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ABSTRACT: The cruising of ride-hailing vehicles generates negative externalities such as 12 

traffic congestion and vehicular emissions. These externalities can be mitigated by reducing 13 

cruising driving via operating book-ahead ride-hailing services, where the platform 14 

dispatches and routes drivers based on precise information on travelers’ departure time and 15 

origin-destination (OD). However, the effects of factors influencing book-ahead ride-hailing 16 

trips have rarely been empirically examined with real data. Using six-month trip data from 17 

China, this study employs a gradient boosting decision tree (GBDT) method with 18 

hyperparameters optimized by the Bayesian optimization algorithm to examine the factors 19 

associated with book-ahead ride-hailing trips across OD pairs (hexagon cells-to-hexagon 20 

cells) at various spatial scales. The relative importance rankings generated from this study 21 

indicate that trip features, weather conditions, and accessibility to transportation hubs are 22 

significant determinants correlated with the usages of book-ahead ride-hailing. The partial 23 

dependence plots demonstrate the nonlinear threshold effects of these determinants on the 24 

hourly number of book-ahead ride-hailing per OD pair. Moreover, this study compares the 25 

differences in associations between peak and non-peak hours as well as weekdays and 26 

weekends. The disparity in the nonlinear threshold effects between weekdays and weekends 27 

is only observable during the evening peak period and not at other times. These findings 28 

provide valuable insights into developing practical strategies for promoting book-ahead 29 

ride-hailing services. 30 
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1. Introduction  1 

The past decade has witnessed the rapid growth of the sharing economy and the boom 2 

in new mobility services such as ride-hailing and taxi-calling (Ravula, 2022; Rayle et al., 3 

2016). Service providers like Uber, Lyft, and Didi Chuxing have capitalized on this trend, 4 

allowing passengers to use their smartphones to hail a car and a driver to meet their travel 5 

needs through their ride-hailing platforms (He, 2021; Wang and Yang, 2019). According to 6 

the 47th Statistical Report on Internet Development in China (China Internet Network 7 

Information Center, 2021), the number of ride-hailing app users in China reached 365 8 

million by December 2020, which accounts for 36.9% of the total Internet users and 9 

represents an increase of 2.98 million since March 2020. 10 

The rapid expansion of on-demand ride-hailing services in urban areas has raised 11 

concerns among authorities about their negative impacts on urban mobility. One of the most 12 

heated debates is whether ride-hailing services can cause external traffic congestion (Diao 13 

et al., 2021; Tirachini, 2020; Tirachini et al., 2020; Tirachini and Gomez-Lobo, 2020; Wei 14 

et al., 2022). According to Diao et al. (2021), ride-hailing services have increased traffic 15 

congestion by 0.9% in terms of the travel time index and by 4.5% in terms of congestion 16 

duration. The primary cause is the cruising of idle ride-hailing drivers on the road network 17 

in search of potential patronage, which occupies limited road space without contributing to 18 

serving travel demand (Gao et al., 2022; Wei et al., 2023). This puts authorities and 19 

transportation network companies (TNCs) in a difficult position. On the one hand, 20 

passengers expect short waiting times from their requested departure time. On the other 21 

hand, if ride-hailing platforms increase the number of drivers to cover more trip requests, a 22 

large number of cruising drivers searching for customers will inevitably lead to idle driving 23 

time and traffic congestion. Schaller (2018) pointed out that the number of ride-hailing 24 

vehicles in New York City increased by 59% from 2013 to 2017, resulting in an 81% 25 

increase in idle driving, a 15% decline in traffic speed, and a 36% increase in vehicle 26 

kilometers traveled.  27 

To address concerns about the negative impacts of cruising ride-hailing vehicles on 28 
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urban mobility, authorities, and transportation network companies have implemented 1 

various regulatory strategies, including capping ride-hailing fleet sizes, congestion 2 

surcharges, ride-splitting services, shared parking policies, and “schedule a ride” services 3 

that allow passengers to book trips in advance. Of these, “schedule a ride” is a promising 4 

approach to reduce cruising traffic in two ways. First, it provides ride-hailing platforms with 5 

precise information about the origin-destination (OD) and departure time of future trips, 6 

enabling the platform to dispatch and route drivers more efficiently and reduce idle driving. 7 

Second, it allows the platform to adjust vehicle fleet size and pre-assign ride-hailing vehicles 8 

to service areas based on submitted trip requests in advance. Compared to real-time ride-9 

hailing services, which require immediate booking and trip departure, book-ahead ride-10 

hailing offers a more sustainable urban mobility option.  11 

Despite the prevalence of reservation scenarios in daily life, such as seat reservations 12 

for railway or airline travel and online bookings for medical services, only limited pilot 13 

programs concerning book-ahead ride-hailing are conducted in the real world. Currently, 14 

there is still a lack of overall understanding of ride-hailing trip reservations on a large scale 15 

with real data. While Yahia et al. (2021) examined the impacts and benefits of book-ahead 16 

rides on driver supply management for ride-sourcing platforms, there have been few 17 

empirical studies on book-ahead ride-hailing trips and their determinants. This knowledge 18 

gap is relevant to regulators and planners seeking to promote or limit the use of book-ahead 19 

ride-hailing services, as the benefits of such services will remain theoretical without a 20 

deeper understanding of their determinants. In response to this situation, our study aims to 21 

explore the relationship between book-ahead ride-hailing trips and their determinants, 22 

including trip characteristics, built environment attributes at origin and destination, and 23 

weather conditions. The contributions of our research are outlined below.  24 

First, this study investigates a novel book-ahead ride-hailing service using large-scale 25 

trip records in China. Unlike real-time ride-hailing services, book-ahead ride-hailing allows 26 

passengers to submit their trip requests several hours or days in advance, allowing the 27 

platform to adjust the fleet size and pre-assign vehicles to service areas. Second, this study 28 
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uses an interpretable machine learning approach to explore the relationships between book-1 

ahead ride-hailing trips and their determinants, i.e., trip characteristics, built environment 2 

attributes, socio-economic characteristics at origin and destination, and weather conditions. 3 

To ensure model accuracy, a Bayesian optimization algorithm is employed to search for 4 

optimal hyperparameters, and the model is executed at three spatial scales. Third, this study 5 

uses relative importance analysis and partial dependence plots to identify the factors that 6 

contribute most to the usage of book-ahead ride-hailing and to visualize nonlinear 7 

associations. We conduct a heterogeneity analysis for different periods, including morning 8 

peak, evening peak, and off-peak hours, to compare the nonlinear effects of contributing 9 

factors. Finally, our research contributes to a comprehensive understanding of the 10 

association between book-ahead ride-hailing usage and its determinants. It identifies where 11 

and when it is most feasible to promote such services and shows how urban planning and 12 

traffic demand management could contribute to place-based strategies to support or 13 

intervene in this promising service.  14 

The remainder of our paper is organized as follows. Section 2 reviews related studies. 15 

Section 3 presents our data profile and methodology. Section 4 discusses the relative 16 

importance of variables and partial dependence plots. Finally, Section 5 summarizes the key 17 

findings, offers corresponding policy implications, and sheds light on future research 18 

directions.  19 

 20 

2. Literature review  21 

2.1. Reservation in transportation management 22 

Reservation strategies have been identified as a complementary demand management 23 

approach within the context of traffic management (Lamotte et al., 2017). The most well-24 

known application of reservation systems in traffic management is roadway reservation 25 

systems, which allow vehicles to reserve a spot on the freeway in advance, enabling them 26 

to use specific segments of the freeway within a predetermined period (Chen et al., 2022; 27 

Liu et al., 2015; Su and Park, 2015). Parking reservation schemes have also gained traction 28 
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and have been proposed to address inadequate curbside parking spaces (Chen et al., 2015; 1 

Liu et al., 2014; Wang et al., 2022). In the context of trip reservations, De Feijter et al. (2004) 2 

utilized a simulation experiment to demonstrate the positive impact of trip booking on 3 

effective road capacity utilization and travel-time reliability. Ma et al. (2017) designed an 4 

autonomous vehicle-sharing and reservation system utilizing a linear programming 5 

approach. The proposed system enables travelers to book their trips in advance, and the 6 

system operator optimally arranges the autonomous vehicle pick-up and delivery before the 7 

requested time. Notably, Ouyang et al. (2021) proposed a modeling framework for many-8 

to-many carpooling services with in-advance reservations in idealized settings. They further 9 

formulated an analytical model with a closed form to examine the effects of detours and 10 

waiting time restrictions on reservation-based carpooling services. Yahia et al. (2021) 11 

conducted a simulation experiment to analyze the impact of book-ahead rides on driver 12 

supply management for ride-sourcing platforms and found that an increase in book-ahead 13 

rides led to a reduction in the total number of drivers required. It’s a sign that ride-hailing 14 

trip reservations are still lacking in critical aspects despite their attractiveness and promise. 15 

 16 

2.2. Contributing factors associated with ride-hailing demand 17 

Several studies have investigated the relationship between ride-hailing usage and its 18 

determinants. Table 1 outlines the differences between this study and the existing literature. 19 

It shows that four main types of variables were found to be associated with ride-hailing 20 

adoption: trip feature factors, socio-demographic factors, built environment attributes, and 21 

weather conditions. The roles of trip feature factors, including median or average travel 22 

duration, distance, and fare, have been extensively studied in ride-hailing usage analysis (Tu 23 

et al., 2021; Xu et al., 2021). Most of the existing literature on socio-demographic factors 24 

paid particular attention to aggregated population, employment, and income characteristics, 25 

such as population density, employment density, and medium median income in the census 26 

tract (Ghaffar et al., 2020; Marquet, 2020). The collection of these valuable data profiles is 27 

usually tied to the national or regional demographic census. One of the most well-known 28 
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tools for assessing the built environment is Ewing and Cervero’s (2010) 5Ds model 1 

containing density (such as population density and job density), diversity (such as land use 2 

mixture and jobs-housing balance), design (such as intersection density and street density), 3 

destination accessibility (such as job accessibility by transit or auto), and distance to transit 4 

(such as the nearest bus stop or subway station). The measurements of the built environment 5 

in current studies have stretched and expanded in specific research contexts (Bi et al., 2020; 6 

Ghaffar et al., 2020; Huang et al., 2021; Jin et al., 2022). In addition, several distinctive 7 

weather condition variables, including temperature, humidity, wind speed, and rainfall, have 8 

also been integrated into the modeling process (Liu et al., 2020; Shokoohyar et al., 2020). 9 

However, the most crucial role among the four main types of variables is not consistent. For 10 

instance, Tu et al. (2021) suggested that the collective influence of the built environment 11 

factors on the ride-splitting adoption rate is greater than that of demographic characteristics, 12 

whereas the findings from Xu et al. (2021) indicated that the socio-economic and 13 

demographic variables are the most important factors in predicting the ride-splitting 14 

adoption rate.  15 

 16 

2.3. Related works on ride-hailing demand modeling  17 

Since the survey conducted in San Francisco highlighted the significant benefits of 18 

ride-hailing services in reducing waiting times and providing fast point-to-point trips 19 

compared to conventional taxi services (Rayle et al., 2016), an increasing body of literature 20 

has explored the role of this emerging travel mode in urban mobility (Liu et al., 2022; Wang 21 

and Yang, 2019). Previous studies of ride-hailing demand modeling have paid particular 22 

attention to six main aspects: (1) identifying the spatial and temporal distribution 23 

characteristics of ride-hailing trips, such as ridership, duration, origin, and destination (He, 24 

2021; Wang and Noland, 2021); (2) using various deep learning approaches, such as 25 

convolutional long short-term memory (Chen et al., 2022; Liu et al., 2023), and graph 26 

convolutional neural networks (Jin et al., 2020), to predict spatio-temporal online ride-27 

hailing demand; (3) examining the factors that influence passengers’ decisions to switch 28 
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from traditional travel modes to ride-hailing, based on the discrete choice model (Azimi et 1 

al., 2020; Tarabay and Abou-Zeid, 2020); (4) inferring the relationship between customer 2 

satisfaction and loyalty to ride-hailing services using structural equation modeling (Nguyen-3 

Phuoc et al., 2020); (5) optimizing matching and order dispatching algorithms between 4 

passengers and drivers to improve the efficiency and performance of ride-hailing services 5 

under network equilibrium (Bertsimas et al., 2019; Wei et al., 2022; Xu et al., 2021); and (6) 6 

investigating the impacts of contributed factors, such as built environment and socio-7 

economic factors, on online ride-hailing trip demand to provide guidance for policy-makers 8 

and urban planners (Bi et al., 2020; Shokoohyar et al., 2020; Yu and Peng, 2019).  9 

Concerning the sixth aspect of ride-hailing demand modeling, previous research has 10 

employed two modeling approaches to investigate the relationship between ride-hailing 11 

services and contributing factors: regression-based methods and interpretable machine 12 

learning methods. Common regression-based models used in prior studies include ordinary 13 

least squares (OLS) regression models (Brown, 2020; Ghaffar et al., 2020; Liu et al., 2021; 14 

Marquet, 2020; Shokoohyar et al., 2020), spatial regression models that incorporate spatial 15 

dependence (Dean and Kockelman, 2021; Huang et al., 2021; Lavieri et al., 2018), and 16 

geographically weighted regression models that integrate spatial heterogeneity (Bi et al., 17 

2020; Yu and Peng, 2019). These regression-based models typically predefine a specific 18 

model form (such as linearity and logarithmic linearity) for the possible relationship 19 

between ride-hailing adoption and its determinants, resulting in the marginal effects of 20 

independent variables being considered constant or following a regular rule. Consequently, 21 

the most effective range and probable threshold of a contributing factor’s effect on ride-22 

hailing demand could be obscured (Ding et al., 2018). 23 

In contrast to regression-based models, the interpretable machine learning approach 24 

overcomes the limitations of classical regression models requiring a predetermined 25 

functional form, thereby conveniently revealing nonlinear and threshold effects related to 26 

neighborhoods (Galster, 2018). The interpretable machine learning approach has become a 27 

powerful tool to examine the nonlinear effects and thresholds related to different travel 28 
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modes’ usage, such as driving distance (Ding et al., 2018), electric-bike ownership (Ding et 1 

al., 2019b), walking distance to transit (Tao et al., 2020a), active travel (Tao et al., 2020b), 2 

older adults’ walking propensity (Yang et al., 2021), dockless bike-sharing usage (Wang et 3 

al., 2022), customized bus service use (Wang et al., 2023), and taxi charging station 4 

utilization (Cai et al., 2023). In the context of ride-hailing, two commonly used algorithms, 5 

gradient boosting decision trees (GBDT) (Jin et al., 2022; Tu et al., 2021) and random forest 6 

(RF) (Xu et al., 2021), have received significant attention. It can be predicted that evidence 7 

of nonlinear effects and thresholds is increasingly becoming prominent in ride-hailing 8 

mobility. 9 

To sum up, the above-mentioned studies suggested that real-time ride-hailing services 10 

are increasingly important in urban mobility systems. However, the knowledge of book-11 

ahead ride-hailing is limited. Based on the literature review, it can be concluded that 12 

empirical studies of book-ahead ride-hailing adoption and its determinants require further 13 

exploration. This study aims to bridge the gap by examining the nonlinear effects and 14 

thresholds of potential contributing factors on book-ahead ride-hailing utilization via an 15 

interpretable machine learning method. The study considers trip-level features, grid-level 16 

built environment and socio-economic characteristics, and city-level weather conditions in 17 

the modeling. Furthermore, the effect of these variables is compared between peak and non-18 

peak hours as well as weekdays and weekends. 19 

 20 
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Table 1. Summary of the influencing factors associated with ride-hailing usage using large-scale trip orders. 1 

Reference Ride-hailing type Study area Method Dependent Variable 
Key influencing factor Temporal heterogeneity 

TF SD BE WC Weekend Peak time 

Lavieri et al. (2018) Real-time Austin, Texas SRM Daily Number of trips / √ √ / √ / 

Yu and Peng (2019) Real-time Austin, Texas GWR Daily Number of trips √ √ √ / √ / 

Bi et al. (2020) Real-time Chengdu, China GWR Ridership during a period / / √ / √ √ 

Shokoohyar et al. (2020) Real-time Philadelphia RM Travel time, fare / / √ √ √ / 

Marquet (2020) Real-time Chicago RM Daily Number of trips / √ √ / √ / 

Ghaffar et al. (2020) Real-time Chicago RM Daily Number of trips / √ √ √ √ / 

Brown (2020) Ride-splitting Los Angeles RM Number of ride-sharing trips / √ √ / / / 

Dean and Kockelman (2021) Ride-splitting Chicago SRM Proportion of ride-sharing trips √ √ √ / √ √ 

Xu et al. (2021) Ride-splitting Chicago IML Ride-sharing adoption rate √ √ √ / / / 

Huang et al. (2021) Ride-splitting Chengdu, China SRM Ride-sharing adoption rate / / √ / / / 

Liu et al. (2021) Real-time Haikou, China RM Ridership during a period / / / √ √ / 

Tu et al. (2021) Ride-splitting Chengdu, China IML Ride-sharing adoption rate √ √ √ / / / 

Jin et al. (2022) Real-time Nanjing, China IML Hourly Number of trips / / √ / √ / 

This study Book-ahead Haikou, China IML Hourly Number of trips √ √ √ √ √ √ 

Note: (1) “TF”, “BE,” “SD,” and “WC” respectively represent the trip feature factors, built environment factors, socio-demographic factors, and weather condition 2 
factors in independent variables. (2) “RM”: regression model; “SRM”: spatial regression model; “GWR”: geographically weighted regression model; “IML”: 3 
interpretable machine learning method. 4 

 5 
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3. Data profile and methodology  1 

3.1. Study area 2 

The data used in this study come from Haikou City (the capital city of Hainan province), 3 

China (see Fig. 1). Situated in the tropics and covering an area of 3,126 km2, Haikou is a 4 

southern coastal city with abundant natural scenery. In 2020, the resident population was 5 

2,873,400, an increase of 3.6% from the previous year. In the same year, its GDP reached 6 

179.15 billion yuan. As one of the most important tourist destinations in China, Haikou’s future 7 

urban transport planning is focused on emerging transport modes such as ride-hailing services. 8 

 9 
Fig. 1. Study area and distribution of pick-up locations of book-ahead ride-hailing. 10 

 11 

3.2. Modeling unit segmentation 12 

Fig. 1 shows that the pick-up locations of book-ahead ride-hailing trips are randomly 13 

distributed across the entire study area due to passengers’ diverse travel preferences. To capture 14 

this varied trip demand, ride-hailing platforms in China often divide cities into hexagonal cells 15 

to predict general trip demand and driver supply and make operational decisions based on a 16 
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specific time interval for each cell (Chen et al., 2022; Ke et al., 2019; Liu Y. et al., 2022; Liu 1 

K. et al., 2023). Therefore, we also divided our study area into hexagonal cells to aggregate 2 

book-ahead ride-hailing trips. This approach requires fewer cells to fully tessellate a given 3 

region than using triangular or square cells, and the distances between neighboring hexagons 4 

are equal (Asamer et al., 2016). 5 

However, it is challenging to select a uniform size for hexagonal cells under different 6 

scenarios (Bi et al., 2020). Several studies suggested that 250 meters (Bi and Ye, 2021), 500 7 

meters (Liao, 2021), and 660 meters (Ke et al., 2019) are all appropriate hexagonal side lengths 8 

for ride-hailing demand prediction and trip characteristic analysis. Fig. 2 shows a diagram of 9 

the hexagonal cell with different side lengths. To validate our results, we successively selected 10 

250-meter, 500-meter, and 660-meter hexagons as modeling units to identify a finer spatial 11 

scale. This approach generated 14,254 250-meter hexagons, 3,670 500-meter hexagons, and 12 

2,143 660-meter hexagons, respectively. 13 

 14 
Fig. 2. Diagram of different hexagonal cells. 15 

 16 

3.3. Variables and data profile  17 

3.3.1. Dependent variable: hourly number of trips per OD pair 18 

The Didi Chuxing GAIA Initiative1 provided ride-hailing order data for all 14,160,162 19 

trips taken in Haikou between May 1 and October 31, 2017. The data includes the order ID, 20 

 
1 https://gaia.didichuxing.com 
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type, departure time, price estimate, the distance between origin and destination, pick-up 1 

location, and drop-off location for each trip. The data sample can be found in Appendix Table 2 

A1. It’s worth noting that the ride-hailing order data includes two types of services: real-time 3 

ride-hailing and book-ahead ride-hailing. For our study, we focus solely on book-ahead ride-4 

hailing trips. To generate the dependent variable, we first processed the book-ahead ride-hailing 5 

orders. We eliminated pick-up and drop-off locations outside our study area, removed duplicate 6 

trip records with the same order IDs, and deleted orders with null trip distance or fee records. 7 

Additionally, we filtered out trip orders with abnormal distances (less than 2 km or greater than 8 

45 km) and fees (less than 9 RMB or greater than 300 RMB). After completing the data cleaning 9 

procedure, we kept 249,857 book-ahead ride-hailing trip records in the subsequent analysis of 10 

book-ahead ride-hailing demand at the hexagon level.  11 

In this study, we use the hourly number of requests per OD pair (hexagon-to-hexagon) as 12 

the dependent variable, also referred to as hourly OD pair volumes. To calculate this variable, 13 

we first geocoded the pick-up/drop-off locations of trip orders using the latitude and longitude 14 

coordinates of the origin and destination. We then assigned the origin and destination of each 15 

book-ahead ride-hailing trip to the corresponding hexagon. Next, we aggregated the book-16 

ahead ride-hailing trips that were picked up at the original hexagon i and dropped off at 17 

destination hexagon j during each hourly period. As discussed in Section 3.2, our study area is 18 

divided into hexagonal cells with different side lengths of 250 meters, 500 meters, and 660 19 

meters. Thus, there are 201,176 OD pairs, 193,986 OD pairs, and 189,444 OD pairs for book-20 

ahead ride-hailing trips under 250-meter hexagons, 500-meter hexagons, and 660-meter 21 

hexagons, respectively.  22 

Fig. 3 shows the statistical distribution of hourly OD pair volumes (indicated by the green 23 

curve). On the horizontal axis, the frequency of OD pair volumes is represented, while on the 24 

vertical axis, the percentage of OD pairs over a certain volume frequency is represented. For 25 

instance, the first point (1, 100) in Fig. 3(a) indicates that 100% of OD pairs consist of one trip 26 

per hour. However, owning to OD pairs with one trip per hour may be occasional, so it is 27 

necessary to exclude them to ensure reliable subsequent analysis (Wang et al., 2022). To 28 
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identify the “right” frequency of OD pair volumes, a knee-point detection method is applied 1 

(Liu et al., 2020). The subplots of Fig. 3 show that a blue line is drawn to connect the first and 2 

last points on the distribution curve (green) of hourly OD pair volumes. The distance of each 3 

point on the OD volume curve to the blue line is then calculated. Generally, the point with the 4 

maximum distance to the blue line is considered the knee point of the OD pair volume 5 

distribution. It can be observed that, under three different hexagonal side lengths, the knee point 6 

of the OD pair volume distribution is 3 (indicated by the red star). Therefore, only the OD pairs 7 

with over three trips per hour are further analyzed, which respectively account for around 8 

4.30%, 5.35%, and 6.1% of all OD pairs under 250-meter, 500-meter, and 660-meter hexagons. 9 

Table 2 presents some information about hexagons, book-ahead ride-hailing trips, and OD pairs.  10 

 11 
Fig. 3. The distribution of trips per grid-level OD pair. 12 

Table 2. Statistical information on trips and OD pairs. 13 
Hexagonal side length 250 meters 500 meters 660 meters 
Number of hexagonal cells 14254 3670 2143 
All trips of book-ahead ride-hailing 249,857 249,857 249,857 
All grid-level OD pairs 201,176 193,986 189,444 
Knee-point of hourly number of trips per OD pair 3 3 3 
Dominant grid-level OD pairs 8,651 10,376 11,558 
Percentage of dominant grid-level OD pairs 4.30% 5.35% 6.10% 

 14 

3.3.2. Explanatory variables 15 

Based on the results of previous studies (refer to Table 1), this study includes explanatory 16 

variables from five categories: trip-level features, grid-level points of interest (POIs), 17 

accessibility to facilities and socio-economic characteristics, and city-level weather conditions. 18 

As passengers’ private information is unavailable, individual-level variables such as age, 19 

income, and gender are excluded.  20 
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The indicators of trip features include the median trip distance and fee for each grid-level 1 

origin-destination (OD) pair, which is extracted from book-ahead ride-hailing order data. These 2 

indicators can help identify preferred travel distances and acceptable fees for book-ahead ride-3 

hailing usage. It should be noted that the trip fee of the ride-hailing services is determined by 4 

trip length and travel time (Wei et al., 2021), but it can be influenced by trip demand. In turn, 5 

the trip fee also influences ride-hailing demand. In this study, we are mainly interested in the 6 

influence of trip fees on ride-hailing demand. The feedback effects of the trip demand on the 7 

trip fee are not considered in our model. Additionally, we also include a dummy variable that 8 

captures whether the trip was requested on a weekday or weekend.  9 

Grid-level POIs, facilities accessibility, and socio-economic characteristics can provide 10 

insights into passengers’ trip purposes. Valuable features related to grid-level POIs were 11 

derived from POI data obtained from the places application programming interface (API) of 12 

Gaode Map 1 . This data contains location information of various urban facilities, such as 13 

transportation facilities, workplaces, social services facilities, and others. POI data has been 14 

extensively used as a surrogate measure to estimate built environment characteristics (Bi et al., 15 

2020; Yang et al., 2021). For this study, we extracted eight typical POIs (workplaces, residences, 16 

dining, recreation, education, shopping, medical, and accommodation) from the POI data. We 17 

used a POI-based entropy index to quantify land use (Huang et al., 2021; Li et al., 2020; Yue 18 

et al., 2017). The formula for the POI-based entropy index for a hexagonal cell is as follows:  19 

 ( )2
1

= log
K

POI k k
k

E p p
=

− ⋅∑ , (1) 20 

where K is the number of POI types, and pk denotes the percentage of the kth POI type in a 21 

given hexagonal cell. A higher POI-based entropy index means a greater diversity of land use. 22 

To assess grid-level accessibility, we measured the minimum travel time from each hexagonal 23 

center to key locations (bus stop, coach station, railway station, airport, tourism spot, city center, 24 

county center, and town center) with the help of the route planning function of the Baidu Map 25 

API2. It is essential to point out that the minimum travel time for a given hexagonal center to 26 

 
1 https://lbs.amap.com/api  
2 https://lbsyun.baidu.com/products/direction  

https://lbs.amap.com/api
https://lbsyun.baidu.com/products/direction
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the nearest bus stop is walking time, but to other places, it is driving time. To measure grid-1 

level socio-economic characteristics, we calculated the average GDP (Gross Domestic Product) 2 

of each hexagon based on disaggregated GDP data at a 1 km × 1 km grid area in 2017 (Zhao 3 

et al., 2017). It should be noted that the grid-level variables at both the origin hexagons and 4 

destination hexagons were incorporated into the models.  5 

To examine the effects of weather conditions and changes on book-ahead ride-hailing 6 

usage, we considered five variables following Wang et al. (2022): AQI (air quality index), 7 

temperature, humidity, wind speed, and rainfall per hour. The data were obtained from the 8 

“Environment Cloud” API1  of China and were merged with book-ahead ride-hailing trips 9 

based on the time index. Additional details about the explanatory variables are provided in 10 

Table 3. 11 

Table 4 presents the descriptive statistics of these variables for the three types of hexagonal 12 

cells. The average hourly requests for book-ahead ride-hailing services per OD pair in the 250-13 

meter, 500-meter, and 660-meter hexagons were close to 3.8 trips, indicating that the 14 

penetration of book-ahead ride-hailing services was low in Haikou City. As shown in Table 4, 15 

the average median travel distance and median travel fee were less than 12 km and 40 RMB, 16 

respectively. It can be observed from Table 4 that trip features and accessibility to key places 17 

were similar for the three cell sizes, but the mean values for POI features varied somewhat. 18 

 
1 http://www.envicloud.cn/pages/product.html 

http://www.envicloud.cn/pages/product.html
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Table 3. Explanatory variable definitions. 1 
Explanatory variables Description 

Trip features  
Median travel distance  Median travel distance of all trips per grid-level OD pair (km) 
Median travel fee  Median travel fee of all trips per grid-level OD pair (RMB) 
Weekdays Dummy variable, 0: weekends, 1: weekdays 
POI features at origin hexagons and destination hexagons 
Workplace POIs  Number of workplace POIs in the hexagonal cell, including government, factory, industry, company, enterprise, etc. 
Residence POIs  Number of residence POIs in the hexagonal cell, including apartments, houses, etc. 
Dining POIs  Number of dining POIs in the hexagonal cell, including Chinese restaurants, Western restaurants, fast food outlets, snack bars, etc. 
Shopping POIs Number of shopping POIs in the hexagonal cell, including supermarkets, shopping malls, large department stores, etc. 
Recreation POIs  Number of recreation POIs in the hexagonal cell, including scenic spots, stadiums, movie theaters, etc. 
Schooling POIs  Number of schooling POIs in the hexagonal cell, including schools, colleges, universities, training institutions, etc. 
Medical POIs  Number of medical POIs in the hexagonal cell, including hospitals, clinics, pharmacies, etc.  
Accommodation POIs Number of accommodation POIs in the hexagonal cell, including hotels, guesthouses, etc. 
POI entropy index An index to evaluate land use mixture based on the number of POI types  
Accessibility features at origin hexagons and destination hexagons 
Accessibility to bus stop Duration of walking from a hexagon center to the nearest bus stop (minutes) 
Accessibility to coach station Duration of driving from a hexagon center to the nearest coach station (minutes)  
Accessibility to railway station  Duration of driving a hexagon center to the nearest railway station (minutes)  
Accessibility to airport Duration of driving from a hexagon center to the nearest international airport (minutes) 
Accessibility to tourism spot Duration of driving from a hexagon center to the nearest tourism spot (minutes) 
Accessibility to city center  Duration of driving from a hexagon center to a municipal government office (minutes) 
Accessibility to county center  Duration of driving from a hexagon center to the nearest county government office (minutes) 
Accessibility to town center  Duration of driving from a hexagon center to the nearest government office or subdistrict office (minutes) 
Socio-economic features at origin hexagons and destination hexagons 
Grid-level GDP GDP value per hexagonal cell (RMB) 
Weather condition   
AQI City-level average air quality index per hour  
Temperature  City-level average temperature per hour (℃) 
Humidity City-level average humidity per hour (%rh) 
Wind speed City-level average wind speed per hour (m/s) 
Rainfall City-level average rainfall per hour (mm) 
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Table 4. Descriptive statistics. 1 

Variables  
250-meter hexagonal cell  500-meter hexagonal cell  500-meter hexagonal cell  

(8,651 OD pairs) (10,376 OD pairs) (11,558 OD pairs) 

Dependent variable Mean Std. Min Max Mean Std. Min Max Mean Std. Min Max 
Hourly requests per OD pair  3.8 1.66 3 41 3.85 1.8 3 39 3.88 1.81 3 41 
Explanatory variables 
Trip features             

Median travel distance (km) 11.13 6.76 2 40.08 11.96 7.03 2 40.08 12.63 7.24 2 40.4 
Median travel fee (RMB) 35.99 26.76 9 230.4 38.18 26.78 9 230.4 40.04 26.82 9 230.4 
Weekdays (dummy variable) 0.36 0.48 0 1 0.35 0.48 0 1 0.35 0.48 0 1 
POI features at origin hexagons 
Workplace POIs (n) 24.64 44.45 0 382 89.72 124.73 0 753 161.65 210.75 0 1109 
Residence POIs (n) 8.57 10.45 0 53 33.07 34.25 0 139 57.01 57.92 0 216 
Dining POIs (n) 47.76 60.38 0 311 158.98 170.84 0 752 261.25 253.83 0 1027 
Shopping POIs (n) 54 81.57 0 700 199.25 253.95 0 1711 353.02 411.03 0 2149 
Recreation POIs (n) 5.19 8.42 0 75 17.69 21.27 0 121 30.41 37.23 0 194 
Schooling POIs (n) 9.94 14.34 0 122 34.9 36.46 0 189 59.72 60.49 0 243 
Medical POIs (n) 5.88 10.85 0 210 21.5 28.07 0 241 37.81 46.95 0 267 
Accommodation POIs (n) 6.43 8.45 0 59 21.52 22.93 0 106 35.85 35.59 0 127 
POI entropy index 2.82 0.7 0 3.81 3.06 0.55 0 3.94 3.13 0.5 0 3.83 
POI features at destination hexagons 
Workplace POIs (n) 23.27 47.94 0 382 70.22 118.62 0 753 109.58 192.53 0 1109 
Residence POIs (n) 6.82 10.08 0 53 24.92 33.1 0 139 37.98 53.27 0 216 
Dining POIs (n) 36.83 57.55 0 311 108.88 161.25 0 752 173.28 244.82 0 1027 
Shopping POIs (n) 49.34 88.43 0 700 149.62 250.43 0 1711 248.92 385.55 0 2149 
Recreation POIs (n) 4.53 9.09 0 75 13 20.83 0 121 20.35 34.65 0 194 
Schooling POIs (n) 8.09 15.77 0 122 23.38 35.43 0 189 37.37 57.14 0 243 
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Medical POIs (n) 5.34 13.07 0 210 15.12 25.23 0 241 25.29 41.88 0 267 
Accommodation POIs (n) 5.46 8.5 0 48 16.36 22.58 0 106 25.05 34.25 0 127 
POI entropy index 2.35 1.08 0 3.81 2.04 1.56 0 3.94 1.95 1.59 0 3.83 
Accessibility features at origin hexagons 
To bus stop (minutes) 8.88 16.93 0 431.97 23.19 31.97 0 430.05 46.4 71.13 0.05 688.98 
To coach station (minutes) 13.53 6.01 0.12 50.08 12.9 5.85 0.33 50.05 12.34 5.89 2.1 52.23 
To railway station (minutes) 13.5 7.57 0.08 52.72 17.63 8.42 1.42 52.38 16.71 7.92 1.82 54.27 
To airport (minutes) 31.19 13.4 1.98 70.57 38.14 17.94 0.28 87.05 33.4 14.39 1.87 82.38 
To tourism spot (minutes) 9.01 4.2 0.13 54.55 9.9 5.42 0.98 57.45 10.34 6.61 0.9 85.65 
To city center (minutes) 32.16 10.91 2.23 81.02 31.77 11.02 2.23 81.73 33.4 11.05 4.55 98.87 
To county center (minutes) 14.57 8.97 0.1 56.43 13.99 8.87 0.1 54.22 13.39 8.77 2.08 54.12 
To town center (minutes) 9.57 5.82 0 41.95 9.88 5.68 0 42.03 11.27 7.15 0.33 43.93 
Accessibility features at destination hexagons 
To bus stop (minutes) 5.6 10.75 0 290.32 14.37 23.18 0 430.05 44.79 60.09 0.05 525.18 
To coach station (minutes) 9 5.33 0.12 48.75 8.33 4.96 0.33 49.75 16.01 9.13 2.1 52.03 
To railway station (minutes) 8.2 5.62 0.08 56.17 10.38 8.07 1.42 55.6 18.05 9.38 1.82 59 
To airport (minutes) 23.14 17.85 1.35 70.25 26.15 23.08 0.28 87.05 31.34 12.19 1.87 82.38 
To tourism spot (minutes) 11.12 5 0.13 54.52 12.02 5.1 1 57.75 13.3 7.12 1.67 56.62 
To city center (minutes) 32.97 9.54 2.23 81.68 33.79 9.91 2.23 81.73 37.64 10.61 4.55 79.15 
To county center (minutes) 14.7 7.81 0.1 57.78 15.38 7.81 0.1 58.23 21.31 13.55 2.08 58.28 
To town center (minutes) 13.15 8.72 0 41.95 14.61 8.18 0 39.07 13.71 6.4 0.33 38.43 
Socio-economic features at origin hexagons 
Grid-level GDP (RMB) 1058 1634 0 5450 1150 1705 0 5450 1234 1706 0 5450 
Socio-economic features at destination hexagons 
Grid-level GDP (RMB) 1057 1526 0 5450 1003 1490 0 5450 873 1414 0 5450 
Weather condition             

AQI 26.9 15.74 7 145 26.81 15.68 7 145 26.68 15.52 7 145 
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Temperature (℃) 27.08 2.7 18.4 37.6 27 2.65 18.4 37.6 26.95 2.59 18.4 37.6 
Humidity (%rh) 84.05 10.7 40 98 84.43 10.56 40 98 84.76 10.43 40 98 
Wind speed (m/s) 2.67 1.5 0 10.2 2.62 1.5 0 10.2 2.61 1.49 0 10.2 
Rainfall (mm) 0.2 1.58 0 30.8 0.18 1.44 0 30.8 0.17 1.38 0 30.8 

 1 
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3.4. Modeling approach  1 

3.4.1. GBDT model 2 

Following Ding et al. (2018) and Tao et al. (2020a), we used GBDT to estimate the 3 

relationship between book-ahead ride-hailing trips and their possible determinants. A GBDT 4 

model can make the objective relationships behind variables more flexible because there is no 5 

assumption about the model form (such as linear, logarithmic, or exponential). In addition, a 6 

high goodness of fit can be obtained from a small sample as long as the distribution of the 7 

output variable in the sample data is sufficiently comprehensive. Moreover, the relative 8 

importance and partial dependence plots provide tools to help interpret the model results. 9 

As a prevalent ensemble learning method, GBDT is recognized as a combination of two 10 

algorithms: the regression tree and the boosting method (Friedman, 2001). For a dataset D = 11 

{(x1, y1), (x2, y2), …, (xn, yn)} with N samples, assuming that for the nth sample, xn is a set of 12 

explanatory variables and yn is the dependent variable, which is the hourly number of trips per 13 

OD pair, the key task of GBDT is adding a series of decision trees f(x) to produce an 14 

approximation function F(x) for mapping explanatory variables to the dependent variable (see 15 

Eq. (2)).  16 
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where M represents the number of iterations, h (x; am) is a single decision tree, am is the average 18 

split location of each splitting variable in a single tree. βm, the weight of the mth decision tree, 19 

is estimated by minimizing a squared error loss function. Based on the gradient descent 20 

direction, the approximation function F(x) is updated as shown in Equation (3):  21 
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A learning rate (shrinkage) parameter ξ is further utilized to scale the contribution of each 23 

decision tree to control the overfitting problem (Ding et al., 2019b; Friedman, 2001) as follows: 24 

 ( ) ( ) ( ) ( ]1 ; , 0,1 .m m m mF F h aξ β ξ−= + ⋅ ∈x x x  (4) 25 
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3.4.2. Relative importance  1 
The GBDT model produces relative importance indicators to examine and rank the 2 

influence of all explanatory variables on the dependent variable. In this study,
 

2
pxI
  

is the 3 

relative importance of the pth independent variable xp on book-ahead ride-hailing trips, 4 

calculated via Equations (5) and (6).  5 
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where dj is the improvement of the squared error term by the jth splitting, and J is the number 8 

of leaves on the mth decision tree hm. In addition, the sum of the relative importance of all 9 

exploratory variables is 100%. 10 

 11 

3.4.3. Partial dependence plot 12 

In addition, another advantage of GBDT is the ability to visualize the association between 13 

the exploratory and dependent variables by generating partial dependence plots (Friedman, 14 

2001). These plots provide a graphical depiction of the marginal effect of an independent 15 

variable on an output variable while controlling for all other variables in the model (Ding et al., 16 

2019b, 2018). Moreover, the partial dependence plots also show the effective range and 17 

threshold (Tu et al., 2021).  18 

 19 

4. Results  20 

4.1. Temporal patterns of book-ahead ride-hailing trips  21 

The temporal pattern of book-ahead ride-hailing trips on weekdays and weekends is 22 

presented in Fig. 4. It can be observed that there is no big difference in the hourly distribution 23 

of book-ahead ride-hailing trips on weekdays and weekends. After 9:00, the number of 24 

requesting book-ahead ride-hailing services per hour on weekends is slightly higher than on 25 

weekdays. Moreover, A clear temporal pattern is witnessed, which can be approximately 26 
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divided into a morning peak (4:00-8:00), an evening peak (16:00-20:00), and two off-peak 1 

valleys (8:00-16:00 and 20:00-4:00). During the morning peak, the average requests for book-2 

ahead ride-hailing services per hour increase dramatically to its highest value of the day, about 3 

160 trips per hour. Compared to the morning peak, the maximum number of requests for using 4 

this mode during the evening peak is lower, at about 110 trips per hour. During other off-peak 5 

hours, the hourly number of requesting book-ahead ride-hailing services is less than that of 6 

peak hours. The maximum number of requests during off-peak hours is only about 70 trips per 7 

hour. 8 

 9 

 10 

Fig. 4. Hourly distribution of book-ahead ride-hailing trips.  11 
 12 

4.2. Comparison of model fitting results  13 

The GBDT model was estimated using the “scikit-learn” package 1  in the Python 14 

environment. To optimize parameter settings and ensure the robustness of modeling results, we 15 

employed five-fold cross-validation. Besides, the sample set was randomly divided into the 16 

training subset (70%) and the testing subset (30%). Given the heterogeneous temporal usage 17 

pattern of book-ahead ride-hailing services (as illustrated in Fig. 4), we modeled three time 18 

periods: morning peak, evening peak, and off-peak hours for a comprehensive comparative 19 

analysis.  20 

 
1 https://scikit-learn.org/stable/modules/ensemble.html#gradient-tree-boosting  

https://scikit-learn.org/stable/modules/ensemble.html#gradient-tree-boosting
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Before applying GBDT, it was necessary to find optimal model hyperparameters. 1 

Conventional approaches, such as grid search and random search, can assist in finding a 2 

suitable set of model hyperparameters, but they can be time-consuming and labor-intensive, 3 

particularly with a large-scale dataset (Joy et al., 2020; Yin and Li, 2022; Zhang et al., 2023). 4 

To address this issue, the Bayesian optimization (BO) algorithm was employed, as it has been 5 

proven to be a powerful tool for finding the most appropriate results with fewer iterations (Yin 6 

et al., 2022; Zhong et al., 2021). We applied a BO algorithm with 10 iterations to tune the 7 

optimal hyperparameter combination of shrinkage, the number of trees, and tree depth. The 8 

ranges of the three aforementioned hyperparameters were set as follows: the number of trees 9 

was set from 100 to 1,000; the maximum depth for each tree varied from 3 to 10, and the 10 

shrinkage parameter was set between 0.05 and 0.2. We then compared the performance of the 11 

root mean square error (RMSE) to determine the most suitable hyperparameter combination. 12 

This process was repeated for the three types of hexagonal cells.  13 

 14 
Table 5. Optimal hyperparameters of GBDT models. 15 

Hexagon Period 
Sample 

(OD pairs) 
RMSE Number of trees Tree depth Shrinkage 

250-meter 

Morning peak 4233 1.676 347 6 0.104 

Evening peak 2085 2.003 311 5 0.108 

Off-peak hours 2333 1.516 320 5 0.154 

500-meter 

Morning peak 5449 1.755 470 4 0.137 

Evening peak 2300 2.287 470 4 0.136 

Off-peak hours 2627 1.963 475 6 0.148 

660-meter 

Morning peak 6427 1.783 470 4 0.136 

Evening peak 2379 2.089 747 8 0.124 

Off-peak hours 2752 1.890 320 7 0.154 

 16 

Table 5 shows the optimal values of the hyperparameter combination under different 17 

periods. It can be observed from Table 5 that among the three types of hexagons, the GBDT 18 

model in 250-meter hexagons optimized by the BO algorithm had the minimum RMSE, 19 

outperforming the other two types of hexagonal cells. The gap for RMSE among the three types 20 

of hexagons is closed, meaning that the hexagon size may not exert significant effects on model 21 
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results. In 250-meter hexagonal cells, after conducting 10 tests, the shrinkage, number of trees, 1 

and tree depth for the morning peak model were respectively 0.104, 347, and 6. As for the 2 

evening peak model, the values were 0.108, 311, and 5, and for the off-peak model, they were 3 

0.154, 320, and 5. Given the better performance of GBDT in 250-meter hexagonal grids, 4 

subsequent analysis on variable importance and partial dependence plot was conducted based 5 

on these hyperparameter combinations. 6 

 7 

4.3. Relative importance of independent variables 8 

Table 6 displays the relative contribution of each independent variable to the book-ahead 9 

ride-hailing trips for three models (morning peak model, evening peak model, and off-peak 10 

hours mode). The higher an independent variable’s relative importance value, the greater its 11 

contribution to estimating the hourly number of book-ahead ride-hailing trips per OD pair. At 12 

the end of the table, we report the model performance via the RMSE and R-squared. All R-13 

squared values are around 0.93, proving that the GBDT models have a high accuracy. 14 

Collectively, we find trip features valuables (average RI = 5.97%) have the most prominent 15 

factor contributing to book-ahead ride-hailing usage, followed by weather condition variables 16 

(average RI = 4.79%), accessibility features variables both in origin hexagons (average RI = 17 

3.21%) and destination hexagons (average RI = 1.53%). The POI features variables (average 18 

RI = 1.06% (origin hexagons), 0.97% (destination hexagons)), and grid-level socio-economic 19 

features (average RI = 1.20% (origin hexagons), 0.79% (destination hexagons)) do not present 20 

a very significant association with book-ahead ride-hailing usage.  21 

In three trip features valuables, median travel distance (morning peak RI = 10.96%, 22 

evening peak RI = 7.48%, off-peak hours RI = 6.04%) and median travel fee (morning peak RI 23 

= 9.00%, evening peak RI = 8.39%, off-peak hours RI = 7.38%) are the most critical factor that 24 

contributes to book-ahead ride-hailing usage during all periods. The dummy variable 25 

(weekdays) only shows high relative importance during the evening peak (RI = 2.85%). The 26 

partial dependence plots in the next section will report the marginal effects of these variables 27 

on book-ahead ride-hailing usage.  28 
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Interestingly, four variables associated with weather conditions exhibit high relative 1 

importance on hourly book-ahead ride-hailing trips per OD pair, including AQI (average RI = 2 

7.58%), temperature (average RI = 4.63%), humidity (average RI = 4.91%), and wind speed 3 

(average RI = 5.83%). During the morning peak, wind speed (RI = 8.06%) and temperature (RI 4 

= 6.15%) are the most prominent factors that affect book-ahead ride-hailing demand. During 5 

evening peak and off-peak hours, AQI (evening peak RI = 9.18%, off-peak hours RI = 8.04%) 6 

becomes the most critical factor affecting the hourly amount of book-ahead ride-hailing trips 7 

per OD pair. It is not unreasonable to speculate that unfriendly weather, such as high 8 

temperatures, wind, and humidity, could influence book-ahead ride-hailing usage. For instance, 9 

when passengers notice that weather conditions could be worse, they may give up the planned 10 

travel modes and turn to book a reliable ride-hailing vehicle in advance.  11 

In the accessibility variables, the accessibility between original hexagons (average RI = 12 

6.47%) or destination hexagons (average RI = 7.58%) and the airport contribute most to 13 

predicting book-ahead ride-hailing trips per OD pair. Accessibility to the railway station and 14 

accessibility to the bus stop are also major factors. Additionally, accessibility to the city center 15 

or county center is found to be related to book-ahead ride-hailing services. The above findings 16 

are generally in agreement with expectations. First, this indicates that book-ahead ride-hailing 17 

services are possible to be used to connect with mainly transportation hubs. For instance, we 18 

found that a large number of book-ahead ride-hailing trips often occur around the airport (Xu 19 

et al., 2021) and the railway terminal (Li et al., 2019). This is probably because these trip 20 

requests are subject to flight and high-speed railway schedules. When passengers are informed 21 

to arrive at these transportation hubs very early in the morning or well past midnight, they may 22 

be attracted to book-ahead ride-hailing services because taxi and public transit services are 23 

scarce at that time. Second, some book-ahead ride-hailing trips start or end around bus stops, 24 

which might result from inconvenient first- or last-mile accessibility between bus stops and the 25 

origin or destination. If travelers take more time from the origin to the pick-up bus stop or from 26 

the drop-off bus stop to the destination, they may choose the book-ahead ride-hailing services 27 

instead of walking.  28 



 

 26 / 47 

For accessibility to the airport, the RI during off-peak hours (origin RI = 16.74%, 1 

destination RI = 3.41%) is higher than that during morning peak (origin RI = 1.97%, destination 2 

RI = 0.59%) and evening peak (origin RI = 2.83%, destination RI = 2.44%). It is concluded 3 

that book-ahead ride-hailing services are preferred to be used by passengers during off-peak 4 

hours than peak hours, which is not a surprise. On the one hand, during off-peak hours, 5 

especially in the early morning or well past midnight, other modes, such as airport buses and 6 

taxis, may not have enough service frequency and convergence. This means that passengers 7 

will have to wait a long time to exit the airport to board a bus or taxi. Conversely, the long 8 

waiting time could be avoided if they choose book-ahead ride-hailing services. On the other 9 

hand, passengers do not prefer to use book-ahead ride-hailing services during peak hours 10 

because passengers could worry about road congestion during the peak period, causing ride-11 

hailing services to be unreliable and incurring high travel costs. This finding shows that book-12 

ahead ride-hailing services may become a supplement for airport buses or taxis during off-peak 13 

periods.  14 

  15 
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Table 6. Relative importance of all independent variables in 250-meter hexagon cells 1 

Variables  
Morning peak Evening peak Off-peak hours  

RI (%) RI (%) RI (%) 

Trip features 6.95 6.24 4.74 
Median travel distance 10.96 7.48 6.04 
Median travel fee  9.00 8.39 7.38 
Weekdays  0.90 2.85 0.79 
POI features (origin) 1.36 1.06 0.75 

Workplace POIs  1.35 0.59 0.91 
Residence POIs  1.00 0.55 0.41 
Dining POIs  1.35 1.17 0.62 
Shopping POIs  1.80 1.19 0.67 
Recreation POIs  0.57 0.33 0.26 
Schooling POIs  1.45 1.06 0.72 
Medical POIs 1.29 3.23 0.34 
Accommodation POIs  1.06 0.20 1.16 
POI entropy index 2.39 1.18 1.67 
POI features (destination)  0.73 1.08 1.09 

Workplace POIs  0.48 0.69 0.67 
Residence POIs  0.43 0.88 0.26 
Dining POIs  0.96 0.85 1.09 
Shopping POIs  1.01 1.09 1.59 
Recreation POIs  0.78 1.18 0.92 
Schooling POIs  0.80 1.05 0.78 
Medical POIs  0.43 0.45 0.66 
Accommodation POIs  0.73 1.45 0.67 
POI entropy index 0.98 2.12 3.20 
Accessibility features (origin) 2.98 2.31 4.34 

To bus stop  3.74 1.83 2.50 
To coach station  2.13 1.26 2.47 
To railway station  2.13 1.27 1.88 
To airport  1.97 2.83 16.74 
To tourism spot  2.01 3.39 2.21 
To city center  3.76 3.99 3.77 
To county center  6.12 1.92 2.55 
To town center  1.98 2.03 2.58 
Accessibility features (destination) 1.13 1.87 1.58 

To bus stop  1.13 2.50 1.73 
To coach station  1.10 2.26 1.77 
To railway station  1.09 3.16 1.73 
To airport  0.59 2.44 3.41 
To tourism spot  1.73 1.94 1.11 
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To city center  1.85 0.68 0.91 
To county center  0.75 0.72 0.63 
To town center  0.79 1.28 1.38 
Socio-economic features (origin) 1.11 1.68 0.83 
Grid-level GDP  1.11 1.68 0.83 
Socio-economic features (destination) 0.77 0.80 0.79 
Grid-level GDP  0.77 0.80 0.79 
Weather condition 5.11 5.22 4.04 
AQI 5.51 9.18 8.04 
Temperature  6.15 4.34 3.40 
Humidity  5.64 5.57 3.51 
Wind speed  8.06 4.59 4.85 
Rainfall  0.18 2.41 0.43 
Measurement of fit    
Samples (OD pairs) 4,233 2,085 2,333 
Root mean square error (RMSE) 0.407 0.384 0.427 
R-squared 0.934 0.956 0.929 

Note: RI represents relative importance. Italicized numbers in the table represent average relative 1 
importance.  2 
  3 
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4.4. Associations among key independent variables  1 

Upon examining the relative importance of all independent variables, it is crucial to depict 2 

the marginal effects of significant contributing factors on book-ahead ride-hailing demand by 3 

the partial dependence plot. Identifying threshold effects and effective ranges of key variables 4 

from partial dependence plots can provide valuable guidance for planning, operating, and 5 

managing ride-hailing platforms. As highlighted in Table 6, certain contributing variables, such 6 

as trip features, weather conditions, and accessibility variables, displayed high relative 7 

importance concerning book-ahead ride-hailing adoption. Further analysis in this section will 8 

focus primarily on these variables. 9 

To interpret the partial dependence plots of the GBDT model, we infer the direction of 10 

effects by observing how the hourly number of book-ahead ride-hailing trips per OD pair 11 

changes with increases in one of the aforementioned variables. We also examine whether 12 

salient nonlinear effects and thresholds exist in the partial dependence plots. To prevent fake 13 

nonlinear effects resulting from sparse samples, we include the sample distribution of the 14 

independent variables at the bottom of each plot. 15 

Moreover, we pay special attention to comparing the differences in partial dependence 16 

plots between weekdays and weekends in various periods. Through this comparison, we can 17 

identify any unique patterns in using book-ahead ride-hailing services during weekdays and 18 

weekends. This information can help ride-hailing platforms tailor their services to meet the 19 

needs of different users during specific times, leading to increased user satisfaction and overall 20 

platform success. 21 

 22 

4.4.1. Trip features  23 

As expected, we find complex nonlinear effects of two trip feature variables: median travel 24 

distance and median travel fee on hourly trips of book-ahead ride-hailing per OD pair. Here, 25 

special attention is paid to the impacts of median travel distance. The results of the median 26 

travel fee variable are omitted because the effects are similar. Fig. 5 illustrates how book-ahead 27 

ride-hailing trips per hour per OD pair respond to changes in travel distance between weekdays 28 

and weekends. The effects of travel distance on book-ahead ride-hailing usage do not have a 29 
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huge difference between weekdays and weekends during the morning peak (see Fig. 5 a). In 1 

this period, there is an overall V-shaped relationship between book-ahead ride-hailing trips and 2 

travel distance. As the travel distance increases, the hourly number of book-ahead ride-hailing 3 

trips per OD pair first decreases, then increases, and finally stabilizes. An inflection point can 4 

be found at around 15 km. On the contrary, during other periods, travel distance presents an 5 

overall positive effect on book-ahead ride-hailing usage (see Fig. 5 b and c). Longer travel 6 

distance leads to higher usage, but it shows a wave-like increased pattern. The positive effect 7 

of travel distance is more significant over 10 km.  8 

 9 

 10 

Fig. 5. Partial dependence plot for median travel distance. 11 
 12 

The above findings are meaningful for designing book-ahead ride-hailing services. We 13 

can infer that passengers are more likely to use book-ahead ride-hailing services to accomplish 14 

a short-distance trip during the morning peak from Fig.5 a. This is plausible because most trips 15 

during the morning peak are for commuting purposes, and their destinations are usually around 16 

workplaces. For trips correlated with these activities, choosing public transit like bus or subway 17 

is more reliable due to lower external congestion effects. However, inconvenient first-/last- 18 

mile accessibility to bus stops or metro stations will reduce the willingness to use public transit 19 

because travelers usually get tired of long walking from the origin to bus stops or metro stations. 20 

Thus, book-ahead ride-hailing may play a role in short-distance boarding services for the 21 

first/last mile during the morning peak. During the evening peak and off-peak hours, book-22 

ahead ride-hailing services may be used for special activities, recreation, dating, gathering, etc., 23 

after finishing one day of work. Passengers might plan their subsequent activities several hours 24 
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ahead of schedule. It is convenient and time-saving for travelers to achieve these trips via book-1 

ahead ride-hailing services because of less waiting time. 2 

 3 

4.4.2. Weather conditions  4 

The study examined the nonlinear effects of weather conditions on the adoption of book-5 

ahead ride-hailing services. Specifically, we analyzed the impact of temperature and wind 6 

speed on the hourly trips of book-ahead ride-hailing per OD pair during different periods 7 

between weekdays and weekends. 8 

Fig. 6 presents the partial dependence plot of the temperature variable during various 9 

periods. The plot indicates that the temperature is also V-shaped (see Fig. 6 a and b) associated 10 

with the hourly trips of book-ahead ride-hailing per OD pair during the morning and evening 11 

peak periods, while their relationship is negative during off-peak hours. During the morning 12 

and evening peaks, as the temperature rises from 20 ℃ to 27.5 ℃, the hourly trips of book-13 

ahead ride-hailing per OD pair drop stepwise. After 27.5 ℃, the trip volume per OD pair 14 

increases significantly from around 3.5 trips to 4.5 trips per OD pair. In contrast, during off-15 

peak hours, the number of book-ahead ride-hailing trips gradually decreases as the temperature 16 

rises from 20 ℃ to 37.5 ℃. 17 

 18 

 19 

Fig. 6. Partial dependence plot for temperature. 20 
 21 

Similarly, Fig. 7 shows that wind speed is positively associated with the book-ahead ride-22 

hailing adoption during the morning and evening peaks, while the relationship between book-23 

ahead ride-hailing trips and wind speed is negative during off-peak hours. During morning and 24 
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evening peaks, hourly trips of book-ahead ride-hailing per OD pair do not significantly change 1 

when the wind speed is below 4 m/s (see Fig. 7 a and b). However, after an increase in wind 2 

speed from 4 m/s to 10 m/s, the hourly book-ahead ride-hailing trips per OD pair steadily grew 3 

to a high level (around hourly 4.4 trips per OD pair). In contrast, during off-peak hours, the 4 

hourly number of book-ahead ride-hailing per OD pair continuously declines as the wind speed 5 

increases (see Fig. 7 c). 6 

The explanation for this result is similar to the temperature variable. In turbulent windy 7 

conditions, book-ahead ride-hailing services attract a large number of commuting trips, thus 8 

producing high book-ahead ride-hailing usage during morning and evening peaks. During off-9 

peak hours, book-ahead ride-hailing services may experience high usage from passengers 10 

taking non-commuting trips. These services can provide personalized services for them and 11 

reduce their costs. However, if in turbulent windy conditions, non-commuting trips would be 12 

dropped, thus exerting a low book-ahead ride-hailing demand in this situation.  13 

 14 

 15 

Fig. 7. Partial dependence plot for wind speed. 16 
 17 

4.4.3. Accessibility to transportation hubs  18 

We investigated the nonlinear associations between hourly trips of book-ahead ride-19 

hailing services and accessibility variables to key urban places, focusing on how accessibility 20 

connecting to transportation hubs impacts book-ahead ride-hailing usage. The results of this 21 

analysis will support book-ahead ride-hailing services to be a first- or last-mile feeder mode 22 

reaching transportation hubs. Furthermore, we found that the nonlinearity pattern between 23 

accessibility variables and hourly trip volume of book-ahead ride-hailing at trip starts and trip 24 
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ends is quite similar. Thus, we only present the results at the trip’s origin.  1 

Fig. 8 illustrates the influence of accessibility to the airport on book-ahead ride-hailing 2 

trips during all periods between weekdays and weekends. As anticipated, overall accessibility 3 

to the airport is positively associated with the hourly number of book-ahead ride-hailing trips 4 

per OD pair (see Fig. 8 a, b, and c). As the minimum travel time from the hexagonal center to 5 

the airport increases, the accessibility to the airport becomes poorer, and the hourly number of 6 

book-ahead ride-hailing trips decreases stepwise. Specifically, when the travel time from the 7 

hexagons to the airport ranges from 0 to 20 minutes, the hourly trip volume of book-ahead ride-8 

hailing per OD pair decreases from around 4.8 trips to 3.6 trips. When accessibility to the 9 

airport exceeds 20 minutes, the hourly number of trips per OD pair tends to remain stable, 10 

indicating that the accessibility variable to the airport has neglectable effects on book-ahead 11 

ride-hailing usage when it exceeds its threshold. The notable threshold of 20 minutes suggests 12 

the feasibility of book-ahead ride-hailing serving as the pick-up service for passengers arriving 13 

at the airport in Haikou City, China. This result would help ride-hailing platforms to identify 14 

new book-ahead ride-hailing trip-generating areas and offer an alternative to shuttle buses from 15 

the airport. 16 

 17 

 18 

Fig. 8. Partial dependence plot for accessibility to the airport. 19 
 20 

We also observed a positive association between the accessibility to the railway station 21 

and book-ahead ride-hailing demand across different periods (see Fig. 9 a, b, and c), similar to 22 

the accessibility to the airport (see Fig. 8 a, b, and c). The positive effects of accessibility to the 23 

railway station on book-ahead ride-hailing trip volume are only effective with certain 24 
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thresholds. For instance, as the travel time from the original hexagon to the station increases 1 

across three periods, the hourly number of book-ahead ride-hailing trips decreases step by step. 2 

When the travel time from the original hexagon to the station is more than 10 minutes 3 

(threshold), the partial dependence plots for accessibility to the railway station start to remain 4 

constant. When the travel time between the original hexagon and the station ranges from 0 to 5 

10 minutes, the hourly number of book-ahead ride-hailing trips per OD pair drops significantly 6 

from 4.2 to 3.7 trips. These findings suggest that a buffer area within 10-minute driving 7 

accessibility is practical for the integrated use of book-ahead ride-hailing services and railways 8 

in our study area. Interestingly, after about 20 minutes, during the morning peak (see Fig.9 a), 9 

the hourly number of book-head ride-hailing trips per OD pair has an inverted V-shaped 10 

increase for unknown reasons.  11 

 12 

 13 

Fig. 9. Partial dependence plot for accessibility to the railway station. 14 
 15 

Compared with the accessibility to the airport and railway station, our analysis reveals 16 

that the accessibility to the nearest bus stop exhibits distinct effects on book-ahead ride-hailing 17 

demand during peak and off-peak hours (see Fig.10 a, b, and c), with larger marginal effects 18 

observed on weekends than on weekdays during the evening peak and off-peak hours. 19 

Specifically, during morning and evening peak hours, the curves depicting the hourly number 20 

of book-ahead ride-hailing trips per OD pair grow gradually within the interval of zero and 20 21 

minutes, after which the curves sharply increase, then drop, and eventually reach a steady state 22 

before the accessibility to the nearest bus stop reaches 30 minutes. In contrast, during off-peak 23 

hours, a significant surge in ride-hailing trips is observed once the accessibility to the nearest 24 
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bus stop exceeds 30 minutes. These findings suggest that when the origin is located near a bus 1 

stop, the volume of book-ahead ride-hailing trips in the vicinity of bus stops tends to be lower. 2 

This could be attributed to the possibility that travelers may opt for alternative bus routes or 3 

rely on private cars. Additionally, travelers are also more likely to choose walking or biking to 4 

reach transit stations directly. Conversely, when the distance between the origin and the bus 5 

stop is too far, travelers may switch to other modes, such as book-ahead ride-hailing or taxis, 6 

to connect with the bus. Compared to taxi services, book-ahead ride-hailing is more attractive 7 

as it can reduce passengers’ waiting time between requesting a trip and boarding a vehicle. 8 

Moreover, our analysis reveals that the acceptable feeding time from the origin to the nearest 9 

bus stop is longer during morning and evening peak hours (20 minutes) than during off-peak 10 

hours (30 minutes). This observation can be attributed to the fact that necessary trips are more 11 

common during peak hours, and travelers may be in a hurry to reach their destinations. In 12 

contrast, during off-peak hours, these trips are optional, and travelers can arrive at the bus stop 13 

more relaxedly. 14 

 15 

 16 

Fig. 10. Partial dependence plot for accessibility to the nearest bus stop 17 
 18 

5. Policy discussion and conclusions  19 

5.1. Practice insights 20 

The empirical findings of this study provide not only operational strategies for TNCs to 21 

extend ride-hailing services but also practical measures to formulate intermodal friendly land-22 

use policies to encourage book-ahead ride-hailing services in the future. 23 
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We recommend that promoting book-ahead ride-hailing services should begin with a focus 1 

on several pilot programs and then gradually expand to attract passengers and encourage 2 

continuous usage. Specifically, the target audiences for pilot programs could be long-distance 3 

commuters without access to a private car, as they have shown heavy adoption of book-ahead 4 

ride-hailing during peak hours from our analysis. To serve these audiences, TNCs could launch 5 

an on-demand commuting services package based on book-ahead ride-hailing that connects 6 

their residence and workplace. In addition, given the emergence of book-ahead ride-hailing 7 

demand during uncomfortable weather conditions such as high temperatures and turbulent 8 

wind, it is suggested that book-ahead ride-hailing services could be recommended to citizens 9 

in advance, coupled with local future weather conditions. The ride-hailing platforms could 10 

optimize scheduling and improve the efficiency of ride-hailing vehicle dispatch with 11 

passengers’ book-ahead trip information received ahead of time. Moreover, preferential pricing 12 

could incentivize travelers to remain loyal to these services. 13 

From a multimodal intercity travel perspective, our study has revealed a substantial 14 

increase in the demand for book-ahead ride-hailing services within the vicinity of airports and 15 

railway stations. This finding provides empirical evidence in support of advancing modal 16 

transfer between different modes, such as using book-ahead ride-hailing as a feeder mode to 17 

the airport/railway station. To alleviate potential traffic congestion around transportation hubs, 18 

transportation planners could set up dedicated pick-up/drop-off zones for book-ahead ride-19 

hailing services at these locations. Besides, airport and railway agencies can share real-time 20 

information about intermodal travel plans with TNCs to enable them to allocate ride-hailing 21 

services efficiently. By promoting the integration between book-ahead ride-hailing and 22 

airport/rail transit, we not only provide a convenient first or last connection for customers but 23 

also curtail the number of empty ride-hailing vehicles on the road, contributing to the reduction 24 

in vehicle miles and congestion.  25 

Finally, our study has identified significant threshold effects of accessibility to the nearest 26 

bus stop on book-ahead ride-hailing adoption, which evidences the importance of promoting 27 

coordinated development between public transit and ride-hailing services and sheds light on 28 
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setting the operation constraints. In particular, integrating book-ahead ride-hailing with public 1 

transit can indeed be an effective strategy with satisfactory accessibility. Our findings indicate 2 

that the maximum tolerable threshold for peak-hour usage is a 20-minute walking time, while 3 

for off-peak hours, it is around 30 minutes. We suggest that the buffer area around the bus stop 4 

between a 20- and 30-minute walking time is likely to attract the highest transit-integrated 5 

demand. Accordingly, TNCs may allocate ride-hailing services in advance to this specific zone 6 

on weekdays and weekends. Moreover, public transit agencies could explore collaboration with 7 

TNCs to increase their commuting ridership during peak hours. If TNCs offer first- and last-8 

mile feeder services for suburban commuters without private cars or those located in a low 9 

transit demand area, public transit agencies can cultivate a continuous usage habit of book-10 

ahead ride-hailing services to connect with bus services. Afterward, they can further optimize 11 

bus route layouts with book-ahead ride-hailing services instead of solely relying on feeding 12 

public transit routes. 13 

 14 

5.2. Conclusions  15 

Cruising ride-hailing vehicles on urban streets results in additional empty vehicle miles 16 

and fuel costs, detrimental to urban mobility (Gao et al., 2022; Wei et al., 2023). Book-ahead 17 

ride-hailing services enabling travelers to pre-book rides before their trips can potentially 18 

reduce cruising traffic and waiting times for passengers, thereby improving urban mobility 19 

(Yahia et al., 2021). Effective management strategies and policy interventions for such services 20 

require understanding the relationship between book-ahead ride-hailing demand and its 21 

determinants. This study used a six-month book-ahead ride-hailing trip dataset from Haikou 22 

City, China, and incorporated grid-level points of interest (POIs), accessibility to facilities, 23 

socio-economic characteristics, and city-level weather conditions to investigate potential 24 

associations between book-ahead ride-hailing usage and its determinants at three spatial scales. 25 

A GBDT model was used, and relative importance indicators and partial dependence plots were 26 

adopted to identify important determinants and their nonlinear threshold effects. Additionally, 27 

the study examined the difference in relative importance and nonlinear associations between 28 
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peak and non-peak hours and weekdays and weekends.  1 

The key findings of this study are as follows. Firstly, the GBDT model performs better at 2 

250-meter hexagons than at 500-meter and 660-meter hexagons. Secondly, trip feature 3 

variables, such as travel distance and fee, contribute an average of over 5.79% to the predictive 4 

power of the GBDT model. Thirdly, weather condition variables, such as temperature and wind 5 

speed, and accessibility to transportation hubs, such as airports, railway stations, and bus stops, 6 

are significant determinants that consistently influence book-ahead ride-hailing trips across all 7 

periods. Fourthly, the partial dependence plot of the GBDT model shows a nonlinear 8 

association and threshold effects between the volume of book-ahead ride-hailing trips per 9 

origin-destination (OD) pair and the aforementioned determinants. Finally, the difference in 10 

nonlinear effects and thresholds between weekdays and weekends is only evident during the 11 

evening peak period rather than at other periods. 12 

 13 

5.3. Future work  14 

This study has some limitations that suggest directions for future research. Firstly, the 15 

findings of this study highlight the relevance of place-based policies to improve the operation 16 

and management of book-ahead ride-hailing services. However, the context-dependent nature 17 

of the built environment (Tao et al., 2020a, 2020b) and regional spatial heterogeneity (Wang et 18 

al., 2022) means that effective ranges and thresholds may not be directly transferrable to other 19 

cities. Therefore, city-specific policies should be formulated based on empirical studies that 20 

account for the local context and related factors.  21 

Secondly, this study uses three hexagonal side lengths to test the reliability of the model 22 

results. The requests for book-ahead ride-hailing services are aggregated at an hourly time 23 

interval of grid partitions. However, the modifiable areal unit problem (MAUP) (Fotheringham 24 

and Wong, 1991) and the modifiable temporal unit problem (MTUP) (Cheng and Adepeju, 25 

2014) may still exist. Therefore, other hexagonal side lengths and time intervals should be 26 

investigated in future research (Chen et al., 2022; Liu et al., 2023).  27 

Thirdly, due to the difficulty in obtaining personal private data (Wang et al., 2022; Xu et 28 
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al., 2021), disaggregated variables concerning travelers’ socio-demographic attributes have not 1 

been considered in this study. Incorporating these variables would enhance the reliability and 2 

credibility of the results. However, ride-hailing companies will only have access to such data, 3 

if they conduct additional surveys on the users.  4 

Fourthly, this study focuses on the impact of given trip fees on the ride-hailing demand, 5 

and the feedback effects of the trip demand on the trip fee are not explicitly considered. In 6 

future studies, developing an overall optimization framework that could optimize the fee with 7 

given criteria like maximizing profit or socio-economic benefit would be interesting. In the 8 

optimization framework, this study would be a sub-component of a fixed-point problem with 9 

price setting at the upper level and demand modeling at the lower level. 10 

In addition, more advanced explainable methods, like the ALE (accumulated local effects) 11 

plot (Wang et al., 2023) and SHAP (SHapley Additive exPlanations) method (Cai et al., 2023), 12 

could be compared with the partial dependence plot to interpret the results of machine learning 13 

models comprehensively. Finally, a comparative study of the differences in nonlinear 14 

associations between real-time and book-ahead trips is warranted.  15 

 16 
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Appendix.  1 

Table A1. Book-ahead ride-hailing trip data sample (May 1, 2017).  2 
Order ID Order 

Type 
Origin 

Longitude 
Origins 
Latitude 

Destination 
Longitude 

Destinatio
n Latitude 

Departure 
Time 

Distance 
(m) 

Price 
(RMB) 

Time 
(min) 

17592364194458  reserve 110.3196 20.0165 110.4634 19.9369 2017-05-01 
04:10:00 23656 79 34 

17592340856943  reserve 110.3508 19.9899 110.4621 19.9389 2017-05-01 
05:00:00 16517 46 21 

17592365824167  reserve 110.4385 19.9653 110.4634 19.9369 2017-05-01 
05:10:00 6258 15 9 

17592366330089  reserve 110.3517 19.9901 110.4634 19.9369 2017-05-01 
05:40:00 17140 47 22 

17592357000948  reserve 110.2841 19.9969 110.4621 19.9389 2017-05-01 
05:50:00 24587 72 34 

17592361539842  reserve 110.3701 20.0585 110.2566 20.0185 2017-05-01 
07:00:00 13972 39 22 

17592366368380  reserve 110.3747 19.9954 110.3433 19.9841 2017-05-01 
07:10:00 5564 15 7 

17592353538714  reserve 110.3218 19.9663 110.2900 20.0125 2017-05-01 
09:40:00 9911 50 18 

17592370335494  reserve 110.4658 19.9405 110.2600 20.0111 2017-05-01 
12:10:00 28408 81 40 

17592366439288  reserve 110.3092 19.9946 110.3306 19.9952 2017-05-01 
13:00:00 2576 9 5 

17592372305548  reserve 110.343 19.9712 110.3216 19.9119 2017-05-01 
13:20:00 11030 50 31 

17592348603375  reserve 110.3433 19.9841 110.3039 20.0224 2017-05-01 
13:40:00 9022 23 27 

17592378836388  reserve 110.2965 20.0138 110.3433 19.9841 2017-05-01 
18:00:00 10301 27 16 

17592381792376  reserve 110.3543 19.9934 110.3239 20.0336 2017-05-01 
18:50:00 7597 21 30 

 3 
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