
IEEE SYSTEMS JOURNAL 1

Deep-Deterministic-Policy-Gradient-Based Task
Offloading With Optimized K-Means in

Edge-Computing-Enabled IoMT
Cyber-Physical Systems

Chenyi Yang , Xiaolong Xu , Senior Member, IEEE, Muhammad Bilal , Senior Member, IEEE, Yiping Wen,
and Tao Huang

Abstract—In recent years, the Internet of Medical Things (IoMT)
is expanding its value as a key enabling technology for smart med-
ical cyber-physical systems. In order to overcome the constraints
of constrained local resources, smart medical equipment (ME) in
IoMT cyber-physical systems offload data to edge or cloud servers
for processing. However, due to the limited edge resources and huge
time delay caused by offloading data to the cloud, the lack of a
reasonable task unloading scheme will lead to the unbearable time
delay and energy consumption of the IoMT system, resulting in
uneven workloads among edge servers and threatening the security
of medical data. To cope with these challenges, a deep deterministic
policy gradient (DDPG)-based task-offloading method assisted by
clustering is proposed. We first improved the initialization process
of K-means, and based on this, designed an optimized K-means
algorithm to carry out scientific and reasonable clustering of MEs
according to their quality-of-service requirements. Then, DDPG is
employed to obtain an optimal task-offloading scheme to minimize
average latency and total energy consumption of IoMT and to
ensure load balancing among edge servers. Finally, experimental
results justify the scientific nature of optimized K-means and the
superiority of DDPG in reducing the system overhead of IoMT.
Compared with benchmark algorithms, DDPG reduces average
time delay and total energy consumption by at least 16.9% and
12.3%, respectively.

Manuscript received 12 December 2022; revised 31 May 2023 and 23 July
2023; accepted 28 August 2023. This work was supported in part by the National
Natural Science Foundation of China under Grant 62372242, Grant 62177014,
and Grant 92267104, in part by the Research Foundation of Hunan Provincial
Education Department of China under Grant 20B222, and in part by the Natural
Science Foundation of the Jiangsu Higher Education Institutions of China under
Grant 21KJB520001. (Corresponding authors: Xiaolong Xu; Muhammad Bilal.)

Chenyi Yang is with the School of Software, Nanjing University of
Information Science and Technology, Nanjing 211544, China (e-mail:
201983290234@nuist.edu.cn).

Xiaolong Xu is with the School of Software, Nanjing University of In-
formation Science and Technology, Nanjing 211544, China, and also with
the Jiangsu Collaborative Innovation Center of Atmospheric Environment and
Equipment Technology (CICAEET), Nanjing University of Information Science
and Technology, Nanjing 211544, China (e-mail: xlxu@ieee.org).

Muhammad Bilal is with the School of Computing and Communications,
Lancaster University, LA1 4WA Lancaster, U.K. (e-mail: m.bilal@ieee.org).

Yiping Wen is with the Hunan Key Laboratory for Service Computing and
Novel Software Technology, Hunan University of Science and Technology,
XiangTan 411201, China (e-mail: ypwen81@gmail.com).

Tao Huang is with the School of Computer Science and Technology, Silicon
Lake College, Suzhou 215332, China (e-mail: nuisthuangtao@163.com).

Digital Object Identifier 10.1109/JSYST.2023.3311454

Index Terms—Clustering, deep reinforcement learning, edge
computing, Internet of Medical Things (IoMT), task offloading.

I. INTRODUCTION

IN RECENT years, despite the continuous development of
medical and health information construction and the increase

of medical resources, the problem of difficult and expensive
medical treatment has not been solved essentially because the
information isolation between hospitals and patients is not famil-
iar with medical services [1]. What is worse, hospitals collect and
store massive amounts of patients’ private information, which
puts people’s privacy security under threat. Fortunately, due to
the symbiotic growth of machine learning and artificial intelli-
gence, the value of the Internet of Medical Things (IoMT) is
increasing and people are entering the era of intelligent medical
care [2], [3]. In the IoMT system, large numbers of medical
devices deployed close to users at the edge of the network can
collect massive data from people and their surroundings all the
time with the aid of sensors deployed on them [4], [5]. Through
the efficient and rapid processing of this massive amount of data,
IoMT can provide high-quality remote health care, pathological
diagnosis, long-term care, and disease prevention services for
people. This allows people to easily access timely and inexpen-
sive medical care [6], [7].

To realize the efficient processing of massive complex data
requires a large amount of computing resources and energy [8],
[9]. Medical devices with limited local computing resources and
battery power have to transmit part of the original data to the
cloud for processing to ensure the completion of tasks [10], [11].
However, the cloud processes a large amount of patients’ health
information in a centralized computing way, such as electronic
medical records and medical images, which is difficult to protect
patients’ privacy and medical data from leakage and reduce
the risk of patient privacy data being tampered with. Besides,
although the rich computing resources in the cloud make up for
the shortage of local resources in medical equipment (ME), the
cloud server is far away from the edge of the network, which will
cause unbearable time delays in data transmission and ultimately
leads to ME not completing tasks in time [12], [13]. Relying

1937-9234 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Lancaster University. Downloaded on October 31,2023 at 13:41:07 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5745-5044
https://orcid.org/0000-0003-4879-9803
https://orcid.org/0000-0003-4221-0877
mailto:201983290234@nuist.edu.cn
mailto:xlxu@ieee.org
mailto:m.bilal@ieee.org
mailto:ypwen81@gmail.com
mailto:nuisthuangtao@163.com

2 IEEE SYSTEMS JOURNAL

solely on cloud computing will impose incalculable system costs
on IoMT.

Edge computing, as a complement and optimization to cloud
computing, can provide Big Data processing services at the edge
of the network in close proximity to users [14], [15], which
obviously reduces the delay and cost of sending data to the cloud
for processing [16], [17]. The application of edge computing
enables MEs to offload data to edge servers for calculation to
reduce data processing and transmission delay and ensure the
timeliness of task completion [18], [19]. In addition, in the cloud-
edge collaborative IoMT environment, MEs take advantage of
cloud and edge resources to complete data processing [20],
[21], which significantly alleviates the limitation of local battery
energy shortage of MEs [22]. Although the edge server can pro-
vide considerable computational storage resources, it is worth
noting that if MEs blindly conduct task offloading, lacking a
scientific and reasonable task-offloading scheme, some edge
servers will encounter the threat of overload or some edge servers
will not receive tasks for a long time and remain idle [23],
resulting in a waste of resources [24].

Due to the large action space of task offloading, it is extremely
difficult to obtain the optimal task unloading scheme, which
minimizes the system loss and ensures the load balance of edge
servers. In addition, the tasks accomplished by different MEs
vary greatly, with different delay requirements and reliability
requirements. When these heterogeneous tasks are offloaded at
the same time, some tasks that require high quality of service
occupy a large amount of resources, delay the completion of
other tasks, and even cause computing resource overload [25].

In order to solve the above problems, we first utilize the
clustering algorithm to cluster MEs according to service quality
requirements of tasks aiming to ensure that relatively similar
tasks can participate in offloading together. The task offloading
of MEs with similar service quality requirements greatly reduces
the computational complexity of subsequent task offloading,
facilitates the preallocation of edge resources, and effectively
reduces the risk of computing resource overload. Then, a deep
reinforcement learning method is employed to get an optimal
task-offloading scheme [26]. DRL is the combination of deep
learning and reinforcement learning. It makes use of the power-
ful representation ability of neural networks to fit strategies [27].
Therefore, DRL is very good at solving problems with excessive
state and action space or continuous action space. The main
contributions of this article are summarized as follows.

1) An ME-edge network framework that enables MEs to
offload their original data to any edge server or cloud for
processing to make up for the lack of local resources is
proposed.

2) An optimized K-means algorithm is designed to cluster
MEs according to their respective quality-of-service re-
quirement.

3) A task-offloading method driven by deep deterministic
policy gradient [28] is proposed to obtain an optimal task-
offloading scheme for IoMT.

4) Comparative experiments prove the scientificity of opti-
mized K-means in clustering and the superiority of DDPG
in reducing system delay and energy consumption while
ensuring load balancing among edge servers.

The rest of the article is organized as follows. Section II sum-
marizes the related work. In Section III, the system model and
problem formulation are described. Section IV introduces our
proposed optimized K-means and DDPG-based task-offloading
method. In Section V, the performance of proposed methods is
evaluated through extensive comparative experiments. Finally,
Section VI concludes this article.

II. RELATED WORK

In the context of 5G, with the development of the Medical
Internet of things and artificial intelligence, more and more edge
medical devices close to people can serve as tools for health
detection and epidemic prevention. However, edge medical de-
vices lack sufficient energy supply and computing resources
due to its own hardware conditions and other reasons, so they
have to offload part of the data to edge servers or cloud for
processing. In addition, due to the increasing number of medical
devices and the increasing richness of medical applications,
the amount of task data and task complexity are also rapidly
increasing, which leads to the limited resources provided by edge
servers. In other words, if there is no scientific and reasonable
task-offloading scheme, the whole IoMT will suffer huge time
delay and energy consumption, and even face the risk of collapse,
and the utilization rate of edge resources will be greatly reduced.

In order to cope with the above problems, some researchers
have carried out the task-offloading work based on DRL.
Lin et al. modeled task offloading and resource allocation
as a Markov decision problem and designed a novel collec-
tive reinforcement learning algorithm to allocation resources.
Their approach significantly reduces system energy consump-
tion [29]. To save energy while reducing resource-sharing costs,
Mekala et al. [30] proposed a two-step service offloading method
based on deep reinforcement learning to reduce the cost of edge
servers. Shi et al. [31] developed a DRL algorithm based on soft
actor–critic aiming to reduce the average latency of processing
tasks in Internet of vehicles. Their method greatly improves the
operational efficiency of heterogeneous vehicular networks. To
deal with the problem that it is difficult for edge devices to make
decisions of task offloading by a decentralized method, Tang
et al. [32] proposed a distributed algorithm driven by model-
free DRL. Ning et al. divided task unloading into two stages:
1) traffic redirection and 2) offloading decision, and proposed a
task-offloading strategy based on deep reinforcement learning.
Experimental data proved that their method could reduce the
average energy consumption by about 60% compared with the
baseline method [33].

The above studies only take energy consumption reduction
or time delay reduction as the optimization objective and do
not optimize these two indicators simultaneously. There are
some research works on task-offloading algorithms based on
DRL, which can reduce time delay and save energy. In order to
solve problems of the energy shortage of equipment and lack of
computing resources in IoMT, Yadav et al. [34] proposed a task-
offloading method based on reinforcement learning to reduce
time delay and energy consumption. Math et al. [35] designed a
task-offloading method based on DRL, taking the weighted sum
of time delay, energy consumption, and the cost of acquiring

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Lancaster University. Downloaded on October 31,2023 at 13:41:07 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: DDPG-BASED TASK OFFLOADING WITH OPTIMIZED K-MEANS IN EDGE-COMPUTING-ENABLED IOMT CYBER-PHYSICAL SYSTEMS 3

TABLE I
NOTATION AND INTERPRETATIONS

cached content as the optimization objective. Their method
can not only reduce the system overhead but also ensure the
reasonable allocation of edge resources. Chen et al. [36] aimed to
investigate a dynamic computation offloading method and they
designed a cooperative multiagent DRL to obtain decentralized
offloading strategies to minimize power consumption and time
delay. He et al. proposed PS-DDPG, a task-offloading algorithm
using the priority empirical replay mechanism and the random
weight average mechanism based on DDPG. Experiments show
that the proposed method has superior stability and convergence
compared with the existing work and has excellent performance
in energy saving and time delay reduction [37].

However, existing DRL-based task-offloading algorithms fo-
cus on reducing system loss or improving task completion rate
but ignore the load balancing problem of edge resources. Load
balancing among edge servers can effectively prevent idle or
overloaded computing resources when the resources of edge
servers are insufficient. Our research aims to develop a DRL-
based task-offloading algorithm that enables to minimize time
delay and energy consumption of IoMT systems while ensuring
load balancing among edge servers.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, an ME-edge network framework is proposed
where each ME possesses very limited computing resources and
enables to offload some of the data to edge servers or cloud. In
the system, every single ME involved in task offloading has only
one task pending at a certain time. In order to ensure the normal
operation of IoMT, we have to design a task-offloading method
to minimize the average time delay and total energy consumption
of the system and ensure the load balance of all edge servers.
Table I shows the key notation in this article and corresponding
interpretations.

A. ME-Edge Network Framework and Communication Model

In the proposed ME-edge network framework, due to the
insufficient local computing resources, it is difficult to complete

Fig. 1. ME-edge network framework.

tasks in a limited time, which is fatal to those MEs in IoMT
that require high timeliness. Thus, each ME needs to offload
part of the data to edge servers or the cloud for processing. N
edge servers (E1, E2, E3, . . . , EN) with different computing
capabilities are deployed in this system. There are M different
medical devices (ME1, ME2,ME3, . . . ,MEM) in different areas
that can communicate with any edge server or cloud. Each ME
is guaranteed to be within the communication range of all edge
servers and can communicate directly with the cloud. ME-edge
network framework is described in Fig. 1.

In the ME-edge network framework, each edge server is
equipped with Z transceiver antennas and each ME is equipped
with a single transceiver antenna. An edge server can provide
data processing for multiple tasks from different MEs but a ME
can only communicate with a maximum of one edge server at
a certain time. Obviously, the communication process between
the edge server and ME can be viewed as a single-input and
multiple-output (SIMO) model. The transmission rate (Redge)
between MEs and edge servers can be calculated by

Redge = Wedgelog2

(
1 +

Se

Nd

Z∑
i=1

|Hi|2
)

(1)

where Wedge represents the channel bandwidth and the signal
energy and noise power spectral density are denoted by Se and
Nd separately. The channel matrix H is a vector whose size
is 1× Z. Hi is an element of the channel matrix H , which
represents the channel attenuation coefficient of the link between
ME and the ith transceiver antenna of the edge server, which can
be calculated by the ratio of the signal intensity of the transceiver
end. In fact, Se

Nd

∑Z
i=1 |Hi|2 is the signal-to-noise ratio of the

communication channel between ME and edge servers.
The cloud can provide data processing services for multiple

MEs simultaneously. In the ME-edge network framework, the
cloud and ME communicate through a single antenna, and the
communication process between them can be expressed as a
single-input and single-output (SISO) model. The transmission
rate (Rcloud) between MEs and the cloud can be calculated by

Rcloud = Wcloudlog2(1 + SNRcloud) (2)

where Wcloud and SNRcloud represent the channel bandwidth and
the signal-to-noise ratio of the communication channel between
MEs and the cloud, respectively.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Lancaster University. Downloaded on October 31,2023 at 13:41:07 UTC from IEEE Xplore. Restrictions apply.

4 IEEE SYSTEMS JOURNAL

B. Time Delay Model

When MEi offloads part of the task data toEj and the cloud for
processing, the time delay generated by task processing consists
of three parts, namely, local time delay (T local

i), cloud time delay
(T cloud

i), and time delay of Ej (T edge
ij).

Let dsi represents the total task data size of MEi. ηi and θi
represent the proportion of MEi offloading data to edge server
and cloud, respectively. T edge

ij is divided into the time for Ej to
process the data and the delay for MEi to transmit the original
data to Ej . Therefore, the time delay generated by Ej can be
calculated by

T edge
ij = ηi

dsi
pedge
j

+ ηi
dsi
Redge

(3)

where pedge
j is the computing capability of Ej and transmission

delay is calculated by ηi
dsi
Redge

. Since the result data are very
small compared with the amount of data transmitted, the delay
of transmitting result data from Ej to MEi is ignored.

When calculating T cloud
i , the latency associated with transfer-

ring result data from the cloud to MEi is not taken into account.
T cloud
i can be obtained by

T cloud
i = θi

dsi
pcloud

+ θi
dsi

Rcloud
(4)

where pcloud represents the computing capability of cloud.
Let pi denote the computing capability of MEi. T local

i can be
obtained by

T local
i = (1− ηi − θi)

dsi
pi

. (5)

The minimum value between T local
i , T cloud

i , and T edge
ij is the

final time delay generated by MEi task processing (Ti). Thus,
Ti can be expressed by

Ti = min
(
T local
i , T cloud

i , T edge
ij

)
. (6)

The average time delay of the entire system T ave can be
calculated by

T ave =
1

M

M∑
i=1

Ti. (7)

C. Energy Consumption Model

When calculating the total energy consumption of IoMT,
the energy consumption generated by edge servers and MEs
should be considered, which is mainly generated by calcula-
tion energy consumption (ECcal

i) and data transmission energy
consumption (ECtrans

i). The energy consumption generated by
cloud computing is not included in ECcal

i . ECcal
i consists of the

energy consumption generated by data processing of MEi and
Ej . ECtrans

i includes the energy consumption of transmission of
original data from MEi to the cloud and Ej .

Let wlocal
i and wedge

j denote the energy power of MEi and Ej ,
respectively. The energy power of data transmission from MEi to
Ej is represented bywij . The energy power of data transmission

from MEi to the cloud is denoted by wcloud
i . ECcal

i and ECtrans
i

can be calculated by

ECcal
i = ηiw

edge
j

dsi
pedge
j

+ (1− ηi − θi)w
local
i

dsi
pi

(8)

ECtrans
i = ηiw

edge
j

dsi
Redge

+ θiw
cloud
i

dsi
Rcloud

(9)

respectively.
Energy consumption generated by MEi (ECi) can be obtained

by

ECi = ECcal
i + ECtrans

i . (10)

The total system energy consumption of IoMT (ECtol) can be
calculated by adding the energy consumption generated by M
MEs. ECtol can be expressed by

ECtol =

M∑
i=1

ECi. (11)

D. Load Balancing of Edge Servers

In order to make full use of the computing resources of each
edge server, it is very important to ensure the load balance
among all edge servers. If uneven data distribution occurs during
task offloading, some edge servers may be overloaded or the
utilization of some edge servers may be extremely low. If an edge
server is overloaded, then the offloading scheme is not qualified
anyway. If an edge server is overloaded, then the offloading
scheme is not qualified anyway.

Generally, the total amount of data received by an edge server
can be used as a measure of its load. However, in the IoMT
scenario, each edge server has different computing resources, re-
sulting in different data processing capabilities and load-bearing
capabilities. Load to computing capacity ratio (LCR) is used as
a measure of edge server workload, and its value is equal to the
ratio of the total amount of data received by the edge server to
its computing capacity. Let dstol

i denote the total data received
by Ei. The value of LCR of Ei (LCRi) can be obtained by

LCRi =
dstol

i

pedge
i

. (12)

The square deviation of LCR of all edge servers can be
calculated to indicate the deviation degree of LCR from the
average value. Through this, the load balancing situation among
all edge servers can be obtained. LCR (LCR = 1

N

∑N
i=1 LCRi)

is employed to represent the average value of all edge servers’
LCR. The square deviation of LCR (σ2

LCR) can be obtained by

σ2
LCR =

1

N

N∑
i=1

(
LCRi − LCR

)
. (13)

σ2
LCR represents the dispersion degree of all LCR values. The

smaller its value is, the more balanced the load is among all
edge servers.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Lancaster University. Downloaded on October 31,2023 at 13:41:07 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: DDPG-BASED TASK OFFLOADING WITH OPTIMIZED K-MEANS IN EDGE-COMPUTING-ENABLED IOMT CYBER-PHYSICAL SYSTEMS 5

Fig. 2. Overview of DDPG-based task-offloading method assisted by ME clustering.

E. Problem Formulation

In this article, we focus on obtaining a task-offloading scheme
to minimize the overall power consumption and the average time
delay of the IoMT system while ensuring the load balancing
among edge servers. The problem formulation can be expressed
as

minT ave, minECtol, minσ2
LCR (14)

s.t. σ2
LCR < τ (15)

LCRx ≤ LCRmax
x ∀x = 1, 2, . . . , N (16)

Ti ≤ Tmax
i ,ECi ≤ ECmax

i (17)

where τ is a preset parameter. Equation (15) guarantees that load
balancing must meet a minimum of τ . Equation (16) ensures that
each edge server cannot exceed the maximum workload it can
handle. Tmax

i and ECmax
i indicate the maximum time delay and

energy consumption that MEi can endure. Equation (17) ensures
that the resulting task-offloading scheme is such that time delay
and energy consumption generated by each ME do not exceed
its maximum tolerable limit.

IV. DDPG-DRIVEN COMPUTATION OFFLOADING ALGORITHM

ASSISTED BY AN IMPROVED K-MEANS

Since the data amount of each task to be processed is different,
and different MEs have various delay requirements and different
capacities for enduring energy consumption, offloading so many
tasks with huge differences together will greatly aggravate the
risk of IoMT collapse. If all tasks are simply mixed together and
offloaded at the same time, some edge servers may be occupied

for a long time or even overloaded, and some tasks will be
difficult to be processed in time, which ultimately prevents the
normal operation of the IoMT. In our IoMT system, each ME
possesses a maximum tolerable delay and a maximum tolerable
energy consumption and from these two values, the QoS of the
ME can be calculated. Then, we utilize a clustering algorithm
to divide ME with similar QoS values into the same group to
avoid the competition among tasks that are extremely different
from each other. In the decision process of task offloading,
every time a task is offloaded, the IoMT environment will
change. Thus, every decision step depends on the decision of
the previous step. The task-offloading process can be modeled
as a Markov decision process. A deep reinforcement learning
algorithm is very good at making action decisions according to
the current environment. Therefore, DRL is employed to obtain
an optimal task-offloading scheme. Fig. 2 is an overview of the
DDPG-based task-offloading method assisted by ME clustering.

A. Clustering MEs With an Optimized K-Means

In this article, only the maximum time delay and energy
consumption that a task can bear are taken as the measurement
criteria of its service quality requirements, and there is no other
noise information. The K-means algorithm has the character-
istics of low computational complexity, easy implementation,
strong robustness, and high interpretability, which is suitable
for ME clustering. The traditional K-means clustering algorithm
divides the dataset into k different clusters and adjusts centers of
clusters iteratively until the optimal clustering effect is achieved.
However, traditional K-means uses random generation of cluster
centers to carry out the initialization process. If the initialization

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Lancaster University. Downloaded on October 31,2023 at 13:41:07 UTC from IEEE Xplore. Restrictions apply.

6 IEEE SYSTEMS JOURNAL

Fig. 3. Flow diagram of the optimized K-means.

result of the cluster is not good enough, the final clustering result
is often difficult to reach the global optimal and fall into the local
optimal. Therefore, the traditional K-means algorithm cannot be
directly applied to ME clustering. In order to solve this algorithm
defect, we designed a more scientific initialization process to
make the clustering result closer to the global optimal solution
and, finally, obtained an optimized version of the K-means algo-
rithm. Fig. 3 shows the flow diagram of the optimized K-means.

1) Requirement of Quality of Service: Let Tmax
i and ECmax

i

denote the maximum tolerable delay and the maximum tolera-
ble energy consumption of MEi, respectively. When clustering
MEs, the tuple< Tmax

i , ECmax
i > are used to denote the location

ofMEi. According to Tmax
i andECmax

i , the requirement of QoS
of MEi (RQi) can be calculated by

RQi =
1

ECmax
i

lg (1 + ζ − Tmax
i) (18)

where ζ is a preset constant that greater thanTmax
i . Equation (18)

ensures that the smaller the value of ECmax
i and Tmax

i , the higher
the requirement of QoS of MEi. The value of RQi is inversely
proportional to ECmax

i and directly proportional to minus Tmax
i .

RQi is a significant criterion to determine which cluster each
ME belongs to during the initialization process.

2) Initialization Process: A membership function MF with
RQi as input is used as the basis to estimate the cluster to which
each ME belongs in the initialization stage. The membership
function MF is expressed by

MF (RQi) =

⎧⎪⎪⎨⎪⎪⎩
0, 0 < RQi ≤ φ

1

/[
1 +

(
1

RQi−φ

)2]
, φ < RQi ≤ χ

1 + ln (1 + RQi − χ) , RQi > χ.

(19)

Through (18) and (19), the membership function value of
MEi (MFi) can be obtained to estimate the cluster that MEi

belongs to. For example, when the number of clusters K is
equal to 3, all MEs whose MF value is less than constant γ
are divided into the first cluster, and those whose MF value is
greater than constant δ are divided into the third cluster, and the
remaining MEs are all grouped into the second cluster. These

three clusters, respectively, represent the set of MEs with high
service quality requirements, the set of MEs with low service
quality requirements, and the set of MEs with medium service
quality requirements.

After completing the initialization of all clusters to which ME
belongs, the average value of coordinates of MEs can be used
to initialize the coordinates of cluster center Ck. The location of
Ck (LOC(Ck) = (CT

k , C
EC
k)) can be obtained by

LOC (Ck) =

(
1

M

M∑
i=1

ρikT
max
i ,

1

M

M∑
i=1

ρikECmax
i

)
(20)

s.t. ρik =

{
0, MEi /∈ CLk

1, MEi ∈ CLk
(21)

where CLk represents the set of all MEs that belong to the kth
cluster. When MEi belongs to the kth cluster, the value of ρik is
1; otherwise, the value of ρik is 0.

3) Training Process: After the initialization process has been
completed, we continued to update which cluster each ME
belongs to and cluster center coordinates to obtain an optimal
clustering result ultimately. We utilize the Euclidean distance to
measure the distance from each ME to the center of the cluster.
The distance between MEi and Ck (disik) can be calculated by

disik =
[(
Tmax
i − CT

k

)2
+
(
ECmax

i − CEC
k

)2] 1
2

. (22)

Equation (22) is employed to calculate the distance between
MEi and all cluster centers, and then, the cluster with the smallest
distance from its cluster center to MEi will be selected as the
new cluster to which MEi belongs. The new cluster to which
MEi belongs can be obtained by

Cnew
i = argmax

k

[(
Tmax
i − CT

k

)2
+
(
ECmax

i − CEC
k

)2]
. (23)

After updating the cluster to which each ME belongs to, (20)
and (21) are used to update the coordinates of cluster centers.
Repeat the above training process until cluster centers no longer
changes or the number of iterations reaches the upper limit.
Finally, an optimal clustering result of MEs is obtained. The
detailed process of our optimized K-means for clustering MEs
is described by Algorithm 1.

NE represents the number of iterations of the optimized K-
means algorithm in the training process. K and M are the number
of clusters and MEs, respectively. Since the coordinates of each
ME are determined by the maximum time delay and energy
consumption it can withstand, the dimension of each cluster
object is 2. Compared with the training process, the time loss of
the optimized K-means algorithm in the initialization process
is ignored. Therefore, the time complexity and space complex-
ity of the optimized K-means algorithm are O(2NEKM) and
O(2M), respectively.

B. DDPG-Based Task-Offloading Method for MEs

Each ME makes the decision of task offloading according to
the current IoMT environment and offloads part of the data to
an edge server and the cloud for data processing. When an ME
completes the task-offloading process, it is bound to change the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Lancaster University. Downloaded on October 31,2023 at 13:41:07 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: DDPG-BASED TASK OFFLOADING WITH OPTIMIZED K-MEANS IN EDGE-COMPUTING-ENABLED IOMT CYBER-PHYSICAL SYSTEMS 7

Algorithm 1: Optimized K-means Algorithm for Clustering
MEs.

state of the IoMT environment, for example, the load that edge
servers can bear and the load balance between edge servers will
change. Therefore, the action taken by each ME is based on the
task-offloading action taken by the previous ME. Obviously, the
task-offloading process in IoMT can be viewed as a Markov
decision process. In addition, with all the decision options
available to MEs, finding an optimal task offload scheme is an
NP-hard problem. It is worth noting that the ME selects actions
in a continuous space during task offloading. DDPG, with its
strong perception and decision-making ability, is outstanding in
dealing with continuous control problems.

1) Algorithm Framework: DDPG is a deterministic actor–
critic algorithm. The algorithm core of DDPG is a policy network
π(st;α) and a value network q(st, at;β). Let st and at denote
the state of the environment and the action that the agent takes
under step t, respectively. α and β are parameters of the policy
network and the value network, respectively. According to the
current environment, the policy network decides the next action
to be taken by the agent, so it is also called an actor. Once the state
of the environment is determined, the output action of the policy
network is also determined. The value network is responsible for
scoring the actions of the policy network output, which is a real
number. The value network is also known as a critic. The higher
the score of value network output, the better the decision made by
the policy network. The value network does not participate in the
decision-making of the agent, but it guides the policy network to
make improvements. The policy network and the value network
are trained together. Our objective is to make actor and critic
progress together and ultimately achieve the goal of enabling
actor to make better decisions while making the score of action
more accurate.

2) Action Space and State Space: Different from discrete
control problems, the agent’s action space in DDPG is continu-
ous and has countless action choices. When performing task of-
floading, each ME should consider how much proportion of task
data to be offloaded to the cloud and how much to be offloaded
to the edge server, and decide which edge server should be taken
as the task-offloading target. Therefore, the agent’s action has
three degrees of freedom. The three dimensions of the action
are the proportion of data offloaded to the cloud, the proportion
of data offloaded to the edge, and the selected edge server. For
agent, the size of the action space is [0, 1]× [0, 1]×N .

The state in phase t (st) can be represented by the tuple <
DSt, σ

2
t >. DSt is a one-dimensional vector with a size of N ,

which represents the set of the maximum amount of data that
each edge server can receive at the stage t. σ2

t represents the
square deviation of the LCR value of all edge servers at stage t.
When st is input into the neural network, each element of DSt

will be input by a corresponding neuron.
3) Reward Function: Every time the agent makes an action,

it will receive a reward. In order to obtain an optimal training
result, we need to ensure that the cumulative rewards obtained
by agents in the training process are maximized. Assuming that
in state st, MEi offloads ηti of the original data to Ej and θti
of the original data to the cloud, then the reward rt obtained in
stage t can be calculated by

rt =
(
LCRj − LCRmax

j

) ·(1

T edge
ij

+
1

ECedge
ij

)

+

(
1

EClocal
i

+
1

ECcloud
i

)
+

1

min
(
T local
i , T cloud

i , T edge
ij

) .
(24)

ECedge
ij represents the sum of the energy consumption gen-

erated by Ej processing data and the energy consumption
generated by transmitting data from MEi to Ej and its value

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Lancaster University. Downloaded on October 31,2023 at 13:41:07 UTC from IEEE Xplore. Restrictions apply.

8 IEEE SYSTEMS JOURNAL

is equal to ηiw
edge
j

dsi
pedge
j

+ ηiw
edge
j

dsi
Redge

. Besides, EClocal
i = (1−

ηi − θi)w
local
i

dsi
pi

and ECcloud
i = θiw

cloud
i

dsi
Rcloud

represent the en-
ergy consumed by MEi’s local computing and the energy con-
sumption generated by sending data from MEi to the cloud,
respectively.

4) Training Process: To make the algorithm performance
more stable and avoid bootstrapping, target policy network
π(st; α̂) and target value network q(st, at; β̂) with the same
structure as the policy network and value network and different
parameters are used in the training process respectively. α̂ and β̂
are parameters of the target policy network and the target value
network separately. Given the current environment state st, the
policy network is employed to calculate the next action to be
taken through at = π(st;α). Then, the value network scores at
and obtains the scoring result qt = q(st, at;β).

To train the parameters of the policy network, we have to rely
on the value network. Our goal is to update the policy network to
make the value network give high scores to decisions it makes.
Therefore, we can calculate the gradient of q(st, at;β) with
respect to α and use gradient ascent to update the parameters
of the policy network. The gradient of q(st, at;β) with respect
to α is ∂q(st,at;β)

∂a · ∂a
∂α and α can be updated by

α = α+ L1 · ∂q (st, at;β)
∂a

· ∂a
∂α

(25)

where L1 is the preset learning rate.
In order to avoid bootstrapping and reduce deviation, target

networks are employed to update the parameters of the value
network. First, utilize target policy network to estimate the
action a−t+1 = π(st+1; α̂) to be taken in phase t+ 1. Target
value network calculates the value in phase t+ 1 through qt+1 =

q(st+1, a
−
t+1; β̂). TD error can be obtained by

Δt = q (st, at;β)−
[
rt + ξ · q

(
st+1, a

−
t+1; β̂

)]
(26)

where ξ is attenuation coefficient. And then we use gradient
descent to update β. β can be updated by

β = β − L2 ·Δt · ∂q (st, at;β)
∂β

(27)

where L2 is the preset learning rate.
Parameters of target networks also require updating. Set a

hyperparameter ι between 0 and 1 first. Then, we update α̂ by
taking a weighted average of α and α̂. Updates to β̂ can be done
in the same way. Thus, α̂ and β̂ can be updated through

α̂ = ι · α+ (1− ι) · α̂ (28)

β̂ = ι · β + (1− ι) · β̂ (29)

respectively.
n1 and n2 are used to represent the number of episodes and

the number of agent decisions in each episode. When n1 and
n2 values are large, the time of parameter initialization of the
DDPG-based task-offloading algorithm in the training process
can be ignored. The time complexity of DDPG is O(n1n2).

Experience replay is utilized to improve the effectiveness of
the training process. We store a set of learned experiences in the

TABLE II
PARAMETER SETTINGS

Algorithm 2: DDPG-Based Task-Offloading Method for
MEs.

experience pool and then randomly select some past experiences
to learn during the training process. This approach disrupts the
correlation between experiences, making the training process
of neural networks more efficient. Algorithm 2 describes the
DDPG-based task-offloading method for MEs in detail.

V. EXPERIMENTAL EVALUATION

In this part, we justify the superiority of our proposed opti-
mized K-means algorithm and the DDPG-based task-offloading
method through multiple groups of comparative experiments.
We compare our proposed algorithms with other typical meth-
ods. Many different indexes have proved the superiority of the
optimized K-means algorithm. In addition, experimental results

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Lancaster University. Downloaded on October 31,2023 at 13:41:07 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: DDPG-BASED TASK OFFLOADING WITH OPTIMIZED K-MEANS IN EDGE-COMPUTING-ENABLED IOMT CYBER-PHYSICAL SYSTEMS 9

show that the algorithm has excellent performance in reducing
the total energy consumption of the system, reducing the av-
erage time delay of the system, and ensuring the load balance
between edge servers. We employed Pytorch framework for ME
clustering and DDPG task offloading in Python3.8 environment.

A. Parameter Settings

In the IoMT environment, each ME enables to offload data
to the cloud or to any edge server for further processing. The
number of edge servers N is set to 45. In order to ensure the
normal operation of IoMT and improve the efficiency of data
processing, we first clustered ME into K group. The value of
K is set to 3, based on the results of subsequent experiments.
The local computing capability of ME is between 10 Mb/s
and 20 Mb/s and the computing capability of edge server is
between 150 Mb/s and 200 Mb/s. The number of layers of
the DDPG neural network is 3. Use ReLU as the activation
function. The number of neurons in the two hidden layers is
80 and 120. Learning rate L1 and L2 is set to 0.001 and 0.001.
Hyperparameter ι, which is employed to update target networks,
is set to 0.02. Attenuation coefficient ξ, which is used to calculate
Δt, is set to 0.1. Parameter settings are shown in Table II.

B. Evaluation of Optimized K-Means Algorithm for Clustering
MEs

1) Algorithms for Comparison: In this section, the optimized
K-means algorithm is compared with K-means and fuzzy C-
means in the performance of clustering MEs. K-means and fuzzy
C-means are outlined as follows.

a) K-means: K-means first initializes the cluster to which
each element belongs and cluster centers in a random way
and then updates the result by calculating the distance be-
tween each element and each cluster center [38]. However,
random initialization makes it easy for K-means to achieve
only local optimum.

b) Fuzzy C-means: Fuzzy C-means incorporates the essence
of fuzzy theory [39],[40]. Compared with K-means hard
clustering, fuzzy C provides more flexible clustering re-
sults. Fuzzy C-means is a process of iteratively calculating
the membership degree and cluster center until they reach
the optimum.

The above two clustering algorithms will be used for compar-
ison with optimized K-means.

2) Evaluation Indicators: The sum of squares due to error
(SSE) and silhouette coefficient (SC) are employed as evaluation
indicators to evaluate the performance of clustering algorithms.
SSE is used to measure the looseness of members in a cluster
and it can be calculated by

SSE =

K∑
i=1

∑
MEj∈Ci

(disji)
2 . (30)

SC is the evaluation index of the density and the dispersion
degree of a cluster. SC can be calculated by

SC =
(b− a)

max(a, b)
(31)

Fig. 4. SSE value under different number of clusters.

Fig. 5. SSE value during training of optimized K-means.

where a represents the average degree of dissimilarity between a
member and other members in the same cluster and b represents
the minimum value of the average dissimilarity degree from a
member to other clusters.

3) Selection of K: The sum of the square distance error
between the particle of each cluster and the sample point in the
cluster is called distortion. For a cluster, the lower the distortion
degree is, the closer the members in the cluster are; the higher
the distortion degree is, the looser the structure in the cluster is.
The degree of distortion will decrease with the increase of the
category, but for the data with a certain degree of discrimination,
the degree of distortion will be greatly improved when it reaches
a certain critical point, and then slowly decreases. This critical
point can be considered as the point with better clustering perfor-
mance. SSE can work as an indicator to measure the distortion
degree of clusters, and the appropriate K can be selected based
on SSE.

Fig. 4 shows the tendency of SSE values obtained by the
three clustering algorithms to change as K increases. It can be
seen from Fig. 4 that regardless of which clustering algorithm is
employed, the value of SSE drops sharply at K from 1 to 3 and
then stabilizes. Since the decline rate of SSE slows dramatically
when K is greater than 3, 3 is the optimal number of clusters.
Fig. 4 also indicated that no matter what the value of K is, the
SSE value of optimized K-means is always the smallest, which
proves the superiority of the algorithm.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Lancaster University. Downloaded on October 31,2023 at 13:41:07 UTC from IEEE Xplore. Restrictions apply.

10 IEEE SYSTEMS JOURNAL

Fig. 6. SC value under different number of clusters.

Fig. 5 shows the change of SSE value in the optimized
K-means training process when the number of clusters is 3. It can
be obviously seen that the SSE value decreased sharply during
the first five epochs and finally stabilized at about 4220. This
indicates that the optimized K-means algorithm has superior
convergence performance when K is equal to 3.

4) Evaluation of Clustering Performance: The clustering
performance is excellent, that is, the samples of the same cluster
are as similar as possible, and the samples of different clusters
are as different as possible. SC is the index that can correctly
reflect the intracluster similarity and intercluster similarity. The
value of SC is between -1 and 1 and the closer its value is to 1,
the more reasonable the clustering result is.

Fig. 6 shows the comparison results of SC values obtained by
the three clustering algorithms under different K values. As can
be seen from Fig. 6, no matter what the number of clusters is,
the SC value obtained by the optimized K-means is always the
largest and closest to 1 among the three comparison algorithms.
Therefore, the clustering result obtained by optimized K-means
is the most reasonable, and the performance of optimized K-
means is also optimal.

C. Evaluation of DDPG-Based Task-Offloading Method for
MEs

In this section, we compare the performance of DDPG, A3C,
and DPG, which are DRL algorithms with the actor–critic frame-
work and the binary task-offloading algorithm based on DQN in
terms of reducing average delay, reducing total system energy
consumption and ensuring load balancing among edge servers.
Our ultimate goal is to obtain an optimal task-offloading scheme
to achieve the lowest average delay and total energy consumption
of the IoMT system while ensuring the load balance of all edge
servers. Therefore, we compare the performance of these three
algorithms from the perspective of average time delay, total
power consumption and edge server load balancing to illustrate
the superiority of the DDPG-driven task-offloading method.

In the simulation experiments, we compare how much average
time delay and total energy consumption will be brought by
task-offloading schemes obtained by the above three algorithms
and the load balance of edge servers when the total data amount
is 50 GB, 100 GB, 150 GB, 200 GB, or 250 GB. A3C, DPG,
and DQN are outlined as follows.

Fig. 7. Comparison of average time delay under different amounts of data
among DDPG, A3C, DPG, and DQN.

Fig. 8. Comparison of total energy consumption under different amounts of
data among DDPG, A3C, DPG, and DQN.

1) A3C: A3C greatly improves the difficulty of actor-critic
convergence. A3C uses the method of multithreading to
conduct interactive learning with the environment in mul-
tiple threads at the same time and summarizes the learning
results of each thread to guide its subsequent learning
interaction with the environment [41].

2) DPG: DPG obtains the optimal scheme through the co-
ordination of the policy network and value network [42].
However, unlike DDPG, DPG does not use target networks
during training, which cannot alleviate problems of boot-
strapping.

3) DQN: The binary task-offloading algorithm based on
DQN uses the output of a deep neural network to generate
the corresponding binary task-offloading strategy. In this
approach, the ME either processes all data locally or
offloads the task to the nearest edge server.

1) Comparison of Average Time Delay and Total Power
Consumption: As can be seen from Figs. 7 and 8, with the
increase in the total amount of data, the average time delay
and total energy consumption of IoMT both rise. An increase
in the total population of the system inevitably leads to greater
time delay and energy consumption, and the trends shown in
Figs. 7 and 8 are consistent with this. The scheme calculated
by DDPG can always obtain the least average time delay and
total energy consumption under any data amount. The data in
Figs. 7 and 8 fully show that DDPG has excellent performance
in reducing system overheads of IoMT and improving system
operation efficiency. The binary task-offloading algorithm based

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Lancaster University. Downloaded on October 31,2023 at 13:41:07 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: DDPG-BASED TASK OFFLOADING WITH OPTIMIZED K-MEANS IN EDGE-COMPUTING-ENABLED IOMT CYBER-PHYSICAL SYSTEMS 11

Fig. 9. Comparison of σ2
LCR under different amounts of data among DDPG,

A3C, DPG, and DQN.

on DQN always obtains the maximum average delay and total
energy consumption.

2) Comparison of Load Balancing Among Edge Servers:
Fig. 9 shows the comparison of σ2

LCR under different amounts
of data among DDPG, A3C, DPG, and DQN. The LCR value
represents the load on the edge server. The square deviation
of LCR value σ2

LCR can represent the workload balance of all
edge servers. A smaller value of σ2

LCR indicates that data are
evenly distributed among edge servers, avoiding low utilization
of some edge servers or overload of some edge servers. It can
be seen from Fig. 9 that DDPG always gets the smallest σ2

LCR
value, regardless of the total data to be processed. The binary
task-offloading algorithm based on DQN always gets the largest
σ2

LCR value. This shows that the task-offloading scheme obtained
by DDPG can allocate data rationally and make the computing
resources of edge servers be used more fully. DQN is used to
deal with discrete action problems while DDPG is extended to
deal with continuous action problems based on DQN. Therefore,
DQN and DDPG are suitable for binary task offloading and
partial task offloading, respectively. However, compared with
partial task offloading, the strategy of binary task offloading can-
not make full use of the edge resources in the IoMT system and
the local resources of ME. Therefore, DQN is inferior to DDPG
in reducing system loss and balancing load among edge servers.

VI. CONCLUSION

In this article, a task-offloading algorithm based on DRL
assisted by clustering is proposed to reduce the costs of the
IoMT system and ensure load balancing among edge servers.
First, an optimized K-means with a more scientific initialization
process is designed to cluster MEs to improve the effectiveness
of the subsequent task offloading. Then, a DDPG-driven task-
offloading method is proposed to minimize the average time
delay and total energy consumption of IoMT while ensuring load
balancing among edge servers. A large number of comparative
experiments demonstrate that an optimized K-means is more
scientific and in clustering MEs and our unloading algorithm is
more advantageous in minimizing system overhead.

However, in this article, only static IoMT systems are consid-
ered, and the increasing number of mobile medical devices in
a real-world scenario makes the task-offloading problem more
complex. The future research will combine the mobile edge
computing technology with IoMT to develop a more effective

task-offloading method under the premise of fully considering
the mobility of MEs. In addition, edge servers in this study
cannot transfer data to each other, so the load balancing between
them can only be realized by the centralized task-offloading
strategy. In future research, we will build an IoMT system, which
can realize load balancing by transferring data between edge
servers, and expect to achieve better performance through the
distributed task-offloading method.

REFERENCES

[1] Z. Li et al., “Integrated CNN and federated learning for COVID-19
detection on chest X-ray images,” IEEE/ACM Trans. Comput. Biol. Bioinf.,
to be published, 2022, doi: 10.1109/TCBB.2022.3184319.

[2] Z. Li et al., “A knowledge-driven anomaly detection framework for social
production system,” IEEE Trans. Comput. Social Syst., to be published,
2022, doi: 10.1109/TCSS.2022.3217790.

[3] X. Lin, J. Wu, A. K. Bashir, W. Yang, A. Singh, and A. A. AlZubi,
“FairHealth: Long-term proportional fairness-driven 5G edge healthcare
in Internet of medical things,” IEEE Trans. Ind. Informat., vol. 18, no. 12,
pp. 8905–8915, Dec. 2022, doi: 10.1109/TII.2022.3183000.

[4] S. I. Zida, Y.-D. Lin, C. L. Lee, and Y. L. Tsai, “Evaluation of an intelligent
edge computing system for the hospital intensive care unit,” in Proc.
IEEE 3rd Eurasia Conf. Biomed. Eng., Healthcare, Sustainability, 2021,
pp. 179–182, doi: 10.1109/ECBIOS51820.2021.9510541.

[5] L. Yang, K. Yu, S. X. Yang, C. Chakraborty, Y. Lu, and T. Guo, “An
intelligent trust cloud management method for secure clustering in 5G
enabled Internet of medical things,” IEEE Trans. Ind. Informat., vol. 18,
no. 12, pp. 8864–8875, Dec. 2022, doi: 10.1109/TII.2021.3128954.

[6] S. K. S. Tyagi, A. Mukherjee, S. R. Pokhrel, and K. K. Hiran, “An
intelligent and optimal resource allocation approach in sensor networks
for smart Agri-IoT,” IEEE Sensors J., vol. 21, no. 16, pp. 17439–17446,
Aug. 2021, doi: 10.1109/JSEN.2020.3020889.

[7] Z. Ming, M. Zhou, L. Cui, and S. Yang, “Faith: A fast blockchain-
assisted edge computing platform for healthcare applications,” IEEE
Trans. Ind. Informat., vol. 18, no. 12, pp. 9217–9226, Dec. 2022,
doi: 10.1109/TII.2022.3166813.

[8] X. Xu, C. Yang, M. Bilal, W. Li, and H. Wang, “Computation offloading for
energy and delay trade-offs with traffic flow prediction in edge computing-
enabled IoV,” IEEE Trans. Intell. Transp. Syst., to be published, 2022,
doi: 10.1109/TITS.2022.3221975.

[9] X. Xu, J. Gu, H. Yan, W. Liu, L. Qi, and X. Zhou, “Reputation-aware
supplier assessment for blockchain-enabled supply chain in Industry 4.0,”
IEEE Trans. Ind. Informat., vol. 19, no. 4, pp. 5485–5494, Apr. 2023,
doi: 10.1109/TII.2022.3190380.

[10] M. Armbrust et al., “A view of cloud computing,” Commun. ACM, vol. 53,
no. 4, pp. 50–58, 2010, doi: 10.1145/1721654.1721672.

[11] X. Xu, H. Li, Z. Li, and X. Zhou, “Safe: Synergic data filtering for federated
learning in cloud-edge computing,” IEEE Trans. Ind. Informat., vol. 19,
no. 2, pp. 1655–1665, Feb. 2023, doi: 10.1109/TII.2022.3195896.

[12] X. Xu, Q. Wu, L. Qi, W. Dou, S.-B. Tsai, and M. Z. A. Bhuiyan, “Trust-
aware service offloading for video surveillance in edge computing enabled
internet of vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 3,
pp. 1787–1796, Mar. 2021, doi: 10.1109/TITS.2020.2995622.

[13] G. Manogaran and B. S. Rawal, “An efficient resource allocation
scheme with optimal node placement in IoT-Fog-cloud architecture,”
IEEE Sensors J., vol. 21, no. 22, pp. 25106–25113, Nov. 2021,
doi: 10.1109/JSEN.2021.3057224.

[14] H. Wu, Z. Zhang, C. Guan, K. Wolter, and M. Xu, “Collaborate edge and
cloud computing with distributed deep learning for smart city Internet of
Things,” IEEE Internet Things J., vol. 7, no. 9, pp. 8099–8110, Sep. 2020,
doi: 10.1109/JIOT.2020.2996784.

[15] J. Ren, G. Yu, Y. He, and G. Y. Li, “Collaborative cloud and edge computing
for latency minimization,” IEEE Trans. Veh. Technol., vol. 68, no. 5,
pp. 5031–5044, May 2019, doi: 10.1109/TVT.2019.2904244.

[16] X. Xu, H. Tian, X. Zhang, L. Qi, Q. He, and W. Dou, “DisCOV: Distributed
COVID-19 detection on X-ray images with edge-cloud collaboration,”
IEEE Trans. Serv. Comput., vol. 15, no. 3, pp. 1206–1219, May/Jun. 2022,
doi: 10.1109/TSC.2022.3142265.

[17] X. Lyu, H. Tian, C. Sengul, and P. Zhang, “Multiuser joint task
offloading and resource optimization in proximate clouds,” IEEE
Trans. Veh. Technol., vol. 66, no. 4, pp. 3435–3447, Apr. 2017,
doi: 10.1109/TVT.2016.2593486.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Lancaster University. Downloaded on October 31,2023 at 13:41:07 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TCBB.2022.3184319
https://dx.doi.org/10.1109/TCSS.2022.3217790
https://dx.doi.org/10.1109/TII.2022.3183000
https://dx.doi.org/10.1109/ECBIOS51820.2021.9510541
https://dx.doi.org/10.1109/TII.2021.3128954
https://dx.doi.org/10.1109/JSEN.2020.3020889
https://dx.doi.org/10.1109/TII.2022.3166813
https://dx.doi.org/10.1109/TITS.2022.3221975
https://dx.doi.org/10.1109/TII.2022.3190380
https://dx.doi.org/10.1145/1721654.1721672
https://dx.doi.org/10.1109/TII.2022.3195896
https://dx.doi.org/10.1109/TITS.2020.2995622
https://dx.doi.org/10.1109/JSEN.2021.3057224
https://dx.doi.org/10.1109/JIOT.2020.2996784
https://dx.doi.org/10.1109/TVT.2019.2904244
https://dx.doi.org/10.1109/TSC.2022.3142265
https://dx.doi.org/10.1109/TVT.2016.2593486

12 IEEE SYSTEMS JOURNAL

[18] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016,
doi: 10.1109/JIOT.2016.2579198.

[19] X. Zhou et al., “Edge computation offloading with content caching in
6G-enabled IoV,” IEEE Trans. Intell. Transp. Syst., to be published, 2023,
doi: 10.1109/TITS.2023.3239599.

[20] S.-H. Park, S. Jeong, J. Na, O. Simeone, and S. Shamai, “Collaborative
cloud and edge mobile computing in C-RAN systems with minimal end-to-
end latency,” IEEE Trans. Signal Inf. Process. Netw., vol. 7, pp. 259–274,
2021, doi: 10.1109/TSIPN.2021.3070712.

[21] H. Babbar, S. Rani, and S. A. Alqahtani, “Intelligent edge load migration
in SDN-IIoT for smart healthcare,” IEEE Trans. Ind. Informat., vol. 18,
no. 11, pp. 8058–8064, Nov. 2022, doi: 10.1109/TII.2022.3172489.

[22] G. Qu, H. Wu, R. Li, and P. Jiao, “DMRO: A deep meta reinforcement
learning-based task offloading framework for edge-cloud computing,”
IEEE Trans. Netw. Service Manage., vol. 18, no. 3, pp. 3448–3459,
Sep. 2021, doi: 10.1109/TNSM.2021.3087258.

[23] X. Xu et al., “Edge server quantification and placement for offloading so-
cial media services in industrial cognitive IoV,” IEEE Trans. Ind. Informat.,
vol. 17, no. 4, pp. 2910–2918, Apr. 2021, doi: 10.1109/TII.2020.2987994.

[24] I. A. Elgendy, W.-Z. Zhang, Y. Zeng, H. He, Y.-C. Tian, and Y.
Yang, “Efficient and secure multi-user multi-task computation offload-
ing for mobile-edge computing in mobile IoT networks,” IEEE Trans.
Netw. Service Manage., vol. 17, no. 4, pp. 2410–2422, Dec. 2020,
doi: 10.1109/TNSM.2020.3020249.

[25] X. Xu, S. Tang, L. Qi, X. Zhou, F. Dai, and W. Dou, “CNN partitioning and
offloading for vehicular edge networks in Web3,” IEEE Commun. Mag.,
vol. 61, no. 8, pp. 36–42, Aug. 2023, doi: 10.1109/MCOM.002.2200424.

[26] M. S. Mekala, A. Jolfaei, G. Srivastava, X. Zheng, A. Anvari-Moghaddam,
and P. Viswanathan, “Resource offload consolidation based on deep-
reinforcement learning approach in cyber-physical systems,” IEEE Trans.
Emerg. Topics Comput. Intell., vol. 6, no. 2, pp. 245–254, Apr. 2022,
doi: 10.1109/TETCI.2020.3044082.

[27] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
“Deep reinforcement learning that matters,” in Proc. AAAI Conf. Artif.
Intell., vol. 32, 2018, doi: 10.1609/aaai.v32i1.11694.

[28] T. P. Lillicrap et al., “Continuous control with deep reinforcement learn-
ing,” 2015, arXiv:1509.02971.

[29] P. Lin, Q. Song, F. R. Yu, D. Wang, and L. Guo, “Task offloading for
wireless VR-enabled medical treatment with blockchain security using
collective reinforcement learning,” IEEE Internet Things J., vol. 8, no. 21,
pp. 15749–15761, Nov. 2021, doi: 10.1109/JIOT.2021.3051419.

[30] M. S. Mekala et al., “A DRL-based service offloading approach using
DAG for edge computational orchestration,” IEEE Trans. Comput. Social
Syst., to be published, 2022, doi: 10.1109/TCSS.2022.3161627.

[31] J. Shi, J. Du, J. Wang, J. Wang, and J. Yuan, “Priority-aware task offload-
ing in vehicular fog computing based on deep reinforcement learning,”
IEEE Trans. Veh. Technol., vol. 69, no. 12, pp. 16067–16081, Dec. 2020,
doi: 10.1109/TVT.2020.3041929.

[32] M. Tang and V. W. Wong, “Deep reinforcement learning for task offloading
in mobile edge computing systems,” IEEE Trans. Mobile Comput., vol. 21,
no. 6, pp. 1985–1997, Jun. 2022, doi: 10.1109/TMC.2020.3036871.

[33] Z. Ning et al., “Deep reinforcement learning for intelligent internet of
vehicles: An energy-efficient computational offloading scheme,” IEEE
Trans. Cogn. Commun. Netw., vol. 5, no. 4, pp. 1060–1072, Dec. 2019,
doi: 10.1109/TCCN.2019.2930521.

[34] R. Yadav et al., “Smart healthcare: RL-based task offloading scheme
for edge-enable sensor networks,” IEEE Sensors J., vol. 21, no. 22,
pp. 24910–24918, Nov. 2021, doi: 10.1109/JSEN.2021.3096245.

[35] S. Nath and J. Wu, “Deep reinforcement learning for dynamic computation
offloading and resource allocation in cache-assisted mobile edge comput-
ing systems,” Intell. Converged Netw., vol. 1, no. 2, pp. 181–198, 2020,
doi: 10.23919/ICN.2020.0014.

[36] Z. Chen, L. Zhang, Y. Pei, C. Jiang, and L. Yin, “NOMA-based multi-
user mobile edge computation offloading via cooperative multi-agent deep
reinforcement learning,” IEEE Trans. Cogn. Commun. Netw., vol. 8, no. 1,
pp. 350–364, Mar. 2022, doi: 10.1109/TCCN.2021.3093436.

[37] X. He, H. Lu, M. Du, Y. Mao, and K. Wang, “QoE-based task offloading
with deep reinforcement learning in edge-enabled internet of vehicles,”
IEEE Trans. Intell. Transp. Syst., vol. 22, no. 4, pp. 2252–2261, Apr. 2021,
doi: 10.1109/TITS.2020.3016002.

[38] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern Recognit.
Lett., vol. 31, no. 8, pp. 651–666, 2010.

[39] J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: The fuzzy c-means clustering
algorithm,” Comput. Geosci., vol. 10, no. 2/3, pp. 191–203, 1984.

[40] X. Xu et al., “Game theory for distributed IoV task offloading with fuzzy
neural network in edge computing,” IEEE Trans. Fuzzy Syst., vol. 30,
no. 11, pp. 4593–4604, Nov. 2022, doi: 10.1109/TFUZZ.2022.3158000.

[41] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,”
in Proc. Int. Conf. Mach. Learn., 2016, pp. 1928–1937.

[42] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in Proc. Int. Conf. Mach.
Learn., 2014, pp. 387–395.

Chenyi Yang is currently working toward the B.S.
degree in software engineering with the School of
Software, Nanjing University of Information Science
and Technology, Nanjing, China.

His research interests include deep learning and
edge computing.

Xiaolong Xu (Senior Member, IEEE) received the
Ph.D. degree in computer science and technology
from Nanjing University, Nanjing, China, in 2016.

He was a Research Scholar with Michigan State
University, USA, from 2017 to 2018. He is currently
a Professor with the School of Software, Nanjing
University of Information Science and Technology,
Nanjing. His research interests include edge comput-
ing, the Internet of Things, cloud computing, and big
data.

Muhammad Bilal (Senior Member, IEEE) received
the Ph.D. degree in information and communication
network engineering from the School of Electronics
and Telecommunications Research Institute (ETRI),
Korea University of Science and Technology, Dae-
jeon, South Korea, in 2017.

From 2017 to 2018, he was with Korea University,
where he was a Postdoctoral Research Fellow with
the Smart Quantum Communication Center. In 2018,
he joined the Hankuk University of Foreign Studies,
South Korea, where he was an Associate Professor

with the Division of Computer and Electronic Systems Engineering. He is
currently a Senior Lecturer (Associate Professor) with the School of Computing
and Communications, Lancaster University, Lancaster, U.K.

Yiping Wen received the Ph.D. degree in computer
science from Central South University, Changsha,
China, in 2013.

He is currently a Professor with the School of Com-
puter Science and Engineering, Hunan University
of Science and Technology, Xiangtan, China. From
2015 to 2017, he did his postdoctoral research with the
Department of Computer Science and Technology,
Nanjing University, China. He is currently a Full
Professor with the Hunan Key Laboratory for Service
Computing and Novel Software Technology, Hunan

University of Science and Technology. His current research interests include
business process management, machine learning, big data, and cloud computing.

Tao Huang received the bachelor’s and master’s
degrees in computer science from the School of Com-
puter and Software, Nanjing University of Informa-
tion Science and Technology, Nanjing, China, in 2010
and 2013, respectively.

He is currently a Lecturer with the School of Com-
puter and Technology, Silicon Lake College, Suzhou,
China. His research interests include issues related to
artificial intelligence algorithms, big data, and cloud
computing.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Lancaster University. Downloaded on October 31,2023 at 13:41:07 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/JIOT.2016.2579198
https://dx.doi.org/10.1109/TITS.2023.3239599
https://dx.doi.org/10.1109/TSIPN.2021.3070712
https://dx.doi.org/10.1109/TII.2022.3172489
https://dx.doi.org/10.1109/TNSM.2021.3087258
https://dx.doi.org/10.1109/TII.2020.2987994
https://dx.doi.org/10.1109/TNSM.2020.3020249
https://dx.doi.org/10.1109/MCOM.002.2200424
https://dx.doi.org/10.1109/TETCI.2020.3044082
https://dx.doi.org/10.1609/aaai.v32i1.11694
https://dx.doi.org/10.1109/JIOT.2021.3051419
https://dx.doi.org/10.1109/TCSS.2022.3161627
https://dx.doi.org/10.1109/TVT.2020.3041929
https://dx.doi.org/10.1109/TMC.2020.3036871
https://dx.doi.org/10.1109/TCCN.2019.2930521
https://dx.doi.org/10.1109/JSEN.2021.3096245
https://dx.doi.org/10.23919/ICN.2020.0014
https://dx.doi.org/10.1109/TCCN.2021.3093436
https://dx.doi.org/10.1109/TITS.2020.3016002
https://dx.doi.org/10.1109/TFUZZ.2022.3158000

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

