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Abstract

In addition to atmospheric observations, numerical models are crucial to understand

the impacts of human activities on the environment, from attributing poor air quality

to assessing climate change impacts. While process-based models, such as chemistry

transport models (CTMs), are widely used, recent data science advances enable

greater use of statistical and machine learning methods as alternatives to describe

and predict atmospheric composition. State-of-the-art data science methods can be

faster to run than CTMs and used at high temporal and spatial resolutions due to

codebase efficiencies.

This thesis focuses on modelling UK surface ozone and its drivers (high levels

of which are detrimental to human and plant health) through the development

and novel application of sophisticated statistical and machine learning techniques.

Motivated by possible adverse effect of climate change on ozone concentrations, a

temperature-dependent Extreme Value Analysis is used to explore the probability,

magnitude, and frequency of extreme ozone events over recent decades. For

2010–2019, it is found that the 1-year return level of daily maximum 8-h mean

(MDA8) ozone exceeds the ‘moderate’ health threshold (100 µg=m3) at >90% of

sites, but that the probability of extreme ozone events has markedly decreased since

the 1980s.

A machine learning methodology to downscale and bias correct a CTM

(EMEP4UK) ozone surface was developed and evaluated. Compared to the

unadjusted CTM, the downscaled surface exhibits a lower bias in reproducing MDA8

ozone allowing more robust assessments of important policy metrics. Analysis of
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the downscaled product (2014–2018) reveals on average 27% of the UK fails the

government long-term objective for MDA8 ozone to not exceed 100µg=m3 more than

10 times per year, compared to 99% in the unadjusted CTM. A classification-based

machine learning analysis into high-level ozone drivers was also performed and shows

a robust relationship between ozone and temperature. The method is demonstrated

to offer remarkable promise as a tool with which to forecast the presence of high-level

ozone. Despite a UK focus, the data-driven methods developed and applied here

are applicable to modelling ozone in other regions of the world where measurements

exist
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Chapter 1

Introduction

Atmospheric science has signi�cantly advanced our understanding of the world by

providing insights into both the natural composition of the Earth's atmosphere and

changes in composition brought about by human activities. Atmospheric models

play a key part in evolving our understanding of physical and chemical processes,

including assessing the impact of climate change on the atmosphere. They are

also an essential operational tool for meteorological and air quality forecasting.

Whilst there are many di�erent branches of atmospheric modelling, the focus of this

thesis is on models which help to explain the chemical properties and composition

of the atmosphere. Early atmospheric chemistry transport models (CTMs) were

two dimensional and utilised only the most fundamental equations to explain

atmospheric behaviour. However, advances in computing capabilities and our

comprehension of the complex physical processes that govern the Earth's atmosphere

have led to three dimensional models of increasing complexity. Today's CTMs are

highly sophisticated, and can simulate a range of atmospheric phenomena, including

atmospheric chemistry from the surface to the mesosphere, large-scale weather

patterns, and storms, which has made them invaluable for weather forecasting,

climate research and environmental monitoring.

Whilst CTMs have been widely used for decades and will continue to play

a vital part in atmospheric science, recent advances in statistical and machine
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learning methods combined with the availability of large quantities of atmospheric

observational data has led to the increased use of data science methods in

atmospheric science. These data-driven methods, which are often far more 
exible

and faster to train than atmospheric CTMs (i.e., cost of model runs and code

development), provide a complementary way in which to study the changing

behaviour of the atmosphere. In recent years, advances in technology have led

to an unprecedented amount of atmospheric data being collected, including remote

observations (e.g. satellite), in situ observations (e.g. weather stations), and climate

model output. This data provides an enormous amount of information about the

state and behaviour of the Earth's atmosphere. However, the sheer volume of data

poses a signi�cant challenge for traditional data analysis techniques. Modern data

science methods o�er powerful tools for handling and analysing large and complex

datasets, providing the ability to identify patterns that may not be visible through

traditional modelling approaches. Additionally, these models support the fusion of

a wide range of variables and sources of data, combining information and providing

a more comprehensive understanding of atmospheric behaviour.

Air pollution is a critical aspect of atmospheric science, and its study is of great

importance for both environmental and public health reasons. Acute and chronic

exposure to air pollution has been linked to a wide range of health issues, including

respiratory problems, heart disease, dementia, and contributes to premature death

(Anderson et al., 2004; D��az et al., 2018; Nuvolone et al., 2018). Additionally,

air pollution can harm plant and animal life, damage ecosystems, and contribute

to climate change (i.e., as key air pollutants, such as ozone and aerosol, are also

climate forcers) (Sandermann Jr, 1996; Ainsworth et al., 2012; Karmakar et al.,

2022). Therefore, understanding and mitigating the e�ects of air pollution is crucial

for the well-being of both current and future generations.

This thesis presents a collection of data-driven models for surface level ozone

in the UK, developed using data science methodology. The adoption of data

science methods in air pollution modelling has increased in recent years, from
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operational forecasting of pollutant concentrations (Kleinert et al., 2021) to creating

high-resolution bias-corrected surfaces of various air pollutants for understanding

health impacts (Gariazzo et al., 2020; Silibello et al., 2021; Bertrand et al., 2022).

Despite the increasing use of data science methods in atmospheric modelling, there

are still important challenges to be addressed. These include issues related to

model complexity, modelling and predicting rare events, and the need to develop

interpretable models that can be used for decision-making and to help understand

atmospheric processes. This thesis explores the application and development of

data science methods in modelling of surface level ozone, with a particular focus on

elevated concentrations.

This introduction presents a discussion of surface level ozone, the impacts of

high-level ozone episodes, and the state of surface level ozone in the UK, followed

by a summary of the existing methods to model surface level ozone. A brief overview

of the thesis contributions is presented along with an outline of the remaining thesis

structure. The subsequent chapters are each self-contained and include separate

introductions and literature reviews that expand upon the following literature

review.

1.1 Surface level ozone

1.1.1 Overview

Surface level ozone is formed through a complex series of chemical reactions. The

concentration of ozone at any given time or place is controlled by a variety of

factors, including emissions of ozone precursors and meteorological conditions. Key

precursors are nitrogen oxides (NOX ) and volatile organic compounds (VOCs) (Tan

et al., 2018; Lu et al., 2019; Zhao et al., 2022). Sources of NOX include emissions

from vehicles (Ogur and Kariuki, 2014), industrial processes (Olivier et al., 1998),

and natural sources such as lightening (Levine et al., 1984), whilst VOCs are

commonly found in various products such as paints, solvents, cleaning agents,
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and fuels, as well as being emitted from transportation and industrial processes

(Kim et al., 2001; H. Wang et al., 2013; Halios et al., 2022). Both precursors

and ozone itself can be transported over long distances by atmospheric circulation

patterns (Q. Li et al., 2002), with concentrations in the UK largely in
uenced

by hemispheric- and regional- scale e�ects (Jenkin, 2008), consequently ozone

concentrations are related not just to local point sources of precursor pollutants

but also atmospheric transport and synoptic scale weather. Other factors that

in
uence ozone formation and dispersion include meteorological conditions, such

as temperature, humidity, and wind speed, and the availability of sunlight, which

is necessary for the photochemical reactions that produce ozone (Otero et al., 2016;

Carro-Calvo et al., 2017; Noelia Otero, Sillmann, et al., 2018). In addition to

dispersion in the atmosphere, ozone concentrations can also be depleted through dry

deposition onto vegetation and buildings and other surfaces (Clifton et al., 2020).

The interactions between these factors can result in complex and variable patterns

of ozone concentrations, both spatially and temporally.

1.1.2 Impacts of high-level ozone

Concerns over high levels of surface level ozone arise from the range of negative

impacts that such levels have on human health, vegetation, and ecosystems. One of

the most signi�cant impacts is its e�ect on human health. Ozone is an irritant to the

respiratory system, and exposure to high concentrations can cause coughing, throat

irritation, and shortness of breath. In individuals with pre-existing respiratory

conditions such as asthma or chronic obstructive pulmonary disease, exposure to

high levels of ozone can exacerbate symptoms and lead to hospitalisation or mortality

(Nuvolone et al., 2018; J. Zhang et al., 2019).

High-level surface ozone can also have negative e�ects on vegetation. Ozone

exposure can lead to a decrease in photosynthesis and plant growth, as well as an

increase in leaf damage and premature leaf drop (Sandermann Jr, 1996; Karmakar

et al., 2022). This can have signi�cant impacts on crops, leading to decreased yields
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and lower quality produce (Heagle, 1989; Avnery et al., 2011; Ghude et al., 2014).

Reduced crop yields have a severe economic impact, with ozone 
ux-based estimates

of wheat yield losses to be 4.56 billion Euro in Europe (speci�cally, regions in the

European Monitoring and Evaluation Programme), equating to a mean yield loss of

13%. The greatest economic losses are found in important wheat growing areas in

western and central Europe (Harmens et al., 2015).

Lastly while surface level ozone is most detrimental to human health and

vegetation, it is also detrimental to climate change. Trees and other plants play a

key role in absorbing carbon dioxide and mitigating the impacts of climate change,

so damage to vegetation from high levels of ozone has the potential to exacerbate

the e�ects of climate change by a�ecting carbon uptake (Ainsworth et al., 2012).

Furthermore, ozone is a greenhouse gas in the upper troposhere, as it absorbs

and emits infrared radiation in the atmosphere (Mohnen et al., 1993), and its

tropospheric burden has increased by� 44% between the year 1850 (pre-industrial)

and 2005{2014 (Gri�ths et al., 2021). Although the impact of ozone, a short-

lived climate forcer, on the pre-industrial to present warming is relatively small

compared to other well-mixed greenhouse gases such as methane and CO2, reducing

its concentrations could have a bene�cial e�ect on the overall climate system.

1.1.3 State of UK ozone

1.1.3.1 Monitoring networks

The UK's �rst Clean Air Act was introduced in 1956 following the great London

smog in 1952 which resulted in an estimated 3000{12,000 deaths (Bell et al., 2004).

The National Survey, the world's �rst co-ordinated national air pollution monitoring

network, was established in 1961 to monitor black smoke and sulphur dioxide

at around 1200 sites in the UK. Subsequently, several pieces of legislation and

additional monitoring networks were introduced to combat and measure air quality

(Defra, 2023). A brief overview of these is now given.

Since the 1960s, the focus has been on monitoring pollutants generated from
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vehicular emissions, including ozone, nitrogen dioxide, and �ne particulate matter.

The Enhanced Urban Network was established in 1992, consolidating all statutory

and other urban monitoring into one comprehensive program. Over the next

�ve years, more than 50 local authority sites, including 14 of the London Air

Quality Monitoring Network sites, were integrated into one network. In 1998, the

UK urban and rural automatic networks were combined to form the Automatic

Urban and Rural Network (AURN), which, as of the end of 2021, comprises

over 170 sites across the UK (Defra, 2023). The Scottish Air Quality Network

(see https://scottishairquality.scot), run by the Scottish Environment Protection

Agency, and the Welsh Air Quality Network (see https://airquality.gov.wales/),

run by the Welsh government, are mostly incorporated into the AURN network.

Together, these networks provide a comprehensive picture of air quality across the

UK, allowing policymakers to identify areas of concern and target interventions to

improve air quality.

The London Air Quality Network (LAQN, see https://londonair.org.uk/) was

formed in 1993 and is a collaborative project between King's College London and

the Greater London Authority. The aim of the network is to monitor and report

air quality across the Greater London region. The LAQN is the largest urban

monitoring network in the UK, and is composed of over 100 sites across the city

which collect data on a range of air pollutants including nitrogen dioxide, particulate

matter, and ozone. The data collected by the network is used to inform air quality

policy, assess compliance with legal air quality limits, and provide information to

the public about the levels of air pollution in their local area. The LAQN has played

a vital role in improving air quality in London, helping to inform the introduction

of measures such as the Ultra-Low Emission Zone (ULEZ) and the Low Emission

Bus Zone.
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1.1.3.2 Trends over time and spatial distribution

Peak concentrations of surface ozone in the UK have decreased since the 1990s

(Jenkin, 2008; Diaz et al., 2020). This decrease can be attributed to a combination

of factors, including the implementation of stricter air quality regulations, reductions

in emissions from industrial processes and transportation, and changes in weather

patterns (Jenkin, 2008). However, despite this overall decreasing trend, surface

ozone levels in the UK still exceed national regulatory limits; for example, the

UK's regulatory limit for 8-hr average daily maximum MDA8 ozone to not exceed

100µg=m3 is broken more than 10 times per year and in 2018, 84% of AURN

monitoring stations broke this objective (Diaz et al., 2020).

Ozone concentrations exhibit a strong seasonal cycle, with levels generally

peaking during the spring and summer in the northern mid-latitudes when

temperatures and solar radiation are higher, conditions conducive to ozone formation

(R. G. Derwent et al., 1998; Paul S Monks, 2000). Concentrations of ozone also

vary throughout the day, following a diurnal cycle that typically peaks in the

mid-afternoon and is lowest at night. During the daytime, high temperatures

and strong solar radiation result in increased surface level ozone production. At

night, a lack of sunlight and cooler temperatures lead to reduced production, which,

combined with increased deposition and depletion, results in lower concentrations.

The subsequent chapters in this thesis do not consider the diurnal cycle of ozone,

and only MDA8 ozone data is used due to the noise present in hourly measurement

data. Furthermore, the UK's health metrics for ozone are based on MDA8 ozone

instead of hourly.

In addition to exhibiting temporal variability, surface ozone concentrations also

display spatial heterogeneity across the UK, as shown in 1.1. Concentrations of

surface level ozone tend to be highest in rural areas of the UK (AQEG, 2021),

with the greatest number of high-level ozone events occurring in the south (Diaz

et al., 2020). In contrast, urban and suburban areas typically experience lower

concentrations, although local emissions from road transport can signi�cantly
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Figure 1.1: Yearly mean ozone for 2003 across the UK from EMEP4UK.

in
uence these levels. Hemispheric baseline concentrations of ozone play a large

role in determining ozone levels in the western and northern regions of the UK,

while local emissions from the UK and mainland Europe are important contributors

to ozone levels in the eastern and southern parts of the UK (AQEG, 2021). This

re
ects the complex interaction of local-, regional- and hemispheric-scale factors that

in
uence ozone concentrations, including long-range atmospheric transport patterns,

local emissions sources, and meteorological conditions.

Whilst peak ozone levels have been declining in the UK (Jenkin, 2008; Diaz

et al., 2020; Finch and Palmer, 2020), the acceleration of climate change leaves no

room for complacency. Climate change may already be contributing to increasing

concentrations of surface ozone in many regions, including the UK (Orru et al.,

2013), due to higher temperatures and longer periods of sunlight resulting in more

e�cient ozone production. In addition, climate change can also alter the atmospheric

circulation patterns that govern the transport of pollutants, potentially increasing

the frequency and intensity of ozone episodes in certain regions.
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1.2 Challenges of modelling surface level ozone

Although there have been many advances in our understanding of surface level

ozone, many challenges remain, some of which form the core research questions for

this thesis.

1.2.1 High-level ozone

While the general behaviour of surface level ozone is well understood, predicting

occurrence, persistence and magnitude of extreme high-level ozone events can be

challenging. These events are rare by de�nition and are often localised, meaning

that there is limited observational data available with which to study them. Most

process-based environmental models, including CTMs, are developed to reproduce

average behaviour. However, in air quality monitoring, modelling and forecasting

it is often the highest levels that are of most importance, as it is these that do

the most damage. With their tendency to generalise to mean ozone behaviour,

some traditional CTMs are known to underrepresent high-level ozone (e.g. Wilczak

et al., 2009; C. Lin et al., 2017; Abdi-Oskouei et al., 2020). Further, many common

statistical and machine learning modelling techniques are also designed to generalise

to the mean behaviour of a distribution, and therefore fail to capture extremes

(Velthoen et al., 2022).

1.2.2 High resolution ozone surfaces

High-resolution spatial surfaces are essential to evaluate population exposure and

hence the risk from high-level ozone, not least because of the often localised nature

of episodes. Whilst in situ measurement data has good accuracy, measurement

sites are sparse and not spread evenly across the UK and it is often unknown

how representative individual sites are of a region. CTMs, which generate

gridded surfaces of ozone concentrations, provide a useful extension to measurement

data. However, when compared to measured data, CTMs can exhibit biases
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and often underestimate peak concentrations of high-level ozone events, due to

the localized nature of these events and the coarse gridded surfaces produced by

the models, along with imperfect model representation of various processes (e.g.

emissions). Additionally, CTMs are computationally expensive and often rely on

high performance computers to run. The data produced from these models is

large, as they are replications of massively complex systems with vast numbers of

variables across space and time, making the processing and visualisation of the data

non-trivial. This also limits the resolution (important for exposure assessment) at

which the models can feasibly be run due to the computational requirements needed.

Further, CTM model outputs are not necessarily freely available, and developments

to CTMs can be challenging due to new components needing to �t within existing

model code and the lead time for their implementation.

1.2.3 Identifying drivers of high-level ozone

As previously mentioned, the processes surrounding the generation of very high-level

ozone concentrations are not generally well understood. Identifying the drivers of

such episodes is crucial to both improving this understanding and allowing us to

forecast future episodes. Concentrations of ozone are in
uenced by a complex set of

interacting and often non-linear relationships between numerous factors, including

local and regional weather (e.g. temperature, wind speed, atmospheric circulation

patterns), and emissions of NOX and VOCs. Despite these challenges, studies have

attempted to identify the most signi�cant drivers of ozone concentrations, such as

synoptic weather patterns that can transport ozone precursors over long distances

or trap pollutants in speci�c regions (Pope et al., 2016), and source regions of

transported ozone including Europe and hemispheric background (Romero-Alvarez

et al., 2022). These studies have highlighted the need for a comprehensive and

integrated approach to understanding the drivers of ozone concentrations, including

the use of advanced data-driven modelling techniques and the collection of high-

quality data across multiple variables and spatial locations and over a long-term
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period.

1.2.4 Forecasting high-level ozone events

Forecasting high-level ozone concentrations is necessary to be able to alert the public

of high-level ozone events, and particularly keeping those in high-risk groups safe

during ozone episodes. In the UK, operational forecasting models include the Air

Quality Uni�ed Model (AQUM) developed by the UK Met O�ce and using the

Uni�ed Model dynamical core (Savage et al., 2013). Accurate local forecasts of

pollutants from such models are limited by the spatial resolutions at which the model

operates, chemical boundary conditions, and the reliability of the meteorological

forecasts. For example, o�cial pollution forecasts in the UK are made at a 12Ö12

km resolution by the Met O�ce (Savage et al., 2013). ML models present us with

computationally e�cient alternatives to produce forecasts based on measurement

data, allowing for forecasts to be made at a sub-12Ö12 km resolution. Rather than

forecasting ozone concentrations, we forecast the likelihood of high-level ozone events

of most relevance to the public and health services, i.e., health threshold exceedance

days (Neal et al., 2014). Further, �ner resolution forecasts would be helpful in

improving localised warnings of high-level ozone events.

1.3 Data science methods to model surface level

ozone

1.3.1 Statistical models

Statistical models provide a stochastic representation of real-world systems. Unlike

CTMs, they do not aim to create an exact mathematical replication of the physical

system, rather they are used to identify patterns, trends and correlations in data,

and can be used to make predictions or estimates based on the data.

Several studies have used statistical methods to model surface level ozone,
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with the methods used being of varying complexity. Multiple linear regression

(MLR) is a commonly used method to model the relationship between explanatory

and response variables. The method involves �tting relationships between the

predictors and the mean response, with the assumption that given the predictors,

the responses are normally distributed about the mean. MLR has been widely

used to model ozone concentrations in various regions, e.g. Malaysia (Ghazali

et al., 2010; Ramli et al., 2010; Napi et al., 2020), India (Allu et al., 2020) and

Kuwait (Abdul-Wahab et al., 2005). However, comparisons of MLR models with

arti�cial neural networks, a type of machine learning model, have shown that neural

networks perform better in modelling ozone concentrations (Bandyopadhyay and

Chattopadhyay, 2007; Moustris et al., 2012).

Extreme value analysis (EVA) is a branch of statistics that focuses on the analysis

of extreme or rare events. The method is used to model the behaviour of the tail of

a probability distribution, and can be used describe the likelihood, frequency and

magnitude of an extreme event. In atmospheric chemistry, EVA can be applied to

the analysis of air pollution events, such as high levels of surface ozone or particulate

matter, and can help to identify the risk of these events over space and time. EVA

has been used to model ozone concentrations in limited regions of the UK (Eastoe,

2009; Eastoe and Tawn, 2009), India (Hazarika et al., 2019), California (Wilson

et al., 2022), and across the US (Shen et al., 2016), and the approach is gaining

prominence as a useful tool with which to characterise exposure risk.

Spatial statistical models are useful to create high-resolution surfaces of ozone,

including at locations where there are no measurements. Several statistical methods

exist to interpolate between measurement stations, including kriging (Adam et al.,

2014), Bayesian inference (Zidek et al., 2000; Reich, Fuentes, et al., 2011) and

Gaussian processes (Gelfand and Schliep, 2016). Statistical bias correction methods

can also be used to correct CTM output; such output provides a useful alternative

to interpolating point measurement data; however, CTM output is often biased

compared to measurements due to model uncertainty and coarse spatial resolution.
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Possible methods include linear regression (Onwukwe and Jackson, 2021), Bayesian

Maximum Entropy (Reyes and Serre, 2014), Kalman �lters (Ponomarev et al.,

2021), and quantile mapping (St•ahle, 2019). Biases due to the coarse resolution of

CTMs can alternatively be addressed by downscaling the model outputs. Statistical

downscaling methods include �tted empirical orthogonal functions (Alkuwari et al.,

2013), principle �tted components (Alkuwari et al., 2013) and a model diagnostic

and correction approach (Guillas et al., 2008).

A better understanding of the drivers behind ozone, particularly high-level ozone,

is useful in informing future development of both data-driven and numerical models.

One particularly statistical method that is useful in identifying these relationships

is principal component analysis (PCA). PCA can be used to determine the most

relevant features in modelling ozone concentrations, and can be used as a variable

selector to reduce the dimensionality of a multivariate dataset (Abdul-Wahab et al.,

2005).

Time series modelling is useful in forecasting future concentrations of ozone.

Time-series models, such as ARIMA and regression, have previously been used to

forecast ozone concentrations (Robeson and Steyn, 1990; K. Kumar et al., 2004;

Due~nas et al., 2005; U. Kumar and De Ridder, 2010; Y.-R. Li et al., 2021). CTMs

are commonly used to produce operational air quality forecasts (e.g. Savage et al.,

2013), however, the forecasts from these models often bene�t from statistical post-

processing methods that incorporate recent observations to improve the accuracy of

the forecasts (e.g. Neal et al., 2014).

1.3.2 Machine learning models

While statistics draws population inferences from a sample, machine learning (ML)

�nds generalizable predictive patterns (Bzdok et al., 2018). With the emergence

of open-source ML software packages and the increasing availability of very large

datasets, there has been a growing interest in using ML methods as an alternative

to traditional statistical models.
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ML methods have been widely used to create spatio-temporal surfaces of ozone

by combining data from CTMs and measurements, e.g. extreme gradient boosting

has been used to create a spatio-temporal ozone surface for a region in China (Hu

et al., 2022), a Bayesian ensemble ML framework has been used to downscale the

Community Multiscale Air Quality model (Ren et al., 2022), and a convolutional

neural network has been used to downscaled GEOS Composition Forecast (Geiss

et al., 2022).

With the help of explainer models which interpret the output of a ML model, ML

can identify the drivers of ozone by analysing the interactions between multiple input

features. Several explainer models exist, for instance SHapley Additive exPlanations

is a model-agnostic method that provides a way to explain the output of any

machine learning model by assigning importance scores to each feature in the input

data (Lundberg and S.-I. Lee, 2017). Another popular explainer model is Local

Interpretable Model-Agnostic Explanations that is used to identify the important

features in a model and explain how they contribute to the model's predictions

(Ribeiro et al., 2016).

ML has also emerged as a powerful tool for forecasting concentrations of surface

level ozone. Methods can be based solely on measurement data or combined with

information from CTMs and meteorological forecasts. Random forests and gradient

boosted trees (ensembles of decision trees) are popular ML models as they can model

non-linear relationships between many input features and have been used to forecast

ozone in Australia (Jiang and Riley, 2015) and the US (Du et al., 2022). Arti�cial

neural networks are a type of deep learning method that use layers of interconnected

nodes or neurons in a structure inspired by the human brain. Arti�cial neural

networks have been used to forecast daily maximum ozone in Greece (Chaloulakou

et al., 2003), South Korea (Eslami et al., 2020) and Germany (Kleinert et al., 2021;

Deng et al., 2022). ML ensembles are methods that combine multiple ML models

to improve the accuracy and robustness of predictions. ML ensembles can improve

overall accuracy of ozone forecasts (Gong and Ordieres-Mer�e, 2016), and have been
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shown to perform better than the best performing model within the ensemble (Mallet

et al., 2009).

1.4 Thesis contributions

The contributions of this thesis are motivated by the need to better understand the

risk and drivers of high-level ozone in the UK, especially in a warming climate, and

the need for improved tools with which to model ozone. The overarching objective

of the thesis is to exploit the power of sophisticated data science methods to address

gaps in our knowledge of high-level UK ozone. The aims of this thesis are as follows:

1. To quantify extreme ozone events evaluating their magnitude, frequency, and

likelihood and examining how these events have changed over time.

2. To determine the variability of ozone in both space and time and identifying

long-term trends that are relevant to policymaking.

3. To assess the association of high concentrations of ozone with various

meteorological, spatial and temporal factors.

4. To produce data-driven forecasts for the occurrence of high concentrations of

ozone.

Chapter 2 presents a comprehensive EVA of UK surface level ozone using a

temperature-dependent extremes model. The magnitude, frequency, and likelihood

of extreme ozone events are estimated at ozone measurement stations across the

UK, including an analysis into how these have changed over time. Further, changes

in temperature-dependent risk of high-level ozone are presented.

Chapter 3 develops a ML downscaling methodology to downscale a CTM ozone

surface from a 5Ö5 km to 1Ö1 km resolution, using a gradient boosted tree. The

downscaled surface is comprehensively evaluated and shown to better represent

measurement ozone, particularly high-level ozone. An analysis is performed on the
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downscaled surface, original CTM surface and measurement data, and the current

state of UK-wide ozone is presented along with trends over time. Finally, the e�ects

of three NOX reduction scenarios on UK ozone are considered.

Chapter 4 presents a ML classi�cation-based experimental analysis into the

drivers of high-level ozone measurement data, using gradient boosted trees. The

impact of synoptic weather, meteorological, spatial and temporal features on high-

level ozone is identi�ed. The ML classi�cation method is used to forecast the

presence or absence of high-level ozone events, exploring the potential e�cacy of

ML approaches for operational forecasts.

Chapter 5 concludes the thesis with a summary of all �ndings including

discussion on the contributions to new knowledge of UK surface ozone and the

new application and development of surface ozone modelling methods. Limitations

of this work are also discussed alongside future work.

Chapter 2 is a peer reviewed and published paper, Chapter 3 is under review

and Chapter 4 is in the process of being submitted. Consequently, more speci�c

introductions and motivation are including in each chapter.

16



Chapter 2

A temperature dependent extreme

value analysis of UK surface

ozone, 1980{2019

Lily Gouldsbrough1, Ryan Hossaini1,2, Emma Eastoe3, Paul J. Young1,2

1Lancaster Environment Centre, Lancaster University, Lancaster, UK

2Centre of Excellence in Environmental Data Science, Lancaster University,

Lancaster, UK

3Department of Mathematics and Statistics, Lancaster University, Lancaster, UK

Corresponding author : Lily Gouldsbrough (l.gouldsbrough@lancaster.ac.uk)

The following work was published in Atmospheric Environment on 15th March 2022

(citation: A temperature dependent extreme value analysis of UK surface ozone,

1980{2019, Atmospheric Environment, Volume 273, 2022, 118975, ISSN 1352-2310,

https://doi.org/10.1016/j.atmosenv.2022.118975). The authors contributions are

listed on the following page.

17



Chapter 2. A temperature dependent extreme value analysis of UK surface ozone,
1980{2019

Statement of contribution . Lily Gouldsbrough led the methodology, data

curation and analysis and conceived the study alongside Ryan Hossaini, Emma

Eastoe and Paul J. Young. Lily Gouldsbrough drafted the manuscript, with guidance

from Ryan Hossaini, Emma Eastoe and Paul J. Young.

18



Abstract

Elevated surface ozone during heatwaves and recent hot summers raises concerns

over the potential for climate change to exacerbate ozone air pollution in the UK.

In this paper, we perform a robust statistical analysis of four decades worth of daily

maximum 8-hour (MDA8) ozone measurements from the UK's Automated Urban

and Rural Network. A temperature dependent extreme value model is developed to

characterise the magnitude and frequency of extreme ozone events and to determine

probabilities for ozone exceeding health thresholds, as de�ned in the UK's air quality

index. Our model is found to describe the tails of the MDA8 ozone distributions well

at all 119 monitoring sites considered. For the decade 2010{2019, we estimate that

> 90% of sites have a 1-year MDA8 ozone return level greater than the `moderate'

ozone threshold of 100µg=m3. We also �nd that 33% of sites are currently expected

to breach the UK government's national air quality objective that MDA8 ozone

should not exceed 100µg=m3 more than ten times per year. We estimate the

present overall probability of MDA8 ozone exceeding 100µg=m3 on a given day

to be between< 0.1% and 5.4%, depending on site, with averages of 2.7% (rural)

and 1% (urban background locations). Our analysis reveals a signi�cant decline

over time in the likelihood of the UK experiencing extreme ozone episodes, with

1-year return levels in the 1980s now roughly comparable to 10-year return levels

in the present. Similarly, probabilities of MDA8 ozone exceeding 100µg=m3 have

decreased by a factor of� 2{6 since the 1980s in some locations. However, our

results also highlight a strong positive temperature dependence to the risk of ozone

exceedances. In consequence, increasingly hot summers due to climate change may

o�set some of these gains.
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2.1 Introduction

Tropospheric ozone (O3) is a short-lived secondary air pollutant and greenhouse gas.

It is formed in the presence of sunlight through a complex set of chemical reactions

involving precursor pollutants nitrogen oxides (NOX = NO 2 + NO) and volatile

organic compounds (VOCs). At ground level, ozone concentrations vary spatially

and temporally on seasonal, interannual and decadal time-scales due to heterogeneity

in sources and sinks, meteorological variability and trends in precursor emissions

from natural and anthropogenic sources (O. R. Cooper et al., 2014; P. S. Monks

et al., 2015; Pope et al., 2016). Strong evidence exists linking short-term ozone

exposure to respiratory health issues, hospital admission and mortality (Ji et al.,

2011; COMEAP, 2015; Nuvolone et al., 2018), and it has been estimated that,

globally, exposure to elevated ozone caused an added 254,000 deaths and a loss

of 4.1 million disability-adjusted life years (DALYs; number of years lost due to

ill health, disability or early death) from chronic obstructive pulmonary disease in

2015 (Cohen et al., 2017). The damaging e�ects of ozone on crops and their yields

are also well documented (e.g. Van Dingenen et al., 2009. Of special relevance to

short-term exposure are episodes of elevated ozone concentrations. Such episodes

involve only the highest values in the dataset and are sometimes referred to instead

as extreme events. Understanding the drivers of such events has been a signi�cant

area of research in recent years, motivated in part by concern that climate change

could exacerbate air pollution (e.g. Otero et al., 2016; Y. Zhang and Yuhang Wang,

2016; M. Lin et al., 2020). Here, we use extreme value analysis to investigate the

magnitude and frequency of extreme ozone events and to determine trends over

time.

In the UK, surface ozone is monitored routinely at more than a hundred locations

nationwide, with records dating back to the 1970s at some sites. Despite the

availability of this rich set of ozone data, only a few studies have investigated the

occurrence, likelihood and spatiotemporal variability of high level ozone. Diaz et al.

(2020) analysed UK ozone trends over the period 1992 to mid-2019 at selected sites.
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They reported positive trends in annual mean ozone of 0.13 ppb/yr (0.5%/yr, p

< 0.001) and 0.20 ppb/yr (1.1%/yr, p < 0.001) across 13 rural and 6 urban sites,

respectively. Annual maximum ozone was shown to have decreased over the same

period at a rate of 1.0 ppb/yr and 0.68 ppb/yr. Using all available monitoring data,

Finch and Palmer (2020) reached similar conclusions for annual mean ozone levels.

They found no signi�cant trends in the annual maximum, but did �nd a reduction

in the magnitude and occurrence of high levels of ozone at all but one site. These

studies broadly corroborate and update earlier work on UK ozone trends (Jenkin,

2008; Munir et al., 2012).

In this study extreme value analysis (EVA) is used to investigate extreme ozone

events in the UK. EVA provides a robust, 
exible statistical method to model and

analyse observations that are unusually large (or small), i.e., values in the tail of

the sample distribution. It is a valuable tool for estimating both the magnitude

and the probability of extreme events and has found use in a range of environmental

applications, including extreme precipitation (e.g. Towler et al., 2020), temperatures

(e.g. Leeson et al., 2018) and wind speeds (e.g. Hundecha et al., 2008). There are

two main EVA methods: generalised extreme value (GEV) and peak-over-threshold

(POT) models. GEV models are appropriate for block maxima (or minima) of time

series data, such as annual maxima, whereas the POT model is applied to all peak

values that exceed (or fall below) a pre-de�ned high (or low) threshold. Both models

have stationary and non-stationary versions.

Rieder et al. (2013) applied a stationary POT model to summer ozone

concentrations in the US. They found that the frequency and magnitude of high

ozone events has, over time, signi�cantly declined in response to air quality

regulations aimed at lowering NOX emissions. Along with others (Phalitnonkiat

et al., 2016), their results highlight the usefulness of EVA in assessing the long-

term e�cacy of air quality interventions. Stationary POT models have also been

used to assess air quality in areas such as Peninsular Malaysia (Masseran et al.,

2015), Istanbul (Sayg�n et al., 2018), and Barcelona, where there was found to be
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a pronounced seasonal e�ect of ozone levels exceeding European health threshold

levels (Tob��as and Scotto, 2005). However, environmental time-series often display

non-stationarity (e.g. shifting mean state) and both GEV and POT models are

routinely adapted to re
ect this non-stationarity, e.g. the seasonal patterns and

trends seen in ozone observations. A non-stationary GEV model, incorporating

precursor pollutants and meteorological variables, applied to ozone episodes in Delhi

found that the highest ozone concentrations are most likely to occur in the monsoon

season and the lowest in the winter season (Hazarika et al., 2019). A few studies

do apply EVA to UK air quality including non-stationarity but all are limited to

analysis of a single site (Eastoe, 2009; Eastoe and Tawn, 2009; Gyarmati-Szab�o

et al., 2017).

Observational studies in many parts of the world report positive ozone-

temperature correlations (e.g. Bloomer, Stehr, et al., 2009). From a process

standpoint, e�orts to understand the ozone-temperature relationship are still

underway. However, the positive ozone-temperature association may re
ect several

underlying mechanisms (e.g. W. Sun et al., 2017; Romer et al., 2018; Porter

and Heald, 2019): (1) the net e�ect of temperature-dependent reaction kinetics

that govern production and loss of ozone and its precursors, (2) the association of

temperature with air stagnation at the synoptic scale, and (3) the temperature-

dependence of biogenic ozone precursor emissions. Further, dry and hot weather

conditions can cause vegetation to become stressed, resulting in reductions in dry

deposition leading to maintained high ozone concentrations (M. Lin et al., 2020). In

the UK, elevated ozone concentrations occur in spring and summer, accompanying

warmer temperatures. Pope et al. (2016) showed that summertime ozone was

particularly elevated under anticyclonic conditions and when the UK is subject

to a south-easterly weather 
ow type. While studies to understand the e�ects

of temperature on surface ozone in parts of Europe have been conducted (e.g.

Noelia Otero, Rust, et al., 2021), few UK-focused studies exist on temperature

and extreme ozone. Finch and Palmer (2020) demonstrated that the likelihood of
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UK ozone health threshold exceedances (> 100µg=m3) increases with temperature:

50% of observed exceedances were found to occur above 18� C for rural monitoring

sites and 21� C for urban monitoring sites.

In this study, a temperature dependent extreme value model is developed and

applied to daily maximum 8-hour average (MDA8) ozone concentrations recorded

at 119 measurement sites across the UK. The relationship between daily maximum

temperature and MDA8 ozone is characterised for each site. Our objectives are

to (1) determine the probabilities, magnitudes and frequencies of extreme ozone

episodes across the UK; (2) examine how extreme ozone events have changed on

decadal timescales; and (3) characterise how the extremal characteristics of ozone

are in
uenced by temperature. Section 2.2 describes the measurements of surface

ozone and temperature data used in the analysis. Section 2.3 provides a technical

overview of our EVA approach. Results are presented in Section 2.4, including

analysis of present-day ozone extremes (Section 2.4.1), trends over decades (2.4.2)

and the in
uence of temperature (2.4.3). A summary and conclusions are given in

Section 2.5.

2.2 UK surface ozone and temperature data

We calculated MDA8 ozone from hourly concentration data reported for 119

measurement sites of the UK's Automatic Urban and Rural Network (AURN):

https://uk-air.defra.gov.uk. The network is a major component of the UK's air

quality monitoring infrastructure. It provides near-continuous statutory nationwide

monitoring of the ambient surface concentration of ozone and other important air

pollutants (e.g. NOX , particulate matter). AURN monitors ozone concentrations for

six di�erent site types: rural background, urban background, suburban background,

urban industrial, suburban industrial and urban tra�c. Most of the sites used in

this paper (83% of the total) are rural or urban background. Table A.1 provides

information on each site, with the geographical regions in which sites are located
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shown in Figure A.1. We focus on the period 1980{2019, though the length of the

ozone record varies across sites within this period. Seven monitoring sites have data

records since the 1980s and 30 monitoring sites have data records since the 1990s,

allowing for decadal changes to be examined at these locations.

The UK Department for Environment, Food and Rural A�airs (Defra) de�nes

a Daily Air Quality Index (DAQI) to provide the public with health-related

information based on the levels of various air pollutants. Our analysis uses the

thresholds de�ned in the DAQI as relevant health threshold metrics to classify

ozone concentrations exceeding 100µg=m3, 160µg=m3 and 240µg=m3 as `moderate',

`high' and `very high', respectively. These thresholds are based on the maximum

of the running 8-hour mean ozone concentration (MDA8). In subsequent sections

we consider how surface temperature in
uences the likelihood of exceeding these

thresholds.

The daily maximum temperature data used for this analysis are from the HadUK-

Grid 1 km gridded dataset (O�ce et al., 2020). This dataset is constructed based

on UK station observations from the Met O�ce's extensive Integrated Data Archive

System (MIDAS) and has been through rigorous quality control and evaluation

(Hollis et al., 2019).

2.3 Extreme Value Analysis model

2.3.1 Ozone season de�nition

It is well established from extensive global monitoring programmes that surface

ozone concentrations exhibit a marked seasonal cycle (Scheel et al., 1997; Paul S

Monks, 2000). In the UK, ozone is generally elevated in boreal spring and summer

and at a minimum in boreal autumn and winter. Using all available ozone data

from 1980{2019, we de�ne a site-speci�c `ozone season' as the months where monthly

mean MDA8 ozone is greater than the 40th percentile of all MDA8 ozone observations

at the site. This provides an objective, data-driven means to extract only periods
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with elevated ozone. We �nd variation in when each site experiences elevated levels

of ozone, as shown for two example sites in Figure 2.1. A summary of each site's

ozone season is given in Table A.1. Our ozone season de�nition captures 98% of days

on which the MDA8 ozone concentrations exceed the moderate health threshold level

of 100µg=m3 across all sites. Consequently, for the rest of the paper we consider

only MDA8 ozone within each site's ozone season (typically March{September).

Subsetting the data in this way focusses attention on periods most relevant to human

health.

2.3.2 Extreme value model

Extreme value models are probabilistic models that are used to extrapolate beyond

a sample of data to estimate values that are rarer than those observed in-sample.

Extreme value models can be either stationary or non-stationary. A stationary

model assumes that the extreme values have no trends or seasonality, whereas a

non-stationary extremes model accounts for trends and/or seasonality. The classical

approach to modelling extremes is based on block maxima (Fisher and Tippett,

1928), where a block is an amount of time. In this method, the blocks for the block

maxima must be large (e.g. annual maxima) for the modelling assumptions to hold.

Furthermore, if data other than block maxima are available, retaining only one

value per block can be wasteful of the information contained in other large values.

The POT method that we use instead speci�es a model for all exceedances above a

chosen high thresholdu (Davison and Smith, 1990) utilising all extreme data and

allowing blocks to contribute zero, one or multiple events.

2.3.2.1 Threshold choice

To separate the extreme MDA8 ozone observations from non-extreme values, we �rst

de�ned a modelling thresholdu. This threshold is inherent to the POT approach

and is not related to any health threshold concentration of ozone. The choice of

modelling threshold is a crucial step for two reasons. First, a threshold that is too
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Figure 2.1: The ozone season period (highlighted in yellow) for two example sites:

(a) Manchester Piccadilly and (b) Derry Rosemount. The grey swarm plots are the

MDA8 ozone observations (µg=m3) from 1980{2019 (where available). The blue line

is the 40th percentile of all MDA8 ozone observations. The red dots are the monthly

mean MDA8 ozone.
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low leads to bias within the parameter estimates, caused by non-extreme data being

included in the model. Second, a too high threshold will lead to high variance in

the parameter estimates, because too few data will have been used to �t the model.

A common compromise is to set a stationary threshold to be the 90th percentile of

the dataset.

Ozone is formed in the presence of sunlight, and particularly high concentrations

are often reached during heatwaves or periods of prolonged warm temperatures with

stagnant meteorological conditions (e.g. Vieno, Dore, et al., 2010; Pope et al., 2016;

Varotsos et al., 2019). In this work, the relationship between ozone and temperature

was evaluated at all sites considered. We �nd a non-linear relationship between

MDA8 ozone and daily maximum temperature as shown for two example sites in

A.2. Due to the seasonal behaviour of ozone, use of a stationary threshold (e.g.

the �xed 90th percentile of the data) would lead to modelling only the peak ozone

concentrations that typically occur with higher temperatures. To mitigate this, we

use a temperature dependent modelling threshold. This way, we model extreme

values of ozone relative to the observed temperature, resulting in a lower (higher)

extreme threshold for colder (warmer) temperatures.

To illustrate the above concepts, Figure 2.2 shows scatter plots of MDA8

ozone versus daily maximum temperature at three example sites. The �t of three

di�erent modelling thresholds were evaluated: a stationary threshold, a temperature

dependent linear threshold, and a temperature dependent natural cubic spline

threshold. Since the natural cubic spline provides the best approximation to the

non-linear ozone-temperature relationship, we set the modelling thresholdu, to

be the 90th percentile of a natural cubic spline regression, i.e., the concentrations

above the green line in Figure 2.2 are deemed to be `extreme', with the threshold

computed individually for each site. Previous studies have reported positive, non-

linear relationships between ozone concentration and temperature (e.g. Bloom�eld

et al., 1996).
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Figure 2.2: Examples of three di�erent extreme modelling thresholds for MDA8

ozone for three di�erent monitoring sites: (a) Sibton, (b) Manchester Piccadilly and

(c) London Eltham. The coloured lines indicate di�erent threshold de�nitions: blue

is a stationary threshold, set at the 90th percentile of all MDA8 ozone observations;

orange is a linear threshold, set at the 90th percentile of a linear regression between

MDA8 ozone and daily maximum temperature; and green is a threshold that varies

with temperature, consisting of the 90th percentile of a natural cubic spline regression

between MDA8 ozone and daily maximum temperature. This latter threshold is used

in the study.
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