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Abstract

In addition to atmospheric observations, numerical models are crucial to understand

the impacts of human activities on the environment, from attributing poor air quality

to assessing climate change impacts. While process-based models, such as chemistry

transport models (CTMs), are widely used, recent data science advances enable

greater use of statistical and machine learning methods as alternatives to describe

and predict atmospheric composition. State-of-the-art data science methods can be

faster to run than CTMs and used at high temporal and spatial resolutions due to

codebase efficiencies.

This thesis focuses on modelling UK surface ozone and its drivers (high levels

of which are detrimental to human and plant health) through the development

and novel application of sophisticated statistical and machine learning techniques.

Motivated by possible adverse effect of climate change on ozone concentrations, a

temperature-dependent Extreme Value Analysis is used to explore the probability,

magnitude, and frequency of extreme ozone events over recent decades. For

2010–2019, it is found that the 1-year return level of daily maximum 8-h mean

(MDA8) ozone exceeds the ‘moderate’ health threshold (100 µg/m3) at >90% of

sites, but that the probability of extreme ozone events has markedly decreased since

the 1980s.

A machine learning methodology to downscale and bias correct a CTM

(EMEP4UK) ozone surface was developed and evaluated. Compared to the

unadjusted CTM, the downscaled surface exhibits a lower bias in reproducing MDA8

ozone allowing more robust assessments of important policy metrics. Analysis of
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the downscaled product (2014–2018) reveals on average 27% of the UK fails the

government long-term objective for MDA8 ozone to not exceed 100µg/m3 more than

10 times per year, compared to 99% in the unadjusted CTM. A classification-based

machine learning analysis into high-level ozone drivers was also performed and shows

a robust relationship between ozone and temperature. The method is demonstrated

to offer remarkable promise as a tool with which to forecast the presence of high-level

ozone. Despite a UK focus, the data-driven methods developed and applied here

are applicable to modelling ozone in other regions of the world where measurements

exist
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Chapter 1

Introduction

Atmospheric science has significantly advanced our understanding of the world by

providing insights into both the natural composition of the Earth’s atmosphere and

changes in composition brought about by human activities. Atmospheric models

play a key part in evolving our understanding of physical and chemical processes,

including assessing the impact of climate change on the atmosphere. They are

also an essential operational tool for meteorological and air quality forecasting.

Whilst there are many different branches of atmospheric modelling, the focus of this

thesis is on models which help to explain the chemical properties and composition

of the atmosphere. Early atmospheric chemistry transport models (CTMs) were

two dimensional and utilised only the most fundamental equations to explain

atmospheric behaviour. However, advances in computing capabilities and our

comprehension of the complex physical processes that govern the Earth’s atmosphere

have led to three dimensional models of increasing complexity. Today’s CTMs are

highly sophisticated, and can simulate a range of atmospheric phenomena, including

atmospheric chemistry from the surface to the mesosphere, large-scale weather

patterns, and storms, which has made them invaluable for weather forecasting,

climate research and environmental monitoring.

Whilst CTMs have been widely used for decades and will continue to play

a vital part in atmospheric science, recent advances in statistical and machine
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learning methods combined with the availability of large quantities of atmospheric

observational data has led to the increased use of data science methods in

atmospheric science. These data-driven methods, which are often far more flexible

and faster to train than atmospheric CTMs (i.e., cost of model runs and code

development), provide a complementary way in which to study the changing

behaviour of the atmosphere. In recent years, advances in technology have led

to an unprecedented amount of atmospheric data being collected, including remote

observations (e.g. satellite), in situ observations (e.g. weather stations), and climate

model output. This data provides an enormous amount of information about the

state and behaviour of the Earth’s atmosphere. However, the sheer volume of data

poses a significant challenge for traditional data analysis techniques. Modern data

science methods offer powerful tools for handling and analysing large and complex

datasets, providing the ability to identify patterns that may not be visible through

traditional modelling approaches. Additionally, these models support the fusion of

a wide range of variables and sources of data, combining information and providing

a more comprehensive understanding of atmospheric behaviour.

Air pollution is a critical aspect of atmospheric science, and its study is of great

importance for both environmental and public health reasons. Acute and chronic

exposure to air pollution has been linked to a wide range of health issues, including

respiratory problems, heart disease, dementia, and contributes to premature death

(Anderson et al., 2004; Dı́az et al., 2018; Nuvolone et al., 2018). Additionally,

air pollution can harm plant and animal life, damage ecosystems, and contribute

to climate change (i.e., as key air pollutants, such as ozone and aerosol, are also

climate forcers) (Sandermann Jr, 1996; Ainsworth et al., 2012; Karmakar et al.,

2022). Therefore, understanding and mitigating the effects of air pollution is crucial

for the well-being of both current and future generations.

This thesis presents a collection of data-driven models for surface level ozone

in the UK, developed using data science methodology. The adoption of data

science methods in air pollution modelling has increased in recent years, from
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operational forecasting of pollutant concentrations (Kleinert et al., 2021) to creating

high-resolution bias-corrected surfaces of various air pollutants for understanding

health impacts (Gariazzo et al., 2020; Silibello et al., 2021; Bertrand et al., 2022).

Despite the increasing use of data science methods in atmospheric modelling, there

are still important challenges to be addressed. These include issues related to

model complexity, modelling and predicting rare events, and the need to develop

interpretable models that can be used for decision-making and to help understand

atmospheric processes. This thesis explores the application and development of

data science methods in modelling of surface level ozone, with a particular focus on

elevated concentrations.

This introduction presents a discussion of surface level ozone, the impacts of

high-level ozone episodes, and the state of surface level ozone in the UK, followed

by a summary of the existing methods to model surface level ozone. A brief overview

of the thesis contributions is presented along with an outline of the remaining thesis

structure. The subsequent chapters are each self-contained and include separate

introductions and literature reviews that expand upon the following literature

review.

1.1 Surface level ozone

1.1.1 Overview

Surface level ozone is formed through a complex series of chemical reactions. The

concentration of ozone at any given time or place is controlled by a variety of

factors, including emissions of ozone precursors and meteorological conditions. Key

precursors are nitrogen oxides (NOX) and volatile organic compounds (VOCs) (Tan

et al., 2018; Lu et al., 2019; Zhao et al., 2022). Sources of NOX include emissions

from vehicles (Ogur and Kariuki, 2014), industrial processes (Olivier et al., 1998),

and natural sources such as lightening (Levine et al., 1984), whilst VOCs are

commonly found in various products such as paints, solvents, cleaning agents,
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and fuels, as well as being emitted from transportation and industrial processes

(Kim et al., 2001; H. Wang et al., 2013; Halios et al., 2022). Both precursors

and ozone itself can be transported over long distances by atmospheric circulation

patterns (Q. Li et al., 2002), with concentrations in the UK largely influenced

by hemispheric- and regional- scale effects (Jenkin, 2008), consequently ozone

concentrations are related not just to local point sources of precursor pollutants

but also atmospheric transport and synoptic scale weather. Other factors that

influence ozone formation and dispersion include meteorological conditions, such

as temperature, humidity, and wind speed, and the availability of sunlight, which

is necessary for the photochemical reactions that produce ozone (Otero et al., 2016;

Carro-Calvo et al., 2017; Noelia Otero, Sillmann, et al., 2018). In addition to

dispersion in the atmosphere, ozone concentrations can also be depleted through dry

deposition onto vegetation and buildings and other surfaces (Clifton et al., 2020).

The interactions between these factors can result in complex and variable patterns

of ozone concentrations, both spatially and temporally.

1.1.2 Impacts of high-level ozone

Concerns over high levels of surface level ozone arise from the range of negative

impacts that such levels have on human health, vegetation, and ecosystems. One of

the most significant impacts is its effect on human health. Ozone is an irritant to the

respiratory system, and exposure to high concentrations can cause coughing, throat

irritation, and shortness of breath. In individuals with pre-existing respiratory

conditions such as asthma or chronic obstructive pulmonary disease, exposure to

high levels of ozone can exacerbate symptoms and lead to hospitalisation or mortality

(Nuvolone et al., 2018; J. Zhang et al., 2019).

High-level surface ozone can also have negative effects on vegetation. Ozone

exposure can lead to a decrease in photosynthesis and plant growth, as well as an

increase in leaf damage and premature leaf drop (Sandermann Jr, 1996; Karmakar

et al., 2022). This can have significant impacts on crops, leading to decreased yields
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and lower quality produce (Heagle, 1989; Avnery et al., 2011; Ghude et al., 2014).

Reduced crop yields have a severe economic impact, with ozone flux-based estimates

of wheat yield losses to be 4.56 billion Euro in Europe (specifically, regions in the

European Monitoring and Evaluation Programme), equating to a mean yield loss of

13%. The greatest economic losses are found in important wheat growing areas in

western and central Europe (Harmens et al., 2015).

Lastly while surface level ozone is most detrimental to human health and

vegetation, it is also detrimental to climate change. Trees and other plants play a

key role in absorbing carbon dioxide and mitigating the impacts of climate change,

so damage to vegetation from high levels of ozone has the potential to exacerbate

the effects of climate change by affecting carbon uptake (Ainsworth et al., 2012).

Furthermore, ozone is a greenhouse gas in the upper troposhere, as it absorbs

and emits infrared radiation in the atmosphere (Mohnen et al., 1993), and its

tropospheric burden has increased by ∼44% between the year 1850 (pre-industrial)

and 2005–2014 (Griffiths et al., 2021). Although the impact of ozone, a short-

lived climate forcer, on the pre-industrial to present warming is relatively small

compared to other well-mixed greenhouse gases such as methane and CO2, reducing

its concentrations could have a beneficial effect on the overall climate system.

1.1.3 State of UK ozone

1.1.3.1 Monitoring networks

The UK’s first Clean Air Act was introduced in 1956 following the great London

smog in 1952 which resulted in an estimated 3000–12,000 deaths (Bell et al., 2004).

The National Survey, the world’s first co-ordinated national air pollution monitoring

network, was established in 1961 to monitor black smoke and sulphur dioxide

at around 1200 sites in the UK. Subsequently, several pieces of legislation and

additional monitoring networks were introduced to combat and measure air quality

(Defra, 2023). A brief overview of these is now given.

Since the 1960s, the focus has been on monitoring pollutants generated from
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vehicular emissions, including ozone, nitrogen dioxide, and fine particulate matter.

The Enhanced Urban Network was established in 1992, consolidating all statutory

and other urban monitoring into one comprehensive program. Over the next

five years, more than 50 local authority sites, including 14 of the London Air

Quality Monitoring Network sites, were integrated into one network. In 1998, the

UK urban and rural automatic networks were combined to form the Automatic

Urban and Rural Network (AURN), which, as of the end of 2021, comprises

over 170 sites across the UK (Defra, 2023). The Scottish Air Quality Network

(see https://scottishairquality.scot), run by the Scottish Environment Protection

Agency, and the Welsh Air Quality Network (see https://airquality.gov.wales/),

run by the Welsh government, are mostly incorporated into the AURN network.

Together, these networks provide a comprehensive picture of air quality across the

UK, allowing policymakers to identify areas of concern and target interventions to

improve air quality.

The London Air Quality Network (LAQN, see https://londonair.org.uk/) was

formed in 1993 and is a collaborative project between King’s College London and

the Greater London Authority. The aim of the network is to monitor and report

air quality across the Greater London region. The LAQN is the largest urban

monitoring network in the UK, and is composed of over 100 sites across the city

which collect data on a range of air pollutants including nitrogen dioxide, particulate

matter, and ozone. The data collected by the network is used to inform air quality

policy, assess compliance with legal air quality limits, and provide information to

the public about the levels of air pollution in their local area. The LAQN has played

a vital role in improving air quality in London, helping to inform the introduction

of measures such as the Ultra-Low Emission Zone (ULEZ) and the Low Emission

Bus Zone.
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1.1.3.2 Trends over time and spatial distribution

Peak concentrations of surface ozone in the UK have decreased since the 1990s

(Jenkin, 2008; Diaz et al., 2020). This decrease can be attributed to a combination

of factors, including the implementation of stricter air quality regulations, reductions

in emissions from industrial processes and transportation, and changes in weather

patterns (Jenkin, 2008). However, despite this overall decreasing trend, surface

ozone levels in the UK still exceed national regulatory limits; for example, the

UK’s regulatory limit for 8-hr average daily maximum MDA8 ozone to not exceed

100µg/m3 is broken more than 10 times per year and in 2018, 84% of AURN

monitoring stations broke this objective (Diaz et al., 2020).

Ozone concentrations exhibit a strong seasonal cycle, with levels generally

peaking during the spring and summer in the northern mid-latitudes when

temperatures and solar radiation are higher, conditions conducive to ozone formation

(R. G. Derwent et al., 1998; Paul S Monks, 2000). Concentrations of ozone also

vary throughout the day, following a diurnal cycle that typically peaks in the

mid-afternoon and is lowest at night. During the daytime, high temperatures

and strong solar radiation result in increased surface level ozone production. At

night, a lack of sunlight and cooler temperatures lead to reduced production, which,

combined with increased deposition and depletion, results in lower concentrations.

The subsequent chapters in this thesis do not consider the diurnal cycle of ozone,

and only MDA8 ozone data is used due to the noise present in hourly measurement

data. Furthermore, the UK’s health metrics for ozone are based on MDA8 ozone

instead of hourly.

In addition to exhibiting temporal variability, surface ozone concentrations also

display spatial heterogeneity across the UK, as shown in 1.1. Concentrations of

surface level ozone tend to be highest in rural areas of the UK (AQEG, 2021),

with the greatest number of high-level ozone events occurring in the south (Diaz

et al., 2020). In contrast, urban and suburban areas typically experience lower

concentrations, although local emissions from road transport can significantly
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Figure 1.1: Yearly mean ozone for 2003 across the UK from EMEP4UK.

influence these levels. Hemispheric baseline concentrations of ozone play a large

role in determining ozone levels in the western and northern regions of the UK,

while local emissions from the UK and mainland Europe are important contributors

to ozone levels in the eastern and southern parts of the UK (AQEG, 2021). This

reflects the complex interaction of local-, regional- and hemispheric-scale factors that

influence ozone concentrations, including long-range atmospheric transport patterns,

local emissions sources, and meteorological conditions.

Whilst peak ozone levels have been declining in the UK (Jenkin, 2008; Diaz

et al., 2020; Finch and Palmer, 2020), the acceleration of climate change leaves no

room for complacency. Climate change may already be contributing to increasing

concentrations of surface ozone in many regions, including the UK (Orru et al.,

2013), due to higher temperatures and longer periods of sunlight resulting in more

efficient ozone production. In addition, climate change can also alter the atmospheric

circulation patterns that govern the transport of pollutants, potentially increasing

the frequency and intensity of ozone episodes in certain regions.
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1.2 Challenges of modelling surface level ozone

Although there have been many advances in our understanding of surface level

ozone, many challenges remain, some of which form the core research questions for

this thesis.

1.2.1 High-level ozone

While the general behaviour of surface level ozone is well understood, predicting

occurrence, persistence and magnitude of extreme high-level ozone events can be

challenging. These events are rare by definition and are often localised, meaning

that there is limited observational data available with which to study them. Most

process-based environmental models, including CTMs, are developed to reproduce

average behaviour. However, in air quality monitoring, modelling and forecasting

it is often the highest levels that are of most importance, as it is these that do

the most damage. With their tendency to generalise to mean ozone behaviour,

some traditional CTMs are known to underrepresent high-level ozone (e.g. Wilczak

et al., 2009; C. Lin et al., 2017; Abdi-Oskouei et al., 2020). Further, many common

statistical and machine learning modelling techniques are also designed to generalise

to the mean behaviour of a distribution, and therefore fail to capture extremes

(Velthoen et al., 2022).

1.2.2 High resolution ozone surfaces

High-resolution spatial surfaces are essential to evaluate population exposure and

hence the risk from high-level ozone, not least because of the often localised nature

of episodes. Whilst in situ measurement data has good accuracy, measurement

sites are sparse and not spread evenly across the UK and it is often unknown

how representative individual sites are of a region. CTMs, which generate

gridded surfaces of ozone concentrations, provide a useful extension to measurement

data. However, when compared to measured data, CTMs can exhibit biases
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and often underestimate peak concentrations of high-level ozone events, due to

the localized nature of these events and the coarse gridded surfaces produced by

the models, along with imperfect model representation of various processes (e.g.

emissions). Additionally, CTMs are computationally expensive and often rely on

high performance computers to run. The data produced from these models is

large, as they are replications of massively complex systems with vast numbers of

variables across space and time, making the processing and visualisation of the data

non-trivial. This also limits the resolution (important for exposure assessment) at

which the models can feasibly be run due to the computational requirements needed.

Further, CTM model outputs are not necessarily freely available, and developments

to CTMs can be challenging due to new components needing to fit within existing

model code and the lead time for their implementation.

1.2.3 Identifying drivers of high-level ozone

As previously mentioned, the processes surrounding the generation of very high-level

ozone concentrations are not generally well understood. Identifying the drivers of

such episodes is crucial to both improving this understanding and allowing us to

forecast future episodes. Concentrations of ozone are influenced by a complex set of

interacting and often non-linear relationships between numerous factors, including

local and regional weather (e.g. temperature, wind speed, atmospheric circulation

patterns), and emissions of NOX and VOCs. Despite these challenges, studies have

attempted to identify the most significant drivers of ozone concentrations, such as

synoptic weather patterns that can transport ozone precursors over long distances

or trap pollutants in specific regions (Pope et al., 2016), and source regions of

transported ozone including Europe and hemispheric background (Romero-Alvarez

et al., 2022). These studies have highlighted the need for a comprehensive and

integrated approach to understanding the drivers of ozone concentrations, including

the use of advanced data-driven modelling techniques and the collection of high-

quality data across multiple variables and spatial locations and over a long-term
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period.

1.2.4 Forecasting high-level ozone events

Forecasting high-level ozone concentrations is necessary to be able to alert the public

of high-level ozone events, and particularly keeping those in high-risk groups safe

during ozone episodes. In the UK, operational forecasting models include the Air

Quality Unified Model (AQUM) developed by the UK Met Office and using the

Unified Model dynamical core (Savage et al., 2013). Accurate local forecasts of

pollutants from such models are limited by the spatial resolutions at which the model

operates, chemical boundary conditions, and the reliability of the meteorological

forecasts. For example, official pollution forecasts in the UK are made at a 12×12

km resolution by the Met Office (Savage et al., 2013). ML models present us with

computationally efficient alternatives to produce forecasts based on measurement

data, allowing for forecasts to be made at a sub-12×12 km resolution. Rather than

forecasting ozone concentrations, we forecast the likelihood of high-level ozone events

of most relevance to the public and health services, i.e., health threshold exceedance

days (Neal et al., 2014). Further, finer resolution forecasts would be helpful in

improving localised warnings of high-level ozone events.

1.3 Data science methods to model surface level

ozone

1.3.1 Statistical models

Statistical models provide a stochastic representation of real-world systems. Unlike

CTMs, they do not aim to create an exact mathematical replication of the physical

system, rather they are used to identify patterns, trends and correlations in data,

and can be used to make predictions or estimates based on the data.

Several studies have used statistical methods to model surface level ozone,
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with the methods used being of varying complexity. Multiple linear regression

(MLR) is a commonly used method to model the relationship between explanatory

and response variables. The method involves fitting relationships between the

predictors and the mean response, with the assumption that given the predictors,

the responses are normally distributed about the mean. MLR has been widely

used to model ozone concentrations in various regions, e.g. Malaysia (Ghazali

et al., 2010; Ramli et al., 2010; Napi et al., 2020), India (Allu et al., 2020) and

Kuwait (Abdul-Wahab et al., 2005). However, comparisons of MLR models with

artificial neural networks, a type of machine learning model, have shown that neural

networks perform better in modelling ozone concentrations (Bandyopadhyay and

Chattopadhyay, 2007; Moustris et al., 2012).

Extreme value analysis (EVA) is a branch of statistics that focuses on the analysis

of extreme or rare events. The method is used to model the behaviour of the tail of

a probability distribution, and can be used describe the likelihood, frequency and

magnitude of an extreme event. In atmospheric chemistry, EVA can be applied to

the analysis of air pollution events, such as high levels of surface ozone or particulate

matter, and can help to identify the risk of these events over space and time. EVA

has been used to model ozone concentrations in limited regions of the UK (Eastoe,

2009; Eastoe and Tawn, 2009), India (Hazarika et al., 2019), California (Wilson

et al., 2022), and across the US (Shen et al., 2016), and the approach is gaining

prominence as a useful tool with which to characterise exposure risk.

Spatial statistical models are useful to create high-resolution surfaces of ozone,

including at locations where there are no measurements. Several statistical methods

exist to interpolate between measurement stations, including kriging (Adam et al.,

2014), Bayesian inference (Zidek et al., 2000; Reich, Fuentes, et al., 2011) and

Gaussian processes (Gelfand and Schliep, 2016). Statistical bias correction methods

can also be used to correct CTM output; such output provides a useful alternative

to interpolating point measurement data; however, CTM output is often biased

compared to measurements due to model uncertainty and coarse spatial resolution.
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Possible methods include linear regression (Onwukwe and Jackson, 2021), Bayesian

Maximum Entropy (Reyes and Serre, 2014), Kalman filters (Ponomarev et al.,

2021), and quantile mapping (Stähle, 2019). Biases due to the coarse resolution of

CTMs can alternatively be addressed by downscaling the model outputs. Statistical

downscaling methods include fitted empirical orthogonal functions (Alkuwari et al.,

2013), principle fitted components (Alkuwari et al., 2013) and a model diagnostic

and correction approach (Guillas et al., 2008).

A better understanding of the drivers behind ozone, particularly high-level ozone,

is useful in informing future development of both data-driven and numerical models.

One particularly statistical method that is useful in identifying these relationships

is principal component analysis (PCA). PCA can be used to determine the most

relevant features in modelling ozone concentrations, and can be used as a variable

selector to reduce the dimensionality of a multivariate dataset (Abdul-Wahab et al.,

2005).

Time series modelling is useful in forecasting future concentrations of ozone.

Time-series models, such as ARIMA and regression, have previously been used to

forecast ozone concentrations (Robeson and Steyn, 1990; K. Kumar et al., 2004;

Dueñas et al., 2005; U. Kumar and De Ridder, 2010; Y.-R. Li et al., 2021). CTMs

are commonly used to produce operational air quality forecasts (e.g. Savage et al.,

2013), however, the forecasts from these models often benefit from statistical post-

processing methods that incorporate recent observations to improve the accuracy of

the forecasts (e.g. Neal et al., 2014).

1.3.2 Machine learning models

While statistics draws population inferences from a sample, machine learning (ML)

finds generalizable predictive patterns (Bzdok et al., 2018). With the emergence

of open-source ML software packages and the increasing availability of very large

datasets, there has been a growing interest in using ML methods as an alternative

to traditional statistical models.
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ML methods have been widely used to create spatio-temporal surfaces of ozone

by combining data from CTMs and measurements, e.g. extreme gradient boosting

has been used to create a spatio-temporal ozone surface for a region in China (Hu

et al., 2022), a Bayesian ensemble ML framework has been used to downscale the

Community Multiscale Air Quality model (Ren et al., 2022), and a convolutional

neural network has been used to downscaled GEOS Composition Forecast (Geiss

et al., 2022).

With the help of explainer models which interpret the output of a ML model, ML

can identify the drivers of ozone by analysing the interactions between multiple input

features. Several explainer models exist, for instance SHapley Additive exPlanations

is a model-agnostic method that provides a way to explain the output of any

machine learning model by assigning importance scores to each feature in the input

data (Lundberg and S.-I. Lee, 2017). Another popular explainer model is Local

Interpretable Model-Agnostic Explanations that is used to identify the important

features in a model and explain how they contribute to the model’s predictions

(Ribeiro et al., 2016).

ML has also emerged as a powerful tool for forecasting concentrations of surface

level ozone. Methods can be based solely on measurement data or combined with

information from CTMs and meteorological forecasts. Random forests and gradient

boosted trees (ensembles of decision trees) are popular ML models as they can model

non-linear relationships between many input features and have been used to forecast

ozone in Australia (Jiang and Riley, 2015) and the US (Du et al., 2022). Artificial

neural networks are a type of deep learning method that use layers of interconnected

nodes or neurons in a structure inspired by the human brain. Artificial neural

networks have been used to forecast daily maximum ozone in Greece (Chaloulakou

et al., 2003), South Korea (Eslami et al., 2020) and Germany (Kleinert et al., 2021;

Deng et al., 2022). ML ensembles are methods that combine multiple ML models

to improve the accuracy and robustness of predictions. ML ensembles can improve

overall accuracy of ozone forecasts (Gong and Ordieres-Meré, 2016), and have been
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shown to perform better than the best performing model within the ensemble (Mallet

et al., 2009).

1.4 Thesis contributions

The contributions of this thesis are motivated by the need to better understand the

risk and drivers of high-level ozone in the UK, especially in a warming climate, and

the need for improved tools with which to model ozone. The overarching objective

of the thesis is to exploit the power of sophisticated data science methods to address

gaps in our knowledge of high-level UK ozone. The aims of this thesis are as follows:

1. To quantify extreme ozone events evaluating their magnitude, frequency, and

likelihood and examining how these events have changed over time.

2. To determine the variability of ozone in both space and time and identifying

long-term trends that are relevant to policymaking.

3. To assess the association of high concentrations of ozone with various

meteorological, spatial and temporal factors.

4. To produce data-driven forecasts for the occurrence of high concentrations of

ozone.

Chapter 2 presents a comprehensive EVA of UK surface level ozone using a

temperature-dependent extremes model. The magnitude, frequency, and likelihood

of extreme ozone events are estimated at ozone measurement stations across the

UK, including an analysis into how these have changed over time. Further, changes

in temperature-dependent risk of high-level ozone are presented.

Chapter 3 develops a ML downscaling methodology to downscale a CTM ozone

surface from a 5×5 km to 1×1 km resolution, using a gradient boosted tree. The

downscaled surface is comprehensively evaluated and shown to better represent

measurement ozone, particularly high-level ozone. An analysis is performed on the
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downscaled surface, original CTM surface and measurement data, and the current

state of UK-wide ozone is presented along with trends over time. Finally, the effects

of three NOX reduction scenarios on UK ozone are considered.

Chapter 4 presents a ML classification-based experimental analysis into the

drivers of high-level ozone measurement data, using gradient boosted trees. The

impact of synoptic weather, meteorological, spatial and temporal features on high-

level ozone is identified. The ML classification method is used to forecast the

presence or absence of high-level ozone events, exploring the potential efficacy of

ML approaches for operational forecasts.

Chapter 5 concludes the thesis with a summary of all findings including

discussion on the contributions to new knowledge of UK surface ozone and the

new application and development of surface ozone modelling methods. Limitations

of this work are also discussed alongside future work.

Chapter 2 is a peer reviewed and published paper, Chapter 3 is under review

and Chapter 4 is in the process of being submitted. Consequently, more specific

introductions and motivation are including in each chapter.
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Abstract

Elevated surface ozone during heatwaves and recent hot summers raises concerns

over the potential for climate change to exacerbate ozone air pollution in the UK.

In this paper, we perform a robust statistical analysis of four decades worth of daily

maximum 8-hour (MDA8) ozone measurements from the UK’s Automated Urban

and Rural Network. A temperature dependent extreme value model is developed to

characterise the magnitude and frequency of extreme ozone events and to determine

probabilities for ozone exceeding health thresholds, as defined in the UK’s air quality

index. Our model is found to describe the tails of the MDA8 ozone distributions well

at all 119 monitoring sites considered. For the decade 2010–2019, we estimate that

>90% of sites have a 1-year MDA8 ozone return level greater than the ‘moderate’

ozone threshold of 100µg/m3. We also find that 33% of sites are currently expected

to breach the UK government’s national air quality objective that MDA8 ozone

should not exceed 100 µg/m3 more than ten times per year. We estimate the

present overall probability of MDA8 ozone exceeding 100µg/m3 on a given day

to be between <0.1% and 5.4%, depending on site, with averages of 2.7% (rural)

and 1% (urban background locations). Our analysis reveals a significant decline

over time in the likelihood of the UK experiencing extreme ozone episodes, with

1-year return levels in the 1980s now roughly comparable to 10-year return levels

in the present. Similarly, probabilities of MDA8 ozone exceeding 100 µg/m3 have

decreased by a factor of ∼2–6 since the 1980s in some locations. However, our

results also highlight a strong positive temperature dependence to the risk of ozone

exceedances. In consequence, increasingly hot summers due to climate change may

offset some of these gains.
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2.1 Introduction

Tropospheric ozone (O3) is a short-lived secondary air pollutant and greenhouse gas.

It is formed in the presence of sunlight through a complex set of chemical reactions

involving precursor pollutants nitrogen oxides (NOX = NO2 + NO) and volatile

organic compounds (VOCs). At ground level, ozone concentrations vary spatially

and temporally on seasonal, interannual and decadal time-scales due to heterogeneity

in sources and sinks, meteorological variability and trends in precursor emissions

from natural and anthropogenic sources (O. R. Cooper et al., 2014; P. S. Monks

et al., 2015; Pope et al., 2016). Strong evidence exists linking short-term ozone

exposure to respiratory health issues, hospital admission and mortality (Ji et al.,

2011; COMEAP, 2015; Nuvolone et al., 2018), and it has been estimated that,

globally, exposure to elevated ozone caused an added 254,000 deaths and a loss

of 4.1 million disability-adjusted life years (DALYs; number of years lost due to

ill health, disability or early death) from chronic obstructive pulmonary disease in

2015 (Cohen et al., 2017). The damaging effects of ozone on crops and their yields

are also well documented (e.g. Van Dingenen et al., 2009. Of special relevance to

short-term exposure are episodes of elevated ozone concentrations. Such episodes

involve only the highest values in the dataset and are sometimes referred to instead

as extreme events. Understanding the drivers of such events has been a significant

area of research in recent years, motivated in part by concern that climate change

could exacerbate air pollution (e.g. Otero et al., 2016; Y. Zhang and Yuhang Wang,

2016; M. Lin et al., 2020). Here, we use extreme value analysis to investigate the

magnitude and frequency of extreme ozone events and to determine trends over

time.

In the UK, surface ozone is monitored routinely at more than a hundred locations

nationwide, with records dating back to the 1970s at some sites. Despite the

availability of this rich set of ozone data, only a few studies have investigated the

occurrence, likelihood and spatiotemporal variability of high level ozone. Diaz et al.

(2020) analysed UK ozone trends over the period 1992 to mid-2019 at selected sites.
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They reported positive trends in annual mean ozone of 0.13 ppb/yr (0.5%/yr, p

<0.001) and 0.20 ppb/yr (1.1%/yr, p <0.001) across 13 rural and 6 urban sites,

respectively. Annual maximum ozone was shown to have decreased over the same

period at a rate of 1.0 ppb/yr and 0.68 ppb/yr. Using all available monitoring data,

Finch and Palmer (2020) reached similar conclusions for annual mean ozone levels.

They found no significant trends in the annual maximum, but did find a reduction

in the magnitude and occurrence of high levels of ozone at all but one site. These

studies broadly corroborate and update earlier work on UK ozone trends (Jenkin,

2008; Munir et al., 2012).

In this study extreme value analysis (EVA) is used to investigate extreme ozone

events in the UK. EVA provides a robust, flexible statistical method to model and

analyse observations that are unusually large (or small), i.e., values in the tail of

the sample distribution. It is a valuable tool for estimating both the magnitude

and the probability of extreme events and has found use in a range of environmental

applications, including extreme precipitation (e.g. Towler et al., 2020), temperatures

(e.g. Leeson et al., 2018) and wind speeds (e.g. Hundecha et al., 2008). There are

two main EVA methods: generalised extreme value (GEV) and peak-over-threshold

(POT) models. GEV models are appropriate for block maxima (or minima) of time

series data, such as annual maxima, whereas the POT model is applied to all peak

values that exceed (or fall below) a pre-defined high (or low) threshold. Both models

have stationary and non-stationary versions.

Rieder et al. (2013) applied a stationary POT model to summer ozone

concentrations in the US. They found that the frequency and magnitude of high

ozone events has, over time, significantly declined in response to air quality

regulations aimed at lowering NOX emissions. Along with others (Phalitnonkiat

et al., 2016), their results highlight the usefulness of EVA in assessing the long-

term efficacy of air quality interventions. Stationary POT models have also been

used to assess air quality in areas such as Peninsular Malaysia (Masseran et al.,

2015), Istanbul (Saygın et al., 2018), and Barcelona, where there was found to be
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a pronounced seasonal effect of ozone levels exceeding European health threshold

levels (Tob́ıas and Scotto, 2005). However, environmental time-series often display

non-stationarity (e.g. shifting mean state) and both GEV and POT models are

routinely adapted to reflect this non-stationarity, e.g. the seasonal patterns and

trends seen in ozone observations. A non-stationary GEV model, incorporating

precursor pollutants and meteorological variables, applied to ozone episodes in Delhi

found that the highest ozone concentrations are most likely to occur in the monsoon

season and the lowest in the winter season (Hazarika et al., 2019). A few studies

do apply EVA to UK air quality including non-stationarity but all are limited to

analysis of a single site (Eastoe, 2009; Eastoe and Tawn, 2009; Gyarmati-Szabó

et al., 2017).

Observational studies in many parts of the world report positive ozone-

temperature correlations (e.g. Bloomer, Stehr, et al., 2009). From a process

standpoint, efforts to understand the ozone-temperature relationship are still

underway. However, the positive ozone-temperature association may reflect several

underlying mechanisms (e.g. W. Sun et al., 2017; Romer et al., 2018; Porter

and Heald, 2019): (1) the net effect of temperature-dependent reaction kinetics

that govern production and loss of ozone and its precursors, (2) the association of

temperature with air stagnation at the synoptic scale, and (3) the temperature-

dependence of biogenic ozone precursor emissions. Further, dry and hot weather

conditions can cause vegetation to become stressed, resulting in reductions in dry

deposition leading to maintained high ozone concentrations (M. Lin et al., 2020). In

the UK, elevated ozone concentrations occur in spring and summer, accompanying

warmer temperatures. Pope et al. (2016) showed that summertime ozone was

particularly elevated under anticyclonic conditions and when the UK is subject

to a south-easterly weather flow type. While studies to understand the effects

of temperature on surface ozone in parts of Europe have been conducted (e.g.

Noelia Otero, Rust, et al., 2021), few UK-focused studies exist on temperature

and extreme ozone. Finch and Palmer (2020) demonstrated that the likelihood of
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UK ozone health threshold exceedances (>100µg/m3) increases with temperature:

50% of observed exceedances were found to occur above 18 ◦C for rural monitoring

sites and 21 ◦C for urban monitoring sites.

In this study, a temperature dependent extreme value model is developed and

applied to daily maximum 8-hour average (MDA8) ozone concentrations recorded

at 119 measurement sites across the UK. The relationship between daily maximum

temperature and MDA8 ozone is characterised for each site. Our objectives are

to (1) determine the probabilities, magnitudes and frequencies of extreme ozone

episodes across the UK; (2) examine how extreme ozone events have changed on

decadal timescales; and (3) characterise how the extremal characteristics of ozone

are influenced by temperature. Section 2.2 describes the measurements of surface

ozone and temperature data used in the analysis. Section 2.3 provides a technical

overview of our EVA approach. Results are presented in Section 2.4, including

analysis of present-day ozone extremes (Section 2.4.1), trends over decades (2.4.2)

and the influence of temperature (2.4.3). A summary and conclusions are given in

Section 2.5.

2.2 UK surface ozone and temperature data

We calculated MDA8 ozone from hourly concentration data reported for 119

measurement sites of the UK’s Automatic Urban and Rural Network (AURN):

https://uk-air.defra.gov.uk. The network is a major component of the UK’s air

quality monitoring infrastructure. It provides near-continuous statutory nationwide

monitoring of the ambient surface concentration of ozone and other important air

pollutants (e.g. NOX, particulate matter). AURN monitors ozone concentrations for

six different site types: rural background, urban background, suburban background,

urban industrial, suburban industrial and urban traffic. Most of the sites used in

this paper (83% of the total) are rural or urban background. Table A.1 provides

information on each site, with the geographical regions in which sites are located
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shown in Figure A.1. We focus on the period 1980–2019, though the length of the

ozone record varies across sites within this period. Seven monitoring sites have data

records since the 1980s and 30 monitoring sites have data records since the 1990s,

allowing for decadal changes to be examined at these locations.

The UK Department for Environment, Food and Rural Affairs (Defra) defines

a Daily Air Quality Index (DAQI) to provide the public with health-related

information based on the levels of various air pollutants. Our analysis uses the

thresholds defined in the DAQI as relevant health threshold metrics to classify

ozone concentrations exceeding 100 µg/m3, 160µg/m3 and 240 µg/m3 as ‘moderate’,

‘high’ and ‘very high’, respectively. These thresholds are based on the maximum

of the running 8-hour mean ozone concentration (MDA8). In subsequent sections

we consider how surface temperature influences the likelihood of exceeding these

thresholds.

The daily maximum temperature data used for this analysis are from the HadUK-

Grid 1 km gridded dataset (Office et al., 2020). This dataset is constructed based

on UK station observations from the Met Office’s extensive Integrated Data Archive

System (MIDAS) and has been through rigorous quality control and evaluation

(Hollis et al., 2019).

2.3 Extreme Value Analysis model

2.3.1 Ozone season definition

It is well established from extensive global monitoring programmes that surface

ozone concentrations exhibit a marked seasonal cycle (Scheel et al., 1997; Paul S

Monks, 2000). In the UK, ozone is generally elevated in boreal spring and summer

and at a minimum in boreal autumn and winter. Using all available ozone data

from 1980–2019, we define a site-specific ‘ozone season’ as the months where monthly

mean MDA8 ozone is greater than the 40th percentile of all MDA8 ozone observations

at the site. This provides an objective, data-driven means to extract only periods
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with elevated ozone. We find variation in when each site experiences elevated levels

of ozone, as shown for two example sites in Figure 2.1. A summary of each site’s

ozone season is given in Table A.1. Our ozone season definition captures 98% of days

on which the MDA8 ozone concentrations exceed the moderate health threshold level

of 100 µg/m3 across all sites. Consequently, for the rest of the paper we consider

only MDA8 ozone within each site’s ozone season (typically March–September).

Subsetting the data in this way focusses attention on periods most relevant to human

health.

2.3.2 Extreme value model

Extreme value models are probabilistic models that are used to extrapolate beyond

a sample of data to estimate values that are rarer than those observed in-sample.

Extreme value models can be either stationary or non-stationary. A stationary

model assumes that the extreme values have no trends or seasonality, whereas a

non-stationary extremes model accounts for trends and/or seasonality. The classical

approach to modelling extremes is based on block maxima (Fisher and Tippett,

1928), where a block is an amount of time. In this method, the blocks for the block

maxima must be large (e.g. annual maxima) for the modelling assumptions to hold.

Furthermore, if data other than block maxima are available, retaining only one

value per block can be wasteful of the information contained in other large values.

The POT method that we use instead specifies a model for all exceedances above a

chosen high threshold u (Davison and Smith, 1990) utilising all extreme data and

allowing blocks to contribute zero, one or multiple events.

2.3.2.1 Threshold choice

To separate the extreme MDA8 ozone observations from non-extreme values, we first

defined a modelling threshold u. This threshold is inherent to the POT approach

and is not related to any health threshold concentration of ozone. The choice of

modelling threshold is a crucial step for two reasons. First, a threshold that is too
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Figure 2.1: The ozone season period (highlighted in yellow) for two example sites:

(a) Manchester Piccadilly and (b) Derry Rosemount. The grey swarm plots are the

MDA8 ozone observations (µg/m3) from 1980–2019 (where available). The blue line

is the 40th percentile of all MDA8 ozone observations. The red dots are the monthly

mean MDA8 ozone.
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low leads to bias within the parameter estimates, caused by non-extreme data being

included in the model. Second, a too high threshold will lead to high variance in

the parameter estimates, because too few data will have been used to fit the model.

A common compromise is to set a stationary threshold to be the 90th percentile of

the dataset.

Ozone is formed in the presence of sunlight, and particularly high concentrations

are often reached during heatwaves or periods of prolonged warm temperatures with

stagnant meteorological conditions (e.g. Vieno, Dore, et al., 2010; Pope et al., 2016;

Varotsos et al., 2019). In this work, the relationship between ozone and temperature

was evaluated at all sites considered. We find a non-linear relationship between

MDA8 ozone and daily maximum temperature as shown for two example sites in

A.2. Due to the seasonal behaviour of ozone, use of a stationary threshold (e.g.

the fixed 90th percentile of the data) would lead to modelling only the peak ozone

concentrations that typically occur with higher temperatures. To mitigate this, we

use a temperature dependent modelling threshold. This way, we model extreme

values of ozone relative to the observed temperature, resulting in a lower (higher)

extreme threshold for colder (warmer) temperatures.

To illustrate the above concepts, Figure 2.2 shows scatter plots of MDA8

ozone versus daily maximum temperature at three example sites. The fit of three

different modelling thresholds were evaluated: a stationary threshold, a temperature

dependent linear threshold, and a temperature dependent natural cubic spline

threshold. Since the natural cubic spline provides the best approximation to the

non-linear ozone-temperature relationship, we set the modelling threshold u, to

be the 90th percentile of a natural cubic spline regression, i.e., the concentrations

above the green line in Figure 2.2 are deemed to be ‘extreme’, with the threshold

computed individually for each site. Previous studies have reported positive, non-

linear relationships between ozone concentration and temperature (e.g. Bloomfield

et al., 1996).
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Figure 2.2: Examples of three different extreme modelling thresholds for MDA8

ozone for three different monitoring sites: (a) Sibton, (b) Manchester Piccadilly and

(c) London Eltham. The coloured lines indicate different threshold definitions: blue

is a stationary threshold, set at the 90th percentile of all MDA8 ozone observations;

orange is a linear threshold, set at the 90th percentile of a linear regression between

MDA8 ozone and daily maximum temperature; and green is a threshold that varies

with temperature, consisting of the 90th percentile of a natural cubic spline regression

between MDA8 ozone and daily maximum temperature. This latter threshold is used

in the study.
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2.3.2.2 Generalised Pareto distribution

The next step is to apply the generalised Pareto distribution to the MDA8 ozone

observations that exceed the temperature dependent modelling threshold. The

generalised Pareto distribution (GPD) was introduced by Pickands (1975) as a way

of modelling tails of distributions, and was popularised by Davison and Smith (1990).

It is defined by three parameters: σ, ξ and ϕ, which denote scale, shape and rate of

exceedance, respectively. Suppose that the sequence of MDA8 ozone observations

Xi is an independent and identically distributed sample. Then, for a large enough

threshold u, the distribution function of the excesses above the threshold y = (X−u),

conditional on X > u, is approximately

H(y) = 1−
(
1 +

ξy

σ

)−1/ξ

, y > 0 (2.1)

Equation 2.1 denotes the generalised Pareto family of distributions. The next

step in applying the GPD in the peaks-over threshold method is estimating the

model parameters. We use maximum likelihood estimation to do this. This involves

finding the maximum of a likelihood function, which describes the probability of the

observations as a function of the GPD parameters.

2.3.2.3 Parameter estimation: scale and shape

To estimate σ and ξ we must check if there is any additional temperature effect on

the k excesses above the temperature dependent threshold y1, . . . , yk. If there is no

temperature effect, we can use a stationary extremes model where the log-likelihood,

the natural logarithm of the likelihood, is derived from equation 2.1 as

ℓ(σ, ξ) = −k log σ − (1 + 1/ξ)
k∑

i=1

log (1 + ξyi/σ) , (2.2)

provided ξ ̸= 0 and (1+σ−1ξyi) > 0 for i = 1, . . . k; otherwise, ℓ(σ, ξ) = −∞. When

ξ = 0 the log-likelihood is defined as

ℓ(σ) = −k log σ − σ−1

k∑
i=1

yi. (2.3)
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If there is a temperature effect, a non-stationary temperature dependent

extremes model can be used. The log-likelihood for the temperature dependent

extremes model can be found by replacing σ in equation 2.2 with σ(Ti) = exp(σ0 +

σ1Ti). The new temperature dependent log-likelihood can be written as

ℓ(σ, ξ) =
k∑

i=1

log σ (Ti)− (1 + 1/ξ)
k∑

i=1

log (1 + ξyi/σ (Ti)) , (2.4)

where Ti are the daily maximum temperatures corresponding to yi. Note the use of

the exponential function in defining σ(Ti) is to ensure that the scale parameter is

always positive regardless of the temperature.

As the stationary model is a special case of the non-stationary model (when

σ1 = 0), the models are nested. To decide if temperature is significant in the scale

parameter σ, a deviance test can be applied to the maximum likelihood estimation

of the nested models, which is a goodness-of-fit measure. With the stationary and

non-stationary models M0 ⊂ M1, the deviance test is defined as

D = 2 [ℓ0 (M1)− ℓ0 (M0)]

where ℓ0(M0) and ℓ1(M1) are the maximised log-likelihoods of models M0 and M1,

respectively. Figure A.3 shows the mean deviance test statistic for each region

and each site type. Comparing site types, urban industrial sites, followed by rural

background sites, have the highest residual effect from temperature in the scale

parameter σ for the model. Urban traffic sites have the lowest residual effect from

temperature. We find temperature to be significant in the scale parameter σ for all

sites when compared to the χ2 distribution at a 5% significance level. Therefore,

the non-stationary temperature dependent extremes model was used for the rest of

the analysis.

2.3.2.4 Parameter estimation: rate of exceedance

In addition to σ and ξ, the rate of exceedance parameter ϕ is needed to quantify

the magnitude of a predicted extreme event. For the chosen model, the rate of
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exceedance is conditional on the temperature, which can be written formally as

ϕ(Ti) = Pr(Xi > u(Ti)|Ti = ti), where Ti is the temperature on day ti. We use

a binary logistic regression to find the rate of threshold exceedance, conditional

on temperature. A binary logistic regression is a model used when there are only

two outcomes from a dependent variable i.e., a threshold exceedance or not. The

resulting log-likelihood for the rate of exceedance ϕ(Ti) is

ℓ (ϕ (Ti)) =
k∑

i=1

[
si log

(
exp (β0 + β1Ti)

1 + exp (β0 + β1Ti)

)
+(1− si) log

(
1

1 + exp (β0 + β1Ti)

)]
where si is the indicator variable for a threshold exceedance.

2.3.3 Return levels and return periods

A return level is defined as the value that is expected to be equalled or exceeded on

average once every interval of time t with a probability of 1/t. The N -year return

level when ξ ̸= 0 is defined by

zN = uT +
σT

ξ

[
(NnyϕT )

ξ − 1
]

(2.5)

where uT is the threshold value and ϕT = PrX > uT , both for a specified

temperature T , and ny is the number of observations within a year.

A return period (R.P.) is the predicted length of time until an observance of a

specified level occurs, and is defined as

R.P. =

ny∑
i=1

ϕ (Ti)

[
1 + ξ

(
U − uTi

σTi

)]1/ξ
, (2.6)

where Ti is a temperature series for 1 season, and U is the specified level of ozone.

2.3.4 Model training, model fit and uncertainty estimates

We fit individual extreme value models for each monitoring site. For the present-

day analysis (Section 2.4.1), we trained our model on data from 2010–2019. For the

decadal trends analysis (Section 2.4.2), our model is trained on individual decades
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of data (1980–1989, 1990–1999, 2000–2009, 2010–2019). Only sites with at least

three years of data for the given decade were analysed. We evaluated the fit of our

model using quantile-quantile plots, a graphical method to assess if two datasets

come from populations with a common distribution. Due to the non-stationarity,

we used a 1:1 mapping to transform the model-based percentile estimates onto a

“quantile” scale, mapping to a common exponential scale to magnify the tail fit and

aid comparison between sites. Figure A.4 shows examples of the 2000–2009 model

fit for sites in the Greater London region. The peaks-over-threshold model provides

a good fit to the tail of the MDA8 ozone dataset at each site within this region and

the average R2 result for every region in the UK was found to be >0.9 (not shown).

In addition to temperature being used in defining the modelling threshold,

the parameters that define the GPD are also temperature dependent (Section

2.3.2). This allows us to explore the influence of temperature on the likelihood and

magnitude of extreme ozone events. The decision to include temperature as the only

covariate in our model was made to facilitate interpretation of the model outputs

(following Shen et al., 2016). In future work, trends driven by other factors could

be considered, including precursor pollutants, such as NOX and VOCs, and other

meteorological variables, such as wind speed, wind direction and relative humidity.

A benefit of our non-stationary model over the stationary model is that it

allows extremal characteristics of the ozone data to be quantified either dependent

or independent of the temperature. Such characteristics include return periods,

return levels or the probability of ozone exceeding a pre-defined health threshold.

Temperature dependent outputs describe risk for a given temperature and can be

obtained directly from the trained GPDmodel. Non-temperature dependent outputs

describe risk after accounting for the temperature distribution over the period for

which we are making estimates. Non-temperature dependent outputs were obtained

by simulating 1000 years of MDA8 ozone from the trained GPD model (Text A.3),

then estimating the desired outputs from the empirical distribution of the simulated

data. For example, the 100-year return level estimate would be the 10th largest
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value in the simulated 1000-year dataset. Note the 1000-year dataset is a tool used

for predicting risk for the current time-period and should not be interpreted as a

forecast of MDA8 ozone for the next 1000 years.

Confidence intervals (CI) for the estimates were obtained using a non-parametric

bootstrap algorithm. We simulated 1000 data samples of the same size as the

original dataset by sampling (with replacement) from the original dataset. We then

retrained the GPD model on each bootstrapped data. Using the trained models,

we can predict any temperature or non-temperature dependent output of interest

using the same methods as applied to the original dataset. For each output (return

level, etc), the 2.5% and 97.5% quantiles of the resulting 1000 bootstrap estimates

give the bootstrapped 95% confidence interval which is then reported alongside our

estimates as [lower bound, upper bound].

2.4 Results and discussion

We use the extreme value model both to estimate return levels for MDA8 ozone

associated with pre-defined return periods (1-, 10- and 100-year) and to quantify

the likelihood of an exceedance of each of the three UK health thresholds defined in

Section 2.2. The latter is measured by (i) estimating the return period associated

with the health threshold and (ii) comparison with estimated return levels associated

with known return periods. We use these measures to illustrate both inter-decadal

and temperature-related changes in the frequency and magnitude of extreme events

as well as the usefulness of the current health thresholds in identifying such

events for different decades and temperatures. We show that for some decades

and temperatures, an exceedance of the moderate health threshold (100µg/m3) as

currently defined would not be considered a rare event.
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2.4.1 Present-day analysis (2010–2019)

We first consider results from the model fitted to the most recent ‘present-day’

decade (2010–2019) of data for 87 monitoring sites across the UK. Figure 2.3 shows

the 1-, 10- and 100-year return levels of MDA8 ozone estimated using the simulation

method (see Section 2.3.4). The 1-year return level exceeds the moderate health

threshold (100 µg/m3) at 93% of sites. In contrast, the percentage of sites which

have 1-year (10-year) return level that exceeds the high health threshold (160µg/m3)

are 0% (15%). No sites have a 100-year return level that exceeds the very high health

threshold (240µg/m3) implying that it is a far rarer event. This threshold does fall

within the CI at nine sites suggesting that an exceedance of this level is plausible at

these sites, but on a 100-year time scale. We further note a greater spread in CIs

at these nine sites, with the highest (lowest) CI range being 129µg/m3 (71µg/m3)

compared with 82 µg/m3 (18 µg/m3) for all other sites.

To consider the rarity of a health threshold exceedance more directly, Figure 2.4

shows the predicted exceedance count per year for the 100 µg/m3 moderate health

threshold. The highest numbers of predicted exceedance days occur in the East

and South East regions. Two rural background sites (Weybourne in the East and

Chilbolton Observatory in the South East) are predicted to exceed the moderate

health threshold more than 25 times per year, whilst three rural background sites

(High Muffles, Yarner Wood and Charlton Mackrell) are predicted to have over 20

exceedances per year. We also find that 29 out of 87 sites are estimated to breach

the moderate health threshold over 10 times per year, thus failing one of the UK’s

national air quality objectives (Defra, 2020).

To further characterise risk, the probabilities of exceeding the health thresholds

of the UK’s air quality index are presented in Figure 2.5. To our best knowledge,

this probabilistic analysis is the first of its kind for the UK. Based on the model fit

to 2010–2019 data, we find the probability of MDA8 ozone exceeding 100µg/m3 on

a given day within the ozone season to be between <0.1% and 5.4%. We find the

cross-site average probability is greater for rural sites (0.027, i.e. 2.7%) vs urban
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Figure 2.3: The (a) 1-, (b) 10-, and (c) 100-year return levels of MDA8 ozone

(µg/m3) for each AURN measurement site in the UK, found by using the simulation

method described in Section 2.3.4. The size of the dot is proportional to the standard

error of the estimate, with a highest standard error for the 100-year return level of

∼30 µg/m3.
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Figure 2.4: The number of predicted exceedance days per year for the moderate

health threshold level of 100 µg/m3 for each UK measurement site used in the study,

found using the simulation method described in Section 2.3.4. Based on analysis of

the decade 2010–2019.
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sites (0.016 or 1.6%). This is consistent with the ‘urban decrement’, i.e. that higher

ozone levels are generally found at rural over urban sites (e.g. Munir et al., 2012;

P. S. Monks et al., 2015) due to the titration of ozone from higher NOX levels in

urban regions. There is, however, substantial cross-site variation in the exceedance

probabilities. The variability across the sites is 1.5 times greater for rural sites

than urban sites, with standard errors for the estimated group means of 0.0021 and

0.0014, respectively. The mean probability of an exceedance decreases for both site

types at higher health thresholds (Figure 2.5) when compared with the moderate

health threshold: 75 (100) times lower at rural (urban) sites for the high health

threshold, and ∼7,000 (∼12,000) times lower at rural (urban) sites for the very high

health threshold.

Some sites have a negative shape parameter in the GPD model, which implies an

upper limit to the range of plausible ozone values. To demonstrate the effect of this,

Figure 2.5 (see annotated numbers) shows the estimated proportion of sites that the

model permits to exceed each health threshold. All rural and urban sites are found

to be able to exceed the moderate health threshold. More rural background (96% /

25%) than urban background sites (86% / 10%) can conceivably exceed the high /

very high health thresholds.

2.4.2 Trends over decades

Figure 2.6 shows the percentage change in estimated 1-, 10- and 100-year return

levels for the 2010s compared to earlier decades. All seven sites online since the

1980s have seen a significant decrease in 1- and 10-year return levels and six have

seen a significant decrease in 100-year return levels. Decreases in the 1-year return

level between the 2010s and 1980s range from -16% to -44%, equivalent to absolute

decreases of 31–82 µg/m3 (Table A.2). At these sites, the 1-year return level of

MDA8 ozone in the 1980s is comparable to the 10-year return level in the 2010s.

That is, what was once an ozone concentration expected to be equalled or exceeded

at least once in 1 year is now expected to be equalled or exceeded only once in
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Figure 2.5: The non-zero probabilities of exceeding various levels of MDA8 ozone,

found using the simulation method described in Section 2.3.4. The background dots

are the individual measurement sites, grouped into rural background (blue) and

urban background (orange) site types. The diamonds are the mean estimates for

each group, with the 95% confidence intervals of the mean estimate also shown by

the error bars. The percentage numbers above each group show the proportion of

sites which can reach the given level. Based on analysis of the decade 2010–2019.
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10 years. Qualitatively, similar reductions have been reported for the Eastern US

using EVA, attributed to reductions in NOX emissions Rieder et al., 2013. For the

32 UK sites monitoring since the 1990s, 69%, 75% and 75% of sites have seen a

significant decrease in their 1-, 10- and 100- year return levels, respectively. For

the 68 sites monitoring since the 2000s, 66%, 59% and 46% of sites have seen a

significant decrease in their 1-, 10- and 100- year return levels, respectively.

To compare decadal changes in the frequency of predicted health threshold

exceedances, the changes in return periods corresponding to ozone health thresholds

are shown in Figure A.5. For the seven sites monitoring since the 1980s, significant

increases in the return period are seen in five sites for the moderate health threshold,

seven sites for the high health threshold and six for the very high health threshold

level. For the 32 (68) sites monitoring since the 1990s (2000s), 59% (66%), 75%

(54%), 91% (78%) of sites have seen a significant increase in return period for the

moderate, high and very high health threshold level, respectively. This signifies that

high ozone events are occurring less often. Across all health thresholds and decades,

the only significant decrease in return period was -0.5% [-0.1%, -0.75%] (moderate

health threshold) at Manchester South, a suburban industrial site in the North West

and Merseyside region. We do not overinterpret this single site finding, though note

that Finch and Palmer (2020) reported for this particular site (1) a relatively strong

positive annual mean 8-hr ozone trend (1999–2019) of 0.74 µg/m3yr−1 compared to

the all-site mean (0.41 µg/m3yr−1), along with a positive NO2 trend, in contrast to

negative trend at all other sites.

Extending the analysis in Section 2.4.1, Figure 2.7 shows the change over decades

in the probabilities of exceeding various levels of MDA8 ozone from 100 to 240

µg/m3 for all monitoring sites online within each decade. The mean estimates for

each decade show a general reduction in the probabilities of exceedances for all level

groupings of ozone since the 1980s. The proportion of sites in the 2010s that can

theoretically reach levels of ozone of 160 µg/m3 (i.e., where the probability of an

exceedance is greater than zero) has fallen to 86% compared to 100% for the 1980s.
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Figure 2.6: The change (%) in the 1-, 10- and 100-year return levels in the 2010s

compared with those in the (top) 1980s, (middle) 1990s and (bottom) 2000s for each

UK measurement site, found by using the simulation method described in Section

2.3.4. A decrease (or increase) means that a site’s return level is lower (or higher)

in the 2010s that it was in the compared decade. Sites are outlined in black if the

change is significant (p < 0.05).

40



2.4. Results and discussion

Figure 2.7: The probabilities of exceeding various levels of MDA8 ozone (µg/m3),

grouped by decade. The dots in the background are the individual sites. The

diamonds are the all-site mean of each grouping, with the 95% confidence intervals

of the mean estimate also shown. The percentage numbers above each group show

the proportion of sites which can reach the given level (so where the probability is

greater than 0).

For the very high health threshold (240 µg/m3), again 100% of sites had potential

to exceed that level in the 1980s, falling to 55% in the 1990s, 42% in the 2000s and

just 16% in the 2010s.

When interpreting the results shown in Figure 2.7 it is important to bear in

mind that the number of AURN monitoring sites has increased over time, as

shown in Figure A.6. This also highlights a change in the ratio of different site

types; specifically, many more urban background sites came online in the 1990s.

Consequently, a potential sampling bias may exist due to the different number of

operational sites and site types in each of the decades. A more robust assessment of

long-term changes is obtained using only the seven individual sites that have been
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online since the 1980s for which we find the probability of exceeding 100µg/m3 has

declined by a factor of 2–6 between the 1980s and present (Table A.3).

Taken together, the above findings provide a novel characterisation of the

changing occurrence of extreme ozone events in the UK. Our results broadly

corroborate previous studies that have reported a general reduction over time in

extreme levels of ozone, albeit those studies employed simpler methods (e.g. Diaz

et al., 2020). Using AURN data at multiple sites, Finch and Palmer (2020) fitted

a gamma probability distribution to describe changes in UK surface ozone between

1999 and 2019. They found that surface ozone distributions have reduced in

skewness over time, determining a reduction in the probability of high ozone events.

As noted in Section 2.3.4, the GDP employed in this study provides a very good

fit to the tails of the ozone distributions and our EVA approach benefits from its

ability to quantify the reduction in the probability of high ozone events.

We anticipate that the reductions in extreme ozone discussed above are due to

reduced emissions of ozone precursor pollutants, NOX, and VOCs, over our study

period. Between 1970 and 2019, annual UK emissions of NOX and non-methane

VOCs have fallen by 71% and 66%, respectively (Defra, 2021a; Defra, 2021b).

Decreases in precursor pollutants have been associated with a reduction of high

level ozone in the United States (Gégo et al., 2007; Bloomer, Vinnikov, et al., 2010;

Butler et al., 2011; Owen R. Cooper et al., 2012) and parts of Europe (e.g. Fleming

et al., 2018). However, we note also that UK annual average ozone concentrations

are observed to be increasing at almost all environment types (Diaz et al., 2020;

Finch and Palmer, 2020), despite strong NOX decreases. Given the complexities

of photochemical ozone production and loss, along with the confounding factor of

a changing hemispheric baseline ozone concentration (Richard G. Derwent et al.,

2018), it is beyond the scope of this work to attribute the ozone changes. However,

we note that the observed behaviour (reductions in peak ozone but an increasing

mean) is possible in complex photochemical environments characterised by VOC-

limited conditions in some areas (e.g. Y. Li et al., 2013; Simon et al., 2015).
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2.4.3 The influence of temperature

Due to climate change and the increasing risk of hotter than average summers

(Christidis et al., 2015; Fleming et al., 2018; Chapman et al., 2019; Hanlon et al.,

2021), it is important to understand the relationship between extreme ozone episodes

and extreme temperature. Outside of one study (Finch and Palmer, 2020), which

demonstrated that temperature is an important driver of the number of ozone

exceedance events in the UK, there is a paucity of UK-focused analysis in the recent

literature.

Figure 2.8 characterises some of the important aspects of the extreme ozone/temperature

association in our model. Figure 2.8a provides evidence of the positive temperature

dependence in the risk of a moderate ozone health threshold exceedance in the 2010s.

At the 90th percentile of temperature (see Figure A.7 for the absolute temperature

values computed for each site), the probability of exceeding 100 µg/m3 ranges from

0.51% to 11.85% for sites where 100 µg/m3 is still considered extreme. Increasing

the temperature percentile further increases the risk of an exceedance. However,

recall from Section 2.3 (and Figure 2.2) that (1) for an ozone concentration to be

classified as ‘extreme’ it must fall above the modelling threshold used in our extreme

value model, and (2) that this threshold is computed based on temperature (days

with higher temperatures have a higher concentration threshold above which ozone

is ‘extreme’). For this reason, towards more extreme temperatures (90th percentile

and above), a moderate health threshold level of 100µg/m3 is no longer considered

to be an extreme concentration at some sites (see also Figure 2.8b). The Midlands,

South East, East and South, where the 90th percentile of temperature in the ozone

season is mostly >20 °C (Figure A.7), are the regions where this is most evident.

However, in the absence of a denser monitoring network, a conclusive analysis of

spatial variability across the whole UK is not possible.

Figure 2.8c shows the percentage of sites in the 2010s which have a non-zero

probability of exceeding the various ozone health threshold levels for given site-

specific temperature percentiles. Due to the limiting behaviour of the ozone extremes
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Figure 2.8: (a) The probabilities of exceeding the moderate health threshold MDA8

ozone level of 100 µg/m3 for each site’s 90th (left), 95th (middle) and 99th (right)

temperature percentile for each UK monitoring station. Outlined circles indicate

sites confidence in estimate of 100 µg/m3 being an extreme level or not (p≤0.05).

(b) The number of sites where 100 µg/m3 is no longer considered extreme by the

model for the given site-specific temperature percentile, i.e., the number of sites

where 100µg/m3 is below the extreme modelling threshold for the given temperature

percentile. (c) The percentage of sites which have a non-zero probability of exceeding

the levels of 100, 120, 140, 160 and 240 µg/m3 for the given site-specific temperature

percentile, ranging from the 1st to 99th. Based on analysis of the decade 2010–2019.
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at some sites, not all sites are able to reach high levels of ozone. This is particularly

evident for the very high 240µg/m3 level, regardless of temperature, with a low

percentage of sites able to exceed this level. For the 1st temperature percentile,

78% of sites can exceed a level of 100µg/m3, while just 28%, 11%, 3% and 0%

of sites can exceed levels of 120, 140, 160 and 240 µg/m3, respectively, showing

a large disproportion in the risk of exceeding these levels at lower temperatures.

An exceedance of the levels 100 and 120 µg/m3 is possible for all sites for

temperatures above the 42nd and 98th temperature percentiles, respectively. By

the 99th temperature percentile (i.e., the most extreme temperature), 99%, 93% and

33% of sites can exceed levels of 140, 160 and 240 µg/m3. However, it is important

to emphasise that while this analysis demonstrates the positive link between the

possibility of an extreme ozone event and extreme temperature, the absolute

overall probability (when accounting for the observed temperature distribution) of

exceeding the moderate ozone threshold (100µg/m3) was, on average, 2.7% for rural

sites and 1.6% for urban sites in the decade 2010–2019. Exceedance probabilities for

higher thresholds are substantially lower (Section 2.4.1). Interestingly, Figure 2.8c

also highlights the considerable difference in the temperature dependent possibility

of exceeding 100 µg/m3 compared with all greater levels.

Our final analysis compares temperature dependent health threshold exceedance

risks over decades. Figure 2.9 shows the mean probability of exceeding the high

and very high ozone health threshold levels for sites that have been online since

the 1990s and continue to monitor in the 2010s. These 30 sites comprise 15 rural

background and 15 urban background locations, and the analysis is split by site

type. The moderate health threshold is excluded from this analysis as it is not

extreme for all sites at higher temperature percentiles (see above). Significant

reductions in the probability of exceeding the high ozone health threshold are

apparent between the 1990s and 2010s, with the most striking reductions occurring

at extreme temperatures. For instance, at the 99th temperature percentile, the mean

rural background probability of exceeding the high health threshold level is 0.097
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[0.061, 0.132], 0.029 [0.015, 0.043] and 0.006 [0.003, 0.009] for the 1990s, 2000s and

2010s respectively, (Figure 2.9a); the comparable results for urban background sites

(Figure 2.9c) are 0.032 [0.011, 0.053], 0.013 [0.004, 0.022] and 0.002 [0, 0.004]. Large

reductions are also apparent for the very high health threshold level.

The above analysis shows that from the 1990s to the 2010s, the mean probability

of exceeding the high health threshold level decreased by a factor of∼16 at both rural

and urban sites for the most extreme temperatures (99th temperature percentile).

These differences cannot be attributed to changes in temperature over time, since

for these decades and these sites, the temperature distributions are similar (Figure

A.8). We surmise that a reduction in the probability of extreme ozone across the

decades, and the sensitivity of such to temperature, to be due to reductions in

precursor pollutants of ozone, as outlined in Section 2.4.2. Other recent analysis

of the so-called ozone ‘climate penalty factor’ also shows the sensitivity of ozone

to temperature has decreased at a large number of sites in Germany, likely in

response to reductions in NOX and VOCs (Noelia Otero, Rust, et al., 2021). Overall,

our findings on the temperature dependence of extreme UK ozone extend and

substantiate previous studies (J. D. Lee et al., 2006; Finch and Palmer, 2020),

namely that the occurrence of high level ozone has a strong temperature dependence.

2.5 Conclusions

Characterisation of extreme ozone events, along with their association with temper-

ature, is important to better understand the risks of air pollution to human health

and how air pollution is managed, in a changing climate. Here, we have presented a

thorough, statistically grounded analysis of extreme surface ozone in the UK using

extreme value analysis. Our analysis considered daily maximum 8-hr running mean

ozone (MDA8), obtained from hourly ozone measurements, at >100 monitoring sites

of the UK’s AURN network, along with gridded daily maximum temperature data

from the UK Met Office. We focused analysis on the ‘ozone season’, defined for
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Figure 2.9: The mean probability of exceeding the high (160µg/m3; panels (a)

and (c)) and very high (240µg/m3; panels (b) and (d)) health threshold levels of

MDA8 ozone for rural (top) and urban background (bottom) sites, dependent on

temperature and compared across different decades, denoted by colour: blue for the

1990s, orange for the 2000s and green for the 2010s. The analysis considers 15 rural

sites and 15 urban sites that have been monitoring ozone from the 1990s through to

the 2010s. The 95% confidence intervals of the mean estimate are shown as shaded

bands for each decade.
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individual sites (roughly March–September), consisting of the months containing

virtually all occurrences of MDA8 > 240 µg/m3, i.e., the period most relevant for

short-term exposure to extreme ozone and human health.

From our analysis of data from the most recent decade (2010–2019), we find that

at 93% of UK monitoring sites, MDA8 ozone is predicted to exceed a ‘moderate’

health threshold level (100µg/m3) at least once in one year. The overall probability

of a 100µg/m3 exceedance on a given day is estimated to be between <0.1% and

5.4%, depending on site, with an average of 2.7% at rural sites and 1.6% at urban

sites. Exceedances of the ‘high’ (160µg/m3) and ‘very high’ (240 µg/m3) thresholds,

defined by the UK’s air quality index, are plausible but extremely rare events at the

sites considered and are thus expected to be less relevant for exposure assessment.

Our results show statistically significant changes in the extremal characteristics of

ozone over the last three decades. Considering sites with the longest records only, 1-

year return levels of MDA8 ozone in the 1980s are comparable to 10-year return levels

seen in the 2010s. Thus, the magnitude of extreme ozone events has decreased over

time, likely reflecting the large reductions in ozone precursor emissions in this period.

At these sites, we estimate the probability of MDA8 ozone exceeding 100µg/m3 on

a given day has decreased by a factor of 2–6 between the 1980s and present. Across

all monitoring sites, return periods for the moderate health threshold have increased

at 88% of sites since the 1990s and 90% of sites since the 2000s. This means that

most sites are expected to reach or exceed 100µg/m3 less often now than they did

in the 1990s and 2000s. Only 16% of sites can theoretically reach the very high

health threshold level in the 2010s, compared with 100% in the 1980s, 55% in the

1990s and 42% in the 2000s, thus at most sites the high end of the plausible range

of extreme ozone levels has decreased significantly.

As elevated temperature is associated with extreme ozone concentrations in

Europe (e.g. Otero et al., 2016), temperature is incorporated in the threshold and

scale parameter of our extreme value model. This enables us to model the effect

from temperature on ozone extremes. We find that higher temperatures increase
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the risk of a moderate health threshold exceedance across the UK. However, we also

find that above the 90th temperature percentile, an exceedance of 100 µg/m3 is not

considered an ‘extreme’ event at a number of sites. This is important as health

threshold exceedances should be rare events. The temperature-dependent health

threshold exceedance risk has changed over the decades. Where there has been

monitoring since the 1990s, we find that rural background sites have the greatest

absolute decrease in the risk of a high health threshold exceedance for the 99th

temperature percentile, highlighting a dynamic relationship between extreme ozone

and extreme temperature over our study period.

In conclusion, in the absence of continuing decreases in ozone precursor emissions,

expected increases in the frequency of extreme temperatures (Lowe et al., 2018;

Hanlon et al., 2021) may offset gains made in the reduction of extreme ozone over

time. Further work is now required to assess the response of UK extreme ozone

concentrations to the combined influence of anticipated future reductions in ozone

precursors, both locally and at the continental-scale, alongside rising temperature.
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Abstract

High-resolution modelling of surface ozone is an essential step in the quantification of

the impacts on health and ecosystems from historic and future concentrations. It also

provides a principled way in which to extend analysis beyond measurement locations.

Often, such modelling uses relatively coarse resolution chemistry transport models

(CTMs), which exhibit biases when compared to measurements. EMEP4UK is a

CTM that is used extensively to inform UK air quality policy, including the effects

on ozone from mitigation of its precursors. Our evaluation of EMEP4UK for the

years 2001–2018 finds a high bias in reproducing daily maximum 8-hr average ozone

(MDA8), due in part to the coarse spatial resolution. We present a machine learning

downscaling methodology to downscale EMEP4UK ozone output from a 5×5 km

to 1×1 km resolution using a gradient boosted tree. By addressing the high bias

present in EMEP4UK, the downscaled surface better represents the measured data,

with a 128% improvement in R2 and 37% reduction in RMSE. Our analysis of the

downscaled surface shows a decreasing trend in annual and March–August mean

MDA8 ozone for all regions of the UK between 2001–2018, differing from increasing

measurement trends in some regions. We find the proportion of the UK which fails

the government objective to have at most 10 exceedances of 100 µg/m3 per annum

is 27% (2014–2018 average), compared to 99% from the unadjusted EMEP4UK

model. A statistically significant trend in this proportion of -2.19%/year is found

from the downscaled surface only, highlighting the importance of bias correction

in the assessment of policy metrics. Finally, we use the downscaling approach to

examine the sensitivity of UK surface ozone to reductions in UK terrestrial NOX (i.e.,

NO + NO2) emissions on a 1×1 km surface. Moderate NOX emission reductions

with respect to present day (20% or 40%) increase both average and high-level ozone

concentrations in large portions of the UK, whereas larger NOX reductions (80%)

cause a similarly wide-spread decrease in high-level ozone. In all three scenarios, very

urban areas (i.e., major cities) are the most affected by increasing concentrations of

ozone, emphasising the broader air quality challenges of NOX control.

52



3.1. Introduction

3.1 Introduction

Ground level ozone is a harmful air pollutant that causes respiratory health issues,

hospitalisation, and in severe cases, mortality (Ji et al., 2011; COMEAP, 2015;

Nuvolone et al., 2018), with an estimated 254,000 deaths globally in 2015 due

to elevated ozone exposure (Cohen et al., 2017). Ozone is a secondary pollutant

formed via chemical reactions of precursor pollutants – nitrogen oxides (NO and

NO2, known as NOX) and volatile organic compounds (VOCs) – in the presence

of sunlight. Because of the harmful consequences of increased ozone levels, air

quality standards of varying degrees of stringency have been set in many countries

for both ozone and its precursors. Compliance with, and the efficacy of, these

standards is primarily assessed through analysis of surface ozone measurements.

Whilst useful, the empirical analysis of ozone measurements is limited in scope

by the density and location of monitoring sites and length of data records (e.g.

Lang, 2020). Mathematical models, either process-based air quality models or

statistical, are therefore useful in further improving our understanding of ozone

formation, long-term trends, and spatial variability, at spatial and temporal scales

that measurements alone cannot match. However, it is well established that

ozone concentrations vary spatially, seasonally and temporally due to meteorological

conditions and precursor availability and reactivity (O. R. Cooper et al., 2014; Pope

et al., 2016), making it a particularly challenging pollutant to model.

Recent statistical analysis of UK surface ozone has centred on data from

measurement stations (Diaz et al., 2020; Gouldsbrough et al., 2022). However, these

stations are not spread uniformly across the UK, leaving substantial portions of the

country unmonitored (Finch and Palmer, 2020). In consequence, robust estimates

of regional variability in ozone concentration and trends are unavailable, though it

is known that both vary significantly across sites and site type. Taking the UK as a

whole, a notable finding of the above studies is that the probability of the occurrence

of extreme ozone concentrations has reduced in recent decades, but reported trends

are generally not statistically significant (e.g. Finch and Palmer, 2020). Chemistry
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transport models (CTMs), numerical models that simulate the various processes that

affect pollutant concentrations (emissions, chemistry transport, deposition, etc.) are

routinely used to produce spatial surfaces of ozone, and other air pollutants, with a

far greater spatial coverage than can be achieved by the monitoring stations. Still,

these are run on a grid, often at a coarse resolution with respect to what is optimal

for exposure assessment, and thus may not capture local-scale behaviour. High

resolution multi-annual CTM simulations are also computationally expensive and,

like all process models, subject to a degree of bias (e.g. Z. Liu et al., 2022). An

alternative to high-resolution process modelling is to develop a statistical model to

interpolate the ozone measurements (Wong et al., 2004; Hooyberghs et al., 2006).

However, given the complexity of the processes that underpin ozone production,

downscaling approaches that use measured data, where it is available, to remove

local-scale bias from the numerical model output are attractive.

Data-driven downscaling methods are used to model complex physical systems

by combining information from ground observations or satellites with information

from process-based numerical models. Previous work to downscale numerical model

surface ozone concentrations includes dynamical, statistical and machine learning

downscaling. Dynamical downscaling uses high resolution regional simulations to

extrapolate the effects of large scale processes to local scales, and has been applied

in the US (Trail et al., 2013; J. Sun et al., 2015; Nolte et al., 2021) and Belgium

(Lauwaet et al., 2013). Statistical downscaling of surface ozone has been performed

using regression (Guillas et al., 2008; Bravo et al., 2016; Gauthier-Manuel et al.,

2022), fitted empirical orthogonal functions (Alkuwari et al., 2013), and a spectral

method (Reich, Chang, et al., 2014). Machine learning (ML) models have also

been used to downscale surface ozone. For example, a Bayesian ensemble machine

learning model that integrates 13 learning algorithms has been used to create a

census tract level daily maximum 8-hr average ozone (MDA8) ozone surface for the

US, demonstrated for 2011 (Ren et al., 2022). Global downscaled ozone surfaces have

also been created using ML models, including a Bayesian neural network model to
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create a 10×10 km ozone surface for 1990–2019 (H. Sun et al., 2022), and a random

forest model to create a 0.1°×0.1°average ozone surface for 2010–2014 (Betancourt

et al., 2022). To our knowledge, no studies have applied downscaling specifically to

UK ozone. In this paper, we develop and evaluate a novel ML-based methodology

for downscaling the EMEP4UK CTM from a 5×5 km to 1×1 km resolution. The

CTM is developed as the UK regional application of the European Monitoring and

Evaluation Program (EMEP) and has been widely used to study UK air quality

and to inform policy decisions (e.g. Vieno, Heal, et al., 2016). Previous EMEP4UK

evaluation shows the model generally performs well at reproducing observations of a

range of pollutants, though notably ozone exhibits a non-negligible positive bias at

almost all sites. The bias is larger at urban background locations, possibly reflecting

a dilution of local NOX emissions on the 5×5 km grid and, thus, insufficient NOX

titration (C. Lin et al., 2017). We apply the downscaled model to study UK surface

ozone over an 18-year period (2001–2018), focusing on (1) quantifying regional

variability in ozone, trends, and policy-related metrics; (2) comparing conclusions

drawn from the downscaled surface relative to those from the unadjusted CTM and

measurements alone; and (3) exploring the sensitivity of UK ozone concentrations to

reductions in NOX. Of the many ML tools available, we use a gradient boosted tree

(GBT) (Friedman, 2001). Our choice is primarily driven by the fact that the GBT

model can learn non-linear relationships from highly dimensional datasets. Thus,

the GBT model allows us to use several measurement stations and covariates in

the downscaling model, and thereby model ozone as the product of multiple highly

non-linear and interacting systems. Moreover, GBTs have been used to downscaled

numerical model surface ozone for China (Hu et al., 2022; R. Liu et al., 2020), and

were found useful in predicting surface level ozone during wildfires in California

(Watson et al., 2019).

This chapter is structured as follows. Section 3.2 outlines the data used in the

analysis and the features included with the ML model. Section 3.3 describes the

downscaling methodology, including an evaluation of the downscaled surface. In
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Section 3.4 we analyse the downscale surface, focusing on regional ozone variability

across the UK in recent years (Section 3.4.1), on longer-term trends and interannual

variability (3.4.2), and on UK ozone-NOX sensitivity (3.4.3). Across these results

we compare the conclusions drawn from the new downscaled surface to those from

the unadjusted EMEP4UK output and measurements alone. Finally, in Section 3.5

we present our conclusions and some brief recommendations for future research.

3.2 Data

Accurate downscaling requires not just the measured and modelled ozone data, but

also information on variables which affect the net production or transport of ozone

at the Earth’s surface. We make use of information on the meteorology, climate and

geophysical characteristics at a given location. For consistency with ML terminology,

we refer to the individual variables as ‘input features’, a concise summary of which

can be found in Table 3.1. All datasets cover the period 2001–2018 (inclusive).

3.2.1 Modelled ozone from EMEP4UK

EMEP4UK is a UK focused version of the EMEP MSC-W model (https://www.

emep.int), an Eulerian CTM used to assess concentrations and deposition of various

air pollutants across Europe (Simpson et al., 2012). Various studies related to

UK ozone have been performed using EMEP4UK: quantifying the burden of heat

and ozone on mortality (Doherty et al., 2009), modelling ozone during the 2003

heatwave (Vieno, Dore, et al., 2010), modelling the effect of climate change on ozone

health impacts (Vardoulakis and Heaviside, 2012), quantifying the socioeconomic

and urban-rural differentials in exposure (Milojevic et al., 2017), and modelling air

pollution exposure in relation to workplace mobility (Lǐska, 2021). The EMEP4UK

model is also used to inform policy decisions concerning air quality: the extent

to which UK source abatement measures can mitigate UK particulate matter

concentrations (AQEG et al., 2013; Carnell et al., 2019); the impact of reductions
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in UK anthropogenic emissions on various pollutants (Vieno, Heal, et al., 2016); the

impacts of climate change and mitigation options for agriculture, forestry, land use

and waste sectors (SRUC, 2017); the effect of changes in vegetation coverage on air

pollution (EIDC, 2021); and to quantify the spatial variation in average ozone across

the UK, including the calculation of population-weighted ozone exposure during

workdays, long term exposure, and the implication of a 2030 emissions scenario on

surface ozone concentrations (AQEG, 2021).

Previous evaluation of the EMEP4UK model quantified its performance in the

reproduction of the 10-year mean measured ozone concentrations for 2001–2010.

Considering 17 rural and 30 urban sites, R2 values of 0.21 (0.81 when removing one

erroneous rural site) and 0.73, respectively, were obtained (C. Lin et al., 2017). A

positive model bias for ozone at urban background sites is due to the dilution of

urban NOX emissions at the model 5×5 km resolution, meaning that EMEP4UK

insufficiently captures the urban NOX titration of ozone. In our preliminary

investigations, we found that the original EMEP4UK output fails to capture the

behaviour of MDA8 ozone in the larger sample of 198 measurement stations used

in this analysis, with a cross-year mean R2 of 0.32, and cross-year mean RMSE of

19.4 µg/m3. Therefore, we determined it was necessary to develop a methodology

with which to downscale the EMEP4UK model output to a higher resolution spatial

grid and to address the above bias.

The dataset we wished to downscale is a 5×5 km gridded dataset of hourly surface

ozone concentrations from EMEP4UK covering the period 2001–2018. To produce

this ozone field, the offline CTM was run with meteorology from the Weather

Research and Forecast (WRF) model version 3.7.1 (C. Skamarock et al., 2008)

between 2001–2017 and WRF4.1 (W. C. Skamarock et al., 2019) for 2018. The WRF

simulation in this work assimilates data from the numerical weather prediction model

meteorological reanalysis of the US National Center for Environmental Prediction

(NCEP) / National Center for Atmospheric Research (NCAR) Global Forecast

System (GFS) (Environmental Prediction, 2000). MDA8 ozone concentrations were
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calculated from the original hourly model output and linear interpolation was used to

convert the 5×5 km field to a 1×1 km grid over the entire study period (2001–2018).

In addition to the output from the main transient model run described above, a

series of additional model experiments were performed for the year 2018 to explore

the sensitivity of UK ozone to NOX reductions. These included a 2018 reference run

with terrestrial UK NO2 emissions of 743 Gg/yr and three otherwise identical runs

with NO2 emissions reduced by 20% (594 Gg/yr NO2), 40% (446 Gg/yr), and 80%

(148 Gg/yr). These reductions do not correspond to any specific future scenarios

and are designed solely as a sensitivity analysis on the basis of the ongoing long-

term decline in UK NOX emissions. These emissions fell by 76% between 1970

(2920 Gg/yr) and 2020 (702 Gg/yr) (Defra, 2021a), with the expectation of further

reductions in the future.

3.2.2 Meteorological variables

Surface ozone levels are strongly influenced by local and synoptic weather conditions

(Pope et al., 2016) and meteorological variables are thus common input features in

ML studies of ozone. The WRF model is a weather prediction system designed

for atmospheric forecasting (Grell et al., 2005). For this study, WRF version 3.7.1

meteorological and terrain variables for the years 2001–2018 were collected on the

same 5×5 km grid as the EMEP4UK model, and then also linearly interpolated

to 1×1 km. Previous work found daily maximum temperature, relative humidity,

thermal surface radiation and wind speed to be important drivers of MDA8 ozone

in Europe (Otero et al., 2016). Thus, we include these (and other similarly relevant)

meteorological variables in our ML model (Table 3.1).

3.2.3 Distance variables

Due to the interaction between NOX and ozone, distance to the nearest road is

a key explanatory variable (Granier and Brasseur, 2003). Distances to five road

types from major to minor roads (Meijer et al., 2018) were calculated at each ozone
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measurement station for the calibration of the model, and on a 1×1 km grid for

the predicted downscaled surface. Similarly, distance to coast from a shapefile of

the UK coastline (Natural Earth: https://www.naturalearthdata.com) was used to

account for the increase of ozone concentrations in coastal areas (Entwistle et al.,

1997). Note that we do not include NOX itself, or any other precursor pollutants,

directly in the model. The primary reason for this is that the EMEP4UK output for

such chemicals is likely to be biased, and we wish to avoid this bias propagating into

the downscaled ozone field. Instead, the distance to road variable acts as a proxy

for NOX concentration, which is reasonable given the importance of road transport

NOX emissions in the UK. To lessen the bias of the downscaling model towards the

relatively dense measurement network in London, an indicator variable was included

to delineate between inside London and outside London, with London defined using

a bounding box from 0.489°W–0.236°E and 51.28–51.686°N.

3.2.4 Ozone monitoring network data

Surface ozone measurements for the years 2001–2018 were obtained from the

Automatic Urban and Rural Network (AURN: https://uk-air.defra.gov.uk, 108

sites), Kings College London network (KCL: https://www.londonair.org.uk, 68

sites), Air Quality England network (AQE: https://www.airqualityengland.co.uk,

12 sites), Welsh Air Quality Network (WAQN: https://airquality.gov.wales, 9 sites)

and Scottish Air Quality Network (SAQN: https://www.scottishairquality.scot, 1

site). These measurements are essential for the calibration and evaluation of the

downscaling model. MDA8 ozone concentrations were calculated at each of the

198 measurement sites; for locations, see Figure B.1. There are differences in the

observation period across the sites, but all sites had a minimum of 3 years data.

In our subsequent analysis, we explored regional variations in ozone concen-

tration and trends. We considered 12 UK regions (see Figure B.2), the spatial

definitions of which are taken from the Level 1 Nomenclature of Territorial Units

for Statistics (National Statistics, 2018). Estimation of site-wise trends, including
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the magnitude and significance, may be sensitive to the chosen statistical technique.

Approaches used in previous studies include use of the non-parametric Theil-Sen

method applied to deseasonalised monthly mean ozone time series (AQEG, 2021)

and least square fits to annual mean data (Finch and Palmer, 2020). In this study, we

calculated trends using ordinary least squares on the yearly averages (and seasonal

averages, 90th percentiles, 10th percentiles) of MDA8 ozone. All trends are calculated

using all available data from each region.

3.3 Downscaling methodology

Our goal is to produce a gridded downscaled surface ozone product which better rep-

resents the stochastic behaviour of the measurements than the original EMEP4UK

output alone. The downscaling approach consists of five steps. First, the 5×5 km

gridded model ozone surface is linearly interpolated to a 1×1 km resolution. Second,

a matched dataset of modelled ozone is selected from the 1×1 km EMEP4UK surface

by selecting, for each measurement station, the nearest grid cell. Third, a machine

learning model is used to perform bias correction on the modelled ozone data.

Fourth, the performance of the bias correction is evaluated at the measurement

locations, by a comparison of the predicted ozone with the observed measurements.

Steps three and four are iterated until no further improvements in the predictive

capability of the model can be seen. Finally, the trained machine learning model is

used to predict MDA8 surface ozone on a 1×1 km resolution grid for the UK. Figure

3.1 shows an example of the resulting downscaled surface. This surface consists of

234,187 cells, compared to the 10,941 cells of the original EMEP4UK surface. The

increased resolution in the downscaled surface leads to greater local-level detail,

resulting in improved inference on the probabilistic behaviour of the ozone surface

which we demonstrate in our subsequent analysis. Further details on the specific

machine learning model, and how it was tuned, are as follows.
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Figure 3.1: (a) An example of the downscaled MDA8 (µg/m3) surface (1×1 km

resolution) and (b) original EMEP4UK surface (right, 5×5 km) for 01-01-2008.
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Table 3.1: Input features to the ML model.

Input features Source
Abbreviation in

source

Resolu-

tion

EMEP4UK surface ozone EMEP4UK O3 1×1 km

Latitude
Measure-

ments
– –

Longitude
Measure-

ments
– –

Daily maximum 2m temperature WRF T2 1×1 km

Daily minimum 2m temperature WRF T2 1×1 km

Daily mean surface pressure WRF PSFC 1×1 km

Downward short-wave flux at ground

surface
WRF SWDOWN 1×1 km

Daily mean planet boundary layer

height
WRF PBLH 1×1 km

Daily mean surface vapor WRF QVAPOR 1×1 km

Daily mean x component of wind WRF U10 1×1 km

Daily mean y component of wind WRF V10 1×1 km

Terrain height WRF HGT 1×1 km

Distance to highways GRIP 1 Vector

Distance to primary roads GRIP 2 Vector

Distance to secondary roads GRIP 3 Vector

Distance to tertiary roads GRIP 4 Vector

Distance to local roads GRIP 5 Vector

Distance to coast Natural Earth – Vector

Year (as integer) EMEP4UK – –

Month (as integer) EMEP4UK – –

Date (as integer) EMEP4UK – –

London (or not) Bounding box – –
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3.3.1 Machine learning model

A gradient boosting tree (GBT) is an iterative, supervised, machine learning model,

consisting of a parameterised ensemble of decision trees (Friedman, 2001). These

decision trees are trained sequentially; each additional tree minimises the prediction

error from the previous tree using gradient descent. As a supervised learning

algorithm, training the model requires both a training dataset and a predefined

objective function, the latter consisting of a loss function and a regularisation term.

The training dataset is the subset of the full set of data from which the best fitting

model is found. The loss function and regularisation term quantify the quality of

model fit given the complexity of the model. The error for each decision tree is

calculated from the loss function (Friedman, 2001), which measures how well the

model predicts the training data, whilst the regularisation term penalises against

model complexity to prevent overfitting. The fitting algorithm ends when either

a predetermined number of trees have been fitted, the loss function falls below

a predetermined threshold, or the addition of more trees provides no significant

improvement to the model fit. The latter criterion is determined by an external

validation dataset. The final model is then the summation over the entire ensemble.

Several characteristics of GBTs make them suitable for downscaling: they

can capture non-linear relationships between variables far more effectively than

competitor approaches (e.g. statistical regression models) and they are both

computationally efficient and scalable, i.e., are suitable for large datasets (Chen

and Guestrin, 2016). The specific GBT implementation used for this analysis is

XGBoost, a highly optimised Python package (Chen and Guestrin, 2016). Since the

measurement ozone data is long tailed, we chose a gamma regression for objective

and evaluation functions of the GBT model; gamma regression is suited to modelling

continuous, non-negative and long tailed data. Like many ML models, the fitting

process used to train the GBTs prioritises the fit of the mean behaviour at the

expense of characterising the tails (i.e., largest and smallest observations). To

reduce this inequality and reduce the mean bias, the tails of the measurement data –
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data above (and below) high (and low) concentrations of ozone – were oversampled.

Resampling is a common approach to rebalance the distribution of training data for

a ML model when the goal is to forecast rare values of the target variable (Torgo

et al., 2015).

Lastly, as with any machine learning analysis, we require a balance between the

fit of the model on the training data and the ability to apply the model to unseen

data, i.e., making sure that the model is not overfit or underfit to the training

data. To get satisfactory results, the hyperparameters of the XGBoost model needed

substantial tuning. Initial hyperparameters were found using Hyperopt, a Bayesian

optimisation package (Bergstra et al., 2013). Subsequent fine tuning was performed

manually until no further improvement could be found in the cross-validation (CV)

tests.

3.3.2 Evaluation of downscaling

3.3.2.1 Predicting ozone at measurement locations

Evaluation of the downscaling model used CV to assess the prediction of MDA8

ozone across multiple measurement locations. CV requires the model to be trained

on a random subsample of the whole dataset, and the resulting model then used to

predict the remaining, and previously unseen, data. The first CV test is to split the

data into two random samples, selected from the entire dataset: 70% of the data

is used to train the model and the remaining 30% is used for evaluation. Table

3.2 shows the annual R2 and RMSE for the predictions combined across all sites.

We found a good agreement between predicted ozone and measurement ozone, with

a cross-year mean R2 of 0.80 and RMSE of 10.61 µg/m3 for 2001–2018, and no

evidence of substantial between-year variation in performance. The second CV test

assesses predictive performance at locations which are completely excluded from the

model training. To do this, 10-fold CV was applied, with the measurement stations

randomly split into 10 groups and each group used to evaluate the model trained on

the remaining 9 groups. Again, we found a good agreement between predicted and
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measurement ozone, with a cross-year mean R2 of 0.70, as seen in Table 3.2.

Table 3.2: R2 and RMSE (µg/m3) results of predicted MDA8 ozone vs MDA8

measurements for the two cross-validation tests: 70/30 train/test split and 10-fold

CV.

70/30 train/test split 10-fold CV

Year R2 RMSE R2 RMSE

2001 0.82 11.33 0.71 14.09

2002 0.79 11.36 0.70 13.72

2003 0.82 12.88 0.74 15.52

2004 0.79 11.42 0.69 13.82

2005 0.77 11.50 0.66 13.98

2006 0.84 11.66 0.74 14.72

2007 0.82 10.09 0.72 12.52

2008 0.83 10.56 0.74 12.89

2009 0.81 10.23 0.71 12.50

2010 0.79 10.43 0.68 12.87

2011 0.79 10.43 0.67 13.06

2012 0.79 10.18 0.68 12.61

2013 0.81 10.09 0.71 12.52

2014 0.77 10.22 0.65 12.56

2015 0.77 9.66 0.65 12.05

2016 0.80 9.88 0.73 11.63

2017 0.81 9.29 0.69 11.80

2018 0.83 9.81 0.73 12.42

Mean 0.80 10.61 0.70 13.07

3.3.2.2 Downscaled surface vs measurements

Having verified the accuracy of the ML downscaling model, we created the

downscaled surface by training the ML model on all measurement data. To compare
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the downscaled surface to both measurements and the unadjusted EMEP4UK

surface, the data from the cell nearest to each measurement station was extracted.

Due to the different grid specifications, the matched cells were not concentric, but

they are very close.

Table 3.3 shows the R2 for each year for the downscaled surface and original

EMEP4UK surface when compared to the measurement data. The cross-year mean

R2 of the downscaled surface is 0.73, 128% higher than the equivalent for the

unadjusted EMEP4UK, at 0.32. Notably, the extremely low R2 values for 2014–2016

in the latter are significantly improved in the downscaled surface, e.g. 0.06 vs

0.73 in 2016. Notable improvement is also seen in 2003, the best performing year

for EMEP4UK, with a downscaled R2 of 0.81 compared with 0.61 for unadjusted

EMEP4UK. There is also a 37% reduction in the cross-year mean RMSE for

the downscaled surface compared with the unadjusted product: 12.26 µg/m3 vs

19.40 µg/m3.

Further differences in the capabilities of the two gridded products to represent

surface ozone measurements are shown in Figure 3.2. A considerable reduction

in noise can be seen in the scatter density plots of the downscaled surface vs

measurements (panel a), which has a stronger linear signal and less scatter in

comparison to the equivalent plot for EMEP4UK (panel b). This indicates that the

unadjusted EMEP4UK surface is a less accurate representation of the measurement

data. The bias in the stochastic behaviour of the unadjusted EMEP4UK output is

evident when comparing the percentiles of the measurement data to the percentiles

of the (i) unadjusted and (ii) downscaled EMEP4UK (panel c); the percentiles for the

unadjusted output are consistently higher than those of the measurements, whilst

those of the downscaled data are almost identical to those of the measurements.

Similarly, we see a considerable shift in the density of the EMEP4UK percentiles

compared to that of the measurement data (panel d); again, there is a far smaller

discrepancy between the densities of the measurements and the downscaled data.
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Figure 3.2: a) scatter density plot of downscaled surface vs measurement ozone;

b) scatter density plot of EMEP4UK surface vs measurement ozone; c) percentile-

percentile plot comparing ordered percentiles of downscaled vs measurement ozone

(green) and EMEP4UK vs measurement ozone (orange); and d) density plots of

measurement ozone (blue), corresponding downscaled surface ozone (green) and

corresponding EMEP4UK surface ozone (orange).
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Table 3.3: R2 and RMSE (µg/m3) results of predicted MDA8 ozone vs MDA8

measurements for the two cross-validation tests: 70/30 train/test split and 10-fold

CV.

Year
Downscaled

R2

Downscaled

RMSE

EMEP4UK

R2

EMEP4UK

RMSE

2001 0.79 12.10 0.45 19.52

2002 0.77 12.05 0.30 20.91

2003 0.81 13.10 0.61 19.05

2004 0.76 12.25 0.47 18.01

2005 0.73 12.54 0.36 19.22

2006 0.80 13.13 0.54 19.81

2007 0.76 11.64 0.41 18.08

2008 0.78 11.97 0.44 19.07

2009 0.74 12.05 0.31 19.45

2010 0.70 12.65 0.29 19.40

2011 0.69 12.62 0.29 19.17

2012 0.71 12.02 0.29 18.88

2013 0.72 12.24 0.28 19.58

2014 0.65 12.73 0.08 20.54

2015 0.64 12.20 0.07 19.66

2016 0.73 11.46 0.06 21.52

2017 0.70 11.70 0.14 19.73

2018 0.74 12.15 0.45 17.62

Mean 0.73 12.26 0.32 19.40

3.3.3 Feature importance

Complex ensemble models, of which GBTs are an example, can be difficult to

interpret. We make use of SHapley Additive exPlanations (SHAP) to quantify the

importance of the input features to the trained GBT, and hence their importance

to the predictive process, and to show that these features are consistent with what
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would be expected given our understanding of the generating mechanisms of surface

ozone. The Shapley values (Lundberg and S.-I. Lee, 2017) are one measure of feature

importance that have been used previously to understand the relationship between

input features and ozone in ML studies (e.g. Z. Liu et al., 2022. It is important

to note that SHAP values cannot be interpreted as correlation coefficients; positive

SHAP values can co-occur with either high (red) or low (blue) values of a feature,

and similarly for negative SHAP values. This means that high values of a given

feature may result in low or high ozone levels.

Figure 3.3 shows the feature importance (as SHAP values) for the final GBT

model trained on all data, where negative SHAP values result in lower predictions

and positive ones to higher predictions. Unsurprisingly, EMEP4UK ozone is

the most important feature in predicting the measured ozone, followed by daily

maximum 2m temperature, date (as an integer), month, and distance to road type 1

(i.e., motorways). Lower concentrations of EMEP4UK ozone have a greater impact

on the GBT model output than high values, signifying that lower EMEP4UK

ozone concentrations better represent the behaviour of measurement ozone than

higher concentrations. Daily maximum 2m temperature is the most important

meteorological feature, reflecting the well-established observed temperature/MDA8

relationship (e.g. Gouldsbrough et al., 2022) that is likely underpinned by several

processes (W. Sun et al., 2017; Romer et al., 2018; Porter and Heald, 2019). Lower

temperatures decreased the model prediction while higher temperatures increase the

prediction. The high importance of the temporal features (date and month) indicates

that seasonality and long-term trends of measurement ozone are not wholly captured

in EMEP4UK. Road type 1 is the most important of the road types, and the fifth

most important feature overall, reflecting the strong link between vehicles, NOX,

and ozone. Type 1 roads typically have a higher traffic volume and considerably

higher NOX concentrations than background locations, due to higher driving speeds

and numbers of heavy good vehicles Mann, 1997.
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Figure 3.3: Feature importance in the GBT model ordered from most important

(top), to least important (bottom). Local SHAP values (left) show the model impact

of each feature based on feature value. Negative SHAP value results in a lower ozone

prediction, and positive SHAP value results in a higher ozone prediction. Mean

absolute SHAP values (right) show the overall impact of each feature on model

output.

70



3.4. Results - analysis of the downscaled surface

3.4 Results - analysis of the downscaled surface

We perform three analyses of our downscaled ozone surface: recent years (2014–2018),

time trends (2001–2018), and heatwave years (2003, 2006 and 2018). In all cases, we

compare the behaviour of four characteristics – annual mean, March–August mean,

and the annual 10th and 90th percentiles – across the measurement stations and the

EMEP4UK and downscaled surfaces.

3.4.1 Recent years analysis (2014–2018)

We examine the years 2014–2018 as these are the most recent years in the

dataset. The five-year period accommodates the interannual variability in ozone

concentrations, resulting in a broader overview of ozone behaviour. In the UK,

elevated ozone mostly occurs in spring/summer (March–August) during anticyclonic

conditions when slow moving air masses from mainland Europe contribute to

increased accumulation of precursor emissions and increased rates of photochemical

ozone production AQEG, 2021. Figure 3.4 shows the 2014–2018 annual (i.e., all

months) and March–August (only) mean MDA8 ozone for each region and each

data product. Recall that the measurement means are based on a limited and

varying number of monitoring sites within each region (Figure B.1). Regional

means, both annual and March–August, are consistently higher for the original

EMEP4UK surface compared to the downscaled surface and measurements reflecting

a high bias in the unadjusted CTM. See also Tables B.1 and B.2 which contain a

summary of the data plotted in Figure 3.4. The all-region annual mean MDA8 from

the downscaled surface (∼62 µg/m3) and measurements (∼61 µg/m3) are in close

agreement, while the original EMEP4UK surface (∼76 µg/m3) is significantly larger

(Table B.1). A similar pattern of agreement is found for the March–August means

(Table B.2). One region where the downscaled surface and measurements differ

considerably is London. Here, the annual mean MDA8 for the downscaled surface

and measurements are 57µg/m3 and 49 µg/m3, respectively (and 68µg/m3 versus
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58 µg/m3 for the March–August mean). The high proportion of urban measurement

sites in London (i.e., sampling more NOX titration), in contrast to the more varied

site type sampling of the gridded downscaled surface, likely contributes to the higher

MDA8 ozone in the downscaled surface.

Figure 3.5 shows the 2014–2018 regional average 90th and 10th percentiles of

MDA8 ozone. The EMEP4UK 90th and 10th percentiles are higher for all regions

compared to the downscaled surface and measurements, further demonstrating the

high ozone bias present in the EMEP4UK surface. Southeast England has the

highest regional 90th percentile MDA8 ozone concentration in both the downscaled

(88 µg/m3) and EMEP4UK (99 µg/m3) surfaces, while Southwest England has the

highest 90th percentile in the measurements at 90 µg/m3. The most noticeable

difference between the three datasets is the 90th percentile estimate for Scotland:

79 µg/m3 for the downscaled surface, 95 µg/m3 for the EMEP4UK surface, and

86 µg/m3 for the measurements. Wales has the highest 10th percentile MDA8

ozone concentration in the EMEP4UK and downscaled surfaces, 62 µg/m3 and

50 µg/m3 respectively, while having only the third highest 10th percentile in the

measurements, at 40 µg/m3. The highest regional 10th percentile in the measurement

data is 45 µg/m3 for Scotland. The 10th percentiles for Scotland in the EMEP4UK

and downscaled surfaces are higher still: 61 µg/m3 and 48 µg/m3, respectively.

The relatively high 10th percentile in Scotland is likely due to the low regional

NOX emissions, as ozone in Northern Scotland reflects hemispheric background

concentrations instead of the photochemical generated concentrations (Entwistle

et al., 1997). The inter-region variation in 90th percentile is 12 µg/m3 in the

downscaled surface, whereas the inter-region variation in the 10th percentile is

considerably higher at 21 µg/m3, due to the particularly low 10th percentile ozone

concentration in London of 29 µg/m3. See Tables B.3 and B.4 which contain a

summary of the data plotted in Figure 3.5.

Reports from Defra highlight that very few UK regions currently meet the UK

government long-term ozone objective of MDA8 to not exceed 100 µg/m3 more than
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Figure 3.4: Comparing regional averages of EMEP4UK (left column), downscaled

(middle column), and measurement (right column) MDA8 ozone (µg/m3) for

2014–2018 annual mean (top row) and March–August mean (bottom row).
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Figure 3.5: Comparing regional averages of EMEP4UK (left column), downscaled

(middle column), and measurement (right column) MDA8 ozone (µg/m3) for

2014–2018 90th percentile (top row) and 10th percentile (bottom row).
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10 times in a year. Similarly, the EU’s long-term objective (no MDA8 exceedances

of 120 µg/m3) is routinely breached in most areas. A summary of the guidelines

against which the UK reports is given in Table 1 of Defra (2021c). For the above

assessments, which are based on measurements from the AURN network, if one

location (monitoring site) within a region is in breach of the objective, that region

is deemed non-compliant. For example, in 2021 no regions outside of Scotland met

the EU objective (Defra, 2022). Our downscaled surface provides an additional

perspective on adherence that is not possible to obtain from a relatively sparse

monitoring network alone or from a CTM with significant bias. Figure 3.6 shows

the number of days in a year exceeding 100 µg/m3 averaged over 2014–2018 for both

the downscaled and unadjusted EMEP4UK datasets, with yellow cells highlighting

areas where 100 µg/m3 is exceeded less than 10 times per year and therefore passing

the government objective. We find that 27% of the downscaled UK surface exceeds

the government objective, compared to 99% from EMEP4UK. This underpins the

importance of bias correction when using process models to examine policy metrics

and air quality exposure indicators. At least one downscaled cell in all the 12 UK

regions was found to have more than 10 days with MDA8 greater than 100 µg/m3

averaged over 2014–2018, however the regions in the southeast of the UK have the

greatest proportion of failing cells, with 86% and 88% of the East and South East

regions failing.

3.4.2 Trends over time

As mentioned earlier, the use of measurement data only is limited by varying, and

in some cases very short, measurement periods and this can prove problematic in

air quality trend analysis (Lang, 2020). The gridded downscaled and EMEP4UK

datasets facilitate the estimation of trends for all regions, regardless of the density

of the measurement network and/or the completeness of the measurement records.

We illustrate this in the subsequent analysis by quantifying regional trends in ozone

concentrations, comparing, as before, measurement, downscaled and EMEP4UK
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Figure 3.6: 2014–2018 average number of days per year where each cell exceeds a

level of 100 µg/m3 in a) downscaled ozone surface and b) EMEP4UK ozone surface.
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estimates. We do not quantify a single UK-wide trend since the behaviour of ozone,

and consequently also the observed long-term trends, differ considerably across the

UK.

A benefit of using a gridded ozone surface is greater spatial coverage; this enables

estimation of regional trends in regions where measurement stations are sparse.

Figure 3.7 shows the annual and March–August regional mean MDA8 ozone trends

for 2001–2018, for the three datasets. These trends are also given in Tables B.5

and B.6, respectively. All regions have a decreasing trend in annual mean MDA8

ozone in the downscaled surface; however, no trends are statistically significant.

Southeast England has the greatest trend at -0.26 [-0.56, 0.04] µg/m3, followed by

Southwest England and Wales, at -0.25 [-0.55, 0.04] µg/m3 and -0.25 [-0.50, 0.00]

µg/m3, respectively. In comparison, the measurements and EMEP4UK surfaces

both have a combination of increasing and decreasing regional trends (few of which

are statistically significant). In the measurements, Yorkshire and The Humber has

the greatest increasing trend in annual mean ozone concentrations, at 0.33 [0.02,

0.64] µg/m3 per year, followed by the West Midlands and Northwest England at 0.28

[-0.01, 0.56] µg/m3 and 0.29 [-0.02, 0.59] µg/m3 per year, respectively. EMEP4UK

is the only dataset for which London has a significant increasing trend in annual

mean ozone, at 0.43 [0.20, 0.66] µg/m3, with non-significant decreasing trends of

-0.20 [-0.48, 0.09] µg/m3 and -0.23 [-0.50, 0.05] µg/m3 per year in, respectively, the

measurements and downscaled surface.

In contrast to the annual mean case discussed above, most March–August mean

ozone trends are statistically significant in the downscaled and EMEP4UK surfaces

(Table B.6). When comparing the March–August mean trends we also see a greater

similarity between the downscaled and EMEP4UK surfaces (in terms of the sign of

the trend), except for London where the trend is again positive in the EMEP4UK

surface (0.17 [-0.06, 0.39] µg/m3 per year), and negative in the downscaled surface (-

0.34 [-0.77, 0.10] µg/m3 per year). While all regions have a decreasing March–August

mean trend in the downscaled surface, the largest reductions are seen in the south
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of the UK: Southeast England and Southwest England at -0.58 [-1.02, -0.15] µg/m3

and -0.52 [-0.95, -0.09] µg/m3 per year, respectively. Note, the MDA8 ozone data

that underpin the above trend analysis is shown in Figures B.3–B.5 and Figures

B.6–B.8 for the annual mean and March–August mean, respectively. These figures

demonstrate the regional interannual variation in MDA8 ozone concentrations,

which is missed by only considering the trends.

Figure 3.8 shows the regional trends of 90th and 10th percentile ozone concen-

trations for the period 2001–2018; estimates and confidence intervals are also given

in Tables B.7 and B.8. 90th percentile ozone is decreasing for all regions and all

datasets. Looking at the downscaled surface, the downward trend is significant in

half of the regions considered, with the greatest changes in 90th percentile ozone

in the south of the UK, particularly for South East (England) with a trend of

-0.74 [-1.35, -0.12] µg/m3 per year. In comparison, regions with the greatest

change in 90th percentile ozone in the EMEP4UK surface and measurements are

East of England at -0.75 [-1.09, -0.40] µg/m3, and North East (England) at -

0.59 [-0.95, -0.22] µg/m3 per year. 10th percentile ozone is increasing for most

regions in the downscaled and EMEP4UK surface, and for all regions in the

measurements. Northern Ireland, Wales, and Scotland have a slightly decreasing

10th percentile trends in the downscaled surface, at -0.01, -0.01 and 0.06 µg/m3 per

year, respectively, though none of these trends are statistically significant. We find

a greater increase in 10th percentile ozone for London in the downscaled surface

than in the measurements, at 1.19 [0.75, 1.62] µg/m3 and 0.17 [-0.04, 0.37] µg/m3

per year, respectively. We suspect this is again due to urban site type bias in the

measurements, compared with the more varied sampling in the gridded downscaled

surface. The regional yearly 90th percentiles in the downscaled, EMEP4UK and

measurement datasets are shown in Figures B.9–B.11, respectively. The equivalent

figures for the 10th percentiles are shown in Figures B.12–B.14.

The UK government has a long-term objective that MDA8 ozone should not

exceed a level of 100 µg/m3 more than ten times per year. Earlier we showed
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Figure 3.7: Annual mean and March–August mean trends for each region, for each

dataset. Regions with insignificant trends are hatched.
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Figure 3.8: 90th percentile and 10th percentile trends for each region, for each dataset.

Regions with insignificant trends are hatched.
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that conclusions regarding the degree to which this objective is being met differ

substantially between the downscaled and original EMEP4UK model (Figure 3.6).

As the downscaled surface, measurement data and EMEP4UK surface all have a

different number of cells/stations, we look at the time trend in the percentage of

sites or grid cells which fail to meet this, rather than the trend in absolute number.

A decreasing time trend in the percentage of the UK failing to meet the objective is

seen for all three datasets. However, the only statistically significant trend is for the

downscaled surface, at -2.19 [-4.32, -0.07] % per year. The EMEP4UK trend is less

steep, -0.60 [-1.62, 0.43] % per year, and the measurements trend lies in between at

-1.73 [-3.78, 0.32] % per year.

Recalling that a core aim for our downscaling methodology was to better

represent the tail behaviour of measurement ozone, we now consider the specific

years 2003, 2006 and 2018 (hereafter “heatwave years”) which were significantly

warmer than average (see later), and when UK ozone levels were elevated (Diaz

et al., 2020). Figure 3.9 shows the number of days that exceed a level of 100 µg/m3

for each heatwave year, along with the corresponding yearly mean temperature.

Yellow cells highlight areas where 100 µg/m3 is exceeded less than 10 times per year

and therefore passing the government objective. In the EMEP4UK surface, almost

all the UK (more than 99%) is exceeding the government objective in the heatwave

years. In the downscaled surface, 88%, 87% and 53% of the UK is failing the

government objective in 2003, 2006 and 2018, respectively. These percentages are

substantially higher than the 2014–2018 average percentage of 27%, demonstrating

the more frequent occurrence of exceedance days above 100 µg/m3 in heatwave

years. Both the EMEP4UK and downscaled surfaces show a change over time

in the amount of the UK exceeding the government objective in heatwave years,

with the highest number of exceedances in 2003, and lowest in 2018. The areas

with the highest number of exceedances are correlated with the temperature maps,

with more exceedance occurring where the yearly mean temperatures are higher,

consistent with the well documented link between MDA8 ozone and temperature in
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the literature.

3.4.3 Analysis of NOX scenarios

A major application of CTMs is to aid understanding of pollutant behaviour under

future emissions or climate change scenarios. In this section we explore the effect

of reductions in UK NOX emissions on ozone under 2018 meteorological conditions.

We compare four downscaled surfaces: (1) a 2018 base run, (2) a run as base but

with a 20% reduction in UK terrestrial NOX emissions, (3) a 40% reduction, and

(4) an 80% reduction (see also Section 3.2.1). The year 2018 is of specific interest

as it was the seventh warmest year in the UK since 1884 (Kendon et al., 2019) with

a mean temperature that was 0.6 °C above the 1981–2010 average.

Since 2018 was, climatologically, an atypical year for the UK, we first compared

two 2018 EMEP4UK base run downscaled surfaces. The first was obtained from the

ML downscaling model trained on the 2001–2018 EMEP4UK data used in Sections

3.3 and 3.4, and the second from the same downscaling model but trained only on

the 2018 base run data. We found that the two sets of predicted surfaces performed

almost identically in capturing the behaviour of the 2018 measurement data (both

have an R2 of 0.74 and RMSE of ∼12.15 µg/m3). These findings support our

decision to use the downscaling model trained on the 2001–2018 data (see Section

3.2.1) to downscale not just the base run of 2018, but also the ozone surfaces under

the three NOX scenario runs. Implicit in downscaling the scenarios in this way

is the assumption that the associations of the input features and surface level

ozone remain the same, even as NOX levels decrease. We acknowledge this as a

potential limitation but note that similar assumptions are endemic throughout the

downscaling literature.

Figure 3.10 shows the point wise differences in downscaled annual mean,

March–August mean, and 90th percentile ozone for the three NOX scenarios

compared to the equivalent statistics for the 2018 base run. Both 20% and 40%

NOX reductions result in most of the UK seeing increased annual mean ozone
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Figure 3.9: Number of days where each cell exceeds a level of 100 µg/m3

in downscaled surface ozone (left) and EMEP4UK surface ozone (middle), for

heatwaves years 2003, 2006 and 2018. Also given are the yearly mean daily maximum

temperature anomalies compared to the 2001–2018 average (right) for each heatwave

year.
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concentrations, except rural areas in Scotland. Conversely, the more drastic NOX

reduction of 80% results in a decrease of annual mean ozone for much of the UK,

particularly large portions of South West (England), Wales, Scotland, Northern

Ireland, North West (England) and North East (England). In contrast to the trends

seen in the annual mean, larger and more widely spread decreases are seen in the

March–August mean for all NOX reduction scenarios, suggesting the impact on

spring and summer mean ozone is greater than on the annual mean. The change

in 90th percentile ozone is far more granular, largely due to the differences in tail

behaviour of ozone at rural and urban locations. The relatively moderate reductions

in NOX concentrations of 20% and 40% lead to increases in 90th percentile ozone

in parts of the UK, whereas the more substantial reduction in NOX concentrations

of 80% results in only very urban areas having increases in 90th percentile ozone,

such as Manchester, Leeds, Sheffield, Birmingham, London, Newcastle, Edinburgh,

Glasgow, and Aberdeen. Similar increases in high-level ozone due to NOX reductions

has been show for several cities in the US (Gao et al., 2013) and reflect the

interdependence of ozone concentrations and NOX mitigation strategies. Finally,

a similar sensitivity analysis based on the unadjusted EMEP4UK output (Figure

B.15) exhibits a very similar pattern of ozone response.

In summary, the above analysis demonstrates the applicability of our downscaled

EMEP4UK surface to examine the sensitivity of UK ozone to changes in precursor

emissions at high spatial resolution. These results also emphasise the challenges in

controlling surface ozone (especially in urban areas) if NOX emissions continue to

decline substantially – an effect which few studies have demonstrated for the UK

using models to date.

3.5 Conclusions

We have proposed a machine learning methodology to spatially downscale surface

ozone output from the EMEP4UK chemical transport model from its native 5×5

km resolution to a 1×1 km resolution. Taking a 1×1 km interpolation of the
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Figure 3.10: Difference in annual mean (top), March–August mean (middle), and

90th percentile (bottom) MDA8 ozone compared to 2018 for three UK NOX scenarios:

20% reduction in NOX (left), 40% reduction in NOX (middle), 80% reduction in NOX

(right).
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original EMEP4UK grid as input, our algorithm uses a gradient boosting tree

to predict a high-resolution gridded ozone surface. The algorithm was trained to

predict measurement data from sites across the UK, as well as 21 input feature

variables. We find that the downscaled surface better represents the behaviour of

measurement ozone, with a 128% improvement in R2 and 37% reduction in RMSE

compared to the EMEP4UK surface. The GBT allows replication of the behaviour of

complex non-linear systems and the ability to work with high dimensional datasets.

Producing the downscaled surface using the proposed methodology is far quicker and

less computationally expensive than running a high-resolution CTM. We therefore

consider this methodology to be a useful post-processing tool for CTMs that can

efficiently produce higher resolution ozone surfaces and, as is the case for EMEP4UK,

reduce biases by incorporating information from measurements. A further advantage

of the proposed ML downscaling model is the ability to identify the most important

features for the prediction of MDA8 ozone. Consistent with previous work, daily

maximum 2m temperature is found to be the most important meteorological feature,

with elevated temperatures strongly associated with high level ozone.

Our analysis on recent years (2014–2018) finds that South East (England) and

South West (England) experience higher March–August concentrations of ozone

than other regions. We find greater inter-region differences in spring/summer

mean ozone concentrations than annual mean. There is a clear north-south

difference of high percentile ozone in the downscaled surface, with high ozone

concentrations in the south of the UK. Low percentile ozone has the greatest

inter-region variation in the downscaled surface due to the particularly low 10th

percentile ozone concentration in London. This demonstrates the effect greater NOX

concentrations in highly urban areas in reducing background ozone concentrations

through NOX-titration.

We have estimated regional trends in various statistics of ozone using data

from 2001–2018 for the three datasets: EMEP4UK, downscaled surface, and

measurements. Annual and March–August mean ozone decreases for all regions
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in the downscaled surface, while some regions have increasing trends in the

measurements. EMEP4UK is the only dataset to estimate an increase in annual

mean ozone for London. The proposed downscaling surface is useful when

considering how UK ozone has changed over time as it is higher resolution than

EMEP4UK, and provides more spatially complete coverage than measurements

alone. The downscaling process also addresses the high bias present in EMEP4UK,

resulting in a better reflection of high-level ozone relevant to health. We find an

improved picture of high-level ozone when using the downscaled surface, with only

53% of the UK failing its government objective (to not exceed an ozone level of 100

µg/m3 more than 10 times per year) in 2018, compared to 99% of the UK failing

this objective in EMEP4UK. Further improvement in high-level ozone is apparent

from considering trends in 90th percentile ozone. We find significant reductions in

90th percentile ozone for half of the regions considered in the downscaled surface,

with the greatest reductions in the south of the UK, particularly for South East

(England).

Through a sensitivity analysis, we considered the effect of three NOX reduction

scenarios on UK ozone concentrations downscaled using the proposed downscaling

method. Moderate (20% and 40%) reductions in NOX concentrations are shown to

increase annual mean ozone for most of the UK, whereas significant (80%) reductions

decrease annual mean ozone for large parts of the UK. More of the UK shows a

decrease in March–August mean ozone for all NOX scenarios, suggesting a stronger

link between spring and summer ozone concentrations and NOX than annual mean

concentrations. The differences in the tail behaviour of ozone at urban and rural

locations is made evident in the effect of NOX reductions on 90th percentile ozone.

Very urban areas see the largest increases in 90th percentile ozone when reducing

NOX concentrations by 80%, and this includes many of the UK’s biggest cities. We

determine it important to further understand the effect of NOX reductions on UK

ozone, as a considerable portion of the UK population live in these urban areas.

These results reemphasise the broader challenges around NOX mitigation strategies.
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To conclude, machine learning based downscaling approaches offer a promising way

to study pollutant trends and to assess the impact of policies for ozone and in

principle other pollutants. A focus of future work will be to exploit the bias-corrected

downscaled surfaces for the assessment of population exposure to poor air quality

and to help quantify the resulting health impacts.
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Abstract

High concentrations of surface level ozone are harmful to human and plant health,

making their reduction a global priority. At the same time, it is also essential to

efficiently produce skilful short lead-time forecasts of high-level ozone concentrations

to provide timely public health warnings. Both objectives require an understanding

of the key drivers of high-level ozone and how these vary over different regions

and local environments. We present a data-driven machine learning classification

approach which is used to identify the most important factors contributing to high-

level ozone concentrations in, and across, the UK. The classifier exploits input

variables known to affect ozone concentrations, including meteorological, temporal,

and spatial variables, to predict with high accuracy the occurrence of high-level

ozone events. Through the implementation of SHAP measures, we can determine

the extent to which each of these factors influences high-level ozone and identify

their interactions. We use this driver information to develop a model that can

inform the ‘traffic light’ warning system used by the UK government to advise

the public of potential over-exposure. The model that we propose is a machine

learning classification approach, trained to forecast days with an exceedance of the

UK’s ‘moderate’ ozone health threshold (MDA8 ozone>100 µg/m3). We achieve

high accuracy in forecasting exceedance days with hit rates ranging from 0.69

to 0.78 for the years considered: 2003, 2006, 2008 and 2018. Our results show

that daily maximum 2m temperature is the most important predictor feature for

both identifying high-level ozone events and forecasting moderate health threshold

exceedance days.
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4.1 Introduction

High concentrations of surface level ozone have detrimental impacts on human

health (Ji et al., 2011; COMEAP, 2015; Nuvolone et al., 2018). Consequently,

the monitoring, forecasting and reduction of ozone levels is a global priority in the

management of air quality. Ozone is a particularly complex pollutant since it is

not directly emitted; rather the formation and destruction of ozone involve complex

chemical reactions that depend on both concentrations of precursor pollutants, NOX

and VOCs, and meteorological and atmospheric conditions at global, regional and

local scales (Lelieveld and Dentener, 2000). To minimise morbidity and mortality

rates during periods of poor air quality, many governments, including the UK

government, have implemented a ‘traffic light’ system under which ozone levels are

classed as normal, moderate, high or very high (see https://uk-air.defra.gov.uk/

air-pollution/daqi?view=more-info). An advance public health warning is issued if

the ozone forecast suggests that levels are likely to exceed one of the thresholds

which would result in the potential for over-exposure. Accurate forecasting of high

ozone levels is therefore key to the effectiveness of this system.

Atmospheric chemistry transport models (CTMs) have been used to produce

operational air quality forecasts (Savage et al., 2013; A. Kumar et al., 2017;

Spiridonov et al., 2019; Stortini et al., 2020). These models are well developed

to accurately reproduce the expected behaviour of an array of different pollutants,

at a high spatio-temporal resolution. However, developing and running CTMs can

be complex and computationally expensive, often requiring specialist machines. The

online air quality model AQUM (Air Quality in the Unified Model), developed and

maintained by the UK Met Office, provides regional air quality forecasts for the

UK, and has been shown to have a good level of performance in forecasting elevated

ozone episode conditions (Savage et al., 2013).

To make models like AQUM useful in forecasting high-level events, we need

to perform bias correction. Neal et al. (2014) proposed an automated air quality

forecast bias correction scheme for the AQUM output, based on the short-term/
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persistence of model bias with respect to recent observations to improve the accuracy

of these forecasts. We propose an alternative data-driven approach based on machine

learning models. The flexibility and computational efficiency of these models allows

us to both identify the drivers behind high-level ozone and assess whether these are

consistent across varying degrees of ‘high-level’. We then show how, with minor

modifications, the approach can be used to make short range forecasts of when an

ozone episode is expected to occur. This forecast can then be used to directly inform

whether a health warning is made.

The key advantage of this data-driven approach is that it allows us to learn

from the data directly about the events in which we are most interested. Moreover,

relative to CTMs, training a machine learning (ML) model is highly computationally

efficient allowing for quick and agile model development, including easily updating

should additional information become available in the future. Of the two types of

data-driven model, statistical and machine learning, ML models offer a particularly

good alternative to CTMs for air quality forecasting. In contrast to statistical

models, they have much weaker constraints on the mathematical forms for the

complex interactions and relationships between pollutants and their chemical and

physical drivers. Further, ML models do not require that the form of these

relationships be specified in advance of modelling; rather they are informed by

the data. Lastly, ML models can leverage the large amount of measurement

data available, as well as relevant meteorological and spatial information, in a

computationally efficient manner. Gradient boosted trees (GBTs) are a particular

type of ML model that can be address either regression or classification questions.

As discussed below, we exploit GBTs to develop a classification algorithm, however

they have previously been used in the air quality literature to build regression

models to predict ozone exposure during wildfires (Watson et al., 2019), to create

spatiotemporally resolved ozone surfaces for China (R. Li et al., 2020; Yuan Wang,

Yuan, T. Li, et al., 2021; Hu et al., 2022; Song et al., 2022; Yuan Wang, Yuan,

Zhu, et al., 2022; Chi et al., 2023; L. Liu et al., 2023), and to bias correct chemistry
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transport models (Keller et al., 2021; Ortiz et al., 2021; Yin et al., 2021).

In this chapter we address the questions of driver identification and forecasting

of ozone episodes in the UK where, despite reductions in the emissions of precursor

pollutants in the UK and Europe, the mortality attributable to exposure to ozone

between 1970 and 2010 increased by 17% (Carnell et al., 2019). The UK government

has set health thresholds for the maximum daily 8-hr average (MDA8) ozone

concentrations, with a moderate health threshold of 100µg/m3. Exceedances of

these thresholds pose an increasing risk to public health, particularly for vulnerable

groups such as children, the elderly and people with respiratory or cardiovascular

conditions (Srebot et al., 2009). Rather than taking the first principles, physical

science-based approach of a CTM, we train a ML GBT classifier on occurrences

of health threshold exceedances derived from in situ measurements. This allows

us to determine the factors most associated with these events. In the UK, ozone

episodes have been shown to be affected by concentrations of NOX and VOCs

over north-west Europe (Jenkin, 2008); elevated temperatures (Finch and Palmer,

2020; Gouldsbrough et al., 2022); and synoptic weather conditions, particularly

easterly flows, which transport precursor gases from mainland Europe, and dry,

sunny and still anticyclonic conditions, which lead to greater ozone formation and

decreased dispersion (Pope et al., 2016). These studies support our choice of

drivers, which include both NOX and relevant meteorological variables. Air quality

measurements are obtained from AURN, a UK-wide monitoring network used by

the UK government to monitor and assess air quality across the country, and to

develop policies and measures to improve air quality and protect public health.

Meteorological data is obtained from simulations of the Weather Research and

Forecasting model (WRF) (C. Skamarock et al., 2008).

GBT classifiers are highly flexible and can identify highly non-linear relationships

between input values and response, unlike simpler classifiers based on statistical

models such as logistic regression. However, the resulting relationships are harder

to visualise and the effect of each input variable on the response harder to describe.
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To gain a better understanding of the significance of each input variable in the

classification model, we use SHAP (SHapley Additive exPlanations), which permits

interpretations of the output of a ML model by assessing the contribution of each

input variable to the predicted outcome (Lundberg and S.-I. Lee, 2017). SHAP

values enable us to quantify the relative importance of each input variable by

providing insights into the contribution of each variable to the final prediction, and

therefore identify the drivers of high-level ozone concentrations for the UK. To our

knowledge, this is the first time that machine learning classification and SHAP have

been used together to determine the drivers of high-level ozone for the UK.

This paper is structured as follows. Section 4.2 outlines the data used in the

analysis and the features included with the ML models. Section 4.3 describes the

methods used, including the ML models, and the driver and forecasting experiment

setups. In Section 4.4 we determine the drivers of high-level ozone across the UK,

focusing on synoptic weather conditions (Section 4.4.1), and on meteorological,

spatial and temporal features (4.4.2). Section 4.5 presents results from four health

threshold exceedance forecasting experiments. Finally, in Section 4.6 we present our

conclusions.

4.2 Data

Our analysis used ozone and NOX measurements, meteorological data from WRF,

synoptic weather types and distance to roads data. These are described individually

in the following subsections.

4.2.1 Ozone and NOX measurements

Surface ozone and NOX measurement data were obtained from the Automatic Urban

and Rural Network (AURN: https://uk-air.defra.gov.uk/networks/network-info?

view=aurn), via the R package openair (Carslaw and Ropkins, 2012). This

network of air quality monitoring stations across the UK is operated by the UK
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Figure 4.1: Map of AURN measurement stations used, showing station site type

(symbols) and the number of years of data (colour). Central England (including

London) is shown in an expanded view.

government’s Department for Environment, Food and Rural Affairs (Defra) and

provides continuous monitoring of air pollution levels in both urban and rural areas.

We obtained data at each of 108 sites (see Figure 4.1) over the period 2001–2018.

Variations in the start and end dates of monitoring result in differences in the length

of records across the sites. The number of measurement stations in each UK region

are listed in Table 4.1.

4.2.2 Meteorological variables

Meteorological variables for the years 2001–2018 and terrain height were obtained

from archived output from previous simulations of the Weather Research and

Forecasting (WRF) model, version 3.7.1 (C. Skamarock et al., 2008) for years

2001–2017 and WRF4.1 (W. C. Skamarock et al., 2019) for 2018. The WRF

model is a numerical modelling system designed to simulate and predict weather
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Table 4.1: Total number of measurement stations for each UK region with data in

the period 2001–2018.

Region Number of measurement stations

Central Scotland 5

East Midlands 8

Eastern 8

Greater London 16

Highland 3

North East 4

North East Scotland 1

North Wales 2

North West Merseyside 13

Northern Ireland 3

Scottish Borders 2

South East 8

South Wales 6

South West 8

West Midlands 13

Yorkshire Humberside 8

patterns and atmospheric processes (Powers et al., 2017). The WRF simulation

in this work incorporates data from the numerical weather prediction model

meteorological reanalysis of the US National Center for Environmental Prediction

(NCEP)/National Center for Atmospheric Research (NCAR) Global Forecast

System (GFS) (Environmental Prediction, 2000). The WRF model was run on

a 5×5 km resolution and then we linearly interpolated this to a 1×1 km resolution.

The WRF variables were then taken at the nearest grid cell locations to each

measurement station.
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Figure 4.2: Proportion of days in a given year with each of our 11 Lamb weather

types (see text and Table 4.2), for years 2001–2018.

4.2.3 Lamb weather types

Lamb weather types (LWTs) are an objective classification of the daily synoptic

weather conditions across the UK. Rather than the original LWTs (Lamb, 1972), we

use the recent classification proposed by Jenkinson and Collison (1997) maintained

by the Climatic Research Unit at the University of East Anglia (https://crudata.uea.

ac.uk/cru/data/lwt/). The 27 LWTs include ‘pure’ and ‘hybrid’ types; for instance,

#0 is purely anticyclonic (A) whereas #1 is anticyclonic north-easterly (ANE), a

hybrid between anticyclonic and north-easterly. We regroup the 27 LWTs into 11

types (A, C, NE, E, SE, S, SW, W, NW, N and U) to ensure sufficiently large sample

sizes in each weather type. The resulting time fraction spent in each type is shown

in Figure 4.2 for the years 2001–2018. We reassigned each day originally assigned a

hybrid type, where the new type was assigned at random using a weighted sample

from the types making up the hybrid; e.g. for the nANE days of type ANE, w1nANE

are classified as A and w2nANE are classified as NE, where w1 is the proportion of

pure anticyclonic days and w2 is the proportion of pure NE days. The total number

of days under each LWT are listed in Table 4.2.

97

https://crudata.uea.ac.uk/cru/data/lwt/
https://crudata.uea.ac.uk/cru/data/lwt/


Chapter 4. Identifying the drivers of high-level ozone events using machine
learning classification

Table 4.2: Total number of days under each Lamb weather type (LWT) for

2001–2018.

LWT Long name Number of days

A Anticyclonic 1325

C Cyclonic 910

N Northerly 362

NE North-easterly 160

E Easterly 183

SE South-easterly 277

S Southerly 550

SW South-westerly 999

W Westerly 1084

NW North-westerly 634

U Unclassified 90

4.2.4 Distance to roads

Distances to types of roads were obtained from the GRIP global roads database

(Meijer et al., 2018). Distances were calculated for each AURN station and

were used as input features to the classifier model. This feature is particularly

useful for stations without NOX measurements, since NOX, and subsequently ozone

concentrations, are strongly affected by road emissions (Granier and Brasseur, 2003).

4.3 Methods

4.3.1 Gradient boosted tree classifier (LightGBM)

For our ML classification model, we use the LightGBM Python package (https:

//lightgbm.readthedocs.io/en/latest/Python-API.html). LightGBM is a gradient

boosting framework that uses a tree-based learning algorithm for machine learning
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classification and regression tasks. The framework is an ensemble of decision trees

that learn the relationships between input features and the target variable. The

trees are combined using a gradient boosting algorithm, where new trees are added

to the ensemble in such a way as to correct errors made by the previous trees. It is

designed to be efficient, scalable and highly accurate, and is particularly useful for

high-dimensional data with a large number of input features (Ke et al., 2017).

4.3.2 Balancing classes

Balancing classes is necessary to prevent the classification model from being

dominated by the greater information available for the largest class, resulting in

poor classification performance of the smallest class (Fernández et al., 2018). We

use oversampling of the minority class to balance the classes i.e., random sampling

the smallest class to be the same size as the largest class. The total post-balancing

sample size is therefore twice the size of the largest class; in the context of threshold

exceedances the consequence of this is that, whilst the number of exceedances

decreases with the threshold, the post-balancing sample size increases.

4.3.3 Driver experiments

For each measurement station, we categorise high-level ozone days as days where

MDA8 ozone exceeds the 90th, 99th and 99.9th percentiles of MDA8 ozone at that

location. We use site-specific percentiles instead of absolute thresholds to determine

what drives the relatively high levels of ozone at each location, since the distribution

of ozone levels differs across measurement sites. Table 4.3 shows the means and

standard deviations for each exceedance group above the station-specific 50th, 90th,

99th and 99.9th percentile thresholds. Whilst not extreme, the 50th percentile

provides a useful baseline for our results. All experiments are run by first extracting

the exceedances at each site and then pooling across sites to create a single dataset.

Further, as our focus is on the interpretability of the trained ML model, not the

ability to extrapolate to unseen cases, these are within-sample experiments. Table
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4.4 lists the input features used for the classification experiments in Section 4.4.2.

Table 4.3: Means and standard deviations for MDA8 ozone measurements above

station-specific 50th, 90th, 99th and 99.9th percentile thresholds and then pooled

across stations.

Percentile
Mean of

exceedances (µg/m3)

Standard Deviation of

exceedances (µg/m3)

50th 75.12 17.61

90th 97.94 18.39

99th 132.75 21.04

99.9th 162.07 23.04

4.3.4 Model explanations (SHAP)

We use SHAP (SHapely Additive exPlanations) to determine the importance of

the input features in the classification model, and hence the drivers of high-level

ozone. SHAP provides a unified framework for interpreting the output of any

machine learning model. The SHAP values represent the marginal contribution

of each feature to the model output, relative to the expected value of the model

output. By aggregating the SHAP values for each feature across a set of instances,

it is possible to understand the overall importance of each feature in the model

(Lundberg and S.-I. Lee, 2017). SHAP values can be positive or negative, with a

positive value implying that the corresponding feature increases the likelihood of a

threshold exceedance day, and a negative one implying an increased likelihood of

a non-exceedance day. We define a ‘driver’ of high-level ozone as a feature with a

positive SHAP value, and an ‘inhibitor’ as a feature with a negative SHAP value.

4.3.5 Forecasting moderate health threshold exceedances

In the UK, the moderate health threshold for MDA8 ozone is set by the UK

government at 100µg/m3. We propose an ML-based health threshold exceedance
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Table 4.4: Input features used to train the classifier models in Section 4.4.2.

Input feature Data source

Year Measurements

Month Measurements

Latitude Measurements

Longitude Measurements

QVAPOR (water vapor mixing ratio) WRF

SWDOWN (downward short-wave flux at ground surface) WRF

T2 min (daily minimum 2m temperature) WRF

T2 max (daily maximum 2m temperature) WRF

PBLH (planetary boundary layer height) WRF

PSFC (surface pressure) WRF

HGT (terrain height) WRF

Wind speed WRF

Wind angle WRF

Distance to motorways GRIP

Distance to primary roads GRIP

Distance to secondary roads GRIP

Distance to tertiary roads GRIP

Distance to local roads GRIP

forecasting model, and perform four experiments on years with a high number of

exceedances in the AURN data: 2003, 2006, 2008 and 2018.

The forecasting model is trained across the full network of stations, using all

data prior to the forecasting year. We use 43 predictor features comprising all

from Table 4.4 excepting distance to secondary and local roads – excluded due to

their negligible impact on model output - and the additional features listed in Table

4.5. Unlike the models used to identify drivers (see above), we now include various

lagged input features, including lagged measurements of MDA8 ozone from as recent
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as the day before prediction. The parameters for the LightGBM model were tuned

manually and set as n estimator=10000, colsample bytree=0.87, max depth=410,

min child samples=213, min child weight=10.0, num leaves=47, reg alpha=7,

reg lambda=50. All forecasting experiments are out-of-sample classification as the

model has not been trained on data for the forecasting year.

4.3.6 Evaluation metrics

To evaluate the classifier models, we use three standard ML classification metrics:

precision, recall and F1-score. Precision measures the accuracy of positive

predictions and is calculated as Precision = TP
TP+FP

, where TP is the number of

correctly forecast exceedances and FP the number of falsely predicted exceedances.

Recall of the exceedance class measures the ability of the model to correctly

identify exceedance samples and is calculated as Recall = TP
TP+FN

, where TP

is as above and FN is the number of exceedances incorrectly classed as non-

exceedances; an analogous measure can be calculated for the non-exceedance class

as the ratio of correctly classified non-exceedances to the total number of observed

non-exceedances. The F1-score is the harmonic mean of precision and recall,

and summarises the overall performance of the model; it is defined F1–score =

2(Precision∗Recall)
Precision+Recall

.

Note that the alternative evaluation metrics, hit rate and false alarm rate,

which are often used in air quality forecasting literature, can both be derived

from the classification metrics described above. The hit rate is the proportion

of exceedances captured by the forecasting model and is the equivalent of recall

of the exceedance class. The false alarm rate is the proportion of misidentified

exceedance days (predicting an exceedance when none occurred) and is calculated

as 1−Recallexceedances.
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Table 4.5: Additional input features to classifier models for forecasting health

threshold exceedances in Section 4.5.

Input feature Data source

Day of month Measurements

Day of week Measurements

1-day lagged MDA8 ozone Measurements

2-day lagged MDA8 ozone Measurements

3-day lagged MDA8 ozone Measurements

4-day lagged MDA8 ozone Measurements

10-day lagged MDA8 ozone Measurements

14-day lagged MDA8 ozone Measurements

1-day lagged daily mean ozone Measurements

2-day averaged lagged daily mean ozone Measurements

1-day lagged daily mean NOX Measurements

3-day averaged lagged daily mean NOX Measurements

7-day averaged lagged daily mean NOX Measurements

1-day lagged T2 max WRF

2-day lagged T2 max WRF

1-day lagged T2 min WRF

2-day lagged T2 min WRF

1-day lagged QVAPOR WRF

2-day lagged QVAPOR WRF

1-day lagged SWDOWN WRF

3-day average lagged SWDOWN WRF

1-day lagged wind angle WRF

1-day lagged wind speed WRF

1-day lagged PSFC WRF

3-day averaged lagged PSFC WRF

1-day lagged PBLH WRF

3-day averaged lagged PBLH WRF
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4.4 Finding drivers of high-level ozone using a

machine learning classifier

4.4.1 Lamb weather types (within-sample classification)

Table 4.6 shows the results obtained when using only LWTs to classify MDA8 ozone

into exceedances or non-exceedances of station-specific 50th, 60th, 70th, 80th, 90th,

95th, 99th and 99.9th percentile MDA8 ozone. The classifier was trained separately

for each percentile. Average metrics only are reported since average and macro

metrics are equivalent when class sizes are balanced. We find that LWTs are a better

predictor of classifying high percentile ozone, with the average F1-score increasing

from 0.51 for the 50th to 0.71 for the 99.9th percentile exceedance classifications.

Average precision and recall scores also increase with classification threshold, from

0.53 to 0.73 and 0.53 to 0.72, respectively, for the 50th and 99.9th percentiles. Model

performance still improves for the higher percentile thresholds despite the smaller

number of threshold exceedances and the larger size of the balanced dataset required

to compensate for this, which would typically lead to a poorer model fit. To evaluate

this, we run the same experiments with equal sample sizes of 529,298 (the smallest

sample size of the original experiments), with results shown in Table 4.7. We

find similar improvement in performance as the percentile threshold increases, with

average F1-score increasing from 0.52 for the 50th to 0.71 for the 90th percentiles,

respectively. Therefore, we find LWTs explain high-level ozone behaviour better

than general behaviour.

Our subsequent analysis focuses on classifying exceedances of the 50th, 90th, 99th

and 99.9th site-specific percentiles only. Figure 4.3 shows the SHAP values for these

four percentile thresholds. The E LWT is the greatest driver in the 50th percentile

classification; however, all SHAP values are relatively small compared to the higher

percentile experiments, further suggesting that LWTs are a better predictor of high-

level ozone than general behaviour. The E LWT is also the greatest driver for the

90th percentile experiment, whereas SE is the greatest driver for the highest events
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Table 4.6: Classification results of classifying MDA8 ozone above each measurement

stations 50th to 99.9th percentile of MDA8 ozone using LWTs as input features.

Class 0 are the non-exceedance days and class 1 are the exceedance days.

Percentile (sample size -

balanced)

Average Pre-

cision

[class 0 | class

1]

Average Re-

call

[class 0, class

1]

Average F1-

score

[class 0, class

1]

50th

(529,298)

0.53

[0.52 | 0.54]

0.53

[0.68 | 0.37]

0.51

[0.59 | 0.44]

60th

(635,224)

0.53

[0.53 | 0.53]

0.53

[0.58 | 0.48]

0.53

[0.55 | 0.51]

70th

(740,720)

0.55

[0.53 | 0.56]

0.54

[0.72 | 0.37]

0.53

[0.61 | 0.45]

80th

(846,130)

0.57

[0.56 | 0.58]

0.57

[0.63 | 0.50]

0.57

[0.60 | 0.54]

90th

(951,408)

0.62

[0.62 | 0.62]

0.62

[0.63 | 0.61]

0.62

[0.62 | 0.61]

95th

(1,004,066)

0.66

[0.67 | 0.65]

0.66

[0.62 | 0.70]

0.66

[0.65 | 0.67]

99th

(1,046,088)

0.71

[0.76 | 0.67]

0.71

[0.61 | 0.80]

0.70

[0.68 | 0.73]

99.9th

(1,055,562)

0.73

[0.77 | 0.68]

0.72

[0.61 | 0.82]

0.71

[0.68 | 0.74]

occurring above the 99th and 99.9th percentiles. This is not unexpected: easterly

flow transports air masses from mainland Europe that typically have elevated levels

of ozone precursor pollutants, such as NOX and VOCs (e.g. Pope et al., 2016).

NW is the most important inhibitor of exceedances for all three high percentiles.

This is consistent with our understanding that westerly flow typically brings cleaner

maritime air from the Atlantic to over the UK. Other key inhibitors in high-level
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Table 4.7: Classification results of classifying MDA8 ozone above each measurement

stations 50th to 99.9th percentile of MDA8 ozone using LWTs as input features,

and using a consistent sample size across the experiments. Class 0 are the non-

exceedance days and class 1 are the exceedance days.

Percentile

(529,298

samples)

Average

Precision

[class 0 | class 1]

Average Recall

[class 0 | class 1]

Average F1-

score

[class 0 | class 1]

50th
0.53

[0.52 | 0.54]

0.53

[0.68 | 0.37]

0.52

[0.59 | 0.44]

60th
0.53

[0.53 | 0.53]

0.53

[0.58 | 0.48]

0.53

[0.55 | 0.51]

70th
0.55

[0.53 | 0.56]

0.54

[0.72 | 0.37]

0.53

[0.61 | 0.45]

80th
0.57

[0.56 | 0.58]

0.57

[0.63 | 0.50]

0.57

[0.60 | 0.54]

90th
0.62

[0.62 | 0.62]

0.62

[0.63 | 0.61]

0.62

[0.62 | 0.61]

95th
0.66

[0.67 | 0.65]

0.66

[0.62 | 0.69]

0.66

[0.65 | 0.67]

99th
0.71

[0.76 | 0.67]

0.71

[0.61 | 0.80]

0.70

[0.68 | 0.73]

99.9th
0.73

[0.78 | 0.68]

0.72

[0.61 | 0.82]

0.71

[0.68 | 0.74]

ozone include W, C, N and SW LWTs.

In contrast to the results found by Pope et al. (2016), we do not find anticyclonic

conditions to be a key driver of high-level ozone, most likely due to differences in the

data used. Specifically, MDA8 ozone data across the entire year is used here instead

of the summertime noon ozone data used by Pope et al. (2016). To confirm this, we

performed the 99.9th percentile classification using approximately the same subset of
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Figure 4.3: SHAP values for the 50th, 90th, 99th and 99.9th percentile classification.

Red dots are days which are the LWT, blue dots are days which are not the LWT.

Positive SHAP values have a positive impact on model output i.e., contributing to

threshold exceedance days.
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Figure 4.4: SHAP values for the 99.9th percentile classification, using only data

from April–Sept 2006–2010 at background locations. Red dots are days which are

the LWT, blue dots are days which are not the LWT. Positive SHAP values have a

positive impact on model output i.e., contributing to threshold exceedance days.

our data as used by Pope et al. (2016); i.e., data from only background locations for

April–September over 2006–2010. Using this subset, we find anticyclonic conditions

to be a driver of very-high level ozone as seen in Figure 4.4. Further, Pope et al.

(2016) found that under anticyclonic conditions, UK surface ozone ranges from 50 to

80 µg/m3, whereas larger concentrations of between 60 and 100 µg/m3 are sampled

under south-easterly flow regime. As noted above, our results also show that the

highest concentrations of ozone are driven mostly by easterly weather regimes. The

LWT drivers of high-level ozone that we identify are the types that occur more

infrequently compared with the most common LWTs, namely A, W, SW and C (see

Table 4.2).
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4.4.2 Determining meteorological and temporal drivers (within-

sample classification)

While LWTs provide a high-level picture of the meteorological drivers of high-level

ozone, there is a risk that they oversimplify the complex interactions between the

atmosphere and ozone. Further, since they are defined on a country-level scale, the

resulting model lacks the ability to identify changes in the behaviour of high-level

ozone that occur on higher resolution spatial scales. This is a fundamental flaw

when it is well known that ozone levels and production vary over the country (e.g.

Pope et al., 2016). To address this, we show results for a classification that makes

use of a much larger, and more detailed, set of input variables.

As in Section 4.4.1, we consider classifications of the 50th, 90th, 99th and 99.9th

percentiles but now also use ML classification models trained on the input features

listed in Table 4.5. Table 4.8 shows the classification metrics obtained when using

only meteorological variables as input features. Based on these metrics, the new

models are a substantial improvement over the LWTs classifiers, with all three

metrics higher than the comparable values in Table 4.6. For both models the lowest

average precision, recall and F1-scores all occur for the 50th percentile, with all

three metrics being 0.81 for the meteorological classifier compared to 0.53, 0.53 and

0.52, respectively, for the LWT classifier. Improvement continues for the higher

percentile classifications, with perfect average precision, recall and F1-score for the

99.9th percentile classifications. We conclude that the greater detail available in the

meteorological input features better explains ozone behaviour, particularly high-level

ozone behaviour, than using LWTs alone.

Figure 4.5 shows the five most important features for the four classifier models.

Month is the most important feature for the 50th and 90th percentile threshold

classifiers, and the second most important feature for the 99th percentile, reflecting

the strong seasonal signal in ozone concentrations. Daily maximum 2m temperature,

T2 max, is also key as the most important feature for the two highest percentile the

second most for the 90th percentile and the fifth most for the 50th percentile. This
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Table 4.8: Classification results of classifying MDA8 ozone above each measurement

stations 50th to 99.9th percentile of MDA8 ozone using meteorological, spatial and

temporal variables as input features. Class 0 are the non-exceedance days and class

1 are the exceedance days.

Percentile (number of sam-

ples)

Average

Precision

[class 0 | class 1]

Average Recall

[class 0 | class 1]

Average F1-

score

[class 0 | class 1]

50th (529,298)
0.81

[0.81 | 0.82]

0.81

[0.82 | 0.80]

0.81

[0.82 | 0.81]

90th (951,408)
0.87

[0.90 | 0.84]

0.86

[0.82 | 0.90]

0.86

[0.86 | 0.87]

99th (1,046,088)
0.97

[0.99 | 0.95]

0.97

[0.95 | 0.99]

0.97

[0.97 | 0.97]

99.9th (1,055,562)
1.00

[1.00 | 0.99]

1.00

[0.99 | 1.00]

1.00

[1.00 | 1.00]

is consistent with our understanding that very high-level ozone episodes co-occur

with the warmest temperatures (e.g. Gouldsbrough et al., 2022). We see also

that the daily minimum 2m temperature, T2 min, is the third and second most

important feature for, respectively, the 99th and 99.9th percentile classifications,

but fails to make the top five for the lower two thresholds. We believe this to be

due to the highest ozone events mostly occurring during warm spells, when daily

minimum temperatures are atypically high. Related to this, shortwave downward

radiation flux from the sun, SWDOWN, is either the third or fourth most important

feature across all percentiles, demonstrating the importance of sunlight in the net

photochemical production of ozone. Lastly, planetary boundary layer height, PBLH,

is the second most important feature in the baseline 50th percentile classification

which we suspect is due to the role of low-level jets and nocturnal mixing processes

(Klein et al., 2014).

Figure 4.6 shows the relationships between the input features year, month,
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4.4. Finding drivers of high-level ozone using a machine learning classifier

Figure 4.5: The five most important features for the a) 50th percentile threshold,

b) 90th percentile threshold, c) 99th percentile threshold, and d) 99.9th percentile

threshold classification models fitted to all UK data.
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T2 max, T2 min and their respective SHAP values. SHAP values for year are

greatest for the 99th and 99.9th percentiles, peaking around 2003, a year in which

Europe experienced a remarkable heatwave (e.g. Vieno, Dore, et al., 2010) and with

a considerable number of ozone health threshold exceedances (as shown in Figure

4.8). Across all percentiles, SHAP values for month peak in May and are lowest at

the end of autumn / beginning of winter, reflecting the well-known seasonal cycle

of UK ozone (Diaz et al., 2020). The smallest monthly SHAP values are seen in

the highest percentile classifications, suggesting that month is a more important

indicator for exceedances of 50th and 90th percentiles than for the highest ozone

events above the 99.9th percentile. There is a clear positive relationship between

T2 max and SHAP values. The 50th percentile experiment shows the weakest

relationship, with the SHAP values being positive for values above ∼18 ◦C and zero

for lower temperatures, and a similar crossing point is found for the 90th percentile

experiment. The 99th and 99.9th percentile experiments show higher crossing points,

at ∼20 and ∼22 ◦C, further illustrating that the highest ozone events typically occur

during the warmest weather. For T2 min, a crossing point for all percentiles is found

at ∼12 ◦C. However, the form and magnitude of the relationship between SHAP

value and T2 min relationship is different across the percentiles: the 50th and 90th

percentiles show an almost identical weak positive relationship, while the 90th and

99.9th show a stronger positive relationship. Low daily minimum temperature is

an inhibitor of high-level ozone whilst high daily minimum temperature is a driver.

Daily minimum temperature has little impact on lower ozone levels with the key

temperature driver being daily maximum temperature.

Figure 4.7 shows the SHAP value relationships with the remaining features iden-

tified as key drivers in Figure 4.5: PBLH, SWDOWN, QVAPOR and wind angle.

The SHAP relationship for PBLH differs across percentiles, with a clear positive

trend for the 50th percentile, a weaker positive trend for the 90th percentile and

negative trends for the two higher percentiles. The negative trend is strongest for

the 99.9th percentile. This suggests that increases in boundary layer height led
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Figure 4.6: Scatterplots showing the relationships between SHAP value and feature

value for a) year, b) month, c) T2 max, and d) T2 min. Locally Weighted

Scatterplot Smoothing (LOWESS) curves are added to each plot for each percentile

classifications; 50th percentile (green, solid line), 90th percentile (blue, dotted line),

99th percentile (yellow, dashed line) and 99.9th percentile (red, dashed-dotted line).
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to increases in moderate to high ozone concentrations but reduced incidences of

very high-level ozone. While a positive correlation between PBLH and ozone have

been observed by a number of studies these relationships can be weak and the

underpinning mechanism may represent both dynamics (e.g. mixing and dilution

of airmasses), deposition, and the chemistry/availability of ozone and its precursors

(e.g. Reddy et al., 2012; Haman et al., 2014; Su et al., 2018). While our results

support a complex ozone-PBLH relationship, interestingly the crossing point from

non-exceedance to exceedance is ∼450m for all percentiles. SWDOWN shows a

positive SHAP value relationship for all percentiles; however, greater short-wave flux

is needed to lead to 99th and 99.9th percentile exceedances (∼200 and ∼225 W/m2,

respectively) compared to 50th and 90th percentile exceedances (∼150 W/m2 for

both). The SHAP value relationships for QVAPOR are the most consistent across

percentiles than for any other variable, with a negative impact on exceedances after

∼0.03, demonstrating that higher humidity levels lead to lower concentrations of

ozone. In line with this, humidity and ozone have been shown to be anticorrelated

by numerous studies with the underlying mechanism linked to ozone dry deposition

(e.g. Kavassalis and Murphy, 2017). Finally, we consider the relationship between

SHAP value and wind angle. Wind angle has the lowest impact on exceedances

of the 50th percentile, and the greatest impact at the 99.9th percentile experiment.

Wind angles between 50◦and 160◦, i.e., winds from the NE, E and SE,, have the

greatest impact on 99.9th percentile threshold exceedances due to transported air

masses from Europe (Tudor, 2022).

We lastly fit the classifier models separately to each UK region to assess

consistency and identify any spatial trends in the feature importances (Table 4.4).

From Table 4.9, we find that, for the 50th percentile, month is the most important

driver in all regions; the same is true for most regions at the 90th percentile. This

confirms the strong seasonal cycle in present in mean level ozone concentrations

across the UK (Diaz et al., 2020). T2 max is the most important feature for

the 99th and 99.9th percentiles for most regions, consistent with understanding of
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Figure 4.7: Scatterplots showing the relationships between SHAP value and feature

value for a) PBLH, b) SWDOWN, c) QVAPOR, and d) wind angle. Locally

Weighted Scatterplot Smoothing (LOWESS) curves are added to each plot for each

percentile classifications; 50th percentile (green, solid line), 90th percentile (blue,

dotted line), 99th percentile (yellow, dashed line) and 99.9th percentile (red, dashed-

dotted line).
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the relationship between extreme ozone and temperature. We find the Eastern

region to be the only region with SWDOWN as the most important feature in

classifying the 99.9th percentile ozone, suggesting that sunshine is most important

in driving high-level ozone episodes for this region. Wind angle and PBLH are

the most important features for North East Scotland in classifying 99th and 99.9th

percentile ozone; however, there is only one measurement station in this region

(Table 4.1) at Aberdeen and so caution is required in over-generalising this result.

Similarly, the Highland region in the north of Scotland has three monitoring stations,

and its highest-level ozone episodes (99.9th percentile) are driven by wind angle,

signifying that this region is more impacted by the transport of air masses than

ozone formation.

4.5 Forecasting moderate health threshold ex-

ceedances

We now demonstrate the use of a ML classifier to forecast moderate health threshold

exceedances of MDA8 ozone, i.e., exceedances of 100 µg/m3. We use this threshold

since at-risk individuals are recommended to reduce strenuous physical activity,

particularly outdoors, when MDA8 ozone exceeds this level. We consider 2003,

2006, 2008 and 2018, as these years had higher than normal numbers of moderate

health threshold exceedances (as shown in Figure 4.8). For each year, the ML

model is trained only once using all previous years of data. The model is then used

to make one-day-ahead operational forecasts, based on the previous day’s pollution

measurements and a combination of past and forecast meteorological variables, for

each day of the year.

Table 4.10 shows the classification results from our UK-wide forecasting experi-

ments. We report macro averages, the arithmetic mean of the class results, instead

of weighted averages to avoid biasing the results towards the greatest sized class

(non-exceedances days). The forecasting model is well balanced between precision
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Table 4.9: Most important feature for each region and for each percentile threshold

classification, fitted to data from each region.

Region
50th

percentile

90th

percentile

99th

percentile

99.9th

percentile

Central Scotland month month T2 max T2 max

East Midlands month T2 max T2 max T2 max

Eastern month month T2 max SWDOWN

Greater London month T2 max T2 max T2 max

Highland month month T2 max wind angle

North East month month T2 max T2 max

North East Scotland month month wind angle PBLH

North Wales month month T2 max T2 max

North West Mersey-

side
month month T2 max T2 max

Northern Ireland month month T2 max T2 max

Scottish Borders month month T2 max T2 max

South East month T2 max T2 max T2 max

South Wales month month T2 max T2 max

South West month month T2 max T2 max

West Midlands month T2 max T2 max T2 max

Yorkshire

Humberside
month month T2 max T2 max

and recall across all years. F1-scores are highest for 2006, at 0.86, and still relatively

high for 2003, 2008 and 2018 at 0.83, 0.84 and 0.84, respectively. The larger number

of training samples in the 2018 forecasting experiment seem to have little impact

on model performance compared with 2006 and 2008; however, model performance

is improved for 2006 onwards when compared to 2003 with only 2 years of training

data. The hit rates of forecasting moderate health threshold exceedances are good

at 0.69, 0.78, 0.73 and 0.71 for 2003, 2006, 2008 and 2018, respectively. The false
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Figure 4.8: Total number of exceedances across the measurement network for each

year.

alarm rates are low for all experiment years: 0.03, 0.02, 0.02 and 0.02 for 2003, 2006,

2008 and 2018, respectively.

Finally, we consider the importance of the input features in predicting moderate

health threshold exceedances of MDA8 ozone, as shown in Figure 4.9 for a model

trained on years 2001–2018 with balanced classes. Here, T2 max is the most

important predictor; 1-day lagged MDA8 ozone is the second most important

predictor, showing the temporal persistence of ozone concentrations; and month

is the third most important feature, followed by QVAPOR, year, T2 min, 1-day

lagged daily mean ozone, SWDOWN, PSFC and wind angle. Whilst the most

important features are similar to those seen in Figure 4.5, there are differences in

their relative importance. This is most likely due to using an absolute threshold

of 100µg/m3 instead of relative definitions of high-level ozone (e.g. percentile

thresholds) as well as the inclusion of lagged pollutant measurement data. The

features of least importance are 2-day averaged lagged daily mean ozone, 3-day
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Table 4.10: Classification results from forecasting 2003, 2006, 2008 and 2018

moderate health threshold exceedances of MDA8 ozone. Class 0 are the non-

exceedance days and class 1 are the exceedance days.

Year

[0 samples

|

1 samples]

Years of train-

ing data

Macro Average

Precision

[class 0, class 1]

Macro

Average

Recall

[class 0, class

1]

Macro Av-

erage

F1-score

[class 0,

class 1]

2003

[27,481 |

2,408]

2
0.83

[0.97 | 0.68]

0.83

[0.97 | 0.69]

0.83

[0.97 | 0.69]

2006

[29,915 |

2,360]

5
0.85

[0.98 | 0.72]

0.88

[0.98 | 0.78]

0.86

[0.98 | 0.75]

2008

[27,910 |

1,537]

7
0.83

[0.99 | 0.68]

0.86

[0.98 | 0.73]

0.84

[0.98 | 0.71]

2018

[24,574 |

1,566]

17
0.84

[0.98 | 0.70]

0.85

[0.98 | 0.71]

0.84

[0.98 | 0.71]

average lagged SWDOWN and 1-day lagged SWDOWN, with SHAP values of ∼

0.1, 0.12 and 0.13. These features add little additional information to the model

that is not already present in the other features.

Overall, our machine learning classification approach, coupled with SHAP’s

interpretability capabilities, provides a tool for identifying and understanding the

drivers of high-level ozone concentrations in the UK. Further, treating the forecasting

of health threshold exceedance days as a machine learning classification task shows

promise as an alternative to current methods for forecasting ozone episodes.
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Figure 4.9: The ten most important input features to the forecasting classification

model.

4.6 Conclusion

Our study presents a novel machine learning classification approach for the

identification of factors contributing to high-level ozone concentrations in the UK,

at both a national and regional level. The classifier uses input variables known to

affect ozone concentrations. These variables vary either over space and time (e.g.

temperature, wind speed and direction, and atmospheric pressure), over space only

(e.g. distance from major roads), or over time only (e.g. month of the year). By

training the classifier on appropriate datasets, we were able to identify both drivers

and inhibitors of high-level ozone events and to predict with very high accuracy

the occurrence of such events. We used SHAP (SHapley Additive exPlanations), a

powerful machine learning interpretability tool, to assess the impact of each predictor

variable on the model’s output, allowing us to rank the importance of these factors

and determine the extent to which they influence high-level ozone. Additionally,

SHAP enabled us to identify the interactions between these predictor variables,

providing a more nuanced understanding of the underlying drivers of high-level
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ozone episodes in the UK and how these drivers change as the magnitude of the

ozone event is increased from moderate to high to very high (defined by the UK’s

air quality index).

As a proof of concept, our first classifier used Lamb weather types (LWTs)

to classify maximum daily 8-hour average (MDA8) ozone concentrations into

exceedances or non-exceedances of various percentile thresholds. We find that LWTs

are a better predictor of high-level ozone than they are of mean behaviour, with

average F1-score increasing from 0.51 to 0.71 for the 50th and 99.9th percentile

exceedance classifications. Weather patterns with south-easterly and easterly flows

are the greatest drivers for the 99th and 99.9th percentile classifications, indicating an

association with high-level ozone events due to the transport of polluted air masses

from mainland Europe.

Whilst classifiers based on LWTs are helpful in demonstrating that a data-

driven model, when provided with suitable input features, can reproduce observed

events with a reasonable degree of accuracy, the LWTs contain only synoptic scale

information. To improve classification performance, to a level of accuracy that the

model could be used as an operational forecasting tool to inform public air quality

warnings, required us to include more input features including meteorological,

temporal and spatial variables. The results of the updated classifiers showed

that the models trained with meteorological, spatial and temporal input features

outperformed the LWT classifiers, with higher average precision, recall, and F1-

scores for all percentile classifications. The SHAP values showed that month is

the most important driver of 50th and 90th percentile exceedances, while daily 2m

maximum temperature is the most important feature for driving very high-level

ozone above the 99th and 99.9th percentiles. The importance of year in driving

high-level ozone is greatest in 2003, a year with a high number of ozone episodes.

We also find a strong seasonal cycle present with the likelihood of an exceedance

peaking in spring; we also find that the importance of season decreases as the

percentile threshold increases. Daily 2m minimum temperature replaces season as
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a driving factor in the highest percentile experiments, possibly because the highest-

level ozone events typically occur during periods when night-time temperatures

are unusually high. Daily 2m maximum has a clear positive relationship with

the likelihood of a threshold exceedance with the crossing point temperature

between an exceedance and non-exceedance day increasing for the higher percentile

classifications, showing that it is elevated temperatures (temperatures greater than

20 ◦C) that lead to the most severe ozone episodes. The relationship between

planetary boundary layer height and its SHAP values is negative for the 99th and

99.9th percentile classifications, suggesting that higher boundary layer height allow

for better dispersion of ozone concentrations.

Finally, we propose a machine learning classification approach to forecast

moderate health threshold exceedance days of MDA8 ozone. We evaluated the

capability of the classifier in years with raised moderate health threshold exceedance

days: 2003, 2006, 2008, and 2018. The experiments use previous day’s pollution

measurements as a proxy for one-day-ahead operational forecasting. We find

that we can forecast health threshold exceedance days with moderate accuracy,

achieving hit rates (rate of capturing exceedance days) of 0.69 to 0.78 in each

forecasting experiment. We also achieve low false alarm rates of 0.02 to 0.03. Daily

maximum 2m temperature is the most important predictor feature, followed by 1-day

lagged MDA8 ozone, which shows the temporal dependence of ozone concentrations.

We anticipate further study extending these forecasting experiments to include

additional relevant features, such as information from neighbouring stations, and

directly comparing the performance of the ML model against CTM forecasts.
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Chapter 5

Conclusions

This thesis explored the application and development of data science methods to

address gaps in the knowledge and understanding of UK surface-level ozone. By

using sophisticated statistical and machine learning techniques, the work in this

thesis has improved understanding of the probability, magnitude, frequency, spatial

distribution, trends and drivers of high-level ozone, and this knowledge has been

used to create trustworthy forecasts of high-level ozone events. The contributions

are motivated by the need to better understand the risk and drivers of high-level

ozone across the UK in a changing climate, and to develop more effective methods of

modelling surface level ozone. Despite the relatively rich monitoring data available

in the UK, studies of UK air quality have yet to fully benefit from recent advances

in data science approaches. The aims of the thesis have been addressed as follows:

1. To quantify extreme ozone events evaluating their magnitude,

frequency, and likelihood and examining how these events have

changed over time: Chapter 2 presents an extreme value analysis (EVA) of

UK surface-level ozone using a temperature-dependent extremes model. We

estimated the magnitude, frequency, and likelihood of extreme ozone events at

in-situ measurement stations across the UK and analysed how these properties

have changed over time. From 2010 to 2019, we found that over 90% of sites

have a 1-year MDA8 ozone return level greater than the ‘moderate’ ozone
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threshold of 100µg/m3, and that one-third of sites are expected to exceed

the UK government’s air quality objective of not exceeding 100µg/m3 for

more than 10 days a year. Further, the probability of ozone levels exceeding

100µg/m3 is between <0.1% and 5.4%, depending on location, with average

levels of 2.7% in rural areas and 1.6% in urban areas. An analysis into

decadal changes of extreme ozone risk showed that the likelihood of extreme

ozone episodes in the UK has significantly decreased over time, with 1-

year return levels in the 1980s now being similar to 10-year return levels at

present. Nevertheless, the strong positive correlation between temperature

and ozone exceedances means that hotter summers due to climate change

could undermine these improvements.

2. Determining the variability of ozone in both space and time and

identifying long-term trends that are relevant to policymaking:

Chapter 3 presents a novel machine learning (ML) methodology to downscale

EMEP4UK ozone output from a 5×5 km to 1×1 km resolution over the

2001–2018 period. The methodology is based on a gradient boosted tree

and the downscaled product better represents measured ozone, particularly

at high levels, and the method is applicable to other CTMs. An analysis was

subsequently performed on the downscaled surface, original CTM surface, and

measurement data, to quantify both the current state of UK ozone, including

regional variability, adherence to government objectives, and trends over time.

The results showed that the unadjusted CTM overestimated surface-level

ozone concentrations in the UK and that the downscaled surface improved

the representation of high-level ozone. This difference in high-level ozone

representation results in vastly altered estimates of the proportion of the UK

failing the government objective to not exceed 100 µg/m3 more than 10 times

per year: 99% of the UK fails this objective in the EMEP4UK surface using

a 2014–2018 average, compared to just 27% in the downscaled surface. A

sensitivity analysis into three NOX reduction scenarios showed that moderate
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reductions in UK NOX emissions (i.e., 20% or 40%) will lead to increased ozone

concentrations for substantial portions of the UK. Severe reductions in NOX

(i.e., 80%) will lead to decreased ozone concentrations in some parts of the

UK, however urban areas will be most affected by increased concentrations.

3. To assess the association of high concentrations of ozone with

various meteorological, spatial and temporal factors: Chapter 4

presents a ML classification-based experimental analysis into the drivers of

high concentrations of measurement ozone using gradient boosted trees. The

impacts of synoptic weather, meteorological, spatial, and temporal features on

high-level ozone were identified. While challenges remain in understanding

the underpinning processes controlling ozone concentrations, the proposed

ML approach efficiently identifies the most important input features. Daily

maximum temperature is found to be a key driver of high-level ozone,

consistent with similar associations reported in other parts of the world

(Bloomer, Stehr, et al., 2009; Gu et al., 2020; Zheng et al., 2023).

4. To produce data-driven forecasts for the occurrence of high con-

centrations of ozone: Chapter 4 also presents a ML classification method

to forecast the presence or absence of high-level ozone events, demonstrating

a potential for operational utility. The results showed that while synoptic

weather patterns (LambWeather Types) are useful in determining the presence

of high-level ozone, more information can be gained from more specific

meteorological variables.

The research presented in this thesis advances our understanding of high-level

ozone in the UK by quantifying trends and characteristics of extreme ozone events.

Additionally, the association of meteorological, spatial and temporal factors with

varying definitions of high-level ozone has been examined, and the potential of

machine learning for real-time operational forecasts has been shown.

While this thesis presents significant contributions to the understanding of
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high-level ozone events in the UK and demonstrates where advanced statistical

and ML methods may be of particular use, it is important to acknowledge the

limitations of the research. Firstly, the research in this thesis is dependent on ozone

measurement data throughout (principally from the UK’s AURN network), which

can lead to uncertainty in determining ozone behaviour across the UK due to the

sparsity of the measurements in some regions, as well as the representativeness of

measurement sites. In addition to missing data, inaccuracies may still be present

despite the data being ratified, therefore any model fitted is subject to a degree of

measurement uncertainty i.e., the AURN ozone monitors are calibrated against an

ozone photometer to ensure a relative uncertainty of <15% (Stevenson et al., 2009).

Secondly, the weather and atmospheric data used in Chapters 3 and 4 are from a

relatively coarse gridded process-based model output, which was chosen due to the

ease of implementation and lack of data processing needed. Observational weather

and atmospheric data may provide a more accurate view of conditions at a specific

location. However, observational data is sparse in some parts of the UK, and is

not necessarily complete over time. Thirdly, none of the methods considered in this

thesis directly model the spatial behaviour of ozone, rather the spatial structure is

imposed indirectly through spatial covariates, as in Chapters 3 and 4. Finally, while

machine learning has proved to be a useful tool for modelling ozone concentrations,

it’s essential to recognise its limitations. The effectiveness of machine learning

models can be significantly influenced by the quality and quantity of available

data. In the context of UK air quality networks, limitations may arise from gaps

in monitoring, and the challenge of capturing the full complexity of atmospheric

processes. Additionally, machine learning models are not immune to overfitting,

especially when dealing with relatively small datasets.

The work in this thesis has highlighted several areas for future work; these are

listed by chapter but note that there is some overlap between the methods that

could be used to implement the extensions.

Firstly, an extension of the work in Chapter 2 would be to undertake a spatial
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extreme value analysis. Currently the analysis is undertaken separately for each

site; incorporating nearby measurement data, could provide more precise estimates

of extreme ozone at measurement sites, and, by modelling the relationship between

ozone levels at different sites, neighbouring information can be used to fill in gaps

in measurement records. Furthermore, a spatial model permits the spatial intensity

and extent of high-level ozone episodes to be estimated, allowing the identification

of regions where ozone episodes are interconnected, e.g. examining the likelihood of

an ozone episode at both location A and location B simultaneously.

Another possible extension to the extremes model proposed in Chapter 2 is to

include additional covariates. This would then enable the estimation of extreme

ozone risk conditional on other variables, e.g. concentrations of NOX, humidity,

time of day or year, or to test for long-term trends or anomalous years.

The downscaling framework and analysis in Chapter 3 could be expanded

through integration of additional data sources into the ML-downscaling model.

Examples of such sources include satellite data, additional CTMs and measurement

data from community networks. Whilst this additional information could be useful

in improving the accuracy of the downscaled output, care would be needed to ensure

the reliability of the data, as it may give rise to fresh issues such as measurement

inaccuracies, discrepancies in spatial and temporal resolution, or non-uniform spatial

grids.

A second useful addition to the downscaling framework would be the inclusion of

relevant precursor pollutant data such as measurement NOX, which might improve

the accuracy of the downscaling results. Also, it may no longer be necessary

to include road variables in the downscaling model since these are known to be

correlated with NOX. Instead, NOX data could be used as a more informative

and direct proxy for traffic-related emissions. Including NOX data within the

downscaling framework would allow investigation of the impact of emission scenarios

on UK surface ozone directly from the downscaling framework instead of relying on

further CTM scenario runs, and further NOX scenario analyses could be explored
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as an extension to Chapter 3.

Lastly, we note that the proposed downscaling methodology can be applied to

other gridded outputs, such as CTM and reanalysis products, and the high-resolution

downscaled surface can be used to study the historical health implications of high-

level ozone across the UK, e.g. using the downscaled surface as input into models

that relate air quality and health outcomes (Pannullo et al., 2017).

The forecasting model in Chapter 4 could also be extended to include additional

spatial information, particularly as ozone and its precursors may be transported from

polluted regions. Unlike in Chapter 2, where we are interested in spatial extent at

a given point in time, here we are interested in relating the occurrence of an ozone

episode at one location, given meteorological conditions such as wind direction, to

the likelihood of an ozone episode elsewhere.

An alternative to the point-specific forecasting model proposed in Chapter 4

is to apply the bias-correction downscaling methodology from Chapter 3 to CTM

forecasts. By integrating the drivers of high-level ozone identified in Chapter 4

(e.g. temperature and lagged measurement data) into the bias-correction process,

it would be feasible to produce accurate spatial forecasts of ozone. This would

involve training a ML model to learn and correct biases from CTM forecasts using

information from recent measurement data, and then using the trained ML model

to bias correct CTM forecasts in real-time; this is similar to the statistical post-

processing bias correction used by the Met Office (Neal et al., 2014).

A key priority of ozone forecasting is to provide trustworthy predictions of high-

level events, i.e., ozone health threshold exceedances and episodes; this is known to

challenge both CTM and ML-based forecasting methods. Consequently, further

development of the ML-based forecasting model to better capture the full tail

behaviour of ozone is essential in creating accurate data-driven forecasts of ozone

episodes. Ideally this forecasting model will be capable of forecasting both the

presence of high-level ozone episodes and the magnitude of the ozone concentrations.

The methods considered in this thesis are not limited to the UK, but can be
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applied to other countries where elevated levels of ozone are a pressing issue, such

as China and India. The key requirement for this is that the country has one or

more substantial ozone monitoring networks. By applying these methods in other

countries, we can gain a better understanding of the factors contributing to high

levels of ozone and improve our ability to forecast and mitigate potential ozone

episodes in these locations. This could have a significant impact on public health

and the environment in these countries, as well as contribute to global efforts to

address the issue of ozone pollution.

As this thesis has demonstrated, the interdisciplinary nature of data science can

provide benefits to progress within atmospheric science. By combining expertise

from different fields, we can gain a more complete understanding of the complex

processes that govern our atmosphere. Moreover, the use of advanced data science

techniques is complementary to traditional atmospheric science methods, enabling us

to extract and fuse information from both new and existing data sources, and use this

information to create more accurate and representative models. It is therefore crucial

that we continue to collaborate across disciplines and embrace the opportunities that

data science presents to advance our understanding of the atmosphere.
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Supplementary material to

Chapter 2

A.1 Supplementary tables

Table A.1: Information for each monitoring site used within our study.

Ozone data

record

Ozone season

(month)

Code

Site

Name
Site Type Region Start End Start End

CLL
Central

London

Urban

Background
Greater London 1972 1990 3 9

SIB Sibton
Rural

Background
Eastern 1973 ongoing 3 9

STE Stevenage
Suburban

Background
Eastern 1976 1994 3 9

HAR Harwell
Rural

Background
South East 1976 2015 3 9

BOT Bottesford
Rural

Background
East Midlands 1977 2016 3 9

Continued on next page...
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Ozone data

record

Ozone season

(month)

Code Site Name Site Type Region Start End Start End

WC Wharleycroft
Rural Back-

ground

North West

Merseyside
1985 1995 2 9

BUSH
Bush Estate

Rural Back-

ground
Central Scotland 1986 ongoing 2 7

ESK Eskdalemuir
Rural Back-

ground
Scottish Borders 1986 ongoing 2 7

GDF
Great Dun

Fell

Rural Back-

ground

North West

Merseyside
1986 2016 2 8

AH Aston Hill
Rural Back-

ground
North Wales 1986 ongoing 2 9

LH
Lullington

Heath

Rural Back-

ground
South East 1986 ongoing 3 9

SV Strathvaich
Rural Back-

ground
Highland 1987 ongoing 1 6

LN Lough Navar
Rural Back-

ground
Northern Ireland 1987 ongoing 1 7

YW Yarner Wood
Rural Back-

ground
South West 1987 ongoing 2 8

HM High Muffles
Rural Back-

ground

Yorkshire Hum-

berside
1987 ongoing 2 9

GLAZ
Glazebury

Rural Back-

ground

North West

Merseyside
1988 ongoing 3 8

LB Ladybower
Rural Back-

ground
East Midlands 1988 ongoing 2 8

BRI
London

Bridge Place

Urban Back-

ground
Greater London 1990 1999 3 9

CLL2
London

Bloomsbury

Urban Back-

ground
Greater London 1992 ongoing 3 9

NEWC

Newcastle

Centre

Urban Back-

ground
North East 1992 ongoing 2 8

BEL2 Belfast Centre
Urban Back-

ground
Northern Ireland 1992 ongoing 2 7

Continued on next page...
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Ozone data

record

Ozone season

(month)

Code
Site Name Site Type Region Start End Start End

BIRM

Birmingham

Centre

Urban

Background
West Midlands 1992 2009 3 8

CARD
Cardiff Centre

Urban

Background
South Wales 1992 ongoing 3 9

ED
Edinburgh

Centre

Urban

Background

Central

Scotland
1992 2003 2 9

LEED
Leeds Centre

Urban

Background

Yorkshire Hum-

berside
1993 ongoing 3 8

BRIS Bristol Centre
Urban

Background
South West 1993 2005 3 8

LIVR
Liverpool Cen-

tre

Urban

Background

North West

Merseyside
1993 2002 2 8

BIR2
Birmingham

East

Urban

Background
West Midlands 1993 2004 3 9

SOUT

Southampton

Centre

Urban

Background
South East 1994 ongoing 3 9

LEIC
Leicester Cen-

tre

Urban

Background
East Midlands 1994 2013 3 9

HULL
Hull Centre

Urban

Background

Yorkshire Hum-

berside
1994 2002 3 9

BEX London Bexley
Suburban

Background
Greater London 1994 2007 3 9

SWAN
Swansea

Urban

Background
South Wales 1994 2006 2 9

MID Middlesbrough
Urban Indus-

trial
North East 1995 ongoing 3 9

MAN3

Manchester

Piccadilly

Urban

Background

North West

Merseyside
1995 ongoing 3 9

WOLV

Wolverhamp-

ton Centre

Urban

Background
West Midlands 1995 2007 2 9

Continued on next page...
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Ozone data

record

Ozone season

(month)

Code
Site Name Site Type Region Start End Start End

SHE2

Sheffield Cen-

tre

Urban

Background

Yorkshire Hum-

berside
1995 2013 3 8

ROCH

Rochester

Stoke

Rural

Background
South East 1996 ongoing 3 9

BREN
London Brent

Urban

Background
Greater London 1996 2007 3 9

WA2
London

Wandsworth

Urban

Background
Greater London 1996 2007 2 9

SUT3
London Sutton

Suburban

Background
Greater London 1996 2002 2 8

KC1
London N.

Kensington

Urban

Background
Greater London 1996 ongoing 3 9

LON6

London

Eltham

Suburban

Background
Greater London 1996 ongoing 3 9

HG2
London

Haringey

Urban

Background
Greater London 1996 2012 3 9

EX
Exeter Road-

side
Urban Traffic South West 1996 ongoing 2 9

LEAM

Leamington

Spa

Urban

Background
West Midlands 1996 ongoing 3 9

GLA3

Glasgow Cen-

tre

Urban

Background
Central Scotland 1996 2012 2 8

HIL
London

Hillingdon

Urban

Background
Greater London 1996 ongoing 2 9

TED
London

Teddington

Urban

Background
Greater London 1996 2016 3 9

THUR
Thurrock

Urban

Background
Eastern 1996 ongoing 3 9

NOTT

Nottingham

Centre

Urban

Background
East Midlands 1996 ongoing 3 9

Continued on next page...
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Ozone data

record

Ozone season

(month)

Code
Site Name Site Type Region

Start
End Start End

MAN4

Manchester

South

Suburban In-

dustrial

North West

Merseyside
1996 2016 2 9

HK4
London

Hackney

Urban Back-

ground
Greater London 1997 2007 3 9

PT Port Talbot
Urban Indus-

trial
South Wales 1997 2007 3 9

PEMB
Narberth

Rural

Background
South Wales 1997 ongoing 1 7

BURY
Bury Roadside Urban Traffic

North West

Merseyside
1997 2007 1 8

BOLT
Bolton

Urban Back-

ground

North West

Merseyside
1997 2008 3 8

SK1
London South-

wark

Urban Back-

ground
Greater London 1997 2007 3 9

STOK

Stoke-on-Trent

Centre

Urban Back-

ground
West Midlands 1997 ongoing 3 9

ECCL
Salford Eccles

Urban Back-

ground

North West

Merseyside
1997 2013 3 9

LW1
London

Lewisham

Urban Back-

ground
Greater London 1997 2007 3 9

DERY
Derry

Urban Back-

ground

Northern

Ireland
1997 2016 1 7

ROTH

Rotherham Cen-

tre

Urban Back-

ground

Yorkshire Hum-

berside
1997 2007 2 8

REDC
Redcar

Suburban

Background
North East 1997 2007 3 9

BAR3

Barnsley

Gawber

Urban Back-

ground

Yorkshire Hum-

berside
1997 ongoing 2 8

READ
Reading

Urban Back-

ground
South East 1997 2003 3 9

Continued on next page...
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Ozone data

record

Ozone season

(month)

Code Site Name Site Type Region Start End Start End

MY1
London Maryle-

bone Road

Urban Traf-

fic
Greater London 1997 ongoing 1 9

NOR2
Norwich Centre

Urban

Background
Eastern 1997 2008 3 9

PLYM

Plymouth Cen-

tre

Urban

Background
South West 1997 ongoing 2 9

WFEN
Wicken Fen

Rural Back-

ground
Eastern 1997 ongoing 3 9

BRAD
Bradford Centre

Urban

Background

Yorkshire Hum-

berside
1997 2007 2 8

WBRO

Sandwell West

Bromwich

Urban

Background
West Midlands 1998 2011 3 9

TRAN

Wirral

Tranmere

Urban

Background

North West

Merseyside
2000 ongoing 3 8

PRES Preston
Urban

Background

North West

Merseyside
2000 ongoing 3 8

SEND

Southend-on-

Sea

Urban

Background
Eastern 2000 ongoing 3 9

BLAC
Blackpool

Urban

Background

North West

Merseyside
2000 2004 3 8

WEYB
Weybourne

Rural Back-

ground
Eastern 2001 ongoing 3 9

HORS

London

Westminster

Urban

Background
Greater London 2001 2013 3 9

OSY St Osyth
Rural Back-

ground
Eastern 2002 ongoing 3 9

HUL2 Hull Freetown
Urban

Background

Yorkshire Hum-

berside
2002 ongoing 3 9

BORN
Bournemouth

Urban

Background
South West 2003 ongoing 3 9

Continued on next page...
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Ozone data

record

Ozone season

(month)

Code Site Name Site Type Region Start End Start End

NTON
Northampton

Urban

Background
East Midlands 2003 2012 3 9

PMTH
Portsmouth

Urban

Background
South East 2003 ongoing 3 9

CWMB
Cwmbran

Urban

Background
South Wales 2003 2020 2 8

LVP
Liverpool

Speke

Urban Indus-

trial

North West

Merseyside
2003 ongoing 3 8

ABD Aberdeen
Urban

Background

North East

Scotland
2003 ongoing 1 7

REA1
Reading New

Town

Urban

Background
South East 2003 ongoing 3 9

ED3
Edinburgh St

Leonards

Urban

Background

Central

Scotland
2003 ongoing 2 7

MKTH

Market

Harborough

Rural

Background
East Midlands 2003 2019 3 8

HRL
London

Harlington

Urban Indus-

trial
Greater London 2004 ongoing 3 9

BIR1
Birmingham

Tyburn

Urban

Background
West Midlands 2004 2016 3 9

WIG5 Wigan Centre
Urban

Background

North West

Merseyside
2004 ongoing 3 8

BRT3
Brighton Pre-

ston Park

Urban

Background
South East 2004 ongoing 3 9

SUN2
Sunderland

Silksworth

Urban

Background
North East 2004 ongoing 2 7

LERW
Lerwick

Rural

Background
Highland 2005 ongoing 1 6

BLC2
Blackpool

Marton

Urban

Background

North West

Merseyside
2005 ongoing 3 7

Continued on next page...
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Ozone data

record

Ozone season

(month)

Code
Site Name Site Type Region

Start
End Start End

LEOM
Leominster

Suburban

Background

West Mid-

lands
2005 ongoing 3 9

BRS8
Bristol St Paul’s

Urban Back-

ground

South

West
2006 ongoing 3 9

FW Fort William
Suburban

Background
Highland 2006 ongoing 1 6

ACTH
Auchencorth Moss

Rural

Background

Central

Scotland
2006 ongoing 1 6

PT4 Port Talbot Margam
Urban Indus-

trial

South

Wales
2007 ongoing 2 9

MACK
Charlton Mackrell

Rural

Background

South

West
2008 ongoing 2 9

BIRT
Birmingham Tyburn

Roadside
Urban Traffic

West Mid-

lands
2009 2016 3 8

NO12
Norwich Lakenfields

Urban Back-

ground
Eastern 2009 ongoing 2 9

PEEB
Peebles

Urban Back-

ground

Scottish

Borders
2009 ongoing 2 6

MOLD
Mold

Suburban

Background

North

Wales
2009 2013 3 9

CANT
Canterbury

Urban Back-

ground
South East 2011 ongoing 2 9

AGRN

Birmingham Acocks

Green

Urban Back-

ground

West Mid-

lands
2011 ongoing 3 9

WAL4
Walsall Woodlands

Urban Back-

ground

West Mid-

lands
2012 ongoing 2 9

NTN3

Northampton

Kingsthorpe

Urban Back-

ground

East Mid-

lands
2012 2017 2 9

HG4
London Haringey Pri-

ory Park South

Urban Back-

ground

Greater

London
2012 ongoing 3 9

Continued on next page...

138



A.1. Supplementary tables

Ozone data

record

Ozone season

(month)

Code
Site Name Site Type Region

Start
End Start End

LECU

Leicester Univer-

sity

Urban Back-

ground
East Midlands 2013 ongoing 2 9

GLKP

Glasgow

Townhead

Urban Back-

ground

Central

Scotland
2013 ongoing 2 8

SHDG

Sheffield

Devonshire Green

Urban Back-

ground

Yorkshire Hum-

berside
2013 ongoing 2 8

COAL
Coventry Allesley

Urban Back-

ground
West Midlands 2014 ongoing 2 9

CHBO

Chilbolton Obser-

vatory

Rural Back-

ground
South East 2016 ongoing 2 9

MAHG

Manchester

Sharston

Suburban

Industrial

North West

Merseyside
2016 ongoing 2 8

DERR
Derry Rosemount

Urban Back-

ground

Northern

Ireland
2016 ongoing 1 6

BIRR

Birmingham

A4540 Roadside

Urban Traf-

fic
West Midlands 2016 ongoing 2 8
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Table A.2: Summary of 1- and 10-year return levels of MDA8 ozone (µg/m3) in

different decades for the seven monitoring sites with ozone records dating back to

the 1980s. The 95% confidence intervals of our estimates are reported as [lower

bound, upper bound].

Site

1-year return level (µg/m3)

1980s 1990s 2000s 2010s

AH 154 [137, 173] 184 [170, 195] 142 [134, 151] 123 [118, 129]

BOT 159 [151, 169] 138 [130, 146] 135 [128, 142] 114 [110, 118]

BUSH 133 [120, 151] 118 [112, 125] 110 [106, 114] 111, [107, 116]

ESK 152 [131, 178] 145 [133, 155] 120 [114, 128] 121 [114, 126]

GDF 189 [162, 213] 208 [180, 233] 146 [135, 155] 107 [103, 111]

HAR 166 [155, 178] 172 [163, 190] 148 [139, 157] 120 [115, 125]

SIB 184 [170, 200] 164 [154, 175] 138 [133, 144] 131 [125, 137]

Site

10-year return level (µg/m3)

1980s 1990s 2000s 2010s

AH 212 [176, 241] 269 [244, 304] 193 [175, 210] 159 [148, 172]

BOT 213 [193, 229] 186 [172, 202] 173 [161, 185] 132 [125, 138]

BUSH 185 [160, 225] 156 [143, 177] 138 [126, 146] 136 [125, 148]

ESK 227 [188, 264] 215 [190, 237] 158 [146, 176] 155 [141, 171]

GDF 295 [228, 356] 330 [264, 383] 204 [180, 223] 128 [118, 139]

HAR 219 [201, 239] 243 [226, 282] 195 [179, 210] 144 [135, 153]

SIB 275 [246, 321] 225 [204, 242] 172 [162, 186] 165 [153, 176]
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Table A.3: Probability of MDA8 exceeding 100 µg/m3 in different decades for the

seven monitoring sites with ozone records dating back to the 1980s. The 95%

confidence intervals of our estimates are reported as [lower bound, upper bound].

Site 1980s 1990s 2000s 2010s

AH 0.04 [0.03, 0.06] 0.06 [0.05, 0.08] 0.05 [0.04, 0.06] 0.02 [0.02, 0.03]

BOT 0.06 [0.05, 0.07] 0.03 [0.02, 0.04] 0.04 [0.03, 0.05] 0.02 [0.02, 0.03]

BUSH 0.03 [0.02, 0.04] 0.02 [0.02, 0.03] 0.01 [0.01, 0.02] 0.02 [0.01, 0.02]

ESK 0.04 [0.02, 0.06] 0.03 [0.03, 0.05] 0.02 [0.02, 0.03] 0.02 [0.02, 0.03]

GDF 0.06 [0.04, 0.08] 0.07 [0.05, 0.08] 0.03 [0.03, 0.04] 0.01 [0.01, 0.01]

HAR 0.06 [0.05, 0.08] 0.06 [0.05, 0.07] 0.05 [0.04, 0.06] 0.03 [0.02, 0.04]

SIB 0.06 [0.05, 0.07] 0.06 [0.05, 0.06] 0.05 [0.04, 0.06] 0.04 [0.04, 0.05]

141



Appendix A. Supplementary material to Chapter 2

A.2 Supplementary figures

Figure A.1: The regions of the UK as defined by the Department for Environment,

Food and Rural Affairs.
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Figure A.2: 4 ◦C temperature binned boxplots, showing the non-linear relationship

between daily maximum temperature and MDA8 ozone for two example sites: (a)

London Eltham, and (b) Sibton.
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Figure A.3: The mean deviance test statistic grouped by region (a) and site type

(b). The number above each bar is the number of sites for the group.
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Figure A.4: Example quantile-quantile plots showing the 2000–2009 model fit for

sites in the Greater London region. Each subplot is a residual (MDA8 ozone

exceeding the modelling threshold) quantile plot on the exponential scale. The

x-axes are the model output quantiles. The y-axes are the empirical quantiles from

the MDA8 ozone observations. The R2 values for each site’s model fit are also shown.

For a good fit, points should lie on the line x = y.
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Figure A.5: The change in the 2010s return period for health threshold levels of

ozone when compared with the 1980s, 1990s and 2000s return periods for each UK

measurement site, found by using the simulation method in Section 2.3.4. Left

column: moderate health threshold of 100µg/m3; middle column: high health

threshold of 160µg/m3; right column: very high threshold of 240µg/m3. A decrease

(or increase) in return period means that a site exceeds the health threshold level

more often (or less often) in the 2010s than in the compared decade. Sites are

outlined if the change is significant (p=0.05).
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Figure A.6: The number of AURN sites for each decade and site type included

within this study.

Figure A.7: The daily maximum temperature values (°C) for each site for the 90th

(a), 95th (b) and 99th (c) temperature percentile statistics, calculated using the ozone

season temperature values.
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Figure A.8: Density plots of daily maximum temperatures (°C), grouped by

decade, using daily maximum temperatures above the site-specific 90th temperature

percentile. The sites included are those monitoring from the 1990s through to the

2010s.

A.3 Data simulation method

Simulation of 1000 years of threshold-exceeding ozone measurements is accomplished

by the following. First, simulating 1000 years of daily temperatures by sampling from

the empirical distribution of the temperature data. In practice this means sampling

with replacement from the observed temperature values. Second, using the trained

logistic regression model to generate a binary value for each simulated temperature

value, thereby assigning whether a threshold exceedance has occurred. Third, if

an exceedance has occurred, the magnitude of the exceedance is simulated from

the generalised Pareto distribution using the probability integral transformation. In

practice this involves simulating a data point U at random on the interval [0, 1] and

then transforming this to the appropriate scale for the trained generalised Pareto

distribution σT

ξ
∗
[
(1− U)(−ξ) − 1

]
+ uT where σT is the temperature-dependent

scale parameter, ξ is the shape parameter, and uT is the temperature-dependent

threshold.
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B.1 Additional tables

Table B.1: Annual mean MDA8 (µg/m3) per region for 2001–2018, with 95%

confidence intervals of the mean estimate shown in square brackets.

Region Downscaled EMEP4UK Measurements

East Midlands (England) 62.38 [62.37, 62.38] 75.02 [74.99, 75.05] 62.15 [61.76, 62.54]

East of England 64.96 [64.95, 64.96] 75.89 [75.86, 75.93] 64.55 [64.23, 64.87]

London 57.37 [57.34, 57.39] 70.41 [70.31, 70.54] 48.56 [48.37, 48.75]

North East (England) 60.68 [60.68, 60.69] 77.31 [77.27, 77.35] 58.79 [58.30, 59.24]

North West (England) 59.72 [59.72, 59.73] 76.39 [76.35, 76.42] 58.76 [58.46, 59.10]

Northern Ireland 59.16 [59.15, 59.16] 77.44 [77.42, 77.46] 59.40 [58.97, 59.85]

Scotland 62.77 [62.77, 62.77] 78.30 [78.29, 78.31] 66.14 [65.92, 66.37]

South East (England) 66.24 [66.24, 66.25] 76.82 [76.79, 76.84] 66.49 [66.28, 66.73]

South West (England) 67.11 [67.11, 67.12] 78.71 [78.70, 78.74] 65.43 [65.05, 65.81]

Wales 66.61 [66.61, 66.62] 79.29 [79.26, 79.31] 64.66 [64.36, 64.92]

West Midlands (England) 62.67 [62.66, 62.67] 75.00 [74.95, 75.03] 60.90 [60.58, 61.22]

Yorkshire and The Humber 59.27 [59.26, 59.27] 74.90 [74.88, 74.93] 58.97 [58.57, 59.35]

All-region mean
62.41

[62.40, 62.42]

76.29

[76.26, 76.33]

61.23

[60.91, 61.56]

All-region sdev. (% of

mean)
3.13 (5.01) 2.37 (3.10) 4.99 (8.15)
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Table B.2: March-August MDA8 (µg/m3) per region for 2001–2018, with 95%

confidence intervals of the mean estimate shown in square brackets.

Region Downscaled EMEP4UK Measurements

East Midlands (England) 71.12 [71.11, 71.13] 86.42 [86.38, 86.44] 71.35 [70.85, 71.82]

East of England 75.14 [75.13, 75.14] 88.07 [88.04, 88.10] 74.17 [73.78, 74.59]

London 68.90 [68.87, 68.93] 84.37 [84.27, 84.49] 58.04 [57.78, 58.34]

North East (England) 66.09 [66.08, 66.10] 85.18 [85.13, 85.22] 66.16 [65.59, 66.74]

North West (England) 65.57 [65.56, 65.58] 85.20 [85.17, 85.23] 66.48 [66.12, 66.90]

Northern Ireland 62.76 [62.75, 62.77] 82.61 [82.57, 82.65] 63.35 [62.78, 63.94]

Scotland 66.30 [66.29, 66.30] 83.66 [83.65, 83.68] 70.64 [70.34, 70.95]

South East (England) 75.56 [75.55, 75.57] 87.86 [87.83, 87.89] 75.07 [74.79, 75.34]

South West (England) 73.05 [73.05, 73.06] 86.12 [86.10, 86.15] 71.91 [71.38, 72.46]

Wales 71.51 [71.50, 71.51] 85.84 [85.81, 85.87] 69.21 [68.81, 69.58]

West Midlands (England) 70.40 [70.39, 70.40] 85.06 [85.03, 85.09] 69.32 [68.89, 69.71]

Yorkshire and The Humber 66.69 [66.69, 66.70] 85.19 [85.16, 85.22] 67.02 [66.45, 67.52]

All-region mean
69.42

[69.41, 69.43]

85.47

[85.43, 85.50]

68.56

[68.13, 68.99]

All-region sdev. (% of

mean)
4.04 (5.82) 1.57 (1.83) 4.75 (6.93)
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Table B.3: Regional average 90th percentiles of MDA8 ozone (µg/m3) for 2001–2018,

with 95% confidence intervals of the mean estimate shown in square brackets.

Region Downscaled EMEP4UK Measurements

East Midlands (England) 82.58 [82.59, 82.56] 97.22 [97.17, 97.26] 84.87 [84.27, 85.57]

East of England 86.52 [86.53, 86.51] 98.11 [98.08, 98.14] 87.32 [86.78, 87.91]

London 82.52 [82.57, 82.48] 96.71 [96.44, 96.94] 77.19 [76.88, 77.47]

North East (England) 77.84 [77.85, 77.83] 96.18 [96.13, 96.24] 80.22 [79.38, 80.74]

North West (England) 78.32 [78.34, 78.32] 96.90 [96.86, 96.95] 81.34 [81.01, 81.76]

Northern Ireland 75.61 [75.62, 75.60] 95.59 [95.55, 95.63] 79.00 [78.28, 79.56]

Scotland 79.03 [79.04, 79.03] 95.41 [95.40, 95.42] 86.20 [85.90, 86.50]

South East (England) 87.86 [87.87, 87.84] 99.48 [99.43, 99.53] 89.48 [89.13, 89.77]

South West (England) 85.53 [85.54, 85.52] 98.99 [98.95, 99.03] 89.63 [88.94, 90.07]

Wales 83.88 [83.89, 83.87] 98.72 [98.69, 98.75] 86.41 [86.00, 86.84]

West Midlands (England) 81.90 [81.91, 81.89] 97.22 [97.18, 97.28] 84.07 [83.59, 84.78]

Yorkshire and The Humber 78.38 [78.39, 78.37] 96.23 [96.19, 96.28] 82.52 [81.60, 83.26]

All-region mean
81.66

[81.65, 81.68]

97.23

[97.17, 97.29]

84.02

[83.48, 84.52]

All-region sdev (% of

mean)
3.86 (4.72) 1.34 (1.37) 4.04 (4.80)
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Table B.4: Regional average 10th percentiles of MDA8 ozone (µg/m3) for 2001–2018,

with 95% confidence intervals of the mean estimate shown in square brackets.

Region Downscaled EMEP4UK Measurements

East Midlands (England) 41.52 [41.50, 41.53] 52.02 [51.94, 52.09] 37.09 [36.38, 37.79]

East of England 42.05 [42.04, 42.07] 51.79 [51.71, 51.87] 39.25 [38.69, 40.04]

London 29.18 [29.12, 29.23] 40.57 [40.25, 40.79] 16.96 [16.65, 17.27]

North East (England) 45.32 [45.31, 45.33] 58.97 [58.88, 59.04] 36.11 [34.80, 36.80]

North West (England) 41.71 [41.70, 41.73] 56.10 [56.01, 56.17] 31.52 [30.72, 32.29]

Northern Ireland 44.42 [44.41, 44.43] 60.97 [60.92, 61.00] 38.88 [38.27, 39.61]

Scotland 48.31 [48.31, 48.31] 61.49 [61.47, 61.51] 45.34 [44.99, 45.66]

South East (England) 44.13 [44.12, 44.15] 54.18 [54.10, 54.24] 41.09 [40.63, 41.55]

South West (England) 49.22 [49.21, 49.22] 60.95 [60.91, 60.99] 38.72 [37.78, 39.48]

Wales 50.28 [50.27, 50.29] 62.08 [62.04, 62.11] 39.90 [39.17, 40.42]

West Midlands (England) 42.27 [42.26, 42.29] 53.48 [53.40, 53.55] 35.86 [35.37, 36.63]

Yorkshire and The Humber 40.31 [40.30, 40.33] 52.82 [52.74, 52.89] 34.63 [33.80, 35.45]

All-region mean
43.23

[43.21, 43.24]

55.45

[55.36, 55.52]

36.28

[35.60, 36.92]

All-region sdev (% of

mean)
5.49 (12.70) 6.13 (11.05) 7.00 (19.30)
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Table B.5: Annual mean trends of MDA8 ozone (µg/m3/yr) per region for

2001–2018, with 95% confidence intervals of the mean estimate shown in brackets.

Significant trends are in bold.

Region Downscaled EMEP4UK Measurements

East Midlands (England) -0.15 [-0.42, 0.13] 0.05 [-0.16, 0.26] 0.24 [-0.08, 0.55]

East of England -0.16 [-0.46, 0.15] -0.07 [-0.27, 0.12] 0.09 [-0.19, 0.36]

London -0.06 [-0.38, 0.26] 0.43 [0.20, 0.66] -0.23 [-0.50, 0.05]

North East (England) -0.19 [-0.41, 0.03] -0.10 [-0.30, 0.09] -0.18 [-0.42, 0.06]

North West (England) -0.09 [-0.34, 0.15] 0.03 [-0.18, 0.24] 0.29 [-0.02, 0.59]

Northern Ireland -0.10 [-0.32, 0.12] -0.16 [-0.36, 0.04] -0.06 [-0.27, 0.15]

Scotland -0.17 [-0.40, 0.05] -0.16 [-0.38, 0.06] 0.18 [-0.04, 0.39]

South East (England) -0.26 [-0.56, 0.04] -0.04 [-0.26, 0.17] 0.06 [-0.24, 0.37]

South West (England) -0.25 [-0.55, 0.04] -0.11 [-0.32, 0.10] 0.19 [-0.10, 0.47]

Wales -0.25 [-0.50, 0.00] -0.14 [-0.34, 0.05] -0.13 [-0.36, 0.11]

West Midlands (England) -0.17 [-0.45, 0.11] 0.03 [-0.18, 0.23] 0.28 [-0.01, 0.56]

Yorkshire and The Humber -0.13 [-0.35, 0.10] 0.01 [-0.17, 0.19] 0.33 [0.02, 0.64]

Table B.6: March–August mean trends of MDA8 ozone (µg/m3/yr) per region for

2001–2018, with 95% confidence intervals of the mean estimate shown in brackets.

Significant trends are in bold.

Region Downscaled EMEP4UK Measurements

East Midlands (England) -0.47 [-0.86, -0.07] -0.32 [-0.56, -0.08] -0.01 [-0.42, 0.40]

East of England -0.46 [-0.88, -0.04] -0.43 [-0.65, -0.21] -0.21 [-0.60, 0.18]

London -0.34 [-0.77, 0.10] 0.17 [-0.06, 0.39] -0.51 [-0.89, -0.13]

North East (England) -0.40 [-0.71, -0.08] -0.40 [-0.62, -0.18] -0.44 [-0.76, -0.12]

North West (England) -0.32 [-0.65, 0.02] -0.28 [-0.50, -0.06] 0.11 [-0.26, 0.47]

Northern Ireland -0.22 [-0.53, 0.09] -0.36 [-0.59, -0.13] -0.24 [-0.51, 0.02]

Scotland -0.32 [-0.67, 0.02] -0.37 [-0.62, -0.11] 0.00 [-0.33, 0.33]

South East (England) -0.58 [-1.02, -0.15] -0.39 [-0.62, -0.16] -0.21 [-0.63, 0.2]

South West (England) -0.52 [-0.95, -0.09] -0.41 [-0.64, -0.18] -0.02 [-0.46, 0.41]

Wales -0.46 [-0.82, -0.10] -0.44 [-0.65, -0.23] -0.40 [-0.77, -0.02]

West Midlands (England) -0.46 [-0.85, -0.06] -0.33 [-0.57, -0.10] 0.02 [-0.38, 0.41]

Yorkshire and The Humber -0.35 [-0.68, -0.02] -0.29 [-0.50, -0.08] 0.15 [-0.29, 0.59]
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Table B.7: 90th percentile trends of MDA8 ozone (µg/m3/yr) per region for

2001–2018, with 95% confidence intervals of the mean estimate shown in brackets.

Significant trends are in bold.

Region Downscaled EMEP4UK Measurements

East Midlands (England) -0.57 [-1.12, -0.02] -0.55 [-0.90, -0.20] -0.17 [-0.63, 0.28]

East of England -0.61 [-1.18, -0.04] -0.75 [-1.09, -0.40] -0.50 [-1.02, 0.02]

London -0.48 [-1.14, 0.19] -0.16 [-0.48, 0.16] -0.51 [-0.95, -0.07]

North East (England) -0.39 [-0.77, -0.01] -0.52 [-0.79, -0.25] -0.59 [-0.95, -0.22]

North West (England) -0.29 [-0.69, 0.11] -0.42 [-0.70, -0.14] -0.19 [-0.57, 0.20]

Northern Ireland -0.16 [-0.49, 0.16] -0.26 [-0.50, -0.02] -0.33 [-0.62, -0.03]

Scotland -0.27 [-0.62, 0.09] -0.43 [-0.74, -0.13] -0.11 [-0.45, 0.22]

South East (England) -0.74 [-1.35, -0.12] -0.63 [-0.97, -0.28] -0.36 [-0.87, 0.14]

South West (England) -0.55 [-1.06, -0.05] -0.48 [-0.79, -0.18] -0.03 [-0.47, 0.40]

Wales -0.48 [-0.90, -0.06] -0.47 [-0.74, -0.19] -0.37 [-0.80, 0.05]

West Midlands (England) -0.50 [-1.02, 0.02] -0.41 [-0.74, -0.09] 0.01 [-0.42, 0.45]

Yorkshire and The Humber -0.39 [-0.82, 0.05] -0.42 [-0.70, -0.15] -0.04 [-0.53, 0.46]

Table B.8: 10th percentile trends of MDA8 ozone (µg/m3/yr) per region for

2001–2018, with 95% confidence intervals of the mean estimate shown in brackets.

Significant trends are in bold.

Region Downscaled EMEP4UK Measurements

East Midlands (England) 0.42 [0.14, 0.69] 0.75 [0.40, 1.09] 0.80 [0.45, 1.15]

East of England 0.40 [0.10, 0.69] 0.60 [0.27, 0.92] 0.71 [0.42, 1.01]

London 0.53 [0.22, 0.84] 1.19 [0.75, 1.62] 0.17 [-0.04, 0.37]

North East (England) 0.07 [-0.16, 0.31] 0.37 [0.05, 0.68] 0.28 [-0.03, 0.59]

North West (England) 0.24 [-0.07, 0.54] 0.61 [0.27, 0.96] 0.81 [0.42, 1.20]

Northern Ireland -0.01 [-0.30, 0.27] -0.03 [-0.30, 0.24] 0.20 [-0.12, 0.52]

Scotland -0.06 [-0.29, 0.17] 0.04 [-0.21, 0.29] 0.57 [0.27, 0.86]

South East (England) 0.34 [0.03, 0.64] 0.68 [0.30, 1.07] 0.70 [0.44, 0.96]

South West (England) 0.10 [-0.18, 0.38] 0.40 [0.05, 0.75] 0.53 [0.24, 0.82]

Wales -0.01 [-0.26, 0.24] 0.23 [-0.08, 0.53] 0.21 [0.01, 0.41]

West Midlands (England) 0.36 [0.03, 0.69] 0.78 [0.40, 1.16] 0.83 [0.48, 1.18]

Yorkshire and The Humber 0.26 [0.03, 0.49] 0.57 [0.27, 0.88] 0.86 [0.53, 1.20]
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B.2 Additional figures

Figure B.1: Measurement station map with number of measurement days in record

for each station.
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Figure B.2: The region definitions for this paper (Level 1 Nomenclature of Territorial

Units for Statistics).
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Figure B.3: Regional annual mean MDA8 ozone for the downscaled surface, for

2001–2018. Background dots are individual cell estimates, larger foreground dots

are the yearly average.
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Figure B.4: Regional annual mean MDA8 ozone for the EMEP4UK surface, for

2001–2018. Background dots are individual cell estimates, larger foreground dots

are the yearly average.
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Figure B.5: Regional annual mean MDA8 ozone for the measurement data, for

2001–2018. Background dots are individual cell estimates, larger foreground dots

are the yearly average.
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B.2. Additional figures

Figure B.6: Regional March–August mean MDA8 ozone for the downscaled surface,

for 2001–2018. Background dots are individual cell estimates, larger foreground dots

are the yearly average.
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Figure B.7: Regional March–August mean MDA8 ozone for the EMEP4UK surface,

for 2001–2018. Background dots are individual cell estimates, larger foreground dots

are the yearly average.
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B.2. Additional figures

Figure B.8: Regional March–August mean MDA8 ozone for the measurement data,

for 2001–2018. Background dots are individual cell estimates, larger foreground dots

are the yearly average.
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Figure B.9: Regional 90th percentile MDA8 ozone for the downscaled surface, for

2001–2018. Background dots are individual cell estimates, larger foreground dots

are the yearly average.
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Figure B.10: Regional 90th percentile MDA8 ozone for the EMEP4UK surface, for

2001–2018. Background dots are individual cell estimates, larger foreground dots

are the yearly average.
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Figure B.11: Regional 90th percentile MDA8 ozone for the measurement data, for

2001–2018. Background dots are individual cell estimates, larger foreground dots

are the yearly average.
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Figure B.12: Regional 10th percentile MDA8 ozone for the downscaled surface, for

2001–2018. Background dots are individual cell estimates, larger foreground dots

are the yearly average.
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Figure B.13: Regional 10th percentile MDA8 ozone for the EMEP4UK surface, for

2001–2018. Background dots are individual cell estimates, larger foreground dots

are the yearly average.
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Figure B.14: Regional 10th percentile MDA8 ozone for the measurement data, for

2001–2018. Background dots are individual cell estimates, larger foreground dots

are the yearly average.
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Figure B.15: Original EMEP4UK difference in annual mean (top), March-August

mean (middle), and 90th percentile (bottom) MDA8 ozone compared to 2018 for

three UK NOX scenarios: 20% reduction in NOX (left), 40% reduction in NOX

(middle), 80% reduction in NOX (right).
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