues aligned, but not when the speaker labelled the boring object. Clearly, 

perceptual salience is crucial for word acquisition, particularly to younger learners. These 

findings were corroborated by Pruden et al. (2006), who suggested that children as young as 

ten months rely on the perceptual salience of an object in the service of word learning. They 

discovered that these infants learnt more novel labels associated with brightly coloured 

objects with noises/moving parts, than dull objects or objects highlighted by a speaker’s 

social cues. Overall, these studies consistently present evidence for children’s sensitivity to 

object salience, and the positive impact that increased salience has on word learning due to 

increased focus on stimuli.  
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Additionally, children’s own interests can influence their attention allocation and 

acquisition of novel information (Begus & Southgate, 2012). Neurotypical children have 

been shown to more easily retain words that refer to individual items, or members of specific 

categories of interest, presenting evidence that increased attention to stimuli aids word 

learning. For example, Ackermann et al. (2020) investigated how neurotypical children’s 

stimulus and category interests impacts word learning. They used both questionnaires and 

pupillometry to measure the extent to which 2-year-olds preferred specific stimuli and 

categories of stimuli, whereby increased pupillary change following exposure to stimuli was 

interpreted as increased interest. Children then learnt four novel word-referent pairings via 

ME-based referent selection, one from each category (animals, clothes, vehicles, drinks). 

Following training on the first two novel words, word recognition was tested by presenting 

the two novel images side by side, and children were directed to look at one of the images. 

This was repeated for the second block of the remaining two words. Children’s proportionally 

longer looking was inferred as their response selection. They found that children showed 

more robust learning of word–object associations from categories they were more interested 

in (e.g. animals), compared to categories they were less interested in (e.g. clothes). Interest in 

specific novel stimuli also moderated word learning. Overall, these findings suggest that 

neurotypical children's preferences for particular categories and category members shapes 

their word learning.  

However, Kidd and colleagues argue that children’s interests may be subject to a 

‘Goldilocks effect’ (Kidd et al., 2012, 2014). They highlight that infants cleverly allocate 

their auditory and visual attention to stimuli that are neither too simple nor too complex to 

avoid wasting cognitive resources. Children may consider their knowledge of simple stimuli 

to be saturated and therefore believe they do not need to attend to such stimuli. Alternatively, 

stimuli that are too complex may be beyond children’s remit of learning and thus they do not 
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attempt to intake information from them. This idea originates early in developmental 

psychology. Piaget (1970) suggested that children attempt to integrate new knowledge into 

existing knowledge structures by a process of assimilation. When this is not possible, 

children create new knowledge structures - a process called accommodation. On the one 

hand, stimuli must be interesting and relevant enough to be applied to existing structures. On 

the other hand, knowledge acquisition of complex stimuli must be achievable to warrant 

creating new structures. Piaget’s theory is supported by empirical evidence that confirms 

children prefer to look at familiar stimuli that still require some encoding into memory, or 

novel stimuli that can be readily encoded into memory (e.g. Hunter & Ames, 1988; Roder et 

al., 2000).  

Ackermann et al. (2020) highlight that it is possible that category interests may too be 

subject to the ‘Goldilocks effect.’ Interest in certain categories may only be acquired once 

category knowledge reaches a certain level, resulting in better learning of new category 

members and thus an increase in category size. Potentially, if the child is familiar with many 

members of a category, they may not be interested in this category because they feel their 

knowledge is saturated. Similarly, if they have prior knowledge of very few members of a 

category, they may have no existing category exemplars to link the new members to, and 

therefore feel learning about this category is impossible. However, a category size that is ‘just 

right’ might make children most curious – they have existing representations to link the new 

category members to, but do not feel they have learnt all they need to know about the 

category, resulting in better learning. Ackermann et al.’s (2020) findings suggest that pre-

existing knowledge influences children’s learning both in terms of linguistic and category 

knowledge (Oudeyer & Smith, 2016).  

Naturally, children demonstrate individual variation regarding stimuli that they prefer 

to learn about. Stimuli that are salient and interesting to one child may not be quite so striking 
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to another. As such, self-directed learning has been suggested as a successful form of active, 

curiosity-based learning whereby children can choose what to learn about (Gureckis & 

Markant, 2012; Montessori, 1912; Partridge et al., 2015). Children display self-directed 

learning in several ways, including self-questioning, which affords independent control and 

direction of learning (Gavelek & Raphael, 1985; Palincsar & Brown, 1987). It is thought that 

self-directed learning is successful because, as the ‘Goldilocks effect’ suggests, children can 

cleverly identify best-suited materials to optimise learning (Kidd et al., 2012, 2014). Multiple 

studies have determined self-directed learning to be more effective at helping children to 

learn across many domains (Yang & Li, 2013). For instance, Begus et al. (2014) allowed 16-

month-olds to choose one of four objects to learn about. The experimenter modelled an action 

for either children’s chosen, or non-chosen object. After a 10-minute delay, infants replicated 

significantly more of the functions of chosen objects than those of non-chosen objects. This 

confirms that like adults (e.g. Markant et al., 2014), self-directed learning is beneficial to 

children as young as 16 months of age.  

The advantage of self-directed learning has also been extended to word learning. A 

study by Partridge et al. (2015) investigated self-directed touchscreen-based learning in 

neurotypical 3- to 5-year-olds. In one condition, learning was self-directed and thus children 

learnt about stimuli they selected by pressing on the novel toy characters. In the other 

condition, children learnt about novel toy characters that were randomly labelled (children 

did not choose specific characters). Children learnt the four novel labels via ostensive 

naming, with the character expanding in size during labelling. Labels were taught in the 

presence of zero, one, two, or three competitors. Following training, fifteen toys were 

presented on the screen at once and children were asked to identify the correct novel label 

referent. Overall, they found that children retained significantly more novel word-object 

pairings in the choice condition compared to the no-choice condition. This suggests that 
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children’s active engagement in self-directed learning can enhance short-term retention for 

novel word-object mappings. 

1.3.2. Manipulating Attention Through Distractor Stimuli 

In addition to the range of studies demonstrating the influence of attention towards 

target stimuli on word learning, it is important to consider that learning contexts often present 

an array of competing stimuli. Indeed, real world learning environments are rife with 

extraneous information and require children to exclude myriad distractors to learn about the 

correct intended referent. However, most word learning studies do not consider how children 

may divide their attention across the whole visual scene. Importantly, to use ME, children 

must select the correct to-be-learned referent from an array of familiar distractor stimuli. As 

such, stimuli within an array could potentially affect children’s learning success. If to-be-

learned stimuli appeal to children’s interests, they may allocate greater attentional resources 

to these stimuli, more easily encoding novel information about the targets (Ackermann et al., 

2020). However, if competitor stimuli capture children’s attention, focus may be drawn away 

from target stimuli, resulting in the formation of weak or incorrect representations (Venker et 

al., 2018).  

To investigate the effect of distractor stimuli saliency in neurotypical development, 

Pomper and Saffran (2018) paired novel objects with familiar objects that varied in their 

visual salience. In this study, high salience items were brightly coloured and engaging (e.g. 

animals, vehicles, foods), whereas low salience items were dull in colour and less engaging 

(household objects). They discovered that children were slower and less accurate to identify 

novel objects in the presence of highly salient familiar objects than in the presence of less 

salient familiar objects. Moreover, children retained fewer novel word-object mappings when 

learning occurred in the presence of highly salient familiar objects. This study highlights the 

influence of the whole learning context, including the properties of the distractor stimuli. 
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Highly salient distractors have the potential to increase attentional division between distractor 

and target stimuli, thus affecting strength of encoding novel word-referent associations.  

Additionally, Horst et al. (2010) investigated how quantity of distractors influences 

learning. They presented children with referent selection trials which had varying numbers of 

competitor stimuli presented alongside a single target. Whilst the number of competitors did 

not affect children’s accuracy at referent selection, increasing the number of competitors 

decreased the likelihood that novel words were retained. This suggests that, when attentional 

division across the visual scene was greater, and less attention was allocated to the novel 

object, the association between the word and the object became more susceptible to decay.  

Axelsson and Horst (2014) built upon this by investigating how either consistently 

presenting the same familiar competitors alongside a novel object, or varying competitors 

across exposures, influenced word learning. They found that children retained more novel 

word-object mappings when the novel object had been presented with consistent familiar 

competitors. It was suggested here that children could better focus their attention on the novel 

target in the consistent competitor condition because they did not always need to rule out the 

competitors as potential referents. By contrast, the varied competitor condition required an 

additional step of children attending to and ruling out familiar referents on every occasion. 

Similarly, Horst et al. (2019) demonstrated that 30-month-old children could retain novel 

word-referent mappings both when taught in the presence of competitors that were the same 

colour as the target or varied in colour. However, they could only generalise the novel names 

to new exemplars of the target categories when the objects were taught in the presence of 

same-coloured targets, not if the targets and competitors varied in colour. Overall, these data 

highlight that children retain more novel words when learning through referent selection if 

distractor stimuli are consistent and require minimal attentional demands. This means that 
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greater attention can be allocated to novel stimuli which affords more successful novel word 

retention and generalisation.  

1.4. Word Learning in Autism 

Many autistic children experience delayed receptive vocabulary development, which 

may be due to difficulties learning words (e.g. Tek et al., 2008). Explanations for why autistic 

children experience atypical language development are varied. Studies often attribute autistic 

children’s word learning difficulties to obstacles interpreting social pragmatic cues to inform 

word-referent mappings (e.g. Baron-Cohen et al., 1997; McDuffie et al., 2006a; Parish-

Morris et al., 2007). However, social pragmatics are not the only way in which children 

acquire novel words – children also utilise non-social cues and cognitive constraints to 

inform their learning (Preissler & Carey, 2005). Research has therefore explored whether 

autistic children’s word learning mechanisms are qualitatively different to those of 

neurotypical children (e.g. Carter & Hartley, 2021; Hartley et al., 2019, 2020; Venker, 2019).  

1.4.1. Referent Selection in Autism 

In neurotypical word learning, children use certain constraints to inform word 

learning (Markman, 1990). It has long been debated whether these constraints are innate or 

learned in neurotypical development (e.g. Hollich et al., 2000). Autistic children also appear 

to possess word learning biases that are present in typical development and are used to inform 

referent selection and thus subsequent retention (e.g. de Marchena et al., 2011; Hartley et al., 

2019, 2020). A growing body of literature aims to identify under what conditions autistic 

children can successfully utilise lexical heuristics and external cues in the service of word 

learning (McGregor et al., 2013; Parish-Morris et al., 2007; Preissler & Carey, 2005; 

Tenenbaum et al., 2014, 2017).  

1.4.1.1. Mutual Exclusivity in Autism. A plethora of studies state that autistic 

children can utilise the ME lexical heuristic to inform accurate referent selection (de 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916034/#R121
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916034/#R87


 
 

44 

 

Marchena et al., 2011; Preissler & Carey, 2005). Initially, Preissler and Carey (2005) 

demonstrated that language delayed minimally verbal autistic children can use ME to 

decipher correct novel referents with comparable accuracy to neurotypical 24-month-olds. 

This finding has been corroborated by more recent research with lexically able autistic 

children. For example, de Marchena et al. (2011) presented an ME-based referent selection 

task to neurotypical and autistic children matched on age and vocabulary abilities. Children 

either learnt a label for a novel object or a fact via ME. Overall, children in both groups could 

accurately utilise ME to learn both words and facts, although this tendency was stronger for 

words than facts across populations. These studies indicate that autistic children’s learning 

mechanisms are not qualitatively atypical.  

Mathée-Scott and colleagues (2021) investigated the use of ME in autistic and 

neurotypical toddlers matched on nonverbal cognition. In their study, autistic children varied 

in vocabulary abilities to examine how vocabulary size influenced children’s use of the ME 

heuristic. They found that found that autistic children’s use of ME was dependent on 

vocabulary size. Of course, given that ME requires use of pre-existing knowledge to 

determine the correct novel referent, this finding is unsurprising (de Marchena et al., 2011; 

Mathée-Scott et al., 2021). However, this highlights that initial use of ME may not always be 

an innate heuristic, but a skill that is refined as vocabulary acquisition advances. 

In another recent study, Carter and Hartley (2021) explored whether neurotypical and 

language delayed autistic children matched on receptive vocabulary abilities were more likely 

to retain words when learning from colour photographs than black and white cartoons. Here, 

they taught neurotypical and autistic children novel words through ME-based referent 

selection. Following a 5-minute delay, autistic children achieved significantly greater 

retention accuracy when learning from photographs than cartoons. Autistic children also 

retained novel labels more accurately when learning from photographs than neurotypical 
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children. Overall, these findings highlight that autistic children’s abilities to use ME in the 

service of novel word acquisition are commensurate to neurotypical peers when expectations 

are based on receptive language abilities. 

Hartley et al. (2019) demonstrated that autistic children were less accurate than 

neurotypical peers to identify words via ME, but this did not negatively influence their novel 

word retention. Importantly, they too discovered that greater ME accuracy predicted larger 

vocabulary sizes for both autistic and neurotypical children (de Marchena et al., 2011; 

Mathée-Scott et al., 2021). This suggests that ME is an important strategy for language 

acquisition in both populations. Given autistic children’s lower referent selection accuracy 

and difficulties learning words overall, ME may be a particularly important strategy for this 

population. Crucially, where the use of ME is impossible, word learning may likely be 

impaired due to inability to use this important heuristic.  

1.4.1.2. Use of Social Cues in Autism. Attending to social cues to decipher novel 

referents can be difficult for children who have poorer social cues, such as shy children 

(Hilton et al., 2023). Hence, language difficulties in autism are often attributed to problems 

using extrinsic social cues. A concurrent relationship between attention following and 

vocabulary comprehension has been well-documented for both neurotypical and autistic 

development (e.g. Carpenter et al., 1998; Charman et al., 2003; Landry & Loveland, 1988). 

Generally, social behaviours help children attend to and engage with the environment. Many 

of the social cues that promote language development involving drawing attention to specific 

stimuli externally, such as attention-following (McDuffie et al., 2006a; Rowland, 2014). 

Evidence for how social cues such as gaze, gesture, posture, and facial expressions affect 

word learning in autistic children is mixed (e.g. Baldwin & Moses, 2001; Tomasello, 2003; 

Watt et al., 2006).   
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Whilst neurotypical children can use social cues to disambiguate the meanings of 

novel words (Baldwin, 1991; Bloom, 2002b), some research suggests that autistic children 

may struggle to use these cues, and therefore have impairments in understanding and 

inferring word meanings (Baron-Cohen et al., 1997). To utilise social cues in informing 

lexical acquisition, autistic children must understand the referential intent of the cue. In 

Baron-Cohen et al.’s (1997) seminal study, language delayed autistic children were required 

to map a novel word to a novel object that was either the focus of the speaker, or the focus of 

the child (the child held the object in this condition). They demonstrated that autistic children 

were insensitive to the speaker’s direction of gaze as a cue to assign word meaning, and 

instead mapped the novel word to an object of their own focus due to their own preferences. 

Similar findings were reported by Preissler and Carey (2005) – minimally verbal autistic 

children were more likely to map a novel word to an item they were attending to, irrespective 

of the experimenter’s gaze. If autistic children do focus on an incorrect referent due to 

difficulties utilising social cues, they may experience an increased number of ambiguous 

learning events whereby correct novel word-referent mappings are either not encoded or are 

incorrectly identified and encoded (Baron-Cohen et al., 1997; Tenenbaum et al., 2017; Venker 

et al., 2018). 

However, autistic children have been shown to successfully utilise social cues to learn 

words in some contexts. For example, Luyster and Lord (2009) utilised a similar 

experimental design to Baron-Cohen et al. (1997) and Preissler and Carey (2005). Luyster 

and Lord’s sample of autistic children were much younger, but more lexically able, than the 

groups of participants in these earlier studies. They found that autistic children did not differ 

in their performance from expressive vocabulary matched neurotypical children. This 

suggests that autistic children with more advanced vocabularies can use social cues to acquire 

novel words. Since social skills have been posited as an important precursor to language 
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development (Brooks & Meltzoff, 2015), this finding is not unsurprising. It may be that 

autistic children with greater social skills develop language more easily. If so, social 

proficiency may predict successful language development (Luyster et al., 2008; Thurm et al., 

2007). If autistic children can use social cues to direct their attention to the correct to-be-

learned stimuli, their chances of successful word learning are improved. However, given the 

differences in findings across similar studies, further research is required to disentangle the 

relationship between lexicon size and the ability to utilise social pragmatics in autistic 

children.  

Additionally, Adamson et al. (2009) demonstrated that language delayed autistic 

children could understand social cues in some word learning contexts. They investigated 

supported joint attention, whereby the child and adult attend simultaneously to the same 

shared object and label. Specifically, they found that supported joint attention is unimpaired 

in autism. Furthermore, supported joint attention has been shown to contribute to receptive 

and expressive language outcomes in autism, and can be utilised to scaffold novel word 

acquisition (Adamson et al., 2004, 2009; Mundy et al., 1986). This highlights that the 

understanding of some social cues is unimpaired in autism, thus use of such cues can benefit 

language development.  

A study from Parish-Morris et al. (2007) investigated the use of social cues to inform 

novel word learning in language delayed autistic children in comparison to language and 

mental age matched neurotypical children. They found that autistic children were able to 

learn the meaning of a novel noun by attending to a speaker’s perceptually salient social cues, 

like eye gaze and pointing, when target objects were also visually salient (Parish-Morris et 

al., 2007). However, autistic children’s word learning was diminished when target objects 

were not interesting to them, despite the presence of social cues. Autistic children also 

struggled to utilise speaker intent, a more subtle social cue which has been described as 
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beneficial, but not essential, to word learning in neurotypical development (Hollich et al., 

2000). Nevertheless, Parish-Morris et al. (2007) discovered that understanding of social 

intention predicted vocabulary size in autistic children, but not neurotypical children (see also 

McDuffie et al., 2006a). Overall, the findings of most of the studies reviewed here (e.g. 

Adamson et al., 2009; Luyster & Lord, 2009; Parish-Morris et al., 2007) suggest that autistic 

children can use salient social cues in a similar manner to neurotypical to support novel word 

learning. However, proficiency in understanding the intention of these cues may relate to 

vocabulary abilities (Hani et al., 2013; Norbury et al., 2010). The findings show that social 

cues are valuable to inform accurate novel word learning. However, it remains uncertain as to 

how other factors such as stimuli salience and more subtle social nuances may influence 

autistic and neurotypical children’s word learning, and under what context which word 

learning mechanisms are more beneficial. 

1.4.1.3. Statistical Learning Mechanisms in Autism. Research investigating cross-

situational word learning in autism is limited. An early account of cross-situational learning 

in autistic children comes from McGregor et al. (2013), who demonstrated that 11-year-olds 

without language delay could utilise cross-situational statistics to learn novel words. Here, 

success at cross-situational learning was moderated by vocabulary skills, suggesting that 

cross-situational learning is crucial for autistic children’s vocabulary development. However, 

it is important to consider that in McGregor’s study, ostensive naming trials were interleaved 

with referentially ambiguous trials, meaning participants may have already been cued to the 

meaning of some words before experiencing the referentially ambiguous trials. As such, 

caution should be taken when drawing conclusions from these findings, due to the difficulty 

determining whether children mapped words based on cross-situational statistics alone, or 

utilised ostensive cues.  
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Moreover, Venker (2019) went on to investigate cross-situational word learning in a 

younger age group. They compared the word learning abilities of a sample of 4- to 7-year-old 

autistic children to vocabulary matched neurotypical peers. Children participated in both a 

cross-situational and ostensive word learning task. Overall, both groups performed cross-

situational learning with comparable accuracy. Similarly, Hartley et al. (2020) found that 

language delayed autistic children could utilise cross-situational statistics to determine novel 

word meanings as accurately as neurotypical children matched on receptive vocabulary. 

These studies add to a growing body of literature that autistic children’s word learning 

mechanisms are qualitatively similar to those of neurotypical children (Arunachalam & 

Luyster, 2016; de Marchena et al., 2011; Luyster & Lord, 2009; McGregor et al., 2013).  

1.4.2. Retention in Autism 

It is also important to recognise that identification of meaning is just one component 

of word learning (McMurray et al., 2012). It is currently unclear how effectively autistic 

children can retain novel words. Whilst some studies suggest that autistic children or children 

at risk of autism are less able to retain novel word information than their neurotypical peers 

(Bedford et al., 2013; Norbury et al., 2010), more recent research posits that autistic children 

can retain novel word meanings as accurately as their neurotypical peers (Carter & Hartley, 

2021; Hartley et al., 2019, 2020).  

In a series of studies, Hartley et al. (2019, 2020) investigated how language delayed 

autistic children and neurotypical children matched on receptive vocabulary identify and 

retain novel words. In Hartley et al.’s (2019) first study, both populations utilised mutual 

exclusivity to identify referents of unfamiliar words. However, both groups of children 

showed significantly reduced accuracy on delayed retention and generalisation trials. In the 

second experiment of Hartley et al. (2019), autistic children were less accurate than 

neurotypical peers to identify novel words through ME-based referent selection. However, 

https://www.sciencedirect.com/science/article/pii/S0010027720300846?pes=vor#bb0285
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autistic children still demonstrated significantly above-chance responding, demonstrating that 

they were adept in their use of ME. Autistic children who received social feedback in the 

form of a head turn and gaze shift towards the target responded more accurately on delayed 

retention and generalisation trials than neurotypical controls, and more accurately than 

autistic children who received either non-social feedback or no feedback. Overall, these 

findings highlight that word learning mechanisms subserving identification and retention of 

meaning appear to be intact in autism. 

In Hartley and colleagues’ (2020) study, similar samples learnt novel words through 

cross-situational learning that was not cued, or that was supported by social or non-social 

attentional cues. Across these studies, both groups retrieved and generalised word-referent 

representations with comparable accuracy. However, autistic children were significantly 

slower to identify correct referents under both cued and non-cued conditions. Overall, the 

authors indicate that although word learning mechanisms are intact in autism, the increased 

time required to generate comparable responses suggest that autistic children may be less 

efficient at processing language input (see also Arunachalam & Luyster, 2016; Venker et al., 

2018).  

Given that consolidating novel word-referent mappings into long term memory 

requires coordination of attention and memory processes, it is likely that the diverse 

attentional allocation present in autism may account for individual differences in novel word 

retention (Arunachalam & Luyster, 2018; Omaki & Lidz, 2015). Where both autistic and 

neurotypical children were comparably successful to retain novel words after a delay under 

experimental conditions in Hartley and colleagues’ studies, they highlight that autistic 

children may not retain novel word information as successfully in more naturalistic 

environments. This is because these dynamic contexts likely contain extraneous distractions 

alongside more complex and diverse arrays of stimuli which are presented at a faster pace. 
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1.4.2.1. Retention and Sleep in Autism. Research suggests that sleep disorders are 

one of the most common symptoms in autism, with autistic children being 50-80% more 

likely to experience sleep issues than neurotypical peers of a similar age (Kotagal et al., 2012; 

Ming et al., 2008; Souders et al., 2009). Such sleep problems include parasomnias, poor sleep 

efficiency, irregular sleep-wake patterns, and longer sleep-onset latency (Díaz-Román et al., 

2018; Fletcher et al., 2017; Polimeni et al., 2005; Souders et al., 2009). Significant 

relationships between sleep and memory consolidation have been demonstrated from infancy 

to adulthood – sleep consistently helps to consolidate declarative memories for longer term 

retrieval (Dumay & Gaskell, 2007; Kurdziel et al., 2013; Tamminen et al., 2010).  

There are also studies demonstrating that sleep influences longer term learning 

outcomes in neurotypical development. Touchette and colleagues (2007) aimed to investigate 

whether sleep duration is an independent risk factor for behavioural and cognitive 

functioning. They found that a reduction of just 1 hour of sleep per night can decrease 

cognitive performance. In particular, short sleep duration related to lower performance on the 

Peabody Picture Vocabulary Test (PPVT), a test of receptive vocabulary. This finding 

proposes that novel word acquisition and vocabulary development could be significantly 

impeded by chronically shortened sleep duration throughout childhood. Similarly, Seegers et 

al. (2016) assessed children’s sleep duration annually from age 2.5 to 10 years, and receptive 

vocabulary using the PPVT at four and ten years. They categorised children based on their 

sleep trajectories – short persistent sleepers, short increasing sleepers, 10-hour sleepers and 

11-hour sleepers. They demonstrated that persistent short sleep duration was associated with 

poorer receptive vocabulary of 10-year-olds in comparison to 11-hour sleepers, highlighting 

the importance of sleep for lexical development.  

 Whilst research demonstrates that sleep, both in the form of napping and overnight 

sleep, benefits novel word consolidation in neurotypical development (e.g. Friedrich et al., 
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2015; Henderson et al., 2012, 2013; Horváth et al., 2015, 2016; Williams & Horst, 2014), this 

research area is extremely underdeveloped in autism. Given the prevalence of sleep disorders 

in autism (Souders et al., 2009), and the importance of sleep to children’s long-term lexical 

consolidation, it is somewhat surprising that the majority of studies investigating the role of 

sleep on autistic children’s language development focus on intellectually able autistic 

children with age-expected language abilities (e.g. Fletcher et al., 2020; Henderson et al., 

2014).  

Henderson and colleagues (2014) investigated the influence of sleep on novel word 

retention in autistic and neurotypical children. Their participants were 8- to 13-year-olds 

without language delay matched on age and vocabulary knowledge. Children learnt stimulus 

triplets of lexical neighbours, as used in Henderson et al. (2012), via a listening paradigm in 

two phonological tasks. Firstly, participants were asked to identify phonemes present in the 

novel word. Then, they were asked to repeat either the first or the last sound within the novel 

word. Measures of cued recall and forced choice followed this to assess children’s explicit 

memory of the novel words. Overall, both groups showed similar improvements in novel 

word retention after a 24-hour delay. However, whilst neurotypical children showed lexical 

competition effects after 24 hours for phonologically similar words (e.g. biscuit, biscal), 

autistic children demonstrated these effects immediately. These findings suggest a qualitative 

difference in how words are integrated into the lexicon in autistic children in comparison to 

neurotypical development.  

Similarly, Fletcher et al. (2020) taught nine rare animal names via ostensive naming to 

autistic and neurotypical children matched on age, nonverbal ability, and vocabulary. 

Children were asked to complete numerous learning tasks. Participants were exposed to the 

novel animal words by repeating an auditory label and reading the written name aloud. 

Children then completed forced choice trials where participants were presented with two 
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options and asked to select which image matched the written word for image-matching trials, 

and which word matched the image for orthography-matching trials. Participants also 

performed a size judgement task, where they deciphered which animal image was larger. In 

addition, children completed a definitions task, where they were asked to describe the animal 

to the experimenter. A naming speed task was also undertaken, where children’s verbal 

response pace when naming the animals was recorded. Polysomnography recordings were 

acquired to assess overnight sleep quality. Overall, the findings demonstrated that autistic and 

neurotypical children retained novel animal labels with comparable accuracy after overnight 

sleep, despite autistic children demonstrating differences in sleep properties. However, 

autistic children forgot significantly more of the unique features of the novel animals. Whilst 

these studies suggest that autistic children’s novel word learning may benefit from overnight 

sleep in the same way as their neurotypical peers, their autistic participants had 

developmentally expected language skills. As such, it remains unclear whether these findings 

would generalise to autistic children with delayed language development (Fletcher et al., 

2020; Henderson et al., 2014).  

1.5. Attention in Autistic Children’s Word Learning 

 Attention substantially influences word learning processes, as children must correctly 

identify the intended referent for a novel word and exclude non-target competitors (Leung & 

Rheingold, 1981). Previous research with neurotypical children has demonstrated the benefit 

of manipulating children’s attention to facilitate word learning processes and language 

acquisition (e.g. Ackermann et al., 2020; Axelsson et al., 2012; Pomper & Saffran, 2018). 

Autistic children, however, often display atypical attentional behaviours, which may have 

downstream consequences for their receptive vocabulary development due to a narrowing of 

attention as a result of their own preferences (e.g. Baron-Cohen et al., 1997). 
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1.5.1. Exogenous Attentional Manipulations 

As in the neurotypical literature, some studies have investigated how manipulating 

autistic children’s attention through experimental conditions influences word learning. Gliga 

et al. (2012) studied gaze-following abilities as a prerequisite for word learning in children at 

familial risk for autism. In their study, examination of looking behaviour demonstrated that 

gaze following did not directly relate to successful word learning performance. Rather, the 

distribution of looking between the target and distractor object was a stronger predictor of 

word learning success than the use of social pragmatic cues. These findings highlight that 

increased attention towards the target stimuli was important for word learning. Whilst gaze 

following may not have enhanced children’s attention to targets sufficiently, other 

mechanisms that may increase children’s looking distribution could be used to improve word 

learning. However, it is important to consider that not all of the participants in Gliga et al.’s 

(2012) study would receive an autism diagnosis.  

In Akechi et al. (2011), neurotypical and autistic children matched on age, nonverbal 

intelligence and verbal mental age were required to map a novel word to an object that was in 

the speaker’s focus. They found that, in contrast to neurotypical children, autistic children 

were more likely to map the novel word to an object of their own focus rather than the 

speaker’s focus. However, when the target object that was in the speaker’s focus was 

increased in salience by incorporating movement, both groups mapped the novel label to the 

correct target object. This increased saliency enhanced autistic children’s attention towards 

the novel object and thus afforded more accurate word-referent mappings. Akechi et al. 

(2013) built on their previous study with the addition of pointing as a social cue, alongside 

speaker gaze and object movement. They discovered that similar samples of autistic children 

could successfully use multiple cues, following the point to inform their referential word 

learning. However, when examining both response accuracy and visual attention, Akechi and 
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colleagues found that these measures were not always congruent across conditions and 

experiments. For example, some autistic children attended to the speaker’s face and followed 

gaze as frequently as neurotypical children, but autistic children were still more likely to 

make incorrect selections for the novel word referent.  

Tenenbaum et al. (2017) directed children’s attention to the intended referent in a 

word learning task by holding the object close to the speaker’s mouth. Although this action 

decreased word learning for neurotypical children, it facilitated word learning amongst their 

sample of language delayed autistic children. Holding the object away from the mouth and 

pointing towards the mouth, however, hindered word learning for autistic children, as 

attention was divided between two distinct areas of the visual scene. While neurotypical 

children can utilise social cues such as joint attention or gaze following to facilitate word 

learning, this research suggests that autistic children struggle to do so (e.g. Luyster & Lord, 

2009; Parish-Morris et al., 2007). However, similarly to Akechi and colleagues’ findings, 

autistic children could successfully utilise social cues to direct their attention and thus learn a 

novel word when accompanied by other cues that draw attention to the target. Tenenbaum et 

al. (2017) state that word learning can proceed effectively if we can increase autistic 

children’s intake of available information from the environment by limiting distractions 

(Akechi et al., 2011, 2013; Arunachalam & Luyster, 2018; Parish-Morris et al., 2007). It is 

important to consider, however, that Tenenbaum utilised gaze measures alone as their 

dependent variables to infer word learning. Given findings that visual attention alone may not 

sufficiently influence word learning (e.g. Gliga et al., 2012), it is possible that attentional 

differences, which may be due to visual preferences, could be concluded as less accurate for 

learning.  

Incorporating explicit forced choice methodology, Hartley et al. (2019) highlighted 

autistic children’s accurate use of attentional cues. In their study, autistic children who 
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received social feedback demonstrated more accurate novel word retention and generalisation 

than language matched neurotypical children (Hartley et al., 2019). Social feedback also 

increased autistic children’s performance to a greater extent than non-social feedback (a 

flashing light). Moreover, Hartley et al. (2020) found that autistic children spontaneously 

utilised social cues to correctly disambiguate novel word meanings, and these cues 

significantly improved their training accuracy in comparison to when no cues were provided. 

These studies state that autistic children can use social cues to inform novel word learning as 

accurately as neurotypical peers when expectations are based on receptive vocabulary 

abilities.  

Like neurotypical children (Pruden et al., 2006), autistic children attend to perceptual 

salience when learning the names for objects (Parish-Morris et al., 2007). Parish-Morris et al. 

(2007) investigated the role of perceptual salience, amongst other cues, in neurotypical 

children in comparison to autistic children with language delays. Both groups of children 

selected their favourite of two salient objects, which was determined to be the ‘interesting 

object,’ compared to boring non-chosen and non-salient objects. When the interesting object 

was labelled, autistic children reliably demonstrated word learning. However, when boring 

objects were labelled, unlike neurotypical children, autistic children did not reliably 

demonstrate word learning even when attempts to redirect their attention were made. These 

studies highlight potential differences in autistic children’s attentional mechanisms and 

reinforce the importance of appropriate allocation of attention for successful word learning.  

Several studies have tried to elucidate how labelling influences visual attention and 

word learning in autism (Benjamin et al., 2015; McDuffie et al., 2006b; Vivanti et al., 2016). 

McDuffie et al. (2006b) revealed that whilst autistic children demonstrated less attention 

following than neurotypical children, verbal labelling facilitated attention in both 

neurotypical and autistic children. However, more recent studies have found contrasting 
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findings. For example, Vivanti et al. (2016) determined that hearing a label increased visual 

attention to unfamiliar objects in neurotypical children and children with Williams Syndrome, 

but not autistic children. Vivanti’s findings with autistic children were also corroborated by 

Benjamin et al. (2015), who found that labelling did not increase attention allocation in either 

autistic or neurotypical children. Prior studies have shown that increased attention allocation 

through social cues, such as attention following, are concurrently related to word learning 

outcomes for autistic and neurotypical children (Baron-Cohen et al., 1997; Charman et al., 

2003). However, studies by Benjamin et al. (2015) and Vivanti et al. (2016) suggest that 

proficiency following more subtle pedagogical cues may also be affected in autism. Thus, if 

autistic children cannot accurately follow attentional cues such as labelling, word learning 

will be substantially impacted in naturalistic contexts.  

Venker et al. (2021) investigated how visual allocation differs when perceptual 

salience competes with linguistic information. They compared familiar word recognition of 

neurotypical and language delayed autistic children matched on receptive language skills. On 

neutral trials, both the target and distractor images were high in salience, with bright colours 

and geometric patterns. On competing trials, the distractor image was high in salience, but the 

target image was low in salience. This elicited competition between bottom-up salience 

driven processes and top-down language driven processes. Both groups of children showed 

word recognition but competing perceptual salience significantly decreased attention to the 

target only in autistic children. These findings indicate that, unlike neurotypical development, 

attention allocation in autism is more strongly driven by bottom-up processes than top-down 

processes. Moreover, perceptual properties of objects can disrupt attention to relevant 

information in autistic children. This has implications for word learning, as decreased 

attention to relevant visual stimuli may inhibit or delay word learning or result in incorrect 

mappings.  
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In a similar study, Venker et al. (2022) explored how autistic children’s visual 

attention influences word learning. They examined how the perceptual salience of objects 

affected novel referent selection in lexically able autistic children in comparison to age 

matched neurotypical children. High-salience objects were brightly coloured and visually 

complex with multiple parts, whereas low-salience objects were less colourful and did not 

have moving parts. Test trials were divided into low-difficulty and high-difficulty trials. Low-

difficulty trials occurred immediately after each teaching sequence and only required children 

to differentiate a labelled object from an object that was not presented in the previous trials. 

High-difficulty trials required children to differentiate two previously labelled objects. They 

discovered that high perceptual salience disrupted novel referent selection in autistic children 

but facilitated attention to the target object in neurotypical peers. Attention of autistic children 

was disrupted so significantly by the perceptual salience of the object that they failed the 

referent selection task on high-difficulty trials. Autistic children were also slower to 

disengage from high-salience distractor images, indicating that they had stickier attentional 

mechanisms. Overall, these findings highlight that high perceptual salience can disrupt novel 

referent selection in autistic children. This has implications for subsequent retention - if 

children do not attend to target stimuli during learning events, retention will likely be 

hindered. These results have broader implications and suggest that learning contexts should 

take into account low-level perceptual features of stimuli, such as visual salience, to 

maximise attention and thus learning.  

 Another study from Venker (2019) utilised eye-tracking to examine whether autistic 

children can use cross-situational statistics to acquire novel words. Autistic and neurotypical 

children with similar vocabulary knowledge performed comparably well during cross-

situational learning, with performance mediated by familiar word processing in both groups. 

Venker (2019) discovered that children who looked longer at named novel objects also 
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looked longer at named familiar words. This demonstrates that children with more sustained 

visual attention mechanisms likely had greater skills aligning auditory and visual input. As 

such, these children were able to consolidate their representations of familiar words and learn 

new words due to their more advanced word learning abilities (Kucker et al., 2015). On the 

other hand, Venker (2019) observed that visual inattention detrimentally impacted learning - 

autistic children who looked away from the images in the cross-situational task also had the 

weakest language skills. Overall, it can be concluded that attention affords learning 

opportunities and inattention is therefore a risk factor for delayed language acquisition.  

1.5.2. Endogenous Attentional Manipulations 

Autistic children also demonstrate intrinsic preferences that drive their attentional 

allocation and influence their input during learning. Research has shown that, unlike 

neurotypical children, autistic children and children at risk for autism prefer to attend to 

objects rather than people and spend more time shifting attention between objects and non-

social stimuli (Bhat et al., 2010; Ibanez et al., 2008; Swettenham et al., 1998). This is 

reflected in RRBIs, a common characteristic in autism which involves intense and 

perseverative attentional allocation to specific topics of interest (Honey et al., 2012; Kanner, 

1943; Richler et al., 2007). RRBIs influence what autistic children attend to and learn about. 

If children focus on specific, narrowed topics of interest, they may lose out on important 

information within the environment. For example, if a child is particularly interested in 

dinosaurs, on hearing a novel word, they may not be able to disengage from a dinosaur toy to 

follow the speaker’s point and thus infer the correct novel referent. This can result in weak or 

incorrect novel word-referent representations.  

Research investigating the visual attention of autistic children and children at risk of 

autism suggest that these populations are slower and less able to disengage attention from 

specific stimuli (Elsabbagh et al., 2013; Landry & Bryson, 2004). This inflexibility has the 
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potential to lead to atypical visual processing, meaning that children may not take a top-down 

approach when examining the visual environment, and may instead focus on a limited subset 

of stimuli (Elsabbagh et al., 2009). Unsurprisingly, how autistic children process stimuli is 

often influenced by their interests. Studies reveal that autistic children tend to process high 

interest stimuli with greater focus and intensity. For example, Elison and colleagues (2012) 

asked autistic and neurotypical children of varying ages to explore a visual scene which 

included high and low interest stimuli, as well as social and non-social stimuli. Overall, 

results indicated that autistic children had an attentional bias to certain non-social stimuli 

from early to late childhood. They also consistently demonstrated a bias towards high interest 

objects across the vast age range of 2 to 18 years, with high exploration of these stimuli 

persisting throughout childhood. These findings corroborate previous evidence that autistic 

children possess a bias towards non-social and high interest stimuli (Klin et al., 2009; Pierce 

et al., 2011; Sasson et al., 2011). This atypical attentional distribution in comparison to 

neurotypical children has the potential to restrict learning towards specific subsets of stimuli. 

On the one hand, learning may be improved if children show an attentional bias towards 

stimuli of interest – this could be an advantageous mechanism to scaffold learning in such 

populations. On the other hand, learning may be disrupted when situated in high interest 

environments with myriad distractors that decrease children’s attention to target stimuli. 

Currently, limited research investigates how these mechanisms directly impact novel word 

learning in autistic and neurotypical populations. 

Additionally, Sasson and colleagues (2008, 2011) investigated how children’s specific 

interests influence their visual attention. They suggested that autistic children’s attention to 

social stimuli was diminished in the presence of more salient stimuli that appealed to 

children’s interests, such as trains. In Sasson et al. (2008), autistic children’s visual attention 

was described to be more circumscribed, perseverative, and detail oriented across both social 
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and object arrays. Moreover, severity of RRBIs correlated positively with exploration of 

object pictures and negatively with perseveration on social pictures. In Sasson et al. (2011), 

autistic children exhibited greater exploration and perseverative attention to objects related to 

circumscribed interests than their neurotypical peers. Overall, these studies reveal that autistic 

children may perseverate on images of interest and explore them in a more detail-oriented 

manner. Consequently, autistic children may be more able to learn words associated with 

categories that appeal to their interests, in comparison to categories they are less interested in.  

Autistic children often focus on specific perceptual features of stimuli to an atypical 

degree and may prefer specific geometric shapes and patterns (Pierce et al., 2011, 2016).  

Pierce and colleagues (2011) found that autistic toddlers spent significantly more time 

fixating on dynamic geometric images in comparison to neurotypical children or children 

with other developmental delays. In a follow up study, Pierce et al. (2016) corroborated their 

original findings by examining a wider range of participant groups and individual 

characteristics. They found that autistic toddlers fixated on geometric images significantly 

more than neurotypical toddlers, toddlers with developmental delay, and toddlers with other 

conditions thought to affect development (e.g. premature birth, or those at genetic risk of 

ASD; Pierce et al., 2016). They also discovered that a particularly strong preference for 

geometric images predicted cognitive, language, and social skills in the autistic group - 

children with stronger preferences demonstrated more profound deficits in all domains. The 

authors conclude that enhanced visual preference for geometric patterns may be an early 

developmental biomarker of autism symptom severity. These studies suggest that high 

perceptual salience can influence novel word learning in autistic children through atypical 

allocation of attention. If stimuli are the focus of learning, then stronger representations may 

be formed due to enhanced focus. However, if competitor stimuli are more salient than target 
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stimuli, autistic children may allocate their attention away from novel targets and towards the 

distractors, diminishing appropriate learning.  

1.5.3. Theoretical Accounts of Attentional Differences in Autism 

Autistic children’s relatively restricted visual attention has important implications for 

word learning. If children cannot flexibly attend to an array of items, they may lose 

informants from the environment as they cannot easily shift their attention away from 

distractor stimuli towards informative cues and target stimuli. This theoretical perspective has 

been aptly named auditory-visual misalignment (Venker et al., 2018). Formulating this 

theory, Venker et al. (2018) reviewed an array of literature examining how autistic children’s 

attentional allocation affects their learning. They suggested that children’s attentional focus 

determines statistical input, meaning that auditory-visual co-occurrences perceived by the 

child determines what can be learned from the input. The authors conclude that attending to 

the right thing at the right time facilitates vocabulary development, and looking at the wrong 

thing likely inhibits accurate referent selection and potentially generates erroneous or 

incomplete word-object mappings (e.g. Baron-Cohen et al., 1997; Ellis et al., 2014; 

Tenenbaum et al., 2017; Venker et al., 2018). Crucially, further empirical research is required 

to directly test this theory and inspect the influence of looking allocation on word learning 

accuracy.  

Differences in autistic children’s visual attention, such as those from Venker et al. 

(2021, 2022) that demonstrate autistic children’s difficulties disengaging from perceptually 

salient stimuli, can be explained by stimulus ‘over-selectivity’ theory. This theory proposes 

that an individual responds only to a subset of stimuli in their environment, thus restricting 

learning (Lovaas et al., 1971, 1979). Evidence for over-selectivity has been identified in 

autistic children (Lovaas et al., 1971) as well as neurotypical preschoolers (Reed et al., 2013). 

This theory suggests that children are less able to attend to multiple cues due to their 
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narrowed attentional focus. For example, in Parish-Morris and colleagues’ study (2007), 

autistic children were unable to ignore perceptual salience even when alternative social cues 

were utilised to redirect children’s attention. However, the age at which stimulus over-

selectivity diminishes is unclear. Some research indicates that stimulus over-selectivity 

disappears at around three years of age in neurotypical children (Reed et al., 2013), although 

research has shown the phenomenon to be present in some older children, as well as autistic 

children and children with mental ages older than three years (Rincover & Ducharme, 1987; 

Schover & Newsom, 1976; Wilhelm & Lovaas, 1976). Consequently, it may be more suitable 

to regard stimulus over-selectivity as a general developmental cognitive delay rather than a 

milestone that occurs at a fixed time point (Reed et al., 2013).  

Susceptibility to stimulus over-selectivity can be explained by executive function. 

Executive function encompasses many cognitive abilities, including working memory, 

inhibitory control, and shifting of attention (Blair, 2016). Research has demonstrated 

executive function problems in both autistic children and adults (Hughes et al., 1994; 

Ozonoff et al., 1991). Sáez and colleagues (2012) split executive functions into different 

attentional processes, defined as: attention-memory, holding and updating information; 

attention-set shifting, shifting away from inappropriate responses; and attention-inhibitory 

control, suppressing inappropriate activity. They found that attention-memory, including 

focusing on and retaining information, which is important for referent selection and retention, 

was the strongest predictor of reading performance. If children’s attentional mechanisms are 

impaired, they may not focus on correct information at the right times during word learning, 

thus inhibiting language acquisition.  

Moreover, executive function has been shown to account for word learning 

differences (Kapa & Erikson, 2020) and cognitive inflexibility (Hughes et al., 1994). In 

particular, more developed executive function skills help children with attentional control - 
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the ability to focus on a task and ignore irrelevant information (Garon et al., 2008; Posner & 

Rothbart, 2000). It may be that, given autistic children’s less developed executive function 

skills, they are less able to ignore irrelevant information and focus on correct stimuli (e.g. 

Elison et al., 2012; Venker et al., 2021, 2022). Overall, stimulus over-selectivity suggests that 

autistic children may be less able to attend to multiple cues and stimuli within a learning 

environment, and thus learning is limited only to the cues and stimuli that they do 

successfully attend to. 

Similarly, the theory of weak central coherence proposes that autistic individuals are 

more likely to attend to and retain specific details rather than the global form or meaning 

(Frith, 1989). This tendency to have focused and narrowed attentional constraints are 

paramount to the phenotype of autism (Behrmann et al., 2006). Weak central coherence is 

often used to explain circumscribed interests, and the exceptional skills some autistic 

individuals demonstrate on specific tasks or topics (Happé & Frith, 2006; van der Geest et al., 

2002). In Venker and colleagues’ recent studies (2021, 2022), high perceptual salience 

perhaps disrupted word identification in autistic children, but not neurotypical children, due 

to differences in processing stimuli. In line with the weak central coherence account, autistic 

children may have focused on specific salient aspects of the images, such as the patterns (e.g. 

Pierce et al., 2011), detracting from the image as a whole. As such, word identification could 

have been limited by reduced ability to encode the whole visual scene. By contrast, autistic 

children allocate greater attention to stimuli that appeal to their interests, which may be 

advantageous for learning (e.g. Sasson et al., 2011). However, studies examining how autistic 

children’s interests influence their stimuli exploration and word learning are extremely 

limited. Directly investigating how children’s attention can be manipulated by interests and 

preferences can illuminate how specific stimuli may affect referent selection and novel word 

retention.   
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1.6. Thesis Objectives 

 This literature review has highlighted how neurotypical children can learn words 

when attentional mechanisms are manipulated in various ways. Although autistic children 

commonly have language delays in comparison to neurotypical children, we know relatively 

little about how their word learning is affected by attentional mechanisms and how these 

effects persist over delays of more than a few minutes (e.g. 24 hours). Some research 

suggests that when autistic children’s attention is directed towards to-be-learned stimuli in a 

manner that appeals to their strengths, they can achieve accurate word learning which is 

comparable to neurotypical peers matched on receptive vocabulary (e.g. Akechi et al., 2011, 

2013; Parish-Morris et al., 2007). Additionally, research investigating the influence of sleep 

on novel word consolidation in autism only targets a sub-set of linguistically and 

intellectually able autistic children (Fletcher et al., 2020; Henderson et al., 2014). It is 

therefore unclear whether language delayed autistic children also experience beneficial 

effects of sleep consolidation on word learning in the same manner as neurotypical children 

and linguistically able autistic children, and how such effects may interact with attentional 

preferences for stimuli.  

 This thesis seeks to advance understanding of how autistic children’s preferences and 

interests influence their identification and retention of novel word meanings. The three 

studies that comprise this thesis each investigate word learning as a system across three 

distinct stages: referent selection, retention after a 5-minute delay, and retention after a 24-

hour delay. Neurotypical and autistic children matched on receptive vocabulary abilities of 

approximately five years were taught novel word-referent mappings via ME (Bion et al., 

2013; Horst & Samuelson, 2008). All studies utilised a within-subjects design, with all 

participants experiencing conditions involving stimuli with varying levels of attentional 

salience. The studies draw upon a range of methods used within the extant literature but are 
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some of the first to explore how children’s interests affect referent selection alongside short- 

and long-term retention in neurotypical and autistic populations. By comparing these 

populations, this project examines the importance of attentional flexibility to word learning 

by demonstrating the consequences of preferential biases to selective stimuli.  

The studies utilised touch-screen technology to measure accuracy and response times. 

The use of touchscreens, such as tablets, has been highly successful in promoting learning 

and engagement with both neurotypical and autistic children (El Zein et al., 2016; Fletcher-

Watson et al., 2016; Lee et al., 2015). For autistic children, it is possible that touchscreens 

may reduce environmental stress and the pressures of processing time that would otherwise 

be present during social interaction, meaning that greater cognitive resources can be allocated 

to the learning task (Southall, 2013). In terms of response time, there is variable evidence of 

whether autistic children take longer to generate correct responses during word learning, so 

our research aims to disentangle under what conditions autistic children may, or may not, 

respond slower than neurotypical peers (Hartley et al., 2020; Ricketts et al., 2015). Accuracy 

data from touch-screen responses will reveal how accurately children can identify and retain 

novel words when target and distractor stimuli are high or neutral interest. Participants’ 

individual characteristics were assessed via a battery of standardised assessments. These 

characteristics were analysed to examine how the groups differed, and how individual 

variability within the groups influenced accuracy across the word learning stages.  

In addition to recording children’s response accuracy and speed, cameras recorded 

children’s looking behaviour during the studies. This innovative approach enables us to 

explore how children’s online attention during word learning influences their identification 

and retention of meaning, and how gaze patterns may differ across autistic and neurotypical 

populations. These data are analysed in Studies 2 and 3 and are some of the first to 
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demonstrate how measures of visual attention and behavioural word learning accuracy 

measures inter-relate.  

The studies that comprise this thesis differ in terms of how experimental 

manipulations were employed to investigate the impact of attentional salience of target and 

distractor stimuli on referent selection and retention. In Chapter 2 (Study 1), children learnt 

names for novel animals in the ‘high interest’ condition and novel objects in the ‘neutral 

interest’ condition, via referent selection. Competitor stimuli during referent selection were 

familiar animals, as it is well-documented that children generally prefer animal stimuli over 

non-animal stimuli (Celani, 2002; Prothmann et al., 2009) and many autistic individuals are 

particularly fond of animals (Martin & Farnum, 2002). In the object condition, targets were 

low in interest but high in categorical discriminability in comparison to familiar animal 

distractors. In the animal condition, targets were high in interest but low in categorical 

discriminability. Investigating how categorical salience influences word learning will 

emphasise the importance of attentional flexibility and perceptual distinction to word learning 

and illuminate how interests may help or hinder the word learning of autistic and neurotypical 

children.  

In Chapter 3 (Study 2), high interest stimuli were novel animals and neutral interest 

stimuli were novel objects, but unlike Study 1, children mapped word-referent associations in 

the presence of familiar object competitors. In Study 1, overall interest in the word learning 

context may be greater than in Study 2 due to the presence of animal distractors, although 

high interest novel animals may not stand out categorically from familiar animals. In Study 2, 

overall interest in the stimuli presented at each naming event might be lower due to object 

distractors, but high interest novel animals are categorically salient in comparison to familiar 

objects. Therefore, across Studies 1 and 2, we examine how overall interest in stimuli vs. 

categorical salience of targets influences word learning. In Study 2, the unique combination 
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of looking time data and explicit behavioural responses will illuminate how children’s 

preferential biases affect visual attention during learning, and how this in turn influences 

response accuracy.  

Chapter 4 (Study 3) did not incorporate animal stimuli targeting children’s pre-

existing interests and instead investigated children’s unique preferences for experimental 

stimuli. Children identified their ‘liked’ and ‘disliked’ novel objects, and these specific 

selections were allocated to liked and disliked conditions respectively. As in Study 2, children 

learnt novel words via referent selection in the presence of familiar objects. This study 

examines how individual preferential biases to selective stimuli influences attentional 

allocation, elucidating how these predilections impact word learning in autistic and 

neurotypical populations.  

In terms of looking behaviour, across Studies 2 and 3 we expected autistic children to 

spend longer looking towards novel items regardless of whether they were intended targets 

due to difficulties disengaging attention from interesting stimuli, particularly in the high 

interest conditions (Elsabbagh et al., 2009, 2013; Landry & Bryson, 2004; Sacrey et al., 

2014). We expected autistic children to make more frequent looks to target stimuli due to 

longer processing times required to generate correct responses. We also anticipated that 

increased visual attention to targets would predict response accuracy across conditions, 

groups, and task stages. We expected increased attention at referent selection to also predict 

superior retention due to greater opportunities for novel word-referent encoding at training 

(e.g. Hilton et al., 2019; Hilton & Westermann, 2017). 

Importantly, these studies will advance theoretical understanding of word learning by 

disentangling the influence of preferential biases to selective stimuli across different word 

learning stages and populations. These data will also reveal the importance of flexible visual 

attention for successful word learning. Our studies will highlight effective ways to investigate 
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learning in autistic children experimentally and emphasise the importance of selecting 

appropriate dependent variables when investigating learning across populations. Furthermore, 

these studies have the potential to impact educational and clinical contexts by discovering 

multiple ways in which learning can be enhanced in autistic children. These findings can 

subsequently be applied in future interventions and within the design and creation of learning 

materials.   
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Chapter 2: Is autistic children’s word learning facilitated or hindered by high interest 

distractors? 

2.1. Chapter Introduction 

 

Word learning is contingent on children attending to the right information at the right 

time. Whilst often a topic of debate, autistic children’s frequent language delays are 

commonly attributed to attentional differences that affect children’s intake of visual and 

auditory information (Arunachalam & Luyster, 2018; Venker et al., 2018). Autistic children 

often have difficulties flexibly allocating their attention across a range of stimuli 

(Noterdaeme et al., 2002; Ozonoff et al., 1994), and their attentional allocation is influenced 

by circumscribed interests, which may result in limited environmental informants during 

word learning (Elsabbagh et al., 2009, 2013; McGregor et al., 2013; Sacrey et al., 2014). 

Currently, these theories have not been directly tested across word learning stages in autism. 

Elucidating how children’s interests affect word learning is an imperative step to advance 

understanding of optimal learning contexts to afford effective language acquisition. 

In this chapter (Study 1), autistic and neurotypical children learnt novel animal and 

object names in the presence of familiar animal distractor stimuli. In one condition, children 

learnt names for object stimuli, which were low in interest but high in categorical 

discriminability compared to distractors. In the other condition, children learnt names for 

animal stimuli, which were high in interest but low in categorical discriminability. 

Investigating these differences in categorical salience will emphasise the importance of 

attentional flexibility to word learning. It will also enlighten how interests may help or hinder 

children’s word learning, providing insight for practical applications.  

Author contribution: Charlotte Rothwell: design, data collection, analysis, writing, review. 

Gert Westermann: design, review. Calum Hartley: design, analysis, review.  
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2.2. Abstract 

Word learning is influenced by children’s attention and interests – determining correct 

word-referent mappings requires paying attention to the right things at the right times. Whilst 

autistic children’s fundamental word learning mechanisms appear to be intact, their 

perseverative interests and atypical attention allocation may affect word learning. We 

investigated whether autistic children with delayed language development and neurotypical 

children matched on receptive vocabulary differ in accuracy when learning words associated 

with novel animals (high interest stimuli) and objects (neutral interest stimuli), in the 

presence of high interest animal distractors during referent selection. In a fast-mapping task, 

both groups identified meanings of novel words associated with unfamiliar animals and 

objects with comparable accuracy and retained them after a 5-minute delay. Greater interest 

in animals predicted superior retention accuracy in autistic children at 24-hour retention, due 

to heightened interest in the visual scene at encoding. After 24 hours, autistic children 

retained more novel object names than neurotypical children. This may be due to the 

perceptual contrast between categorically distinct object stimuli and familiar animal stimuli 

enhancing encoding at referent selection. Thus, following a period of sleep, these more 

strongly encoded representations were consolidated for greater retrieval after a 24-hour delay. 

These findings suggest that heightened attention to interesting non-target competitors during 

mutual exclusivity, plus increased visual distinctiveness between targets and distractors, both 

afford more robust encoding of word-target representations in autism.  

 

Keywords: Word learning; Autism; Interests; Attention; Referent Selection; Retention 
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2.3. Introduction  

Language acquisition is crucial for children’s cognitive and social development 

(Carpenter et al., 1998; Tomasello, 2003). Neurotypical children begin to produce language 

around 12-18 months (Tager-Flusberg et al., 2009; Zubrick et al., 2007), and learn the 

meanings of over two hundred words before two years of age (Dale & Fenson, 1996), 

increasing to ten words per day by school age (Bloom, 2002a). This milestone is often 

delayed in autistic children, who begin to speak at ~38 months on average (Anderson et al., 

2007), and demonstrate delayed receptive vocabulary profiles (Artis & Arunachalam, 2023; 

Saldaña, 2023). Although many autistic individuals develop functional language skills over 

the school years (Pickles et al., 2014), approximately 25-35% of autistic children remain non-

verbal or minimally verbal (Ellis Weismer & Kover, 2015; Tager-Flusberg & Kasari, 2013). 

Delays in autistic children’s receptive and expressive language development are often 

attributed to difficulties acquiring new words (Ellis Weismer et al., 2020; Volden et al., 2011). 

Despite their problems learning language, recent evidence shows that fundamental word 

learning mechanisms – and relationships between them – are not atypical in many autistic 

children, including those with concomitant language impairments (Foti et al., 2015; Hartley 

et al., 2019, 2020; Rothwell et al., accepted, see Study 2). In light of this evidence for intact 

word learning mechanisms, it has been proposed that language learning difficulties may be 

attributed to atypical attentional behaviours that impair autistic children’s intake of visual and 

auditory stimuli from their environment through distraction (Arunachalam & Luyster, 2015, 

2018; Venker et al., 2018). However, few studies to date have empirically studied how 

children’s attentional mechanisms influence word learning in autistic or neurotypical 

development. Here, we investigate whether autistic and neurotypical children’s learning of 

words associated with high- and neutral-interest stimuli is impacted by the presence of 

attentionally salient distractor stimuli. 
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Word learning is a complex, multi-stage process. Initially, children must identify the 

novel word during speech, and link the novel word to an intended referent (referent selection; 

Carey & Bartlett, 1978). Then, the child must store the correct word-referent association for 

later retrieval (retention; Gleitman, 1990). The relationship between these word learning 

mechanisms is explained by the ‘dynamic associative account’ (McMurray et al., 2012; 

Samuelson & McMurray, 2017), which proposes that referent selection and retention utilise 

separate ‘fast mapping’ and ‘slow associative learning’ processes that occur on different 

timescales (McMurray et al., 2012).  

Fast mapping occurs when children form rapid, in-the-moment, associations between 

novel words and their referents (Kucker et al., 2015; Samuelson & McMurray, 2017). During 

fast mapping, children must select the correct target from a range of distractors, overcoming 

the challenge of referential ambiguity – a novel word could have multiple potential referents 

(Cartmill et al., 2013; Markman, 1989). Referent selection is facilitated by lexical heuristics, 

one of which is the mutual exclusivity principle (ME; also known as disjunctive syllogism; 

Carey 1978). ME refers to the assumption that object labels are mutually exclusive, and thus 

each referent only has a single label. This principle is demonstrated when a single unfamiliar 

object is presented alongside one or more familiar objects, and children are asked to identify 

the referent of a novel word (Halberda 2003, 2006). Since children know the names of 

familiar objects, they use ME to deduce that a novel word must refer to the unfamiliar object 

(Markman & Wachtel, 1988; Merriman & Bowman, 1989).  

However, accurate referent selection alone does not constitute word learning – 

neurotypical toddlers who perform at ceiling on a fast-mapping task often forget the referents 

of novel words after a five-minute delay (Horst & Samuelson, 2008; Gurteen et al., 2011). In 

order to truly learn a word, children must successfully encode and retain a word-referent 

association in memory for later retrieval (Vlach & DeBrock, 2019). The dynamic associative 

https://www.sciencedirect.com/science/article/pii/S0010027719300563?via%3Dihub#b0250
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account posits that retention is driven by associative learning mechanisms that gradually 

strengthen word-object relationships over multiple exposures across situations and contexts 

(McMurray et al., 2012). In support of this theory, Hartley et al. (2020) report that children’s 

retention is more accurate following cross-situational learning (involving multiple word-

referent exposures) than fast mapping (involving individual naming events).  

 Evidence from neurotypical development clearly demonstrates that word learning and 

attention are inter-related. To correctly identify a novel word’s intended referent from myriad 

distractors, children must attend to multiple components of their environment, coordinating 

their attention to visual and auditory stimuli concurrently (Axelsson et al., 2012; Samuelson 

et al., 2017). This requires children to shift their attention between stimuli, ignore competing 

irrelevant stimuli, and attend to correct stimuli during naming events. Research has revealed 

that neurotypical children can flexibly shift their attention to multiple information sources 

within their environment to decipher the meanings of words (Hollich et al., 2000; Preissler & 

Carey, 2005). Moreover, the extent to which neurotypical children attend to stimuli during 

referent selection also influences their subsequent retention of newly learned words (e.g. 

Hilton et al., 2019; Hilton & Westermann, 2017, Smith & Yu, 2013).  Heightened interest in 

certain objects increases children’s attentional focus, strengthening their encoding of word-

referent associations (Spiegel & Halberda, 2011). For example, Ackermann et al. (2020) 

discovered that children learned more words associated with interesting stimuli (e.g. 

animals), compared to stimuli they were less interested in (e.g. objects), suggesting that 

category preferences shape children’s word learning.  

Word learning environments are often rife with clutter, including numerous familiar and 

unfamiliar non-target objects (distractors) with known and unknown names. While children 

may show superior learning for words associated with categorically interesting target stimuli 

(e.g. animals; Ackermann et al., 2020), the presence of such stimuli as non-target distractors 
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during referent selection could have a disruptive influence on subsequent retention. Only a 

small number of studies to date have investigated how manipulating children’s attention to 

distractor stimuli affects word learning. For example, Pomper and Saffran (2018) found that 

neurotypical children could retain the names of novel objects that were labeled in the 

presence of familiar objects with low salience, but not when familiar objects were highly 

salient. Similarly, Axelsson et al. (2012) found that neurotypical 2-year-olds’ word learning 

was hindered when attention to distractors was not suppressed, compared to when target 

objects were highlighted and distractor objects concurrently dampened (Zosh et al., 2013). 

Axelsson and Horst (2014) also suggested that when the same distractors were repeated 

across multiple referent selection trials, neurotypical children could more easily retain novel 

words than when different distractors objects appeared on each trial. This indicates that 

contextual repetition facilitates novel word encoding due to the reduced demand required to 

rule out distractors over target stimuli. Overall, these studies reveal that increased attention to 

distractor objects can limit children’s ability to encode sufficient information about novel 

targets, resulting in fragile word-referent associations that may not be retrievable after a 

delay. 

Like neurotypical children, autistic children with varying language abilities can utilise 

lexical heuristics such as ME to accurately identify novel word-object pairings (de Marchena 

et al., 2011; Parish-Morris et al., 2007; Preissler & Carey, 2005). Autistic children can also 

successfully disambiguate novel word meanings through tracking cross-situational word-

object correspondences over multiple naming events (Hartley et al., 2020; Venker, 2019). 

Interestingly, Hartley et al. (2019) found that receptive vocabulary in autistic children was 

predicted by their ability to accurately employ ME to identify novel word meanings at 

referent selection, suggesting that optimising children’s environment during naming events 

could have long-term benefits for vocabulary development. Potentially then, poor 
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environments that hinder autistic children’s accurate referent selection could have detrimental 

consequences for their long-term vocabulary development.  

Whilst it is evident that autistic children can successfully perform referent selection in 

an array of settings, little research has examined their ability to retain novel words. Recent 

studies have found that language delayed autistic children can successfully retain the names 

of novel objects as accurately as neurotypical children matched on receptive vocabulary 

following ME-based referent selection (e.g. Carter & Hartley, 2021; Hartley et al., 2019).  

Rothwell et al. (accepted, see Study 2) investigated how attentional biases influence the 

relationship between fast mapping and retention by comparing autistic and neurotypical 

children’s ability to learn labels associated with high interest stimuli (novel animals) and 

neutral interest stimuli (novel objects). Importantly, the distractors in this study were all 

familiar neutral interest stimuli (e.g. balloon, chair, hat). They found that language delayed 

autistic children and neurotypical children matched on receptive vocabulary both successfully 

identified the names of novel animals and objects via ME. When comparing retention of 

autistic and neurotypical children after a 5-minute delay, both groups retained novel word-

object associations with similar accuracy, but autistic children retained word-animal 

associations with greater accuracy. Unexpectedly, autistic children retained names for novel 

objects and novel animals with significantly greater accuracy than neurotypical children 

when retention was tested after 24 hours. However, although autistic children were 

unimpaired on measures of learning accuracy, they were significantly slower to indicate 

correct referents during referent selection. These findings highlight that autistic children can 

learn words for different types of stimuli at least as accurately as vocabulary-matched 

neurotypical children when distractors facilitate ME and do not excessively draw children’s 

attention away from targets. Nevertheless, autistic children’s slower reaction times at referent 
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selection suggest that their processing of audio-visual input during early word learning 

processes may be less efficient (also see Hartley et al., 2020).  

Whilst neurotypical children can flexibly shift their attention across their environment 

during word learning, autistic children often have difficulty allocating sustained or selective 

attention (e.g. Courchesne et al., 1994; Ozonoff et al., 1994, 2004). Due to diagnosis-defining 

restricted and repetitive behaviours and interests (RRBIs; Kanner, 1943; Honey et al., 2012; 

Richler et al., 2007), autistic children often fixate intensely on a narrow range of topics or 

stimuli. Consequently, autistic children may often restrict attentional resources to information 

pertaining to their specific interests, and struggle to disengage from these stimuli, potentially 

limiting input and informants for word learning (Ellis et al., 2014; Fitneva & Christiansen, 

2011; Oakes, 2011). For example, Walton and Ingersoll (2013) found, that unlike 

neurotypical children, autistic children may mismap novel words to their own focus of 

attention rather than utilising cues from a social informant to identify intended referents (also 

see Baron-Cohen et al., 1997). Similarly, Parsons et al. (2019) found that children at high risk 

of developing autism engaged less with target objects than neurotypical children, and spent 

more time distracted by other environmental features such as an experimenter’s face. The 

limited time that autistic children spent focusing on target objects was associated with lower 

concurrent and longitudinal verbal abilities, demonstrating that atypical distribution of 

attention could be a limiting factor for language development in infants at familial risk for 

autism. Together, these studies indicate that restricted interests and attentional mechanisms 

could impede autistic children’s word learning by limiting their ability to intake the right 

visual-auditory stimuli at the right times. If autistic children are more interested in non-target 

distractors than the intended referent of a novel word, they may struggle to disengage from 

these distracting stimuli and be at increased risk of forming inaccurate word-referent 

mappings.  



 
 

78 

 

How autistic children’s performance on word learning tasks is influenced by their 

attention to distractor stimuli is largely unknown. Research from Venker et al. (2021) 

demonstrated that when distractor stimuli were more salient than target stimuli, autistic 

children decreased their visual attention to the target, but neurotypical children were 

unaffected. Similarly, Venker et al. (2022) highlighted that perceptual salience of target 

stimuli also disrupted the attentional allocation of autistic children and thus novel word 

recognition. However, little is known about how categorical salience determines autistic 

children’s word learning, or how retention is affected by attention. Studying autistic 

children’s learning in the presence of high-interest distractors may provide important insights 

into how autistic children’s language acquisition may be hindered by their environment. 

Crucially, discovering how autistic children’s word learning is influenced by distractors that 

are more or equally interesting relative to target stimuli will inform understanding of optimal 

word learning settings. This knowledge will not only advance understanding of why many 

autistic children demonstrate language deficits in natural learning environments that are rife 

with distractions (e.g. Anderson et al., 2007; Tager-Flusberg et al., 2005), but also indicate 

how practitioners can craft audio-visual environments to scaffold learning.   

The objective of the present study was to investigate how autistic and neurotypical 

children’s word learning is impacted by the presence of non-target distractors that are as 

salient, or more salient, than to-be-learned target referents. Autistic and neurotypical children 

matched on receptive vocabulary completed two word learning tasks on different days. In one 

task, children learned names for four novel animals via ME-based fast mapping. In the other 

task, children learned names for four novel objects. In both conditions, the distractor stimuli 

were familiar animals. It is well-documented that children generally prefer animal stimuli 

over non-animal stimuli (Ackermann et al., 2020; Celani, 2002; Prothmann et al., 2009) and 

many autistic individuals are particularly fond of animals (Martin & Farnum, 2002). The 
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strength of children’s interest in animals was measured via a caregiver questionnaire and we 

examined whether this predicted children’s word learning performance. Retention of the 

novel names was tested after 5 minutes and 24 hours, based on literature stating that 

neurotypical 2-year-olds often forget new words after just five minutes (Horst & Samuelson, 

2008), and a period of sleep is necessary to assimilate novel words (Dumay & Gaskell, 2007). 

Response time and accuracy were measured using a touch-screen computer.  

Based on previous evidence (e.g. Carter & Hartley, 2021; Hartley et al., 2019, 2020; 

Rothwell et al., accepted, see Study 2), we anticipated that both neurotypical children and 

autistic children would apply the ME principle to accurately perform referent selection 

regardless of whether distractors were more salient than targets. However, we predicted that 

children would be slowest to map labels during referent selection (e.g. Rothwell et al., 

accepted, see Study 2), particularly in the presence of target objects, which may be less 

interesting than the animal distractors (whereas target animals are equally interesting). Since 

the word learning mechanisms of autistic children are unimpaired, we also expected that 

children in both groups would accurately retain labels for both object and animal stimuli 

(Rothwell et al., accepted, see Study 2). Potentially, children with a particularly strong 

interest in animals could find it more difficult to retain names for target objects due to 

increased competition from distractor animal stimuli during training.  In particular, autistic 

children may demonstrate poorer short- and long-term retention due to increased interest in 

animal non-target stimuli during encoding, especially during the object condition, where 

autistic children may have greater difficulty disengaging attention away from animal 

distractors to focus on target objects. By comparing neurotypical and autistic populations, this 

research will reveal the importance of attentional flexibility to word learning and determine 

the consequences of preferential biases to selective stimuli. Investigating whether word 
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learning is affected by children’s categorical interests will have significant implications for 

understanding their language acquisition.   

2.4. Method 

Participants 

Participants were 18 autistic children (15 males, 3 females; M age = 90.61 months; 

SD = 19.97) recruited from specialist schools, and 19 neurotypical children (10 males, 9 

females; M age = 51.68 months; SD = 17.38) recruited from mainstream schools, nurseries, 

and Lancaster University BabyLab (see Table 1). Please refer to Appendix E for additional 

information about the involvement of individual participants in multiple studies reported in 

this thesis. All participants had normal or corrected-to-normal colour vision, and were 

monolingual, native English speakers. Autistic children had received a pre-existing diagnosis 

from a qualified clinician, using standardised instruments (i.e. Autism Diagnostic 

Observation Scale and Autism Diagnostic Interview – Revised; Lord et al., 1994, 2002) and 

expert judgement. Diagnoses were confirmed via the Childhood Autism Rating Scale 2 (ASD 

M score = 33.78, SD = 10.23; NT M score = 16.34, SD = 1.91; Schopler et al., 2010). This 

measure was usually completed by class teachers, but it was completed by caregivers for ten 

neurotypical children who were tested at our BabyLab due to COVID-19 restrictions. Autistic 

children were significantly older, t(35) = -6.33, p  <.001, d = 2.08, and had significantly 

higher CARS scores, t(33) = -7.30, p  <.001, d = 2.37, than the neurotypical children.  

Groups did not significantly differ on receptive vocabulary as measured by the British 

Picture Vocabulary Scale 2 (BPVS; ASD: M age equivalent = 56.78 months, SD = 23.54; NT: 

M age equivalent = 60.26 months, SD = 24.69; Dunn et al., 1997), t(35) = 0.44, p = .66. 

Receptive vocabulary was used to match the groups as it demonstrates children’s ability to 

learn word-referent relationships (Bion et al., 2013). Children’s expressive vocabulary 
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abilities were measured using the Expressive Vocabulary Test 2 (EVT; ASD: M age 

equivalent = 51.22 months, SD = 29.45; NT: M age equivalent = 58.16 months, SD = 19.91; 

Williams, 2007), or the expressive language module of the Mullen’s Scales of Early Learning 

(Mullen, 1995) for children who scored below the baseline on the EVT. The groups did not 

significantly differ on expressive vocabulary abilities, t(35) = 0.84, p = .40.  

Children’s non-verbal intellectual abilities were measured using the Leiter-3 (Roid et 

al., 2013). The average IQ score for the autistic group was M = 79.08 (SD = 13.29), and the 

average IQ of the neurotypical group was significantly higher at M = 103.13 (SD = 12.28), 

t(26) = 4.98, p <.001, d = 1.88. Scaled IQ scores could not be calculated for four neurotypical 

children as they were younger than 3-years-old. However, the groups’ raw scores on the 

Leiter-3 did not significantly differ (ASD: M = 60.54, SD = 16.28; NT: M = 57.42 months, 

SD = 18.58), t(30) = -0.49, p = .63, suggesting that when age was not considered, their non-

verbal cognitive abilities were similar at the time of testing. To assess attentional behaviours, 

the Conner’s Teacher Rating Scale (CTRS-15; Pupura & Lonigan, 2009) was completed by 

children’s class teachers, or the caregivers of the ten neurotypical children who were tested in 

our BabyLab. The mean raw scores for the autistic children (M = 18.62, SD = 11.72) were 

significantly higher than those of the neurotypical children (M = 9.63, SD = 5.78), t(33) = -

2.95, p = .006, d = 0.97. The Repetitive Behaviour Questionnaire was completed by the 

participants’ caregivers to assess the extent of their restrictive and repetitive behaviours 

(RBQ; Leekam et al., 2007). Autistic children (M score = 42.17, SD = 8.97) had significantly 

higher scores on the RBQ than neurotypical children (M score = 25.58, SD = 5.03), t(35) = -

6.99, p  <.001, d = 2.28. 

Finally, to confirm that we recruited participants who were interested in animals and 

ensure animals would be a ‘high interest’ category for such children, we created a caregiver 
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questionnaire assessing the extent of children’s animal interests (min-max scores: 0-34). 

Autistic children (M score = 24.17, SD = 5.71) and neurotypical children (M score = 23.42, 

SD = 4.03; see Appendix A) did not differ significantly on this measure, t(35) = -0.46, p = 

.65. One autistic child was excluded from the study due to their lack of interest in animals. 

An additional five participants were excluded from the study; one neurotypical 

participant who was unable to complete the touch-screen task, two neurotypical participants 

who scored above the ‘low to minimal symptoms’ threshold on the CARS-2, and two 

children who did not complete both experimental conditions due to school closures during the 

COVID-19 pandemic (one autistic child) or absence (one neurotypical child). Due to 

pandemic-related school closures, five autistic children did not complete the Leiter-3, and the 

teachers of two autistic children did not complete the CTRS-15 and CARS-2. These 

participants were retained in the study as they completed the experimental tasks and other 

participant variables.   

All procedures in the present study were in accordance with the ethical standards of 

institutional and national research committees. Informed consent was obtained from 

caregivers prior to children’s participation and a debrief was provided after participation.  
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Table 1 

Characteristics of autistic and neurotypical Participants (SD and Ranges in Parentheses) 

 

Note. NT: neurotypical; ASD: autism spectrum disorder; BPVS: British Picture Vocabulary 

Scale, CARS: Childhood Autism Rating Scale, CTRS: Conner’s Teacher Rating Scale, RBQ: 

Repetitive Behaviour Questionnaire. Participants experienced both conditions. 

 

Materials 

The study was administered via a touch-screen computer running MATLAB. Audio 

stimuli for the word learning task included eight two-syllable unfamiliar words (kita, teebu, 

ipis, gazzer, colat, blicket, regli, zepper) selected from academic sources such as the NOUN 

database (Horst & Hout, 2016). Visual stimuli included high-resolution colour photographs of 

4 unfamiliar objects, 4 unfamiliar (but real) animals (see Figure 1), 6 familiar objects, and 22 

familiar animals, all presented on a grey background. All photographs were approximately 

6cm2 and 500 x 500 pixels when displayed on the screen. Unfamiliar stimuli were selected 

because children would not have pre-existing linguistic labels for them. Familiar objects and 

Pop. N Gender Chron. 

Age (M, 

months) 

BPVS. 

age 

equiv.   

(M, 

months) 

Express. 

Lang. 

age 

equiv.  

(M, 

months) 

CARS 

raw 

score 

(M) 

Leiter-3 

raw 

score 

(M)  

CTRS 

raw 

score 

(M) 

RBQ 

raw 

score 

(M) 

Anima

l 

Interes

t score 

(M) 

           

NT 19 9 

females, 

10 males 

51.68 

(17.38, 

28-93) 

60.26 

(24.69, 

34-101) 

58.16 

(19.91, 

28-104) 

16.34 

(1.91, 

15-

21.5) 

57.42 

(18.58, 

31-102) 

9.63 

(5.78, 

2-20) 

25.58 

(5.03, 

20-35) 

23.42 

(4.03, 

16-34) 

ASD 18 3 

females, 

15 males 

90.61 

(19.97, 

67-132) 

56.78 

(23.54, 

24-97) 

51.22 

(29.45, 

5-92) 

33.78 

(10.23, 

19-52) 

60.54 

(16.28, 

38-83) 

18.62 

(11.72, 

5-40) 

42.17 

(8.97, 

29-59) 

24.17 

(5.71, 

17-34) 

 

Group 

comparison 

t-test (p) 

 

  

 

 

 

 

 

<.001 

 

 

.66 

 

 

.40 

 

 

<.001 

 

 

.63 

 

 

.006 

 

 

 

<.001 

 

 

.65 
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animals were selected on the basis that most children understand their linguistic labels by 

around 16 months (Fenson et al., 1994). Three pictures of six familiar objects and six familiar 

animals were employed in the warm-up trials (monkey, owl, tiger, squirrel, giraffe, mouse, 

clock, train, handbag, top, swing, key), mirroring the combinations of categories children 

would experience in the forthcoming trials. Thus, children saw a different combination of the 

three images dependent on whether they were viewing animals only, objects only, or a 

mixture of animals and objects in that test phase. Pictures of 16 familiar animals were 

presented during referent selection trials in both the animal and object conditions. These were 

divided into two sets and counterbalanced across conditions (1. turtle, bear, horse, dog, lion, 

frog, duck, butterfly; 2. pig, rabbit, cat, bird, bee, fish, elephant, cow). Familiar animals 

allocated to the two conditions were matched on mean comprehension age (15 months for 

both sets) and frequency of animals belonging to particular categories (e.g. insects, birds). 

Familiar animals within each set were divided into pairs and presented alongside an 

unfamiliar object or animal in referent selection trials of both conditions. In every trial type, 

three pictures were presented side by side. The names of stimuli presented together were 

selected on the basis that they were phonologically distinct, and their images clearly 

contrasted in shape and colour.  

Stimuli names were recorded by a female speaker from the local area and presented 

through the computer’s integrated speakers. The audio files were recorded using a Sony 

ECM-MS907 Digital Microphone, and the software Audacity 2.2.2. The auditory stimulus 

were edited for timing and clarity in Audacity, and the volume of all files normalised. The 

carrier phrases (e.g. “Can you see the [label]”, “Touch the [label]”) and the labels (e.g. 

“elephant”, “kita”) were edited separately, so they were all distinct files. However, when the 

MATLAB program was used to run the experiment, the audio files were presented 

sequentially. This was to ensure that there were no differences in the carrier phrases that may 

offer a hint to children regarding the forthcoming labels. Three web cameras attached to the 
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left, right, and centre of the computer were used to record participants’ visual attention and 

behaviour during the study, although these data are not reported in the present paper. 

Figure 1 

Sets of unfamiliar objects and animals used in the word learning task 

 

 

 

 

 

Procedure 

Since the present study aimed to investigate how animal interests, a common 

fascination of many autistic and neurotypical children (Martin & Farnum, 2002; Prothmann 

et al., 2009), affects word learning, caregivers completed a questionnaire about their child’s 

interest in animals (see Appendix A). Examples of questions included: ‘How often does your 

child enjoy interacting with real animals?’ and ‘How much does your child enjoy listening to 

stories about realistic animals?’ (responses: 1 - they don’t particularly enjoy it, 2 - they enjoy 

it a little, 3 - they enjoy it a lot, 4 - they really, really enjoy it).  

Participants were tested individually in their own school or nursery, or Lancaster 

University BabyLab, and were accompanied by a familiar adult when required. Children were 

assessed using the BPVS, EVT or MSEL, and Leiter-3 by the researcher over multiple 

sessions on different days. Children completed two within-subjects conditions of the word 

learning task – animal stimuli and object stimuli – administered on different days (average of 

7 days apart, order counterbalanced). The word learning task was delivered via a touch-screen 

Unfamiliar Animals 

Unfamiliar Objects 
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computer. Children were seated approximately 50-70cm away from the screen on a height 

adjustable chair. The word learning task was very similar to that reported by Rothwell et al. 

(accepted, see Study 2) aside from stimuli used, and consisted of the following stages, 

presented in a fixed order: 1. Warm-up trials, 2. Referent selection trials, 3. Five-minute 

delay, 4. Retention trials, 5. 24-hour delay, 6. Retention trials (see Figure 2). The 

experimenter sat quietly while the participant was engaged in the task and offered verbal 

praise for attention and good behaviour.  

Figure 2 

Examples of trial types in the word learning task 
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Warm up trials 

Prior to the study beginning, children were presented with a cartoon image of a hand 

that appeared in each of three touch-screen panels. The experimenter asked the child to “Put 

their hand on the picture” in order to encourage children to become comfortable touching the 

screen. Then, children completed three warm-up trials. Children were instructed to “Put your 

hand on the picture that the computer asks you to”. During warm-up trials, children were 

presented with images of three familiar stimuli in the left, middle, and right sections of the 

touchscreen. After 2 seconds, participants heard “Look, ‘2s gap’ [label]!”, ‘1s gap’, “Can you 

see the [label]?” ‘1s gap’, “Touch the [label]!”. Children then had 12 seconds to respond. The 

same instructions repeated up to six times if children did not respond. Responses were 

accepted only after the first label utterance, preventing children from skipping through trials 

without hearing the requested labels. Hence, children who took longer to respond heard more 

repetitions of the label (this factor is examined in our analyses).  Children received feedback 

when they made their selection; either audio praise if they responded accurately (e.g. “Well 

done, you touched the [label]!”) or corrective feedback if they responded inaccurately 

(“Actually, this is the [label]. Can you touch the [label]?”). Following inaccurate responses, 

the correct referent was highlighted by a green border and children could retry up to five 

times. Children in both groups responded significantly above chance levels at first attempt on 

the warm-up trials (MNT = 0.96, MASD = 0.91) demonstrating that they understood the task 

requirements and were familiar with the requested referents.  The location and order of 

requested stimuli were counterbalanced across participants. Children saw different sets of 

images for the warm-up trials in each condition and for different study phases, to mirror the 

categories of stimuli that were present in the upcoming study phase (order counterbalanced).  
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Referent selection trials 

Following the warm-up trials, children completed eight referent selection trials. These 

followed the same format as the warm-up, except children did not receive feedback following 

their responses. In each condition, four novel words were taught via a fast-mapping paradigm 

based on Horst and Samuelson (2008). Children viewed four sets of pictures (each containing 

one unfamiliar picture and two familiar animals). Each set was presented twice; on one trial 

the novel picture (either an animal or object) was requested (novel name trial: “Look, regli! 

Can you see the regli? Touch the regli!”), and on another trial a familiar animal was requested 

(familiar name trial: “Look, cow! Can you see the cow? Touch the cow!”). Familiar name 

trials were included to prevent participants from demonstrating a novelty preference and only 

attending to novel items, and instead encourage them to examine every item. This is vital as 

fast mapping requires children to attend to known distractors in order to exclude them as 

referents for a novel word (Halberda, 2003). Novel name trials promoted active learning of 

new word-referent pairings; since participants have prior knowledge of the familiar stimuli 

labels, they can decipher the referent of the novel label by applying the mutual exclusivity 

principle. 

 Trial order was pseudo-randomised with the constraints that the same set of pictures, 

or the same trial type (familiar name or novel name), were never presented on more than two 

trials sequentially. Positioning of stimuli on the screen (left, middle, right) was pseudo-

randomised across trials on the basis that the target did not appear in the same location more 

than twice consecutively. The eight novel words were divided into two sets (1. kita, teebu, 

ipis, gazzer; 2. colat, blicket, regli, zepper) and were counterbalanced across conditions. 

Novel words were pseudo-randomly allocated to the novel items, so different novel words 

represented different novel items between participants. Familiar animal stimuli were divided 
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into two sets of eight to obtain a degree of control, but these were also counterbalanced 

across conditions. 

5-minute delay 

Immediately following referent selection, children engaged in an unrelated task for 

five minutes (e.g. building with blocks or colouring). None of the familiar or unfamiliar 

experimental stimuli were present during this stage. 

Retention trials 

After the five-minute delay, children completed one warm-up trial to re-engage their 

attention (exactly as described above). Eight retention trials immediately followed (see Figure 

2 for an illustration of each trial type). Each novel word was tested on two retention trials, 

assessing whether children’s retention of newly mapped word-referent associations differed 

between stimulus categories they were more interested in (animals), compared to those they 

were less interested in (objects). Trial order was pseudo-randomised, ensuring that the same 

set of stimuli was never presented on more than two trials consecutively. Positioning of 

stimuli on the screen (left, middle, right) was pseudo-randomised across trials with the 

constraint that the target did not appear in the same location more than twice sequentially. 

Each picture served as a target on two trials and as a foil on four trials. 

24-hour retention trials 

After a 24-hour delay, children completed a second block of eight retention trials. Due 

to practical constraints, not all children experienced exactly a 24-hour delay (M delay = 24.0 

hours, range: 22.1 – 28.0 hours).  The retention trials were preceded by three warm-up trials 

(as described above) to remind children of the task requirements and how to respond. These 

24-hour retention trials were identical to the 5-minute retention trials with the exception that 

stimuli were presented in different orders and combinations.  
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2.5. Results 

Accuracy and response time data were analysed via mixed-effects models using the 

glmer and lmer functions from the lme4 package in R (Bates et al., 2015). Population was 

contrast coded as -0.5 (neurotypical) and 0.5 (autistic). Condition was coded as -0.5 (object) 

and 0.5 (animal). Trial type was coded as -0.5 (familiar) and 0.5 (novel). By-word referent 

selection accuracy was coded as -0.5 (incorrect) and 0.5 (correct) when included as a fixed 

effect in retention accuracy analyses. Total referent selection accuracy was coded as 0-4, 

incorporating the number of novel referent selection trials that children were correct on. Total 

5-minute retention accuracy was coded as 0-8. Trial-level accuracy as a dependent measure 

was coded as 1 (correct) or 0 (incorrect) for all analyses. Number of labels heard at referent 

selection per novel word was coded as 1-6 (autistic M = 2.11, SD = 1.11; neurotypical M = 

1.90, SD = 0.75). 

The likelihood of children responding correctly by chance on each trial was 33%. All 

models were built up sequentially, adding in one fixed effect at a time and comparing each 

model with the previous best-fitting model using log-likelihood tests. Each analysis started 

with a baseline model containing by-participant and by-word random intercepts, with a 

random slope of condition x trial type per participant for referent selection, or condition per 

participant for retention phases.  If some models in a sequence failed to converge, the random 

effects were simplified until all models in the sequence successfully converged. Only final 

models are reported; please refer to Appendix B for full details of the model building 

sequences. 

For analyses of individual differences, receptive vocabulary was coded as the 

participant’s age equivalent on the British Picture Vocabulary Scale 2 (BPVS; Dunn et al., 

1997). Expressive vocabulary was coded as the participant’s age equivalent on the Expressive 

Vocabulary Test 2 (EVT; Williams, 2007) or Mullen’s Scales of Early Learning for children 
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who scored below the baseline on the EVT (MSEL; Mullen, 1995). Non-verbal intelligence 

was coded as the participant’ raw score on the Leiter-3 (NVIQ; Roid et al., 2013; min-max 

range: 0-152). Autism severity was coded as the participant’s raw score on the Childhood 

Autism Rating Scale 2 (CARS-2; Schopler et al., 2010; min-max range: 15-60). Attention 

score was coded as the participant’s raw score on the Conner’s Teacher Rating Scale (CTRS-

15; Pupura & Lonigan, 2009; min-max range: 0-45). Repetitive behaviour was coded as the 

participant’s raw score on the Repetitive Behaviour Questionnaire (RRB; Leekam et al., 

2007; min-max range: 20-66). Animal interest was coded as the participant’s raw score on our 

animal interest questionnaire (min-max range: 0-34). Chronological age was coded as the 

participant’s age in months. Unfortunately, we were unable to test the effect of nonverbal 

intelligence, autism severity, or attention for the autistic group as interruptions in data 

collection caused by the COVID-19 pandemic prevented us obtaining these measures for 

some children.  

Referent selection accuracy 

Referent selection accuracy was analysed via generalised linear mixed-effects models 

testing the effects of population, condition, and trial type. Four trials from the neurotypical 

group and two trials from the autistic group were removed due to a technical error. An 

additional three trials were removed from the autistic group due to one child choosing 

multiple referents simultaneously with their head and hand. This analysis contained 283 data 

points from autistic children and 300 data points from neurotypical children. Descriptive 

statistics for referent selection accuracy are presented in Figure 3. 
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Figure 3  

Mean referent selection, 5-minute retention, and 24-hour retention trial accuracy for 

neurotypical (NT) and autistic children (ASD), error bars show ± 1 SE. Stars above columns 

indicate where performance was significantly different from chance, indicated by the dotted 

lines (*p <.05) 

 

The final model included a trial type x condition interaction (z = -4.89, p <.001; Table 

2). This interaction was deconstructed by testing the effect of condition for familiar and novel 

trial types separately, revealing that children responded more accurately in the animal 

condition than the object condition on familiar trials (z = 4.44, p <.001; object condition M = 

0.91; animal condition M = 0.95), but there was no significant effect of condition for novel 

trials (z = 0.01, p = 1.00; object condition M = 0.84; animal condition M = 0.82). It is 

noteworthy that both groups responded very accurately on novel trials with object and animal 

targets (neurotypical children, animal condition M = 0.82, neurotypical children, object 
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condition M = 0.92; autistic children, animal condition M = 0.81, autistic children, object 

condition M = 0.75), demonstrating that they could use mutual exclusivity effectively. 

We also examined whether individual differences between participants in each 

population predicted additional variability in their referent selection accuracy. Although the 

populations did not significantly differ on referent selection accuracy, it is possible that 

different factors contributed to their successful performance (autistic individuals can attain 

‘typical’ performance on psychological tasks via ‘atypical’ routes and compensatory 

strategies; Happé, 1995; Norbury et al., 2010). As such, the following analyses were 

conducted on data from the autistic and neurotypical groups separately.  

For autistic children, the final model included an additional fixed effect of expressive 

vocabulary (z = 4.12, p <.001; see Table 2). Higher expressive vocabulary scores were 

associated with more accurate referent selection in the autistic group. Note the inclusion of 

expressive vocabulary resulted in the trial type by condition interaction no longer being 

significant for the autistic children. This suggests that this effect in the combined model was 

driven primarily by the neurotypical children.  

For neurotypical children, the final model included an additional fixed effect of 

nonverbal intelligence (z = 2.72, p = .006; see Table 2). Neurotypical children with higher 

non-verbal intelligence scores responded more accurately on referent selection trials.  
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Table 2 

Summaries of the fixed effects in the final generalised linear mixed-effects models (log odds) 

of children's accuracy on referent selection trials, and how individual differences influence 

referent selection trial accuracy 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
z Pr(> |z|) 

Referent Selection (Intercept)  5.59 0.81 6.88 <.001 

Accuracy Trial Type     -6.97 1.41 -4.96 <.001 

 Condition 4.46 0.91 4.91 <.001 

 Trial Type x Condition -8.75 1.79 -4.89 <.001 

  AIC BIC logLik deviance 

  360.8 426.3 -165.4 330.8 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
z Pr(> |z|) 

Autistic Children (Intercept) 2.21 2.00 1.10 .27 

 Trial Type     -5.64 3.52 -1.60 .11 

 Condition 3.91 3.26 1.20 .23 

 Expressive Vocabulary   0.05 0.01 4.12 <.001 

 Trial Type x Condition -6.63 6.38 -1.04 .30 

  AIC BIC logLik deviance 

  171.3 229.6 -69.6 139.3 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
z Pr(> |z|) 

Neurotypical  (Intercept) 0.98 1.39 0.71 .48 

Children Trial Type     -3.65 1.51 -2.41 .016 

 Condition 1.95 1.20 1.63 .10 

 Nonverbal Intelligence 0.07 0.02 2.72 .006 

 Trial Type x Condition -7.97 2.35 -3.39 <.001 

  AIC BIC logLik deviance 

  183.3 242.6 -75.7 151.3 

 

Referent selection response times 

Children's response times for correctly answered referent selection trials were 

analysed using linear mixed-effects models, testing the effects of population, condition, and 

trial type. We calculated the average correct response time for each population in each trial 

type and condition, and removed outliers that were ≥ 3SD above the mean for the sub-group 

(e.g. autistic children in the animal condition responding to novel trials). We also removed 
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one trial from an autistic participant who did not use their own hand to respond (they used 

their head).  The models in these analyses included 235 of 241 (98%) correct responses from 

autistic children and 263 of 270 (97%) correct responses from neurotypical children. With 

outliers excluded, mean correct response times for each population are reported in Figure 4.  

Figure 4 

Mean response times on correctly answered referent selection, 5-minute retention, and 24-

hour retention trials for neurotypical (NT) and autistic children (ASD), error bars show ± 1 

SE 

 

The final model included a population x trial type interaction (t = -3.10, p = .004; see 

Table 3). We deconstructed this interaction by testing the effect of population for novel and 

familiar trials individually, and the effect of trial type on the neurotypical and autistic groups 

separately. Autistic children’s response times did not significantly differ between familiar and 

0

0.5

1

1.5

2

2.5

3

3.5

4

Referent

Selection

5-minute

Retention

24-hour

Retention

Referent

Selection

5-minute

Retention

24-hour

Retention

Animal Object

R
es

p
o
n
se

 T
im

e 
(s

)

NT ASD



 
 

96 

 

novel trials (t = 1.60, p = .14), however neurotypical children were significantly quicker to 

respond to familiar trials than novel trials (t = 6.96, p <.001).  

Table 3 

Summary of the fixed effects in the final linear mixed-effects model of children's response 

times on correctly answered referent selection trials, predicted by trial type and population 

Fixed effects 
Estimated 

coefficient 
Std. error t Pr(> |t|) 

(Intercept) 2.75 0.24 11.62 <.001 

Trial Type     0.95 0.18 5.17 <.001 

Population 0.37 0.47 0.79 .43 

Trial Type x Population -1.13 0.36 -3.10 .004 

 AIC BIC logLik deviance 

       2040.1 2107.5 -1004.0 2008.1 

 

5-minute retention accuracy 

Children’s retention accuracy after 5 minutes was analysed via generalised linear 

mixed-effects models testing the effects of population, condition, referent selection accuracy, 

by-word novel referent selection trial accuracy, and number of labels heard at referent 

selection for each target word. Six trials from neurotypical children and five trials from 

autistic children were excluded due to a technical issue. The models in these analyses 

contained 283 data points from autistic children and 298 data points from neurotypical 

children. The descriptive statistics are reported in Figure 3.  

The final model included a population x referent selection accuracy interaction which 

approached significance (z = 1.81, p = .070; see Table 4). The interaction was deconstructed 

by testing the effect of referent selection accuracy on each population separately. Referent 

selection accuracy was significant for the autistic group (z = 2.01, p = .044), but not the 

neurotypical group (z = -0.03, p = .97). While autistic children responded significantly more 
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accurately during 5-minute retention if they were previously more accurate during referent 

selection, referent selection accuracy did not predict 5-minute retention accuracy for 

neurotypical children. We must interpret this result with caution however due to the 

borderline significant interaction effect and model comparison (see Appendix B). 

As for referent selection accuracy, we investigated how individual differences in 

participant characteristics influenced children’s 5-minute retention accuracy. The structure of 

the baseline model was based on the preceding analysis, but as this analysis examined the 

autistic and neurotypical groups separately, the population effects were not included in the 

model. Since the effect of referent selection accuracy was not significant for the neurotypical 

group, this was also removed from the model for neurotypical children. 

For the autistic group, the inclusion of animal interest as an additional fixed effect (z = 

-2.01, p = .045; see Table 4) predicted accuracy. Children with higher animal interest scores 

responded less accurately on 5-minute retention trials.  

For the neurotypical group, the inclusion of expressive vocabulary (z = 2.99, p = .003) 

and receptive vocabulary (z = -2.07, p = .039; see Table 4) as additional fixed effects 

significantly improved model fit. Children with higher expressive vocabularies and lower 

receptive vocabularies were more accurate at retention after five minutes.  
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Table 4 

Summaries of the fixed effects in the final generalised linear mixed-effects models (log odds) 

of children's accuracy on 5-minute retention trials, and how individual differences influence 

5-minute retention trial accuracy 

 

5-minute retention response times 

Children's response times for correctly answered 5-minute retention trials were 

analysed using linear mixed-effects models. Outliers were identified and removed in the same 

way as described for referent selection trials. The models in these analyses included all 140 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
z Pr(> |z|) 

5-Minute Retention (Intercept) -0.29 0.17 -1.67 .10 

Accuracy Population 0.15 0.29 0.51 .61 

 Referent Selection 

Accuracy 

0.24 0.25 0.96 .34 

 Population x Referent 

Selection Accuracy 

0.92 0.51 1.81 .07 

  AIC BIC logLik deviance 

  793.5 828.4 -388.8 777.5 

 Fixed effects Estimated 

coefficient 

Std. 

error 

z Pr(> |z|) 

Autistic Children (Intercept)    1.16 0.74 1.57 .12 

 Referent Selection 

Accuracy 

0.88 0.35 2.49 .013 

 Animal Interest -0.06 0.03 -2.01 .045 

  AIC BIC logLik deviance 

  389.8 415.3 -187.9 375.8 

Neurotypical Children Fixed effects Estimated 

coefficient 

Std. 

error 

z Pr(> |z|) 

 (Intercept) -2.49 0.51 -4.86 <.001 

 Expressive Vocabulary 0.08 0.03 2.99 .003 

 Receptive Vocabulary -0.04 0.02 -2.07 .039 

  AIC BIC logLik deviance 

  390.4 416.3 -188.2 376.4 
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(100%) correct responses from autistic children and 118 of 119 (99%) correct responses from 

neurotypical children. With outliers excluded, mean correct response times for each 

population are reported in Figure 4.  

The inclusion of fixed effects (population and condition) did not improve model fit. 

24-hour retention accuracy 

Children’s retention accuracy after 24-hours was analysed via generalised linear 

mixed-effects models testing the effects of population, condition, by-word referent selection 

accuracy, accuracy on novel referent selection trials, number of labels heard at referent 

selection for each word, and total 5-minute retention accuracy (all coded as described 

previously). Two autistic children in the animal condition did not complete the 24-hour 

retention trials due to absence or non-compliance. Additionally, four trials from autistic 

children and four trials from neurotypical children were excluded due to a technical issue. 

The model in these analyses contained 268 data points from the autistic group and 300 data 

points from the neurotypical group. Descriptive statistics for 24-hour retention accuracy are 

presented in Figure 3.  

The final model contained a population x condition interaction (z = -2.67, p = .008) 

and a fixed effect of total 5-minute retention accuracy (z = 3.59, p <.001; see Table 5). 

Children were more likely to respond correctly at 24-hour retention if they were more 

accurate at 5-minute retention. When deconstructing the interaction, the effect of population 

was significant in the object condition (z = 2.50, p = .012; autistic children responded 

significantly more accurately than neurotypical children), but not the animal condition (z = -

1.31, p = .19; the groups did not significantly differ). Autistic children responded with 

significantly greater accuracy in the object condition compared to the animal condition (z = -
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2.84, p = .005), but neurotypical children did not significantly differ in their response 

accuracy between conditions (z = 1.44, p = .15). 

We also explored how individual differences in participant characteristics influenced 

children’s 24-hour retention accuracy. The model for the autistic group contained 268 data 

points, while the model for the neurotypical group contained 300 data points. The structure of 

the baseline model was based on the preceding analysis, but as this analysis investigated the 

autistic and neurotypical groups separately, the population effects were not included in the 

model. Since the effect of condition was not significant for the neurotypical group, this was 

removed from the model for neurotypical children. 

For the autistic group, the final model included an additional fixed effect of animal 

interest (z = 2.71, p = .007; see Table 5) alongside total 5-minute retention accuracy. Overall, 

children who were more interested in animals were more likely to respond correctly on 24-

hour retention trials.  

For the neurotypical group, the final model included additional fixed effects of non-

verbal intelligence (z = 1.91, p = .056) and attention (z = -2.78, p = .006; see Table 5) 

alongside total 5-minute retention accuracy. Children who had higher non-verbal intelligence 

scores, and more typical attentional mechanisms, were more likely to respond correctly on 

24-hour retention trials. The effect of total 5-minute retention accuracy reduced to marginal 

significance when separating the models by population, suggesting that the relationship 

between 5 minute and 24-hour retention was much stronger for autistic children than 

neurotypical children.  
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Table 5 

Summaries of the fixed effects in the final generalised linear mixed-effects models (log odds) 

of children's accuracy on 24-hour retention trials, and how individual differences influence 

24-hour retention trial accuracy 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
z Pr(> |z|) 

24-hour  (Intercept)   -0.78 0.25 -3.19 .001 

Retention Accuracy Population    0.11 0.22 0.48 .63 

 Condition -0.22 0.21 -1.03 .30 

 Total 5-minute Retention 

Accuracy 

0.22 0.06 3.59 <.001 

 Population x Condition -1.14 0.43 -2.67 .008 

  AIC BIC logLik deviance 

        763.9 803.0 -373.0 745.9 

 Fixed effects Estimated 

coefficient 

Std. 

error 

z Pr(> |z|) 

Autistic Children (Intercept)   -2.86 0.86 -3.31 <.001 

 Animal Interests 0.07 0.03 2.71 .007 

 Total Accuracy at 5-minute 

Retention    

0.32 0.09 3.35 <.001 

 Condition                   -0.80 0.35 -2.26 .024 

  AIC BIC logLik deviance 

        356.2 384.9 -170.1 340.2 

 Fixed effects Estimated 

coefficient 

Std. 

error 

z Pr(> |z|) 

Neurotypical Children (Intercept)    -0.84 0.53 -1.60 .11 

 Nonverbal Intelligence 0.02 0.01 1.91 .056 

 Attention -0.06 0.02 -2.78 .006 

 Total Accuracy at 5-minute 

Retention    

0.16 0.09 1.77 .077 

  AIC BIC logLik deviance 

        402.0 431.6 -193.0 386.0 

 

24-hour retention response times 

Children's response times for correctly answered 24-hour retention trials were 

analysed using linear mixed-effects models. Outliers were identified and removed in the same 
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way as for previous analyses. These analyses included 141 of 143 (99%) correct responses 

from autistic children, and 140 of 141 (99%) correct responses from neurotypical children. 

With outliers excluded, mean correct response times for each population are reported in 

Figure 4.  

The inclusion of fixed effects (population and condition) did not improve model fit. 

2.6. Discussion 

This study investigated whether autistic and neurotypical children can more easily 

identify and retain novel words associated with categories of stimuli they are interested in, 

compared to neutral stimuli, when presented alongside interesting distractor objects. We 

examined children’s accuracy and correct response speed across three distinct stages of word 

learning: referent selection, 5-minute retention, and 24-hour retention after a period of sleep. 

Compared to neurotypical children matched on receptive vocabulary, autistic children did not 

significantly differ in their ability to disambiguate the meanings of novel words using ME or 

recall them after 5 minutes. Individual differences in children’s animal interests affected 

autistic children’s word learning accuracy; children who had stronger interests in animals 

were less accurate during 5-minute retention, but more accurate at 24-hour retention. Autistic 

children were more accurate to retain novel object labels than neurotypical peers during 24-

hour retention, possibly due to the starker perceptual contrasts between familiar animal and 

novel object stimuli during encoding. During referent selection, autistic children responded at 

a similar pace on novel and familiar trials, whereas neurotypical children were quicker to 

respond on familiar compared to novel trials. Overall, autistic children’s observed influence 

of animal interests over the longer timescale, and slower response times during encoding, 

may suggest that the presence of interesting non-target stimuli strengthen autistic children’s 

encoding of novel word-referent associations by boosting their attention within learning 

contexts. 
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Our results demonstrate that children in both groups could accurately utilise ME-

based referent selection to identify the meanings of novel words across conditions. This 

finding adds to a growing body of literature that autistic children can perform fast mapping 

with comparable accuracy to neurotypical children with similar receptive language abilities 

(e.g. Carter & Hartley, 2021; Hartley et al., 2019; Preissler & Carey, 2005; Rothwell et al., 

accepted, see Study 2). We found that neurotypical children responded more accurately 

during familiar trials than novel trials, as children could draw on existing representations of 

familiar words. However, autistic children did not significantly differ in their response 

accuracy between trial types. Both groups of children also responded more accurately in the 

animal condition than the object condition on familiar trials, but not novel trials. Potentially, 

since the perceptual contrasts between familiar and novel stimuli were more distinct in the 

object condition, familiar trial accuracy may be reduced due to children’s attention being 

drawn to the more categorically salient novel object and away from requested familiar animal 

referents. By contrast, in the animal condition, the novel animal may have been relatively less 

distracting due to being categorically similar to the familiar animal stimuli.  

During 5-minute retention, greater referent selection accuracy predicted more accurate 

retention for autistic children, but not neurotypical children. This was unexpected, as many 

studies often demonstrate that referent selection and short-term retention are underpinned by 

separable mechanisms (e.g. Carter & Hartley, 2021; Horst & Samuelson, 2008; McMurray et 

al., 2012; Rothwell et al., accepted, see Study 2). As such, it is possible that the mechanisms 

underlying referent selection and short-term retention may be less distinct for autistic children 

with concomitant language delays (for similar findings, see also Rothwell et al., accepted, 

Study 2, Study 3). 

A striking finding at 5-minute retention was that autistic children with higher animal 

interests were less accurate to respond. Given the link between referent selection and 5-
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minute retention accuracy, it is possible that autistic children with high animal interests paid 

more attention to familiar animal distractors during referent selection, processing and 

encoding information about them as well as the novel stimuli. Consequently, proportionally 

reduced focus on the targets may have had a detrimental impact on 5-minute retention 

accuracy for individuals with especially strong animal interests (Hilton et al., 2019). This 

aligns with previous research from Pomper and Saffran (2018) who discovered that 

neurotypical 3-year-olds were less accurate to identify and retain novel words that were 

taught in the presence of salient distractors, compared to non-salient distractors (see Axelsson 

et al., 2012 for similar results). Likewise, Horst et al. (2010) demonstrated that when 

neurotypical 30-month-olds learnt novel words in the presence of either two, three, or four 

competitor objects, children who encountered more competitors during training were 

significantly worse at retaining the novel word mappings (despite no influence on referent 

selection). These findings highlight that the increased competition from quantity or saliency 

of distractor stimuli experienced during training negatively affected children’s short-term 

novel word retention. This is likely due to greater division of attention between target and 

distractor stimuli reducing the opportunity for novel word-referent encoding. However, in the 

present study, the poorer retention performance of autistic children with greater animal 

interests were only demonstrated at 5-minute retention (not 24-hour retention). Given the 

relatively small body of literature investigating retention in autistic children, further research 

should aim to address this theory further.  

Remarkably, the animal interests of autistic children had the converse effect on their 

retention accuracy after a 24-hour delay compared to a 5-minute delay. After 24 hours, 

autistic children with greater animal interests were more likely to accurately retain novel 

word meanings. As animal distractors were present on all referent selection trials, autistic 

children with greater animal interests may have focused more intensively due to the presence 
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of highly interesting distractors, leading to greater attention towards the visual scene and 

superior information encoding. Studies suggest that children require just the right amount of 

contextual support and variability within word learning environments to encode a rich 

representation of the target, a so-called ‘Goldilocks effect’ (Horst et al., 2013; Kidd et al., 

2012, 2014). Too few attentional demands can be as detrimental to word learning as too many 

attentional demands, both meaning that encoding and retention suffer (Zosh et al., 2013). 

This process may be operating in the present study – when autistic children are presented 

with interesting stimuli, the learning environment is optimal for robust encoding which 

benefits later retrieval only after a period of consolidation has occurred.  

After a 24-hour delay, autistic children retained novel animal words with comparable 

accuracy to neurotypical peers, and more novel object words than neurotypical children. This 

suggests that word learning mechanisms in autistic children remain unimpaired in both short 

and long-term learning phases, despite their delayed vocabulary development. Consistent with 

our similar studies (Rothwell et al., accepted, Study 2, Study 3), we discovered that children 

who responded more accurately during 5-minute retention also responded more accurately at 

24-hour retention. This suggests that the mechanisms underpinning ‘short-term’ and ‘long-

term’ word learning are related for both populations (McMurray et al., 2012). It is plausible 

that, since word acquisition gradually accumulates following multiple exposures to the novel 

word, correct 5-minute retention could reinforce word-referent mappings, improving 

subsequent 24-hour retention accuracy (McMurray et al., 2012).  

The presence of a significant population x condition interaction term at 24-hour 

retention suggested that autistic children responded significantly more accurately than 

neurotypical children in the object condition (MASD = 0.62, MNT = 0.43), but the groups did 

not significantly differ in their response accuracy in the animal condition (MASD = 0.43, MNT 

= 0.51). This provides further insight into how autistic children’s attentional mechanisms 
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influence their longer-term learning. When presenting novel object stimuli alongside familiar 

animal stimuli, the perceptual contrasts between stimuli are more distinct than when 

presenting novel and familiar categorically matched animal stimuli. Consequently, autistic 

children could have encoded more information about the novel objects due to this striking 

distinction, thus affording greater long-term retention of novel word-object representations. 

This is an important insight as it has implications for learning contexts. Potentially, the whole 

environment is influential for learning success, including the distractor stimuli and contrast 

between distractors and targets, as all interact to impact autistic children’s attention and 

likelihood of learning. 

The difference in autistic children’s novel object retention accuracy between 5 minute 

and 24-hour retention indicates that their word learning was influenced by the facilitative 

effect of sleep. Numerous studies have shown that children’s novel word retention improves 

after a nap (e.g. Axelsson et al., 2018; Horváth et al., 2015; Williams & Horst, 2014) and after 

a night’s sleep in both autistic and neurotypical populations (Fletcher et al., 2020; Henderson 

et al., 2012, 2014; Rothwell et al., accepted, see Study 2). These findings can be explained by 

active system consolidation theory which states sleep protects new declarative memories 

from decay and reactivates novel words during sleep to integrate them into long term memory 

(Diekelmann & Born, 2010; Gais & Born, 2004). As such, after sleeping overnight, autistic 

children’s word-object representations were consolidated for greater retrieval at 24-hour 

retention (more so than word-animal representations). This finding aligns with Rothwell et al. 

(accepted, see Study 2), where autistic children also demonstrated larger improvements in 

novel word retrieval between 5-minutes and 24-hours in the object condition than the animal 

condition. Both studies from Rothwell et al. (Study 1, Study 2, accepted) highlight that the 

benefits of interesting animal stimuli are relatively short lasting, and sleep consolidates the 

less interesting stimuli into memory for retrieval after 24-hours. Future research should 
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examine whether the benefit of category interests and long-term retention would apply for 

more complex learning environments - for example, when children are required to remember 

more detailed, semantic information about animals or other categories of interest.  

Whereas response accuracy indicates whether children successfully identified and 

retained word-referent pairings, how quickly children generated correct responses provides 

insight into the efficiency of children’s information processing. Interestingly, at referent 

selection, autistic children responded at similar speed for both novel and familiar trials, whereas 

neurotypical children were significantly slower to respond correctly during novel trials 

compared to familiar trials. Neurotypical children’s response times reflect the use of ME, as to 

decipher the correct referent, children were required to evaluate and eliminate familiar 

distractors, and shift their attention to the novel stimuli (Halberda, 2006). Despite this, autistic 

children took similar times to respond to requests for both familiar and novel stimuli, 

suggesting that they spent longer studying animal distractor stimuli across trial types than 

neurotypical children. Given that at least two thirds of the referent selection stimuli were 

animals pertaining to children’s interests, the longer reaction times present here could be due 

to difficulties disengaging from stimuli that appeal to their interests (e.g. Akechi et al., 2011; 

Chawarska et al., 2012; Elsabbagh et al., 2009). In a similar study, Rothwell et al. (accepted, 

see Study 2) demonstrated that autistic children took longer to correctly identify animal stimuli 

that pertained to their interests due to heightened attentional allocation. It is plausible that in 

the present study, our findings reflect children’s decision making whilst engaging in mutual 

exclusivity. When stimuli that appeal to children’s interests are present, it may be more difficult 

for autistic children to ignore such stimuli, and thus may exhibit greater scrutiny of stimuli 

when excluding incorrect referents and deciphering the target stimuli.  

Autistic children were not significantly slower than neurotypical children to generate 

correct responses on 5-minute or 24-hour retention trials. Previous research investigating 
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autistic children’s response times during word learning tasks is limited and therefore the picture 

is mixed. Some studies find that autistic children are slower to correctly recall word meanings 

at 5-minute retention (e.g. Hartley et al, 2020), although other studies suggest that differences 

between populations are not significant for all stimulus types (e.g. Rothwell et al., accepted, 

Study 2, Study 3). In the present study, the presence of high interest stimuli during referent 

selection potentially strengthened encoding of word-referent representations, with stronger 

representations resulting in quicker retrieval. Previous studies focus on distractor objects that 

are not categories of interest (Hartley et al, 2020; Rothwell et al., accepted, Study 2, Study 3), 

so it is not surprising that categories of interest may enhance encoding of novel word-referents 

during referent selection. As such, the presence of familiar animals may provide the optimal 

amount of attentional division.  

The knowledge gained in this study could potentially inform the development of 

interventions designed to scaffold autistic children’s word learning. Our findings reveal that 

capitalising upon the interests of children during referent selection may increase their 

retention of novel information after a period of sleep, as well as the speed with which these 

novel representations are retrieved. Whilst heightened visual attention affords more robust 

novel word encoding, it is possible that reduced attention to stimuli in word learning 

environments, due to factors such as lack of interest, may hinder vocabulary development. 

This finding highlights the importance of considering children’s individual interests within 

learning contexts. Practitioners can utilise children’s interests to craft interesting, stimulating 

environments to maximise autistic children’s likelihood of learning novel words, and help 

them pay attention to the right things at the right time. The present study adds to a growing 

body of literature that suggests touch-screen computers are an effective platform to teach 

children new words associated with different types of stimuli when distractions are 

minimised (e.g. Hartley et al., 2020; Rothwell et al, accepted, see Study 2). Moreover, the 
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active nature of ME-based referent selection, where children utilise their existing knowledge 

to decipher the correct referent, effectively facilitated the word learning of autistic children 

with language delay. Consequently, these principles could be applied in clinical and 

educational interventions, as well as natural learning environments where possible, to 

scaffold the language development of autistic children with concomitant language delay.  

Of course, we must address the limitations of this study. Firstly, our study set up was 

not reminiscent of a naturalistic word learning context – stimuli presentation was constrained, 

and distractions were minimised. The increased cognitive demands present in natural 

communicative situations could lead to reduced or incorrect visual-auditory input, and 

consequent language delay (McMurray et al., 2012; Venker et al., 2018; Yu & Smith, 2012).  

Thus, it is possible that the accurate word learning of our autistic children could diminish 

when tested in more naturalistic environments. As such, future research should investigate 

autistic children’s word learning under more challenging conditions by displaying more 

complex and diverse arrays of stimuli and presenting stimuli more rapidly. Secondly, we 

chose to match our autistic and neurotypical children on receptive vocabulary, rather than 

chronological age (our autistic sample were significantly older) because this study aimed to 

compare word learning abilities across populations when delays in language development 

were controlled for. When matched on chronological age, studies often show that autistic 

children are delayed on multiple facets of language development in comparison with 

similarly aged neurotypical children (e.g. Charman et al., 2003). We acknowledge that our 

autistic sample may have attained poorer accuracy on our word learning measures than age-

matched neurotypical children. Finally, although we only included participants who had pre-

existing animal interests, we did not specifically recruit autistic children with a ‘special 

interest’ in animals. Special interests are preferred topics that autistic individuals attend to 

with a particularly intensive focus (American Psychiatric Association, 2013; Attwood, 2003; 
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Klin et al., 2007). It is possible that comparing neutral interest stimuli against special-interest 

stimuli would have afforded greater condition and population differences.  

Overall, this study has advanced understanding of how autistic and neurotypical 

children identify and retain novel word meanings, and how these processes are impacted by 

interest in stimulus categories (concerning both targets and, for the first time, distractors). 

Despite our autistic participants’ delayed language development, they responded at least as 

accurately as vocabulary-matched neurotypical children on measures of referent selection and 

5-minute retention, and more accurately when identifying object stimuli at 24-hour retention. 

This suggests that the fundamental mechanisms underpinning word learning are not 

qualitatively atypical in autism. Generally, both autistic and neurotypical children accurately 

identified and retained words at a comparable pace. Since increased animal interests in 

autistic children negatively influenced 5-minute retention, but lead to more accurate longer-

term retention, it is possible that animal distractors strengthen encoding of novel word-

representations in autistic children. However, the contrast between distractor and target 

saliency did not appear to affect neurotypical children’s novel word learning. Together, these 

findings highlight the potential benefits of incorporating stimuli that pertain to autistic 

children’s categories of interests during learning events. To investigate attentional 

mechanisms further, we plan to examine the looking behaviours of autistic and neurotypical 

children during this word learning task. We will explore between-group differences in gaze 

during learning in each condition, to elucidate how within-trial looking behaviour predicts 

word learning accuracy when stimuli differ in categorical salience. 
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Chapter 3: How do autistic and neurotypical children’s interests influence their visual 

attention and accuracy during novel word learning? 

3.1. Chapter Introduction 

Novel word acquisition is a dynamic process that is influenced by numerous factors, 

including lexical heuristics (Mathée-Scott et al., 2021), attention allocation (Ackermann et 

al., 2020; Hartley et al., 2019), and sleep consolidation (Henderson et al. 2014; Williams & 

Horst, 2014). Research continues to establish exactly how these factors affect word learning. 

Heightened visual attention through increased interest to stimuli has been demonstrated to 

result in the formation of more robust word-referent relationships that are less susceptible to 

decay in neurotypical children (e.g. Ackermann et al., 2020; Bion et al., 2013). However, 

limited research has examined this theory in autism.  

Study 1 highlighted that categorically interesting distractor stimuli aided novel word 

retention of autistic children by increasing their attention to the whole scene at encoding. The 

present chapter (Study 2) employed a novel combination of touchscreen and in-trial visual 

attention data to investigate how category interests impact word learning when distractor 

stimuli do not pertain to children’s interests. Specifically, neurotypical and autistic children 

learnt words for novel animal (high interest) and novel object (neutral interest) stimuli in the 

presence of familiar objects at referent selection. Examining these stimuli and methodological 

combinations will elucidate how children’s preferential biases influence learning outcomes. 

Author contribution: Charlotte Rothwell: study design, data collection, analysis, writing, 

review. Gert Westermann: study design, review. Calum Hartley: study design, review. 

A version of this study reporting the accuracy and response time data has been accepted for 

publication in the Journal of Autism Developmental Disorders (Rothwell et al., accepted, ‘How do 

autistic and neurotypical children’s interests influence their accuracy during novel word learning?’). 

The in-trial looking behaviour data will be submitted for publication in a separate follow-up paper. 
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3.2. Abstract 

Children’s word learning is influenced by their visual attention to stimuli. Thus, difficulties 

acquiring language experienced by some autistic children may be due to differences in 

attention and interests, rather than atypical word learning mechanisms. Employing a novel 

combination of accuracy and looking measures, we investigated whether autistic children 

with delayed language development and neurotypical children matched on receptive 

vocabulary differ in accuracy and/or visual attention when learning words associated with 

animals (high interest stimuli) and objects (neutral interest stimuli). In a fast-mapping task, 

both groups identified meanings of novel words associated with unfamiliar animals and 

objects with comparable accuracy. After five minutes, autistic children retained animal names 

with greater accuracy than neurotypical children. Autistic children also showed a greater 

increase in their accuracy between 5 minute and 24-hour retention tests and outperformed 

neurotypical children after a night’s sleep. However, autistic children demonstrated slower 

response times than neurotypical children at each word learning stage. Analyses of in-trial 

visual attention revealed that autistic children looked at targets significantly more often than 

neurotypical children at each word learning stage. Across groups, retention accuracy was 

predicted by visual attention and auditory input at referent selection, indicating a relationship 

between fast mapping and retention mechanisms. Overall, these findings indicate that 

differences in visual attention do not have a detrimental impact on autistic children’s word 

learning under experimental conditions when expectations are based on receptive vocabulary. 

However, the observed differences in visual attention and response times signal reduced 

efficiency of processing audio-visual input that could impair naturalistic language 

acquisition.  

Keywords: Word learning; Autism; Interests; Attention; Referent Selection; Retention 
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3.3. Introduction 

Word learning is one of the most important milestones in children’s cognitive 

development (Carpenter et al., 1998). While neurotypical children can map word-referent 

associations from 6 months (Friedrich & Friederici, 2011), and know the meanings of 

approximately 200 words before 2-years of age (Dale & Fenson, 1996), autism is often 

characterised by significant delays in receptive vocabulary development (Artis & 

Arunachalam, 2023; Kover et al., 2013). Recent studies investigating the causes of autistic 

children’s difficulties acquiring vocabulary have demonstrated that fundamental word 

learning mechanisms function and inter-relate in a manner that resembles neurotypical 

development (Carter & Hartley, 2021; Hartley et al., 2019, 2020). Thus, it may be that autistic 

children’s word learning difficulties can be attributed to attentional differences that affect 

their intake of visual and auditory input (Arunachalam & Luyster, 2018; Venker et al., 2018). 

Here, we directly test this theory by systematically investigating how autistic children’s 

interests in stimuli influence multiple word learning mechanisms. Here, we directly test this 

theory by systematically investigating how autistic children’s interest in stimuli affects 

multiple word learning mechanisms, exploring whether their visual attention differs during 

word learning, and examining how their looking behaviour impacts on learning accuracy.  

When a child detects a novel word in speech, successful word learning is contingent 

on accurately identifying its intended meaning (referent selection; Spiegel & Halberda, 2011; 

Vlach & Sandhofer, 2012). The child must then store the correct word-referent association in 

memory for later retrieval (retention; Gleitman, 1990). According to the ‘dynamic associative 

account’, referent selection and retention utilise separate ‘fast mapping’ and ‘slow learning’ 

mechanisms that operate on different timescales (McMurray et al., 2012; Kucker et al., 2015; 

Samuelson & McMurray, 2017). 
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Fast mapping occurs when children overcome the challenge of referential ambiguity 

(there are often multiple potential targets for a newly heard word; Markman, 1989) by 

correctly inferring meaning from linguistic and environmental cues (Carey & Bartlett, 1978). 

For example, by 2 years, neurotypical children map new word-referent associations on the 

basis that each word has only a single referent (they employ the principle of ‘mutual 

exclusivity’ (ME); Markman, 1989; Markman & Wachtel, 1988). Children’s use of ME is 

commonly tested by presenting an unfamiliar object amongst familiar objects and asking 

them to identify the referent of a novel word (Dautriche et al., 2015). As the familiar objects 

already have known labels, neurotypical children deduce that the unfamiliar object must be 

the referent for the novel word (Frank & Poulin-Dubois, 2002).  

Although referent selection is an important first step towards vocabulary acquisition, 

children are considered to have ‘learnt’ a new word only when they can retrieve its meaning 

after a delay (Gleitman, 1990; Vlach & DeBrock, 2019). Crucially, accurate referent selection 

does not guarantee retention; Horst and Samuelson (2008) demonstrated that neurotypical 

toddlers who perform at ceiling on a fast-mapping task often fail to retain novel words after 

five minutes (also see Bion et al., 2013; Gurteen et al., 2011). While referent selection 

represents a process of attentional narrowing, retention is underpinned by basic associative 

learning mechanisms that gradually strengthen as statistical input increases (Hartley et al., 

2020; McMurray et al., 2012). Newly formed word-referent associations are also 

strengthened by sleep. School-aged neurotypical children’s novel word retention significantly 

improves after a night’s sleep (Brown et al., 2012; Henderson et al., 2012; Ma et al., 2022), 

and preschool children who nap shortly after exposure to novel words are more likely to 

retain their meanings (Horváth et al., 2015; Williams & Horst, 2014). These effects are 

explained by ‘active system consolidation theory’, which proposes that sleep enhances 

retention by reactivating recently encoded word-referent representations, facilitating their 
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integration into memory networks by strengthening synaptic connections (Diekelmann & 

Born, 2010; Gais & Born, 2004).  

Importantly, children’s word learning is intrinsically related to visual attention. During 

fast mapping, children must focus their attention on a novel word’s intended referent while 

excluding non-target competitors (Twomey et al., 2016; Zosh et al., 2013). This requires 

children to navigate their attention across multiple components of the learning environment 

and coordinate their attention to corresponding audio-visual stimuli during naming events 

(Samuelson et al., 2017). Children’s attention during referent selection then influences their 

subsequent retention of novel words (Hilton et al., 2019; Hilton & Westermann, 2017). 

Ackermann et al. (2020) recently reported that neurotypical 30-month-olds find it easier to 

learn names for novel referents belonging to categories they are particularly interested in, 

such as animals. This finding suggests that heightened attention to interesting objects 

increases children’s focus, which in turn benefits their encoding of word-referent 

representations. Direct manipulation of children’s attention via external cues can also impact 

neurotypical children’s novel word retention. For example, Axelsson et al. (2012) found that 

illuminating the target of a novel word after neurotypical children had selected a referent 

elicited superior retention of label-object pairings. Conversely, inattentiveness has been 

associated with reduced retention of words. Smith and Yu (2013) showed that neurotypical 

children who do not coordinate their looking behaviour with a social partner, and thus do not 

focus on intended referents for a sustained period of time, often fail to retain their 

corresponding labels. Together, these studies demonstrate a robust positive relationship 

between visual attention during exposure to novel word-referent associations and likelihood 

of successful learning (Bion et al., 2013; Spiegel & Halberda, 2011). 

Early studies investigating autistic children’s referent selection identified reduced 

sensitivity to social-pragmatic cues as a potential cause of their language learning difficulties 
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(e.g. Baron-Cohen et al.,1997; Preissler & Carey, 2005). However, an array of recent studies 

have demonstrated that autistic children with varying language abilities can successfully 

utilise social cues to inform accurate referent selection (Bean Ellawadi & McGregor, 2016; 

Hani et al., 2013; Luyster & Lord, 2009; McGregor et al., 2013). Furthermore, autistic 

children – including those with delayed language development – can accurately identify 

novel word meanings via lexical heuristics such as ME (de Marchena et al., 2011; Parish-

Morris et al., 2007; Preissler & Carey, 2005). 

In contrast to referent selection, few studies have investigated retention of newly 

learned words in autistic children with delayed language development. In two recent 

exceptions, Hartley et al. (2019, 2020) studied the relationship between identification and 

retention of novel word meanings and explored how these processes are influenced by 

attentional cues. In their 2019 paper, language delayed autistic children and neurotypical 

children (ASD M age = ~8 years; NT M age = ~5 years) matched on receptive vocabulary 

(NT M = ~5 years; ASD M = ~5 years) identified the names of novel objects in a ME-based 

fast-mapping task. After a 5-minute delay, autistic children responded at least as accurately as 

neurotypical children on a retention test. In Hartley et al. (2020), similar samples 

disambiguated word meanings by tracking statistical word-object co-occurrences with 

equivalent accuracy and the groups did not differ on retention tests. However, autistic 

children were significantly slower to identify correct referents under both cued and non-cued 

learning conditions. These findings suggest that fundamental mechanisms supporting word 

learning, and the relationships between them, may not be qualitatively atypical in language 

delayed autistic children. Rather, differences in response time may indicate that autism 

impacts the speed at which children process stimuli during word learning (Arunachalam & 

Luyster, 2018; Hartley et al., 2019, 2020; Tenenbaum et al., 2017).  
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 Whereas neurotypical children can flexibly navigate attention across their 

environment, many autistic children have difficulties allocating sustained/selective attention 

and shifting focus between stimuli (e.g. Courchesne et al., 1994; Noterdaeme et al., 2002; 

Ozonoff et al., 1994). These differences in visual attention have been linked to domain-

general deficits in executive functioning (Burgess et al., 2006; Ozonoff et al., 2004), which in 

turn have been implicated as a potential cause of diagnosis-defining restricted and repetitive 

behaviours and interests (RRBIs; Honey et al., 2012; Kanner, 1943; Richler et al., 2007). 

RRBIs result in children focusing intensely and repeatedly on very specific interests and 

activities in their daily lives. Such is the intensity of their RRBIs, many autistic children 

experience difficulty disengaging from preferred stimulus categories and may be reluctant to 

attend to stimuli that they find less interesting (Bryson et al., 1990; Leekam et al., 2011). 

Since environmental input is carefully selected and restricted by the child’s interests, 

attentional focal points are narrowed (Elsabbagh et al., 2009, 2013; Landry & Bryson, 2004; 

Sacrey et al., 2014) and sensitivity to valuable information and informants in the environment 

may be suppressed (McGregor et al., 2013).  

During word learning, differences in visual attention may prevent autistic children 

from attending to all stimuli in an array, thus affecting the accuracy and/or strength of newly 

encoded word meanings (e.g. Hartley et al., 2019; Hilton & Westermann, 2017). Many 

autistic children experience ‘sticky’ attentional fixations, and their focus is often captured by 

salient perceptual features to an atypical degree (Hartley & Allen, 2014; Pierce et al., 2011, 

2016). For instance, Venker et al. (2022) recently reported that autistic children’s novel 

referent selection was disrupted more than their neurotypical peers when stimuli were of high 

perceptual salience. This aligns with previous looking time studies showing that autistic 

children are slower, or unable, to disengage their attention from irrelevant stimuli (Elsabbagh 

et al., 2009, 2013; Sacrey et al., 2014). These differences in visual attention could have 
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profound implications for language acquisition – if an autistic child hears a novel word whilst 

attending to a non-target object that has captured their attention, the misalignment in 

auditory-visual statistics may inhibit accurate referent selection and potentially generate a 

spurious association between the word and non-target object (Baron-Cohen et al., 1997; 

Tenenbaum et al., 2017; Venker et al., 2018).  

Regarding retention, differences in autistic children’s visual attention could either 

hinder or facilitate encoding and consolidation of word-referent associations under different 

circumstances. On one hand, if to-be-learned stimuli do not align with autistic children’s 

interests, reduced attention may result in weak or incorrect representations of word-referent 

relationships (e.g. Tenenbaum et al., 2014, 2017). Alternatively, if stimuli appeal to their 

interests, heightened attentional focus could lead to the formation of more robust word-

referent relationships that are less susceptible to decay (e.g. Ackermann et al., 2020). Such 

differences in encoding strength may be evident in contrasting patterns of autistic children’s 

visual attention to stimuli they find more or less interesting during referent selection, and in 

predictive relationships between looking behaviour and retention accuracy. However, to our 

knowledge, no research to date has investigated whether autistic children’s interests in stimuli 

influence inter-relationships between visual attention and direct measures of referent 

selection and retention.  

For the first time, the present study researched how interests associated with specific 

categories of stimuli and differences in visual attention affects multiple word learning 

mechanisms in autistic children with delayed language development. Autistic children and 

neurotypical children matched on receptive vocabulary identified the meanings of novel 

words in a computer-based ME referent selection task with two within-subjects conditions. In 

one condition, children learned the names for relatively interesting stimuli – unfamiliar 

animals (participants’ interest in animals was confirmed via a questionnaire). It is well-
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documented that children generally prefer animal stimuli over non-animal stimuli 

(Ackermann et al., 2020; Celani, 2002; Prothmann et al., 2009) and many autistic individuals 

are particularly fond of animals (Martin & Farnum, 2002). In another condition, children 

learnt the names for unfamiliar objects – generic experimental stimuli that are less likely to 

align with children’s pre-existing interests. Retention of novel words was tested after 5 

minutes and 24 hours. The retention tests following a 24-hour delay allowed us to investigate 

a) the robustness of novel word representations relating to different categories, and b) how 

sleep influences lexical consolidation in autistic children with concomitant language delay. 

Autism is often characterised by problematic sleep disorders, including bedtime resistance, 

sleep anxiety, difficulties falling asleep, and parasomnia (Díaz-Román et al., 2018; Souders et 

al., 2009). Given that sleep plays a critical role in protecting newly acquired declarative 

memories against decay in neurotypical development (Axelsson et al., 2018), such difficulties 

could impact autistic children’s consolidation of recently mapped word-referent associations. 

Although previous studies have identified benefits of sleep for autistic children’s lexical 

retention, these have exclusively recruited intellectually able participants with high IQs who 

do not have language-learning difficulties (e.g. Fletcher et al., 2020; Henderson et al., 2014; 

Norbury et al., 2010). Therefore, this study is the first to test whether overnight memory 

consolidation of novel words differs for autistic children with delayed language development.     

Crucially, we recorded children’s looking behaviour during referent selection and both 

retention phases, enabling us to directly compare the populations’ visual engagement at each 

stage of the task and assess whether variability predicted learning accuracy. While previous 

studies focus on looking time alone, often inferring longer looking to be indicative of more 

accurate learning (e.g. Potrzeba et al., 2015; Tenenbaum et al., 2014, 2017), this study is the 

first to examine how multiple measures of visual attention and direct behavioural accuracy 

measures inter-relate. This novel methodological approach will yield important insights into 
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how autism affects children’s intake of stimuli during word learning and allow us to draw 

comparisons between accuracy and looking measures.  

As numerous studies have shown that autistic and neurotypical children 

spontaneously apply ME when fast mapping (e.g. Carter & Hartley, 2021; Hartley et al., 

2019), we did not necessarily expect any between-population or between-condition 

differences in accuracy during referent selection. Based on evidence for positive relationships 

between attentional focus and word learning (Ackermann et al., 2020; Axelsson et al., 2012; 

Bion et al., 2013; Yu & Smith, 2012), we predicted that children in both populations would 

retain names for unfamiliar animals with greater accuracy than names for unfamiliar objects. 

However, we anticipated that effects of stimuli may be greater for autistic children due to 

more substantial differences in visual attention between conditions. After 24 hours, we 

tentatively predicted that sleep-induced benefits for retention would be weaker for autistic 

children with delayed language development than neurotypical controls. We also anticipated 

that autistic children would be slower to generate correct responses than their neurotypical 

peers across all word learning stages, indicating less efficient processing of audio-visual input 

(e.g. Hartley et al., 2020).  

During referent selection, we expected autistic children to spend longer looking 

towards novel items regardless of whether they were intended targets – particularly in the 

animal condition – due to difficulties disengaging attention from interesting stimuli 

(Elsabbagh et al., 2009, 2013; Landry & Bryson, 2004; Sacrey et al., 2014). We also 

anticipated that autistic children might make more frequent looks to target stimuli due to 

greater uncertainty and/or longer processing times required to generate correct responses. We 

predicted that increased visual attention to targets would predict response accuracy across 

conditions, groups, and task stages, and that increased attention at referent selection would be 

associated with superior retention. However, we were mindful of the possibility that between-
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population differences in visual attention may not necessarily translate to significant 

differences in learning outcomes. Indeed, it is well-documented that autistic children and 

adults can generate correct responses on a range of cognitive tasks despite differences in 

processing or the use of atypical strategies (Happé, 1995; Norbury et al., 2010). Importantly, 

this research will advance theoretical understanding of word learning by disentangling the 

influence of preferential biases to selective stimuli and visual attention in both autism and 

neurotypical development. 

3.4. Method 

Participants 

Participants were 15 autistic children (13 males, 2 females; M age = 91.87 months; 

SD = 21.30) recruited from specialist schools, and 16 neurotypical children (6 males, 10 

females; M age = 52.31 months; SD = 18.88), recruited from mainstream schools, nurseries, 

and Lancaster University BabyLab (see Table 1). All participants were monolingual, English 

was their native language, and had normal or corrected-to-normal colour vision. Autistic 

children were previously diagnosed by a qualified educational or clinical psychologist, using 

standardised instruments and expert judgement (i.e. Autism Diagnostic Observation Scale and 

Autism Diagnostic Interview – Revised; Lord et al., 1994, 2002). Diagnoses were confirmed 

via the Childhood Autism Rating Scale 2 (CARS; autistic M = 34.70, SD = 10.23; 

neurotypical M = 16.78, SD = 2.56; Schopler et al., 2010). This measure was usually 

completed by class teachers, but for eight neurotypical children who were tested at our 

BabyLab due to COVID-19 restrictions, it was completed by caregivers. Autistic children 

were significantly older, t(29) = -5.48, p  <.001, d = 1.97, and had significantly higher CARS 

scores, t(29) = -6.79, p  <.001, d = 2.40, than the neurotypical children.  
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Groups did not significantly differ on receptive vocabulary as measured by the British 

Picture Vocabulary Scale 2 (BPVS; autistic M age equivalent = 53.27 months, SD = 22.48; 

neurotypical M age equivalent = 60.31, SD = 27.44; Dunn et al., 1997), t(29) = 0.78, p = .44. 

Receptive vocabulary was selected as our group matching criterion as it reflects children’s 

ability to learn word-referent relationships (Bion et al., 2013). Expressive vocabulary was 

measured using the Expressive Vocabulary Test 2 (EVT; Williams, 2007), or the expressive 

language module of the Mullen’s Scales of Early Learning (MSEL; Mullen, 1995) for 

children who scored below the baseline on the EVT. Autistic (M age equivalent = 48.47 

months, SD = 27.70) and neurotypical children (M age equivalent = 60.31 months, SD = 

22.76) did not significantly differ on expressive vocabulary, t(29) = 1.30, p = .20. 

Children’s non-verbal intellectual abilities were measured using the Leiter-3 (Roid et 

al., 2013). The neurotypical group’s average non-verbal IQ score (M = 101.38, SD = 7.84) 

was significantly higher than the autistic group’s (M = 77.67, SD = 11.73), t(23) = 5.99, p 

<.001, d = 2.38. Scaled IQ scores could not be calculated for three neurotypical children as 

they were below the age of three years. However, the groups’ raw scores on the Leiter-3 did 

not significantly differ (autistic M = 60.33, SD = 15.57; neurotypical M = 57.25, SD = 

17.93), t(26) = -0.48, p = .64, suggesting that their non-verbal cognitive abilities were similar 

at the time of testing (when age was not considered). Three autistic children did not complete 

the Leiter-3 due to school closure during the COVID-19 pandemic, but they were retained in 

the study as they completed all other measures. To assess attentional behaviours, the Conner’s 

Teacher Rating Scale (CTRS-15; Pupura & Lonigan, 2009) was completed by children’s class 

teachers, or the caregivers of the eight neurotypical children who were tested in our BabyLab. 

The mean raw scores for the autistic children (M = 17.27, SD = 11.04) and neurotypical 

children (M = 12.25, SD = 6.03) did not significantly differ, t(29) = -1.58, p = .12. The 

Repetitive Behaviour Questionnaire was completed by participants’ caregivers to assess the 
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extent of their restrictive and repetitive behaviours (RBQ; Leekam et al., 2007). Autistic 

children (M = 43.87, SD = 8.37) had significantly higher scores than neurotypical children 

(M = 27.00, SD = 5.80), t(29) = -6.56, p  <.001, d = 2.34. 

Finally, caregivers completed a bespoke questionnaire assessing the extent to which 

children were interested in animals (min-max scores: 0-34; autistic M score = 23.93, SD = 

5.55, neurotypical M score = 23.31, SD = 2.80; see Appendix A). The purpose of this measure 

was to ensure that we recruited participants who were interested in animals, validating our 

categorisation of stimuli in the animal condition as ‘high interest’. One autistic child was 

excluded from the study due to their lack of interest in animals. The groups did not differ 

significantly on this measure, t(29) = -0.40, p = .69.  

An additional four participants were excluded from the study; one neurotypical 

participant who was unable to complete the touch-screen task, one neurotypical participant 

who scored above the ‘low to minimal symptoms’ threshold on the CARS-2, and two autistic 

participants who did not complete both experimental conditions due to school closures during 

the COVID-19 pandemic.   

All procedures performed in this study involving human participants were in 

accordance with the ethical standards of institutional and national research committees. 

Informed consent was obtained from caregivers prior to children’s participation and a debrief 

was provided after participation.  
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Table 1 

Characteristics of autistic and neurotypical Participants (SD and Ranges in Parentheses) 

Group N Gender 

Chron. 

Age  

(M 

months) 

BPVS 

age 

equiv. 

(M 

months) 

Express. 

Lang. age 

equiv. 

(M 

months) 

CARS 

raw 

score 

(M) 

Leiter-3 

raw 

score 

(M) 

CTRS 

raw 

score 

(M) 

RBQ 

raw 

score 

(M) 

Animal 

Interest 

score 

(M) 

NT 16 

6 males, 

10 

females 

52.31 

(18.88; 

27-94) 

60.31 

(27.44; 

36-118) 

60.31 

(22.76; 

35-104) 

16.78 

(2.56; 

15-24) 

57.25 

(17.93; 

40-95) 

12.25 

(6.03; 

2-26) 

27.00 

(5.80; 

20-35) 

23.31 

(2.80; 

19-29) 

ASD 15 

13 

males, 2 

females 

91.87 

(21.30; 

67-136) 

53.27 

(22.48; 

24-97) 

48.47 

(27.70; 

5-82) 

34.70 

(10.23; 

20-52) 

60.33 

(15.57; 

38-83) 

17.27 

(11.04; 

5-36) 

43.87 

(8.37; 

30-59) 

23.93 

(5.55; 

17-34) 

 

Group 

comparison 

t-test (p) 

 

  

 

 

 

 

 

<.001 

 

 

.44 

 

 

.20 

 

 

<.001 

 

 

.64 

 

 

.12 

 

 

<.001 

 

 

.69 

 

Note. NT: neurotypical; ASD: autism spectrum disorder; BPVS: British Picture Vocabulary 

Scale, CARS: Childhood Autism Rating Scale, CTRS: Conner’s Teacher Rating Scale, RBQ: 

Repetitive Behaviour Questionnaire.  

 

Materials 

The study was administered via a touch-screen computer running MATLAB. Audio 

stimuli for the word learning task included eight two-syllable unfamiliar words (manu, tanzer, 

boskot, virdex, toma, fiffin, chatten, modi) selected from the NOUN database (Horst & Hout, 

2016) and other academic sources. Visual stimuli included high-resolution colour 

photographs of 4 unfamiliar objects, 4 unfamiliar animals (see Figure 1), and 22 familiar 

objects, all presented on a grey background. All photographs were approximately 6cm2 and 

500 x 500 pixels when displayed on the screen. Unfamiliar objects were selected on the basis 

that children would not know their linguistic labels. Familiar objects were selected on the 

basis that most children understand their linguistic labels by 16 months (Fenson et al., 1994). 



 
 

125 

 

Three pictures of six familiar objects were employed in the warm-up trials (tree, door, light, 

slide, pram, top). Pictures of 16 familiar objects were presented during referent selection 

trials in the object condition and animal condition. These were divided into two sets and 

counterbalanced across conditions (1. bottle, hat, pillow, toothbrush, rock, balloon, truck, 

bath; 2. telephone, ball, chair, spoon, bed, window, fridge, towel). Familiar objects allocated 

to the two conditions were matched on mean comprehension age (13.5 months for both sets) 

and frequency of objects belonging to particular categories (e.g. toys, furniture). Familiar 

objects within each set were divided into pairs and presented alongside an unfamiliar object 

or unfamiliar animal in referent selection trials (depending on condition). In every trial type, 

three pictures were presented side by side. We ensured that names of stimuli presented 

together were phonologically distinct and their images clearly contrasted in shape and colour.  

Stimuli names were recorded by a female speaker from the local area and presented 

through the computer’s integrated speakers. Audio files were recorded and edited using a 

Sony ECM-MS907 Digital Microphone and Audacity 2.2.2 software. Auditory stimuli were 

edited for timing and clarity, and the volume of all files was normalised. The carrier phrases 

(e.g. “Can you see the [label]?”, “Touch the [label]!”) and the labels (e.g. “tree”, “fiffin”) 

were edited separately, so they were all distinct files. However, when the MATLAB 

programme ran the experiment, the audio files were presented sequentially. This was to 

ensure that there were no differences in the carrier phrases that may offer a hint to children 

regarding the labels that were about to be presented.  
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Figure 1 

Sets of unfamiliar objects and animals used in the word learning task 

 

 

 

 

 

Three web cameras attached to the left, right, and centre of the frame were used to 

record participants’ visual attention and behaviour during the study. Recording was done 

using the ‘Open Broadcaster Software’ version 23.2.1, which allowed recording from all 

three cameras simultaneously. The cameras positioned to the left and right of the frame were 

15-megapixel Logitech C920 HD Pro Webcams and recorded at a rate of 30 frames-per-

second. The centre camera was built into the iMac (1.2 megapixels) and also recorded at 30 

frames-per-second. The red recording lights were obscured from participants using black tape 

to avoid distraction.  

Procedure 

The task in the present study was very similar to that in Study 1. During recruitment, 

caregivers completed a questionnaire about their child’s interest in animals (see Appendix A). 

Animals are a common interest of many autistic and neurotypical children (Martin & Farnum, 

2002; Prothmann et al., 2009), and our objective was to explore how this interest would 

influence their relative performance in the two word learning conditions. Examples of 

questions included: ‘How much does your child like animals?’ (responses: 1 - they don’t 

mind animals, 2 - they like animals a little, 3 - they like animals a lot, 4 - they really, really 

Unfamiliar Objects 

Unfamiliar Animals 
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like animals) and ‘How much does your child enjoy watching television programmes, videos, 

and films involving realistic animals?’ (responses: 1 - they don’t particularly enjoy it, 2 - they 

enjoy it a little, 3 - they enjoy it a lot, 4 - they really, really enjoy it).  

Participants were tested individually in their own school or nursery, or our BabyLab, 

and were accompanied by a familiar adult when required. Children were assessed using the 

Leiter-3, BPVS, and EVT or MSEL by the researcher over multiple sessions on different 

days. Children completed two within-subjects conditions of the word learning task – novel 

animals and novel objects – administered on different days (average of six days apart, order 

counterbalanced). The word learning task was delivered via a customised touch-screen 

computer. Children were seated approximately 50-70 cm away from the screen on a height-

adjustable chair. The word learning task consisted of the following stages, presented in a 

fixed order: 1. Warm-up trials, 2. Referent selection trials, 3. Five-minute delay, 4. Retention 

trials, 5. 24-hour delay, 6. Retention trials (see Figure 2). The experimenter sat quietly while 

the participant was engaged in tasks and offered verbal praise for attention and good 

behaviour. 
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Figure 2 

Examples of trial types in the word learning task 

 

 

 

 

 

 

 

 

 

 

 

 

 

Warm up trials 

Before the study started, children were presented with a cartoon image of a hand that 

appeared in each of three touch-screen panels, one by one. To encourage children to feel 

comfortable touching the screen, the experimenter asked them to “Put their hand on the 

picture.” Then, children completed three warm-up trials. Children were instructed to “Put 

your hand on the picture that the computer asks you to.” During warm-up trials, children 

Trial Type 

Warm up 

Animal 

condition: 

Referent 

selection  

Object 

condition: 

Referent 

selection  

Animal 

condition: 

Retention  

Object 

condition: 

Retention  
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were presented with images of three familiar objects in the left, middle, and right sections of 

the touchscreen. After 2 seconds, participants heard “Look, ‘2 s gap’ [label]!”, ‘1 s gap’, 

“Can you see the [label]?” ‘1 s gap’, “Touch the [label]!”. Children then had 12 seconds to 

respond. The same instructions played up to six times if children did not respond. Responses 

were accepted only after the first label utterance, preventing children from skipping through 

trials without hearing the requested labels. Children received feedback when they made their 

selection; either audio praise if they responded accurately (e.g. “Well done, you touched the 

[label]!”) or corrective feedback if they responded inaccurately (“Actually, this is the [label]. 

Can you touch the [label]?”). Following inaccurate responses, the correct referent was 

highlighted by a green border and children could retry up to five times. Children in both 

groups responded significantly above chance levels at first attempt on the warm-up trials 

(MNT = 0.95, MASD = 0.90) demonstrating that they were familiar with the requested referents 

and understood the task requirements. The location and order of requested objects were 

counterbalanced across participants.  

After the warm-up trials, children were video recorded to measure their visual 

attention. To assist with coding, LEDs on the three video cameras flashed to signify the start 

of the experiment, transitions between trials, and when participants touched the screen. 

However, the LEDs were invisible to participants as they were covered with black tape.  

Referent selection trials 

After the warm-up trials, children completed eight referent selection trials. These 

followed exactly the same format, except children did not receive feedback following their 

responses. Four novel words were taught via a fast-mapping paradigm based on Horst and 

Samuelson (2008). Children viewed four sets of pictures (each containing one unfamiliar 

picture and two familiar pictures). Each set was presented twice; on one trial the novel picture 
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was requested (novel name trial: “Look, modi! Can you see the modi? Touch the modi!”), and 

on another trial a familiar picture was requested (familiar name trial: “Look, ball! Can you 

see the ball? Touch the ball!”). Familiar trials were included to detect whether participants’ 

responses were biased by a preference for novelty and to encourage them to examine every 

item in each array (accurate fast mapping requires children to attend to familiar competitors 

in order to exclude them as referents for a novel word; Halberda, 2003). Novel name trials 

promoted active learning of new word-referent pairings; since participants already knew 

labels for the familiar pictures, they could identify the referent of the novel label by applying 

the ME principle. During this stage, familiar stimuli were always objects, and novel stimuli 

were either animals (high interest) or objects (neutral interest), condition dependent. 

 Trial order was pseudo-randomised with the constraints that the same set of pictures, 

or the same trial type (familiar name or novel name), was not presented on more than two 

trials sequentially. Positioning of stimuli on the screen (left, middle, right) was pseudo-

randomised across trials with the constraint that the target did not appear in the same location 

more than twice consecutively. The eight novel words were divided into two sets (1. manu, 

tanzer, boskot, virdex; 2. toma, fiffin, chatten, modi) and were counterbalanced across 

conditions. Novel words were pseudo-randomly allocated to novel referents, so different 

novel words represented different novel referents across participants. Familiar stimuli were 

divided into two sets of eight to obtain a degree of control, but these were also 

counterbalanced across conditions.  

5-minute delay 

Immediately after referent selection, children engaged in an unrelated task for five 

minutes (e.g. colouring or building with blocks). None of the familiar or unfamiliar 

experimental stimuli were visible during this stage.  
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Retention trials 

Following the five-minute delay, children completed one warm-up trial to re-engage 

their attention (exactly as described above). Eight retention trials immediately followed (see 

Figure 2 for an illustration of each trial type). Each novel word was tested on two retention 

trials. These trials enabled us to assess whether children’s retention of newly mapped word-

referent associations differed between high interest (animals) and neutral interest (objects) 

stimuli.  Trial order was pseudo-randomised, ensuring that the same set of stimuli was never 

presented on more than two trials sequentially. Positioning of stimuli on the screen (left, 

middle, right) was pseudo-randomised across trials with the constraint that the target did not 

appear in the same location more than twice consecutively. Each picture served as a target on 

two trials and as a foil on four trials. 

24-hour retention trials 

After a 24-hour delay, children completed a second block of eight retention trials. Due 

to practical constraints, not all children experienced exactly a 24-hour delay (M delay = 23.8 

hours, range: 20.5 – 25.6 hours). These retention trials were preceded by three warm-up trials 

(as described above) to remind children of the task requirements and how to respond. The 24-

hour retention trials were identical to the 5-minute retention trials with the exception that 

stimuli were presented in different orders and combinations. 

Coding and data cleaning 

Videos were coded using the software Blender 2.78, with a customised version of the 

python script ultra-coder added on (see https://github.com/dmbasso/misc-blender-

tools/blob/master/ultra_coder.py for original). Coders were blind to the location of the target 

stimuli on each trial. Children’s visual fixations were coded frame-by-frame with a precision 

of 16.7ms, and looks were coded as left, right, centre, away, or not visible. The LEDs that 

https://github.com/dmbasso/misc-blender-tools/blob/master/ultra_coder.py
https://github.com/dmbasso/misc-blender-tools/blob/master/ultra_coder.py
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flashed to signify the beginning of the experiment and transitions between trials, as well as 

participant touches, were vital for coding. Of the 184 videos recorded across the three 

experimental stages, 25% were reviewed by two independent coders. Coders agreed on 

looking direction on 98% of frames. A custom Matlab programme then calculated the primary 

dependent variables (see Table 2). These variables were calculated 233ms after the label onset 

to allow for saccade initiation latencies (Swingley et al., 1999; Swingley, 2009).  

We analysed three distinct looking measures from our coded videos. ‘Proportion of 

looking towards the target’ was selected as this measure is commonly used in both the 

neurotypical and autism word learning literatures (e.g. Ackermann et al., 2020; Akechi et al., 

2011, 2013; Bion et al., 2013; Potrzeba et al., 2015). It captures looking behaviour to the 

target relative to the distractor and is often interpreted as a measure of learning accuracy in 

the absence of an explicit behavioural response. ‘Number of looks towards the target’ was 

selected as a measure of children’s exploration of stimuli, which is known to be atypical in 

autism (e.g. Sasson et al., 2008, 2011). A measure of longest look was selected to provide a 

categorical indication of children’s attentional preference based on one look alone, which is 

more comparable to behavioural accuracy (Ambridge & Rowland, 2013), and accounts for 

children’s attention likely decreasing over the trial (Bailey & Plunkett, 2002; Ma et al., 2011; 

Schafer & Plunkett, 1998).  ‘Longest look to novel or familiar stimuli’ was coded at referent 

selection to investigate how word learning was influenced by attentional allocation to novel 

stimuli during encoding, and ‘Longest look to target or foil’ was coded at retention to 

disentangle whether children allocated their longest look to correctly encoded stimuli.  

 

 

 

https://www.tandfonline.com/doi/full/10.1080/15475441.2011.579839?casa_token=o3ag9ZTrkMoAAAAA%3AxbXruqvsVUtCtosbaznSkPsR1ijIDxBY96GOOePeO060HkMGi-JdB_z8BQDKouNf6KOZkPeyd-VUfzs
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Table 2  

Looking measures recorded during the experimental tasks 

Looking Measure Coding  

 

Experimental 

Phase 

 

Outcome 

Proportion of time 

spent looking at 

the target stimuli 

0 to 1 

Referent selection 

5-minute retention 

24-hour retention 

Proportion of time spent looking 

at target stimuli, compared to the 

proportion of time spent looking 

at distractor stimuli. 

    

Number of looks 

to the target 

stimuli 

0-14 

Referent selection 

5-minute retention 

24-hour retention 

Every new look towards target 

stimuli was counted as a new 

look. 

    

Longest look to 

novel or familiar 

stimuli 

0 = familiar 

1 = novel 
Referent selection 

If the longest look was to novel 

stimuli or familiar stimuli. 

    

Longest look to 

target or foil 

stimuli 

0 = foil  

1 = target 

5-minute retention 

24-hour retention 

If the longest look was to target 

stimuli or foil stimuli. 

 

3.5. Results and Discussions 

Due to the variety of measures and the comprehensive nature of our analyses, we 

present Results and Discussions in two sections. The first section analyses and interprets data 

concerning children’s word learning accuracy and response times. The second section 

compares the groups’ visual attention at each stage of the word learning task and assesses 

whether variability predicted learning accuracy. 

3.5.1. Do autistic and neurotypical children differ in accuracy and response times when 

learning names for high interest and neutral interest stimuli? 

Accuracy and response time data were analysed via mixed-effects models using the 

glmer and lmer functions from the lme4 package in R (Bates et al., 2015). Population was 

contrast coded as -0.5 (neurotypical) and 0.5 (autistic). Condition was coded as -0.5 (novel 
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object) and 0.5 (novel animal). Trial type was coded as -0.5 (familiar) and 0.5 (novel). By-

word referent selection accuracy was coded as -0.5 (incorrect) and 0.5 (correct) when 

included as a fixed effect in retention accuracy analyses. Total accuracy at referent selection 

for novel trials was coded as 0-4. Number of labels heard at referent selection for each novel 

word was coded as 1-7 (autistic M = 2.27, SD = 1.00; neurotypical M = 1.84, SD = 0.89). 

Total accuracy at 5-minute retention was coded as 0-8. Trial-level accuracy as a dependent 

measure was coded as 1 (correct) or 0 (incorrect) for all analyses. 

The likelihood of children responding correctly by chance on each trial was 33%. All 

models were built up sequentially, adding in one fixed effect at a time and comparing each 

model with the previous best-fitting model using log-likelihood tests. Each analysis started 

with a baseline model containing by-participant and by-word random intercepts, with a 

random slope of condition x trial type per participant for referent selection, or condition per 

participant for retention phases.  If some models in a sequence failed to converge, the random 

effects were simplified until all models in the sequence successfully converged. Only final 

models are reported; please refer to Appendix C for full details of the model building 

sequences and analyses of individual differences. 

Referent selection accuracy 

Referent selection accuracy was analysed via generalised linear mixed-effects models 

testing the effects of population, condition, and trial type. Five trials were excluded from 

autistic participants who simultaneously responded to different locations with their head and 

hands. This analysis contained 491 data points. Descriptive statistics for referent selection 

accuracy are presented in Figure 3. 
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Figure 3 

Mean referent selection, 5-minute retention, and 24-hour retention trial accuracy for 

neurotypical (NT) and autistic children (ASD), error bars show ± 1 SE. Stars above columns 

indicate where performance was significantly different from chance, indicated by the dotted 

lines (*p <.05)  

 The best fitting model included a fixed effect of trial type (z = -5.19, p <.001; see 

Table 3) indicating that autistic children and neurotypical children responded with 

significantly greater accuracy on familiar trials than novel trials. However, it is noteworthy 

that both groups responded well above chance on novel trials with both object and animal 

targets (neurotypical children, animal condition M = 0.86, neurotypical children, object 

condition M = 0.88; autistic children, animal condition M = 0.81, autistic children, object 

condition M = 0.73), demonstrating their effective use of mutual exclusivity. 
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Referent selection response times 

Children's response times for correctly answered referent selection trials were 

analysed using linear mixed-effects models, testing the effects of population, condition, and 

trial type. We calculated the average correct response time for each population in each trial 

type and condition, and removed outliers that were ≥ 3SD above the mean for the sub-group 

(e.g. autistic children in the animal condition responding to novel trials). We also removed 

three trials from autistic children who did not use their hand to respond (e.g. they responded 

hand-over-hand or using their head). The models in these analyses included 185 of 193 (96%) 

correct responses from autistic children, and 233 of 235 (99%) correct responses from 

neurotypical children. With outliers excluded, mean correct response times for each 

population are reported in Figure 4. 
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Figure 4  

Mean response times on correctly answered referent selection, 5-minute retention, and 24-

hour retention trials for neurotypical (NT) and autistic children (ASD), error bars show ± 1 

SE 

 

The best fitting model included significant fixed effects of trial type (t = 4.40, p 

<.001), population (t = 2.19, p = .037) and a population x condition interaction (t = 2.65, p = 

.008; see Table 3). Children in both populations were slower to generate correct responses for 

novel trials than familiar trials. Autistic children took significantly longer than neurotypical 

children to respond correctly across both conditions, but the difference between groups was 

greater in the animal condition than in the object condition. 
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Table 3 

Summaries of the fixed effects in the final generalised and linear mixed-effects models (log 

odds) of children's accuracy on referent selection trials, and response times on correctly 

answered referent selection trials 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
z Pr(> |z|) 

Accuracy (Intercept) 3.42 0.48 7.13 <.001 

 Trial Type -2.59 0.50 -5.19 <.001 

  AIC BIC logLik deviance 

  326.1 380.7 -150.1 300.1 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
t Pr(> |t|) 

Response Times (Intercept) 3.41 0.33 10.35 <.001 

 Population     1.44 0.66 2.19 .037 

 Condition 0.07 0.19 0.38 .70 

 Trial Type 0.85 0.19 4.40 <.001 

 Population x 

Condition 

1.03 0.39 2.65 .008 

  AIC BIC logLik deviance 

        1836.1 1864.4 -911.1 1822.1 

 

5-minute retention accuracy 

Children’s retention accuracy after five minutes was analysed via generalised linear 

mixed-effects models testing the effects of population, condition, referent selection accuracy, 

novel referent selection trial accuracy, and number of labels heard at referent selection for the 

target word. We excluded nine trials for autistic participants and three trials for neurotypical 

participants due to a technical error (8) and ambiguous responses (4). The models in these 

analyses contained 484 data points. The descriptive statistics are reported in Figure 3.  

The final model was predicted by an interaction between population and condition (z 

= 2.94, p = .003; see Table 4). The effect of population was significant in the animal 

condition (z = 2.50, p = .013; autistic children responded significantly more accurately than 
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neurotypical children), but not the object condition (z = -1.24, p = .22; the groups did not 

significantly differ). Autistic children responded with significantly greater accuracy in the 

animal condition compared to the object condition (z = 2.08, p = .038), but neurotypical 

children did not significantly differ in their response accuracy between conditions (z = -1.69, 

p = .09).  

Table 4 

Summary of the fixed effects in the final generalised linear mixed-effects models (log odds) of 

children's accuracy on 5-minute retention trials 

Fixed effects 
Estimated 

coefficient  
Std. error z Pr(> |z|) 

(Intercept) -0.32 0.15 -2.17 .03 

Population     0.28 0.25 1.13 .26 

Condition 0.12 0.21 0.59 .56 

Population x Condition 1.24 0.42 2.94 .003 

 AIC BIC logLik deviance 

 656.7 690.2 -320.4 640.7 

 

5-minute retention response times 

Children's response times for correctly answered 5-minute retention trials were 

analysed using linear mixed-effects models. Outliers were identified and removed in the same 

way as described for referent selection trials. The models in these analyses included 102 of 

106 (96%) correct responses from autistic children and 99 of 100 (99%) correct responses 

from neurotypical children. With outliers excluded, mean correct response times for each 

population are reported in Figure 4.  

The inclusion of fixed effects (population and condition) did not improve model fit.  
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24-hour retention accuracy 

Children’s retention accuracy after 24-hours was analysed via generalised linear 

mixed-effects models testing the effects of population, condition, referent selection accuracy, 

accuracy on novel referent selection trials, number of labels heard at referent selection for the 

target word, and total 5-minute retention accuracy (all coded as described previously). Two 

autistic children in the animal condition and one neurotypical child in the object condition did 

not complete the 24-hour retention trials due to absence. We excluded 8 trials for autistic 

participants due to non-completion (1), simultaneous selection of multiple referents with their 

head and hand (4), and technical issues (3). The models in these analyses contained 464 data 

points. Descriptive statistics for 24-hour retention accuracy are presented in Figure 3.  

The best fitting model contained fixed effects of population (z = 1.92, p = .055), total 

accuracy at 5-minute retention (z = 4.43, p <.001), referent selection accuracy (z = 2.83, p = 

.005), and number of labels heard at referent selection per word (z = 3.18, p = .001; see Table 

5). These results show that (1) autistic children responded more accurately than neurotypical 

children (marginally significant), (2) children with higher 5-minute retention accuracy were 

significantly more likely to respond correctly on 24-hour retention trials, (3) children who 

heard more labels during referent selection were significantly more likely to respond 

correctly at 24-hour retention, and (4) children with higher referent selection accuracy for 

individual novel words were significantly more likely to respond correctly after 24 hours. 

Note the condition effect present at 5-minute retention for autistic children disappeared after 

24-hours.   

24-hour retention reaction times 

Children's response times for correctly answered 24-hour retention trials were 

analysed using linear mixed-effects models. Outliers were identified and removed in the same 
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way as for previous analyses. These analyses included 121 of 128 (95%) correct responses 

from autistic children, and 107 of 109 (98%) correct responses from neurotypical children. 

With outliers excluded, mean correct response times for each population are reported in 

Figure 4.  

The best fitting model included a significant population x condition interaction (t = 

2.82, p = .005; see Table 5). Autistic children took longer than neurotypical children to 

respond correctly in the animal condition, but not in the object condition.  

Table 5 

Summaries of the fixed effects in the final generalised and linear mixed-effects models (log 

odds) of children's accuracy on 24-hour retention trials, and response times on correctly 

answered 24-hour retention trials 

 
Fixed effects 

Estimated 

coefficient  

Std. 

error 
z Pr(> |z|) 

Accuracy (Intercept) -2.14 0.44 -4.89 <.001 

 Population     0.49 0.26 1.92 .055 

 Total Accuracy at 5-minute Retention    0.35 0.08 4.43 <.001 

 Referent Selection Accuracy              0.79 0.28 2.83 .005 

 Number of Labels at Referent 

Selection 

0.41 0.13 3.18 .001 

  AIC BIC logLik deviance 

  604.8 642.0 -293.4 586.8 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
t Pr(> |t|) 

Response (Intercept) 4.01 0.50 7.98 <.001 

Times Population 1.89 1.00 1.88 .072 

 Condition 0.26 0.32 0.82 .41 

 Population x Condition 1.81 0.64 2.82 .005 

  AIC BIC logLik deviance 

  1106.1 1126.7 -547.1 1094.1 

 

3.5.2. Discussion: Accuracy and Response Times 

These analyses assessed whether autistic and neurotypical children differ in their 

ability to disambiguate and retain novel words associated with high interest and neutral 
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interest stimulus categories. Importantly, we examined children’s accuracy and response 

speed across three distinct stages of word learning: referent selection, 5-minute retention, and 

24-hour retention after a period of sleep.  In comparison to neurotypical controls matched on 

receptive vocabulary, autistic children did not significantly differ in accuracy when 

spontaneously disambiguating the meanings of novel words using ME across conditions. 

After five minutes, autistic children retained significantly more novel word-referent 

mappings for animal stimuli compared to object stimuli, whereas neurotypical children 

retained novel words for both animals and objects with comparable accuracy. Autistic 

children also retained more novel animal names after a 5-minute delay than neurotypical 

children. Surprisingly, after a 24-hour delay, autistic children retained novel word-referent 

mappings with greater accuracy than neurotypical children (marginally significant 

difference). However, autistic children demonstrated slower response times than neurotypical 

children at each word learning stage (with significant differences detected at referent 

selection and 24-hour retention). 

As predicted, our participants’ referent selection across conditions demonstrates that 

both autistic and neurotypical children can employ ME to accurately identify the meanings of 

novel words, regardless of whether intended referents correspond with categories of interest. 

These findings, alongside existing evidence, show that autistic children can perform ME-

based referent selection with similar accuracy to neurotypical children when expectations are 

based on receptive language ability (e.g. Carter & Hartley, 2021; Preissler & Carey, 2005). 

Using ME to actively disambiguate word meanings may represent a critical strategy through 

which both neurotypical and autistic children establish correct word-referent associations, 

increasing the quality of their audio-visual input and potentially contributing to long-term 

vocabulary development (Hartley et al., 2019). Unsurprisingly, children in both populations 
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responded more accurately on familiar trials than novel trials, as children had pre-existing 

representations of referents for requested words.  

Also in support of our predictions, effects of stimulus condition were observed at 5-

minute retention. Here, autistic children achieved significantly greater accuracy in the animal 

condition – where they surprisingly exceeded neurotypical children – than in the object 

condition. As autistic children tend to process high interest stimuli with greater focus and 

intensity (Sasson et al., 2011), it may be that their interest in animals facilitated encoding of 

more robust word-referent representations that were less vulnerable to decay after five 

minutes. Indeed, previous studies have demonstrated positive relationships between 

children’s attentional focus during word-referent mapping and subsequent retention accuracy 

(Bion et al., 2013; Hilton et al., 2017, 2019). It is also well-documented that many autistic 

individuals are adept at memorising information associated with topics and events of 

heightened interest (Bölte & Poustka, 2008; Happé, 1999). By contrast, neurotypical 

children’s 5-minute retention accuracy did not significantly differ between conditions. These 

findings show that autistic children experience short-term retention benefits for words 

associated with high interest stimuli. Our subsequent analyses examining how differences in 

looking behaviour during referent selection predict 5-minute retention accuracy across the 

two groups will address this theory. However, autistic children’s superior retention accuracy 

of animal stimuli compared to neurotypical children was not maintained after 24 hours due to 

a substantial increase in accuracy in the object condition (this point is addressed in the 

General Discussion).   

In contrast to 5-minute retention, after 24 hours we observed that autistic children 

retained novel words for both objects and animals with greater accuracy than neurotypical 

children, and the condition effect on autistic children’s retention accuracy disappeared. For 

autistic children, overnight improvement in the object condition compared to the animal 
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condition may be attributed to sleep having more beneficial consolidation effects on weaker 

memory representations (Drosopoulos et al., 2007; Williams & Horst, 2014). Sleep plays a 

critical role in protecting newly acquired declarative memories against decay, and many 

studies have demonstrated that neurotypical children retain words more accurately after sleep 

(e.g. Axelsson et al., 2018; Williams & Horst, 2014). Active system consolidation theory 

(Diekelmann & Born, 2010) posits that sleep enhances novel word retention through the 

reactivation of recently encoded word-referent representations. New word-referent 

representations are initially fragile, but reactivation during sleep facilitates their integration 

into memory networks enabling longer-term retention (Gais & Born, 2004). While limited 

evidence suggests that novel word retention in intellectually able autistic children with age-

expected language abilities may benefit from overnight sleep (e.g. Fletcher et al., 2020; 

Henderson et al., 2014), this study is the first to show a similar effect in autistic children with 

delayed language development.  

One explanation for the observed between-population difference in 24-hour retention 

accuracy concerns chronological age. Children experience shorter sleep cycles than adults until 

6 years (Hill et al., 2007; Montgomery-Downs et al., 2006), but longer sleep cycles are more 

beneficial for novel word consolidation (Diekelmann & Born, 2010). Therefore, it is possible 

that our autistic participants benefited more from overnight sleep because their average age 

exceeded 6 years, while the average age of the neurotypical children was significantly younger 

at just over 4 years. However, it is important to note that autism is commonly characterised by 

sleep disorders (e.g. bedtime resistance, sleep anxiety, difficulties falling asleep, parasomnia) 

that have the potential to negatively impact on overnight lexical consolidation and long-term 

vocabulary development (Díaz-Román et al., 2018; Souders et al., 2009). As no previous 

studies have tested 24-hour retention in autistic children with delayed language development, 

further research is required to replicate this effect and draw comparisons against neurotypical 
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children matched on chronological age (in addition to children matched on receptive 

vocabulary) to control for developmental differences in sleep cycles. We also recommend that 

future studies investigate whether individual differences in sleep quality, duration, and 

disturbances predict variability in overnight consolidation of novel words for autistic children 

with language impairments.    

At 24-hour retention, we found that both autistic and neurotypical children responded 

more accurately when they had heard more label repetitions during referent selection. This 

result highlights an important relationship between fast mapping and longer-term retention – 

quantity of auditory input received during referent selection influences the likelihood of 

successful memory consolidation. As proposed by the dynamic associative model (McMurray 

et al., 2012), successful identification of meaning may not necessarily support retention 

unless sufficient statistical input has been experienced.  Cross-situational word learning 

studies show how increasing exposures to correct word-referent pairings can increase 

children's uptake from input and support encoding of word-referent representations that can 

be retrieved after delays (Hartley et al., 2020). Thus, for both autistic and neurotypical 

children, repeated exposures to novel word-referent associations may be critical to successful 

vocabulary acquisition, emphasising the importance of repetition as a component of 

communication interventions.   

While response accuracy indicates whether children successfully identified and 

retained word-referent pairings, the time taken to generate correct responses provides insight 

into the speed of children’s information processing. At referent selection, children in both 

populations were quicker to respond correctly on familiar trials than novel trials. As children 

already knew the meanings of familiar words, correct responding simply required visual 

recognition of familiar referents. However, on hearing a novel word, children had to 

disambiguate the meaning of the word via mutual exclusivity. This required children to 
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eliminate familiar competitors, ruling them out as targets, and shifting their attention to the 

novel object (Halberda, 2003). Since this task is more cognitively demanding, it is unsurprising 

that children were slower to make their selections on the novel trials (Bion et al., 2013).  

Critically, autistic children took significantly longer than younger neurotypical children 

to generate correct responses, particularly in the animal condition. This finding aligns with 

previous evidence (e.g. Hartley et al., 2020) and suggests that, although word learning 

mechanisms appear to be intact, autistic children may require longer to process audio-visual 

stimuli in the service of word learning. Delays in processing stimuli could be attributed to 

general learning difficulties or differences in visual attention disrupting children’s intake of 

information (Arunachalam & Luyster, 2018; Venker et al., 2018). On the other hand, autistic 

children’s particularly slow responses in the animal condition across test stages could be due 

to their heightened interest in the novel stimuli (i.e. they chose to spend longer studying items 

in the array before identifying referents). Longer response times at referent selection may have 

ultimately benefitted their subsequent retention accuracy by affording more time to encode 

each target’s perceptual features and providing the opportunity to hear more repetitions of the 

corresponding label. By extension, it is possible that neurotypical children’s retention accuracy 

would have increased if they had also taken longer to respond on referent selection trials. Thus, 

we recommend that future research investigates potential speed-accuracy trade-offs across 

word learning mechanisms in autism and neurotypical development.  

3.5.3. Does autistic and neurotypical children’s visual attention differ while learning 

names for high and neutral interest stimuli, and does variability in visual attention 

predict learning accuracy? 

In the following analyses we examine whether autistic and neurotypical children 

differed in their looking behaviour during each stage of the word learning task. To elucidate 

the relationship between visual attention and word learning performance, we also investigated 
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how variability in children’s in-trial looking behaviour, and looking behaviour during referent 

selection, predicted their response accuracy.  

All models were conducted using the glmer and lmer functions from the lme4 

package in R (Bates et al., 2015). Population, condition, and trial type were coded as 

described previously. Proportion of time spent looking at the target object on each trial was 

scored between 0 and 1. Number of looks to the target object on each trial ranged from 0 to 

14, with every new look towards the target stimuli being counted. Longest look to novel or 

familiar stimuli was coded as 0 (familiar) or 1 (novel) for analyses examining between-group 

differences in this measure, and -0.5 (longest look to familiar stimuli) or 0.5 (longest look to 

novel stimuli) when included as a fixed effect in analyses predicting accuracy. This variable 

was only included in referent selection analyses, as the retention phases only involved novel 

stimuli. Longest look to target or foil stimuli was coded as 0 (foil) or 1 (target) for analyses 

examining between-group differences in this measure at retention, and -0.5 (longest look to 

foil stimuli) and 0.5 (longest look to target stimuli) when included as a fixed effect in 

analyses predicting accuracy. 

All analyses were undertaken following the same modelling procedures described for 

the accuracy and response time data. Each analysis started with a baseline model containing 

by-participant and by-word random intercepts, with a random slope of condition x trial type 

per participant for referent selection, or condition per participant for retention phases. As only 

final models are reported, please refer to Appendix C for full details of the model building 

sequences. 
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Referent selection 

Linear mixed-effects models (unless otherwise specified) testing whether effects of 

population, condition, and trial type predicted variability in each visual attention measure 

during referent selection contained 496 data points (see Table 6 for descriptive statistics).  

 Generalised linear mixed-effects models testing whether children’s in-trial visual 

attention predicted their behavioural response accuracy at referent selection contained 491 

data points (exclusions were the same as described for the previous accuracy analyses).  

Table 6 

Mean values for the individual visual attention measures at referent selection, split by 

condition, trial type, and population 

Looking Measure Condition  Trial Type  ASD NT 

Proportion of time spent 

looking at target stimuli (0-1)  

Animal  
Familiar  0.56 0.65 

Novel  0.53 0.61 

Object  
Familiar  0.59 0.74 

Novel  0.49 0.53 

Number of looks towards target 

stimuli (0-14)  

Animal  
Familiar  2.13 1.27 

Novel  2.25 1.48 

Object  
Familiar  2.27 1.34 

Novel  2.38 1.89 

Longest look to novel or 

familiar stimuli  

(0/1)  

Animal  
Familiar  0.28 0.09 

Novel  0.62 0.73 

Object  
Familiar  0.15 0.08 

Novel  0.60 0.64 

Note. NT: neurotypical; ASD: autism spectrum disorder. 
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Proportion of time spent looking at the target  

Proportion of time spent looking at the target referent was predicted by a fixed effect 

of population (t = -2.55, p = .016) and a trial type x condition interaction (t = 2.73, p = .006; 

see Table 7). Neurotypical children looked significantly longer at target stimuli than autistic 

children. The trial type x condition interaction was deconstructed by testing the effect of trial 

type on the animal and object condition separately. Children looked significantly more 

towards targets on familiar trials than novel trials in the object condition (t = -5.45, p <.001), 

but proportional looking did not differ across trial types for the animal condition (t = -1.12, p 

= .26).  

Referent selection accuracy was predicted by a fixed effect of the looking measure (z 

= 7.16, p <.001; see Table 7). Across populations and conditions, as children’s proportion of 

looking towards the target increased, so too did their referent selection accuracy. 

Table 7 

Summaries of the fixed effects in the final generalised and linear mixed-effects models (log 

odds) for proportion of time spent looking at the target stimuli during referent selection 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
t Pr(> |t|) 

Between-group (Intercept) 0.59 0.02 32.66 <.001 

Differences  Trial Type -0.10 0.02 -4.37 <.001 

 Condition -0.001 0.02 -0.01 1.00 

 Population -0.09 0.04 -2.55 .016 

 Trial Type x Condition 0.12 0.04 2.73 .006 

  AIC BIC logLik deviance 

        47.5 77.0 -16.8 33.5 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
z Pr(> |z|) 

Predicting (Intercept) -1.98 0.73 -2.73 .006 

Accuracy Proportion of time spent 

looking at the target 

13.23 1.85 7.16 <.001 

  AIC BIC logLik deviance 

  185.7 240.2 -79.8 159.7 
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Number of looks to the target  

Number of looks to target stimuli was predicted by fixed effects of population (t = 

3.20, p = .003) and trial type (t = 2.34, p = .026; see Table 8).  Across conditions, autistic 

children made more looks to target stimuli than neurotypical children, and children in both 

groups made more looks towards the target during novel trials than familiar trials. 

Referent selection accuracy was predicted by a looking measure x population 

interaction (z = -2.01, p = .044; see Table 8). This interaction was deconstructed by testing the 

looking measure effect on autistic and neurotypical children separately. Across conditions, 

children who made more frequent looks towards the target during referent selection 

responded more accurately, but this effect was stronger for the autistic group (z = 4.37, p 

<.001) than the neurotypical group (z = 3.69, p <.001). 

Table 8 

Summaries of the fixed effects in the final generalised and linear mixed-effects models (log 

odds) for number of looks at the target stimuli during referent selection 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
t Pr(> |t|) 

Between-group (Intercept) 1.87 0.12 15.38 <.001 

Differences  Population 0.77 0.24 3.20 .003 

 Trial Type 0.25 0.11 2.34 .026 

  AIC BIC logLik deviance 

        1624.0 1657.7 -804.0 1608.0 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
z Pr(> |z|) 

Predicting (Intercept) 1.44 0.61 2.36 .018 

Accuracy Number of looks to target 1.68 0.34 4.96 <.001 

 Population -0.43 1.19 -0.36 .72 

 Number of looks x Population -1.35 0.67 -2.01 .044 

  AIC BIC logLik deviance 

  298.1 361.0 -134.0 268.1 
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Longest look to novel or familiar stimuli  

This variable was analysed via generalised linear mixed effects models. Whether 

children’s longest look was towards novel or familiar stimuli was predicted by a population x 

trial type interaction (z = -2.36, p = .018; see Table 9). This interaction was deconstructed by 

exploring the effect of population on familiar and novel trials separately, and trial type for 

neurotypical and autistic groups separately. Autistic children looked significantly longer at 

novel stimuli than neurotypical children on familiar trials (z = 2.34, p = .019), but not novel 

trials (z = -1.32, p = .19). Both autistic children (z = 4.34, p <.001) and neurotypical children 

(z = 8.30, p <.001) looked longer at the novel object on novel trials, however, this effect was 

larger for neurotypical children.  

Referent selection accuracy was predicted by a looking measure x trial type 

interaction (z = 6.20, p <.001; see Table 9). This interaction was deconstructed by testing the 

looking measure effect on familiar and novel trials separately. Accuracy on novel trials 

significantly increased when children’s longest look was towards the novel stimuli (z = 5.78, 

p <.001). However, on familiar trials, accuracy significantly decreased when children’s 

longest look was towards the novel stimuli (z = -3.58, p <.001). 
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Table 9 

Summaries of the fixed effects in the final generalised linear mixed-effects models (log odds) 

for the longest look to novel or familiar stimuli during referent selection 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
z Pr(> |t|) 

Between-group (Intercept) -0.60 0.12 -4.84 <.001 

Differences  Population 0.33 0.25 1.31 .19 

 Trial Type 2.80 0.32 8.90 <.001 

 Population x Trial Type -1.49 0.63 -2.36 .018 

  AIC BIC logLik deviance 

        535.0 598.1 -252.5 505.0 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
z Pr(> |z|) 

Predicting (Intercept) 3.32 0.55 6.07 <.001 

Accuracy Longest look novel or familiar -0.21 0.48 -0.43 .66 

 Trial Type -2.34 0.70 -3.33 <.001 

 Longest look x Trial Type 6.02 0.97 6.20 <.001 

  AIC BIC logLik deviance 

  275.3 338.3 -122.7 245.3 

 

5-minute retention 

Linear mixed-effects models (unless otherwise specified) testing whether effects of 

population and condition predicted variability in each looking measure at 5-minute retention 

contained 493 data points (see Table 10 for descriptive statistics). Due to a technical error, 

three trials were removed for one neurotypical participant in the object condition. 

 Generalised linear mixed-effects models testing whether children’s in-trial looking, 

and looking at referent selection, predicted their behavioural response accuracy at 5-minute 

retention contained 489 data points. We excluded three trials due to a technical error, and four 

trials due to ambiguous responses. 

 



 
 

153 

 

Table 10 

Mean values for the individual visual attention measures at 5-minute retention, split by 

condition and population 

Looking Measure Condition  ASD NT 

Proportion of time spent looking at 

the target stimuli  

(0-1) 

Animal   0.43  0.37 

Object   0.36  0.39 

Number of looks towards the target 

stimuli 

(0-9) 

Animal  1.81  1.00 

Object   1.62  1.30 

Longest look to target or foil 

stimuli 

(0/1) 

Animal 0.49  0.38 

Object   0.33  0.45 

 

Proportion of time spent looking at the target stimuli 

This looking measure did not significantly differ between populations or conditions; 

the inclusion of fixed effects did not improve fit in comparison with the baseline model. 

Children’s 5-minute retention accuracy was predicted by a fixed effect of this looking 

measure (z = 11.21, p <.001; see Table 11). Across groups and conditions, children who 

looked proportionately longer at the target stimuli responded more accurately during 5-

minute retention. 

Variability in proportion of time spent looking at the target stimuli during referent 

selection did not predict 5-minute retention accuracy. 
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Table 11 

Summary of the fixed effects in the final generalised linear mixed-effects model (log odds) of 

5-minute retention accuracy, predicted by proportion of time spent looking at the target 

stimuli at 5-minute retention 

Fixed effects 
Estimated 

coefficient 

Std. 

error 
z Pr(> |z|) 

(Intercept) -3.65 0.37 -9.78 <.001 

Proportion of time looking at 

target 

8.12 0.72 11.21 <.001 

 AIC BIC logLik deviance 

       366.0 391.1 -177.0 354.0 

 

Number of looks to the target stimuli 

This looking measure was predicted by a population x condition interaction (t = 2.24, 

p = .033; see Table 12). This interaction was deconstructed by exploring the effect of 

population in the animal and object conditions separately, and condition for neurotypical and 

autistic groups separately.  While neurotypical children looked towards the target 

significantly more often in the object condition compared to the animal condition (t = -2.50, p 

= .013), number of looks towards the target by autistic children did not significantly differ 

between conditions (t = 1.19, p = .23). Autistic children made significantly more looks 

towards the target than neurotypical children in the animal condition (t = 2.70, p = .011), but 

the groups did not significantly differ in the object condition (t = 1.30, p = .20).  

Children’s 5-minute retention accuracy was predicted by a looking measure x 

condition interaction (z = 2.60, p = .009; see Table 12). Across populations, children who 

looked more frequently towards target stimuli achieved significantly higher 5-minute 

retention accuracy, but this effect was larger in the animal condition (z = 5.51, p <.001) than 

the object condition (z = 3.80, p <.001).  
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Across populations and conditions, children who looked more frequently towards 

target stimuli during referent selection responded with significantly greater accuracy at 5-

minute retention (z = 2.20, p = .028; see Table 12). 

Table 12 

Summaries of the fixed effects in the final generalised and linear mixed-effects models (log 

odds) for 5-minute retention, predicted by number of looks to the target stimuli 

 

 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
t Pr(> |t|) 

Between-group (Intercept) 1.43 0.13 11.15 <.001 

Differences Population 0.56 0.24 2.31 .028 

 Condition -0.05 0.11 -0.41 .68 

 Population x Condition 0.50 0.23 2.24 .033 

  AIC BIC logLik deviance 

        1570.7 1608.5 -776.4 1552.7 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
z Pr(> |z|) 

Predicting (Intercept) -1.41 0.25 -5.58 <.001 

Accuracy Number of looks to target 0.74 0.11 6.91 <.001 

 Condition -0.63 0.37 -1.70 .09 

 Number of looks x 

Condition 

0.52 0.20 2.60 .009 

  AIC BIC logLik deviance 

  609.4 642.9 -296.7 593.4 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
z Pr(> |z|) 

Referent Selection  (Intercept) -0.70 0.21 -3.32 <.001 

Looking Predicting 

Accuracy 

Number of looks to target 

at referent selection 

0.17 0.08 2.20 .028 

  AIC BIC logLik deviance 

  658.3 683.4 -323.1 646.3 
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Longest look to target or foil  

This looking measure did not significantly differ between populations or conditions; 

the inclusion of fixed effects did not improve fit in comparison with the baseline model. 

Children’s 5-minute retention accuracy was predicted by this looking measure (z = 

12.19, p <.001; see Table 13). Looking longest at the target object (rather than a foil) was 

associated with significantly greater 5-minute retention accuracy across populations and 

conditions.  

Whether children looked longest at the target or a foil during referent selection did not 

predict 5-minute retention accuracy. 

Table 13 

Summary of the fixed effects in the final generalised linear mixed-effects models (log odds) 

for longest look to the target/foil stimuli during 5-minute retention 

Fixed effects 
Estimated 

coefficient 
Std. error z Pr(> |z|) 

(Intercept) -0.19 0.18 -1.04 .30 

Longest look target  3.03 0.25 12.19 <.001 

 AIC BIC logLik deviance 

 483.8 508.9 -235.9 471.8 

 

24-hour retention 

Linear mixed-effects models (unless otherwise specified) testing whether effects of 

population and condition predicted variability in each looking measure at 24-hour retention 

contained 471 data points (see Table 14 for descriptive statistics). Data from two autistic 

children in the animal condition, and one neurotypical child in the object condition, were 
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excluded from this phase due to absence. One additional trial from an autistic participant in 

the object condition was removed due to non-completion.  

 Generalised linear mixed-effects models testing whether children’s in-trial looking, 

and looking at referent selection, predicted their behavioural response accuracy at 24-hour 

retention contained 467 data points. As for the accuracy analyses, we excluded five trials for 

autistic participants in the object condition due to non-completion (1), and simultaneous 

selection of multiple referents with their head and hand (4). 

Table 14 

Mean values for the individual visual attention measures at 24-hour retention, split by 

condition and population 

Looking Measure Condition  ASD NT 

Proportion of time spent 

looking at the target stimuli  

(0-1) 

Animal  0.45 0.37 

Object  0.42 0.42 

Number of looks towards the 

target stimuli 

(0-11) 

Animal  1.89 1.17 

Object  1.68 1.27 

Longest look to target or foil 

stimuli 

(0/1) 

Animal 0.50 0.41 

Object  0.49 0.48 

 

Proportion of time spent looking at the target stimuli 

This looking measure did not significantly differ between populations or conditions; 

the inclusion of fixed effects did not improve fit in comparison with the baseline model.  

Children’s 24-hour retention accuracy was predicted by a fixed effect of this looking 

measure (z = 11.56, p <.001; see Table 15). Across groups and conditions, as children’s 

proportion of looking at the target object increased, so did their 24-hour retention accuracy.  
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The final best-fitting model testing whether children’s 24-hour retention accuracy was 

predicted by proportion of time spent looking at the target during referent selection detected a 

looking measure x population x condition interaction (z = -2.03, p = .042; see Table 15). This 

interaction was deconstructed by separately testing the looking measure effect on each 

population in each condition. For autistic children, greater proportion of time spent looking at 

the target during referent selection predicted more accurate 24-hour retention in the object 

condition (z = 2.73, p = .006), but not the animal condition (z = -0.83, p = .41). However, this 

looking measure did not predict neurotypical children’s 24-hour retention accuracy in either 

the object (z = 0.35, p = .73) or animal (z = 1.08, p = .28) condition. 
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Table 15 

Summaries of the fixed effects in the final generalised linear mixed-effects models (log odds) 

for 24-hour retention accuracy, predicted by proportion of time spent looking at the target 

stimuli 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
z Pr(> |z|) 

Predicting (Intercept)   -2.85 0.29 -9.84 <.001 

Accuracy Prop. of time looking to target 7.20 0.62 11.56 <.001 

  AIC BIC logLik deviance 

        375.3 400.1 -181.6 363.3 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
z Pr(> |z|) 

Referent  (Intercept) -0.43 0.28 -1.53 .13 

Selection 

Looking  

Prop. of time looking at target 

at referent selection 

0.96 0.41 2.31 .021 

Predicting Condition 0.22 0.50 0.44 .66 

Accuracy Population 0.56 0.54 1.04 .30 

 Proportion x Condition -0.71 0.84 -0.85 .39 

 Proportion x Population  0.47 0.83 0.57 .57 

 Condition x Population 2.45 1.00 2.46 .014 

 Proportion x Condition x 

Population 

-3.38 1.66 -2.03 .042 

  AIC BIC logLik deviance 

  635.2 685.0 -305.6 611.2 

 

Number of looks to the target stimuli 

Number of looks to the target was predicted by a fixed effect of population. Across 

conditions, autistic children made significantly more looks towards the target than 

neurotypical children (t = 2.35, p = .025; see Table 16). 

Children’s 24-hour retention accuracy was predicted by a looking measure x 

population interaction (z = -3.02, p = .002; see Table 16). More frequent looks to the target 

object were associated with significantly higher 24-hour retention accuracy in both 
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populations, however, this effect was larger for neurotypical children (z = 6.01, p <.001) than 

autistic children (z = 4.02, p <.001).  

Across populations and conditions, children who looked more frequently towards 

target stimuli during referent selection responded with significantly greater accuracy at 24-

hour retention (z = 3.11, p = .002; see Table 16). 

Table 16 

Summaries of the fixed effects in the final generalised and linear mixed-effects models (log 

odds) for 24-hour retention, predicted by number of looks towards the target stimuli 

 

 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
t Pr(> |t|) 

Between-group (Intercept) 1.49 0.13 11.87 <.001 

Differences Population 0.51 0.21 2.35 .025 

  AIC BIC logLik deviance 

        1582.2 1611.3 -784.1 1568.2 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
z Pr(> |z|) 

Predicting (Intercept) -1.14 0.23 -5.04 <.001 

Accuracy Number of looks  0.90 0.12 7.39 <.001 

 Population                                               1.35 0.45 3.02 .003 

 Number of looks x 

Population 

-0.74 0.24 -3.02 .002 

  AIC BIC logLik deviance 

  566.8 600.0 -275.4 550.8 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
z Pr(> |z|) 

Referent Selection  (Intercept) -0.51 0.26 -1.99 .047 

Looking Predicting 

Accuracy 

Number of looks to 

target at referent 

selection 

0.29 0.09 3.11 .002 

  AIC BIC logLik deviance 

  628.2 653.1 -308.1 616.2 
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Longest look to target or foil stimuli 

Generalised linear mixed-effects models revealed that this looking measure did not 

significantly differ between populations or conditions; the inclusion of fixed effects did not 

improve fit in comparison with the baseline model. 

Children’s 24-hour retention accuracy was predicted by a looking measure x 

population interaction (z = -2.78, p = .005; see Table 17). Looking longest at the target was 

associated with significantly higher 24-hour retention accuracy in both populations, however, 

this effect was larger for neurotypical children (z = 9.48, p <.001) than autistic children (z = 

5.84, p <.001). 

When children’s longest look during referent selection was towards the target rather 

than a competitor, their 24-hour retention accuracy increased (z = 2.57, p = .010; see Table 

17). 
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Table 17 

Summaries of the fixed effects in the final generalised linear mixed-effects models (log odds) 

for 24-hour retention accuracy, predicted by longest look to the target/foil stimuli 

 

3.5.4. Discussion: Looking during word learning and relationships with accuracy 

We compared the visual attention of autistic and neurotypical children during novel 

word learning and investigated whether a range of measures predicted their retention 

accuracy. Neurotypical children spent longer looking at target stimuli during referent 

selection than autistic children, and both populations looked longer at target stimuli during 

familiar trials in comparison to novel trials. However, autistic children made more individual 

looks towards targets than neurotypical children during all three experimental phases. At 5-

minute retention, autistic children looked more frequently at target stimuli in the animal 

condition than neurotypical children. Across groups and conditions, children’s in-trial visual 

attention predicted accuracy at all three stages. Importantly, we discovered that children’s 

looking behaviour at referent selection predicted their 5 minute and 24-hour retention 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
z Pr(> |z|) 

Predicting Accuracy (Intercept) 0.16 0.15 1.07 .28 

 Longest look target        2.64 0.24 10.97 <.001 

 Population                                               0.68 0.28 2.40 .016 

 Longest look target x 

Population   

-1.34 0.48 -2.78 .005 

  AIC BIC logLik deviance 

  485.0 518.2 -234.5 469.0 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
z Pr(> |z|) 

Referent Selection  (Intercept) 0.0002 0.18 0.001 1.00 

Looking Predicting 

Accuracy 

Longest look to target at 

referent selection 

0.56 0.22 2.57 .010 

  AIC BIC logLik deviance 

  633.0 657.9 -310.5 621.0 
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accuracy, demonstrating that visual attention at encoding directly influences the likelihood of 

memory consolidation (see also Hilton et al., 2019 for similar results).    

Children’s proportional looking patterns during referent selection reflect their use of 

ME to inform fast mapping (Carter & Hartley, 2021; Preissler & Carey, 2005). Potentially, 

children spent more time looking towards targets during familiar trials compared to novel 

trials because they did not need to eliminate competitors to identify the requested referent. On 

the other hand, successful engagement in ME during novel trials required children to 

distribute their attention more evenly across stimuli in order to rule out non-target 

competitors and settle on the unfamiliar object as the intended referent (de Marchena et al., 

2011; Horst & Samuelson, 2008; Zosh et al., 2013).   

Neurotypical children looked proportionately longer towards targets than autistic 

children during referent selection, and autistic children were significantly more likely than 

neurotypical children to look longest at non-target novel stimuli on familiar trials. However, 

despite these differences in looking – which could be interpreted as evidence for less accurate 

identification of referents in autistic children – our behavioural data demonstrate that the 

groups’ referent selection accuracy did not significantly differ. Importantly, these findings 

show that population differences in fast mapping accuracy should not necessarily be inferred 

from contrasting profiles of looking behaviour. Indeed, autistic children’s heightened 

attention to novel stimuli across both referent selection trial types could have afforded more 

robust encoding of novel word-object associations (e.g. Axelsson et al., 2012), potentially 

supporting their superior accuracy at 24-hour retention.  

Our analyses examining frequency of looks towards target stimuli during referent 

selection revealed that autistic children made more looks than neurotypical children, and both 

populations made more looks in novel trials (vs. familiar trials). It is possible that increased 

frequency of looks reflected participants’ uncertainty and need to check multiple stimuli 
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before making a confident response. For example, children likely made more looks during 

novel trials because the requested referent was unfamiliar and they needed to employ ME to 

rule out competitor objects (Halberda, 2003; Lewis et al., 2020). Given that our autistic 

sample was characterised by delayed language development, these children may have 

required more looks towards target stimuli due to uncertainties associated with 

comprehension and, potentially, the need for greater input to support processing.  

At 5-minute retention in the animal condition, recall that autistic children responded 

with significantly greater accuracy and outperformed vocabulary-matched neurotypical 

children. Correspondingly, significant differences were detected in children’s looking 

behaviour – autistic children looked at targets significantly more frequently than neurotypical 

children in the animal condition. These findings align with previous evidence that autistic 

children tend to explore stimuli that relate to their interests in a more detailed fashion than 

less interesting stimuli (Sasson et al. 2008, 2011). Given that predictive relationships were 

identified between all in-trial looking measures and response accuracy at 5-minute retention, 

it may be that group differences in visual attention reflected variability in short-term memory 

consolidation.    

However, at 5 minute and 24-hour retention, proportion of time spent looking at target 

stimuli did not significantly differ across populations or conditions. This aligns with a 

growing body of evidence demonstrating that neurotypical and autistic children perform 

comparably well on word learning tasks when utilising proportion of looking time as an 

indicator of accuracy (e.g. Akechi et al., 2013; Swensen et al., 2007; Venker, 2019). Our 

proportional looking data could be interpreted as evidence for a lack of group differences in 

word learning, yet group differences in accuracy were identified at both 5 minute and 24-hour 

retention. Consequently, this finding calls into question the validity of drawing conclusions 
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about retention accuracy in autistic and neurotypical children based exclusively on data 

representing proportion of time spent looking at requested referents.  

3.6. General Discussion 

This study investigated whether autistic children with delayed language development 

and neurotypical children differ in accuracy and/or visual attention when learning words 

associated with high interest (animals) and neutral interest (objects) stimuli. Importantly, this 

study is the first to examine how direct measures of word learning accuracy and visual 

attention inter-relate in autism.  Our data show that autistic children can identify and retain 

the meanings of novel animals and novel objects as accurately as neurotypical children 

matched on receptive vocabulary. Indeed, autistic children retained names for novel animals 

with greater accuracy than neurotypical children after five minutes. Unexpectedly, autistic 

children showed a greater increase in their accuracy between 5 minute and 24-hour retention 

tests and outperformed neurotypical children after a night’s sleep. However, autistic children 

demonstrated slower response times than neurotypical children at each word learning stage, 

particularly towards animal stimuli. Analyses of in-trial visual attention revealed that autistic 

children looked at targets significantly more often than neurotypical children at each word 

learning stage, and this measure predicted response accuracy across populations. Despite 

observing population differences in retention accuracy, but not referent selection accuracy, 

autistic and neurotypical children significantly differed in their proportion of time spent 

looking at targets during referent selection, but not retention. We also discovered that 

children’s 5 minute and 24-hour retention accuracy was predicted by visual attention at 

referent selection. Children’s 24-hour retention accuracy was also predicted by auditory 

input. These findings indicate a relationship between fast mapping and slow learning 

mechanisms. 
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In partial support of our predictions, effects of stimulus condition were observed at 5-

minute retention. Here, autistic children achieved significantly greater accuracy in the animal 

condition – where they exceeded neurotypical children – than in the object condition. We also 

identified complementary between-group differences in visual attention; autistic children 

looked more frequently at animal targets than neurotypical children. As autistic children tend 

to process high interest stimuli with greater focus and intensity (Elison et al., 2012; Sasson et 

al. 2008, 2011), it may be that their interest in animals facilitated encoding of more robust 

word-referent representations that were less vulnerable to decay after five minutes. By 

contrast, neurotypical children’s 5-minute retention accuracy did not significantly differ 

between conditions, suggesting that differences in interests associated with target stimuli did 

not influence the strength of their encoded word-referent representations after a short delay. 

However, condition effects on autistic children’s 5-minute retention were not maintained after 

24 hours due to their accuracy in the object condition markedly increasing (M5-minute = 0.37; 

M24-hour = 0.57). Autistic children’s overnight improvement in the object condition may be 

attributed to sleep having more beneficial consolidation effects on weaker memory 

representations (Drosopoulos et al., 2007). Previous studies have shown that neurotypical 

children’s retention of fragile word-referent associations encoded under relatively difficult 

conditions improves more substantially after a period of sleep than their retention of strongly 

encoded word-referent associations (Axelsson et al., 2021; Williams & Horst, 2014). Overall, 

these findings demonstrate that autistic children can effectively identify and retain novel 

word meanings across varied stimuli, and that benefits conferred by high interest stimuli are 

relatively short-term.  

This study is one of the few to investigate both referent selection and retention in 

autism – a necessary requirement to comprehensively study children’s novel word learning 

(Hartley et al., 2019; Horst & Samuelson, 2008). Despite our autistic participants’ delays in 
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language development, they did not respond with significantly lower accuracy than 

neurotypical children at referent selection, 5-minute retention, or 24-hour retention (for 

similar results, see: Carter & Hartley, 2021; Haebig et al., 2017; Hartley et al., 2019, 2020; 

Luyster & Lord, 2009). Indeed, their unexpectedly superior 24-hour retention accuracy 

potentially signposts the importance of sleep to their long-term lexical consolidation (as is the 

case for neurotypical development; Axelsson et al., 2016; Brown et al., 2012; Henderson et 

al., 2012; Horváth et al., 2015; Williams & Horst, 2014). As no previous studies have tested 

24-hour retention in autistic children with delayed language development, further research is 

required to replicate this effect and draw comparisons against neurotypical children matched 

on chronological age (in addition to children matched on receptive vocabulary) to control for 

developmental differences in sleep cycles. Crucially, the response profile of autistic children 

across word learning accuracy measures demonstrates that fundamental mechanisms 

subserving their identification and retention of meaning are intact and yield learning 

outcomes commensurate with expectations based on their receptive vocabulary (Carter & 

Hartley, 2021; Hartley et al., 2019, 2020). Thus, if autistic children do not qualitatively differ 

in terms of word learning mechanisms, delays in their naturalistic language learning and 

vocabulary development must have an alternative cause.  

Our data indicated group differences in visual attention and speed of processing 

during word learning. In comparison with neurotypical controls, autistic children made more 

looks towards target stimuli during all three word learning phases, and their attention was 

increasingly drawn towards novel stimuli during referent selection. While these differences in 

looking behaviour may not have had a detrimental impact on learning accuracy, they may 

explain why autistic children took longer to generate correct responses. Frequency of looks 

towards target stimuli at referent selection had a stronger predictive effect on autistic 

children’s response accuracy, suggesting that repeated examination of novel target stimuli 
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may have been necessary to support their correct identification of meaning. These differences 

in looking behaviour and response times potentially signal that autistic children are less 

efficient at processing audio-visual stimuli when disambiguating novel word meanings than 

neurotypical children with similar language abilities (Ferman, 2021; Hartley et al., 2020; 

Ricketts et al., 2015).  

This study’s combination of behavioural accuracy and looking measures represents an 

important methodological advancement that has generated new insight into autistic children’s 

word learning. Specifically, we discovered that these measures both complement and 

contradict one another. On one hand, across populations and conditions, increased looking 

predicted accuracy at each word learning stage. On the other hand, population differences in 

certain aspects of looking behaviour did not necessitate population differences in learning 

accuracy (or vice versa). It could be inferred from the analyses of time spent looking towards 

target stimuli that autistic children responded with significantly lower accuracy on referent 

selection trials than neurotypical children but did not differ on either 5-minute or 24-hour 

retention. On the contrary, the groups’ referent selection accuracy did not significantly differ, 

and autistic children responded more accurately at retention. These data suggest that 

proportion of time spent looking at targets may be less representative of children’s genuine 

learning outcomes than alternative measures of visual attention, such as frequency of looking 

towards targets. Indeed, our findings spotlight the number of looks towards targets as an 

important measure – more frequent looks at referent selection predicted greater retention 

accuracy at 5 minutes and 24 hours, and population differences in this variable complemented 

between-group differences at both retention stages. Thus, we recommend that future research 

investigating autistic children’s word learning using looking paradigms should carefully 

consider their selection of visual attention measures, as studies may draw (potentially 

erroneous) conclusions exclusively from time spent looking at targets.  
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Our findings also provide new insight into the relationship between fast mapping and 

retention. Previous research with neurotypical children suggests that these word learning 

mechanisms are distinct (e.g. Horst & Samuelson, 2008), but our findings indicate a link 

between referent selection and overnight retention that is mediated by exposure to visual and 

auditory input. We discovered that superior 24-hour retention accuracy was predicted by 

hearing more label repetitions at referent selection, as well as looking at targets longest and 

more frequently. Together, these findings show that how children experience stimuli during 

encoding directly predicts the likelihood of longer-term learning. As posited by McMurray et 

al.’s (2012) dynamic associative model of learning, increased exposures and statistical input 

in both visual and auditory domains are critical for supporting consolidation of newly 

acquired word-referent associations into children’s vocabularies. Moreover, our data are 

congruent with recent studies showing that autism does not impair statistical learning 

mechanisms when deciphering word meanings (e.g. Hartley et al., 2020; McGregor et al., 

2013) or processing visual stimuli (Foti et al., 2015; Roser et al., 2015). 

Thinking practically, our findings have the potential to inform the development of 

interventions designed to scaffold autistic children’s word learning. While autistic children 

are often highly motivated to interact with touch-screen technology, evidence of effective 

learning via this platform has been mixed (Allen et al., 2016; Wainwright et al., 2020). Our 

study demonstrates that it is possible to teach children novel words associated with different 

types of stimuli using a touch-screen computer when distractions are minimised. 

Additionally, we have shown that employing ME-based referent selection is an effective way 

to facilitate autistic children’s word learning. Presenting limited options helps children to 

utilise their existing vocabulary to engage in active learning, deciphering which novel 

referent is associated with a novel word. Furthermore, progression through trials was 

dependent on the speed of children’s responses, enabling them to engage with stimuli at their 

https://www.sciencedirect.com/science/article/pii/S0010027720300846#bb0140
https://www.sciencedirect.com/science/article/pii/S0010027720300846#bb0370


 
 

170 

 

own pace. In natural environments, speech occurs at a rate of approximately 150 words-per-

minute (Studdert-Kennedy, 1986), significantly faster than in most experimental contexts. 

The increased rate of stimuli presentation and greater attentional demands in natural 

communicative situations could create a processing bottleneck for autistic children, reducing 

the quality of their visual-auditory input and strength of associations between words and 

referents (Hartley et al., 2020; McMurray et al., 2012). As such, applying unrestricted 

processing times in clinical and educational interventions, as well as natural learning 

environments where possible, may facilitate autistic children’s vocabulary acquisition.  

This study is not without limitations. Firstly, we must reflect on the implications of 

matching autistic and neurotypical children on receptive vocabulary, but not chronological 

age (the autistic sample was significantly older than the neurotypical sample). We selected 

these matching criteria because the study’s purpose was to compare word learning abilities 

across populations when delays in language development were controlled for. Previous 

studies comparing various aspects of language development in autism against chronological 

age norms for neurotypical children have consistently found deficits (e.g. Charman et al., 

2003; Luyster et al., 2007). However, these differences could be due to various factors, 

including neurotypical children’s generally superior vocabulary learning abilities and 

differences in nonverbal intelligence. Thereby, matching on receptive vocabulary allows us to 

identify whether autistic children fundamentally differ in how they learn words relative to 

neurotypical children with similar vocabularies. Secondly, our recruitment of participants was 

hindered by school closures and lockdown restrictions associated with the COVID-19 

pandemic which occurred whilst the study was underway. Thus, we would recommend that 

future studies combining behavioural and looking measures seek to replicate our findings 

with larger samples.  
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In summary, this study has advanced understanding of how autistic and neurotypical 

children identify and retain novel word meanings, and how these processes are influenced by 

interest in stimulus categories. Despite our autistic participants’ delayed language 

development, they responded at least as accurately as vocabulary-matched neurotypical 

children on measures of referent selection, 5-minute retention, and 24-hour retention. 

Differences between neutral- and high interest stimuli were only observed at 5-minute 

retention, where autistic children recalled animal names significantly more accurately than 

object names. This condition advantage disappeared after 24 hours, suggesting that superior 

learning of words associated with high interest stimuli was relatively short-term. Thus, under 

favourable experimental conditions, differences in attention to stimuli that are perceived to be 

more or less interesting may not be detrimental to autistic children’s word learning. Although 

these results demonstrate that fundamental word learning mechanisms are not atypical in 

autism, autistic children were slower than neurotypical children to generate correct responses, 

particularly in the animal condition. Autistic children also differed in their visual engagement 

with stimuli, potentially indicating less efficient processing of visuo-auditory input. As 

children responded at their own pace and processing times were unrestricted, spending longer 

studying stimuli may have benefited autistic children’s accuracy (i.e. a speed-accuracy trade-

off). However, restricted processing times and the rapid pace of input during naturalistic 

communicative interactions could place strain on autistic children’s word learning 

mechanisms and impact on their accuracy. Our results highlight the risk of drawing 

inaccurate conclusions about autistic children’s learning from looking time alone and show 

the importance of including multiple measures of learning outcomes and visual attention. 

Overall, these findings indicate environmental conditions to scaffold word learning in clinical 

and educational contexts.  
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Chapter 4: Do autistic and neurotypical children’s stimulus preferences influence their 

accuracy and visual attention when learning novel words? 

4.1. Chapter Introduction 

 It is established that children’s interests in specific categories influence novel word 

learning due to enhanced attentional allocation to such stimuli (Ackermann et al., 2020, 

Rothwell et al., Study 1, Study 2). However, such interests are not the only element that may 

drive word learning. For example, we know that - in addition to specific categories of stimuli 

- children often prefer unique properties of stimuli. Research suggests that allowing 

neurotypical children to learn about objects of their choice affords better learning outcomes 

(Begus & Southgate, 2012; Partridge et al., 2015). However, these theories have not yet been 

tested in autistic populations.  

Whilst Studies 1 and 2 of this thesis explore how categorical interests impact word 

learning, Study 3 (Chapter 4) investigated the effects of autistic and neurotypical children’s 

idiosyncratic preferences for object stimuli. Children identified novel stimuli as being ‘liked’ 

or ‘disliked’ in a session prior to the experimental tasks, and these stimuli were allocated to 

liked and disliked conditions respectively. Children were then tested on their ability to learn 

novel names for objects that differed on this preference dimension. Like Study 2, here we 

examined touch-screen responses alongside in-trial visual attention. Addressing this gap in 

knowledge will advance theoretical understanding of word learning in autism and 

neurotypical development, highlighting how individual preferential biases to selective stimuli 

influence learning and visual attention, and how these measures inter-relate. 

Author contribution: Charlotte Rothwell: study design, data collection, analysis, writing, 

review. Gert Westermann: review. Calum Hartley: study design, review. 
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4.2. Abstract 

To decipher novel word-referent mappings, it is imperative that children pay attention to the 

right things at the right times during word learning. Disruptions to attention may therefore 

contribute to word learning difficulties experienced by some autistic children. Here, we 

combine accuracy and looking measures to investigate whether autistic children with delayed 

language development and neurotypical children matched on receptive vocabulary differ in 

accuracy and/or visual attention when learning words associated with self-identified liked and 

disliked object stimuli. In a computer-based mutual exclusivity referent selection task, 

neurotypical children mapped novel word-object associations with greater accuracy than 

autistic children. However, after 5 minutes and 24 hours, autistic and neurotypical children 

retained novel object names with comparable accuracy irrespective of stimulus preferences. 

Success on previous word learning stages predicted subsequent retention accuracy, indicating 

a relationship between short- and long-term word learning mechanisms. Across word learning 

stages, response speed of autistic and neurotypical children did not significantly differ. 

However, analyses of visual attention revealed that autistic children looked at targets 

significantly more often than neurotypical children. Moreover, conditional differences in 

visual attention at referent selection did not result in conditional differences in behavioural 

response accuracy across word learning stages. Together, these findings suggest that 

idiosyncratic preferences to stimuli do not influence autistic or neurotypical children’s 

attention allocation enough to impact their novel word retention. Interestingly, even after a 

24-hour delay, sleep did not consolidate novel object labels in either population. Differences 

in visual attention in autism did not lead to diminished novel word retention, suggesting that 

attentional allocation does not necessitate altered word learning accuracy. 

Keywords: Word learning; Autism; Preferences; Attention; Referent Selection; Retention 
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4.3. Introduction 

 Word learning is a vital component of children’s language acquisition (Patael & 

Diesendruck, 2008). Neurotypical children can understand approximately 200 words before 

2-years (Dale & Fenson, 1996), increasing to approximately 2600 words by school age (Kidd 

& Donnelly, 2020). By contrast, many autistic children are delayed in their receptive and 

expressive vocabulary development in comparison to neurotypical peers (Artis & 

Arunachalam, 2023; Kover et al., 2013). Perhaps surprisingly, recent evidence shows that 

word learning mechanisms – and the relationships between them – are not atypical in many 

autistic children, including those with delayed language development (Foti et al., 2015; 

Hartley et al., 2019, 2020; Roser et al., 2015). An alternative explanation for delays in 

language acquisition in autism could be atypical attentional behaviours that reduce the quality 

of visual and auditory input and inhibit children’s capacity to learn from their environment 

(Arunachalam & Luyster, 2015, 2018; Hartley et al., 2019, 2020). However, few studies to 

date have empirically studied how children’s attentional mechanisms influence word learning 

in autism or neurotypical development. Here, we investigate how preferences for specific 

objects and endogenous attentional biases affect identification and retention of novel words in 

neurotypical and autistic children.  

Word learning is a multi-stage process, whereby children must take in cues from their 

linguistic and non-linguistic environment and identify the correct mapping between a novel 

word and its meaning (‘referent selection;’ Carey & Bartlett, 1978; McMurray et al., 

2012; Monaghan, 2017). Following this, the child must store the correct word-referent 

association for later retrieval (‘retention;’ Gleitman, 1990). The ‘dynamic associative account’ 

explains the relationship between mechanisms, proposing that referent selection and retention 

utilise separate ‘fast mapping’ and ‘slow associative learning’ processes that occur on 

different timescales (McMurray et al., 2012).  
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‘Fast mapping’ occurs when children form rapid, in-the-moment, associations 

between novel words and meanings (Kucker et al., 2015; Samuelson & McMurray, 2017). 

During fast mapping, children must overcome the challenge of referential ambiguity – a 

novel word could have multiple potential referents (Cartmill et al., 2013; Markman, 1989). 

One way that children resolve referential ambiguity is by applying the mutual exclusivity 

principle (ME). ME refers to the assumption that each referent only has a single label. Thus, 

when a single unfamiliar object is presented alongside one or more familiar objects, children 

use ME to deduce that a novel word must refer to the unfamiliar object (Markman & Wachtel, 

1988; Merriman & Bowman, 1989).  

However, referent selection is only one component of word learning – true word 

learning requires children to retain associations between novel words and their referents 

(McMurray et al., 2012).  Learning, characterised by encoding and memory consolidation 

(Vlach & DeBrock, 2019), is only evidenced when children can accurately identify the 

referent of a novel word after a delay. Indeed, many studies demonstrate that neurotypical 

toddlers who fast map with excellent accuracy often forget novel words after a five-minute 

delay (Bion et al., 2013; Gurteen et al., 2011; Horst & Samuelson, 2008). These findings 

reveal that referent selection and retention are separate word learning processes. It is 

proposed that retention is underpinned by associative learning mechanisms that gradually 

strengthen word-object relationships over multiple exposures across situations and contexts 

(Hartley et al., 2020; McMurray et al., 2012; Monaghan, 2017). Moreover, sleep enhances 

retention by protecting new memories against decay (Diekelmann & Born, 2010; Gais & 

Born, 2004), and studies have shown that both autistic and neurotypical children recall novel 

word-referent associations more accurately after sleeping (e.g. Henderson et al., 2012, 2014; 

Horváth et al., 2015; Rothwell et al., accepted, see Study 2; Williams & Horst, 2014).  

https://www.sciencedirect.com/science/article/pii/S0010027719300563?via%3Dihub#b0250
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Crucially, children’s word learning and visual attention are inter-related. To correctly 

learn a word, children must examine an array of stimuli and identify the intended referent 

whilst concurrently ruling out competitors and attending to cues such as gaze and gesture 

(Hollich et al., 2000; Preissler & Carey, 2005; Samuelson et al., 2017). Hilton et al. (2019) 

suggest that individual characteristics influence visual attention and word learning success. 

They demonstrated that shy children, who spent less time looking towards target stimuli, 

subsequently had poorer novel word retention (see also Hilton & Westermann, 2017 for 

similar results). Axelsson et al. (2012) exogenously manipulated neurotypical toddlers’ 

attention and examined how this affected their novel word retention. When target objects 

were made more salient through visual illumination, children achieved superior retention 

accuracy, demonstrating that increased attention is beneficial for word learning via referent 

selection. Together, these studies show that children’s visual attention during encoding 

impacts their subsequent retention of word-referent associations (Ackermann et al., 2020; 

Bion et al., 2013; Smith & Yu, 2013).  

Children’s attentional biases towards specific stimuli can also influence their word 

learning. Children often prefer objects that are larger, display bright and multi-colours, or are 

varied in texture and shape (Pereira et al., 2014), and can retain more information about these 

kinds of stimuli (Smith et al., 1996). Heightened interest in particular objects increase 

children’s attentional focus, which can in turn benefit their encoding of more robust word-

referent representations (Ackermann et al., 2020; Begus & Southgate, 2012). In Begus et al. 

(2014), 16-month-old children selected one of two novel objects, and then learnt about the 

function of either their chosen or non-chosen object. The children retained significantly more 

information about their chosen objects than their non-chosen objects, demonstrating that 

children’s active engagement and selection of information leads to superior learning. Further, 

Partridge et al. (2015) investigated self-directed learning in neurotypical pre-schoolers and 
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found that children who chose which objects they learned labels for achieved superior 

accuracy at training and test than their counterparts who did not choose which objects they 

learned about. However, with increased task difficulty, this conditional effect diminished. 

Thus, when a task is of low to moderate difficulty, children may find it easier to learn words 

for objects they are interested in due to a curiosity-driven desire to seek out more information 

about these items. Similarly, Ackermann et al. (2020) utilised questionnaires and 

pupillometry to identify neurotypical 2-year-olds’ preferred specific stimuli and categories of 

stimuli. Children then learnt four novel word-referent pairings via ME-based referent 

selection. Overall, children demonstrated better novel word retention of stimuli belonging to 

categories they were more interested in, and for specific novel stimuli of interest. This 

indicates the positive role of interests and attention on neurotypical children’s word learning.   

Early theories attributed autistic children’s delayed language development to 

difficulties interpreting social cues that attune children’s attention to the correct target, thus 

informing referent selection (e.g. Baron-Cohen et al. 1997; Preissler & Carey 2005). 

However, more recent research demonstrates that autistic children with wide-ranging 

language abilities can use social informants to identify novel referents under controlled 

experimental conditions (Hani et al., 2013; Hartley et al., 2020; McGregor et al., 2013). 

Studies have also shown that, in comparison to neurotypical peers, autistic children with 

concomitant language delay are unimpaired in their use of lexical heuristics such as ME 

(Carter & Hartley, 2021; de Marchena et al., 2011; Preissler & Carey, 2005; Rothwell et al., 

accepted, see Study 2). These findings suggest that autistic children are capable of employing 

social and lexical strategies in the service of referent selection, as neurotypical children do.  

Whilst referent selection has been widely researched, very few studies have 

investigated retention in autism. Norbury et al. (2010) report that verbally able autistic 

children can retain word-object mappings as accurately as neurotypical controls, but their 

https://link-springer-com.ezproxy.lancs.ac.uk/article/10.1007/s10803-020-04771-2#ref-CR7
https://link-springer-com.ezproxy.lancs.ac.uk/article/10.1007/s10803-020-04771-2#ref-CR61
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memory of semantic features may degrade more rapidly. Hartley and colleagues found that 

autistic children with delayed language development retained novel names at least as 

accurately as vocabulary-matched neurotypical children after utilising social and non-social 

feedback in an ME task (Hartley et al., 2019) and tracking statistical co-occurrences between 

words and objects (Hartley et al., 2020). These data reveal that fundamental word learning 

mechanisms in language delayed autistic children are not impaired. However, the delayed 

response times in autistic children may represent reduced pace of word learning mechanisms 

in autism.  

Studies report that whilst neurotypical children can allocate attention freely across 

learning contexts, autistic children often demonstrate attentional processes that are ‘sticky’ 

and challenging to disengage (Elsabbagh et al., 2009, 2013; Pierce et al., 2011, 2016; Sacrey 

et al., 2013, 2014). These behaviours are often attributed to restricted and repetitive 

behaviours and interests that are prevalent in many autistic children, causing them to 

perseverate their attention towards a specific range of topics or interests (RRBIs; Kanner, 

1943; Honey et al., 2012; Richler et al., 2007). Compared to neurotypical children, autistic 

children often intensively allocate their visual attention towards salient perceptual features or 

preferred categories, at the detriment of other stimuli (Hartley & Allen, 2014; Pierce et al., 

2011, 2016; Venker et al., 2022). Previous research also indicates that autistic children 

examine high interest and preferred stimuli in greater detail than neurotypical peers (Sasson 

et al., 2011). For instance, Pierce et al. (2016) suggested that autistic toddlers had a 

heightened preference for geometric shapes compared to neurotypical peers, leading to 

atypical attentional distributions particularly towards preferred shapes. These differences in 

visual attention could have profound implications for language acquisition. If a non-target 

object captures the attention of an autistic child, they may not disengage their attention and 

redirect towards the to-be-learned stimuli when hearing the novel word. Consequently, the 
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misalignment in auditory-visual statistics may result in either incorrect word learning, or 

cause word learning to not take place at all (e.g. Baron-Cohen et al., 1997; Tenenbaum et al., 

2017; Venker et al., 2018).  

Differences in visual attention during identification of meaning may affect encoding 

of novel words (e.g. Axelsson et al., 2012; Bion et al., 2013; Hartley et al., 2019, Hilton et al., 

2019). If target stimuli appeal to autistic children’s interests or preferences, perseverative 

allocation of attention may generate robust encodings of word-referent associations that are 

less susceptible to decay (e.g. Ackermann et al., 2020, Rothwell et al., Study 2). However, if 

target stimuli are not interesting to autistic children, their attentional allocation may be 

reduced, resulting in fragile encodings of word-referent associations in memory (e.g. 

Tenenbaum et al., 2014, 2017). To our knowledge, our Study 2 is the only study to directly 

investigate how autistic children’s interests influence their visual attention and retention 

accuracy in a word learning task. We demonstrated that neurotypical and language delayed 

autistic children matched on receptive vocabulary could successfully identify the names of 

both novel objects (neutral interest stimuli) and novel animals (high interest stimuli) via 

mutual exclusivity in a fast-mapping task. After a 5-minute delay, autistic children 

remembered names for more novel animals than neurotypical children, demonstrating that 

autistic children could more easily remember novel names associated with categories they 

were interested in. After a 24-hour delay, autistic children retained more novel object and 

animal names than neurotypical children. Despite children’s word learning success, autistic 

children took longer to generate correct responses than vocabulary-matched neurotypical 

children, particularly for stimuli of interest.  Autistic children also looked significantly more 

frequently at target stimuli regardless of whether they belonged to a category of interest 

(animals) or a neutral category (objects). For both groups, visual attention during encoding at 

referent selection significantly predicted retention accuracy. It remains unclear how visual 
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attention may affect autistic children’s word learning when all target stimuli belong to the 

same category (objects) or differ in terms of children’s self-identified preferences, rather than 

pre-existing categorical interests. Investigating this would elucidate whether stimuli that 

pertain to children’s interests could be used to scaffold learning in different contexts.  

The present study investigates how preferences for specific stimuli influence word 

learning in autistic and neurotypical children. Autistic and neurotypical children matched on 

receptive vocabulary first completed an object-sorting task where they selected their four 

favourite and four least favourite stimuli from a pool of twelve novel objects. Children then 

identified the meanings of novel words in a computer-based ME referent selection task with 

two-within subject conditions. In one condition, children learnt the names for their four 

favoured novel objects, and in the other condition they learnt the names for their four least 

favoured novel objects. Retention of novel words was tested after 5 minutes and 24 hours. 

The retention tests following a 24-hour delay allowed us to examine the robustness of novel 

word representations associated with favoured and less favoured stimuli, and how sleep 

determines lexical consolidation in autistic children with concomitant language delay. Since 

sleep disorders are prevalent in autism (Díaz-Román et al., 2018; Souders et al., 2009), it is 

possible that these difficulties could impact autistic children’s consolidation of recently 

mapped word-referent associations. However, Rothwell et al. (accepted, see Study 2) recently 

reported that language delayed autistic children benefitted from a period of sleep more than 

neurotypical peers matched on receptive vocabulary when learning names for animals and 

objects. Here, we explore whether the effect of sleep on lexical consolidation differs for 

stimuli within the same category that are liked or disliked. We recorded children’s looking 

behaviour during referent selection and both retention measures, plus their behavioural 

response times and accuracy. This allowed us to compare the populations’ visual engagement 

at each stage of the task and investigate whether variability in visual engagement predicted 
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learning accuracy. While many studies utilise looking time as the sole dependent variable, 

with longer looking usually interpreted as more accurate learning (e.g. Axelsson et al., 2020; 

Tenenbaum et al., 2014, 2017), our novel study advances methodology by examining how 

multiple measures of visual attention and behavioural accuracy inter-relate.   

As previous evidence demonstrates that both neurotypical children and autistic 

children spontaneously apply the ME principle when mapping novel labels to novel objects 

(e,g, Carter & Hartley, 2021; Hartley et al., 2019; Rothwell et al., accepted, see Study 2), we 

did not expect between-population or between-condition differences in accuracy during 

referent selection. Given that heightened attentional focus can enhance word learning 

(Axelsson et al., 2012; Hilton & Westermann, 2017; Rothwell et al., Study 2), we predicted 

that children in both populations would consequently retain novel names associated with their 

liked novel stimuli with greater accuracy than for their disliked stimuli. After 24 hours, we 

anticipated that both autistic and neurotypical children would retain novel words at least as 

accurately as during 5-minute retention, due to sleep-induced consolidation. Based on the 

findings of Rothwell et al. (accepted, see Study 2), we tentatively predicted that autistic 

children would experience a greater benefit of sleep consolidation than their neurotypical 

peers due to longer sleep cycles associated with older chronological age. We also anticipated 

that autistic children would be slower to generate correct responses than neurotypical 

children, especially during referent selection stages, suggesting that autistic children may 

process audio-visual stimuli at a slower pace (Hartley et al., 2020; Rothwell et al., accepted, 

see Study 2; Ricketts et al., 2015).  

During referent selection, we expected that children would look longer and more 

frequently at their self-identified liked stimuli than disliked stimuli, and that this effect would 

be stronger for autistic children due difficulties disengaging attention from interesting stimuli 

(Elsabbagh et al., 2009, 2013; Landry & Bryson, 2004; Sacrey et al., 2014). We expected 
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increased visual attention to targets would predict response accuracy across conditions, 

groups, and task stages. In particular, we predicted that increased attention at referent 

selection would afford superior retention for both populations, especially during 24-hour 

retention (e.g. Rothwell et al., Study 2). However, based on our previous findings (e.g. 

Rothwell et al., Study 2), we predicted that between-population differences in visual attention 

may not directly translate to poorer word learning accuracy.  This would reflect autistic 

individuals’ ability to utilise alternative strategies to generate correct responses on a range of 

cognitive tasks (Happé, 1995; Norbury et al., 2010). Importantly, this research will advance 

theoretical understanding of word learning in autism and neurotypical development, 

highlighting how individual preferential biases to selective stimuli influence learning and 

visual attention, and how these measures inter-relate.  

4.4. Method 

Participants 

Participants were 17 autistic children (14 males, 3 females; M age = 94.82 months; 

SD = 20.90) recruited from specialist schools, and 17 neurotypical children (10 males, 7 

females; M age = 52.12 months; SD = 17.81) recruited from mainstream schools, nurseries, 

and Lancaster University BabyLab (see Table 1). Participants were monolingual native 

English speakers and had normal or corrected-to-normal colour vision. Autistic children had a 

pre-existing diagnosis from a qualified clinician, using standardised instruments (i.e. Autism 

Diagnostic Observation Scale and Autism Diagnostic Interview – Revised; Lord et al., 1994, 

2002) and expert judgement. Diagnoses were confirmed via the Childhood Autism Rating 

Scale 2 (ASD M score = 29.74, SD = 7.07; NT M score = 16.88, SD = 2.72; Schopler et al., 

2010). This measure was usually completed by class teachers, but for eight neurotypical 

children who were tested at the Lancaster University BabyLab due to COVID-19 restrictions, 

it was completed by caregivers. Autistic children were significantly older, t(32) = -6.41, p  
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<.001, d = 2.20, and had significantly higher CARS scores, t(32) = -7.00, p  <.001, d = 2.40, 

than the neurotypical children.  

Autistic (M age equivalent = 60.24 months, SD = 21.85) and neurotypical children (M 

age equivalent 61.29 months, SD = 25.14) did not significantly differ on receptive vocabulary 

abilities as measured by the British Picture Vocabulary Scale 2 (BPVS; Dunn et al., 1997; 

t(32) = 0.13, p = .90). The groups were matched on receptive vocabulary abilities because 

they demonstrate children’s aptitude for learning word-referent relationships (Bion et al., 

2013, Rothwell et al., accepted, see Study 2). Children’s expressive vocabulary abilities were 

measured using the Expressive Vocabulary Test 2 (EVT; ASD: M age equivalent = 53.38 

months, SD = 24.46; TD: M age equivalent 61.47 months, SD = 21.97; Williams, 2007), or 

the expressive language module of the Mullen’s Scales of Early Learning (Mullen, 1995) for 

children who scored below the baseline on the EVT, and did not significantly differ between 

groups, t(31) = 1.00, p = .32.  

Children’s non-verbal intellectual abilities were measured using the Leiter-3 (Roid et 

al., 2013). The neurotypical group’s average non-verbal IQ score (M = 104.77, SD = 11.45) 

was significantly higher than the autistic group’s (M = 80.79, SD = 15.91), t(25) = 4.46, p 

<.001, d = 1.73. Scaled IQ scores could not be calculated for four neurotypical children as 

they were below three years of age. However, autistic children (M = 64.71, SD = 18.78) and 

neurotypical children (NT: M = 59.18 months, SD = 18.16) did not significantly differ on 

their Leiter-3 raw scores t(29) = -0.83, p = .41, suggesting that their non-verbal cognitive 

abilities were comparable at time of testing (when age was not considered). To assess 

attentional behaviours, the Conner’s Teacher Rating Scale (CTRS-15; Pupura & Lonigan, 

2009) was completed by children’s class teachers, or the caregivers of the eight neurotypical 

children who were tested in our BabyLab. The mean raw scores for the autistic children (M = 
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13.82, SD = 8.52) and neurotypical children (M = 11.88, SD = 5.68) did not significantly 

differ, (t(32) = -0.78, p = .44). The Repetitive Behaviour Questionnaire was completed by the 

participants’ caregivers to assess the extent of their restrictive and repetitive behaviours 

(RBQ; Leekam et al., 2007). Autistic children (M score = 42.12, SD = 8.65) had significantly 

higher scores on the RBQ than neurotypical children (M score = 26.12, SD = 5.52), t(32) = -

6.43, p  <.001, d = 2.21. 

Due to school closure during the COVID-19 pandemic, three autistic participants did 

not complete the Leiter-3 and one autistic participant did not complete the EVT-2. These 

participants were retained in the study as they completed all other assessments and 

experimental tasks. An additional four participants were excluded from the study; one 

neurotypical participant who was unable to complete the touch-screen task, one neurotypical 

participant who scored above the ‘low to minimal symptoms’ threshold on the CARS-2, and 

two autistic children who did not complete both experimental conditions due to school 

closures during the pandemic.  

All procedures performed in this study involving human participants were in 

accordance with the ethical standards of institutional and national research committees. 

Informed consent was obtained from caregivers prior to children’s participation and a debrief 

was provided after participation.  
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Table 1 

Characteristics of autistic and neurotypical Participants (SD and Ranges in Parentheses) 

 

Note. NT: neurotypical; ASD: autism spectrum disorder; BPVS: British Picture Vocabulary 

Scale, CARS: Childhood Autism Rating Scale, CTRS: Conner’s Teacher Rating Scale, RBQ: 

Repetitive Behaviour Questionnaire. Participants experienced both conditions. 

 

Materials 

The study was administered via a touch-screen computer running MATLAB. Audio 

stimuli for the word learning task included eight two-syllable unfamiliar words (hizzard, jefa, 

coodle, nelby; koba, adet, plumbus, erag) selected from the NOUN database (Horst & Hout, 

2016) and other academic sources. Visual stimuli included high-resolution colour 

photographs of twelve unfamiliar objects (see Figure 1) and twenty-two familiar objects, all 

presented on a grey background. All photographs were approximately 6cm2, and 500 x 500 

pixels when displayed on the screen. Unfamiliar objects were selected on the basis that 

children would not be familiar with their pre-existing linguistic labels. Familiar objects were 

Pop. N Gender Chron. 

Age (M, 

months) 

BPVS. 

Age 

equiv.   

(M, 

months) 

Express. 

Lang. age 

equiv.  

(M, 

months) 

CARS 

raw 

score 

(M) 

Leiter-3 

raw 

score 

(M)  

CTRS 

raw 

score 

(M) 

RBQ 

raw 

score 

(M) 

          

NT 17 10 

females, 

7 males 

 

52.12 

(17.81, 

28-94) 

 

61.29 

(25.14, 36-

101) 

61.47 

(21.97, 35-

104) 

16.88 

(2.72, 

15-24) 

59.18 

(18.16, 

40-102) 

11.88 

(5.68, 

3-26) 

26.12 

(5.52, 

20-35) 

 

ASD 

 

17 

 

3 

females, 

14 males 

 

94.82 

(20.90, 

66-132) 

 

60.24 

(21.85, 29-

97) 

 

53.38 

(24.46, 5-

82) 

 

29.74 

(7.07, 

19-43) 

 

64.71 

(18.78, 

40-106) 

 

13.82 

(8.52, 

5-31) 

 

42.12 

(8.65, 

30-59) 

 

Group 

comparison 

t-test (p) 

 

   

 

<.001 

 

 

.90 

 

 

.32 

 

 

<.001 

 

 

.41 

 

 

.44 

 

 

<.001 
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selected on account that most children understand their linguistic labels by 16 months 

(Fenson et al., 1994). Pictures of six familiar objects were employed in the warm-up trials 

(tree, clock, light, train, key, swing). Images of 16 familiar objects were presented during 

referent selection trials in the liked and disliked conditions. These were divided into two sets 

and counterbalanced across conditions (1. book, highchair, table, bowl, doll, flower, brush, 

car; 2. aeroplane, cot, blanket, tv, shoe, block, hoover, cup). Familiar objects allocated to the 

two conditions were matched on mean comprehension age (13.5 months for both) and 

frequency of objects belonging to particular categories (e.g. toys, furniture). Familiar objects 

within each set were divided into pairs and presented alongside an unfamiliar object in 

referent selection trials. In every trial type, three pictures were presented side by side. 

Combinations of objects presented together were phonologically distinct in their labels, and 

clearly contrasted in shape and colour.  

Stimuli names were recorded by a female speaker from the local area and presented 

through the computer’s integrated speakers. The audio files were recorded using a Sony 

ECM-MS907 Digital Microphone and the software Audacity 2.2.2. Auditory stimuli were 

edited for timing and clarity, and the volume of all files was normalised. The carrier phrases 

(e.g. “Can you see the [label]”, “Touch the [label]”) and the labels (e.g. “car”, “nelby”) were 

edited separately, so they were all distinct files. However, when the MATLAB program was 

used to run the experiment, the audio files were presented sequentially. This was to ensure 

that there were no differences in the carrier phrases that may offer a hint to children regarding 

the labels that were about to be presented. 
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Figure 1 

Unfamiliar objects used in the word learning task 

 

Three web cameras attached to the left, right, and centre of the screen were used to 

record participants’ visual attention and behaviour during the study. Recording was done 

using the ‘Open Broadcaster Software’ version 23.2.1, which allowed recording from all 

three cameras simultaneously. The cameras positioned to the left and right of the screen were 

15-megapixel Logitech C920 HD Pro Webcams and recorded at a rate of 30 frames-per-

second. The centre camera was built into the iMac (1.2 megapixels) and also recorded at 30 

frames-per-second. The red recording lights were obscured from participants using black tape 

to avoid distraction.  

Procedure 

The task in the present study was very similar to that in Studies 1 and 2. Participants 

were tested individually in their own school or nursery, or in our BabyLab, and were 

accompanied by a familiar adult when required. Children were assessed using the BPVS, 

EVT or MSEL, and Leiter-3 by the researcher over multiple sessions on different days. 

Children also completed a preliminary ‘object preference task’ to ascertain which objects 

would be presented to them in the liked and disliked conditions of the word learning task. 

Children completed two within-subjects conditions of the word learning task – liked and 
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disliked objects – administered on different days (average of seven days apart, order 

counterbalanced). The word learning task was delivered via a touch-screen computer. 

Children were seated approximately 50-70cm away from the screen on a height adjustable 

chair. The word learning task was the same as Rothwell et al. (accepted, see Study 2) except 

for the visual and audio stimuli displayed. The task consisted of the following stages, 

presented in a fixed order: 1. Warm-up trials, 2. Referent selection trials, 3. Five-minute 

delay, 4. Retention trials, 5. 24-hour delay, 6. Retention trials (see Figure 2).  

Object preference task 

The experimenter presented children with twelve novel objects, one by one. Children 

were asked to hold and look at each object for approximately 15 seconds, and then place it 

down. When handing over the objects, the experimenter told the child to “Look at this toy 

and see what you think of it. Then I will tell you to put it down and pass you the next toy to 

look at”. While children were handling the objects, the experimenter remained quiet, so the 

child was not distracted. If children were not looking at or holding the objects, the 

experimenter prompted them by saying “Please pick up the toy and look at it”, handing the 

child the object again if necessary. Children were praised during the task for good behaviour 

and following the instructions. 

Once children had examined all 12 objects, they were next shown two boxes – a 

‘good’ box and a ‘bad’ box. The good box was green, with green smiley faces on each side, 

and contained toy cars and dinosaurs. The bad box was red, with red sad faces on each side, 

and contained ‘rubbish’ (e.g. empty crisp packets, toilet roll tubes, and scrunched-up paper). 

The experimenter communicated the difference between the boxes by showing children what 

was inside (e.g. “This is the bad box. This is for the worst things, or for things we don’t like 

and don’t want to play with” and “This is the good box. This is for the best things, or for 
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things we like and want to play with”). The experimenter confirmed whether children 

understood the distinction between the boxes by asking them to choose which box a toy car 

and a scrunched-up piece of paper should be placed in. If a child placed these items in the 

correct boxes (i.e. the car in the ‘good’ green box and the paper in the red ‘bad’ box), we 

inferred that they associated the two boxes with appropriate concepts and progressed with the 

task. If children placed the items in the incorrect box, the experimenter provided corrective 

feedback (e.g. “I think this is rubbish, so it would go in the red box for things we don’t like”) 

and demonstrated the correct response. The experimenter then gave the child another try at 

sorting the example items into the correct boxes.   

Then, children were asked to “put the four best objects that you would most like to 

play with in the green box” and “put the four worst objects that you would least like to play 

with in the red box.” These two sets of four novel objects were assigned to the participant’s 

“liked” and “disliked” conditions respectively. Thus, the novel stimuli that participants 

experienced in each condition of the word learning task was dependent on their individual 

preferences. 
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Figure 2 

Examples of trial types in the word learning task 

 

 

 

 

 

 

 

 

Warm up trials 

Prior to the beginning of the study, children saw a cartoon image of a hand that 

appeared in each of three touch-screen panels, one by one. The experimenter asked the child 

to “Put their hand on the picture” to enable them to become comfortable with touching the 

screen. Then, children completed three warm-up trials. Children were instructed to “Put your 

hand on the picture that the computer asks you to”. During warm-up trials, children were 

presented with images of three familiar objects in the left, middle, and right panels of the 

touchscreen. After 2 seconds, participants heard “Look, ‘2 s gap’ [label]!”, ‘1 s gap’, “Can 

you see the [label]?” ‘1 s gap’, “Touch the [label]!”. Children then had 12 seconds to 

respond. The same instructions repeated up to six times if children did not respond. 

Responses were accepted only after the first label utterance, preventing children from 

advancing through trials without hearing the requested labels. Consequently, children who 

Warm up 

Trial Type 

Referent 

selection 

Retention 
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took longer to respond heard more repetitions of the label (this factor is examined in our 

analyses). Children received feedback when they made their selection; either audio praise if 

they responded correctly (e.g. “Well done, you touched the [label]!”) or corrective feedback if 

they responded incorrectly (“Actually, this is the [label]. Can you touch the [label]?”). 

Following incorrect responses, the correct referent was highlighted by a green border and 

children could retry up to five times. Children in both groups responded significantly above 

chance levels at first attempt on the warm-up trials (MNT = 1.00, MASD = 0.96) demonstrating 

that they understood the task requirements and knew the requested labels. The location and 

order of requested objects were counterbalanced across participants.  

After the warm-up trials, children were video recorded to measure their visual 

attention. To assist with coding, LEDs on the three video cameras flashed to signify the start 

of the experiment, transitions between trials, and when participants touched the screen. 

However, the LEDs were invisible to participants as they were covered with black tape.  

Referent selection trials 

Following the warm-up, children completed eight referent selection trials. These 

followed the same format, except children did not receive feedback following their responses. 

Four novel words were taught via a fast-mapping paradigm similar to that used in Rothwell et 

al. (accepted, see Study 2). Children viewed four sets of pictures (each containing one 

unfamiliar object and two familiar objects). The unfamiliar objects depicted the participants 

four most liked or disliked novel objects, depending on the condition. Each set was presented 

twice; on one trial the novel picture was requested (novel name trial: “Look, erag! Can you 

see the erag? Touch the erag!”), and on another trial a familiar picture was requested (familiar 

name trial: “Look, doll! Can you see the doll? Touch the doll!”). Familiar name trials were 

included to ensure participants did not demonstrate a novelty preference and encourage them 
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to examine every item in the array, which is imperative as fast mapping requires children to 

attend to known competitors and exclude them as referents for a novel word (Halberda, 

2003). Novel name trials promoted active learning of new word-object pairings; participants 

used their pre-existing labels for familiar stimuli to decipher the referent of the novel label by 

applying the mutual exclusivity principle. 

 Trial order was pseudo-randomised with the constraints that the same set of pictures, 

or the same trial type (familiar name or novel name), were never presented on more than two 

trials sequentially. Positioning of objects on the screen (left, middle, right) was pseudo-

randomised across trials with the constraint that the target object did not appear in the same 

location more than twice consecutively. The eight novel words were divided into two sets (1. 

hizzard, jefa, coodle, nelby; 2. koba, adet, plumbus, erag), and were counterbalanced across 

conditions. Novel words were pseudo-randomly allocated to the novel objects, so different 

novel words represented different novel objects. Familiar objects were divided into two sets 

of eight to obtain a degree of control, but these were also counterbalanced across conditions. 

5-minute delay 

Immediately after referent selection, children engaged in an unrelated task, such as 

colouring, for 5-minutes. None of the familiar or unfamiliar experimental stimuli were visible 

during this stage.  

Retention trials 

After five minutes, children completed one warm-up trial to re-engage their attention 

(exactly as described above). Eight retention trials immediately followed (see Figure 2 for an 

illustration of each trial type). Each novel word was tested on two retention trials and served 

as a foil on four trials. These trials assessed whether children’s retention of newly mapped 

word-referent associations differed between stimuli they liked, compared to those they 
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disliked. Trial order was pseudo-randomised, ensuring that the same set of objects was never 

presented on more than two trials sequentially. Positioning of objects on the screen (left, 

middle, right) was pseudo-randomised across trials with the constraint that the target object 

did not appear in the same location more than twice consecutively.  

24-hour retention trials 

After a 24-hour delay, children completed a second block of eight retention trials. Due 

to practical constraints, not all children experienced exactly a 24-hour delay, with the average 

delay being 24.0 hours (range 23.2 – 26.0 hours).  These retention trials were preceded by 

three warm-up trials (as described above) to remind children of the task requirements and 

how to respond. The 24-hour retention trials were identical to the 5-minute retention trials 

with the exception that stimuli were presented in different orders and combinations.  

Coding and data cleaning 

As described in Rothwell et al. (Study 2), videos were coded using the software 

Blender 2.78, with a customised version of the python script ultra-coder added on (see 

https://github.com/dmbasso/misc-blender-tools/blob/master/ultra_coder.py for original). 

Coders were blind to the location of the target stimuli on each trial. Children’s visual 

fixations were coded frame-by-frame with a precision of 16.7ms, and looks were coded as 

left, right, centre, away, or not visible. The LEDs that flashed to signify the beginning of the 

experiment and transitions between trials, as well as participant touches, were imperative for 

coding. Of the 200 videos recorded across the three experimental stages, 25% were reviewed 

by two independent coders. Coders agreed on looking direction on more than 97% of the 

frames. A custom Matlab programme then calculated the primary dependent variables (see 

Table 2). These variables were calculated 233ms after the label onset to allow for saccade 

initiation latencies (Swingley et al., 1999; Swingley, 2009).  

https://github.com/dmbasso/misc-blender-tools/blob/master/ultra_coder.py
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As in Rothwell et al. (Study 2), three distinct looking measures were examined from 

our coded videos. ‘Proportion of looking towards the target’ is a frequently used looking 

measure in both the neurotypical and autism word learning literature, particularly in the 

absence of an explicit behavioural response (e.g. Akechi et al., 2011, 2013; Ackermann et al., 

2020; Bion et al., 2013; Potrzeba et al., 2015). This measure captures looking behaviour to 

the target relative to competitors. ‘Number of looks towards the target’ was utilised as a 

measure of children’s visual exploration of stimuli across the scene, a feature that commonly 

differs in autism in comparison to the neurotypical population (e.g. Sasson et al., 2008, 2011). 

Children’s longest singular look was also measured; either ‘Longest look to novel or familiar 

stimuli’ at referent selection to examine children’s attention to novel stimuli during encoding, 

or ‘Longest look to target or foil’ to decipher whether children allocated their longest look to 

the requested referent during retention phases. It offered a categorical indication of children’s 

attentional preference based on a singular look, which can be comparable to behavioural 

accuracy (Ambridge & Rowland, 2013). The longest look variable also accounts for the 

likelihood that children’s attention will decrease over the trial (Bailey & Plunkett, 2002; Ma 

et al., 2011; Schafer & Plunkett, 1998).   
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Table 2 

Looking measures recorded during the experimental tasks 

Looking Measure Coding 

Scheme 

 

Experimental 

Phase 

 

Outcome 

Proportion of time 

spent looking at 

the target stimuli 

0 to 1 Referent selection, 

5-minute retention, 

24-hour retention 

Proportion of time spent looking 

at the target stimuli, compared to 

the proportion of time spent 

looking at the distractor stimuli. 

    

Number of looks 

to the target 

stimuli 

0-12  Referent selection, 

5-minute retention, 

24-hour retention 

Every new look towards the target 

stimuli was counted as a new 

look. 

    

Longest look to 

novel or familiar 

stimuli 

0 

(familiar) 

or 1 

(novel) 

Referent selection If the longest look was to the 

novel stimuli, or familiar stimuli.  

    

Longest look to 

target or foil 

stimuli  

0 (foil) 

or 1 

(target) 

5-minute retention, 

24-hour retention 

If the longest look was to the 

target stimuli, or the foil stimuli. 

 

4.5. Results and Discussions 

Due to the variety of measures and the comprehensive nature of our analyses, we 

present and discuss our findings in two sections. The first section analyses and interprets 

children’s word learning accuracy and response time data. The second section compares the 

groups’ visual attention at each stage of the word learning task and assesses whether looking 

variability predicted word learning outcomes. 

4.5.1. Do autistic and neurotypical children differ in accuracy and response times when 

learning names for liked and disliked stimuli? 

Accuracy and response time data were analysed via mixed-effects models using the 

glmer and lmer functions from the lme4 package in R (Bates et al., 2015). Population was 

contrast coded as -0.5 (neurotypical) and 0.5 (autistic). Condition was coded as -0.5 (disliked) 
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and 0.5 (liked). Trial type was coded as -0.5 (familiar) and 0.5 (novel). By-word referent 

selection accuracy was coded as -0.5 (incorrect) and 0.5 (correct) when included as a fixed 

effect in retention accuracy analyses. Total referent selection accuracy for novel trials was 

coded as 0-4. Number of labels heard at referent selection for each novel word was coded as 

1-5 (autistic M = 2.04, SD = 0.79; neurotypical M = 1.70, SD = 0.80). By-word 5-minute 

retention accuracy was coded as 0-2. Trial-level accuracy as a dependent measure was coded 

as 1 (correct) or 0 (incorrect) for all analyses. 

The likelihood of children responding correctly by chance on each trial was 33%. All 

models were built up sequentially, adding in one fixed effect at a time and comparing each 

model with the previous best-fitting model using log-likelihood tests. Each analysis started 

with a baseline model containing by-participant and by-word random intercepts, with a 

random slope of condition x trial type per participant for referent selection, or condition per 

participant for retention phases.  If some models in a sequence failed to converge, the random 

effects were simplified until all models in the sequence successfully converged. Only final 

models are reported; please refer to Appendix D for full details of the model building 

sequences and analyses of individual differences. 

Referent selection accuracy 

Referent selection accuracy was analysed via generalised linear mixed-effects models 

testing the effects of population, condition, and trial type. This analysis contained 542 data 

points. Two trials for one neurotypical participant were removed due to a technical issue. 

Descriptive statistics for referent selection accuracy are presented in Figure 3.  
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Figure 3 

Mean referent selection, 5-minute retention, and 24-hour retention trial accuracy for 

neurotypical (NT) and autistic children (ASD), error bars show ± 1 SE. Stars above columns 

indicate where performance was significantly different from chance, indicated by the dotted 

lines (*p <.05) 

 

 

 

 

 

 

 

 

 

The final model included fixed effects of trial type (z = -3.13, p =.002) and population 

(z = -2.28, p = .022; see Table 3) indicating that children responded with significantly greater 

accuracy on familiar trials than novel trials, and neurotypical children were more accurate 

than autistic children. However, it is noteworthy that both groups responded well above 

chance on novel trials across conditions (neurotypical liked M = 0.87, neurotypical disliked 

M = 0.85; autism liked M = 0.74, autism disliked M = 0.71), demonstrating their effective use 

of mutual exclusivity. 
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Referent selection response times 

Children’s response times for correctly answered referent selection trials were 

analysed using linear mixed-effects models, testing the effects of population, condition, and 

trial type. We calculated the average correct response time for each population in each trial 

type and condition, and removed outliers that were ≥ 3SD above the mean for the sub-group 

(e.g. autistic children in the liked condition responding to novel trials). For autistic children, 

216 of 218 (99%) correct responses were included in our analyses. For neurotypical children, 

237 of 243 (98%) correct responses were included. With outliers excluded, mean correct 

response times for each population are reported in Figure 4. 

Figure 4 

Mean response times on correctly answered referent selection, 5-minute retention, and 24-

hour retention trials for neurotypical (NT) and autistic children (ASD), error bars show ± 1 

SE 
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The final model included fixed effects of trial type (t = 5.96, p <.001) and condition (t 

= 2.06, p = .040; see Table 3). Both groups were slower to identify stimuli in the liked 

condition in comparison to the disliked condition. Children in both populations were slower 

to generate correct responses for novel trials compared to familiar trials. 

Table 3 

Summaries of the fixed effects in the final generalised and linear mixed-effects models (log 

odds) of children’s accuracy on referent selection trials, and response times on correctly 

answered referent selection trials 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
z Pr(> |z|) 

Referent Selection (Intercept)  2.35 0.24 9.94 <.001 

Accuracy Trial Type     -1.13 0.36 -3.13 .002 

 Population -1.01 0.44 -2.28 .022 

  AIC BIC logLik deviance 

  437.9 498.0 -204.9 409.9 

      

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
t Pr(> |t|) 

Referent Selection  (Intercept)  3.05 0.32 9.53 <.001  

Response Times Trial Type     1.13 0.19 5.96 <.001  

 Condition 0.39 0.19 2.06 .040 

  AIC BIC logLik deviance 

        2003.7 2024.3 -996.9 1993.7 

 

5-minute retention accuracy 

Children’s retention accuracy after 5-minutes was analysed via generalised linear 

mixed-effects models testing the effects of population, condition, by-word referent selection 

accuracy, and number of labels heard at referent selection for the target word. Four trials from 

the neurotypical group were excluded due to a technical error. The model in these analyses 

contained 540 data points. The descriptive statistics are reported in Figure 3.  
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The final model included a fixed effect of by-word referent selection accuracy (z = 

2.49, p = .013; see Table 4), suggesting that both groups were more accurate during 5-minute 

retention if they were previously more accurate during referent selection.  

Table 4 

Summary of the fixed effects in the final generalised linear mixed-effects models (log odds) of 

children’s accuracy on 5-minute retention trials 

Fixed effects 
Estimated 

coefficient 
Std. error z Pr(> |z|) 

(Intercept)    -0.52 0.15 -3.58 <.001 

Referent Selection Accuracy 0.61 0.24 2.49 .013 

 AIC BIC logLik deviance 

 731.0 756.8 -359.5 719.0 

 

5-minute retention response times 

Children’s response times for correctly answered 5-minute retention trials were analysed 

using linear mixed-effects models. Outliers were identified and removed in the same way as 

described for referent selection trials. The models in these analyses included 114 of 115 

(99%) correct responses from autistic children, and 113 of 114 (99%) correct responses from 

neurotypical children. With outliers excluded, mean correct response times for each 

population are reported in Figure 4.  

The inclusion of fixed effects (population and condition) did not improve model fit.  

24-hour retention accuracy 

Children’s retention accuracy after 24-hours was analysed via generalised linear 

mixed-effects models testing the effects of population, condition, by-word referent selection 

accuracy, total referent selection accuracy for novel trials, number of labels heard at referent 



 
 

201 

 

selection for the target word, and by-word 5-minute retention accuracy (all coded as 

described previously). Two neurotypical children in the disliked condition, and two 

participants in the liked condition (one autistic participant, one neurotypical participant) did 

not complete the 24-hour retention trials due to absence. Due to a technical error, eight 

additional trials were excluded (four from the autistic group and four from the neurotypical 

group). The model in this analysis contained 504 data points. Descriptive statistics for 24-

hour retention accuracy are presented in Figure 3.  

The final model contained fixed effects of by-word referent selection accuracy (z = 

1.86, p = .063; marginally significant) and 5-minute retention accuracy (z = 2.57, p = .010; 

see Table 5). Children were more likely to respond accurately at 24-hour retention if they 

were previously more accurate at referent selection and 5-minute retention.  

Table 5 

Summary of the fixed effects in the final generalised linear mixed-effects models (log odds) of 

children’s accuracy on 24-hour retention trials 

Fixed effects 
Estimated 

coefficient 
Std. error z Pr(> |z|) 

(Intercept)    -0.84 0.20 -4.28 <.001 

Referent Selection Accuracy 0.50 0.27 1.86 .063 

5-minute Retention Accuracy 0.38 0.15 2.57 .010 

 AIC BIC logLik deviance 

 668.2 697.7 -327.1 654.2 

 

24-hour retention reaction times 

Children’s response times for correctly answered 24-hour retention trials were 

analysed using linear mixed-effects models. Outliers were identified and removed in the same 

way as for previous analyses. For autistic children, 104 of 106 (98%) correct responses were 
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included in our analyses. For neurotypical children, 105 of 106 (99%) correct responses were 

included. With outliers excluded, mean correct response times for each population are 

reported in Figure 4.  

The final model was the baseline model – variation in children’s correct response 

times on 24-hour retention trials was not predicted by any fixed effects (population or 

condition). 

4.5.2. Discussion: Accuracy and Response Times 

These analyses investigated whether autistic and neurotypical children differ in their 

ability to identify and retain the meanings of novel words associated with liked and disliked 

stimuli. Crucially, we examined children’s accuracy and response speed across three distinct 

stages of word learning: referent selection, 5-minute retention, and 24-hour retention after a 

period of sleep. In comparison to neurotypical controls matched on receptive vocabulary, 

autistic children were less accurate to spontaneously identify the meaning of novel words 

using ME. Despite this, both groups recalled word-referent mappings after 5 minutes and 24 

hours with comparable accuracy. Whether stimuli were liked or disliked did not influence 

word learning accuracy in either group. Furthermore, autistic and neurotypical children’s 

response times did not significantly differ at any of the three word learning phases. 

Our results revealed that autistic children were less accurate than neurotypical peers at 

utilising ME-based referent selection to identify the meanings of novel words across 

conditions. Some research suggests that autistic children can perform ME-based fast mapping 

with comparable accuracy to language matched neurotypical children (e.g. Carter & Hartley, 

2021; Preissler & Carey, 2005; Rothwell et al., accepted, see Study 2), whilst other studies 

show population differences in this process (Hartley et al., 2019; Mathée-Scott, et al., 2021). 

However, even in studies showing reduced ME accuracy for autistic children, they often still 
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demonstrated above-chance use of ME (e.g. Hartley et al., 2019). These population 

distinctions may be explained by differences in attentional mechanisms. Neurotypical 

children can easily and flexibly shift their attention between stimuli and engage with a 

multitude of environmental features (Landry & Bryson, 2004). However, autistic children 

often show more inflexible attentional mechanisms, perseverating on specific topics or 

features within a learning context (American Psychiatric Association, 2013; Sasson et al., 

2008, 2011; Venker, 2018). As such, autistic children’s differences in attentional mechanisms 

may disrupt ME in word learning, as they are more likely to fixate on stimuli that are not the 

intended target. Despite this finding, our two groups’ retention accuracy did not significantly 

differ, so it is apparent that the autistic children still successfully learned through ME-based 

referent selection.  

After a 5-minute delay, both groups retained novel words with similar accuracy. 

Congruent with the findings of Rothwell et al. (accepted, see Study 2), we discovered that 

referent selection accuracy predicted 5-minute retention accuracy. This suggests that the 

mechanisms underpinning referent selection and retention after a short delay may be less 

distinct than other studies have proposed (e.g. Carter & Hartley, 2021; Hartley et al., 2019, 

2020). Kucker and Samuelson (2012) demonstrated that 2-year-olds can retain words 

following learning via ME if they play with the objects before referent selection. As the 

present study allowed children to explore the objects before the word learning task to identify 

their liked and disliked stimuli, it is possible that exposure to stimuli prior to referent 

selection could have influenced this finding. However, as our findings are both supported and 

refuted by other studies, we would suggest that further research is required to investigate 

under what conditions these mechanisms inter-relate.   

Autistic children also retained novel words after 24-hours with comparable accuracy to 

neurotypical children, suggesting that both short- and long-term word learning mechanisms are 
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fundamentally unimpaired in this population. Interestingly, 24-hour retention accuracy was 

predicted by referent selection accuracy and 5-minute retention accuracy (see also Rothwell et 

al., Study 1, Study 2, accepted, for similar results). The dynamic associative account of word 

learning posits that both ‘fast’ and ‘slow’ word learning mechanisms combine to support 

accurate and robust word learning (McMurray et al., 2012). This theory proposes that referent 

selection and learning interrelate through children maintaining correct word-referent 

associations following identification and eliminating incorrect referents. Whilst some studies 

suggest that these mechanisms are somewhat distinct (e.g. Horst & Samuelson, 2008), the 

present study highlights that fast- and slow- word learning stages are inter-related. Given 

autistic children’s lower response accuracy at referent selection, our data may indicate that they 

retained a higher proportion of words that were successfully disambiguated at referent 

selection, and thus the mechanisms may be more strongly inter-related in this population. It is 

therefore essential that future work investigates how we can improve encoding at referent 

selection to scaffold autistic children’s vocabulary development. 

Prior research investigating the role of sleep on novel word learning focuses primarily 

on linguistically able autistic children (e.g. Fletcher et al., 2020; Henderson et al., 2014). 

However, here we discovered that language delayed autistic children performed with 

comparable accuracy to their neurotypical peers at both 5 minutes and 24 hours - sleep 

consolidation did not significantly affect the retention accuracy of either population. By 

contrast, in a similar word learning task, Rothwell et al. (Study 1, Study 2, accepted) discovered 

that autistic children received a greater benefit of sleep consolidation than neurotypical children 

when recalling novel names of object stimuli in comparison to animal stimuli. In Rothwell and 

colleagues’ previous studies, the presence of interesting animal stimuli initially aided more 

robust encoding for retrieval after 5 minutes but sleep then helped to encode the less interesting 

object stimuli representations for better retrieval after 24 hours. In the present study, it is 
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possible that the absence of animals reduced autistic children’s overall investment in the task 

during referent selection, possibly explaining why their 24-hour retention did not receive the 

same benefits of sleep as in Rothwell et al. (accepted, Study 2, Study 3). However, this 

suggestion is speculative and, given the contrast in findings to previous studies, further research 

is required to understand the cause of these findings. 

Investigating how quickly children generated correct responses highlights the pace of 

children’s information processing throughout word learning. During referent selection, 

children were significantly slower to generate correct responses during novel trials compared 

to familiar trials. As familiar trials required children to simply select referents they already 

knew the names of, this finding was unsurprising. To decipher a correct novel referent, children 

had to employ ME, attending to an array of stimuli, eliminating familiar competitors, and 

selecting the correct novel referent (Halberda, 2006). As novel referent selection requires 

greater cognitive demands, it is unsurprising that children in both populations were slower to 

make their selections on the novel trials (Bion et al., 2013; Rothwell et al., accepted, see Study 

2). However, children in both populations were slower to identify liked stimuli at referent 

selection. It is probable that such stimuli captured children’s attention due to their heightened 

interest, and they therefore chose to spend longer studying items in the array before identifying 

referents. Interestingly, unlike findings from previous research (e.g. Hilton & Westermann, 

2017; Rothwell et al., Study 1, Study 2) longer time spent studying stimuli at encoding did not 

benefit subsequent retention. However, subsequent analyses of visual attention data in part two 

of this study (section 4.5.3) will assess this hypothesis. 

Autistic children were not significantly slower than neurotypical children to generate 

correct responses during any of the word learning stages. Limited research thus far has 

investigated autistic children’s response times during referent selection and retention, so it is 

unclear how response times are affected by experimental features. Some previous research 

suggests that autistic children are slower to generate correct responses than neurotypical 
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children when recalling word meanings at 5-minute retention (e.g. Hartley et al., 2020), 

whereas others find this difference depends on certain stimulus types and experimental stages 

(e.g. Rothwell et al., accepted, see Study 2). In Rothwell et al. (Study 1, Study 2, accepted), we 

found that autistic children were significantly slower to generate correct responses when 

categorically interesting animal stimuli were present, likely due to increased attentional 

allocation to such stimuli. These longer response times did, however, have the potential to aid 

word learning in autistic individuals. By contrast, in the present study, autistic children were 

not significantly slower than neurotypical children to generate correct responses at referent 

selection. However, autistic children were significantly less accurate at referent selection than 

neurotypical children. Taken together, these findings highlight the heterogeneity of autistic 

children’s response times across studies, tasks, and samples. As such, further research is 

required to understand how environmental conditions influence the speed of information 

processing during word learning, and its relationship to accuracy.  

Overall, these analyses revealed that stimulus condition determined response speed at 

referent selection, but not accuracy at referent selection or retention in either population. These 

findings suggest that children in both populations did not demonstrate a strong enough 

preference for their chosen novel object stimuli to afford differences in novel word retention. 

Although children may have identified idiosyncratic preferences for the novel objects, it may 

be that categorical interests (e.g. animals) have the stronger influence on word learning 

outcomes (e.g. Ackermann et al., 2020; Rothwell et al., accepted, see Study 2). If this is the 

case, it is possible that children spent similar amounts of time studying liked and disliked novel 

stimuli across the word learning stages, perhaps explaining why retention was not affected by 

condition. Additionally, these findings do not preclude the possibility that individual 

differences in attention to specific objects within or across conditions impacted word learning 

accuracy. Therefore, the following gaze analyses examining children’s in-trial attention, and 
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how this predicted performance at each word learning stage, aim to address these gaps in 

knowledge. 

4.5.3. Does autistic and neurotypical children’s visual attention differ while learning 

names for liked and disliked stimuli, and does variability in visual attention predict 

their learning accuracy? 

In the following analyses we examine whether autistic and neurotypical children 

differed in their looking behaviour during each stage of the word learning task. To elucidate 

the relationship between visual attention and word learning performance, we also investigated 

how variability in children’s in-trial looking behaviour, and looking behaviour during referent 

selection, predicted their response accuracy.  

All models were conducted using the glmer and lmer functions from the lme4 

package in R (Bates et al., 2015). Population, condition, and trial type were coded as 

described previously. Proportion of time spent looking at the target object on each trial was 

scored between 0 and 1. Number of looks to the target object on each trial ranged from 0 to 

12, with every new look towards the target stimuli being counted. Longest look to novel or 

familiar stimuli was coded as 0 (familiar) or 1 (novel) for analyses examining between-group 

differences in this measure, and -0.5 (longest look to familiar object) or 0.5 (longest look to 

novel object) when included as a fixed effect in analyses predicting accuracy. This variable 

was only included in referent selection analyses, as the retention phases only involved novel 

objects. Longest look to target or foil stimuli was coded as 0 (foil) or 1 (target) for analyses 

investigating between-group differences in this measure at retention, and -0.5 (longest look to 

foil stimuli) and 0.5 (longest look to target stimuli) when included as a fixed effect in 

analyses predicting accuracy. 
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All analyses were undertaken following the same modelling procedures described for 

the accuracy and response time data. Each analysis started with a baseline model containing 

by-participant and by-word random intercepts, with a random slope of condition x trial type 

per participant for referent selection, or condition per participant for retention phases. As only 

final models are reported, please refer to Appendix D for full details of the model building 

sequences. 

Referent selection 

Linear mixed-effects models (unless otherwise specified) tested whether effects of 

population, condition, and trial type predicted variability in each visual attention measure 

during referent selection (see Table 6 for descriptive statistics). Generalised linear mixed-

effects models tested whether children’s in-trial visual attention predicted their behavioural 

response accuracy at referent selection. These models contained 542 data points (exclusions 

for both model types were the same as described for the previous accuracy analyses). 
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Table 6 

Mean values for the individual visual attention measures at referent selection, split by 

condition, trial type, and population 

Looking Measure Condition Trial Type  ASD NT 

Proportion of time spent 

looking at target stimuli (0-1)  

Liked  
Familiar  0.64 0.67 

Novel  0.49 0.55 

Disliked 
Familiar  0.67 0.67 

Novel  0.45 0.52 

Number of looks towards target 

stimuli (0-8)  

Liked  
Familiar  1.91 1.47 

Novel  2.34 1.87 

Disliked 
Familiar  1.69 1.38 

Novel  1.78 1.57 

Longest look to novel or 

familiar stimuli  

(0/1)  

Liked  
Familiar  0.10 0.13 

Novel  0.60 0.63 

Disliked 
Familiar  0.15 0.12 

Novel  0.49 0.58 

 

Proportion of time spent looking at the target  

Proportion of time spent looking at the target referent was predicted by a fixed effect 

of trial type (t = -6.11, p <.001; see Table 7). Children in both groups looked longer at the 

target during familiar trials than novel trials.  

Referent selection accuracy was predicted by a fixed effect of the looking measure (z 

= 8.60, p <.001; see Table 7). Across populations and conditions, as children’s proportion of 

looking towards the target increased, so too did their referent selection accuracy. 
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Table 7 

Summaries of the fixed effects in the final generalised and linear mixed-effects models (log 

odds) for proportion of time spent looking at the target stimuli during referent selection 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
t Pr(> |t|) 

Between-group (Intercept)  0.58 0.02 34.63 <.001 

Differences  Trial Type -0.16 0.03 -6.11 <.001 

  AIC BIC logLik deviance 

        68.7 90.2 -29.4 58.7 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
z Pr(> |z|) 

Predicting (Intercept)   -2.57 0.53 -4.86 <.001 

Accuracy Proportion of time spent 

looking at the target 

12.12 1.41 8.60 <.001 

  AIC BIC logLik deviance 

  245.9 301.8 -110.0 219.9 

 

Number of looks to the target  

Number of looks to target stimuli was predicted by fixed effects of population (t = 

2.29, p = .029), trial type (t = 3.17, p = .002), and condition (t = 3.38, p <.001; see Table 8).  

Across conditions, autistic children made more looks to target stimuli than neurotypical 

children, and children in both groups made more looks towards the target during novel trials 

than familiar trials, and more looks towards the target in the liked condition compared to the 

disliked condition. 

Referent selection accuracy was predicted by a looking measure x population 

interaction (z = -3.30, p <.001; see Table 8). This interaction was deconstructed by testing the 

looking measure effect on autistic and neurotypical children separately. Across conditions, 

children who made more frequent looks towards the target during referent selection 
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responded more accurately, but this effect was stronger for the neurotypical group (z = 4.65, p 

<.001) than the autistic group (z = 3.41, p <.001). 

Table 8 

Summaries of the fixed effects in the final generalised and linear mixed-effects models (log 

odds) for number of looks at the target stimuli during referent selection 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
t Pr(> |t|) 

Between- (Intercept) 1.75 0.08 22.32 <.001 

group Population 0.36 0.16 2.29 .029 

Differences Trial Type 0.27 0.09 3.17 .002 

 Condition 0.29 0.09 3.38 <.001 

  AIC BIC logLik deviance 

  1595.7    1621.4 -791.8    1583.7 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
z Pr(> |z|) 

Predicting (Intercept) 0.40 0.38 1.04 .30 

Accuracy Number of looks to target  1.59 0.31 5.08 <.001 

 Population 1.13 0.76 1.49 .14 

 Number of looks x Population -2.06 0.63 -3.30 <.001 

  AIC BIC logLik deviance 

        393.1 457.6 -181.6 363.1 

 

Longest look to novel or familiar stimuli  

This variable was analysed via generalised linear mixed effects models. Whether 

children’s longest look was towards novel or familiar stimuli was predicted by a fixed effect 

of trial type (z = 8.17, p <.001; see Table 9). Both autistic and neurotypical children looked 

longer at the novel object on novel trials than familiar trials.  

Referent selection accuracy was predicted by a looking measure x trial type 

interaction (z = 7.80, p <.001; see Table 9). This interaction was deconstructed by testing the 

looking measure effect on familiar and novel trials separately. Accuracy on novel trials 
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significantly increased when children’s longest look was towards the novel stimuli (z = 5.74, 

p <.001). However, on familiar trials, accuracy significantly decreased when children’s 

longest look was towards the novel object (z = -5.67, p <.001). 

Table 9 

Summaries of the fixed effects in the final generalised linear mixed-effects models (log odds) 

for the longest look to novel or familiar stimuli during referent selection 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
z Pr(> |z|) 

Between-group  (Intercept) -0.88 0.14 -6.12 <.001 

Differences Trial Type 2.45 0.30 8.17 <.001 

  AIC BIC logLik deviance 

        593.3 649.1 -283.6 567.3 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
z Pr(> |z|) 

Predicting (Intercept) 2.08 0.27 7.76 <.001 

Accuracy Longest look novel or familiar -0.27 0.36 -0.75 .45 

 Trial Type -0.23 0.43 -0.54  .59 

 Longest look x Trial Type 5.58 0.72 7.80 <.001 

  AIC BIC logLik deviance 

  373.0 437.5 -171.5 343.0 

 

5-minute retention 

Linear mixed-effects models (unless otherwise specified) tested whether effects of 

population and condition predicted variability in each looking measure at 5-minute retention 

(see Table 10 for descriptive statistics). Generalised linear mixed-effects models tested 

whether children’s in-trial looking, and looking at referent selection, predicted their 

behavioural response accuracy at 5-minute retention. All models contained 542 data points, 

with two trials excluded due to a computer error, as described in the accuracy analyses. 
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Table 10 

Mean values for the individual visual attention measures at 5-minute retention, split by 

condition and population 

Looking Measure Condition  ASD NT 

Proportion of time spent looking at 

the target stimuli  

(0-1) 

Liked   0.40  0.39 

Disliked   0.33  0.40 

Number of looks towards the target 

stimuli 

(0-12) 

Liked  1.74  1.31 

Disliked   1.34  1.32 

Longest look to target or foil 

stimuli 

(0/1) 

Liked  0.43  0.37 

Disliked   0.34  0.41 

 

Proportion of time spent looking at the target stimuli 

This looking measure did not significantly differ between populations or conditions; 

the inclusion of fixed effects did not improve fit in comparison with the baseline model. 

Children’s 5-minute retention accuracy was predicted by a fixed effect of this looking 

measure (z = 12.03, p <.001; see Table 11). Across groups and conditions, children who 

looked proportionately more towards the target during referent selection responded more 

accurately. 

Variability in proportion of time spent looking at the target stimuli during referent 

selection predicted 5-minute retention accuracy (z = 1.79, p = .074; see Table 11). Children 

who looked proportionately longer at target stimuli during referent selection responded more 

accurately at 5-minute retention across groups and conditions. However, given that the model 

comparison (see Appendix D) and fixed effect within the model approached significance, this 

result should be treated cautiously.  
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Table 11 

Summaries of the fixed effects in the final generalised linear mixed-effects model (log odds) 

of 5-minute retention accuracy, predicted by proportion of time spent looking at the target 

stimuli 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
z Pr(> |z|) 

Predicting (Intercept) -3.37 0.29 -11.57 <.001 

Accuracy Proportion  7.84 0.65 12.03 <.001 

  AIC BIC logLik deviance 

        406.9 432.7 -197.5 394.9 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
z Pr(> |z|) 

Referent Selection  (Intercept) -0.67 0.23 -2.98 .003 

Looking Predicting 

Accuracy 

Proportion of time 

looking at target during 

referent selection 

0.66 0.37 1.79 .074 

  AIC BIC logLik deviance 

  735.8 761.6 -361.9 723.8 

 

Number of looks to the target stimuli 

This looking measure was predicted by a population x condition interaction which 

approached significance (t = 1.86, p = .071; see Table 12). This interaction was deconstructed 

by testing the effect of condition on autistic and neurotypical participants separately, and the 

effect of population on liked and disliked conditions separately. Autistic children made 

significantly more looks in the liked condition compared to the disliked condition (t = 3.02, p 

= .003), but neurotypical children did not significantly differ in their looking between 

conditions (t = -0.08, p = .93). The populations differed in their number of looks across 

conditions in the liked condition (t = 2.09, p = .045) but not the disliked condition (t = 0.07, p 

= .95).  

Children’s 5-minute retention accuracy was predicted by a looking measure x 

population interaction (z = -1.84, p = .065; see Table 12). This interaction was deconstructed 
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by testing the looking measure effect on autistic and neurotypical children separately. Across 

conditions, children who made more frequent looks towards the target during referent 

selection responded more accurately, but this effect was stronger for the neurotypical group (z 

= 5.70, p <.001) than the autistic group (z = 4.84, p <.001). 

Variability in number of looks towards the target stimuli during referent selection 

predicted 5-minute retention accuracy (z = 1.85, p = .064; see Table 12). Children who looked 

more frequently at target stimuli during referent selection responded more accurately at 5-

minute retention across groups and conditions.  

However, given that the models for number of looks at 5-minute retention provided a 

borderline significant improvement in fit compared to the baseline model (see Appendix D), 

alongside approaching significance fixed effects and interaction effects, we would suggest 

these interpretations should be taken cautiously.  
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Table 12 

Summaries of the fixed effects in the final generalised and linear mixed-effects models (log 

odds) for 5-minute retention, predicted by number of looks to the target stimuli 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
t Pr(> |t|) 

Between-Group (Intercept) 1.43 0.09 15.06 <.001 

Differences Population 0.22 0.18 1.26 .22 

 Condition 0.20 0.11 1.74 .09 

 Population x Condition 0.42 0.23 1.86 .071 

  AIC BIC logLik deviance 

  1842.8 1881.4 -912.4 1824.8 

      

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
z Pr(> |z|) 

Predicting  (Intercept) -1.49 0.21 -7.05 <.001 

Accuracy Number of looks  0.84 0.11 7.58 <.001 

 Population 0.16 0.40 0.41 .68 

 Number of looks x 

Population 

-0.41 0.22 -1.84 .065 

  AIC BIC logLik deviance 

        668.7 703.1 -326.4 652.7 

      

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
z Pr(> |z|) 

Referent Selection  (Intercept) -0.63 0.20 -3.13 .002 

Looking Predicting 

Accuracy 

Number of looks to 

target at referent 

selection 

0.15 0.08 1.85 .064 

  AIC BIC logLik deviance 

  735.6 761.4 -361.8 723.6 

 

Longest look to target or foil  

This looking measure did not significantly differ between populations or conditions; 

the inclusion of fixed effects did not improve fit in comparison with the baseline model. 

Children’s 5-minute retention accuracy was predicted by this looking measure (z = 

12.64, p <.001; see Table 13). Looking longest at the target object (rather than a foil) was 
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associated with significantly greater 5-minute retention accuracy across populations and 

conditions.  

Whether children looked longest at the target or a foil during referent selection did not 

predict 5-minute retention accuracy. 

Table 13 

Summary of the fixed effects in the final generalised linear mixed-effects model (log odds) of 

5-minute retention accuracy, predicted by longest look to the target/foil stimuli during 5-

minute retention  

Fixed effects 
Estimated 

coefficient 

Std. 

error 
z Pr(> |z|) 

(Intercept) -0.06 0.15 -0.43 .67 

Longest look target  2.96 0.23 12.64 <.001 

 AIC BIC logLik deviance 

 547.2 573.0 -267.6 535.2 

 

24-hour retention 

Linear mixed-effects models (unless otherwise specified) tested whether effects of 

population and condition predicted variability in each looking measure at 24-hour retention 

(see Table 14 for descriptive statistics). Generalised linear mixed-effects models tested 

whether children’s in-trial looking, and looking at referent selection, predicted their 

behavioural response accuracy at 24-hour retention. As described in the accuracy analyses, 

for both model types, data from one neurotypical and one autistic child in the liked condition, 

and two neurotypical children in the disliked condition, were excluded from this phase due to 

absence. Four additional trials from autistic participants, and two trials from a neurotypical 

participant, were excluded due to computer error. All models contained 506 data points. 
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Table 14 

Mean values for the individual visual attention measures at 24-hour retention, split by 

condition and population 

Looking Measure Condition  ASD NT 

Proportion of time spent 

looking at the target stimuli  

(0-1) 

Liked  0.38 0.36 

Disliked  0.39 0.46 

Number of looks towards the 

target stimuli 

(0-11) 

Liked  1.63 1.11 

Disliked  1.40 1.24 

Longest look to target or foil 

stimuli 

(0/1) 

Liked  0.40 0.37 

Disliked  0.38 0.51 

 

Proportion of time spent looking at the target stimuli 

This looking measure did not significantly differ between populations or conditions; 

the inclusion of fixed effects did not improve fit in comparison with the baseline model. 

Children’s 24-hour retention accuracy was predicted by a fixed effect of this looking 

measure (z = 11.36, p <.001; see Table 15). Across groups and conditions, as children’s 

proportion of looking at the target object increased, so did their 24-hour retention accuracy.  

Variability in proportion of time spent looking at the target stimuli during referent 

selection predicted 24-hour retention accuracy (z = 1.79, p = .073; see Table 15). Children 

who looked proportionately longer at target stimuli during referent selection responded more 

accurately at 24-hour retention across groups and conditions. However, the model 

comparison (see Appendix D) and fixed effect within the model approached significance, so 

this interpretation should be treated cautiously.  
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Table 15 

Summaries of the fixed effects in the final generalised linear mixed-effects models (log odds) 

for 24-hour retention accuracy, predicted by proportion of time spent looking at the target 

stimuli  

 

Number of looks to the target stimuli 

Number of looks to the target was predicted by a fixed effect of population (t = 2.27, p 

=.030; see Table 16). Across conditions, autistic children made significantly more looks 

towards the target than neurotypical children. 

Children’s 24-hour retention accuracy was predicted by a fixed effect of the looking 

measure (z = 7.55, p <.001; see Table 16). More frequent looks to the target object were 

associated with significantly higher 24-hour retention accuracy across populations and 

conditions. 

Variability in number of looks towards the target stimuli during referent selection did 

not predict 24-hour retention accuracy. 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
z Pr(> |z|) 

Predicting (Intercept) -3.95 0.36 -11.11 <.001 

Accuracy Prop. of time looking to 

target 

8.71 0.77 11.36 <.001 

  AIC BIC logLik deviance 

        341.7 367.0 -164.8 329.7 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
z Pr(> |z|) 

Referent Selection   (Intercept) -0.73 0.25 -2.91 .004 

Looking Predicting 

Accuracy 

Prop. of time looking at 

target during referent 

selection 

0.74 0.41 1.79 .073 

  AIC BIC logLik deviance 

  675.7 701.1 -331.9 663.7 
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Table 16 

Summaries of the fixed effects in the final generalised and linear mixed-effects models (log 

odds) for number of looks towards the target stimuli during 24-hour retention 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
t Pr(> |t|) 

Between-group (Intercept) 1.33 0.08 16.18 <.001 

Differences Population 0.37 0.16 2.27 .030 

  AIC BIC logLik deviance 

  1533.1 1550.0 -762.5 1525.1 

 
Fixed effects 

Estimated 

coefficient 

Std. 

error 
z Pr(> |z|) 

Predicting  Number of looks -1.61 0.22 -7.16 <.001 

Accuracy  0.90 0.12 7.55 <.001 

  AIC BIC logLik deviance 

  604.3 629.6 -296.1 592.3 

 

Longest look to target or foil stimuli 

Generalised linear mixed-effects models revealed that this looking measure did not 

significantly differ between populations or conditions; the inclusion of fixed effects did not 

improve fit in comparison with the baseline model. 

Children’s 24-hour retention accuracy was predicted by a fixed effect of the looking 

measure (z = 12.72, p <.001; see Table 17). Looking longest at the target was associated with 

significantly higher 24-hour retention accuracy.  

Whether children looked longest at the target or a foil during referent selection did not 

predict 24-hour retention accuracy. 
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Table 17 

Summary of the fixed effects in the final generalised linear mixed-effects model (log odds) of 

24-hour retention accuracy, predicted by the longest look to the target/foil stimuli during 24-

hour retention 

Fixed effects 
Estimated 

coefficient 
Std. error z Pr(> |z|) 

(Intercept) -0.16 0.15 -1.11 .27 

Longest look target        3.24 0.25 12.72 <.001 

 AIC BIC logLik deviance 

 474.8 500.2 -231.4 462.8 

 

4.5.4. Discussion: Looking during word learning and relationships with accuracy 

We investigated how visual attention of autistic and neurotypical children differs 

across word learning stages and explored how looking measures predicted behavioural 

response accuracy. During referent selection, autistic children looked more frequently 

towards target stimuli, but responded less accurately than neurotypical peers. Both groups 

made more looks towards stimuli in the liked condition compared to the disliked condition 

during referent selection. During 5-minute retention, both populations allocated their visual 

attention similarly across conditions. However, after a 24-hour delay, autistic children made 

more looks towards the target than neurotypical children. Children’s in-trial visual attention 

predicted accuracy at all three stages across groups and conditions. Children’s looking during 

referent selection predicted their 5 minute and 24-hour retention accuracy. In terms of explicit 

behavioural responses, five-minute retention accuracy also predicted 24-hour retention 

accuracy, so visual attention at encoding may have significant downstream consequences for 

both short- and long-term consolidation of new vocabulary. 

Children allocated proportionally more of their looking time towards targets on 

familiar trials, compared to novel trials, at referent selection. This perhaps reflects children’s 



 
 

222 

 

certainty during the identification of familiar referents in comparison to more unusual, novel 

objects. In the case of identifying familiar referents, children could more easily identify and 

fixate upon these stimuli as they were stimuli for which they had pre-existing labels. 

However, in novel trials, children had to attend to the array of stimuli to rule out the familiar 

objects and select the correct novel object as the intended referent (de Marchena et al., 2011; 

Rothwell et al., accepted, see Study 2; Zosh et al., 2013). Given that identifying an unfamiliar 

referent requires greater attentional distribution across the visual scene, as well as heightened 

cognitive processing whilst using ME, it is unsurprising that both groups looked more 

divisively at stimuli on novel trials.  

At referent selection, autistic children made more looks towards the target stimuli 

than neurotypical children, and both populations made more looks in novel trials (vs. familiar 

trials) and in the liked condition (vs. disliked condition). Increased frequency of looking also 

predicted greater accuracy in both groups, although this effect was stronger for neurotypical 

children. During referent selection, children needed to check back and forth to correctly 

identify referents, engaging in ME and ruling out competitor stimuli before selecting the 

correct referent (Halberda, 2003; Hartley et al., 2020; Lewis et al., 2020). Given the delayed 

linguistic profile of our autistic sample coupled with their lower referent selection accuracy 

(for both familiar and novel trials), it is possible that they required more looks towards target 

stimuli to decipher the correct referent due to uncertainties associated with comprehension. 

Since both groups made more looks towards the target in the liked condition, object 

preference could have resulted from perceptual features or salient properties of stimuli, thus 

making children more likely to look at their liked objects. This aligns with previous evidence 

that both autistic and neurotypical children attend to stimuli relating to their interests and 

preferences more intensively (Ackermann et al., 2020; Sasson et al., 2008, 2011). However, it 
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is important to note that the conditional effects present in children’s looking behaviour did 

not influence their response accuracy at referent selection.  

Our analyses revealed that, across groups and conditions, 5-minute retention accuracy 

was predicted by number of looks towards the target during referent selection. Both 5 minute 

and 24-hour retention accuracy were predicted by proportion of time spent looking at the 

target during referent selection. These data corroborate the findings of our behavioural 

analyses that greater referent selection accuracy afforded superior 5 minute and 24-hour 

retention accuracy, and 5-minute retention accuracy predicted increased 24-hour retention 

accuracy. Together, these findings substantiate the claims of prior research that children’s 

encoding during novel word disambiguation predicts the likelihood of longer-term learning 

(Bion et al., 2013; McMurray et al., 2012; Rothwell et al., accepted, see Study 2). They 

indicate the strong relationship between these stages and measures and suggest that visual 

attention at encoding may have significant downstream consequences for long-term 

consolidation of new vocabulary. These combinations of results highlight that enhancing and 

reinforcing children’s identification of meaning may result in greater likelihood of novel 

word retention (see Rothwell et al., Study 2 for similar results). 

All three of our looking measures significantly predicted response accuracy at referent 

selection, 5-minute retention, and 24-hour retention. Indeed, this finding shows that visual 

attention is an important predictor of learning accuracy. Moreover, across all three 

experimental phases, both longest look and proportional looking did not significantly differ 

across groups or conditions. Research utilising looking measures such as proportional looking 

to indicate accuracy also suggest that neurotypical and autistic children perform comparably 

well on word learning tasks (e.g. Akechi et al., 2013; Rothwell et al., Study 2; Swensen et al., 

2007; Venker, 2019). Although we did not find differences in measures of proportional 

looking, group differences in behavioural response accuracy were identified at referent 
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selection. Therefore, these findings highlight the benefit of using multiple methods to 

investigate word learning in autistic and neurotypical children. Whilst looking data reveals 

how children allocate their attention across the visual scene, response accuracy demonstrates 

children’s explicit choices following attention to audio-visual stimuli.   

4.6. General Discussion 

Here, we investigated whether autistic and neurotypical children matched on receptive 

language abilities differ in accuracy and/or visual attention when learning words associated 

with liked and disliked stimuli. Advancing beyond previous research, the study examined 

how explicit measures of word learning accuracy and visual attention inter-relate. Our data 

reveal that autistic children were less accurate to spontaneously identify the meanings of 

novel words using ME than neurotypical peers. However, both groups retained word-referent 

mappings after 5 minutes and 24 hours with comparable accuracy. The extent to which 

children liked, or disliked, object stimuli did not influence the word learning accuracy of 

either group. Both autistic and neurotypical children did not significantly differ in the time 

they took to generate correct responses across all three experimental stages. Analyses of in-

trial visual attention revealed conditional effects on looking behaviour at referent selection 

for both populations, and 5-minute retention for autistic children. Despite this, no between-

condition differences in accuracy were detected at either retention test. We also discovered 

that children’s 5 minute and 24-hour retention accuracy was predicted by visual attention at 

referent selection, indicating a relationship between fast mapping and retention mechanisms. 

Population differences in visual attention were observed at 24-hour retention, with autistic 

children making more looks towards targets, although no differences in response accuracy 

were identified.  

In terms of the relationship between children’s idiosyncratic preferences and word 

learning, our studies highlight two potential outcomes. One possibility is that stimulus 
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preferences do not influence word learning in autistic or neurotypical populations. Whilst this 

may be the case, other studies (e.g. Ackermann et al., 2020; Rothwell et al., Study 1, Study 2, 

accepted) have demonstrated that interests in specific categories of stimuli affect word 

learning in neurotypical and autistic children. Reflecting upon this, we suggest it is more 

likely that children’s self-selected liked and disliked stimuli did not elicit strong enough 

preferences in the present study to afford conditional differences in word learning. Indeed, 

stimuli in the present study comprised random, generic experimental stimuli. Although 

children selected four stimuli as being their most liked stimuli out of the set of twelve, this 

does not necessarily mean that they had a particular interest in these stimuli (they may have 

just been their favourite of the options given). Thus, a second – and perhaps more likely – 

possibility is that it is specifically long-standing preferences, or stimuli that relate to 

particular categories of interest, that impact word learning to a greater extent in these 

populations.  

The present study acknowledges that word learning is an integrated, multi-stage 

process by investigating referent selection and retention in autistic and neurotypical children 

(Hartley et al., 2019, 2020; Horst & Samuelson, 2008). Although our language delayed 

autistic participants responded with lower accuracy at referent selection compared to 

language matched neurotypical peers, both groups retained novel words with comparable 

accuracy after 5 minutes and 24 hours (for similar results, see: Carter & Hartley, 2021; 

Haebig et al., 2017; Hartley et al., 2019, 2020; Rothwell et al., accepted, see Study 2). The 

discrepancy between referent selection and retention accuracy adds to a growing body of 

evidence showing that accurate referent selection does not necessitate accurate retention (e.g. 

Gliga et al., 2022; Hartley et al., 2019; Horst & Samuelson, 2008). Whilst our autistic 

population appeared to be less accurate to identify the meanings of words, their comparable 

retention accuracy suggests that they still encoded and retained novel words just as well as 
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their neurotypical counterparts. As such, these findings highlight the requirement to study 

word learning as integrated multi-processes that take place in both the short and long term 

and raise caution to drawing conclusions about ‘word learning’ from referent selection data 

alone (Hartley et al., 2019; McMurray et al., 2012). Overall, our data reveal that autism does 

not impair fundamental mechanisms that underpin word learning. When expectations are 

based on receptive language ability, autistic children can retain novel words as effectively as 

neurotypical peers. Consequently, delays in autistic children’s naturalistic language learning 

and vocabulary development must have an alternative cause. 

This study’s novel combination of behavioural accuracy and looking measures 

demonstrates the importance of integrating multiple methodologies to gain a comprehensive 

insight into children’s word learning. Our looking data revealed a conditional effect that was 

not present in children’s behavioural response data. Both autistic and neurotypical children 

looked more frequently at stimuli in the liked condition compared to the disliked condition at 

referent selection, and this finding was also apparent for autistic children at 5-minute 

retention. However, behavioural responses suggested no conditional differences in word 

identification across the three experimental stages. Unlike previous studies (Ackermann et al., 

2020; Rothwell et al., Study 1, Study 2, accepted), the present study only included one 

stimulus category – novel objects – rather than contrasting stimulus categories with varying 

preference levels (e.g. animals vs. objects). As such, whilst children may look more 

frequently at items they favour, this does not appear to be strong enough to influence their 

word learning when liked and disliked referents belong to the same category. Indeed, this 

may be because the visual distinction between the two conditions was not especially salient – 

all stimuli varied in texture and were brightly coloured. Alternatively, idiosyncratic 

preferences to generic experimental stimuli may not be as strong as long-standing categorical 
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or preferential interests, eliciting fewer differences in attentional mechanisms and, 

consequently, learning.  

Comparing looking and behavioural measures revealed that these outcomes can both 

compliment and contradict one another. Although increased looking predicted accuracy at 

each word learning stage, population differences in looking allocation did not always result in 

population differences in learning accuracy (or vice versa). Our analyses for number of looks 

towards the target object revealed that autistic children made more frequent looks across 

conditions at both referent selection and 24-hour retention, and in the liked condition at 5-

minute retention. However, these more frequent looks for autistic children did not yield 

equivalent conditional differences in behavioural responses at 5-minute retention, or 

population differences in response accuracy at 24-hour retention. As such, differences in 

visual attention may not always directly translate to greater or poorer performance on explicit 

behavioural responses. It is therefore possible that looking time paradigms, or specific 

looking measures, may only represent a partial picture, and multiple methodologies may yield 

a more comprehensive insight into children’s word learning. 

Our finding that superior retention accuracy was predicted by greater visual allocation 

towards targets compared to distractors at referent selection stipulates a direct relationship 

between fast mapping and slow learning mechanisms. Whilst previous research with 

neurotypical children proposes that these word learning mechanisms are distinct (e.g. Horst & 

Samuelson, 2008), our findings indicate a link between visual attention during referent 

selection and retention (for similar results see also Rothwell et al., Study 2). Specifically, our 

data suggest that encoding during referent selection is important for 5-minute retention and 

24-hour retention. These findings highlight the importance of optimising input at referent 

selection to support more accurate retention. Even though our autistic children made less 
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accurate responses during referent selection than neurotypical peers, clearly these responses 

were not detrimental to their overall retention. Considering this, it is possible that autistic 

children in fact retained a higher proportion of correctly mapped words than neurotypical 

children. Overall, we demonstrate here that autism does not detrimentally impair word 

learning mechanisms (e.g. Hartley et al., 2020; McGregor et al., 2013) or exploration of 

visual stimuli (Foti et al., 2015; Roser et al., 2015). As such, further work should advance our 

understanding of how increasing visual attention during encoding can lead to more robust 

novel word representations, and how the relationship between learning mechanisms and 

visual attention differs between short- and long-term retention. 

The array of findings demonstrated in the present study can inform interventions that 

support autistic children’s word learning. Our study adds to a growing body of literature that 

touch-screen technology is a motivating and effective tool to enhance the word learning of 

autistic children (see also Hartley et al., 2020, Rothwell et al., accepted, see Study 2). 

Moreover, presenting a limited number of referents for children to actively decipher correct 

novel-word referents may be an effective way to facilitate autistic children’s word learning. 

Consequently, these principles could be utilised in naturalistic learning contexts, as well as 

clinical and educational interventions, to help scaffold vocabulary acquisition in autistic 

children with delayed language development. Specifically, given that looking behaviour at 

referent selection predicted retention accuracy, optimising the environment to promote 

curiosity and exploration during identification of meaning may be particularly important for 

novel word learning. 

Naturally, we must address the limitations of this study. We acknowledge that, 

unfortunately, our findings were obtained from a single study with modest sample sizes. Our 

participant recruitment was hindered by school closures and lockdown restrictions due to the 

COVID-19 pandemic which occurred whilst the study was underway. Therefore, future 

https://www.sciencedirect.com/science/article/pii/S0010027720300846#bb0370
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research should seek to replicate our findings with larger samples. Given that our study 

compared word learning abilities across populations when delays in language development 

were controlled for, our groups were matched on receptive vocabulary, but not chronological 

age (the autistic sample was significantly older than the neurotypical sample). Prior research 

suggests that matching on chronological age would likely have resulted in our autistic 

participants achieving significantly lower accuracy on our word learning tasks than 

neurotypical peers (Charman et al., 2003; Mathée-Scott et al., 2021; Tek et al., 2008). 

Moreover, as our study did not emulate a naturalistic environment, we cannot directly state 

whether our samples’ performance levels would be comparable in naturalistic word learning 

contexts. Thus, future research should explore autistic children’s word learning in a more 

demanding, naturalistic environment. For example, presenting children with more salient 

distractors, more complex and numerous stimuli, and faster paced learning environments with 

restricted processing times, would allow us to examine how performance is influenced by 

more naturalistic challenges.  

An additional consideration surrounds the effectiveness of the conditional 

manipulation in the present study. We only identified significant conditional effects on 

number of looks and response times at referent selection (both populations), and number of 

looks at 5-minute retention (autistic group only). We did not observe conditional effects in 

behavioural accuracy, or any of the other looking or response time measures across the 

experimental stages. Although the identified conditional effects provide some indication for 

children having preferences for stimuli they identified as being ‘liked’, we are hesitant to 

confidently conclude that our stimuli sets differed sufficiently in terms of interest levels to 

impact visual attention and subsequent word learning. Indeed, whilst children could have 

liked their chosen stimuli more than the other stimuli available, we cannot necessarily say 

that they liked them more than the familiar stimuli in the array. As such, future research could 
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employ other pre-study measures, such as questionnaires (e.g. Rothwell et al., Study 1, Study 

2, accepted) or visual attention tasks, to decipher stimuli that are more likely to elicit stronger 

attentional biases.  

In summary, this study provides valuable insight into how autistic and neurotypical 

children identify and retain meanings of novel words associated with self-identified liked and 

disliked stimuli. Crucially, children’s idiosyncratic preferences for novel objects commonly 

employed in experimental tasks do not substantially influence attention to the extent that their 

word learning accuracy is significantly impacted. Despite our autistic participants’ delayed 

language development and poorer referent selection accuracy, they responded at least as 

accurately as vocabulary-matched neurotypical children on retention measures following a 

short delay of 5 minutes, and a delay of 24 hours following overnight sleep. Consequently, 

we conclude that autism does not disrupt the fundamental word learning mechanisms. Whilst 

neither group significantly differed in their response times across the three experimental 

stages, they differed in their visual allocation towards stimuli at referent selection and 24-

hour retention. However, these differences in visual exploration of stimuli did not 

detrimentally impact autistic children’s word learning accuracy beyond referent selection. 

Our findings also indicate the importance of incorporating mixed methodologies to 

investigate word learning and demonstrate that examining looking time alone could lead to 

erroneous or incomplete conclusions.  

 

 

 

 

 

 



 
 

231 

 

Chapter 5: General Discussion 

5.1. Overview of the Thesis 

This thesis has explored how attentional biases influence autistic and neurotypical 

children’s identification and retention of novel word meanings. Study 1 utilised accuracy and 

response time data to examine how the presence of categorically interesting animal stimuli 

influences word learning when animals are both targets and distractors, compared to object 

stimuli. Study 2 employed a novel combination of visual and behavioural data to explore how 

word learning is influenced by novel animal targets compared to novel object targets, when 

less interesting object distractors are present. Study 3 combined visual and behavioural 

responses, investigating how children’s self-identified liked and disliked novel objects 

influenced word learning when presented alongside categorically similar object stimuli. 

Overall, these studies investigate word learning as a multi-stage system including referent 

selection via ME and retention after delays of 5 minutes and 24 hours. This approach allows 

us to explore how word learning mechanisms are both similar and different across 

populations, and how idiosyncratic and categorical preferences influence children’s attention 

and subsequent word acquisition across the learning stages. Ultimately, the information 

obtained here can help to inform optimal learning conditions for autistic and neurotypical 

children, which can be utilised to scaffold interventions for children with language delays. 

Considerations for effective experimental design to implement in future research are also 

highlighted. 

This general discussion will first recap the main findings and conclusions from each of 

the papers presented in this thesis. Following this, we discuss how these papers inform the 

main topics of this thesis: how category interests and idiosyncratic preferences influence 

word learning accuracy in autism and neurotypical development, processing speed during 

word learning, and attentional allocation. Next, a reflection of some of the limitations of this 
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thesis will be provided, alongside suggestions for future research, before final conclusions are 

considered. 

All studies in this thesis examined novel word learning across three distinct stages – 

referent selection, 5-minute retention, and 24-hour retention. These studies compare autistic 

and neurotypical children matched on receptive vocabulary abilities to account for language 

delays present in the autistic population. Study 1 investigated how children’s animal interests 

affect word learning accuracy and response speed when learning novel words associated with 

animals (high interest stimuli) and objects (neutral interest stimuli). For this study, children 

learnt novel words via ME-based referent selection in the presence of high interest animal 

distractors. At referent selection, autistic children responded at similar speed for both novel 

and familiar trials, whereas neurotypical children were significantly faster to respond 

correctly during familiar trials compared to novel trials. This suggests that autistic children 

may have spent longer studying animal distractor stimuli across trial types, whereas 

neurotypical children spent longer disambiguating novel stimuli. Both populations recalled 

novel words after 5 minutes and 24 hours with similar speeds, revealing that response times 

at retention were unaffected by category interests. Both groups identified stimuli at referent 

selection, and recalled them after five minutes, with comparable accuracy. After 24-hours, in 

comparison to neurotypical children, autistic children demonstrated greater novel word 

retention for object stimuli than neurotypical children. However, for autistic children, greater 

interest in animals predicted poorer retention after a 5-minute delay, but superior retention 

accuracy after 24-hours. These findings highlight that for the autistic group, heightened 

attention to non-target competitors during mutual exclusivity, alongside perceptual contrasts 

between target and distractor stimuli, ultimately led to more robust encoding of novel word-

referent mappings.  
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Study 2 utilised a novel combination of accuracy and looking measures, alongside 

response time, to investigate whether autistic and neurotypical children matched on receptive 

vocabulary differ in accuracy and visual attention when learning words associated with 

animals (high interest stimuli) and objects (neutral interest stimuli). In contrast to Study 1, 

here children learnt novel words via ME in the presence of familiar object distractor stimuli. 

Overall, both groups identified meanings of novel words associated with unfamiliar animals 

and objects with comparable accuracy. After 5 minutes, autistic children retained novel 

animal names with greater accuracy than neurotypical children. Autistic children also showed 

a greater increase in their accuracy between 5 minute and 24-hour retention tests and 

outperformed neurotypical children after a night’s sleep. However, autistic children 

demonstrated slower response times than neurotypical children at each word learning stage, 

particularly for animal stimuli. Given the greater retention accuracy of autistic children, we 

anticipate that differences in response time may reflect a speed-accuracy trade-off. At referent 

selection, autistic children took significantly longer to produce comparably accurate results to 

neurotypical peers and spent longer examining novel animal stimuli. As such, they may have 

had more opportunities to encode audio-visual aspects of stimuli, leading to their more 

accurate retention.  

In Study 2, looking time data revealed that autistic children also looked at targets 

significantly more often than neurotypical children at each word learning stage. Crucially, 24-

hour retention accuracy of both populations was predicted by visual attention and auditory 

input at referent selection, indicating a relationship between fast and slow word learning 

mechanisms. Overall, these findings demonstrate that differences in visual attention do not 

necessarily lead to diminished word learning accuracy. Moreover, it could be that as autistic 

children made more looks towards the target objects, this afforded greater encoding and thus 

resulted in more accurate novel word retrieval following sleep consolidation. Despite this, the 
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observed differences in visual attention and response times signal potentially reduced pace of 

processing audio-visual input in autism. Due to the input in naturalistic word learning 

contexts being quicker and less constrained than under experimental conditions, it is possible 

that this slower intake of input could impair naturalistic language acquisition.  

Study 3 investigated whether autistic and neurotypical children matched on receptive 

language abilities differ in accuracy, visual attention, and response times during referent 

selection and novel word retention. Children initially completed an object preference task 

where they identified novel objects that they liked and disliked. They then learnt novel words 

for their unique sets of liked and disliked stimuli in the presence of familiar objects, and 

retention was tested after 5 minutes and 24 hours. Here, autistic children were less accurate 

when spontaneously disambiguating the meanings of novel words using ME than 

neurotypical peers. However, the groups retained word-referent mappings after 5 minutes and 

24 hours with comparable accuracy. Whether stimuli were liked or disliked did not 

significantly influence the word learning accuracy of either group, and both groups took 

similar amounts of time to generate correct responses across all three word learning stages.  

Analyses of in-trial visual attention in Study 3 revealed that looking behaviour was 

both complimentary and contradictory of explicit behavioural accuracy measures. During 

referent selection, population differences were present in both visual attention and explicit 

behavioural accuracy measures. Conditional differences in looking behaviour were observed 

during referent selection and 5-minute retention, but these did not influence conditional 

differences in children’s behavioural accuracy on any of the word learning stages. On the 

contrary, population differences in looking patterns were discovered at both 5 minute and 24-

hour retention, although no differences in behavioural response accuracy were identified. 

These findings suggest that differences in visual attention in autistic children do not 

necessarily lead to diminished word learning accuracy. Corroborating the findings of Study 2, 
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children’s retention accuracy was predicted by visual attention at referent selection, indicating 

a relationship between fast mapping and retention mechanisms. Indeed, the relationship 

between identification of meaning and longer-term learning across studies highlight that if we 

can increase autistic children intake from input during the initial novel word identification, 

word learning outcomes may be optimised.   

5.2. How do Children’s Interests Influence their Word Learning? 

Strikingly, Study 1 highlighted the importance of category interests for autistic children’s 

word learning. Autistic children with greater animal interests had more fragile novel word 

representations after a 5-minute delay, but more accurate word-referent mappings after a 24-

hour delay. Autistic children were also significantly more accurate than neurotypical children 

to recall novel object names after 24-hours. These findings suggest that the presence of 

animal distractor stimuli may have allowed children to encode more information from the 

visual scene due to their heightened interests. Additionally, the greater perceptual contrasts 

between categorically distinct novel objects and familiar animals may have facilitated 

encoding of more robust novel word-object representations for autistic children, that were 

consolidated by sleep and more easily retrieved after 24 hours. Curiously, we found no effect 

of animal interests for the neurotypical group, despite there being no significant differences 

between the groups on our measure of animal interests. 

These findings are supported by previous research reporting that increased attentional 

allocation aids learning in both neurotypical and autistic children (e.g. Akechi et al., 2013; 

Axelsson et al., 2012; Begus & Southgate, 2012; Hilton et al., 2019; Parish-Morris et al., 

2007). It is possible that our findings were only apparent in the autistic group due to their 

particularly circumscribed interests, making autistic children more likely to display 

perseverative attentional allocation towards stimuli that appeal to their interests or that are 

perceptually salient (Richler et al., 2007; Sasson et al., 2008, 2011; Venker et al., 2021, 2022). 
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Consequently, autistic children may have more intensively attended to the visual scene during 

encoding, attending to categorical distinctions which lead to more successful retention. 

Moreover, individual animal interests did not significantly influence the 24-hour retention of 

either neurotypical or autistic children in Study 2, where only novel stimuli were animals 

(familiar stimuli were objects). Overall, it appears that the animal distractors in Study 1 

benefited children’s learning of non-interest stimuli belonging to a different category, 

whereas learning new same-category names in Study 2 may not have received the same 

benefit. However, the findings of Studies 1 and 2 are somewhat converse in relation to long-

term consolidation, a point that will be addressed in section 5.4 where we discuss how sleep 

influenced learning and mediated interest effects.  

In Study 3, selecting liked and disliked stimuli from a range of novel objects may not 

have had a strong enough influence on attention to yield conditional effects on learning for 

either population. Indeed, this contrasts with the findings of Studies 1 and 2, whereby the 

presence of animal stimuli in those studies influenced the retention accuracy of autistic 

children. We therefore suggest that it is pre-existing category interests, rather than 

idiosyncratic preferences to specific novel object stimuli, which has the stronger and more 

reliable influence on autistic children’s word learning. It is likely that autistic children’s 

predisposition to more intensive and inflexible attentional mechanisms towards preferred 

stimuli was a benefit in terms of animal interests, and how much information they encoded 

about the novel stimuli (Elsabbagh et al., 2009, 2013; Honey et al., 2012; Venker et al., 

2018).  

In view of these findings, it may be that autistic children were exhibiting a ‘Goldilocks 

effect’, whereby they allocate auditory and visual attention to stimuli that are neither too 

simple or familiar, nor too complex or unfamiliar, to avoid wasting cognitive resources (Kidd 

et al., 2012, 2014). In terms of category knowledge, when children know very few or very 
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many existing category members, their interest in the category may fluctuate. Either they may 

have minimal exemplars to integrate with the new category members, or they alternatively 

consider the category to be saturated and do not feel the need to acquire any more category 

members (Ackermann et al., 2020). When autistic children had particularly strong 

representations for interesting animals in Study 1, they could disengage from familiar animal 

stimuli as they belonged to a well-established category so did not need to encode further 

information. This afforded particularly strong long-term retention in the object condition for 

autistic children because it resulted in greater focus on object stimuli due to the differences in 

curiosity at encoding. Following this, autistic children were more able to integrate novel 

labels into the less established object category. By contrast, in Study 2, familiar object 

distractors did not appeal to children’s categorical interests. Therefore, novel animal stimuli 

initially had more of an influential role on autistic children’s learning due to greater interest 

in the category at encoding. As such, in Study 2, novel animal names were more easily 

integrated into pre-existing lexical categories for 5-minute retention, until sleep consolidated 

information within both categories. In Study 3, all stimuli were categorically less interesting 

than the animal stimuli present in Studies 1 and 2 (only objects were presented). Such stimuli 

that did not particularly appeal to children’s innate interests thus did not afford as effective 

integration into the lexicon. Consequently, autistic children did not demonstrate superior 

retention when all target stimuli belonged to the same category and distractors did not appeal 

to pre-existing interests.  

5.3. Word Learning Mechanisms 

All studies in this thesis communicate a key message – that fast, in-the-moment referent 

identification and slower associative learning processes are inter-related. Previous research 

has suggested that word learning in children is underpinned by separable referent selection 

and retention mechanisms (e.g. Kucker et al., 2015; McMurray et al., 2012). However, the 
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present studies suggest that this is not always the case for either neurotypical or autistic 

children, with predictive relationships between referent selection, 5-minute retention and 24-

hour retention accuracy. This aligns with research positing that, for neurotypical children, 

referent selection accuracy predicts retention (but not necessarily for late talkers; Kucker & 

Seidler, 2023). Similar findings have also been demonstrated with children at increased risk 

for autism (Gliga et al., 2022). Referent selection in the present study required children to 

actively select stimuli through a touch response. It is possible that this active choice was 

particularly beneficial for children due to heightened engagement with the task (Blewitt & 

Langan, 2016; So Yeon et al., 2018), in turn reinforcing the mapping for increased retention. 

Interestingly, in Study 1, autistic children were found to receive a greater benefit of referent 

selection accuracy on 5-minute retention than neurotypical children. Given that autistic 

children’s attentional mechanisms are often less flexible than those of neurotypical peers 

(Hutman et al., 2012; Landry & Bryson, 2004), they may gain more from active learning than 

neurotypical children in some circumstances – for example, when distractor stimuli appeal to 

a category of interest (Bosseler & Massaro, 2003; Fantasia et al., 2020; Zwaigenbaum et al., 

2015). These findings reveal the importance of examining word learning as a multi-stage 

system – word learning mechanisms appear to be unimpaired in autism at both short- and 

long-term retention. 

Critically, in line with an array of previous research (de Marchena et al., 2011; Hartley et 

al., 2019, 2020; Parish-Morris et al., 2007; Preissler & Carey, 2005), all studies in this thesis 

demonstrate that autistic children can engage in ME to accurately decipher novel word 

referents. It is important to acknowledge, however, that whilst Studies 1 and 2 suggested both 

populations could fast map with comparable accuracy, in Study 3, autistic children were less 

accurate than neurotypical children at referent selection. Despite this, autistic children still 

used ME to identify novel referents significantly above chance (Maccuracy = 0.72, Mchance = 
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0.33), and retained novel words with comparable accuracy to neurotypical peers. As such, 

these findings add to a growing body of research demonstrating that fundamental word 

learning mechanisms are not qualitatively atypical in autism.  

Consequently, our studies demonstrate that autistic children can retain novel labels at 

least as accurately as neurotypical peers when expectations are based on receptive 

vocabulary. Our findings suggest that if the mechanisms underpinning word learning are not 

impaired in autism, then there must be alternative causes for the language delay experienced 

by many autistic children. To correctly identify a new word-referent mapping, children must 

focus on auditory and visual input, which is narrowed by intrinsic or extrinsic sources of 

information (Hollich et al., 2000). Studies often attribute children’s word learning problems 

to difficulties understanding and applying social pragmatic cues in learning contexts (e.g. 

Baron-Cohen et al., 1997; McDuffie et al., 2006; Parish-Morris et al., 2007). However, in 

addition to social cues, word learning relies on input from other sources. Autistic children’s 

attentional mechanisms often differ to those of neurotypical children, with autistic children 

displaying different preferences to stimuli (Pruden et al., 2006, Parish-Morris et al., 2007), as 

well as atypical exploration of stimuli (Sasson et al., 2011; Venker et al., 2022). In view of 

our findings in Studies 1 and 2 that category interests were beneficial in the service of word 

learning for autistic children, we anticipate that differences in attentional mechanisms that 

may be responsible for language delays. This point will be revisited in section 5.6 within a 

discussion of what this means for learning more broadly.  

In support of this theory, Studies 2 and 3 extended our approach to examining word 

learning by introducing mixed methodologies, combining both visual attention and explicit 

behavioural accuracy measures. This novel combination afforded greater insight into how the 

three word learning mechanisms inter-relate in terms of visual attention during learning. 

Investigating children’s looking behaviour enabled us to identify whether attention differed 



 
 

240 

 

across groups and determine how this influenced word learning. Both studies found that 

visual engagement with stimuli during referent selection predicted retention. This aligns with 

research by Hilton and colleagues (Hilton & Westermann, 2017; Hilton et al., 2019) who 

found that shy children who were less likely to attend to a novel target during referent 

selection retained fewer novel labels than non-shy children. Similarly, research by Bion et al. 

(2013) demonstrated a positive relationship between attention during referent selection and 

retention in a looking-based task with neurotypical toddlers. Overall, these findings add to a 

growing body of literature demonstrating that focusing more on a target during encoding 

leads to greater retention success. Paying attention to the right thing at the right time 

ultimately leads to more successful novel word learning. However, population differences in 

attention allocation do not necessarily result in diminished word learning accuracy. 

5.4. Sleep and Word Learning 

Our findings highlight the importance of sleep for novel word learning. Sleep 

consolidates novel declarative memories, such as novel words, by reactivating recently 

encoded novel word-referent relationships (Diekelmann & Born, 2010; Robertson, 2009). 

Prior research has suggested that sleep consolidates word learning in both neurotypical 

children (Brown et al., 2012; Henderson et al., 2012; Ma et al., 2022) and autistic children 

without language delay (Fletcher et al., 2020; Henderson et al., 2014). However, to our 

knowledge, no studies prior to this thesis have investigated the effect of sleep on language 

delayed autistic children. We expected sleep to potentially be less beneficial for our sample of 

autistic children due to the presence of language deficits and likely differences in sleep 

quality (Devnani & Hedge, 2015). However, all three studies demonstrate that sleep 

consolidation was at least as beneficial for language delayed autistic children as neurotypical 

children matched on receptive vocabulary.   
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In Study 1, autistic children’s retention accuracy decreased by 7% in the animal condition 

after sleep (M5-minute = 0.46 M24-hour = 0.43) but increased by 17% in the object condition (M5-

minute = 0.53, M24-hour = 0.62). Autistic children retained a similar proportion of novel objects 

and novel animals after 5 minutes, but more novel objects than animals after a 24-hour delay. 

By contrast, following sleep, in Study 2 autistic children’s retention accuracy increased by 

13% in the animal condition (M5-minute = 0.55 M24-hour = 0.62) and 54% in the object condition 

(M5-minute = 0.37, M24-hour = 0.57). Autistic children retained more novel animal names than 

novel object names after a 5-minute delay but performed similarly across conditions after a 

24-hour delay. The effects apparent in Study 1 are likely due to the attentional salience of 

target stimuli, particularly given that object label retention was more accurate in Study 1 than 

Study 2. In Study 2, target animals were interesting and perceptually salient, as they differed 

categorically to the other stimuli in the array. In Study 1, target animals were interesting, but 

not perceptually salient - target objects were more attentionally salient here as they comprised 

only a third of the array at referent selection. As such, the greater perceptual distinctions may 

have afforded more robust encoding of novel word-referent mappings for novel objects in 

Study 1, which were consolidated by a period of sleep leading to increased performance after 

24 hours.  

In Study 2, autistic children were more accurate to identify novel animal stimuli than 

novel object stimuli after a 5-minute delay. However, following a period of overnight sleep, 

this conditional effect diminished, with autistic children outperforming neurotypical children 

in both conditions after 24 hours. Whilst autistic children’s representations of novel object 

words were initially more fragile at 5-minute retention in Study 2, sleep consolidated these 

more vulnerable representations into memory networks, improving recall of novel words after 

a 24-hour delay (Gais & Born, 2004). These findings align with previous research that the 
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benefits of sleep consolidation are greater for weak memory traces than for strong memory 

traces (e.g. Diekelmann et al., 2009; Gais & Born, 2004).  

Similarly, sleep protected neurotypical children’s novel word consolidation from decay. In 

Studies 1 and 2, neurotypical children’s performance was similar at 5-minute retention and 

24-hour retention across conditions. Although autistic children outperformed neurotypical 

children in the object condition in Study 1, and across conditions in Study 2, neurotypical 

children’s retention performance did not worsen in either condition or study. This suggests 

that sleep provided the anticipated protective effect on new declarative memories (Axelsson 

et al., 2018; Horváth et al., 2016; Williams & Horst, 2014), but potentially to a lesser extent 

than for autistic children. It is possible that the benefits of sleep for neurotypical children 

were smaller due to their significantly lower chronological ages than the autistic group. 

Whereas our sample of autistic children were on average over 7 and a half years old, the 

neurotypical group averaged a little over 4 years old. We originally noted in Study 2 that 

chronologically older children have longer sleep cycles, which can be directly related to 

memory consolidation cycles (Hill et al., 2007; Horváth & Plunkett, 2016; Montgomery-

Downs et al., 2006). It is therefore possible that the younger neurotypical children did not 

receive as great of a benefit from sleep due to more immature sleep cycles and memory 

mechanisms (a point which will be revisited in section 5.7).  

However, there is a range of prior literature demonstrating that overnight sleep benefits 

neurotypical children’s retention at younger ages. For example, Axelsson et al. (2018) found 

that 2-year-olds’ novel word retention benefits from napping after 4 hours and sleeping 

overnight. Similarly, Williams and Horst (2014) taught 3-year-olds novel words via storybook 

reading and found that sleep was beneficial for retention following delays of 2.5 hours, 24 

hours, and 7 days. However, in our Studies 1 and 2 (Rothwell et al.), sleep did not 

particularly improve the novel word retention of neurotypical children. Moreover, in Study 3 
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(Rothwell et al.) we did not find that sleep consolidated novel words for either autistic or 

neurotypical children. In Studies 1 and 2, the benefits of sleep for autistic children were 

perhaps aided by the presence of categorically interesting animal stimuli at encoding, 

meaning that the less categorically interesting object stimuli further benefitted from sleep 

consolidation due to initially more fragile representations. However, the presence of solely 

object stimuli in Study 3 meant that autistic children did not benefit from categorical 

distinctiveness or pre-existing interests in animal stimuli (unlike Studies 1 and 2). Therefore, 

encoded word-referent representations may have been less robust in Study 3, perhaps 

meaning that the same advantage of sleep consolidation on novel word-referent mappings 

was not achieved. Given that the findings of our studies contrast with previous literature on 

the benefits of sleep for neurotypical children’s novel word retention, this research area 

requires further investigation. 

5.5. Processing Speed 

Our third dependent measure, response time, speaks to how quickly children generated 

correct responses during word learning processes. In Study 1, autistic children responded at a 

similar pace for both novel and familiar referent selection trials, whereas neurotypical 

children were significantly slower to respond correctly during novel trials compared to 

familiar trials. Recall that familiar stimuli in Study 1 were animals, suggesting that autistic 

children spent similar time exploring stimuli in both trial types – perhaps due to the 

interesting animal distractors. By contrast, neurotypical children appeared to spend 

comparatively less time exploring stimuli in familiar trials relative to novel trials. Similarly, 

in Study 2, autistic children were particularly slow to identify novel animal stimuli. In both 

studies, the longer response times of autistic children when identifying animal stimuli may 

reflect their greater attentional allocation to stimuli that appeal to their interests. Previous 

research proposes that autistic children perseverate on stimuli that are particularly salient to 
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them (Sasson et al., 2008, 2011), and can have difficulties disengaging from stimuli that 

appeal to their interests (Akechi et al., 201; Elsabbagh et al., 2009). Indeed, our findings 

suggest that categorically interesting animal stimuli attracted autistic children’s focus more so 

than stimuli that belonged to categories that were not of particular interest.   

Across all word learning stages in Study 3, there were no observed differences in 

response times between populations. However, we did find that both autistic and neurotypical 

children took longer to generate correct responses in the ‘liked’ stimuli condition at referent 

selection. Whilst this result indicates that children focused longer on stimuli that captured 

their interests, it contrasts with our previous studies in that no population difference was 

detected here. Unlike Studies 1 and 2, in Study 3 object stimuli served as both distractor and 

target referents (no animal stimuli were used in this study). Consequently, it appears that the 

presence of categorically similar stimuli across the array elicited more consistent response 

times across populations. This highlights the importance of category interests for autistic 

children – when stimuli did not belong to categories of interest, autistic children’s response 

speeds were comparable to those of neurotypical peers. Indeed, preferences for novel object 

stimuli were not strong enough to elicit differences in visual attentional allocation between 

populations.  

Interestingly, our response time findings in Study 3 differed from those reported by 

Hartley et al. (2020), where similar samples of autistic children were slower to identify novel 

object stimuli than receptive vocabulary matched neurotypical peers. Akin to Rothwell et al. 

(Study 3), Hartley et al. (2020) presented only generic object stimuli at both referent selection 

and retention. However, in Hartley and colleagues’ study, children learnt novel words through 

cross-situational learning, whilst our study utilised ME-based referent selection. Cross-

situational learning requires children to recall prior exposures in order to disambiguate word 

meanings, whereas arrays that afford the use of ME present all the necessary information 
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within a single naming event. As such, cross-situational methods are more cognitively 

demanding than ME, requiring greater use of working memory mechanisms to store 

information about previous exposures (McGregor et al., 2022; Neveu & Kaushanskaya, 2023; 

Vlach & Sandhofer, 2014). Given that autistic children demonstrate difficulties in executive 

function, including working memory (Joseph et al., 2005; Lopez et al., 2005; Robinson et al., 

2009), this may account for the slower response times of autistic children in Hartley et al’s 

(2020) study. This methodological difference between Rothwell et al. (Study 3) and Hartley 

et al. (2020) may explain why the same population differences in response time were not 

identified across the studies, despite including comparable stimuli sets and participants with 

similar characteristics. Investigating the role of interests on autistic and neurotypical 

children’s word learning in a cross-situational learning paradigm would be an informative 

objective for future research to examine how interests influence referent selection 

mechanisms besides fast mapping. 

Differences in visual attention may explain variation in response times across populations 

and conditions. In Study 2, population differences between multiple looking measures were 

found across word learning stages. Similarly, population differences in response time were 

discovered at referent selection and retention in Study 2. By contrast, population differences 

in only a single looking measure – number of looks - were identified in Study 3. Despite this, 

no significant population differences in response speed were identified at retention in Study 

3. These combinations of results highlight that not all differences in looking behaviour 

directly relate to differences in processing times. It is possible that population differences in 

response time only appear when there are population differences in multiple looking 

measures (as identified in Study 2). Moreover, the relationship between conditional effects on 

looking measures and response times were also varied. Our looking measures in Study 2 

identified a significant conditional effect at referent selection that was also present in our 
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referent selection response time data. However, the response time data demonstrated a 

population x condition interaction that was not identified in our looking data. Although, 

examination of visual attention at 24 hours did not identify the same significant conditional 

effects present in our response time data at 24-hour retention in Study 2. By contrast, 

conditional differences in number of looks and response time were congruent at referent 

selection in Study 3. However, conditional differences in number of looks were identified for 

the autistic group at 5-minute retention in Study 3, but this did not translate to conditional 

differences in response times for autistic children. Thereby, we highlight the usefulness of 

gathering data from a variety of measures to build a comprehensive picture of children’s 

processing speed. However, it is crucial to note that because our studies employed a unique 

combination of touchscreen and looking time methods, trial length was not controlled – 

children’s progression through the studies was dependent on their response speeds. 

Investigating how children’s looking allocation is affected when trial length is consistent 

would illuminate the extent to which visual attention is reflective of processing time.   

5.6. Practical Applications  

This thesis has many practical applications, both in terms of experimental design and the 

potential to inform understanding of word learning in naturalistic settings. In Studies 1 and 2, 

autistic children were more accurate to recall novel stimuli at retention compared to 

neurotypical children. Both studies also found that autistic children had slower response 

times at referent selection in comparison to neurotypical children. As such, these findings 

could be the result of autistic children demonstrating a speed-accuracy trade-off. Slower 

responses meant autistic children had longer to encode perceptual features and hear more 

repetitions of the novel label associated with target stimuli, which could have scaffolded their 

more accurate retention. If processing times were restricted, perhaps autistic children would 
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have performed less accurately, or conversely, neurotypical children may have responded 

more accurately had they spent longer examining stimuli at referent selection.  

Interestingly, Study 3 was the only study to identify no significant population differences 

in response speed during referent selection. It was also the only study in this thesis to identify 

significantly poorer referent selection in the autistic group compared to the neurotypical 

group. Had autistic children taken longer to generate correct responses, they may have 

achieved accuracy comparable to neurotypical peers. Given autistic children’s comparable 

retention accuracy in Study 3, it is possible that they successfully retained a higher proportion 

of novel word-referent mappings successfully encoded at referent selection.  

Taken together, the findings of our studies suggest that autistic children are slower to 

generate correct responses for stimuli that belong to a category of interest when learning 

occurs through ME-based referent selection. These studies also highlight the requirement of 

future research to investigate how accuracy and response speed interrelate. Insight into the 

relationship between these two variables would advance our understanding of how autistic 

children can learn in the natural environment. Indeed, slower processing of information in 

natural language environments may mean that autistic children have limited opportunities to 

acquire informants from their surroundings, potentially impairing their novel word 

acquisition (McMurray et al., 2012; Yu & Smith, 2012). These findings state that allowing 

autistic children longer processing times during word learning could be beneficial for 

language acquisition. Consequently, a consideration when designing learning environments 

and interventions would be to increase processing time to maximise learning output.   

Our findings that language delayed autistic children were as accurate at learning novel 

words as vocabulary-matched neurotypical peers suggest that, under the right conditions, 

word learning can be optimised for children across an array of abilities. Our study set-up 
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likely appealed to the strengths of autistic children - distractions were minimised and 

potential referents were limited from a choice of three. Research with neurotypical children 

found that children who learn novel words via ME in the presence of only two competitors 

successfully retained novel word-referent pairings, whereas those who learned alongside 

three or four competitors did not retain the novel labels (Horst et al., 2010). In the present 

studies there were only two competitor stimuli present during training, which supported 

successful retention in both neurotypical and autistic children. Whilst future research is 

necessary to investigate how number of competitors influences autistic children’s word 

learning, here we highlight that limiting competition in naturalistic learning environments 

could increase their learning efficiency.  

Children’s performance in the present studies could partly be due to their mode of 

delivery. Studies investigating the effectiveness of touch-screen technology as a learning 

medium have yielded mixed results (e.g. Allen et al., 2015; Wainwright et al., 2020). Allen et 

al. (2015) state that it is not the method of delivery, but the content presented, that has the 

greater influence on children’s symbolic understanding of word-picture-object relations. 

Wainwright and colleagues (2020) taught autistic and neurotypical children new information 

via either a paper book or e-book incorporating interactive, touch-screen features. Whilst they 

did not find any significant differences in learning performance, they discovered that 

children’s visual engagement with stimuli was greater in the e-book condition compared to 

the paper book condition. In our studies, language delayed autistic children’s novel word 

retention was at least as accurate as neurotypical children’s performance. Consequently, we 

suspect that the use of touch-screen technology was clearly engaging in teaching novel words 

to autistic children. We therefore suggest that touch-screen technology may be considered for 

use within interventions to optimise autistic children’s word learning. However, it is 

important to consider a balance between utilising touchscreens and more naturalistic contexts. 
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Potentially, touchscreens could be initially used to teach meanings of new vocabulary, and 

then learning can be transitioned to real-world situations to foster extension of knowledge 

across contexts. Overall, our studies highlight the importance of carefully considering how 

we craft learning environments to suit the learner, rather than expecting the learner to suit the 

environment. 

Our studies consistently demonstrated that referent selection accuracy, alongside visual 

and auditory input at referent selection, predicted subsequent retention performance. As such, 

maximising intake of input at referent selection could lead to greater word learning success. 

Previous studies indicate that providing reinforcement at referent selection in the form of 

ostensive naming (Gliga et al., 2022; Horst & Samuelson, 2008), or drawing attention to 

target objects through illumination (Axelsson et al., 2012), improves children’s retention. 

However, the present studies extend this through increasing attention via manipulation of 

stimulus categories. Additionally, increasing exposure through extended visual attention to 

stimuli, and increased number of label repetitions, improved novel word retention in our 

studies. This aligns with the dynamic associative theory of word learning, which proposes 

that accumulating information gradually (e.g. through repeated novel word-referent mappings 

across multiple situations) strengthens long-term learning (McMurray et al., 2012). Given 

that numerous studies with neurotypical children suggest that repetition increases word 

learning, this finding is not surprising (Horst & Samuelson, 2008; Vlach & Sandhofer, 2012). 

However, it does confirm that autistic children receive the same benefit of increased exposure 

as neurotypical children. It is possible that autistic children might themselves seek additional 

exposure by studying stimuli for longer and taking more time to respond. This suggests that 

increased exposure to visual and auditory input may help autistic children to acquire new 

language. 
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Our findings from Studies 1 and 2 indicate that autistic children’s pre-existing interests in 

stimulus categories influence their word learning. Overall, heightened attention to the visual 

scene, coupled with greater perceptual distinctions between familiar animal distractors and 

novel object targets, afford more robust encoding that is further consolidated by sleep. 

Moreover, in Study 2, autistic children spent longer attending to novel animal stimuli that 

captured their interests, and initially retained more novel animal stimuli prior to sleep 

consolidation. Taken together, these findings suggest that autistic children attended more to 

information relating to their pre-existing interests, which in turn improved their novel word 

learning. This has implications for both research and intervention design. We recommend that 

researchers are mindful when combining stimuli from different categories at referent 

selection in experimental settings, as prior interests in distractors or targets may impact 

learning. This also highlights the requirement for interventions to incorporate children’s 

interests to maximise learning. Certainly, we are not proposing that children can only learn 

information that appeals to their interests. Indeed, our findings in Study 3 that language 

delayed autistic children’s retention accuracy was not poorer than neurotypical children’s 

demonstrates that they can be just as capable of learning names for stimuli that do not align 

with their categorical interests. Rather, interesting stimuli could be incorporated within 

interactions involving non-interest stimuli to increase children’s attention and engagement in 

the overall word learning environment and ultimately afford better long-term retention.  

Strikingly, we found that population differences in looking behaviour did not lead to 

poorer word learning accuracy for autistic children. For example, in Study 2, proportion of 

time spent looking at target stimuli did not significantly differ across groups or conditions at 

5-minute retention or 24-hour retention. However, autistic children responded more 

accurately in the animal condition after 5 minutes, and more accurately than neurotypical 

children in both conditions at 24-hour retention. Additionally, Studies 2 and 3 found that 
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specific looking measures often predicted the accuracy of one population to a greater extent 

than the other. Different measures can provide different information about how children 

learn, and the success with which they acquire novel words. Our data suggest that looking 

measures illustrate how children engage with stimuli during learning, but not the outcome of 

learning in terms of accuracy. Conversely, forced choice measures tell us the outcome of 

learning, but not how they reached this response. Autistic children may engage with stimuli 

differently, often making more frequent and divisive looks across the visual scene than 

neurotypical children, but our studies reveal that this does not negatively impact their word 

learning accuracy. When utilising a single method, the conclusions drawn about children’s 

learning may substantially differ depending on the methodology utilised. As such, it is 

imperative to select the most appropriate methodology for the task and mechanisms of 

interest – attention during learning or learning outcome. Undoubtedly, these findings have 

implications for the existing literature. It is possible that conclusions drawn in previous 

studies about word learning in both autistic and neurotypical populations may have differed 

had they included explicit measures of accuracy alongside looking measures (or vice versa). 

If the most suited methodology is not utilised, conclusions have the potential to be erroneous, 

or not representative of children’s true abilities. We therefore recognise that utilising a 

combination of distinct methodologies is a strength and paves the way forward for future 

research.  

5.7. Limitations and Future Directions 

Of course, the studies that comprise this thesis are not without limitations. Whilst we have 

highlighted that our study design may appeal to the strengths of autistic children, we 

appreciate that it did not emulate a naturalistic context. Although this is true for many studies, 

it means that we cannot be certain whether our findings would replicate under more 

naturalistic conditions. Natural learning environments are rife with distractors, often 
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presenting a plethora of external cues and potential referents at once. Given that stimuli 

within naturalistic contexts are often presented at a more rapid rate that is not dependent upon 

the child’s processing speed, they may create a processing bottleneck for autistic children 

who struggle to attend to all necessary information at a sufficient pace. Consequently, future 

research should investigate how preferential biases influence word learning in autistic and 

neurotypical children within real-word learning environments. Though we suggest that 

learning environments should be designed to suit children’s requirements, we appreciate that 

this is not always possible in day-to-day settings. As such, we must address how word 

learning mechanisms interplay when stimuli and environmental conditions are not optimised. 

Future research can therefore extend the present study design but increase complexity and 

demands. For example, asking children to choose from numerous stimuli, rather than a 

limited set of three potential referents, would advance understanding of optimal and sub-

optimal competition levels.  

It is important to note that data collection for this thesis began just before the COVID-19 

outbreak occurred. The devastating effects of the global pandemic meant that, due to school 

and research facility closures, data collection ceased. As such, the sample sizes of our studies 

are more modest than anticipated. Of course, this means we must be cautious when 

generalising our findings to the wider population of autistic children. Future research should 

seek to replicate and extend these findings with larger sample sizes now that conditions 

permit. Moreover, disruption from the pandemic meant that some of the autistic participants 

did not have scores for all individual difference measures. Consequently, for autistic 

participants, we were unable to test the predictive effects of non-verbal intelligence, 

attention-related behaviours, and autism severity on word learning outcomes in Study 1, the 

effects of non-verbal intelligence in Study 2, or non-verbal intelligence and expressive 

vocabulary in Study 3. It is possible that further information can be obtained regarding how 
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these participant characteristics influence children’s word learning for different stimulus 

categories. 

We also recognise that acquisition and retrieval of declarative memories may be subject to 

circadian effects, whereby time of day influences cognitive processes (Lau et al., 2010; Tilley 

& Warren 1983). Some research suggests that sleep-associated improvements in memory and 

integration can be explained by better performance in the morning than in the evening 

(Schmidt et al., 2007). As such, asking participants to learn and recall information at the same 

time of day would account for these effects (Gais et al., 2006). In our study, different 

participants were tested at different times of day (24-hours apart) due to practical 

considerations. Consequently, circadian confounds cannot be ruled out. However, as both 

populations were tested across a range of times during the day, circadian differences between 

the groups should be offset. Nonetheless, future research could ensure that all children learn 

and recall information at a specific time of day to rule out any potential effects of circadian 

rhythms. Such research has not yet been carried out in language delayed autistic children. 

We also reflect upon the effect that sleep timing may have on word learning. Theories 

suggest that sleep is most effective for memory consolidation if it follows within a few hours 

of learning to reduce interference in memory traces (Diekelmann et al., 2009; Gais et al., 

2006). Studies with neurotypical children also highlight the importance of sleep timing for 

word learning (e.g. Gómez et al., 2006, Williams & Horst, 2014). A study by Hupbach et al. 

(2009) found that napping within 4 hours of language exposure helped 15-month-olds to 

remember the general grammatical pattern 24 hours later. Importantly, learning was not 

improved if there was a long gap between learning and sleeping. Some studies demonstrate 

that a story read close to bedtime may elicit retention benefits for children with smaller 

vocabularies (e.g., James et al., 2020, Walker et al., 2020). However, Henderson et al. (2021) 

taught children aged 5 to 7 years novel words via hearing a story either at bedtime, or three to 

https://www.sciencedirect.com/science/article/pii/S0022096521001259?via%3Dihub#b0425
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five hours before bedtime. By contrast, they discovered that overnight gains in 

comprehension were larger if the story was read three to five hours before bedtime, rather 

than at bedtime. It is therefore possible that the consolidatory effects of sleep timing are 

mediated by vocabulary knowledge (James et al., 2017). As such, future research should 

consider the influence of sleep timing on novel word learning for autistic children. However, 

autistic children’s sleep characteristics often differ from those of neurotypical peers (Elrod & 

Hood, 2015), which may introduce practical considerations for future research. For example, 

sleep onset latency tends to be longer in some autistic individuals (Tse et al., 2020). 

Consequently, sleep may be induced later than neurotypical children with faster sleep onset 

latencies, suggesting that the timing of sleep in relation to learning input would be delayed 

for affected autistic children. Moreover, some studies reveal that autistic children have fewer 

and shorter naps than neurotypical and developmentally delayed peers (Goodlin-Jones et al., 

2008; Schwichtenberg et al., 2011), so requiring autistic children to nap following learning 

may be more challenging for this population.  

Whilst investigating the influence of sleep on novel word learning provides valuable 

insight into children’s word learning mechanisms, it is imperative to consider that the sleep 

patterns of our samples may have differed. In Studies 1 and 2, autistic children outperformed 

neurotypical children after a night’s sleep (in the object condition for Study 1, and across 

conditions for Study 2). We highlight that autistic children were chronologically older and 

thus may have had longer sleep cycles (Hill et al., 2007; Montgomery-Downs et al., 2006). 

Given that sleep cycle length is directly related to the formation of novel declarative 

memories such as novel words (Horváth & Plunkett, 2016; Kurdziel et al., 2013; Tamminen 

et al., 2010), it is possible that their older chronological ages may have influenced this 

finding. However, in Study 3, samples of children were not matched on chronological age, 

and we did not detect advantageous benefits of sleep for either neurotypical or autistic 
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children’s novel word learning. Therefore, it appears that category interests influence longer 

term novel word consolidation in autistic children alongside the facilitative effects of sleep. 

However, future research should seek to replicate this finding with chronologically aged-

matched samples to ensure age differences in sleep cycles are accounted for.  

Autistic children are particularly vulnerable to sleep disorders, which often include 

parasomnia, sleep anxiety, and bedtime resistance (Díaz-Román et al., 2018; Souders et al., 

2009). Cognitive function and memory consolidation have been linked to sleep duration and 

quality, particularly in autistic children (Calhoun et al., 2020; Maski et al., 2015). Based on 

our findings in Studies 1 and 2, we know that sleep helps to consolidate novel word retention 

in autistic children, particularly when stimuli are categorically interesting. However, we did 

not gather information about the properties of children’s sleep in these studies, so we do not 

know how particular aspects of sleep may have influenced word learning. As such, future 

research should involve objective sleep measures, such as polysomnography or actigraphy, to 

elucidate how differences in sleep quality influence vocabulary acquisition over both the 

short- and long-term.  

Whilst testing retention after 24 hours is a crucial step to examining longer term retention, 

we acknowledge that memories may still decay beyond the 24-hour period. Previous studies 

have shown that neurotypical and autistic children can retain novel labels after delays of more 

than 2 weeks (Wainwright et al., 2020). In contrast, Norbury et al. (2020) suggested that 

although autistic children were more successful than neurotypical children at mapping 

phonological forms to novel referents, this advantage was not maintained following a delay 

of 4 weeks. Given the observed advantage of overnight sleep on novel word retention for 

autistic children in Studies 1 and 2, an important next step would be to analyse whether these 

population differences would endure over longer time periods. Exploring whether novel word 

representations decay when learning relates to specific categories of interest would allow us 
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to investigate the fragility of newly encoded novel words, and further understand how we can 

optimise language acquisition.  

Of course, animals represent a very limited subset of stimuli which children can find 

particularly interesting. Autistic children’s special interests vary widely, with a recent survey 

by Nowell et al. (2021) indicating that television, objects, music, and toys are among the 

most frequently reported categories of interests. Within these categories, children may have 

very niche interests, for example focusing on specific characters in a television programme 

such as Thomas the Tank Engine or characters from the Marvel Universe (Uljarević et al., 

2022). A study incorporating children’s ‘tailored’ special interests would be an excellent next 

step in investigating the influence of interests on novel word learning. We would expect to 

see greater conditional differences with these particularly strong special interests, and 

investigating how special interests may help or hinder learning more broadly would provide 

valuable insight into how we can more robustly scaffold autistic children’s word learning.  

5.8. Thesis Conclusions 

Overall, this thesis advances theoretical understanding of word learning mechanisms in 

autistic and neurotypical children in numerous ways. Crucially, we have illustrated the 

strengths of autistic children and their abilities to learn novel words despite language delay. 

We highlight that categorical interests, but not idiosyncratic preferences for random stimuli, 

reliably influence word learning in autistic children. The novel word-referent representations 

of autistic children are further consolidated by overnight sleep, protecting novel words from 

decay, and affording longer term retention. We suggest that autistic children’s slower 

response times may be attributed to their heightened interest in stimuli. Indeed, spending 

longer examining target stimuli may have benefited autistic children’s learning by providing 

increased quantity of visual and auditory input, resulting in more robust encoding of novel 

word-referent associations in memory. As such, we recommend that autistic children should 
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be afforded opportunities to learn at their own pace whenever possible. Our findings also 

indicate that interventions would benefit from maximising children’s intake of input at 

referent selection to ensure robust encoding of word-referent relationships. Our novel 

combination of looking and accuracy measures reveal that population differences in visual 

attention do not necessitate diminished learning - autistic children achieved similar learning 

outcomes to neurotypical peers via a slightly different route. However, visual attention and 

explicit behavioural responses did not always directly relate, so we emphasise the importance 

of selecting the most appropriate methodology when designing studies. Importantly, this 

thesis advances understanding of vocabulary acquisition in autism and emphasises that 

fundamental word learning mechanisms in language delayed autistic children are not 

impaired. Promisingly, these studies highlight several strategies for developing effective 

learning contexts to maximise language acquisition. Crucially, rather than constraining 

autistic children’s word learning based on ideations from neurotypical development, our 

studies demonstrate that we must ensure learning contexts suit the numerous strengths of the 

autistic learner. 
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Appendix A: Animal Interests Questionnaire 

Interests Questionnaire 

Dear Parent/Caregiver,  

As mentioned in the information sheet, the objective of this research is to explore how children’s 
interests in certain things influence their ability to learn new words. Animals are a common 
fascination of many young children and we expect that they may pay more attention to them than 
other things. 

Please answer the following questions, as accurately as possible, in relation to your child’s current 
interests.  

In the questions, “realistic animals” refer to animals that are similar to those seen in real life, for 
example TV shows like Meerkat Manor, Planet Earth, Waffle the Wonder Dog. 

“Human-like animals” are animals that are made to look or behave like humans, such as wearing 
clothes, performing jobs, talking, and exhibiting human emotions. Examples include programmes like 
Tom and Jerry, The Lion King, Paw Patrol.  

 

Please circle the most appropriate answer. 

 

1. Does your child like animals? 
 

Yes     No 

 

If yes, please answer the following questions by circling the most appropriate answer: 

 

2. How much does your child like animals?  

 

3. How much does your child enjoy listening to stories about realistic animals? (e.g. books about 
farm animals) 

 

1 

They don’t mind 

animals  

3 

They like animals a lot 

 

2 

They like animals a 

little 

4 

They really, really 

like animals 

1 

They don’t 

particularly enjoy it  

3 

They enjoy it a lot 

 

2 

They enjoy it a little 

4 

They really, really enjoy 

it 
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4. How much does your child enjoy listening to stories about human-like animals? (e.g. The Lion 
King) 

 

5. How much does your child enjoy playing with realistic animal toys? (e.g. toy zoo animals) 

 

6. How much does your child enjoy playing with human-like animal toys? (e.g. Peppa Pig) 

 

7. How much does your child enjoy watching television programmes, videos, and films 
involving realistic animals? (e.g. Roar) 

 

8. How much does your child enjoy watching television programmes, videos and films 
involving human-like animals? (e.g. Secret Life of Pets) 

 

9. How often does your child enjoy interacting with real animals? (e.g. pets or farmyard 
animals? 

 

10. Does your child usually enjoy activities that involve animals more than activities that do 
not?  

Yes    No 

1 

They don’t 

particularly enjoy it  

 

3 

They enjoy it a lot 

 

2 

They enjoy it a little 

4 

They really, really enjoy 

it 

 

1 

They don’t 

particularly enjoy it  

 

3 

They enjoy it a lot 

 

2 

They enjoy it a little 

4 

They really, really enjoy 

it 

 

1 

They don’t 

particularly enjoy it  

 

3 

They enjoy it a lot 

 

2 

They enjoy it a little 

4 

They really, really enjoy 

it 

 

1 

They don’t 

particularly enjoy it  

 

3 

They enjoy it a lot 

 

2 

They enjoy it a little 

4 

They really, really enjoy 

it 

 

1 

They don’t 

particularly enjoy it  

 

3 

They enjoy it a lot 

 

2 

They enjoy it a little 

4 

They really, really enjoy 

it 

 

1 

They don’t particularly 

enjoy it  

 

3 

They enjoy it a lot 

 

2 

They enjoy it a little 

4 

They really, really enjoy 

it 
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Appendix B: Supplementary materials for analyses in Chapter 2 

Is autistic children’s word learning facilitated or hindered by high interest distractors? 

 

Model building sequences for results reported in the main text 

 

All models were conducted using the glmer and lmer functions from the lme4 package in R 

(Bates et al., 2015). Population was contrast coded as -0.5 (neurotypical) and 0.5 (autistic). 

Condition was contrast coded as -0.5 (novel object) and 0.5 (novel animal). Trial type was 

coded as -0.5 (known) and 0.5 (novel). Receptive vocabulary was coded as the participant’s 

age equivalent based on their raw score on the British Picture Vocabulary Scale 2 (BPVS; 

Dunn et al., 1997). Expressive Vocabulary was coded as the participant’s age equivalent 

based on their raw score on the Expressive Vocabulary Test 2 (EVT; Williams, 2007) or the 

expressive language module of the Mullen’s Scales of Early Learning (Mullen, 1995). 

Attention was coded as the participant’s raw score on the Conner’s Teacher Rating Scale 15 

(Pupura & Lonigan, 2009). Autism severity was coded as the participant’s raw score on the 

Childhood Autism Rating Scale 2 (CARS; Schopler et al., 2010). Non-verbal intellectual 

abilities were coded as children’s raw score on the Leiter-3 test of non-verbal intelligence 

(NVIQ; Roid et al., 2013). Repetitive behaviour was coded as children’s raw score on the 

Repetitive Behaviour Questionnaire (RRB; Leekam et al., 2007). Animal Interest was coded 

as children’s raw score on our Animal Interest questionnaire. Chronological Age was 

measured in months. Referent selection accuracy was coded as -0.5 (incorrect) and 0.5 

(correct). Total accuracy at referent selection for novel trials was coded as 0-4. Number of 

labels at referent selection per novel word was coded as 1-6. 5-minute retention accuracy was 

coded as 0-8. Trial-level accuracy for analyses at each experimental phase was coded as 

1(correct) or 0 (incorrect). 

All analyses were undertaken using the same procedure. Models were built up sequentially, 

adding in one fixed effect at a time and comparing each model with the previous best-fitting 

model using log-likelihood tests. Each model was built up from a null model containing by-

participant and by-word random intercepts, with Condition x Trial Type slopes per participant 

(referent selection analyses) or Condition slopes per participant (5 minute and 24-hour 

retention analyses). If some models in a sequence were singular fitting or failed to converge, 

the random effects were simplified until all models in the sequence successfully converged 

(the final random effects structure for each variable are provided below). 

 

Referent Selection 

Accuracy 

We began with a baseline model containing by-participant and by-word random intercepts, 

with Condition x Trial Type slopes per participant. Fixed effects of Population (Model 2), 

Condition (Model 3), and Trial Type (Model 4) were entered individually. The addition of 

Condition (χ2 = 3.41, p = .065) yielded a borderline improvement in fit than the baseline 

model. The addition of Trial Type (χ2 = 16.39, p <.001) yielded a significant improvement in 
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fit when compared with the baseline model. The addition of Population (p = .40) did not 

significantly improve fit. Model 5 included fixed effects of Population + Trial Type, which 

was significantly better fitting than Model 3 (χ2 = 15.21, p <.001) but not Model 4 (p = .14). 

Model 6 contained fixed effects of Condition + Trial Type, yielding a significantly better fit 

than Model 3 (χ2 = 13.08, p <.001), but not Model 4 (p = .76). Model 7 included fixed effects 

of Trial Type + Population + Condition, yielding a significantly better fit than Model 3 (χ2 = 

16.66, p <.001), but not Model 4 (p = .16). Model 8 included the Trial Type x Population 

interaction, yielding a significantly better fit than Model 3 (χ2 = 16.03, p <.001), but not 

Model 4 (p = .22).  Model 9 included the Trial Type x Condition interaction, yielding a 

significantly better fit than Model 3 (χ2 = 19.20, p <.001), and Model 4 (χ2 = 6.21, p = .045), 

and containing a significant interaction effect (z = -4.89, p <.001). Model 10 included the 

Population x Condition interaction but did not significantly improve fit compared to Model 3 

(p = .66) or Model 4 (p = 1.00). Finally, the three-way interaction was entered (Model 11), 

and was borderline significantly better fitting than Model 9 (χ2 = 9.01, p = .061), but did not 

contain a significant three-way interaction effect (z = 1.42, p = .15). Thus, Model 9, 

containing the Trial Type x Condition interaction, was the best fit to the observed data. 

Accuracy – individual differences 

Informed by the best fitting model described above, we began with a baseline model 

including the Condition x Trial Type interaction, and by-participant and by-word random 

intercepts, with Condition x Trial Type slopes per participant. These models analyse data 

from the autistic and neurotypical groups separately.  

Autistic  

Fixed effects of Age (Model 2), RRB (Model 3), Animal Interest (Model 4), Receptive 

Vocabulary (Model 5), and Expressive Vocabulary (Model 6), were entered individually. 

NVIQ, Attention, and CARS were not added as fixed effects for the autistic population as not 

all participants successfully completed these measures. The addition of Age (p = .59), RRB (p 

= 1.00), and Animal Interest (p = .16) did not improve fit compared to the baseline model. 

However, the individual addition of Receptive Vocabulary (χ2 = 11.46 p <.001), and 

Expressive Vocabulary (χ2 = 12.07, p <.001), yielded significant improvements in fit when 

compared to the baseline model. Therefore, Model 7 included fixed effects of Expressive 

Vocabulary + Receptive Vocabulary but did not differ significantly from Model 5 (p= .18) or 

Model 6 (p = .28). Model 6, with a fixed effect of Expressive Vocabulary, was concluded to 

be the overall best fitting model to the observed data as its AIC value of 171.3 and BIC value 

of 229.6 were lower than those of Model 5 (AIC = 171.9; BIC = 230.2). While the best fitting 

model was determined by the model with the lowest AIC and BIC values, individual effects 

of Receptive Vocabulary may have marginally contributed to children’s referent selection 

accuracy and could overlap with Expressive Vocabulary. 

Neurotypical  

Fixed effects of Age (Model 2), Attention (Model 3), CARS (Model 4), RRB (Model 5), 

Animal Interest (Model 6), Receptive Vocabulary (Model 7), Expressive Vocabulary (Model 

8), and NVIQ (Model 9) were entered individually. The addition of Age (p = 1.00), Attention 

(p = .87), CARS (p = .18), RRB (p = .11), and Animal Interest (p = .77), did not improve fit 

compared to the baseline model. The individual addition of Receptive Vocabulary (χ2 = 7.48, 
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p = .006), Expressive Vocabulary (χ2 = 6.10, p = .014), and NVIQ (χ2 = 10.08, p = .001) 

yielded a significantly better fit than the baseline model. Therefore, Model 10 added fixed 

effects of Receptive Vocabulary + Expressive Vocabulary + NVIQ and was borderline 

significantly better fitting than Model 7 (χ2 = 5.28, p = .07), significantly better fitting than 

Model 8 (χ2 = 6.66, p = .036), but was not significantly better fitting than Model 9 (p = .26). 

Model 11 included fixed effects of Receptive Vocabulary + Expressive Vocabulary but did 

not differ significantly from Model 7 (p = .73), Model 8 (p = .22), and Model 9 (p = 1.00). 

Model 12 added fixed effects of Receptive Vocabulary + NVIQ and did not differ 

significantly from Model 7 (p = .10) or Model 9 (p = .74) but did differ significantly from 

Model 8 (χ2 = 4.10, p = .043). Model 13 added fixed effects of Expressive Vocabulary + 

NVIQ and did not differ significantly from Model 9 (p = .14) but did differ significantly from 

Model 7 (χ2 = 4.77, p = .029), and Model 8 (χ2 = 6.15, p = .013). Therefore, Model 9 – 

containing a fixed effect of NVIQ – was selected as the final model because it did not differ 

in fit when compared with more complex models. 

Correct response times 

We began with a baseline model containing by-participant and by-word random intercepts, 

with Condition x Trial Type slopes per participant. Fixed effects of Population (Model 2), 

Condition (Model 3), and Trial Type (Model 4) were entered individually. The addition of 

Trial Type (χ2 = 15.14, p <.001) yielded a significant improvement in fit when compared with 

the baseline model. The addition of Population (p = .74) and Condition (p = .97) did not 

improve fit compared to the baseline model. Model 5 added fixed effects of Population 

alongside Trial Type, which did not improve fit compared to Model 4 (p = .64). Model 6 

added fixed effects of Trial Type and Condition (p = .95), which did not improve fit 

compared to Model 4. Model 7 included all three fixed effects but did not differ significantly 

from Model 4 (p = .90). Model 8 included the Trial Type x Population interaction (χ2 = 8.23, 

p = .016), yielding a significant improvement in fit in comparison to Model 4. Model 9 

included the Trial Type x Condition interaction (p = .93), and Model 10 included the 

Population x Condition interaction (p = 1.00), but neither model differed significantly from 

Model 4. Finally, the three-way interaction was entered (Model 11); doing so did not improve 

fit in comparison to Model 8 (p = .61). Thus, Model 8, containing the Trial Type x Population 

interaction, provided the best fit to the observed data. 

 

5-Minute Retention 

Accuracy 

We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. Fixed effects of Population (Model 2), 

Condition (Model 3), Referent Selection Accuracy (Model 4), Novel Trial Referent Selection 

Accuracy (Model 5), and Number of Labels at Referent Selection (Model 6) were entered 

individually. The addition of Population (p = .08), Condition (p = .68), Referent Selection 

Accuracy (p = .33), Total Accuracy at Referent Selection for Novel Trials (p = .94), and 

Number of Labels at Referent Selection (p = .19), did not yield a significantly better fitting 

model compared to the baseline. Models 7-12 added the individual two-way interactions, 

however, none of these provided a better fit compared to the baseline model (Population x 
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Condition: p = .23; Population x Novel Trial Referent Selection Accuracy: p = .19; 

Population x Number of Labels at Referent Selection: p = .16; Condition x Referent Selection 

Accuracy: p = .61; Condition x Novel Trial Referent Selection Accuracy: p = .78; Condition x 

Number of Labels at Referent Selection: p = .12). Model 13 contained the Population x 

Referent Selection Accuracy interaction and approached a significant improvement in fit 

compared to the baseline model (χ2 = 7.50, p =.057). Model 14 added the three-way 

interaction of Population x Condition x Referent Selection Accuracy, which did not provide a 

better fit compared to Model 13 (p = .52). Model 15 added the three-way interaction of 

Population x Condition x Novel Trial Referent Selection Accuracy, which did not provide a 

better fit compared to Model 13 (p = .72). Model 16 added the three-way interaction of 

Population x Condition x Number of Labels at Referent Selection Referent Selection for 

Novel Trials, which did not provide a better fit compared to Model 13 (p = .50). Therefore, 

the best fitting model was Model 13, containing the Population x Referent Selection 

Accuracy interaction. However, the model comparison only approached significance, so we 

must interpret this result with caution. 

Accuracy – individual differences 

The following models were performed for autistic and neurotypical populations separately. 

For the autistic population, we began with a baseline model containing a fixed effect of 

Referent Selection Accuracy, and by-participant and by-word random intercepts, with a 

random slope of Condition per participant.  

Autistic 

Fixed effects of Age (Model 2), RRB (Model 3), Animal Interest (Model 4), Receptive 

Vocabulary (Model 5), and Expressive Vocabulary (Model 6) were entered individually. 

NVIQ, Attention, and CARS were not added as fixed effects for the autistic population as not 

all participants successfully completed this measure. The addition of Age (p = .71), RRB (p = 

.08), Receptive Vocabulary (p = .48) and Expressive Vocabulary (p = .79) did not improve fit 

compared to the baseline model. The inclusion of Animal Interest (χ2 = 3.61, p = .058) 

provided a borderline significantly better fit to the observed data than the baseline model. 

Therefore Model 4, containing a fixed effect of Animal Interest, was determined to be the 

best fit to the observed data. This result should be taken with caution however due to the 

approaching significant model comparison.  

For the neurotypical model we began with a baseline model containing by-participant and by-

word random intercepts, with a random slope of Condition per participant.  

Neurotypical 

Fixed effects of Age (Model 2), Attention (Model 3), CARS (Model 4), RRB (Model 5), 

Animal Interest (Model 6), Receptive Vocabulary (Model 7), Expressive Vocabulary (Model 

8), and NVIQ (Model 9), were entered individually. The addition of Attention (p = .96), 

CARS (p = .31), RRB (p = .81), and Animal Interest (p = .92) did not improve fit compared 

to the baseline model. The addition of Age (χ2 = 10.52, p =.001), Receptive Vocabulary (χ2 = 

8.90, p =.003), Expressive Vocabulary (χ2 = 14.44, p <.001) and NVIQ (χ2 = 7.34, p = .007) 

significantly improved fit compared to the baseline model. Model 10 added fixed effects of 

Age + Receptive Vocabulary + Expressive Vocabulary + NVIQ. Model 10 did not differ 

significantly from Model 8 (p = .09) but was significantly better fitting than Model 2 (χ2 = 
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10.51, p = .015), Model 7 (χ2 = 12.13, p = .007) and Model 9 (χ2 = 13.69, p = .003). Model 11 

included fixed effects of Expressive Vocabulary + Age (p = .79) but was not significantly 

better fitting than Model 8. Model 12 included fixed effects of Expressive Vocabulary + 

Receptive Vocabulary, which was significantly better fitting than Model 8 (χ2 = 4.50, p = 

.034). Model 13 included fixed effects of Expressive Vocabulary + NVIQ, which approached 

a significantly better fit than Model 8 (χ2 = 4.02, p = .045). Model 14 included fixed effects of 

Expressive Vocabulary + Receptive Vocabulary + NVIQ but was not significantly better 

fitting than Model 12 (p = .18) or Model 13 (p = .13). As such, Models 12 and 13 were 

retained as the current best fitting models. Model 12, with fixed effects of Expressive 

Vocabulary and Receptive Vocabulary, was concluded to be the overall best fitting model to 

the observed data as its AIC value of 390.4 and BIC value of 416.3 were lower than those of 

Model 13 (AIC = 390.9; BIC = 416.7). While the best fitting model was determined by the 

model with the lowest AIC and BIC values, individual effects of NVIQ may have marginally 

contributed to children’s 5-minute retention accuracy and could overlap with Receptive 

Vocabulary. 

Correct response times 

We began with a baseline model containing a by-participant random intercept. Fixed effects 

of Population (Model 2) and Condition (Model 3) were entered individually. The addition of 

Population (p = .86) and Condition (p = .34) did not improve fit compared to the baseline 

model. Model 4 included fixed effects of Population + Condition but did not differ 

significantly from the baseline model (p = .62). Model 5 included the Population x Condition 

interaction but did not differ significantly from the baseline model (p = .23). Therefore, the 

inclusion of fixed effects did not improve predictive power. 

 

24-Hour Retention 

Accuracy 

We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. Fixed effects of Population (Model 2), 

Condition (Model 3), Total Accuracy at 5-minute Retention (Model 4), Referent Selection 

Accuracy (Model 5), Total Accuracy at Referent Selection for Novel Trials (Model 6), and 

Number of Labels at Referent Selection (Model 7) were entered individually. The addition of 

Population (p = .83), Condition (p = .33), Referent Selection Accuracy (p = .13), Total 

Accuracy at Referent Selection for Novel Trials (p = .27), and Number of Labels at Referent 

Selection (p = .41) did not improve model fit. The addition of Total Accuracy at 5-minute 

Retention (χ2 = 13.45, p <.001) yielded a significant improvement in fit when compared with 

the baseline model. The addition of Population (Model 8, p = .77), Condition (Model 9, p = 

.42), Referent Selection Accuracy (Model 10, p = .11), Total Accuracy at Referent Selection 

for Novel Trials (Model 11, p = .27), and Number of Labels at Referent Selection (Model 12, 

p = .39) alongside Total Accuracy at 5-minute Retention did not yield any significant 

improvements in fit compared to the baseline model. Including a fixed effect of Total 

Accuracy at 5-minute Retention plus two-way interactions of Population x Referent Selection 

Accuracy interaction (Model 13; p = .45), Population x Total Accuracy at Referent Selection 

for Novel Trials (Model 14; p = .71), Population x Number of Labels at Referent Selection 
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(Model 15; p = .85), Condition x Referent Selection Accuracy (Model 16; p = .36), Condition 

x Total Accuracy at Referent Selection for Novel Trials (Model 17; p = .46), Condition x 

Number of Labels at Referent Selection (Model 18; p = .70) did not yield any significant 

improvements in fit compared to the baseline model. Including Total Accuracy at 5-minute 

Retention plus the Population x Condition interaction yielded an approaching significantly 

better fit than Model 4 (Model 19; χ2 = 7.17, p = .067), and contained a significant Population 

x Condition interaction effect (z = -2.68, p = .008), and a significant fixed effect of Total 

Accuracy at 5-minute Retention (z = 3.59, p <.001).  Model 20 contained the Population x 

Total Accuracy at 5-minute Retention interaction (p = .96), and Model 21 contained the 

Condition x Total Accuracy at 5-minute Retention interaction (p = .46), but neither were 

significantly better fitting than Model 4. Including a fixed effect of Total Accuracy at 5-

minute Retention plus three-way interactions of Condition x Population x Referent Selection 

Accuracy in Model 22 did not yield a significantly better fit than Model 4 (p = .14) or Model 

19 (p = .43). Inclusion of the Condition x Population x Total Accuracy at Referent Selection 

for Novel Trials interaction plus fixed effect of Total Accuracy at 5-minute Retention in 

Model 23 did not yield a significantly better fit than Model 4 (p = .19) or Model 19 (p = .59). 

For Model 24, inclusion of the Condition x Population x Number of Labels at Referent 

Selection interaction alongside the fixed effect of Total Accuracy at 5-minute Retention did 

not yield a significantly better fit than Model 4 (p = .21) or Model 19 (p = .66). Model 25 

contained the Condition x Population x Total Accuracy at 5-minute Retention interaction but 

was not significantly better fitting than Model 4 (p = .27) or Model 19 (p = .93). Overall, 

Model 19 (Total Accuracy at 5-minute Retention + Population x Condition) was determined 

to be the final model as it best accounted for the data, although given that the model 

comparison only approached significance, we must interpret this result with caution.  

Accuracy – individual differences  

The following models analysed data from autistic and neurotypical populations separately. 

For the autistic population, informed by the best fitting model described above, we began 

with a baseline model including fixed effects of Condition and Total Accuracy at 5-minute 

Retention, plus by-participant and by-word random intercepts, with a random slope of 

Condition per participant.  

Autistic 

Fixed effects of Age (Model 2), RRB (Model 3), Animal Interest (Model 4), Receptive 

Vocabulary (Model 5), and Expressive Vocabulary (Model 6), were entered individually. 

NVIQ, Attention, and CARS were not added as a fixed effect for the autistic population as 

not all participants successfully completed these measures. The addition of Age (p = .15), 

RRB (p = .40), and Receptive Vocabulary (p = .10) did not significantly improve fit 

compared to the baseline model. The individual addition of Animal Interest (χ2 = 6.69, p = 

.010) and Expressive Vocabulary (χ2 = 4.35, p = .037) yielded a significant improvement in 

fit when compared with the baseline model. Model 7 included fixed effects of Expressive 

Vocabulary + Animal Interest and was not significantly better fitting than Model 4 (p = .44) 

or Model 6 (p = .09). Therefore, Models 4 and 6 were retained for comparison. Model 4, 

containing a fixed effect of Animal Interests, was determined to be the best fitting model, as 

it’s AIC value of 356.2 and BIC value of 384.9 was lower than that of Model 6 (AIC = 358.5, 

BIC = 387.2). 
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For the neurotypical population, we began with a baseline model including a fixed effect of 

Total Accuracy at 5-minute Retention, and by-participant and by-word random intercepts, 

with a random slope of Condition per participant.  

Neurotypical 

Fixed effects of Age (Model 2), Attention (Model 3), CARS (Model 4), RRB (Model 5), 

Animal Interest (Model 6), Receptive Vocabulary (Model 7), Expressive Vocabulary (Model 

8), and NVIQ (Model 9) were entered individually. The addition of Age (p = .26), CARS (p = 

.47), RRB (p = .60), Animal Interest (p = .63), Receptive Vocabulary (p = .13), and 

Expressive Vocabulary (p = .08) did not significantly improve fit compared to the baseline 

model. The individual addition of Attention (χ2 = 8.25, p = .004) and NVIQ (χ2 = 4.16, p = 

.041) yielded significant improvements in fit compared to the baseline model. Model 10 

added fixed effects of Attention + NVIQ and was borderline significantly better fitting than 

Model 3 (χ2 = 3.65, p = .056), and significantly better fitting than Model 9 (χ2 = 7.74, p = 

.005). Therefore, Model 10, containing fixed effects of Attention and NVIQ, was determined 

to be the best fitting model to the observed data. However, one of the model comparisons 

only approached significance, so we must interpret this result with caution. 

Correct response times 

We began with a baseline model containing a by-participant random intercept. Fixed effects 

of Population (Model 2) and Condition (Model 3) were entered individually. The addition of 

Population (p = .87) and Condition (p = .34) did not improve fit compared to the baseline 

model. Model 4 included fixed effects of Population + Condition but did not differ 

significantly from the baseline model (p = .33). Model 5 included the Population x Condition 

interaction but did not differ significantly from Model 2 (p = .38). Therefore, the inclusion of 

fixed effects did not improve predictive power. 
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Appendix C: Supplementary materials for analyses in Chapter 3 

How do autistic and neurotypical children’s interests influence their visual attention and 

accuracy during novel word learning? 

Model building sequences for results reported in the main text 

All models were conducted using the glmer and lmer functions from the lme4 package in R 

(Bates et al., 2015). Population was contrast coded as -0.5 (neurotypical) and 0.5 (autistic). 

Condition was contrast coded as -0.5 (novel object) and 0.5 (novel animal). Trial type was 

coded as -0.5 (known) and 0.5 (novel).  

Receptive vocabulary was coded as the participant’s age equivalent based on their raw score 

on the British Picture Vocabulary Scale 2 (BPVS; Dunn et al., 1997). Expressive Vocabulary 

was coded as the participant’s age equivalent based on their raw score on the Expressive 

Vocabulary Test 2 (EVT; Williams, 2007) or the expressive language module of the Mullen’s 

Scales of Early Learning (Mullen, 1995). Attention was coded as the participant’s raw score 

on the Conner’s Teacher Rating Scale 15 (CTRS-15; Pupura & Lonigan, 2009). Autism 

severity was coded as the participant’s raw score on the Childhood Autism Rating Scale 2 

(CARS; Schopler et al., 2010). Non-verbal intellectual abilities were coded as children’s raw 

score on the Leiter-3 test of non-verbal intelligence (NVIQ; Roid et al., 2013). Repetitive 

behaviour was coded as children’s raw score on the Repetitive Behaviour Questionnaire 

(RBQ; Leekam et al., 2007). Animal Interest was coded as children’s raw score on our 

Animal Interest questionnaire. Chronological Age was measured in months. Referent 

selection accuracy was coded as -0.5 (incorrect) and 0.5 (correct). Total accuracy at referent 

selection for novel trials was coded as 0-4. Number of labels at referent selection per novel 

word was coded as 1-7. Total accuracy at 5-minute retention was coded as 0-8. Trial-level 

accuracy for analyses at each experimental phase was coded as 1 (correct) or 0 (incorrect). 

Proportion of time spent looking at the target object on each trial was scored between 0 and 1 

for all participants. Number of looks to the target object on each trial ranged from 0 to 14, 

with every new look towards the target stimuli being counted. The longest look to novel or 

known stimuli was coded as -0.5 (longest look to known object) or 0.5 (longest look to novel 

object) for the predicting accuracy analyses and known (0) novel (1) for the between group 

differences analyses. This variable was only included in referent selection analyses, as the 

retention phases involved only novel objects. The longest look to target or foil stimuli was 

coded as -0.5 (longest look to foil stimuli) and 0.5 (longest look to target stimuli) for the 

predicting accuracy analyses, and foil (0) target (1) for the between group differences 

analyses. 

All analyses were undertaken using the same procedure. Models were built up sequentially, 

adding in one fixed effect at a time and comparing each model with the previous best-fitting 

model using log-likelihood tests. Each model was built up from a null model containing by-

participant and by-word random intercepts, with Condition x Trial Type slopes per participant 

(referent selection analyses) or Condition slopes per participant (5 minute and 24-hour 

retention analyses). If some models in a sequence were singular fitting or failed to converge, 

the random effects were simplified until all models in the sequence successfully converged 

(the final random effects structure for each variables are provided below). 
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Do autistic and neurotypical children differ in accuracy and response times when 

learning names for high interest and neutral interest stimuli? 

 

Referent Selection 

Accuracy 

We began with a baseline model containing by-participant and by-word random intercepts, 

with Condition x Trial Type slopes per participant. Fixed effects of Population (Model 2), 

Condition (Model 3), and Trial Type (Model 4) were entered individually. The addition of 

Trial Type (χ2 = 12.83, p <.001) yielded a significant improvement in fit when compared with 

the baseline model. The addition of Population (p = .10) and Condition (p = .45) did not 

significantly improve fit. Model 5 included fixed effects of Population + Trial Type but did 

not differ significantly from Model 4 (p = .18). Model 6 included fixed effects of Condition + 

Trial Type but did not differ significantly from Model 4 (p = .42). Model 7 included fixed 

effects of Trial Type + Population + Condition but did not differ significantly from Model 4 

(p = .18). Models 8, 9 and 10 included the individual two-way interactions. None of these 

models differed significantly from Model 4 (Trial Type x Population: p = .30; Trial Type x 

Condition: p = .35; Population x Condition: p = 1.00). Finally, the three-way interaction was 

entered (Model 11); doing so did not significantly improve fit in comparison to Model 4 (p = 

.09). Thus, Model 4, containing a fixed effect of Trial Type, provided the best fit to the 

observed data. 

Accuracy – individual differences 

Informed by the best fitting model described above, we began with a baseline model 

including a fixed effect of Trial Type and by-participant and by-word random intercepts, with 

Condition x Trial Type slopes per participant. These models analyse data from the autistic and 

neurotypical groups separately.  

Autistic 

Fixed effects of Age (Model 2), Attention (Model 3), CARS (Model 4), RRB (Model 5), 

Animal Interest (Model 6), Receptive Vocabulary (Model 7), and Expressive Vocabulary 

(Model 8), were entered individually. NVIQ was not added as a fixed effect for the autistic 

population as not all participants successfully completed this measure. The addition of Age (p 

= .53) or RRB (p = .31), did not improve fit compared to the baseline model. However, the 

individual addition of Attention (χ2 = 6.34, p = .012), CARS (χ2 = 10.64, p = .001), Animal 

Interest (χ2 = 5.24, p = .022), Receptive Vocabulary (χ2 = 10.17, p = .001), and Expressive 

Vocabulary (χ2 = 12.71, p <.001), yielded significant improvements in fit when compared to 

the baseline model. Therefore, Model 9 included fixed effects of Expressive Vocabulary + 

Attention + CARS + Animal Interest + Receptive Vocabulary but did not differ significantly 

from Model 8 (p = .18) containing only Expressive Vocabulary, or Model 4 (p = .08) 

containing only CARS. Model 9 yielded a marginally significant improvement in fit 

compared to Model 7 (χ2 = 8.81, p = .066), and differed significantly from Model 3 (χ2 = 

12.63, p = .013), and Model 6 (χ2 = 13.73, p = .008). Model 10 included fixed effects of 

Expressive Vocabulary + CARS, differing significantly from Model 4 (χ2 = 6.69, p = .010) 

and Model 8 (χ2 = 4.62, p = .032). The individual addition of Attention (Model 11; p = .32), 
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Receptive Vocabulary (Model 12; p = 1.00) and Animal Interests (Model 13; p = .67) 

alongside Expressive Vocabulary and CARS did not yield significant improvements in fit 

compared to Model 10. Model 14 included fixed effects of Expressive Vocabulary + CARS + 

Receptive Vocabulary + Animal Interests but was not significantly better fitting than Model 

10 (p = .90). Model 15 included fixed effects of Expressive Vocabulary + CARS + Receptive 

Vocabulary + Attention but was not significantly better fitting than Model 10 (p = .73). Model 

16 included fixed effects of Expressive Vocabulary + CARS + Animal Interest + Attention 

but was not significantly better fitting than Model 10 (p = .54). As such, Model 10, 

containing fixed effects of Trial Type + Expressive Vocabulary + CARS, provided the best fit 

to the observed data.  

Neurotypical 

Fixed effects of Age (Model 2), Attention (Model 3), CARS (Model 4), RRB (Model 5), 

Animal Interest (Model 6), Receptive Vocabulary (Model 7), Expressive Vocabulary (Model 

8), and NVIQ (Model 9) were entered individually. The addition of Attention (p = .44), 

CARS (p = .57), RRB (p = .92), and Animal Interest (p = .20) did not improve fit compared 

to the baseline model. However, the addition of Age (χ2 = 4.51, p = .034), Expressive 

Vocabulary (χ2 = 3.88, p = .049), and NVIQ (χ2 = 5.03, p = .025) differed significantly from 

the baseline model. The addition of Receptive Vocabulary (χ2 = 3.53, p = .060) approached a 

significant improvement in fit compared to the baseline model. Therefore, Model 10 added 

fixed effects of Age + Receptive Vocabulary + Expressive Vocabulary + NVIQ but did not 

yield a significant improvement in fit compared to Model 2 (p = .78), Model 7 (p = .55), 

Model 8 (p = .63) or Model 9 (p = .90). Model 11 included fixed effects of Age + Receptive 

Vocabulary + Expressive Vocabulary but did not differ significantly from Model 2 (p = .93), 

Model 7 (p = .57), Model 8 (p = .67) or Model 9 (p = 1.00). Model 12 included fixed effects 

of Age + Receptive Vocabulary + NVIQ but did not yield a significant improvement in fit 

than Model 2 (p = .68), Model 7 (p = .42), Model 8 (p = .50) or Model 9 (p = .88). Model 13 

included fixed effects of Age + Expressive Vocabulary + NVIQ but did not differ 

significantly from Model 2 (p = .62), Model 7 (p = .38), Model 8 (p = .45) or Model 9 (p = 

.80). Model 14 included fixed effects of Receptive Vocabulary + Expressive Vocabulary + 

NVIQ but did not provide a significantly better fit than Model 2 (p = .68), Model 7 (p = .41), 

Model 8 (p = .49) or Model 9 (p = .88). Model 15 included fixed effects of Receptive 

Vocabulary + Age but did not differ significantly from Model 2 (p = .76), Model 7 (p = .30), 

Model 8 (p = .39) or Model 9 (p = 1.00). Model 16 included fixed effects of Expressive 

Vocabulary + Age but did not provide a significantly better fit than Model 2 (p = .83), Model 

7 (p = .31), Model 8 (p = .41) or Model 9 (p = 1.00). Model 17 included fixed effects of 

NVIQ + Age but did not differ significantly from Model 2 (p = .43), Model 7 (p = .20), 

Model 8 (p = .26) or Model 9 (p = .74). Model 18 included fixed effects of Receptive 

Vocabulary + Expressive Vocabulary but did not yield a significant improvement in fit 

compared to Model 2 (p = 1.00), Model 7 (p = .55), Model 8 (p = .99) or Model 9 (p = 1.00). 

Model 19 included fixed effects of Receptive Vocabulary + NVIQ but did not differ 

significantly from Model 2 (p = .40), Model 7 (p = .19), Model 8 (p = .25) or Model 9 (p = 

.67). Model 20 included fixed effects of Expressive Vocabulary + NVIQ but did not differ 

significantly from Model 2 (p = .38), Model 7 (p = .18), Model 8 (p = .24) or Model 9 (p = 

.61). Thus, the four best fitting models were Model 2, Model 7, Model 8, and Model 9. We 

compared AIC and BIC values, which were as follows: Model 2 - AIC = 148.2, BIC = 197.9; 
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Model 7 - AIC = 149.2, BIC = 198.9; Model 8 - AIC = 148.9, BIC = 198.5; Model 9 - AIC = 

147.7, BIC = 197.4). The final best fitting model with the lowest AIC and BIC values was 

Model 9 (Trial Type + NVIQ).  

Correct response times 

We began with a baseline model containing a by-participant random intercept. Fixed effects 

of Population (Model 2), Condition (Model 3), and Trial Type (Model 4) were entered 

individually. The individual addition of Population (χ2 = 4.36, p = .037) and Trial Type (χ2 = 

18.25, p <.001) yielded a significant improvement in fit when compared with the baseline 

model. The addition of Condition (p = .91) did not significantly improve fit. Model 5 added 

fixed effects Population alongside Trial Type, with a significant improvement in fit compared 

to Model 3 (χ2 = 18.39, p <.001) and Model 4 (χ2 = 4.50, p = .034). Model 6 added fixed 

effects of Trial Type and Condition, yielding a significant improvement in fit compared to 

Model 3 (χ2 = 13.90, p <.001) but not Model 4 (p = .92). Model 7 included all three fixed 

effects but did not differ significantly from Model 5 (p = .94). Models 8, 9 and 10 included 

the individual two-way interactions. None of these models differed significantly from Model 

5 (Trial Type x Population: p = .66; Trial Type x Condition: p = 1.00; Population x Condition: 

p = 1.00). Finally, the three-way interaction was entered (Model 11); doing so did not 

improve fit in comparison to Model 5 (p = .10). However, the individual effects of Trial Type 

(t = 4.34, p <.001) and Population (t = 2.17, p = .038), and the Population x Condition 

interaction (t = 2.62, p = .009) within Model 11 were significant. Model 12 included the 

Population x Condition interaction plus fixed effect of Trial Type and was significantly better 

fitting than Model 5 (χ2 = 6.94, p = .031), with a significant Population x Condition 

interaction (t = 2.65, p = .008) and significant fixed effects of Trial Type (t = 4.40, p <.001) 

and Population (t = 2.19, p = .037). Therefore, Model 12 containing a fixed effect of Trial 

Type, plus the Population x Condition interaction, provided the best fit to the observed data. 

 

5-Minute Retention 

We began with a baseline model a baseline model containing by-participant and by-word 

random intercepts, with a random slope of Condition per participant. Fixed effects of 

Population (Model 2), Condition (Model 3), Referent Selection Accuracy (Model 4), Total 

Accuracy at Referent Selection for Novel Trials (Model 5), and Number of Labels at Referent 

Selection (Model 6) were entered individually. The addition of Population (p = .95), 

Condition (p = .76), Referent Selection Accuracy (p = .13), Total Accuracy at Referent 

Selection for Novel Trials (p = .33), and Number of Labels at Referent Selection (p = .90), 

did not yield significantly a better fit compared to the baseline model. Models 7-13 added the 

individual two-way interactions. The inclusion of the following interactions did not yield a 

significantly better fit compared to the baseline model: Population x Referent Selection 

Accuracy: p = .49; Population x Total Accuracy at Referent Selection for Novel Trials: p = 

.44; Population x Number of Labels at Referent Selection: p = 1.00; Condition x Total 

Accuracy at Referent Selection for Novel Trials: p = .76; Condition x Number of Labels at 

Referent Selection: p = .99). The inclusion of the Condition x Referent Selection Accuracy 

interaction in Model 12 (χ2 = 7.59, p =.055) yielded a close to significantly better fit than the 

baseline model. Model 13 included the Population x Condition interaction (χ2 = 7.84, p 

=.050) and yielded a significant improvement in fit over the baseline model. Model 14 added 
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the Population x Condition x Referent Selection Accuracy interaction, which did not provide 

a significantly better fit compared to Model 12 (p = .14) or Model 13 (p = .15). Therefore, 

Models 12 and 13 were compared as the best fitting models. Model 13, containing the 

Population x Condition interaction, was determined to be the best fitting model as it’s AIC 

value of 656.7 and BIC value of 690.2 were lower than those of Model 12 (AIC = 657.0, BIC 

= 690.4).  

Accuracy – individual differences 

For the autistic population, we began with a baseline model including a fixed effect of 

Condition, and by-participant and by-word random intercepts, with a random slope of 

Condition per participant. 

Autistic 

Fixed effects of Age (Model 2), Attention (Model 3), CARS (Model 4), RRB (Model 5), 

Animal Interest (Model 6), Receptive Vocabulary (Model 7), and Expressive Vocabulary 

(Model 8), were entered individually. NVIQ was not added as a fixed effect for the autistic 

population as not all participants successfully completed this measure. The addition of Age (p 

= .59), Attention (p = .12), CARS (p = .12), RRB (p = .35), Animal Interest (p = .89), and 

Receptive Vocabulary (p = .29) did not improve fit compared to the baseline model. Model 8, 

which included Expressive Vocabulary (χ2 = 3.32, p =.069), yielded a close to significant 

improvement in fit compared to the baseline model, with a significant effect of Expressive 

Vocabulary (z = 2.17, p = .030). Thus, the best fitting model to the observed data was Model 

8, containing a fixed effect of Expressive Vocabulary. 

For the neurotypical population, we began with a baseline model including by-participant and 

by-word random intercepts, with a random slope of Condition per participant. 

Neurotypical 

Fixed effects of Age (Model 2), Attention (Model 3), CARS (Model 4), RRB (Model 5), 

Animal Interest (Model 6), Receptive Vocabulary (Model 7), Expressive Vocabulary (Model 

8), and NVIQ (Model 9), were entered individually. The addition of Age (p = .08), Attention 

(p = .28), CARS (p = .99), RRB (p = .83), and Animal Interest (p = .62), did not improve fit 

compared to the baseline model. The inclusion of Expressive Vocabulary (χ2 = 3.70, p = .054) 

yielded an approaching significant improvement in fit compared to the baseline model. The 

inclusion of Receptive Vocabulary (χ2 = 4.00, p = .046), and NVIQ (χ2 = 4.44, p = .035) 

yielded significant improvements in fit compared to the baseline model. Model 10 therefore 

added fixed effects of Expressive Vocabulary + Receptive Vocabulary + NVIQ but was not 

significantly better fitting than Model 7 (p = .70), Model 8 (p = .60) or Model 9 (p = .87). 

Model 11 added fixed effects of Receptive Vocabulary + NVIQ but was not significantly 

better fitting than Model 7 (p = .50), Model 8 (p = .39) or Model 9 (p = .97). Model 12 added 

fixed effects of Expressive Vocabulary + NVIQ but was not significantly better fitting than 

Model 7 (p = .43), Model 8 (p = .34) or Model 9 (p = .67). Model 13 added fixed effects of 

Expressive Vocabulary + Receptive Vocabulary but was not significantly better fitting than 

Model 7 (p = .83), Model 8 (p = .56) or Model 9 (p = 1.00). Model 9, containing a fixed 

effect of NVIQ, was determined to be the best fitting model, as it’s AIC value of 346.9 and 

BIC value of 368.1 were lower than those of Model 7 (AIC = 347.4, BIC = 368.6) and Model 

8 (AIC = 347.7, BIC = 368.9). 
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Correct response times 

We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. In Models 2 and 3, fixed effects of 

Population (p = .51) and Condition (p = .66) did not improve fit compared to the baseline 

model. Model 4 included fixed effects of Population + Condition but did not differ 

significantly from the baseline model (p = .72). Model 5 included the Population x Condition 

interaction but did not yield a significantly better fit than the baseline model (p = .12). 

Inclusion of fixed effects did not improve predictive power. 

 

24-Hour Retention 

 

Accuracy 

We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. Fixed effects of Population (Model 2), 

Condition (Model 3), Total Accuracy at 5-minute Retention (Model 4), Referent Selection 

Accuracy (Model 5), Total Accuracy at Referent Selection for Novel Trials (Model 6), and 

Number of Labels at Referent Selection (Model 7) were entered individually. The addition of 

Condition (p = .74) and Total Accuracy at Referent Selection for Novel Trials (p = .20) did 

not significantly improve fit compared to the baseline model. The individual addition of 

Population (χ2 = 4.18, p = .041), Total Accuracy at 5-minute Retention (χ2 = 12.79, p <.001), 

Referent Selection Accuracy (χ2 = 6.83, p = .009), and Number of Labels at Referent 

Selection (χ2 = 6.30, p = .012) all yielded a significant improvement in fit when compared 

with the baseline model. Model 8 included fixed effects of Population + Total Accuracy at 5-

minute Retention + Referent Selection Accuracy + Number of Labels at Referent Selection, 

which yielded a significant improvement in fit when compared with Model 2 (χ2 = 32.26, p 

<.001), Model 4 (χ2 = 23.66, p <.001), Model 5 (χ2 = 29.61, p <.001), and Model 7 (χ2 = 

30.14, p <.001). Model 9 included fixed effects of Population + Total Accuracy at 5-minute 

Retention + Referent Selection Accuracy but was significantly worse fitting than Model 8 (χ2 

= 10.31, p = .001). Model 10 contained fixed effects of Population + Total Accuracy at 5-

minute Retention + Number of Labels at Referent Selection but was significantly worse 

fitting than Model 8 (χ2 = 7.97, p = .005). Model 11 contained fixed effects of Population + 

Referent Selection Accuracy + Number of Labels at Referent Selection but was significantly 

worse fitting than Model 8 (χ2 = 17.85, p <.001). Model 12 contained fixed effects of Total 

Accuracy at 5-minute Retention + Referent Selection Accuracy + Number of Labels at 

Referent Selection but approached a significantly worse fit than Model 8 (χ2 = 3.44, p = 

.063). As such, Model 8 was retained as the current best fitting model. Model 13 contained 

the Population x Condition interaction, plus fixed effects of Total Accuracy at 5-minute 

Retention + Referent Selection Accuracy + Number of Labels at Referent Selection but did 

not provide a significant improvement in fit compared to Model 8 (p = .99). Model 14 

contained the Population x Total Accuracy at 5-minute Retention interaction, plus fixed 

effects of Referent Selection Accuracy + Number of Labels at Referent Selection but did not 

significantly improve fit when compared to Model 8 (p = .31). Model 15 contained the 

Population x Referent Selection Accuracy interaction, plus fixed effects of Total Accuracy at 
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5-minute Retention + Number of Labels at Referent Selection but did not provide a 

significant improvement in fit compared to Model 8 (p = .09). Model 16 contained the 

Population x Number of Labels at Referent Selection interaction, plus fixed effects of Total 

Accuracy at 5-minute Retention + Referent Selection Accuracy but did not significantly 

improve the fit when compared to Model 8 (p = .45). Model 17 contained the Condition x 

Total Accuracy at 5-minute Retention interaction, plus fixed effects of Number of Labels at 

Referent Selection + Referent Selection Accuracy + Population but did not significantly 

improve model fit when compared to Model 8 (p = .51). Model 18 contained the Condition x 

Referent Selection Accuracy interaction, plus fixed effects of Total Accuracy at 5-minute 

Retention + Number of Labels at Referent Selection + Population but did not yield a better fit 

when compared to Model 8 (p = .53). Model 19 contained the Condition x Number of Labels 

at Referent Selection interaction, plus fixed effects of Total Accuracy at 5-minute Retention + 

Referent Selection Accuracy + Population but did not yield a better fit when compared to 

Model 8 (p = .41). Model 20 contained the Population x Condition x Total Accuracy at 5-

minute Retention interaction, plus fixed effects of Referent Selection Accuracy + Number of 

Labels at Referent Selection but did not yield a better fit when compared to Model 8 (p = 

.71). Model 21 contained the Population x Condition x Referent Selection Accuracy 

interaction, plus fixed effects of Total Accuracy at 5-minute Retention + Number of Labels at 

Referent Selection but did not yield a significantly better fit compared to Model 8 (p = .52). 

Model 22 contained the Population x Condition x Number of Labels at Referent Selection 

interaction, plus fixed effects of Referent Selection Accuracy + Total Accuracy at 5-minute 

Retention but did not yield a significantly better fit when compared with Model 8 (p = .29). 

Therefore, Model 8, containing fixed effects of Population + Total Accuracy at 5-minute 

Retention + Referent Selection Accuracy + Number of Labels at Referent Selection, was 

determined to be the best fitting model for the observed data. However, since one of the 

model comparisons for the final model approached significance, we must be cautious when 

interpreting these results. 

Accuracy – individual differences 

Informed by the best fitting model described above, for the autistic group, we began with a 

baseline model including fixed effects of Total Accuracy at 5-minute Retention + Referent 

Selection Accuracy + Number of Labels at Referent Selection, plus by-participant and by-

word random intercepts, with a random slope of Condition per participant. As these models 

analysed data from autistic and neurotypical groups separately, the fixed effect of Population 

was removed. 

Autistic 

Fixed effects of Age (Model 2), Attention (Model 3), CARS (Model 4), RRB (Model 5), 

Animal Interest (Model 6), Receptive Vocabulary (Model 7), and Expressive Vocabulary 

(Model 8), were entered individually. NVIQ was not added as a fixed effect for the autistic 

population as not all participants successfully completed this measure. The addition of Age (p 

= .08), Attention (p = .74), Animal Interest (p = .48), Receptive Vocabulary (p = .80), and 

Expressive Vocabulary (p = .81) did not significantly improve fit compared to the baseline 

model. The addition of RRB (χ2 = 4.14, p = .042) significantly improved fit, and the addition 

of CARS (χ2 = 3.67, p = .055) resulted in approaching significant improvement in fit 

compared to the baseline model. Model 9 included fixed effects of RRB + CARS, which 



 
 

324 

 

yielded a significantly better fit than Model 4 (χ2 = 6.10, p = .014) and Model 5 (χ2 = 5.64, p 

= .018). Therefore Model 9, containing fixed effects of RRB + CARS, was concluded to be 

the final best fitting model to the observed data. 

Neurotypical 

Fixed effects of Age (Model 2), Attention (Model 3), CARS (Model 4), RRB (Model 5), 

Animal Interest (Model 6), Receptive Vocabulary (Model 7), Expressive Vocabulary (Model 

8), and NVIQ (Model 9) were entered individually. The addition of Age (p = .87), Attention 

(p = .22), CARS (p = .74), RRB (p = .14), Animal Interest (p = .68), Receptive Vocabulary (p 

= .19), Expressive Vocabulary (p = .28), and NVIQ (p = .45) did not improve fit compared to 

the baseline model. The inclusion of fixed effects did not improve predictive power. 

Correct response times 

We began with a baseline model containing a by-participant random intercept. Addition of 

individual fixed effects of Condition in Model 2 (p = .40) and Population in Model 3 (p = .07) 

did not significantly improve fit compared to the baseline model. Model 4 included fixed 

effects of Population + Condition but did not differ significantly from the baseline model (p = 

.14). Model 5 included the Population x Condition interaction, which yielded a significantly 

better fit than the baseline model (χ2 = 11.67, p = .009), and contained a significant 

interaction effect (t = 2.82, p = .005). As such, Model 5 containing the Population x 

Condition interaction was determined to be the best fitting model for the observed data. 

 

Does autistic and neurotypical children’s visual attention differ while learning 

names for high and neutral interest stimuli, and does variability in visual attention 

predict learning accuracy? 

 

Between-population comparisons 

 

Referent selection 

Proportion of time spent looking at the target stimuli  

We began with a baseline model containing a by-participant random intercept. In Model 2, 

Population was included as a fixed effect (χ2 = 5.91, p = .015), which was significantly better 

fitting the baseline model. In Model 3, Condition was included as a fixed effect (p = 1.00), 

which was not significantly better fitting than the baseline model. In Model 4, Trial Type was 

included as a fixed effect (χ2 = 18.42, p <.001), which was significantly better fitting than the 

baseline model. Model 5 included fixed effects of Trial Type + Population and was 

significantly better fitting compared to Model 2 (χ2 = 18.42, p <.001) and Model 4 (χ2 = 5.91, 

p = .015). Model 6 (Population + Condition) did not significantly improve fit compared to 

Model 2 (p = 1.00) or Model 4 (p = 1.00). Model 7 (Trial Type + Condition) was a 

significantly better fitting model than Model 2 (χ2 = 12.51, p <.001) but not Model 4 (p = 

1.00). Model 8 included fixed effects of Trial Type + Population + Condition but did not 

significantly improve fit compared to Model 5 (p = 1.00). Inclusion of individual interactions 
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(Model 9, Trial Type x Population: p = .24; Model 10, Condition x Population: p = 1.00; 

Model 11, Trial Type x Condition: p = .22), did not provide a significantly better fit compared 

to Model 5. Model 12 included the Trial Type x Population x Condition interaction (χ2 = 

10.28, p = .068) which yielded an approaching significantly better fit compared to Model 5, 

but the three-way interaction effect within the model was not significant (t = - 1.19, p = .23). 

However, the fixed effect of Population (t = - 2.55, p = .016) and the Trial Type x Condition 

interaction (t = 2.70, p = .007) within the model were significant. As such, Model 13 included 

the Trial Type x Condition interaction, plus a fixed effect of Population, which afforded a 

significantly better fit than Model 5 (χ2 = 7.42, p = .025). Therefore, the best fitting model 

was Model 12, containing the Trial Type x Condition interaction plus fixed effect of 

Population. 

Number of looks to the target stimuli 

We began with a baseline model containing by-participant and by-word random intercepts, 

with Condition x Trial Type random slopes per participant. In Model 2, Population was 

included as a fixed effect (χ2 = 8.75, p =.003), which was significantly better fitting than the 

baseline model. In Model 3, Condition was included as a fixed effect (p = .12), which did not 

provide a significantly better fit than the baseline model. Model 4 included a fixed effect of 

Trial Type (χ2 = 4.99, p = .025), which was significantly better fitting than the baseline 

model. Model 5 included fixed effects of Trial Type + Population, which provided a 

significant improvement in over Model 2 (χ2 = 5.01, p = .025), and Model 4 (χ2 = 8.77, p = 

.003). Model 6 included fixed effects of Population + Condition, and significantly improved 

fit compared to Model 4 (χ2 = 6.24, p = .012), but not Model 2 (p = .12). Model 7 included 

fixed effects of Trial Type + Condition but did not significantly improve fit compared to 

Model 2 (p = 1.00) or Model 4 (p = .11). Model 8 included fixed effects of Trial Type + 

Population + Condition (p = .11) but did not significantly improve fit compared to Model 5. 

Inclusion of individual interactions in Models 9-11 (Trial Type x Population: p = .20; 

Condition x Population: p = 1.00; Trial Type x Condition: p = 1.00), did not provide a 

significantly better fit compared to Model 5. Model 12 included the Trial Type x Population x 

Condition interaction (p = .33) but did not improve fit compared to Model 5. Therefore, the 

best fitting model was Model 5, containing fixed effects of Trial Type + Population. 

Longest look novel or known  

We began with a baseline model containing by-participant and by-word random intercepts, 

with Condition x Trial Type slopes per participant. In Models 2 and 3, adding Population (p = 

.34) and Condition (p = .14) as fixed effects did not provide a significantly better fit for the 

observed data than the baseline model. Model 4 included the fixed effect of Trial Type (χ2 = 

37.45, p <.001), which yielded a significantly better fit for the observed data than the baseline 

model. Inclusion of multiple fixed effects in Model 5 (Condition + Population, p = 1.00), 

Model 6 (Trial Type + Population, p = .34), Model 7 (Trial Type + Condition, p = .18) and 

Model 8 (Trial Type + Population + Condition, p = .24) did not significantly improve fit 

compared to Model 4. Model 9 contained the Condition x Population interaction (p = 1.00), 

which did not provide a significantly better fit than Model 4. Model 10 contained an 

interaction effect of Trial Type x Population (χ2 = 5.80, p = .055), which approached a 

significant improvement in over Model 4, with a significant interaction effect (z = -2.36, p = 

.018). Model 11 included the Trial Type x Condition interaction (p = .38) but was not 
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significantly better fitting than Model 4. Model 12 included the Trial Type x Population x 

Condition interaction (p = .53) but was not significantly better fitting than Model 10. 

Therefore, the best fitting model was Model 10, including the Trial Type x Population 

interaction. However, since the model comparison for the final model approached 

significance, we must be cautious when interpreting these results. 

 

5-minute retention  

Proportion of time spent looking at the target stimuli 

We began with a baseline model containing a by-participant random intercept, although 

simplification of the random effects still yielded a singular fit. Inclusion of fixed effects in 

Model 2 (Population, p = .67), and Model 3 (Condition, p = .37), did not provide a 

significantly better fit than the baseline model. Model 4 included fixed effects of Condition + 

Population (p = .61) but was not significantly better fitting compared to the baseline model. 

Model 5 included the Condition x Population interaction (p = .34) but was not significantly 

better fitting than the baseline model. The inclusion of fixed effects did not improve 

predictive power. 

Number of looks to the target stimuli 

We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. Including fixed effects of Population in 

Model 2 (p = .12) and Condition in Model 3 (p = .64) did not yield a significantly better fit 

than the baseline model. Model 4 included fixed effects of Condition + Population (p = .27) 

but was not significantly better fitting than the baseline model. Model 5 included the 

Condition x Population interaction (χ2 = 7.26, p = .064), which approached a significant 

improvement in over the baseline model and contained a significant interaction effect (t = 

2.24, p = .033). Therefore, the final model was Model 5, including the Condition x 

Population interaction. However, since the model comparison for the final model approached 

significance, we must be cautious when interpreting these results. 

Longest look target or foil 

We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. The addition of fixed effects of Population 

(Model 2; p = .95), and Condition (Model 3; p = .43), did not provide a significantly better fit 

than the baseline model. Model 4 contained a fixed effect of Condition + Population (p = .73) 

but was not significantly better fitting than the baseline model. Model 5 included the 

Condition x Population interaction (p = .11), which was not significantly better fitting than 

the baseline model. The inclusion of fixed effects did not improve predictive power. 

 

24-hour retention 

Proportion of time spent looking at the target stimuli 

We began with a baseline model containing by-participant and by-word random intercepts. 

Model 2 included the fixed effect of Population (p = .28), and Model 3 included the fixed 
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effect of Condition (p = .52), but neither provided a significantly better fit than the baseline 

model. Model 4 included a fixed effect of Condition + Population (p = .46) but did not 

significantly improve fit compared to the baseline model. Model 5 included the Condition x 

Population interaction (p = .33), which was not significantly better fitting than the baseline 

model. The baseline model therefore provided the best fit to the observed data. 

Number of looks to the target stimuli 

We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. Including Population as a fixed effect in 

Model 2 yielded a significant improvement in fit over the baseline model (χ2 = 4.85, p = 

.028), but including a fixed effect of Condition in Model 3 did not (p = .81). Model 4 

included fixed effects of Condition + Population (p = .74) but was not significantly better 

fitting than Model 2. Model 5 included the Condition x Population interaction (p = .38), 

which was not significantly better fitting than Model 2. Therefore, the final model was Model 

2, including a fixed effect of Population. 

Longest look target or foil  

We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. Model 2 contained a fixed effect of 

Population (p = .50), and Model 3 included a fixed effect of Condition (p = .42), but neither 

models were significantly better fitting than the baseline model. Model 4 included a fixed 

effect of Condition + Population (p = .60), which was not significantly better fitting than the 

baseline model. Model 5 included the Condition x Population interaction (p = .57), which 

was not significantly better fitting than the baseline model. The inclusion of fixed effects did 

not improve predictive power. 

 

Looking time predicting accuracy 

 

The following analyses examined whether children’s referent selection accuracy was 

influenced by a different looking behaviour, and whether the effects of those behaviours 

differed across populations and conditions (by testing whether the inclusion of x population 

and x condition interaction terms significantly improved model fit). All models were 

conducted using the glmer function from the lme4 package in R (Bates et al., 2015). 

 

Referent Selection 

Proportion of time spent looking at the target stimuli  

We began with a baseline model containing by-participant and by-word random intercepts, 

with Condition x Trial Type slopes per participant. In Model 2, Proportion to Target was 

included as a fixed effect (χ2 = 153.30, p <.001), which was significantly better fitting than 

the baseline model. Model 3 included the Proportion to Target x Trial Type interaction (χ2 = 

7.05, p = .029), which was significantly better fitting than Model 2, but the interaction effect 

within the model was not significant (z = -0.64, p = .52). Neither Model 4 (Proportion to 
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Target x Condition: p = .71, or Model 5 (Proportion to Target x Population: p = .81), provided 

a significantly better fit than Model 2. None of the three-way interactions in Model 6 

(Proportion to Target x Population x Trial Type: p = .16), Model 7 (Proportion to Target x 

Population x Condition: p = .39), and Model 8 (Proportion to Target x Condition x Trial Type: 

p = .34), afforded a significantly better fit than Model 2. Therefore, the final best fitting 

model for the observed data was determined to be Model 2, including a fixed effect of 

Proportion to Target. 

Number of looks to the target stimuli 

We began with a baseline model containing by-participant and by-word random intercepts, 

with Condition x Trial Type slopes per participant. In Model 2, Number Looks to Target was 

included as a fixed effect (χ2 = 36.68, p <.001), which was significantly better fitting than the 

baseline model. Model 3 included the Number Looks to Target x Trial Type interaction (χ2 = 

17.70, p <.001), which was significantly better fitting than Model 2, but did not have a 

significant interaction effect (z = 1.33, p = .18). Model 4 contained the Number Looks to 

Target x Condition interaction (p = .61) but was not significantly better fitting than Model 2. 

Model 5 included the Number Looks to Target x Population interaction and was significantly 

better fitting than Model 2 (χ2 = 8.19, p = .017), with a significant interaction effect (z = -

2.00, p = .046). Model 6 included the Number Looks to Target x Population x Trial Type 

interaction, but this model would not converge. Model 7 included the Number Looks to 

Target x Population x Condition interaction (p = .10) but was not significantly better fitting 

than Model 5. Model 8 included the Number Looks to Target x Condition x Trial Type 

interaction (χ2 = 10.92, p = .028), which was significantly better fitting than Model 5, but did 

not have a significant three-way interaction effect (z = 0.37, p = .71). Therefore, Model 5, 

including the Number Looks to Target x Population interaction was established as the final 

model.  

Longest look novel or known  

We began with a baseline model containing by-participant and by-word random intercepts, 

with Condition x Trial Type slopes per participant. In Model 2, Longest Look Novel was 

included as a fixed effect (χ2 = 4.64, p = .031), which yielded a significantly better fit than the 

baseline model. Model 3 included the Longest Look Novel x Trial Type interaction (χ2 = 

62.97, p <.001), which was significantly better fitting than Model 2, and had a significant 

interaction effect (z = 6.20, p <.001). Inclusion of the Longest Look Novel x Condition 

interaction (p = 1.00) in Model 4 did not provide a significantly better fit than Model 2. 

Model 5 included the Longest Look Novel x Population interaction (p = .22) which was not 

significantly better fitting than Model 2. Models 6-8 included three-way interactions (Longest 

Look Novel x Condition x Trial Type: p = .82; Longest Look Novel x Trial Type x 

Population: p = .44; Longest Look Novel x Population x Condition: p = 1.00), also did not 

provide a significantly better fit than Model 3. Overall, the final best fitting model for the 

observed data was Model 3, including the Longest Look Novel x Trial Type interaction. 

 

5-minute retention 

Proportion of time spent looking at the target stimuli 
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We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. In Model 2, Proportion to Target was 

included as a fixed effect (χ2 = 297.24, p <.001), which was significantly better fitting than 

the baseline model. Model 3 included the Proportion to Target x Condition interaction (p = 

.54), and Model 4 included the Proportion to Target x Population interaction (p = .77), but 

neither were significantly better fitting than Model 2. Model 5 included the Proportion to 

Target x Population x Condition interaction (p = .31) but was not significantly better fitting 

than Model 2. Therefore, the final best fitting model for the observed data was determined to 

be Model 2, including a fixed effect of Proportion to Target. 

Number of looks to the target stimuli 

We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. In Model 2, Number Looks to Target was 

included as a fixed effect (χ2 = 52.13, p <.001), which was significantly better fitting than the 

baseline model. Inclusion of the Number Looks to Target x Condition interaction in Model 3 

approached a significant improvement in fit over Model 2 (χ2 = 5.70, p = .058), and 

contained a significant interaction effect (z = 2.60, p = .009). Model 4 contained the Number 

Looks to Target x Population interaction (p = .26) but did not yield a significantly better fit 

than Model 2. Model 5 included the Number Looks to Target x Population x Condition 

interaction but was not significantly better fitting than Model 3 (p = .28). Therefore, the final 

best fitting model for the observed data was determined to be Model 3, including the Number 

Looks to Target x Condition interaction. However, since the model comparison for the final 

model approached significance, we must be cautious when interpreting these results. 

Longest look target or foil  

We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. In Model 2, Longest Look Target was 

included as a fixed effect (χ2 = 179.44, p <.001), which was significantly better fitting than 

the baseline model. Model 3 included the Longest Look Target x Condition interaction (p = 

.87), and Model 4 included the Longest Look Target x Population interaction (p = .20), but 

neither were significantly better fitting than Model 2. Model 5 included the Longest Look 

Target x Population x Condition interaction (p = .19) but was not significantly better fitting 

than Model 2. Therefore Model 2, containing a fixed effect of Longest Look Target, was 

determined to be the final model.  

Proportion of time spent looking at the target stimuli during referent selection 

We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. In Model 2, Proportion to Target was 

included as a fixed effect (p = .67), which was not significantly better fitting than the baseline 

model. Model 3 included the Proportion to Target x Condition interaction (p = .65), and 

Model 4 included the Proportion to Target x Population interaction (p = .87), but neither were 

significantly better fitting than the baseline model. Model 5 included the Proportion to Target 

x Population x Condition interaction (p = .32), which not significantly better fitting than the 

baseline model. The inclusion of fixed effects did not improve predictive power. 

Number of looks to the target stimuli during referent selection 
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We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. In Model 2, Number Looks to Target was 

included as a fixed effect (χ2 = 5.35, p = .021), which was significantly better fitting than the 

baseline model. Model 3 included the Number Looks to Target x Condition interaction (p = 

.29), and Model 4 included the Number Looks to Target x Population interaction (p = .58), 

but neither were significantly better fitting than Model 2. Model 5 included the Number 

Looks to Target x Population x Condition interaction (χ2 = 11.80, p = .067), which was 

borderline significantly better fitting than Model 2, but the interaction effect was not 

significant (z = 0.04, p = .97). Therefore, the final best fitting model for the observed data 

was determined to be Model 2 (Number Looks to Target). 

Longest look to target or foil stimuli during referent selection 

We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. In Model 2, Longest Look Target was 

included as a fixed effect (p = .24), which was not significantly better fitting than the baseline 

model. Model 3 included the Longest Look Target x Condition interaction (p = .69), and 

Model 4 included the Longest Look Target x Population interaction (p = .68), but neither 

were significantly better fitting than the baseline model. Model 5 included the Longest Look 

Target x Population x Condition interaction (p = .26) but was not significantly better fitting 

than the baseline model. The inclusion of fixed effects did not improve predictive power. 

 

24-hour retention 

Proportion of time spent looking at the target stimuli 

We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. In Model 2, Proportion to Target was 

included as a fixed effect (χ2 = 263.96, p <.001), which was significantly better fitting than 

the baseline model. Model 3 included the Proportion to Target x Condition interaction (p = 

.54), which was not significantly better fitting than Model 2. Model 4 included the Proportion 

to Target x Population interaction (χ2 = 8.93, p = .012), which was significantly better fitting 

than Model 2, but did not contain a significant interaction effect (z = -1.50, p = .13). Model 5 

included the Proportion to Target x Population x Condition interaction (χ2 = 12.87, p = .045), 

which was significantly better fitting than Model 2, but did not contain a significant three-

way interaction effect (z = -1.46, p = .14). Therefore, Model 2 was retained as the final best 

fitting model, containing a fixed effect of Proportion to Target. 

Number of looks to the target stimuli 

We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. In Model 2, Number Looks to Target was 

included as a fixed effect (χ2 = 65.37, p <.001), which was significantly better fitting than the 

baseline model. Model 3 included the Number Looks to Target x Condition interaction (p = 

.22) but was not significantly better fitting than Model 2. Model 4 included the Number 

Looks to Target x Population interaction (χ2 = 11.07, p = .004), which was significantly better 

fitting than Model 2 and contained a significant interaction effect (z = -3.02, p = .002). Model 

5 included the Number Looks to Target x Population x Condition interaction (p = .27) but 
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was not significantly better fitting than Model 4. Therefore, the final best fitting model for the 

observed data was determined to be Model 4, including the Number Looks to Target x 

Population interaction. 

Longest look target or foil  

We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. In Model 2, Longest Look Target was 

included as a fixed effect (χ2 = 143.27, p <.001), which was significantly better fitting than 

the baseline model. Model 3 included the Longest Look Target x Condition interaction (p = 

.89), which was not significantly better fitting than Model 2. Model 4 included the Longest 

Look Target x Population interaction (χ2 = 14.95, p <.001), which was significantly better 

fitting than Model 2 and contained a significant interaction effect (z = -2.78, p = .005). Model 

5 included the Longest Look Target x Population x Condition interaction (p = .82), which was 

not significantly better fitting than Model 4. Overall, Model 4 containing the Longest Look 

Target x Population interaction was the best fitting model. 

Proportion of time spent looking at the target stimuli during referent selection 

We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. In Model 2, Proportion to Target was 

included as a fixed effect (χ2 = 3.65, p = .056), which approached a significant improvement 

in over the baseline model. Model 3 included the Proportion to Target x Condition interaction 

(p = .56), which was not significantly better fitting than Model 2. Model 4 included the 

Proportion to Target x Population interaction (χ2 = 5.49, p = .064), which approached a 

significant improvement in fit over Model 2 but did not contain a significant interaction effect 

(z = 0.81, p = .42). Model 5 included the Proportion to Target x Population x Condition 

interaction (χ2 = 12.33, p = .055), which approached a significant improvement in fit over 

Model 2 and contained a significant interaction effect (z = -2.03, p = .042). Model 5 

(Proportion to Target x Population x Condition) was therefore determined to be the best 

fitting model. However, since the model comparison for the final model approached 

significance, we must be cautious when interpreting these results. 

Number of looks to the target stimuli during referent selection 

We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. In Model 2, Number Looks to Target was 

included as a fixed effect (χ2 = 11.01, p <.001), which was significantly better fitting than the 

baseline model. Model 3 included the Number Looks to Target x Condition interaction (p = 

.64) but was not significantly better fitting than Model 2. Model 4 included the Number 

Looks to Target x Population interaction (p = .28), which was not significantly better fitting 

than Model 2. Model 5 included the Number Looks to Target x Population x Condition 

interaction (p = .59) but was not significantly better fitting than Model 2. Therefore, the final 

best fitting model for the observed data was determined to be Model 2 (Number Looks to 

Target).   

Longest look to target or foil stimuli during referent selection 

We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. In Model 2, Longest Look Target was 
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included as a fixed effect (χ2 = 6.22, p = .013), which was significantly better fitting than the 

baseline model. Model 3 included the Longest Look Target x Condition interaction (p = .58), 

which was not significantly better fitting than Model 2. Model 4 included the Longest Look 

Target x Population interaction (χ2 = 5.50, p = .064), which approached a significant 

improvement in fit over Model 2 but did not contain a significant interaction effect (z = 0.70, 

p = .49). Model 5 included the Longest Look Target x Population x Condition interaction (p = 

.11), which was not significantly better fitting than Model 2. Overall, Model 2 (Longest Look 

Target) was the best fitting model. 
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Appendix D: Supplementary materials for analyses in Chapter 4 

Do autistic and neurotypical children’s stimulus preferences influence their accuracy 

and visual attention when learning novel words?  

Model building sequences for results reported in the main text 

All models were conducted using the glmer and lmer functions from the lme4 package in R 

(Bates et al., 2015). Population was contrast coded as -0.5 (neurotypical) and 0.5 (autistic). 

Condition was contrast coded as -0.5 (novel object) and 0.5 (novel animal). Trial type was 

coded as -0.5 (known) and 0.5 (novel).  

Receptive vocabulary was coded as the participant’s age equivalent based on their raw score 

on the British Picture Vocabulary Scale 2 (BPVS; Dunn et al., 1997). Expressive Vocabulary 

was coded as the participant’s age equivalent based on their raw score on the Expressive 

Vocabulary Test 2 (EVT; Williams, 2007) or the expressive language module of the Mullen’s 

Scales of Early Learning (Mullen, 1995). Attention was coded as the participant’s raw score 

on the Conner’s Teacher Rating Scale 15 (CTRS-15; Pupura & Lonigan, 2009). Autism 

severity was coded as the participant’s raw score on the Childhood Autism Rating Scale 2 

(CARS; Schopler et al., 2010). Non-verbal intellectual abilities were coded as children’s raw 

score on the Leiter-3 test of non-verbal intelligence (NVIQ; Roid et al., 2013). Repetitive 

behaviour was coded as children’s raw score on the Repetitive Behaviour Questionnaire 

(RBQ; Leekam et al., 2007). Animal Interest was coded as children’s raw score on our 

Animal Interest questionnaire. Chronological Age was measured in months. Referent 

selection accuracy was coded as -0.5 (incorrect) and 0.5 (correct). Number of labels at 

referent selection for each novel word was coded as 1-5. By-word 5-minute retention 

accuracy was coded as 0-2. Trial-level accuracy for analyses at each experimental phase was 

coded as 1 (correct) or 0 (incorrect).  

Proportion of time spent looking at the target object on each trial was scored between 0 and 1 

for all participants. Number of looks to the target object on each trial ranged from 0 to 12, 

with every new look towards the target stimuli being counted. The longest look to novel or 

known stimuli was coded as -0.5 (longest look to known object) or 0.5 (longest look to novel 

object) for the predicting accuracy analyses and known (0) novel (1) for the between group 

differences analyses. This variable was only included in referent selection analyses, as the 

retention phases involved only novel objects. The longest look to target or foil stimuli was 

coded as -0.5 (longest look to foil stimuli) and 0.5 (longest look to target stimuli) for the 

predicting accuracy analyses, and foil (0) target (1) for the between group differences 

analyses. 

All analyses were undertaken using the same procedure. Models were built up sequentially, 

adding in one fixed effect at a time and comparing each model with the previous best-fitting 

model using log-likelihood tests. Each model was built up from a null model containing by-

participant and by-word random intercepts, with Condition x Trial Type slopes per participant 

(referent selection analyses) or Condition slopes per participant (5 minute and 24-hour 

retention analyses). If some models in a sequence were singular fitting or failed to converge, 

the random effects were simplified until all models in the sequence successfully converged 

(the final random effects structure for each variable are provided below). 
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Do autistic and neurotypical children differ in accuracy and response times when 

learning names for liked and disliked stimuli? 

 

Referent Selection 

Accuracy 

We began with a baseline model containing by-participant and by-word random intercepts, 

with Condition x Trial Type slopes per participant. Fixed effects of Population (Model 2), 

Condition (Model 3), and Trial Type (Model 4) were entered individually. The addition of 

Population (χ2 = 4.05, p = .044) and Trial Type (χ2 = 4.51, p = .034) approached a significant 

improvement in fit when compared with the baseline model. The addition of Condition (p = 

.46) did not significantly improve fit. Model 5 included fixed effects of Population + Trial 

Type, yielding a significantly better fit than Model 2 (χ2 = 5.32, p = .021), and Model 3 (χ2 = 

4.87, p = .027). Model 6 included fixed effects of Condition + Trial Type but was not 

significantly better fitting than Model 2 (p = .34), or Model 3 (p = .51). Model 7 included 

fixed effects of Trial Type + Population + Condition but did not yield a significantly better fit 

than Model 5 (p = .57). Model 8 included the Trial Type x Population interaction but did not 

afford a significantly better fit than Model 5 (p = .73). Model 9 included the Trial Type x 

Condition interaction but did not differ significantly from Model 5 (p = 1.00). Model 10 

included the Population x Condition interaction but did not significantly improve fit 

compared to Model 5 (p = 1.00). Finally, the three-way interaction was entered (Model 11), 

but did not significantly improve fit compared to Model 5 (p = .90). Thus, Model 5, 

containing fixed effects of Population and Trial Type, was the best fit to the observed data. 

Accuracy – individual differences 

Informed by the best fitting model described above, we began with a baseline model 

including a fixed effect of Trial Type, and by-participant and by-word random intercepts, with 

Condition x Trial Type slopes per participant. These models analyse data from the autistic and 

neurotypical groups separately, so the fixed effect of Population was removed.  

Autistic 

Fixed effects of Age (Model 2), Attention (Model 3), CARS (Model 4), RRB (Model 5) and 

Receptive Vocabulary (Model 6) were entered individually. NVIQ and Expressive Vocabulary 

were not added as fixed effects for the ASD population as not all participants successfully 

completed this measure. The addition of Age (p = .18), Attention (p = .73), and CARS (p = 

.12) did not improve fit compared to the baseline model. The individual addition of RRB 

yielded a borderline significantly better fit compared to the baseline model (χ2 = 3.80, p = 

.051) and the addition of Receptive Vocabulary yielded a significantly better fit compared to 

the baseline model (χ2 = 12.71, p <.001). Therefore, Model 7 included fixed effects of RRB + 

Receptive Vocabulary, yielding a significantly better fit than Model 5 (χ2 = 14.92, p <.001) 

and Model 6 (χ2 = 6.00, p = .014). As such, Model 7, with fixed effects of RRB and 

Receptive Vocabulary, was concluded to be the overall best fitting model to the observed 

data. 

Neurotypical  
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Fixed effects of Age (Model 2), Attention (Model 3), CARS (Model 4), RRB (Model 5), 

Receptive Vocabulary (Model 6), Expressive Vocabulary (Model 7), and NVIQ (Model 8) 

were entered individually. The addition of Attention (p = 1.00), CARS (p = 1.00), and RRB 

(p = .09) did not improve fit compared to the baseline model. However, the addition of Age 

(χ2 = 6.56, p = .010), Receptive Vocabulary (χ2 = 6.20, p = .013), Expressive Vocabulary (χ2 = 

7.90, p = .005), and NVIQ (χ2 = 5.01, p = .025) differed significantly from the baseline 

model. Therefore, Model 9 added fixed effects of Age + Receptive Vocabulary + Expressive 

Vocabulary + NVIQ. Model 9 did not differ significantly from Model 2 (p = .40), Model 6 (p 

= .35), Model 7 (p = .66), or Model 8 (p = .21). Model 10 included fixed effects of Age + 

Receptive Vocabulary + Expressive Vocabulary but did not differ significantly from Model 2 

(p = .25), Model 6 (p = .21), Model 7 (p = .49), or Model 8 (p = .11). Model 11 added fixed 

effects of Age + Receptive Vocabulary + NVIQ and did not differ significantly from Model 2 

(p = .74), Model 6 (p = .62), Model 7 (p = 1.00), or Model 8 (p = .34). Model 12 added fixed 

effects of Age + Expressive Vocabulary + NVIQ and did not differ significantly from Model 

2 (p = .39), Model 6 (p = .33), Model 7 (p = .77), or Model 8 (p = .18). Model 13 included 

fixed effects of Receptive Vocabulary + Expressive Vocabulary + NVIQ but did not yield a 

significantly better fit compared to Model 2 (p = .25), Model 6 (p = .21), Model 7 (p = .49), 

or Model 8 (p = .12). Model 14 added fixed effects of Receptive Vocabulary + Age but was 

not significantly better fitting than Model 2 (p = .50), Model 6 (p = .37), Model 7 (p = 1.00), 

or Model 8 (p = .16). Model 15 added fixed effects of Expressive Vocabulary + Age but was 

not significantly better fitting than Model 2 (p = .25), Model 6 (p = .19), Model 7 (p = .93), or 

Model 8 (p = .09). Model 16 added fixed effects of NVIQ + Age but did not yield a 

significantly better fit compared to Model 2 (p = .90), Model 6 (p = .54), Model 7 (p = 1.00), 

or Model 8 (p = .21). Model 17 added fixed effects of Receptive Vocabulary + Expressive 

Vocabulary, which did not yield a significantly better fit compared to Model 2 (p = .12), 

Model 6 (p = .09), or Model 7 (p = .29), but was significantly better fitting than Model 8 (χ2 = 

4.03, p = .045). Model 18 added fixed effects of Receptive Vocabulary + NVIQ, which did 

not yield a significantly better fit compared to Model 2 (p = 1.00), Model 6 (p = .97), Model 

7 (p = 1.00), or Model 8 (p = .27). Model 19 added fixed effects of Expressive Vocabulary + 

NVIQ, which did not yield a significantly better fit compared to Model 2 (p = .18), Model 6 

(p = .14), or Model 7 (p = .48), but was borderline significantly better fitting than Model 8 (χ2 

= 3.39, p = .066). Therefore, Models 2, 6, and 7 were retained for comparison. Overall, 

Model 7, containing a fixed effect of Expressive Vocabulary, was determined to be the best 

fitting model as its AIC value of 178.4 and BIC value of 228.8 were lower than those of 

Model 2 (AIC = 179.7; BIC = 230.1) and Model 6 (AIC = 180.1; BIC = 230.5).  

Correct response times 

We began with a baseline model containing a by-participant random intercept. Fixed effects 

of Population (Model 2), Condition (Model 3), and Trial Type (Model 4) were entered 

individually. The addition of Population (p = .43) did not improve fit compared to the 

baseline model. The addition of Condition (χ2 = 3.83, p = .050) and Trial Type (χ2 = 33.56, p 

<.001) yielded a significant improvement in fit compared to the baseline model. Model 5 

added fixed effects of Population alongside Trial Type, which was significantly better fitting 

than Model 3 (χ2 = 30.44, p <.001) but did not significantly improve fit compared to Model 4 

(p = .40). Model 6 added fixed effects of Trial Type and Condition, which was significantly 

better fitting than Model 3 (χ2 = 33.98, p <.001) and Model 4 (χ2 = 4.24, p = .040). Model 7 
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included all three fixed effects but did not significantly improve fit in comparison to Model 6 

(p = .40). Model 8 included the Trial Type x Population interaction (p = .79) but did not yield 

a significant improvement in fit compared to Model 6. Model 9 included the Trial Type x 

Condition interaction (p = .86), and Model 10 included the Population x Condition interaction 

(p = 1.00), but neither model differed significantly from Model 6. Finally, the three-way 

interaction was entered (Model 11); doing so did not improve fit in comparison to Model 6 (p 

= .48). As such Model 6 containing fixed effects of Trial Type and Condition provided the 

best fit to the observed data. 

 

5-Minute Retention 

Accuracy 

We began with a baseline model a baseline model containing by-participant and by-word 

random intercepts, with a random slope of Condition per participant. Fixed effects of 

Population (Model 2), Condition (Model 3), Referent Selection Accuracy (Model 4), and 

Number of Labels at Referent Selection (Model 5) were entered individually. The addition of 

Population (p = .62), Condition (p = .83), and Number of Labels at Referent Selection (p = 

.45) did not yield a significantly better fitting model compared to the baseline model. The 

addition of Referent Selection Accuracy (χ2 = 6.01, p = .014) yielded a significant 

improvement in fit compared to the baseline model. Models 6-10 contained the two-way 

interactions plus significant fixed effect of Referent Selection Accuracy. Model 6 (Population 

x Condition + Referent Selection Accuracy, p = .34), Model 7 (Population x Referent 

Selection Accuracy, p = .67), Model 8 (Population x Number of Labels at Referent Selection 

+ Referent Selection Accuracy (p = .75), Model 9 (Condition x Referent Selection Accuracy, 

p = .88), and Model 10 (Condition x Number of Labels at Referent Selection + Referent 

Selection Accuracy, p = .96) did not yield a significantly better fit than Model 4. Model 11 

contained the Population x Condition x Referent Selection Accuracy interaction but did not 

yield a significantly better fit than Model 4 (p = .61). Model 12 contained the Population x 

Condition x Number of Labels at Referent Selection interaction plus fixed effect of Referent 

Selection Accuracy but did not yield a significantly better fit than Model 4 (p = .66). 

Therefore, Model 4 containing a fixed effect of Referent Selection Accuracy was determined 

to be the best fitting model.  

Accuracy – individual differences 

We began with a baseline model containing a fixed effect of Referent Selection Accuracy, and 

by-participant and by-word random intercepts, with a random slope of Condition per 

participant. These models were performed for autistic and neurotypical populations 

separately. 

Autistic 

Fixed effects of Age (Model 2), Attention (Model 3), CARS (Model 4), RRB (Model 5) and 

Receptive Vocabulary (Model 6) were entered individually. NVIQ and Expressive Vocabulary 

were not added as fixed effects for the ASD population as not all participants successfully 

completed this measure. The addition of Age (p = .63), Attention (p = .93), CARS (p = .29), 

and RRB (p = .29) did not improve fit compared to the baseline model. The inclusion of 
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Receptive Vocabulary (χ2 = 4.72, p = .030) did provide a significantly better fit compared to 

the baseline model. Therefore, Model 6, containing a fixed effect of Receptive Vocabulary, 

was the best fit to the observed data.  

Neurotypical 

Fixed effects of Age (Model 2), Attention (Model 3), CARS (Model 4), RRB (Model 5), 

Receptive Vocabulary (Model 6), Expressive Vocabulary (Model 7), and NVIQ (Model 8) 

were entered individually. The addition of Age (p = .64), Attention (p = .56), CARS (p = .93), 

RRB (p = .16), Receptive Vocabulary (p = .10), Expressive Vocabulary (p = .23) and NVIQ 

(p =.10) did not significantly improve fit compared to the baseline model. Inclusion of fixed 

effects did not improve predictive power.  

Correct response times 

We began with a baseline model containing a by-participant random intercept. Fixed effects 

of Population (Model 2) and Condition (Model 3) were entered individually. The addition of 

Population (p = .82) and Condition (p = .87) did not improve fit compared to the baseline 

model. Model 4 included fixed effects of Population + Condition but did not differ 

significantly from the baseline model (p = .96). Model 5 included the Population x Condition 

interaction but did not significantly improve fit compared to the baseline model (p = .71). 

Therefore, the inclusion of fixed effects did not improve predictive power. 

 

24-Hour Retention 

Accuracy 

We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. Fixed effects of Population (Model 2), 

Condition (Model 3), 5-minute Retention Accuracy (Model 4), Referent Selection Accuracy 

(Model 5), and Number of Labels at Referent Selection (Model 6) were entered individually. 

The addition of Population (p = .62), Condition (p = .39), and Number of Labels at Referent 

Selection (p = .11) did not improve fit compared to the baseline model. The individual 

addition of by-word 5-minute Retention Accuracy (χ2 = 7.93, p = .005) and Referent 

Selection Accuracy (χ2 = 4.96, p = .026) yielded a significant improvement in fit when 

compared with the baseline model. Model 7 added fixed effects of 5-minute Retention 

Accuracy + Referent Selection Accuracy, which was borderline significantly better fitting 

than Model 4 (χ2 = 3.34, p = .068) and significantly better fitting than Model 5 (χ2 = 6.31, p = 

.012). Model 8 contained a two-way interaction of Population x Condition, plus fixed effects 

of by-word 5-minute Retention Accuracy + Referent Selection Accuracy, which was not 

significantly better fitting than Model 7 (p = .44). Model 9 contained a two-way interaction of 

Population x 5-minute Retention Accuracy, plus a fixed effect of Referent Selection 

Accuracy, which was not significantly better fitting than Model 7 (p = .87). Model 10 

contained a two-way interaction of Population x Referent Selection Accuracy, plus a fixed 

effect of 5-minute Retention Accuracy, which was not significantly better fitting than Model 

7 (p = .80). Model 11 contained a two-way interaction of Population x Number of Labels at 

Referent Selection, plus fixed effects of Referent Selection Accuracy and 5-minute Retention 

Accuracy but was not significantly better fitting than Model 7 (p = .58). Model 12 included 
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the Condition x 5-minute Retention Accuracy, plus a fixed effect of Referent Selection 

Accuracy, which was not significantly better fitting compared to Model 7 (p = .12). Model 13 

contained a two-way interaction of Condition x Referent Selection Accuracy, plus a fixed 

effect of 5-minute Retention Accuracy which was not significantly better fitting than Model 7 

(p = .40). Model 14 contained a two-way interaction of Condition x Number of Labels at 

Referent Selection, plus fixed effects of Referent Selection Accuracy and 5-minute Retention 

Accuracy but was not significantly better fitting than Model 7 (p = .27). Model 15 contained 

a three-way interaction of Population x Condition x Referent Selection Accuracy, plus a fixed 

effect of by-word 5-minute retention accuracy but was not significantly better fitting than 

Model 7 (p = .61). Model 16 contained a three-way interaction of Population x Condition x 5-

minute Retention Accuracy, plus a fixed effect of Referent Selection Accuracy but was not 

significantly better fitting than Model 7 (p = .20). Model 17 contained a three-way interaction 

of Population x Condition x Number of Labels at Referent Selection, plus fixed effects of 5-

minute Retention Accuracy and Referent Selection Accuracy but was not significantly better 

fitting than Model 7 (p = .62). As such, Model 7 containing the fixed effects of 5-minute 

Retention Accuracy and Referent Selection Accuracy was retained as the final model. 

However, one of the model comparisons only approached significance, so we must interpret 

this result with caution. 

Accuracy – individual differences  

Informed by the best fitting model described above, we began with a baseline model 

including fixed effects of Referent Selection Accuracy, 5-minute Retention Accuracy, and 

Condition, plus by-participant and by-word random intercepts, with a random slope of 

Condition per participant. These models analysed data from autistic and neurotypical groups 

separately. 

Autistic 

Fixed effects of Age (Model 2), Attention (Model 3), CARS (Model 4), RRB (Model 5) and 

Receptive Vocabulary (Model 6) were entered individually. NVIQ and Expressive Vocabulary 

were not added as fixed effects for the ASD population as not all participants successfully 

completed this measure. The addition of Age (p = .77), Attention (p = 1.00), CARS (p = .45), 

RRB (p = .36) and Receptive Vocabulary (p = .18) did not significantly improve fit compared 

to the baseline model. The inclusion of fixed effects did not improve predictive power. 

Neurotypical 

Fixed effects of Age (Model 2), Attention (Model 3), CARS (Model 4), RRB (Model 5), 

Receptive Vocabulary (Model 6), Expressive Vocabulary (Model 7), and NVIQ (Model 8) 

were entered individually. The addition of Age (p = .84), CARS (p = .23), RRB (p = .44), 

Receptive Vocabulary (p = .45), Expressive Vocabulary (p = .58), and NVIQ (p = .78) did not 

improve fit compared to the baseline model. The addition of Attention (χ2 = 5.95, p = .015) 

did yield a significantly better fit compared to the baseline model, and thus was determined to 

be the best fitting model to the observed data.  

 

Correct response times 
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We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. The individual addition of Population 

(Model 2; p = .19) and Condition (Model 3; p = .28) did not significantly improve fit 

compared to the baseline model. Model 4 included fixed effects of Population + Condition 

but did not differ significantly from the baseline model (p = .23). Model 5 included the two-

way interaction between Population x Condition (p = .23) but did not differ significantly from 

the baseline model. The inclusion of fixed effects did not improve predictive power.  

 

Do autistic and neurotypical children’s visual attention differ while learning names for 

liked and disliked stimuli, and does variability in visual attention predict their learning 

accuracy? 

 

Between-population comparisons 

 

Referent selection 

Proportion of time spent looking at the target stimuli  

We began with a baseline model containing by-participant and by-word random intercepts. In 

Models 2 and 3, the addition of individual fixed effects of Population (p = .17), Condition (p 

= .75), did not yield a significantly better fit than the baseline model. In Model 4, Trial Type 

was included as a fixed effect (χ2 = 21.15, p <.001), which was significantly better fitting than 

the baseline model. Models 5, 6 and 7 included pairs of fixed effects (Trial Type + 

Population, p = .16; Condition + Population, p = 1.00; Condition + Trial Type, p = .66), but 

none of the models were significantly better fitting than Model 4. Model 8 included fixed 

effects of Trial Type + Population + Condition (p = .34) but did not significantly improve fit 

compared to Model 4. Inclusion of individual two-way interactions in Models 9-11 (Trial 

Type x Population: p = .17; Condition x Population: p = 1.00; Trial Type x Condition: p = 

.49), did not provide a significantly better fit compared to Model 4. Model 12 included the 

included the Trial Type x Population x Condition interaction (p = .51) but did not improve fit 

compared to Model 4. Therefore, the best fitting model was Model 4, containing a fixed 

effect of Trial Type. 

Number of looks to the target stimuli 

We began with a baseline model containing by-participant random intercepts. The individual 

addition of fixed effects of Population (Model 2; χ2 = 4.89, p =.027), Condition (Model 3; χ2 

= 11.10, p <.001), and Trial Type (Model 4; χ2 = 9.77, p = .002), all yielded a significant 

improvement in fit over the baseline model. Model 5 included fixed effects of Trial Type + 

Population, which significantly improved fit compared to Model 2 (χ2 = 9.75, p = .002) and 

Model 4 (χ2 = 4.86, p = .027), and yielded a borderline significantly better fit than Model 3 

(χ2 = 3.54, p = .060). Model 6 included fixed effects of Population + Condition, and 

significantly improved fit compared to Model 2 (χ2 = 11.09, p <.001), Model 3 (χ2 = 4.89, p = 

.027) and Model 4 (χ2 = 6.21, p = .013). Model 7 included fixed effects of Trial Type + 

Condition, and significantly improved fit compared to Model 2 (χ2 = 16.20, p <.001), Model 
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3 (χ2 = 9.99, p = .002), and Model 4 (χ2 = 11.31, p <.001). Model 8 included fixed effects of 

Trial Type + Population + Condition, and significantly improved fit compared to Model 5 (χ2 

= 11.31, p <.001), Model 6 (χ2 = 9.96, p = .002), and Model 7 (χ2 = 4.86, p =.027). Model 9 

included the interaction between Trial Type x Population plus a fixed effect of Condition (p = 

.85), Model 10 included the Condition x Population interaction plus a fixed effect of Trial 

Type (p = .26), and Model 11 included the Trial Type x Population interaction plus a fixed 

effect of Population (p = .11), but none of these models yielded a significantly better fit in 

comparison to Model 8. Model 12 included the Trial Type x Population x Condition 

interaction (p = .40) but did not significantly improve fit compared to Model 8. Therefore, the 

best fitting model was Model 8, containing fixed effects of Trial Type + Population + 

Condition. 

Longest look novel or known (Longest Look Novel) 

We began with a baseline model containing by-participant and by-word random intercepts, 

with Condition x Trial Type slopes per participant. In Models 2 and 3, adding Population (p = 

.53) and Condition (p = .19) as fixed effects did not provide a significantly better fit than the 

baseline model. Model 4 included the fixed effect of Trial Type (χ2 = 33.55, p <.001), which 

yielded a significantly better fit for the observed data than the baseline model. Inclusion of 

multiple fixed effects in Model 5 (Condition + Population, p = 1.00), Model 6 (Trial Type + 

Population, p = .53), Model 7 (Trial Type + Condition, p = .25) and Model 8 (Trial Type + 

Population + Condition, p = .42) did not improve fit compared to Model 4. Inclusion of 

individual two-way interactions in Models 9-11 (Trial Type x Population: p = .71; Condition 

x Population: p = 1.00; Trial Type x Condition: p = .43), did not provide a significantly better 

fit compared to Model 4. Model 12 included the Trial Type x Population x Condition 

interaction (p = .76) but was not significantly better fitting than Model 4. Therefore, the best 

fitting model was Model 4, including Trial Type as a fixed effect. 

 

5-minute retention  

Proportion of time spent looking at the target stimuli 

We began with a baseline model containing by-participant and by-word random intercepts. In 

Models 2 and 3, adding individual fixed effects of Population (p = .31) and Condition (p = 

.33) did not yield a significantly better fit than the baseline model. Model 4 included fixed 

effects of Population + Condition (p = .37) but did not significantly improve fit compared to 

the baseline model. Model 5 included the Condition x Population (p = .27) interaction but 

was not significantly better fitting than baseline model. The inclusion of fixed effects did not 

improve predictive power. 

Number of looks to the target stimuli 

We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. Adding a fixed effect of Population in 

Model 2 (p = .21) or Condition in Model 3 (p = .10) did not significantly improve fit 

compared to the baseline model. Model 4 included fixed effects of Condition + Population (p 

= .12) but was not significantly better fitting than the baseline model. Model 5 included the 

Condition x Population interaction and was borderline significantly better fitting than the 
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baseline model (χ2 = 7.53, p = .057). As such, Model 5 containing the Condition x Population 

interaction was determined to be the best fitting model, although should be interpreted with 

caution as the model comparison only approached significance.   

Longest look target or foil 

We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. Adding fixed effects of Population (Model 

2; p = .57) and Condition (Model 3; p = 1.00) did not yield a significantly better fit compared 

to the baseline model. Model 4 contained a fixed effect of Condition + Population but was 

not significantly better fitting than the baseline model (p = .81). Model 5 included the 

Condition x Population interaction but was not significantly better fitting than the baseline 

model (p = .55). Therefore, inclusion of fixed effects did not improve predictive power. 

 

24-hour retention 

Proportion of time spent looking at the target stimuli 

We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. Model 2 included the fixed effect of 

Population (p = .66), and Model 3 included the fixed effect of Condition (p = .14), but neither 

provided a significantly better fit than the baseline model. Model 4 included a fixed effect of 

Condition + Population (p = .29) but did not significantly improve fit compared to the 

baseline model. Model 5 included the Condition x Population interaction (p = .27), which 

was not significantly better fitting than the baseline model. Therefore, inclusion of fixed 

effects did not improve predictive power. 

Number of looks to the target stimuli 

We began with a baseline model containing a by-participant random intercept. Including 

Population as included as a fixed effect in Model 2 yielded a significant improvement in fit 

over the baseline model (χ2 = 4.88, p = .027), but including a fixed effect of Condition in 

Model 3 did not (p = .37). Model 4 included fixed effects of Condition + Population (p = .36) 

but was not significantly better fitting than Model 2. Model 5 included the Condition x 

Population interaction (p = .09), which was not significantly better fitting than Model 2. 

Therefore, the final model was Model 2, including a fixed effect of Population. 

Longest look target or foil  

We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. Model 2 contained a fixed effect of 

Population (p = .47), and Model 3 included a fixed effect of Condition (p = .28), but neither 

models were significantly better fitting than the baseline model. Model 4 included a fixed 

effect of Condition + Population (p = .41), which was not significantly better fitting than the 

baseline model. Model 5 included the Condition x Population interaction (p = .26), which 

was not significantly better fitting than the baseline model. The inclusion of fixed effects did 

not improve predictive power. 
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Looking time predicting accuracy 

The following analyses examined whether children’s referent selection accuracy was 

influenced by a different looking behaviour, and whether the effects of those behaviours 

differed across populations and conditions (by testing whether the inclusion of x population 

and x condition interaction terms significantly improved model fit). All models were 

conducted using the glmer function from the lme4 package in R (Bates et al., 2015). 

 

Referent Selection 

Proportion of time spent looking at the target stimuli  

We began with a baseline model containing by-participant and by-word random intercepts, 

with Condition x Trial Type slopes per participant. In Model 2, Proportion to Target was 

included as a fixed effect (χ2 = 199.32, p <.001), which was significantly better fitting than 

the baseline model. Model 3 included the Proportion to Target x Trial Type interaction, which 

was not significantly better fitting than Model 2 (p = .95). Model 4 containing the Proportion 

to Target x Condition did not yield a significantly better fit compared to Model 2 (p = .89). 

Model 5, including the Proportion to Target x Population interaction, yielded a significantly 

better fit than Model 2 (χ2 = 9.76, p = .008), but did not contain a significant interaction effect 

(z = 0.98, p = .33). Model 6 included the Proportion to Target x Population x Condition 

interaction, which afforded an approaching significantly better fit than Model 2 (χ2 = 12.09, p 

= .060), but did not contain a significant interaction effect (z = -1.24, p = .21). Neither Model 

7 (Proportion to Target x Population x Trial Type: p = .11), or Model 8 (Proportion to Target x 

Condition x Trial Type: p = 1.00), afforded a significantly better fit than Model 2. Therefore, 

the final best fitting model for the observed data was determined to be Model 2, including a 

fixed effect of Proportion to Target. 

Number of looks to the target stimuli 

We began with a baseline model containing by-participant and by-word random intercepts, 

with Condition x Trial Type slopes per participant. In Model 2, Number Looks to Target was 

included as a fixed effect, which was significantly better fitting than the baseline model (χ2 = 

34.54, p <.001). Model 3 included the Number Looks to Target x Trial Type interaction, and 

yielded a significantly better fit than Model 2 (χ2 = 7.65, p = .022), but the two-way 

interaction effect was not significant (z = 0.93, p = .35). Model 4, containing the Number 

Looks to Target x Condition interaction (p = .12) did not yield a significantly better fit 

compared to Model 2. Model 5, including the Number Looks to Target x Population 

interaction, which was significantly better fitting than Model 2 (χ2 = 21.57, p <.001) and 

contained a significant two-way interaction effect (z = -3.30, p <.001). Model 6 included the 

Number Looks to Target x Population x Trial Type interaction, which was borderline 

significantly better fitting than Model 5 (χ2 = 8.67, p = .070) but did not contain a significant 

three-way interaction effect (z = 0.60, p = .55). Model 7 included the Number Looks to Target 

x Population x Condition interaction, which was not significantly better fitting than Model 5 

(p = .54). Model 8 included the Number Looks to Target x Condition x Trial Type interaction 

but was not significantly better fitting than Model 5 (p = 1.00). Therefore, Model 5, including 

the Number Looks to Target x Population interaction was established as the final model as it 

remained consistently better fitting than more complex models.  
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Longest look novel or known  

We began with a baseline model containing by-participant and by-word random intercepts, 

with Condition x Trial Type slopes per participant. In Model 2, Longest Look Novel was 

included as a fixed effect, which was not significantly better fitting than the baseline model (p 

= .11). Model 3 included the Longest Look Novel x Trial Type interaction (χ2 = 76.21, p 

<.001), which was significantly better fitting than the baseline model, and had a significant 

two-way interaction effect (z = 7.80, p <.001). Inclusion of the two-way Longest Look Novel 

x Condition interaction in Model 4 did not provide a significantly better fit than Model 3 (p = 

.33). Model 5 included the Longest Look Novel x Population interaction but was not 

significantly better fitting than Model 3 (p = .08). Models 6-8 included three-way interactions 

(Longest Look Novel x Condition x Trial Type: p = .24; Longest Look Novel x Trial Type x 

Population: p = .19; Longest Look Novel x Population x Condition: p = 1.00), but also did 

not provide a significantly better fit than Model 3. Overall, the final best fitting model for the 

observed data was Model 3, including the Longest Look Novel x Trial Type interaction. 

 

5-minute retention 

Proportion of time spent looking at the target stimuli 

We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. In Model 2, Proportion to Target was 

included as a fixed effect (χ2 = 332.98, p <.001), which was significantly better fitting than 

the baseline model. Model 3 included the Proportion to Target x Condition interaction (p = 

.83) but was not significantly better fitting than Model 2. Model 4 included the Proportion to 

Target x Population interaction (p = .12) but was not significantly better fitting than Model 2. 

Model 5 included the Proportion to Target x Population x Condition interaction (p = .21) but 

was not significantly better fitting than Model 2. Therefore, the final best fitting model for the 

observed data was determined to be Model 2, including the fixed effect of Proportion to 

Target. 

Number of looks to the target stimuli 

We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. In Model 2, Number Looks to Target was 

included as a fixed effect (χ2 = 69.61, p <.001), which was significantly better fitting than the 

baseline model. Inclusion of the Number Looks to Target x Population interaction in Model 3 

approached a significant improvement in fit over Model 2 (χ2 = 5.56, p = .062), and 

contained a borderline significant interaction effect (z = -1.84, p = .065). Model 4 contained 

the Number Looks to Target x Condition interaction (p = .15) but did not yield a significantly 

better fit than Model 2. Model 5 included the Number Looks to Target x Population x 

Condition interaction but was not significantly better fitting than Model 2 (p = .10) or Model 

3 (p = .28). Therefore, the final best fitting model for the observed data was determined to be 

Model 3, including the Number Looks to Target x Population interaction. However, since this 

model approached significance, we must be cautious when interpreting these results. 

Longest look target or foil  
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We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. In Model 2, Longest Look Target was 

included as a fixed effect (χ2 = 192.71, p <.001), which was significantly better fitting than 

the baseline model. Model 3 included the Longest Look Target x Condition interaction (p = 

1.00), and Model 4 included the Longest Look Target x Population interaction (p = .99), but 

neither were significantly better fitting than Model 2. Model 5 included the Longest Look 

Target x Population x Condition interaction (p = .89) but was not significantly better fitting 

than Model 2. Overall, Model 2, including Longest Look Target as a fixed effect, was the best 

fit to the observed data. 

Proportion of time spent looking at the target stimuli during referent selection 

We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. In Model 2, Proportion to Target was 

included as a fixed effect (χ2 = 2.94, p = .086), which approached a significantly better fit 

than the baseline model, with an approaching significant fixed effect (z = 1.79, p = .074). 

Model 3 included the Proportion to Target x Condition interaction but was not significantly 

better fitting than the baseline model (p = .37) or Model 2 (p = .89). Model 4 included the 

Proportion to Target x Population interaction but was not significantly better fitting than the 

baseline model (p = .33) or Model 2 (p = .79). Model 5 included the Proportion to Target x 

Population x Condition interaction but was not significantly better fitting than the baseline 

model (p = .42) or Model 2 (p = .65). Model 2 (Proportion to Target) was taken to be the final 

model. However, the model comparison and interaction effect only approached significance, 

so we must interpret this result with caution. 

Number of looks to the target stimuli during referent selection 

We began with a baseline model containing by-participant and by-word random intercepts 

and Condition slopes per participant. In Model 2, Number Looks to Target was included as a 

fixed effect, which was borderline significantly better fitting than the baseline model (χ2 = 

3.14, p = .077) and an approaching significant interaction effect (z = 1.85, p = .064). Model 3 

included the Number Looks to Target x Condition interaction but was not significantly better 

fitting than the baseline model (p = .24) or Model 2 (p = .57). Model 4 included the Number 

Looks to Target x Population interaction but was not significantly better fitting than the 

baseline model (p = .24) or Model 2 (p = .58). Model 5 included the Number Looks to Target 

x Population x Condition interaction which was not significantly better fitting than the 

baseline model (p = .25) or Model 2 (p = .43). Therefore, the final best fitting model for the 

observed data was determined to be Model 2 (Number Looks to Target). However, the model 

comparison and interaction effect only approached significance, so we must interpret this 

result with caution. 

Longest look to target or foil stimuli during referent selection 

We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. In Model 2, Longest Look Target was 

included as a fixed effect (p = .73), which was not significantly better fitting than the baseline 

model. Model 3 included the Longest Look Target x Condition interaction (p = .96), and 

Model 4 included the Longest Look Target x Population interaction (p = .92), but neither 

were significantly better fitting than the baseline model. Model 5 included the Longest Look 
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Target x Population x Condition interaction (p = .72) but was not significantly better fitting 

than the baseline model. The inclusion of fixed effects did not improve predictive power. 

 

24-hour retention 

Proportion of time spent looking at the target stimuli 

We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. In Model 2, Proportion to Target was 

included as a fixed effect (χ2 = 337.08, p <.001), which was significantly better fitting than 

the baseline model. Model 3 included the Proportion to Target x Condition interaction (p = 

.99), which was not significantly better fitting than Model 2. Model 4 included the Proportion 

to Target x Population interaction (p = .81), which was not significantly better fitting than 

Model 2. Model 5 included the Proportion to Target x Population x Condition interaction (p = 

.88), which was not significantly better fitting than Model 2. Therefore, Model 2 was retained 

as the final best fitting model, containing a fixed effect of Proportion to Target. 

Number of looks to the target stimuli 

We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. In Model 2, Number Looks to Target was 

included as a fixed effect (χ2 = 74.47, p <.001), which was significantly better fitting than the 

baseline model. Model 3 included the Number Looks to Target x Condition interaction (p = 

.55) but was not significantly better fitting than Model 2. Model 4 included the Number 

Looks to Target x Population interaction (p = .22), which was not significantly better fitting 

than Model 2. Model 5 included the Number Looks to Target x Population x Condition 

interaction (p = .33) but was not significantly better fitting than Model 2. Therefore, the final 

best fitting model for the observed data was determined to be Model 2, including Number 

Looks to Target as a fixed effect. 

Longest look target or foil  

We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. In Model 2, Longest Look Target was 

included as a fixed effect (χ2 = 203.90, p <.001), which was significantly better fitting than 

the baseline model. Model 3 included the Longest Look Target x Condition interaction (p = 

.53), which was not significantly better fitting than Model 2. Model 4 included the Longest 

Look Target x Population interaction (p = .34), which was not significantly better fitting than 

Model 2. Model 5 included the Longest Look Target x Population x Condition interaction (p 

= .45), which was not significantly better fitting than Model 2. Overall, Model 2 containing a 

fixed effect of Longest Look Target  

Proportion of time spent looking at the target stimuli during referent selection 

We began with a baseline model containing by-participant and by-word random intercepts, 

with a random slope of Condition per participant. In Model 2, Proportion to Target was 

included as a fixed effect, which approached a significantly better fit than the baseline model 

(χ2 = 3.02, p = .082) and contained a borderline significant fixed effect (z = 1.79, p = .073). 

Model 3 included the Proportion to Target x Condition interaction which was not 
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significantly better fitting than the baseline model (p = .23) or Model 2 (p = .52). Model 4 

included the Proportion to Target x Population interaction, which was not significantly better 

fitting than the baseline model (p = .37) or Model 2 (p = .93). Model 5 included the 

Proportion to Target x Population x Condition interaction, which was not significantly better 

fitting than the baseline model (p = .40) or Model 2 (p = .64). Overall, Model 2, including a 

fixed effect of Proportion to Target was the best fitting model, although caution must be taken 

given the approaching significant p values. 

Number of looks to the target stimuli during referent selection 

We began with a baseline model containing by-participant and by-word random intercepts 

and Condition slopes per participant. In Model 2, Number Looks to Target was included as a 

fixed effect (p = .28) but was not significantly better fitting than the baseline model. Model 3 

included the Number Looks to Target x Condition interaction (p = .58) but was not 

significantly better fitting than the baseline model. Model 4 included the Number Looks to 

Target x Population interaction (p = .69), which was not significantly better fitting than the 

baseline model. Model 5 included the Number Looks to Target x Population x Condition 

interaction (p = .58) but was not significantly better fitting than the baseline model. The 

inclusion of fixed effects did not improve predictive power. 

Longest look to target or foil stimuli during referent selection 

We began with a baseline model containing by-participant and by-word random intercepts 

and Condition slopes per participant. In Model 2, Longest Look Target was included as a 

fixed effect (p = .13), which was not significantly better fitting than the baseline model. 

Model 3 included the Longest Look Target x Condition interaction (p = .36), which was not 

significantly better fitting than the baseline model. Model 4 included the Longest Look Target 

x Population interaction (p = .35), which was not significantly better fitting than the baseline 

model. Model 5 included the Longest Look Target x Population x Condition interaction (p = 

.44), which was not significantly better fitting than the baseline model. The inclusion of fixed 

effects did not improve predictive power. 
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Appendix E: Participation of Children Across Multiple Experiments 

Note: the order in which children experienced the studies was counterbalanced. Different 

children experienced different studies in their first, second and third exposures (where 

relevant). Auditory and visual stimuli used in the experimental stages of each study did not 

overlap. 

 

Participation of autistic children across multiple experiments 

Autistic participant Study 1 Study 2 Study 3 

1  ✓ ✓ ✓ 

2 ✓ ✓ ✓ 

3 ✓ ✓ ✓ 

4  ✓ ✓ 

5 ✓ ✓ ✓ 

6   ✓ 

7 ✓ ✓ ✓ 

8 ✓ ✓ ✓ 

9 ✓ ✓  

10 ✓ ✓ ✓ 

11 ✓ ✓  

12 ✓ ✓ ✓ 

13 ✓ ✓ ✓ 

14 ✓ ✓  

15 ✓  ✓ 

16 ✓  ✓ 

17 ✓ ✓ ✓ 

18   ✓ 

19   ✓ 

20   ✓ 

21 ✓   

22 ✓   

23  ✓  

24 ✓   
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Participation of neurotypical children across multiple experiments 

Neurotypical participant Study 1 Study 2 Study 3 

1  ✓ ✓ 

2 ✓  ✓ 

3  ✓  

4 ✓ ✓ ✓ 

5 ✓   

6  ✓  

7 ✓ ✓ ✓ 

8 ✓ ✓ ✓ 

9 ✓  ✓ 

10  ✓ ✓ 

11 ✓ ✓ ✓ 

12 ✓ ✓ ✓ 

13 ✓  ✓ 

14 ✓ ✓ ✓ 

15 ✓  ✓ 

16 ✓ ✓ ✓ 

17 ✓ ✓ ✓ 

18 ✓ ✓ ✓ 

19 ✓   

20 ✓   

21 ✓ ✓  

22 ✓   

23  ✓  

24  ✓ ✓ 

25 ✓   

26   ✓ 

 

 


