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ABSTRACT

Forthcoming imaging surveys will increase the number of known galaxy-scale strong lenses by several orders of magnitude. For this to happen,
images of billions of galaxies will have to be inspected to identify potential candidates. In this context, deep learning techniques are particularly
suitable for the finding patterns in large data sets, and convolutional neural networks (CNNs) in particular can efficiently process large volumes
of images. We assess and compare the performance of three network architectures in the classification of strong lensing systems on the basis of
their morphological characteristics. In particular, we implement a classical CNN architecture, an inception network and a residual network. We
train and test our networks on different subsamples of a data set of forty thousand mock images, having characteristics similar to those expected
in the wide survey planned with the ESA mission Euclid, gradually including larger fractions of faint lenses. We also evaluate the importance of
adding information about the color difference between the lens and source galaxies by repeating the same training on single-band and multi-band
images. Our models find samples of clear lenses with ≳ 90% precision and completeness. Nevertheless, when including lenses with fainter arcs
in the training set, the three models’ performance deteriorates with accuracy values of ∼ 0.87 to ∼ 0.75 depending on the model. Specifically, the
classical CNN and the inception network have similar performances in most of our tests, while the residual network generally produces worse
results. Our analysis focuses on the application of CNNs to high-resolution space-like images, such as those that the Euclid telescope will deliver.
Moreover, we investigate what the optimal training strategy for this specific survey is to exploit the scientific potential of the upcoming observations
fully. We suggest that training the networks separately on lenses with different morphology might be needed for identifying the faint arcs. We also
test how relevant the color information is for the detection of these systems, and we find that it does not yield a significant improvement, with the
accuracy ranging from ∼ 0.89 to ∼ 0.78 for the different models. This result might be due to the lower resolution of the Euclid telescope in the
infrared bands, with respect to that of the the images in the visual band.
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1. Introduction

Galaxy-galaxy strong lensing (GGSL) events occur when a fore-
ground galaxy substantially deflects the light emitted by a back-
ground galaxy. When the observer, the lens, and the source are
nearly aligned, and their mutual distances are favorable, the5
background galaxy appears as a set of multiple images surround-
ing the lens. These images often have the form of extended arcs
or rings.

Such events have multiple astrophysical and cosmological
applications. For example, GGSL enables us to probe the total10
mass of the lens galaxies within the so-called Einstein radius
(e.g., Treu & Koopmans 2004; Gavazzi et al. 2012; Nightingale
et al. 2019). By independently measuring the stellar mass and
combining lensing with other probes of the lens’ gravitational
potential (e.g., stellar kinematics), one can disentangle the dark15
and baryonic mass distributions, thus studying the interplay be-
tween these two mass components (e.g., Barnabè et al. 2011;
Suyu et al. 2012; Schuldt et al. 2019). Accurately measuring the
dark matter mass profiles and the substructure content of galax-
ies also enables us to test the predictions of the standard cold20
dark matter (CDM) model of structure formation and to shed
light on the nature of dark matter (e.g., Grillo 2012; Oguri et al.
2014; Vegetti et al. 2018; Minor et al. 2021). Finally, the lens-
ing magnification makes it possible to study very faint and high-
redshift sources, which would be not observable in the absence25
of the lensing effects (e.g., Impellizzeri et al. 2008; Allison et al.
2017; Stacey et al. 2018).

The high mass density in the central regions of galaxy clus-
ters boosts the strong-lensing cross-section of individual galax-
ies (Desprez et al. 2018; Angora et al. 2020). Thus, the probabil-30
ity for GGSL is particularly high in cluster fields. Meneghetti
et al. (2020) suggested that the frequency of GGSL events
is a powerful tool to stress-test the CDM paradigm (see also
Meneghetti et al. 2022; Ragagnin et al. 2022). Modeling such
lensing events helps constraining the cluster mass distribution35
on the scale of cluster galaxies (e.g., Tu et al. 2008; Grillo et al.
2014; Jauzac et al. 2021; Bergamini et al. 2021).

Less than one thousand galaxy-scale lenses have been con-
firmed so far. They have been discovered, along with more can-
didates, by employing a variety of methods, including searches40
for unexpected emission lines in the spectra of elliptical galax-
ies (Bolton et al. 2006), sources with anomalously high fluxes
at submm wavelengths (Negrello et al. 2010, 2017), and sources
with unusual shapes (Myers et al. 2003). Some arc and ring find-
ers have been developed to analyse optical images, and they typ-45
ically look for blue features around red galaxies (e.g., Cabanac
et al. 2007; Seidel & Bartelmann 2007; Gavazzi et al. 2014; Ma-
turi et al. 2014; Sonnenfeld et al. 2018). Assembling extensive
catalogs of GGSL systems is arduous due to their rarity, but it is
expected that this will change in the next decade, thanks to up-50
coming imaging surveys. In fact, it has been estimated that the
ESA Euclid space telescope (Laureijs et al. 2011) and the Legacy
Survey of Space and Time (LSST; LSST Science Collaboration
et al. 2009) performed with the Vera C. Rubin Observatory will
observe more than one hundred thousand strong lenses (Collett55
2015), thus significantly increasing the number of known sys-
tems. Producing such large and homogeneous catalogs of GGSL
systems will be possible because of the significant improvements
in spatial resolution, area and seeing of these surveys compared
to previous observations.60

Identifying potential candidates will require the examination
of hundreds of millions of galaxies; thus, developing reliable
⋆ e-mail: laura.leuzzi3@unibo.it

methods for analyzing large volumes of data is of fundamen-
tal importance. Over the past few years, machine learning (ML),
and specifically deep learning (DL) techniques, have proven ex- 65
tremely promising in this context. We focus on supervised ML
techniques. These automated methods learn to perform a given
task in three steps. In the first one, the training, they analyze
many labeled examples and extract relevant features from the
data. In the second step, the validation, the networks are vali- 70
dated on labeled data whose labels they do not have access to, to
ensure that the learning is not leading to overfitting. The valida-
tion happens at the same time as training, and is used to guide it.
In the third step, the architectures are tested on more labeled data
that were not used in the previous phases, whose labels are un- 75
known to the models, but are used to evaluate their performance.

In particular, convolutional neural networks (CNNs, e.g., Le-
Cun et al. 1989) are a DL algorithm that has been successfully
applied to several astrophysical problems and is expected to play
a key role in the future of astronomical data analysis. Among the 80
many different applications, they have been employed for esti-
mating the photometric redshifts of luminous sources ( e.g., Pas-
quet et al. 2019; Shuntov et al. 2020; Li et al. 2022), for perform-
ing the morphological classification of galaxies (e.g., Huertas-
Company et al. 2015; Domínguez Sánchez et al. 2018; Zhu et al. 85
2019; Ghosh et al. 2020), for constraining the cosmological pa-
rameters (e.g., Merten et al. 2019; Fluri et al. 2019; Pan et al.
2020), for identifying cluster members (e.g., Angora et al. 2020),
for finding galaxy-scale strong lenses in galaxy clusters (e.g.,
Angora et al. 2023), for quantifying galaxy metallicities (e.g., 90
Wu & Boada 2019; Liew-Cain et al. 2021), and for estimating
galaxy cluster dynamical masses (e.g., Ho et al. 2019; Gupta &
Reichardt 2020). Recently, O’Riordan et al. (2023) also tested
the use of CNNs for detecting subhalos in simulated Euclid-like
galaxy-scale strong lenses. 95

Several CNN architectures were recently used also to iden-
tify strong lenses in ground-based wide field surveys such as the
Kilo Degree Survey (KiDS; de Jong et al. 2015; Petrillo et al.
2017, 2019; He et al. 2020; Li et al. 2020; Napolitano et al. 2020;
Li et al. 2021), the Canada-France-Hawaii Telescope Legacy 100
Survey (CFHTLS; Gwyn 2012; Jacobs et al. 2017), the Canada
France Imaging Survey (CFIS; Savary et al. 2022), the Hyper
Suprime-Cam Subaru Strategic Program Survey (HSC; Aihara
et al. 2018; Cañameras et al. 2021; Wong et al. 2022) and the
Dark Energy Survey (DES; The Dark Energy Survey Collabora- 105
tion 2005; Jacobs et al. 2019b,a; Rojas et al. 2022). Most of them
were also employed in two challenges aimed at comparing and
quantifying the performance of several methods to find lenses,
either based on artificial intelligence or not. The first challenge
results, presented in Metcalf et al. (2019), show that DL meth- 110
ods are particularly promising with respect to other traditional
techniques such as visual inspection and classical arcfinders.

In this work, we investigate the ability of three different
network architectures in the identification of GGSL systems.
We test them on different subsamples of a data set of Euclid- 115
like mock observations. In particular, we evaluate how including
faint lenses in the training set affects the classification.

This paper is organized as follows: in Sect. 2, we explain
how CNNs are implemented and trained to be applied to image
recognition problems; in Sect. 3, we introduce the data set of 120
simulated images used for training and testing our networks; in
Sect. 4, we describe our experiments and we present and discuss
our results. In Sect. 5, we summarise our conclusions.
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2. Convolutional neural networks

Artificial neural networks (ANNs; e.g., McCulloch & Pitts 1943;125
Goodfellow et al. 2016) are an ML algorithm inspired by the bio-
logical functioning of the human brain. They consist of artificial
neurons, or nodes, that are organised in consecutive layers and
linked together through weighted connections. The weights de-
fine the sensitivity among individual nodes (Hebb 1949) and are130
adapted to enable the network to carry out a specific task.

The output of the k-th layer hk depends on the output of the
previous layer hk−1 (Bengio 2009)

hk = f (bk +Wk hk−1). (1)

Here bk is the vector of offsets (biases) and Wk is the weight
matrix associated to the layer; the dimension of bk and Wk cor-
responds to the number of nodes within the layer; the sym-
bol f represents the activation function, which introduces non-135
linearity in the network that would otherwise only be charac-
terised by linear operations.

CNNs are a special class of ANNs that use the convolution
operation. Thanks to this property, they perform particularly well
on pattern recognition tasks. The basic structure of a CNN can140
be described as a sequence of convolutional and pooling layers,
followed by fully-connected layers. Convolutional layers consist
of a series of filters, also called kernels, which are matrices of
weights of typical dimension 3×3 to 7×7 and act as the weights
of a generic ANN. They are convolved with the layer’s input to145
produce the feature maps. The feature maps are passed through
an activation function, that introduces non-linearity in the net-
work and then they are fed as input to the subsequent layer. In our
networks, we use the leaky rectified linear unit (Leaky ReLU; Xu
et al. 2015) as the activation function. The organization of the fil-150
ters in multiple layers ensures that the CNN can infer complex
mappings between the inputs and outputs by dividing them into
simpler functions, each extracting relevant features from the im-
ages. The pooling operation downsamples each feature map by
dividing it into quadrants of typical dimension 2 × 2 or 3 × 3155
and substituting them with a summary statistic, such as the max-
imum (Zhou & Chellappa 1988). This operation has the twofold
purpose of reducing the size of the feature maps, and therefore
the number of parameters of the model, and making the archi-
tecture invariant to small modifications of the input (Goodfellow160
et al. 2016).

After these layers, the feature maps are flattened into a 1-
D vector that is processed by fully-connected layers and is then
passed to the output layer which predicts the output. In classifi-
cation problems, the activation function used for the output layer165
is often the softmax, providing an output in the range [0, 1] that
can be interpreted (Bengio 2009) as an indicator of P(Y = i | x),
where Y is the class associated with the input x, among all the
possible classes i.

CNNs master the execution of a given task due to a super-170
vised learning process, called training, in which they analyze
thousands of known input-output pairs. The weights of the net-
work, which are randomly initialised, are readjusted so that the
network’s output predictions are correct for the largest number of
possible examples. This step is crucial since the weights are not175
modified afterward when the final model is applied to other data.
The training aims to minimise a loss (or cost) function that es-
timates the difference between the outputs predicted by the net-
work and the true labels. To do this, the images are passed to the
network several times, and at the end of each pass, called epoch,180
the gradient of the cost function is computed with respect to the
weights and backpropagated (Rumelhart et al. 1986) from the

output to the input layer so that the kernels can be adapted ac-
cordingly. The magnitude of the variation of the weights is regu-
lated through the learning rate, a hyperparameter to be defined at 185
the beginning of the training, whose specific value is fine-tuned
by testing different values to find the one that minimizes the loss
function.

In addition to showing good performance on the training set,
it is essential that the network generalises to other images. Pre- 190
venting the model from overfitting (i.e., memorising peculiar
characteristics of the images in the training set that cannot be
used to make correct predictions on other data sets) is possible
by monitoring the training with a validation step. At the end of
each epoch, the network’s performance is assessed on the vali- 195
dation set, a small part of the data set (usually 5−10%) excluded
from the training set. If the loss function evaluated on these im-
ages does not improve for several consecutive epochs, the train-
ing should be interrupted or the learning rate reduced. Dropout
(Srivastava et al. 2014) is also a technique used to mitigate over- 200
fitting. This method consists in randomly dropping units from
the network during training, i.e. temporarely removing incoming
and outcoming connections from a given node. Once the train-
ing is completed, the performance of the final model is evaluated
on the test set, a part of the data set (about 20 − 25%) excluded 205
from the other subsets. Afterward, the CNN can be applied to
new images.

CNNs handle large data sets conveniently for several rea-
sons. While the training can take up to a few days to be com-
pleted, processing a single image afterward requires a fraction of 210
a second, thanks to graphics processing units (GPUs). Moreover,
the feature extraction process during the training is completely
automated. The algorithm selects the most significant character-
istics for achieving the best results without any previous knowl-
edge of the data. 215

The following subsections provide more information about
the specific architectures we test in this work and technical de-
tails about our training.

2.1. Network architectures

We implement three CNN architectures: a Visual Geometry 220
Group-like network (VGG-like network; Simonyan & Zisser-
man 2015), an inception network (IncNet; Szegedy et al. 2015,
2016), and a residual network (ResNet; He et al. 2016; Xie et al.
2017).

The definition of the final configuration of the networks that 225
we apply to the images is the result of several trials in which we
have tested different hyperparameters for the optimization (such
as the learning rate) and general architectures (such as the num-
ber of layers and kernels) to find the most suitable arrangement
for our classification problem. 230

2.1.1. VGG-like network

The Visual Geometry Group Network (VGGNet) was first pre-
sented by Simonyan & Zisserman (2015). The most significant
innovation introduced with this architecture is the application of
small convolutional filters with a receptive field of 3 × 3, which 235
means that the portion of the image that the filter processes at
any given moment is 3 × 3 pixels wide. This allowed the con-
struction of deeper models since the introduction of small filters
keeps the number of trainable parameters in the CNN smaller
than that of networks that use larger filters (e.g., of dimension 240
5 × 5 or 7 × 7). Since the concatenation of multiple kernels of
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size 3 × 3 has the same resulting receptive field of larger filters
(Szegedy et al. 2016), it is possible to analyze features of larger
scales while building deeper architectures.

Our implementation of the VGGNet comprises ten convolu-245
tional layers and five max pooling layers alternating. Let us de-
fine a convolutional-pooling block as two convolutional layers
followed by a pooling layer. At the end of each convolutional-
pooling block, we perform the batch normalization of the output
of the block. Batch normalization consists in the renormaliza-250
tion of the layer inputs (Ioffe & Szegedy 2015) and is employed
to accelerate and stabilise the training of deep networks. After
five convolutional-pooling blocks, two fully connected layers of
256 nodes each alternate with dropout layers, and finally a soft-
max layer as the output layer. The number of parameters for this255
architecture is about two million.

When training on multi-band observations, we add a sec-
ond branch to process the Euclid Near Infrared Spectrometer
and Photometer (NISP; Maciaszek et al. 2022) images, passing
them to the network through a second input channel. Since they260
have a smaller size than the Visual Imager (VIS; Cropper et al.
2012) images (see Table 1), this branch of the network is only
four convolutional-pooling blocks deep. The outputs of the two
branches are flattened and concatenated before being passed to
the output layer. Like in the single branch version of this archi-265
tecture, we have two fully-connected layers with 256 nodes each,
and finally the output layer. In this configuration, our network
uses about three million parameters. In Appendix A, Fig. A.1
shows the VGG-like network configuration we tested on the VIS
images (panel a) and on the multi-band images (panel b).270

2.1.2. Inception network

The reasons for the IncNet architecture were outlined by
Szegedy et al. (2015), who applied the ideas of Lin et al. (2013)
to CNNs. Trying to improve the performance of a CNN by en-
larging its depth and width leads to a massive increase of the275
number of parameters of the model, favoring overfitting and in-
creasing the requirements of computational resources. Szegedy
et al. (2015) suggest applying filters with different sizes to the
same input, making the model extract features on different scales
in the same feature maps. This is implemented through the incep-280
tion module. In the simplest configuration, each module applies
filters of several sizes (1×1, 3×3, 5×5) and a pooling function to
the same input and concatenates their outputs, passing the result
of this operation as input to the following layer. However, this
implementation can be improved by applying 1× 1 filters before285
3×3 and 5×5 filters. Introducing 1×1 filters has the main purpose
of reducing the dimensionality of the feature maps, and thus the
computational cost of convolutions, while keeping their spatial
information. This is possible by reducing the number of chan-
nels of the feature maps. An IncNet is a series of such modules290
stacked upon each other. A further improvement of the original
inception module design is presented in Szegedy et al. (2016):
the 5 × 5 filters are replaced by two 3 × 3 filters stacked together
in order to decrease the number of parameters required by the
model. This version of the inception module is used in our net-295
work implementation.

Before being fed to the inception modules, the images are
processed through two convolutional layers alternating with two
max pooling layers. The network is composed of seven mod-
ules, the fifth of which is connected to an additional classifier.300
The outputs of the two classifiers are taken into account when
computing the loss function by computing the individual losses
and then taking a weighted sum of them. The intermediate output

layer is weighted with weight 0.3, while the final one is weighted
with weight 1.0. Dropout is performed before both output layers, 305
while batch normalization is performed on the output of each
max pooling layer. The output layers are both softmax layers.
The total number of parameters that compose the model is ap-
proximately two million.

The configuration used to analyze the multi-band images 310
has a secondary branch with one initial convolutional layer and
seven inception modules. This branch is characterised by ap-
proximately one million parameters, thus leading to a total of
around three million parameters. In Appendix A, Fig. A.2 shows
the IncNet configuration we tested on the VIS images (panel a) 315
and the multi-band images (panel b).

2.1.3. Residual network

He et al. (2016) introduced residual learning to make the train-
ing of deep networks more efficient. The basic idea behind the
ResNets is that it is easier for a certain layer (or a few stacked 320
layers) to infer a residual function with respect to the input rather
than the complete, and more complicated, full mapping.

In practice, this is implemented using residual blocks with
shortcut connections. Let x be the input of a given residual block.
The input is simultaneously propagated through the layers within
the block and stored without being changed, through the short-
cut connection. The residual function F (x) that the block is ex-
pected to infer can be written as

F (x) := H(x) − x, (2)

whereH(x) is the function that a convolutional layer would have
to learn in the absence of shortcut connections. Thus, the original
function can be computed as F (x) + x. 325

This architecture was later improved by Xie et al. (2017),
who presented the ResNeXt architecture. The main modification
introduced in this work is the ResNeXt block, which aggregates
a set of transformations, and can be presented as

F (x) =
C∑

i=1

Ti(x) (3)

and serves as the residual function in Eq. (2). Here Ti(x) is an
arbitrary function, and C is a hyperparameter called cardinality,
which represents the size of the set of transformations to be ag-
gregated.

In our implementation of the ResNet, we use this last 330
ResNeXt block as the fundamental block, with the cardinality
set to eight. In particular, the input is initially processed by two
convolutional layers alternated with two pooling layers. The re-
sulting feature maps are passed to four residual blocks alternated
with two max pooling layers. There follows a dropout layer and 335
finally a softmax layer. Moreover, batch normalization is per-
formed after every max pooling layer. The NISP images are pro-
cessed by a similar branch, which differs from this one in having
only one initial convolutional layer.

The parameters of the model are circa one million in the VIS 340
configuration and about two million in the multi-band configura-
tion, so they are significantly fewer than those of our implemen-
tations of the VGG-like network and of the IncNet. However, we
tested different configurations of the ResNet when designing the
networks’ architecture and this specific setup outperformed the 345
others, including those that had a higher number of weights. In
Appendix A, Fig. A.3 shows the ResNet configuration we ap-
plied to the VIS images (panel a) and on the multi-band images
(panel b).
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3. The data set350

Training CNNs requires thousands of labeled examples. Since
not enough observed galaxy-scale lenses are known to date, sim-
ulating the events is necessary for training a classifier to identify
them. In some cases, it is possible to include real observations in
the training set, but in our case it is inevitable to adopt a fully-355
simulated data set, since we do not have real images observed
with the Euclid telescope yet. The realism of the simulations
is essential to ensure that the evaluation of the model’s perfor-
mance is indicative of the results we may expect from real ob-
servations.360

The image simulations are used to produce all the images in
the data set, i.e. both the lenses and non-lenses. We generate all
the images and then divide them into the two classes according
to the criteria that will be introduced later. The simulations use
the galaxy and halo catalogs provided by the Flagship simulation365
(v1.10.11; Castander et al., in prep.) through the CosmoHub por-
tal1 (Carretero et al. 2017; Tallada et al. 2020).

We construct the images using the following procedure.

– We randomly select a trial lens galaxy from the light cone
subject to a magnitude cut of 23 in the VIS band from the Eu-370
clid telescope, i.e. the IE band. After this, we randomly select
a background source from a catalog of Hubble Ultra Deep
Field (UDF; Coe et al. 2006) sources with known redshift.
We decompose these sources into shapelets for denoising,
following the procedure described in Meneghetti et al. (2008,375
2010). This procedure has its limitations because, in regions
of high magnification, the finite resolution of the shapelets
can be apparent and there can be low surface brightness ring-
ing which is usually not visible above the noise. We investi-
gate the potential impact of these effects on the results of this380
paper in Sec. 4.7.

– The mass of the lens is represented by a truncated singular
isothermal ellipsoid (TSIE) and a Navarro, Frenk & White
(NFW; Navarro et al. 1996) halo. The SIE model has been
shown to fit existing GGSLs well (Gavazzi et al. 2007).385

– We use the GLAMER lensing code (Metcalf & Petkova
2014; Petkova et al. 2014) to perform the ray-tracing. Light
rays coming from the position of the observer are shot within
a 20′′ × 20′′ square centered on the lens object, with an ini-
tial resolution of 0 .′′05, i.e. twice the final resolution of the390
VIS instrument. We use these rays to compute the deflection
angles that will trace the path of the light back to the sources.

– The code detects any caustics in the field and does some fur-
ther refinement to characterise them. Specifically, more rays
are shot in a region surrounding the caustics to constrain395
their position with higher resolution. If the area within the
largest critical curve is larger than 0.2 arcsec2 and smaller
than 20 arcsec2, the object is accepted as a lens of the appro-
priate size range.

– The lensed image is constructed using the shapelet source400
and Sérsic profiles for the lens galaxy and any other galaxy
that appears within the field. We take the parameters for the
Sérsic profiles from the Flagship catalog with some random-
ization. While we place the lens galaxy at the center of the
cut-out, the positions of the other galaxies are determined405
following the Flagship catalogs as well, with some random-
ization. In this way, the density of galaxies along the line of
sight is the same as that of the Flagship simulations, but the
sources will have a different angular position.

1 https://cosmohub.pic.es/home

– We place the background source galaxy at a random point on 410
the source plane within a circle surrounding the caustic. The
radius of the circle is set to one-half of the largest separation
between points in the caustic times 2.5.

– A model for the point spread function (PSF) is applied to the
image which initially has a resolution of 0.025 arcsecs and 415
then downsamples to 0.1 arcsecs for VIS and 0.3 arcsecs for
the infrared bands. The VIS PSF was derived from model-
ing the instrument (Euclid collaboration et al., in prep.). For
the infrared bands, a simple Gaussian model with a width of
0.3 arcsecs is used. The noise is simulated with a Gaussian 420
random field, to reproduce the noise level expected by the
Euclid Wide Survey (Euclid Collaboration: Scaramella et al.
2022).

– To avoid repeating a particular lens and to increase the num-
ber of images at a low computational cost, we randomise 425
each lens. In this step, all the galaxies within a sphere cen-
tered on the primary lens are rotated randomly in three di-
mensions about the primary lens. The sphere’s radius is set to
30 arcsecs at the distance of the lens. In addition, the galaxies
outside this sphere, but within the field of view, are indepen- 430
dently rotated about the primary in the plane of the sky. The
mass associated with each galaxy is moved with the galaxy’s
image. The position angles of each galaxy are also randomly
re-sampled.

– A final step is to classify the images as lenses. Some of the 435
images will have low signal-to-noise in some lensed images
or not be distorted enough to be recognizable lenses.

This procedure is similar to the one used for the Lens Finding
Challenges and described in more detail in Metcalf et al. (2019).
These simulations are currently being improved to provide more 440
realistic representations of lens and source galaxies. This is im-
portant both for training the CNNs and for statistical studies (see
Sect. 4.10). A possible improvement that would be relevant in
the context of GGSL searches is a better characterization of the
blending between the lens and source galaxies in the definition 445
of n_pix_source, by taking into consideration the fraction of
light from lens and source in each pixel. Moreover, the sim-
ulations miss some instrumental effects, such as non-linearity,
charge transfer inefficiency, and a more intricate PSF model, that
are included in other studies (e.g., Pires et al. 2020). 450

The result of these simulations are one hundred thousand
Euclid-like mock images simulated in the IE band of the VIS
instrument and HE, YE and JE bands of the NISP instrument (Eu-
clid Collaboration: Schirmer et al. 2022). The dimensions of the
VIS and NISP images are 200×200 and 66×66 pixels, respec- 455
tively. Given the resolution of the instruments, reported in Ta-
ble 1, these correspond to 20′′ × 20′′ images.

Table 1. Main characteristics of the Euclid VIS and NISP (Euclid Col-
laboration: Schirmer et al. 2022) instruments.

Instrument Capability λ range Pixel size
(nm) (arcsec)

VIS Visual imaging IE (530–920) 0.1
NISP NIR imaging YE (949.6–1212.3), 0.3

photometry JE (1167.6–1567.0), 0.3
HE (1521.5–2021.4) 0.3

When preparing the images for the training, we clean the
data set by removing the images with sources at z > 7, thus
leaving a catalog of 99 409 objects. We do this because there are
just a few hundreds of such objects in the simulated data set and
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their number would not be sufficient to grant generalization after
training. Moreover the sources at such high redshift are not as
reliable as the others used in the simulations. The images in the
data set are considered lenses if they meet the following criteria
simultaneously:
n_source_im > 0;
mag_eff > 1.6;
n_pix_source > 20.

(4)

Here n_source_im represents the number of images of the
background source, mag_eff is the effective magnification of
the source, and n_pix_source is the number of pixels in which460
the surface brightness of the source is 1σ above the background
noise level. For every image, the magnification is computed as
the ratio of the sum of all the pixels with a flux above the noise
level in the lensed images on the image plane and the unlensed
image’s pixels on the source plane. The most discriminatory pa-465
rameters seems to be n_pix_source. The same criteria were
adopted in the Lens Finding Challenge 2.02 (Metcalf et al., in
prep.).

In many cases, one or more background sources are present
in the non-lenses, but they are too faint or too weakly magnified470
to be classified as a lens, or both. For this reason, the parameters
n_pix_source and mag_eff are also considered in the classifi-
cation criteria (Eq. 4). Depending on the sensitivity of the model,
the classification of the low signal-to-noise images might vary,
while the clearest ones should be immediately assigned to the475
correct category.

By using these conditions, we divide the images we simu-
lated into 19 591 lenses and 79 816 non-lenses, thus obtaining
two very unbalanced classes out of the complete data set. It is
well known that unbalanced classes result in biased classifica-480
tion (Buda et al. 2018). For this reason, we use all the lenses for
the training, and we randomly select only a subsample of 20 000
non-lenses. As will be discussed in Sec. 4.1, these numbers are
increased by data augmentation. We refer to the non-lenses as
class 0 and to the lenses as class 1. More strategies would be pos-485
sible to deal with the unbalanced data set, such as using different
weights for the two classes in the loss function or optimizing our
classifiers with respect to purity, but we did not test them.

In Fig. 1, we report the distribution of some properties of
the images in the data set. From top-left to bottom-right, we490
show the distribution of the redshifts of the galaxy lenses and
sources, of the magnitudes of the galaxy lenses and sources,
of the Einstein radii of the largest critical curve in the lensing
system and of n_pix_source. The histograms in each panel
refer to the lenses (green) and non-lenses (red) separately and495
to the complete data set (blue). The galaxy lenses in the two
classes share similar distributions of redshift, magnitude, and
Einstein radius (top, middle, and bottom-left panels, respec-
tively). The sources’ redshift distribution, in the top-right panel,
is also similar for the two subsets. On the other hand, the simu-500
lated sources (middle-right panel) in the non-lenses class are on
average fainter than that of the sources in the lenses. This is intu-
itive, since sources with lower magnitudes (i.e. brighter) will be
more evident in the images, and it will be more likely that they
produce a clear lensing event. A similar argument can be made505
about n_pix_source (bottom-right panel): the higher the value
of this parameter, the clearer will be the distortion of the source’s
images, hence the lensing system.

2 http://metcalf1.difa.unibo.it/blf-portal/gg_
challenge.html
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Fig. 1. Distribution of several properties of the simulated images in the
data set (blue histograms) selected for training, that consists of 40 000
mocks in total. The distributions of the same properties in the separate
subsets of lenses and non-lenses are given by the green and red his-
tograms, respectively. In the upper- and middle-row panels, we show
the distributions of lens and source redshifts and IE band magnitudes (in
the case of the sources, we refer to the intrinsic magnitude). The bot-
tom panels show the distributions of Einstein radii of the lenses and of
the number of pixels where the source brightness exceeds 1σ above the
background noise level.

4. Results and discussion

4.1. Data preprocessing 510

The data preparation consists of a sequence of several steps.
We divide the entire data set into three subsets: the training set
(70%), the validation set (5%), and the test set (25%). The im-
ages in the data set are randomly assigned to one of these sub-
sets, but we checked that all subsets (training, validation, and 515
testing) are representative of the entire data set. We do this by
inspecting the distributions of several parameters that define the
characteristics of the lenses and sources in the data set, such as
their redshift, magnitude, and Einstein radius.

Once the data set is split, we randomly select 20% of the im- 520
ages in the training set for augmentation. We perform five aug-
mentations: we rotate these images by 90◦, 180◦, and 270◦ and
flip them with respect to the horizontal and vertical axes. After
performing these operations the size of the training set is dou-
bled. Neither the test set nor the validation set are augmented. 525

Afterward, we proceed with the normalization of the images
in the data set. We subtract the mean and divide them by the
standard deviation of the mean image of the training set. The
mean image of the training set is the image that has for every
pixel i, j the mean value of the pixel i, j of all images in the 530
training set. The reason for this type of normalization is that the
computation of the gradients in the training stage of the networks
is easier if the features in the training set are in a similar range.
Moreover, scaling the inputs in this way makes the parameter
sharing more efficient (Goodfellow et al. 2016). 535
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4.2. Training procedure

We implement, train and test our networks using the library
Keras3 (Chollet 2015) 2.4.3 with the TensorFlow4 (Abadi et al.
2016) 2.2.0 backend on an NVIDIA Titan Xp GPU.

We use the Adaptive moment estimation (Adam; Kingma &540
Ba 2017; Reddi et al. 2019) optimizer with initial learning rate
of 10−4. We employ the binary cross-entropy L to estimate the
loss at the end of each epoch:

L = −
1
N

N∑
i=1

y(xi) ln[yp(xi)] + [1 − y(xi)] ln[1 − yp(xi)], (5)

where N is the number of training examples, xi is the batch of
images used to compute the loss, y is the ground truth and yp is545
the probability that the i-th example has label 1 as predicted by
the network so that 1− yp is the probability that the i-th example
has label 0.

The performance of the network on the validation set is es-
timated at the end of every epoch and is used to monitor the550
training process. If the loss function evaluated on this indepen-
dent subset does not decrease for twenty consecutive epochs, the
training will be stopped with the EarlyStopping5 class from
Keras. This step is particularly useful to avoid overfitting. At
the end of training, we use the best models, i.e. those that have555
the minimum value of the loss function on the validation set, for
our tests.

4.3. Performance evaluation

We assess the performance of our trained networks by examin-
ing the properties of the catalogs produced by the classification560
of the images in the test set. In particular, we take into consid-
eration four statistical metrics that are immediately derived from
the confusion matrix (Stehman 1997). A generic element of the
confusion matrix Ci j is given by the number of images belonging
to the class i and classified as members of the class j. In a binary565
classification problem, like the one considered here, the diagonal
elements indicate the number of correctly classified objects, i.e.
the True Positives (TP) and the True Negatives (TN), while the
off-diagonal terms show the number of misclassified objects, i.e.
the False Positives (FP) and the False Negatives (FN).570

Considering the class of Positives, the combination of these
quantities leads to the definition of the following metrics:

– The precision (P) can be computed as

P =
TP

TP + FP
, (6)

which measures the level of purity of the retrieved catalog.
– The recall (R) can be computed as

R =
TP

TP + FN
, (7)

which measures the level of completeness of the retrieved
catalog.575

– The F1-score (F1) is the harmonic average of P and R,

F1 = 2
P R

P + R
. (8)

3 https://keras.io/
4 https://www.tensorflow.org/
5 https://keras.io/api/callbacks/early_stopping/

– The accuracy (A) is the ratio between the number of correctly
classified objects and the total number of objects,

A =
TP + TN

TP + TN + FP + FN
. (9)

The first three indicators can be similarly computed for the
class of the Negatives, while the accuracy is a global indicator of
the performance.

In addition, we compute the receiver operating characteristic
(ROC; Hanley 1982) curve, which visually represents the vari- 580
ation of the True Positive Rate (TPR) and False Positive Rate
(FPR) with the detection threshold t ∈ (0, 1), which is used to
discriminate whether an image contains a lens or not. The area
under the ROC curve (AUC) summarises the information con-
veyed by the ROC: while 1.0 would be the score of a perfect 585
classifier, 0.5 indicates that the classification is equivalent to a
random choice and hence worthless.

4.4. Experiment setup

The identification of GGSL events is primarily based on their
distinctive morphological characteristics, namely on the distor- 590
tion of the images of the background source into arcs and rings,
as well as on the color difference between the foreground and
background galaxies. However, real lenses can show complex
configurations and might not be so easily recognizable. Our ex-
periments aim at evaluating the ability of CNNs to detect the less 595
clear lenses and at assessing their performance on a diversified
data set.

We do this by training the three networks we have presented
on four selections of images, named from S1 to S4, which gradu-
ally include a greater fraction of objects that present challenging 600
visual identification, as we will discuss shortly for non-lenses
and lenses separately. These samples consist of approximately
two thousand, ten thousand, twenty thousand images, and forty
thousand images, respectively. They are built to have an approxi-
mately equal number of lenses and non-lenses (see Table 2). The 605
criteria we adopt to progressively broaden our selections take
into account the features that might be employed by the networks
to classify the objects as members of the correct category.

In the case of the non-lenses, the lack of a background
source, or the absence of its images, makes the classification 610
more likely to be correct. Therefore, we initially consider a sam-
ple of the approximately ten thousand non-lenses without a back-
ground source. Specifically, we select one thousand of them in
S1, five thousand in S2, and ten thousand in S3. In S4, we
broaden our sample by including the images where a background 615
source has been added but does not correspond to a visible im-
age, extending our selection to the other objects that are classi-
fied as non-lenses according to the criteria in Eq. (4).

In the case of the lenses, the definition of an effective crite-
rion to identify the clearest examples in the data set is more im- 620
portant, as well as more challenging. In fact, the mere presence
of an image of the source does not guarantee a straightforward
classification of the system, since several factors contribute to
the actual clarity of the observable features. Among them are the
magnitude of the source and the extension of the image produced 625
by the lensing effect. After several tests involving these parame-
ters and others (such as the Einstein area and the magnification of
the sources), we deem n_pix_source to be an appropriate pa-
rameter to discriminate between clear and faint lenses. The com-
plete sample of lenses is characterised by the minimum value 630
n_pix_source > 20. From S4 to S1, we increase this threshold
to different levels, which depend on the number of images we
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Fig. 2. From top to bottom row, we show four random lenses extracted
respectively from the data sets S1, S2, S3, and S4, as simulated in the IE

band. We see from these images that the effect of using lower thresholds
of the parameter n_pix_source is to select fainter lensing systems.
While in the data set S1, most of the lenses are characterised by clear
rings and distortions, when we move to S4 we find many examples of
fainter, barely visible arcs.

seek to isolate: the higher the value employed, the smaller will
be the number of images selected and the clearer the lenses. The
thresholds established for the creation of the selections described635
so far also take into account the necessity to have a comparable
number of images of each class, so that the examples passed to
the networks in the training phase are balanced. In Table 2, we
give a summary of the criteria used to identify the images to in-
clude in each selection. We also show in Fig. 2 some randomly640
chosen examples of lenses that are characteristic of each selec-
tion, to better illustrate which kind of selection we introduce by
considering different thresholds for n_pix_source in the defi-
nition of the training sets.

We train and test on these selections of the data set the645
three architectures, previously discussed: a VGG-like network
(Simonyan & Zisserman 2015); an IncNet (Szegedy et al. 2015,
2016); and a ResNet (He et al. 2016; Xie et al. 2017). We conduct
twenty-four training sessions in total, since we train each archi-
tecture on each selection of data. Twelve of them use the VIS650
images, the other twelve use the NISP bands in addition to the
VIS one. Every training was carried out for 100 epochs, since
the EarlyStopping method we had set-up to prevent overfitting
did not interrupt any of them. The best results of each architec-
ture and each classification experiment, which are conducted us-655
ing the IE band images, are summarised in Table B.1, where the
precision, recall, F1-score, accuracy, and AUC obtained from the
application of our models are reported. An anologous summary
for the training on the multi-band images is in Table B.4.

4.5. Discussion660

By studying how the metrics depend on the selections, we find
that the ability of our networks to correctly classify the images

S1 S2 S3 S4
Selection

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

VGG_like
IncNet
ResNet

Fig. 3. Trend of the classification accuracy of the single-branch versions
of the

VGG-like network (red), the IncNet (blue) and the ResNet
(green) tested on the four selections of data.

tends to deteriorate as the fraction of included low signal-to-
noise lenses increases. All the results described in the paper are
found considering a classification threshold of 0.5. The trend 665
of the accuracy is shown in Fig. 3. Our three models succeed
in the classification of the objects in the selections S1 and S2,
where the accuracy is in the range ∼ 0.9 to ∼ 0.96. The IncNet
and VGG-like network also perform similarly on S3, while they
reach an accuracy level of ∼ 0.87 on S4. On the other hand, the 670
ResNet is the worst-performing architecture, with an accuracy of
∼ 0.75 on the complete data set.

The precision, recall, and F1-score also have similar global
trends to that of the accuracy. They are shown in the top, mid-
dle, and bottom panels of Fig. 4, respectively. These metrics are 675
evaluated separately on the non-lenses (left panels) and on the
lenses (right panels), but the same consideration applies to both
classes. This suggests that the degradation of the performance
does not only affect the identification of the lenses, but it actually
affects the classification of the two categories. In particular, the 680
F1-score, which depends on precision and completeness, peaks
at ∼ 0.96 on S1 and decreases to ∼ 0.87 on S4, with the ResNet
being again the worst-performing network.

In each panel of Fig. 5, we show the ROC curves of one
of our networks, evaluated on the test sets of the selections S1, 685
S2, S3, and S4. Their trends for the IncNet (middle panel) and
the ResNet (bottom panel) are similar, with the AUC decreas-
ing by ∼ 10% from S1 to S4. It should, however, be pointed out
that the IncNet performs systematically better than the ResNet:
while the former has an AUC of 0.92 on S1 and 0.81 on S4, the 690
latter has AUC that ranges from 0.81 on S1 to 0.7 on S4. On
the other hand, the ROC of the VGG-like network on S2 and S4
has a lower AUC, of ∼ 0.57, compared to the other models, and
higher AUC values only for the selections S1 and S3. After care-
fully checking the predictions of this network on the different 695
selections, we think this is due to a significant difference in the
number of objects predicted in the two classes when applying a
high threshold to the output probabilities.

Let us focus on the selection S4, i.e. on the performance of
our models on the complete data set. We can see in Fig. 6 nine 700
misclassified non-lenses and in Fig. 7 nine misclassified lenses.
The images reported in these figures are selected among those
misclassified by all three models, therefore they should be char-
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Table 2. Summary of the criteria adopted to choose the images included in the different selections of lenses and non-lenses for our experiments.
While the identification of the lenses is solely based on the variation of a threshold value for the parameter n_pix_source, the identification of
the non-lenses is primarily based on the possible presence and visibility of a background source.

Selection
Lenses Non-lenses

Total
Criterion Number Criterion Number

of images of images

S1 n_pix_source >430 1001
Randomly selected

1000 2001objects with
n_sources = 0

S2 n_pix_source >140 5083
Randomly selected

5000 10 083objects with
n_sources = 0

S3 n_pix_source >70 9709
Randomly selected

10 000 19 709objects with
n_sources = 0

S4 n_pix_source >20 19 591
Randomly selected

20 000 39 591objects with
n_source_im = 0

0.7

0.8

0.9

1.0

Pr
ec

isi
on

Non-lenses

VGG_like
IncNet
ResNet

Lenses

0.7

0.8

0.9

1.0

Re
ca

ll

S1 S2 S3 S4
Selection

0.7

0.8

0.9

1.0

F1
-s

co
re

S1 S2 S3 S4
Selection

Fig. 4. Trend of the precision (first row), recall (second row), and F1-
score (third row) in the classification of the non-lenses (left column)
and of the lenses (right column) in the different selections. Different
colored lines refer to different networks, as labeled, in the single-branch
configuration.

acterised by the features that the networks generally find harder
to attribute to the correct class.705

The false positives in Fig. 6 are mostly characterised by
the coexistence of more than one source in addition to the lens

galaxy, which might be mistaken for multiple images of the same
source. The misinterpretation of these objects might be exacer-
bated by the inclusion of several low n_pix_source lenses in 710
the training set. In fact, many of the lenses in the labeled exam-
ples do not present clear arcs or rings, and the faint distortions
encountered in the feature extraction process are likely to resem-
ble specific morphological features of non-lensed galaxies, such
as spiral arms, or isolated, but elongated galaxies. One possible 715
way to mitigate the misclassification of non-lenses with a back-
ground source could be to train the networks on multiband im-
ages, to benefit from the color information. We will investigate
this possibility in Sec. 4.8.

The false negatives in Fig. 7 are partly not even recogniz- 720
able as lenses by visual inspection. Although being classified
as lenses according to the criteria in Eq. (4), many of these ob-
jects do not show evident lensing features. Therefore, if the clas-
sification was to be carried out on unlabeled observations, we
would not expect the models to be able to identify them as lenses. 725
An approach to solve the issue of having non-detectable lenses
might be to complement the use of the aforementioned criteria
with the visual inspection of the images in the training set. In ad-
dition to this, we might include an additional criterion to ensure
that the arc is detectable with respect to the other sources in the 730
image. In this case, we would only accept as lenses those sys-
tems in which the flux of the brightest pixel of the background
source is greater than the flux of the other objects along the line
of sight at the same pixel (see Shu et al. 2022; Cañameras et al.
2023). However, in some of the images, the arc-shaped and ring- 735
shaped sources are evident. Nevertheless, their classification is
incorrect, signaling that some clear lenses might also be missed
by our classifiers.

In order to further investigate the ability of the networks
trained on S4 to actually identify clear lenses, we test them on 740
the images in S2 (test S4/S2). Before doing so, we make sure to
remove from S2 the images that the networks trained on S4 have
analyzed during training and validation. We do this because oth-
erwise the network performance would be biased to better per-
formance than can be achieved on unseen data. We compare the 745
result of this test to those obtained from training and testing the
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Fig. 5. From top to bottom, each panel of this image shows the ROC
curves obtained from the application of the single-branch versions of
the VGG-like network, the IncNet, and the ResNet to the test sets of the
different selections S1 (pink line), S2 (blue line), S3 (green line) and S4
(red line) of the data set.

networks on S2 (test S2/S2): the results of this comparison are
shown in Fig. 8 and more details can be found in Table B.2.

The performance of the models trained on S4 in the identi-
fication of the lenses in S2 is generally worse than that of the750
models trained on S2, even though the images that are part of S2
will also inevitably be part of S4 since S4 consists of the com-
plete data set. One reason for this is that the networks used in
the test S2/S2 are specifically trained to identify the lenses in
S2, while the networks trained on the larger data set S4 have755
been exposed to a larger variety of systems and are not as spe-
cialized on the S2-lenses, but let us look at the results in Table
B.2. While the completeness of the retrieved catalog of lenses
is constant in the two tests, the precision decreases by ∼ 20%,
passing from ∼ 0.95 in the test S2/S2 to ∼ 0.73 in S4/S2, with760

10 arcsec 10 arcsec 10 arcsec

10 arcsec 10 arcsec 10 arcsec

10 arcsec 10 arcsec 10 arcsec

Fig. 6. Example of false positives produced by the three networks in
the single branch configuration, when applied to the selection S4, here
pictured in the IE band.

10 arcsec 10 arcsec 10 arcsec

10 arcsec 10 arcsec 10 arcsec

10 arcsec 10 arcsec 10 arcsec

Fig. 7. Example of false negatives produced by the three networks in
the single branch configuration, when applied to the selection S4, here
pictured in the IE band.

only minor differences between the different architectures. Even
though the magnitude of the overall deterioration is not large per
se (the accuracy decreases by ∼ 5% for the three networks), this
is problematic since it is also due to the misclassification of clear
lenses, which are also the most useful for scientific purposes. 765

This result suggests that the performance of the models
trained on S4 is worse in general since a significant fraction of
this selection is composed of non-obvious lenses, that are intrin-
sically harder to classify. Moreover, there is a deterioration in
the ability of the models to recognise the clearest GGSL events 770
in the data set, that are also present in S2.
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Fig. 8. Comparison of the tests S2/S2 and S4/S2 (darker and lighter his-
tograms, respectively) run with the VGG-like network (top), the IncNet
(center), and the ResNet (bottom). In each panel we show the results
for the different metrics: from left to right we show the precision on
the class of the non-lenses (P0) and lenses (P1), the recall on the class
of the non-lenses (R0) and lenses (R1), the F1-score on the class of the
non-lenses (F10) and lenses (F11), and the overall accuracy (A).

This effect might result from a combination of two comple-
mentary factors regarding the characteristics of the images in the
data set. First, the fraction of clear images in the training set of
S4 is smaller than in the other selections because of the relevant775
fraction of low n_pix_source lenses included. This reflects in
the fact that the networks might not learn how to properly distin-
guish them. Wide arcs and rings will be recognizable only in a
moderate number of images, thus not being as significant as they
are in S2 for the classification of the lenses. Second, the most re-780
current features in the training set will be the ones that occur in
the low signal-to-noise images, thus contributing to explaining
the misinterpretation of some of the images that present evident
lensing features.

As shown in Fig. 7, a large fraction of the lenses classified785
as non-lenses by the networks trained on S4 do not present clear
lensing features. However, a non-negligible fraction of evident
lenses might also be missed if the training set is extended to in-
clude a significant number of fainter arcs, as the evident systems
might become under-represented. In addition to this, the archi-790
tecture of the network appears to be influential in the outcome
of the classification only to a certain degree. In particular, when
trained and tested on the same selections, the IncNet and VGG-
like networks generally perform similarly, when comparing the
metrics in Figs. 3 and 4. The ResNet, on the other hand, performs795
significantly worse than the others, especially on S4.

4.6. Additional tests

We now test the models trained on S2 on the wider selections
S3 and S4 (tests S2/S3 and S2/S4, respectively), after removing

the parts of these samples that are also included in the training 800
set of S2. This test has the purpose of assessing whether the net-
works trained on clear examples are flexible enough to detect
fainter systems. Also a deterioration of the performance from
S2/S3 to S2/S4 is expected, since CNNs mostly generalise to the
images that are similar to those in the data set they have been 805
trained with. Consequently, they might perform the same task
poorly when dealing with images characterised by features they
have never seen before. In the present case, most images in the
training set of S2 show clear lensing features, while the test sets
progressively include a greater fraction of images with new fea- 810
tures.

The general performance of the networks trained on S2 de-
teriorates on the other broader selections: the accuracy of the
classification varies from ∼ 0.85 in the case S2/S3 to ∼ 0.7 in
the case S2/S4. By comparing these results with those of the 815
test S4/S4 in Figs. 3 and 4, we observe several differences in
the precision, recall, and F1-score, computed separately for the
non-lenses and lenses, as well as in the accuracy. We report the
results of these tests in Table B.3.

The purity of the non-lenses decreases when broader selec- 820
tions are used as test sets: the precision reaches the value of
∼ 0.64 with S4. On the other hand, the recall is approximately
constant at values of ∼ 0.96 independently of the considered se-
lection, meaning that the largest fraction of the objects in this
class is correctly identified. In the case of the lenses, we find 825
a roughly opposite trend. The precision of the classification is
roughly constant at ∼ 0.94, while the recall decreases drastically
from ∼ 0.7 in S3 to ∼ 0.38 in S4: these values suggest that the
networks trained on the S2 sample do not manage to recognise a
large fraction of the lenses in the complete data set. 830

These trends can be interpreted by considering the impact
of the inclusion of the fainter features in the test sets. In par-
ticular, the training set of S2 mostly includes clear lenses and
images of isolated non-lenses, not surrounded by other sources.
When processing the images in S3 and S4, the absence of clear 835
arcs and rings, and more generally the faintness of the lensing
features induce a growing fraction of lenses to be classified as
non-lenses. Our results highlight the inability of our models to
recover a considerable fraction of lenses that are not similar to
those in S2, leading to a decrease of more than ∼ 20% in the re- 840
call of the lenses from S2/S2 to S2/S3 and of ∼ 30% from S2/S3
to S2/S4 (see Table B.3 for more details).

4.7. The impact of the shapelet decomposition

In the simulation of the images in our data set, we use the galax-
ies observed in the UDF as background sources. For the purpose 845
of denoising them, we decompose the galaxies with a shapelet-
based approach. The shapelet technique is a very powerful math-
ematical tool to describe astrophysical objects, and its limitations
have been investigated in some works (see e.g., Melchior et al.
2007, 2010). In this Section, we investigate what is the impact of 850
these limitations on the performance of our networks.

We assess this by testing our networks on a sample of 134
real lenses mainly found in the Sloan Lens ACS Survey (SLACS;
Bolton et al. 2006) and in the BOSS Emission-Line Lens Survey
(BELLS; Brownstein et al. 2012) and on 300 non-lensed galax- 855
ies of the UDF. The purpose of this test is not to evaluate the
performance of our networks on a realistic sample, which would
require including a larger number of non-lenses in the test set.
We want to estimate whether the shapelet decomposition pre-
vents the networks from being applied to real observations. The 860
failure of the networks to identify the observed lenses as lenses
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would point to the simulations not being descriptive enough of
the characteristics of real galaxies.

We use the networks trained on S2 to carry out this test. We
preprocess all the images by normalizing them with a similar865
procedure to the one we apply to the simulations, described in
Sec. 4.1. In the case of the galaxies of the UDF, we also reshape
the images to the size expected by the networks.

The results of this test are the following. We recover 129
of the lenses with the IncNet, and 126 of them with the VGG-870
like Network and with the ResNet. In the case of the non-lensed
UDF galaxies, all the three networks correctly classify 296 of
them. Given these recovery rates, we reckon that the shapelet
decomposition does not introduce significant limitations in our
simulations.875

4.8. Training with multi-band images

The correct identification of GGSL events may benefit signif-
icantly from color information emerging from the analysis of
multi-band data. Indeed, lenses and sources typically have dif-
ferent colors, due to their different spectral energy distributions880
(and redshifts). For example, the most common sources are star-
forming galaxies that appear bluer than the lenses, which on
the contrary are often early-type passive galaxies. Moreover, the
color similarity of multiple images of the same source can be
leveraged to identify strongly lensed sources. This is particularly885
useful in those systems that do not present evident morphologi-
cal distortions.

For example, Gentile et al. (2022) find that training CNNs
on multi-band images results in an improved classification of
systems that have small Einstein radii while training on single-890
band images is more efficient for finding lenses with large radii.
Also Metcalf et al. (2019) find that using multi-band images for
training substantially improves the performance of the classi-
fiers, when dealing with mock ground-based data, even though
the color information comes from observations with poorer spa-895
tial resolution.

We evaluate the importance of color information for the iden-
tification of the low n_pix_source lenses in Euclid-like data by
repeating the same training discussed so far, this time including
the NIR images, also available from the simulations. We show900
in Fig. 9 some randomly chosen examples of lenses obtained
by combining the VIS and NIR bands. We change the architec-
ture of our models to take into account the different sizes of the
VIS and NISP images, as explained in Sect. 2 and represented in
the panels (b) of Figs. A.1, A.2 and A.3, but otherwise keep the905
same setup as in our previous experiments. We report the results
of these tests in Table B.4.

By comparing these values to those of the VIS training (see
Table B.1), we do not observe a significant improvement in the
models’ performance when training with multi-band data. This is910
expected for the smaller selections, limited to the clearest lenses,
whose correct identification through their morphology is rela-
tively easy. Thus, in these cases, color information is expected
to be less relevant. However, when looking at the broader se-
lections, in which the morphology of the lenses is less clear,915
we might expect to see some improvement in the classification
performance when feeding the models with color information.
Surprisingly, we do not notice any significant variations in the
metrics that quantify the model performance.

We interpret this result as follows. First, the wavelength920
range covered by the VIS instrument (see Table 1) does not in-
clude the wavelengths at which the color difference between the
background and foreground galaxies is particularly evident, i.e.

ID = 1013862 ID = 1010894 ID = 1038115

ID = 1034938 ID = 1047046 ID = 1092481

ID = 1012531 ID = 1002852 ID = 1018618

Fig. 9. Example of randomly chosen lenses in the configuration used for
multi-band training. For visualization pruposes, the images simulated
in the IE band were downgraded to the resolution of the NISP bands in
these examples.

the blue wavelengths of the optical spectrum. Secondly, the im-
ages in the NIR bands are characterised by lower resolution than 925
those in the IE band (also see Table 1), thus the morphological in-
formation is degraded in these channels. This also suggests that
morphological information is more important than color when
identifying lenses, at least in this wavelength range.

4.9. Finding lenses in unbalanced data sets 930

As we discussed in Sec. 3, training on a balanced training set is
important for the networks to learn how to assign the images to
the correct class, but having a balanced test set is not a require-
ment. In fact, while in all the previous tests we used a balanced
test set, with a ratio of around 1:1 between lenses and non-lenses, 935
this is very different from reality, where we reasonably expect to
observe less than one lens for 1000 non-lenses (Marshall et al.
2009). In this scenario, even very efficient classifiers will pro-
duce a large number of false positives (Savary et al. 2022; Jacobs
et al. 2019a,b), and the visual inspection of thousands of candi- 940
dates will be required to find definite samples of strong lenses.
While training on simulations instead of real observations plays
a role in this since it is possible that the images will present irreg-
ular features or shapes that were not included in the training, the
high imbalance between the two populations is a major factor to 945
consider.

For this reason, we run an additional test with realistic pro-
portions in the number of images of the two subsamples. We
focus on the networks trained on S1, that globally have the best
performances (Figs. 3 and 4). We apply the networks trained on 950
this selection on a test set that has the same lenses as in the origi-
nal test set of S1, i.e. 240 lenses, and use the ∼ 80 000 non-lenses
that we had excluded from the training (as discussed in Sect. 3).
While most of the metrics have similar values to those we found
in the test with balanced classes, the precision drops to ∼ 0.15 for 955
the VGG-like Network, to ∼ 0.45 for the IncNet and to ∼ 0.13
for the ResNet. This is expected and due to the larger number
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of false positives predicted by the networks. To reduce the oc-
currence of false positives, we combine the results of the three
networks by averaging their predictions, as this has shown to960
benefit the rate of correct predictions (e.g., Taufik Andika et al.
2023). We find that the ensemble prediction has indeed higher
precision (with a precision of ∼ 0.46) than those of the VGG-
like Network and of the ResNet, while it is comparable to that of
the IncNet. More details on this test are given in Table B.5.965

Even though it is difficult to design a method that will pro-
duce a highly pure and complete sample of strong lenses, differ-
ent strategies are possible to mitigate the issue of having many
false positives. A common way to reduce their number is to use
a high threshold for the classification of the lenses (Petrillo et al.970
2019; Gentile et al. 2022), and perform a visual inspection of
the candidates that are most likely to be lenses to further refine
the selection. The drawback of this method is that the complete-
ness of the sample decreases, as the systems that are classified
with smaller probability will be missed. Another possible strat-975
egy is increasing the number of images with misleading features
in the negative class of the training set (Cañameras et al. 2020).
This should make the networks more familiar with these objects
and thus more efficient in recognizing them when applied to real
data. Moreover, methods such as transfer learning and domain980
adaptation could improve the classification performance with
real data (Domínguez Sánchez et al. 2019; Ćiprijanović et al.
2022). These techniques would require re-training networks that
were trained on simulations on a small sample (a few hundreds)
of observed lenses and might lead to a significant improvement985
of the networks performance.

4.10. Finding lenses in Euclid

Future Euclid observations will offer the opportunity to increase
the number of known GGSL events by orders of magnitude, as
long as potential candidates are efficiently identified. The opti-990
mization of the lens-finding strategy, especially in the first year
after the launch, is essential also for efficient follow-up obser-
vations. For example, the 4-meter Multi-Object Spectroscopic
Telescope (4MOST; de Jong et al. 2019) Strong Lens Spectro-
scopic Legacy Survey6 will observe about 10 000 lens candidates995
observed by Euclid and LSST, providing spectroscopic redshifts
for them.

The strategy currently planned for finding lenses in the sur-
vey relies both on fully-simulated images and data-driven simu-
lations. Training CNNs on simulated images is inevitable in the1000
initial phase of the Euclid observations, given the small number
of galaxy-galaxy lenses known at the moment. As the data is ac-
cumulated, more sophisticated simulations will be done, where
the lenses are real galaxies observed by Euclid. The networks
will be re-trained with images that include realistic properties1005
of both lenses and sources, thus improving the performance of
the classifiers in the next step of the data analysis. The addition
of information about photometric redshifts of the sources might
also yield some improvement but comes with the challenge of
measuring them with good accuracy. Having a large enough sep-1010
aration between the lens galaxy and the source or using efficient
de-blending techniques would be decisive in this context.

The greatest advantage of searching for lenses with Euclid is
that it will resolve faint Einstein rings with small radii (∼ 0.5′′),
mostly lensed by bulges of spiral galaxies, in addition to lenses1015
with larger angular scale. These systems are usually unresolved

6 https://www.4most.eu/cms/science/
extragalactic-community-surveys/

by ground-based facilities, but will be found thanks to the high
resolution of Euclid. Moreover, they will be the most common
according to forecasts (Collett 2015). Euclid observations could
also be combined with and complemented by those of other sur- 1020
veys. LSST, for instance, will observe a comparable number of
lenses, that will likely be skewed to larger radii because of the
lower resolution of ground-based observations. A complemen-
tary data set of lenses in the radio band that will have high res-
olution will be produced by Square Kilometer Array (Dewdney 1025
et al. 2009). They are complementary to the others since the par-
ent population of the systems observed in radio is different from
that of the systems observed in optical and infrared bands (Koop-
mans et al. 2004).

The fully-simulated data sets are also critical for studying the 1030
selection functions of the algorithms that will be used for finding
lenses in the survey. An accurate characterization of the selection
function is necessary for the scientific exploitation of the GGSLs
found by Euclid. For example, Sonnenfeld (2022) discussed the
importance of characterizing the selection function for inferring 1035
the properties of the population of galaxies that the strong lenses
are a biased subsample of. Moreover, they showed how to use
the information about the number of non-detections to constrain
models of galaxy structure further. More recently, Sonnenfeld
et al. (2023) investigated the difference between lens galaxies 1040
and lensed sources from their parent population, i.e. the strong
lensing bias. Given that Euclid will provide the largest sample of
homogeneously discovered strong lenses ever gathered, this type
of study will be more significant than in the past.

5. Conclusions 1045

In this work, we have presented a detailed analysis of the perfor-
mance of three CNN architectures in identifying GGSL events.
We did this by using a data set of forty thousand images sim-
ulated by the Bologna Lens Factory to mimic the data quality
expected by the Euclid space mission. The classification was pri- 1050
marily based on the morphology of the systems since we mainly
conducted our experiments with the images simulated in the IE

band. Still, we evaluated the importance of color information us-
ing multi-band images. We trained and tested our CNNs on four
data set selections that gradually include a greater fraction of 1055
objects characterised by faint lensing features and will be more
difficult to recognise. We evaluated the outcome of the classi-
fication by estimating the precision, recall, and F1 score of the
catalogs of obtained lenses.

We found that the morphological characteristics of the lenses 1060
included in the training set influence in a critical way the ability
of our CNNs to identify the lenses in a separate test set, whether
they show clear or faint lensing features. We found that the inclu-
sion of a large fraction of images deteriorates the performance of
our models, causing a decrease in the overall accuracy of ∼ 10%, 1065
from ∼ 0.95 to ∼ 0.85 for the IncNet and VGG-like network,
and an even greater decrease for the ResNet, which reaches an
accuracy of ∼ 0.74. Moreover, we also found that it impacts the
ability of our models to identify the most evident lenses since
they become under-represented in the training set. 1070

These results emphasise the importance of building realistic
training sets for DL models. This is particularly relevant for the
first searches since we will not have real lensing systems at our
disposal and the simulations of large data sets will be the only
option for training. In this phase, the inclusion of the real galax- 1075
ies observed by Euclid in the simulation will make the mocks
more realistic than those used up to now for training the net-
works. In particular, they suggest that identifying lenses with
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different morphologies might require specific training focused
on the type of lenses of interest for a certain purpose. Alterna-1080
tively, the classification of the lenses might be tackled as a mul-
ticlass classification problem, distinguishing the clear and prob-
able lenses from the probable and evident non-lenses. In this last
case, however, the distinction between obvious and non-obvious
objects should be further investigated and quantified.1085

We also retrain our models on the same selections of the data
set, including a separate channel for processing the NIR images
in addition to those in the IE band, thus assessing how relevant
the color information is for identifying the low signal-to-noise
lenses. We do not find a significant improvement in the perfor-1090
mance of any of our networks. We suggest that this might depend
on a combination of two factors: firstly, the images in the IE band
have higher resolution than those in the NIR bands. Secondly, the
IE band covers a wavelength range in which the color difference
between lens and source galaxies might not be important (see1095
Table 1).

Finally, we highlight that the three architectures retrieve cat-
alogs with similar characteristics in terms of completeness and
precision when applied to the same selections of images. The
only exception is the ResNet, whose accuracy on the full data set1100
is ∼ 10% worse than the others. Because of the higher precision
the IncNet has on the test with an unbalanced number of images,
we would conclude this is the best-performing network among
those we tested. The results of this test are, indeed, the closest to
what we might expect from real data, hence particularly relevant1105
for the evaluation of the performance of our models.

In the future, we could improve our selection method by
testing a combination of physical parameters to differentiate be-
tween faint and clear lenses, instead of using n_pix_source,
which we have as a result of our simulations, but is not a phys-1110
ical property of the galaxies. It would also be useful to study
whether there is a bias in the properties of the lenses found by
our models to characterise better the kind of systems that are
most likely to be found or missed.
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Appendix A: Network architectures1565

The three figures in this Appendix show the architectures of the networks we have implemented. In particular, Fig.A.1 shows the
VGG-like network, Fig. A.2 shows the IncNet and Fig. A.3 shows the ResNet.
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Fig. A.1. VGG-like network configurations tested on (a) VIS images and (b) multi-band images. We report the dimension (D) and number (F) of
the filters used in the convolutional layers in the format D×D, F. We also indicate the pooling region (R) and the strides (S) in the pooling layers in
the format R×R, /S. The numbers in square brackets indicate the dimension and number of the feature maps obtained as the output of the layers in
the format [D×D×F] in the case of the convolutional layers, and the number of nodes in the format [N] in the case of the fully-connected layers.
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Fig. A.2. Inception Network configurations tested on (a) VIS images and (b) multi-band images. These diagrams use the same notation as those in
Fig. A.1. Every inception module (IncMod) is built as described in subsection 2.1.2.

Article number, page 19 of 23



A&A proofs: manuscript no. output

Fig. A.3. Residual Network configurations tested on (a) VIS images and (b) multi-band images. These diagrams use the same notation as those in
Fig. A.1. Every residual block (ResBlock) is built as described in subsection 2.1.3, so c8 refers to the cardinality of the block, that we set to be
equal to eight.

Article number, page 20 of 23



Euclid Collaboration: Leuzzi et al.: Euclid preparation. XXXIII. Finding strong lenses

Appendix B: Tables

In this Appendix, we summarize the main results of our tests. In Table B.1 we show the results of training our models on VIS
images; in Table B.2 we compare the results of applying our models trained on S2 and on S4 to the test set S4; in Table B.3 we 1570
show the results of two additional tests, S2/S3, and S2/S4; in Table B.4 we show the results of training our models on multi-band
images; in Table B.5 we present the results of a test with realistic proportions between lenses and non-lenses.

Table B.1. Summary of the performance of the VGG-like network, the IncNet, and the ResNet in the classification of the objects of the four
selections of images in the IE band. The precision, recall, and F1-score are evaluated on the class of the non-lenses (0) and of the lenses (1)
separately, while accuracy and AUC are global quantities.

VGG-like network
S1 S2 S3 S4

Class 0 1 0 1 0 1 0 1
Precision 0.95 0.98 0.94 0.97 0.92 0.94 0.79 0.89

Recall 0.98 0.94 0.98 0.94 0.94 0.92 0.90 0.77
F1-score 0.96 0.96 0.96 0.96 0.93 0.93 0.84 0.83
Accuracy 0.96 0.96 0.93 0.84

AUC 0.77 0.58 0.88 0.57

Inception Network
S1 S2 S3 S4

Class 0 1 0 1 0 1 0 1
Precision 0.97 1.0 0.97 0.96 0.94 0.93 0.84 0.90

Recall 1.0 0.96 0.96 0.97 0.93 0.94 0.91 0.83
F1-score 0.98 0.98 0.96 0.96 0.93 0.94 0.87 0.86
Accuracy 0.98 0.96 0.94 0.87

AUC 0.92 0.88 0.90 0.81

Residual Network
S1 S2 S3 S4

Class 0 1 0 1 0 1 0 1
Precision 0.93 0.97 0.90 0.92 0.86 0.89 0.71 0.84

Recall 0.97 0.92 0.92 0.89 0.89 0.85 0.87 0.66
F1-score 0.95 0.94 0.91 0.91 0.88 0.87 0.78 0.74
Accuracy 0.95 0.91 0.87 0.76

AUC 0.81 0.85 0.79 0.70
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Table B.2. Comparison between the metrics of tests on the selection S2 with the models trained on S2 (top) and on S4 (bottom). Class 0 refers to
the non-lenses, while class 1 refers to the lenses.

S2/S2
VGG-like network Inception Network Residual Network

Class 0 1 0 1 0 1
Precision 0.94 0.97 0.97 0.96 0.90 0.92

Recall 0.98 0.94 0.96 0.97 0.92 0.89
F1-score 0.96 0.96 0.96 0.96 0.91 0.91
Accuracy 0.96 0.96 0.91

AUC 0.58 0.88 0.85

S4/S2
VGG-like network Inception Network Residual Network

Class 0 1 0 1 0 1
Precision 0.96 0.74 0.99 0.77 0.95 0.67

Recall 0.89 0.91 0.90 0.98 0.85 0.89
F1-score 0.93 0.82 0.94 0.86 0.90 0.76
Accuracy 0.89 0.92 0.86

AUC 0.51 0.88 0.75

Table B.3. Summary of the performance of the VGG-like network, the Inception Network and the Residual Network, trained on the selection S2,
in the classification of the objects that are part of the selections S3 and S4. The precision, recall and F1-score are evaluated on the class of the
non-lenses (0) and of the lenses (1) separately.

VGG-like network Inception Network Residual Network
S2/S3 S2/S4 S2/S3 S2/S4 S2/S3 S2/S4

Class 0 1 0 1 0 1 0 1 0 1 0 1
Precision 0.77 0.97 0.62 0.95 0.82 0.96 0.65 0.93 0.75 0.88 0.64 0.85

Recall 0.98 0.68 0.98 0.33 0.97 0.76 0.97 0.42 0.92 0.67 0.94 0.40
F1-score 0.86 0.80 0.76 0.48 0.89 0.85 0.78 0.58 0.83 0.76 0.76 0.55
Accuracy 0.83 0.68 0.87 0.71 0.80 0.69

AUC 0.57 0.52 0.81 0.7 0.78 0.65
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Table B.4. Same as in Table B.1, but using images in the VIS and NISP bands.

VGG-like network
S1 S2 S3 S4

Class 0 1 0 1 0 1 0 1
Precision 0.99 0.97 0.98 0.97 0.91 0.96 0.81 0.91

Recall 0.97 0.99 0.97 0.98 0.96 0.91 0.92 0.79
F1-score 0.98 0.98 0.98 0.98 0.94 0.93 0.86 0.84
Accuracy 0.98 0.98 0.93 0.85

AUC 0.65 0.87 0.67 0.62

Inception Network
S1 S2 S3 S4

Class 0 1 0 1 0 1 0 1
Precision 0.98 0.96 0.97 0.98 0.96 0.96 0.87 0.91

Recall 0.96 0.98 0.98 0.96 0.96 0.96 0.91 0.87
F1-score 0.97 0.97 0.97 0.97 0.96 0.96 0.89 0.89
Accuracy 0.97 0.97 0.96 0.89

AUC 0.77 0.9 0.92 0.84

Residual Network
S1 S2 S3 S4

Class 0 1 0 1 0 1 0 1
Precision 0.96 0.95 0.92 0.94 0.86 0.92 0.74 0.85

Recall 0.94 0.96 0.94 0.92 0.92 0.87 0.87 0.71
F1-score 0.95 0.95 0.93 0.93 0.90 0.89 0.80 0.77
Accuracy 0.95 0.93 0.90 0.78

AUC 0.81 0.88 0.81 0.72

Table B.5. Results of testing our best performing networks, trained on S1, on a test set with 200 lenses and 80 000 non lenses. Class 0 refers to the
non-lenses, while class 1 refers to the lenses. Ensemble network refers to the combination of the predictions of the three networks.

VGG-like network Inception Network Residual Network Ensemble Network
Class 0 1 0 1 0 1 0 1

Precision 1.0 0.15 1.0 0.45 1.0 0.13 1.0 0.46
Recall 0.98 0.94 0.99 0.96 0.98 0.92 1.0 0.97

F1-score 0.99 0.26 0.99 0.61 0.99 0.23 1.0 0.63
Accuracy 0.98 0.99 0.98 1.0

AUC 0.76 0.83 0.81 0.99
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