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Abstract 17 

Acoustic telemetry (AT) has become ubiquitous in aquatic monitoring and fish biology, 18 

conservation and management. Since the early use of active ultrasonic tracking that 19 

required researchers to follow at a distance their species of interest, the field has diversified 20 

considerably with exciting advances in both hydrophone and transmitter technology. Once a 21 

highly specialised methodology however, AT is fast becoming a generalist tool for those 22 

wishing to study or conserve fishes, leading to diversifying application by non-specialists. 23 

With this transition in mind, we evaluate exactly what AT has become useful for, discussing 24 

how the technological and analytical advances around AT can address important questions 25 

within fish biology. In doing so, we highlight the key ecological and applied research areas 26 

where AT continues to reveal crucial new insights, and in particular, when combined with 27 

complimentary research approaches. We provide a comprehensive breakdown of the state 28 

of the art for applications of AT, discussing the ongoing challenges, where its strengths lie, 29 

and how future developments may revolutionise fisheries management, behavioural 30 

ecology and species protection. Through selected papers we illustrate specific applications 31 

across the broad spectrum of fish biology. By bringing together the recent and future 32 

developments in this field under categories designed to broadly capture many aspects of 33 

fish biology, we hope to offer a useful guide for the non-specialist practitioner as they 34 

attempt to navigate the dizzying array of considerations and ongoing developments within 35 

this diverse toolkit.  36 
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Introduction 71 

Sound propagates four times faster, attenuates slower and travels considerably further in 72 

water than it does in air. On this premise, acoustic telemetry (AT) technologies have, over 73 

the last 70 years or so, developed and diversified into a vast and lucrative industry enabling 74 

researchers to track numerous aquatic species over substantial spatial and temporal scales 75 

(Cooke, Hinch, et al., 2004; Hockersmith & Beeman, 2012; Hussey et al., 2015). Once a 76 

highly specialised methodology, typically adopted to understand the movement and space 77 

use of relatively large animals, it has since become embedded into a variety of ecological 78 

and applied research areas, co-evolving alongside a suite of complimentary aquatic research 79 

approaches. Nowhere has this transition been more pronounced than within the fish 80 

biology community. AT has now become very much a generalist tool and one being adopted 81 

by an increasing diversity of practitioners from early career researchers to conservationists 82 

within the charity sector, to those managing recreational and commercial fisheries (Curtis et 83 

al., 2015; Hussey et al., 2017), aquaculture (Hassan et al., 2019) and commercial water 84 

facilities (Klimley et al., 2017). In light of this broadening market, and in the context of the 85 

rapid and ongoing technological developments within the AT field, there is a necessity to 86 

critically evaluate which aspects of fish biology this technology can now be useful in 87 

addressing.    88 

In essence, animal borne, acoustic telemetry transmitters (hereafter ‘transmitters’) 89 

that generate coded acoustic signals at a specific frequency, can be logged by a researcher 90 

directly with a hydrophone from a boat (active tracking) or by stationary, in situ ‘receivers’ 91 

with hydrophones attached, recording the presence of an individual within a particular, and 92 

highly variable range. Since the early days of active, continuous ultrasonic tracking in the 93 



1950s, the field of AT has undergone a number of significant phase transitions; perhaps 94 

most significantly, the implementation of passive tracking using arrays of fixed receivers, 95 

which revolutionised the scope and scale of research question that could be tackled (Cote et 96 

al., 1998; Heupel & Hueter, 2001). This development put the onus firmly on study design, 97 

dramatically increasing the number of individuals that could contribute to a given study by 98 

reducing the effort required to collect data for each. Today, depending on the spatial 99 

arrangement and type of receivers installed within an array, data can take two forms; it can 100 

be returned either as presence only, recording the identification, time and date of a fish 101 

anywhere within an ellipsoid that represents the detection range of a particular receiver; or 102 

alternatively, by closely-spacing receivers to produce detection ranges that overlap, high-103 

resolution tracking can be conducted generating sub-metre positional estimates of fish 104 

movement (Brownscombe et al., 2019a). Nuances in the placement of acoustic receiver 105 

arrays are often dictated by the geography or environmental conditions of specific study 106 

sites. Arrays therefore can be highly variable leading to placements of receiver gates within 107 

bottlenecks, grided arrays within enclosed lakes or embayments or receiver ‘chains’ that 108 

track the shape of a coastline, island or river bed (Heupel et al., 2006). With recent advances 109 

in both transmitter and receiver technologies comes the opportunity to track fishes for 110 

longer, with higher precision or greater spatial coverage, follow them in deeper habitat or in 111 

near real-time, while also gathering physiological data on the individuals that carry tags 112 

(Lennox et al., 2017). This increasing data richness and quantity per transmitter also 113 

provides opportunity to address ethical considerations by reducing the number of 114 

individuals required to undergo procedures. Perhaps then, it is unsurprising that this toolkit 115 

has become more attractive in recent years, to the diversity of people that work directly and 116 

indirectly with fish. 117 



Whether using the simplest or the most advanced set up, the challenges and trade-118 

offs facing practitioners can be similar. These may include weighing up tag size against 119 

battery life (longevity) and the ethical implications associated with this (Brownscombe et al., 120 

2019a) or balancing acoustic coverage against research costs and questions (Heupel et al., 121 

2006). Alternatively, it might be quantity versus quality of data and how best to analyse 122 

them (Guzzo et al., 2018; Whoriskey et al., 2019), the biases associated with the spatial 123 

configuration of an array (Kraus et al., 2018) or how detection range can vary through time 124 

impacting the accuracy and precision of the data, with significant implications for 125 

interpretation (Brownscombe, Griffin, et al., 2019; Kessel et al., 2014; Payne, Gillanders, 126 

Webber, & Semmens, 2010). These challenges (and more), have led to a wealth of 127 

developments in the visualisation and statistical analyses of acoustic telemetry data 128 

(Campbell, Watts, Dwyer, & Franklin, 2012; Jacoby, Brooks, Croft, & Sims, 2012; Niella et al., 129 

2020; Whoriskey et al., 2019) which continue to improve our understanding of fish biology 130 

across a diverse array of aquatic environments. 131 

Recent developments within AT offer new and more diverse opportunities to explore 132 

different aspects of fish biology. The increasing miniaturisation, reduced cost and improved 133 

battery life of current acoustic transmitters for instance, has ensured that AT has become a 134 

vital part of the toolkit for those seeking to influence the conservation of imperilled aquatic 135 

species (Cooke, 2008) or inform management practices to mitigate pressures on their 136 

ecosystems (Matley et al., 2021). Alongside hardware developments, data management 137 

strategies, once rare and often unstandardized (Heupel, Semmens, & Hobday, 2006), now 138 

offer broad scale, even global collaboration between researchers operating different 139 

project-specific AT arrays (Abecasis et al., 2018; Cooke et al., 2011). Such innovation, 140 



however, is reliant on open methods and compatibility between manufacturer tag protocols 141 

(a set of unique tag IDs) and code maps (a list defining the particular tag IDs a receiver can 142 

listen for). Users new to AT therefore, need to carefully consider the availability of sensor 143 

combinations and receiver-transmitter, two-way compatibility, offered by the different AT 144 

manufacturers, if collaborative research is desirable (Reubens et al., 2021). Where analyses 145 

used to be largely descriptive, they have started to become considerably more hypothesis-146 

driven and quantitative (Donaldson et al., 2014). Even the very description of the field now 147 

goes beyond referring simply to tags that transmit a unique ID code to passive monitoring 148 

stations, to incorporate multifunctional temperature, pressure, acceleration and even heart-149 

rate sensors (e.g. Kadar, Ladds, Mourier, Day, & Brown, 2019; Payne et al., 2015), with the 150 

option to retrieve real-time updates on detections via satellite (e.g. Forget et al., 2015). For 151 

those relatively new to the field, this diversification and continuing development can offer 152 

up a daunting array of challenges and decisions (summarised in Fig. 1), and as a growing 153 

number of excellent reviews will attest, the applications of these technologies are broad 154 

(Brownscombe et al., 2019a; Donaldson et al., 2014; Heupel et al., 2006; Hussey et al., 2015; 155 

Matley et al., 2023, 2021).  156 

In light of the transition of AT from a very specialised methodology to more of a 157 

generalist toolkit, our intention for this paper is to take stock of where the field is at in its 158 

capacity to reveal crucial information about fishes occupying an increasingly unpredictable 159 

and impacted world – our marine and freshwater ecosystems. As increasingly diverse 160 

practitioners enter the field, we wish to address the impact that AT can have on both 161 

fundamental ecological and applied research themes. We discuss these themes in turn 162 

breaking them down into more specific areas, utilising key papers that exemplify progress in 163 



each of these research areas (we also summarise this information in Table 1). At the same 164 

time, we aim to discuss some of the current limitations and future advances of AT, as well as 165 

celebrate the progress the field has and continues to make within fish biology.  166 

 167 

1) Fundamental Ecological Research 168 

In this section we focus on areas where AT has revealed significant ecological insight within 169 

fish biology. The aim is to summarise the developments in several key fields, using studies 170 

that exemplify notable progress in these particular research areas. 171 

 172 

Migration patterns 173 

As a behaviour, migration is both ecologically important but also significantly threatened 174 

worldwide, yet understanding migration in fishes is often complicated by variation within 175 

species and between populations (Lennox et al., 2019). An appreciation of where, when and 176 

what proportion of fish populations migrate, however, is of critical importance for the 177 

management of threatened and/or commercially important fish stocks, the conservation of 178 

threatened species and our fundamental understanding of species distributions. Deriving 179 

this information for many species however is challenging, not least because fish movements 180 

do not abide by human imposed political boundaries and species rarely range in areas under 181 

a single jurisdiction. Furthermore, depending on the species, migration can occur across 182 

different orders of spatial magnitude from tens to thousands of kilometres (Chapman et al., 183 

2012; Lédée et al., 2021; Lowerre-Barbieri et al., 2021). 184 

For fishes that migrate either entirely in freshwater (potadromy) or between 185 

freshwater and marine environments (diadromy), the use of AT has proven critical for 186 



revealing the scale and variability associated with migration, particularly in the freshwater 187 

component of this behaviour. Strategic use of receiver ‘lines’ or check points that span 188 

waterways and reliably capture both upstream and downstream movements of tagged 189 

individuals, enable estimates of migration distance, timing and relative survivorship 190 

(Clements et al., 2005; Melnychuk et al., 2007). Indeed, the mechanics of moving between 191 

salinity gradients for diadromous species have only really been fully understood by 192 

combining AT with otolith microchemistry. Telemetry defined migratory behaviour, in 193 

combination with otolith analyses, has been used to validate or disregard chemical 194 

signatures associated with transitions in pinkeye mullet Trachystoma petardi (Castelnau 195 

1875) (Miles et al., 2018) but also to determine partial anadromy in non-native rainbow 196 

trout Oncorhynchus mykiss (Walbaum 1792) (Roloson et al., 2020).  197 

These combined, interdisciplinary approaches provide new levels of ecological 198 

understanding, particularly for complex migratory species, helping to better link the 199 

influence of flexibility in migration strategy to threats that may impact individuals/groups 200 

within populations disproportionately (Tamario et al., 2019). A closer look from a recent 201 

study however, suggests that 50% of published articles that use AT to understand fish 202 

movement or ecology, fail to incorporate or consider mortality within their study, while 203 

those that did estimate an ~11% loss on average of tagged individuals from the system 204 

(Klinard & Matley, 2020). This is pertinent as transmitters will continue to be detected even 205 

after depredation, leading to movement patterns that reflect the predator rather than the 206 

prey species (Bohaboy et al., 2020). Even those that survive but leave the array, and thus 207 

exhibit different behaviour to individuals typically included in analyses, remain rarely 208 

discussed in studies on movement. Yet despite these important caveats, AT continues to 209 



prove invaluable for understanding fish migration. Hayden et al. (2014) for example, used 210 

receiver lines situated in the nearshore waters of Lake Huron and a multi-state mark-211 

recapture model to describe three migratory pathways for walleye Sander vitreus (Mitchill 212 

1818), demonstrating that males spent significantly longer in the rivers before migrating out 213 

into a bay than females, despite no sex preferences for specific pathways. Acoustic tracking 214 

of lake sturgeon Acipenser fulvescens (Rafineque 1817) in the same region (Huron-Erie 215 

Corridor, HEC) has also proven instrumental in highlighting intraspecific variability in 216 

freshwater migrants, known as divergent migration (Kessel et al., 2018). As anthropogenic 217 

barriers continue to pose one of the biggest threats to riverine migration, the identification 218 

of consistent migratory behavioural states, including partial migration where only some 219 

individuals from a population migrate and non-migratory residency within populations, 220 

illuminates the need for separate management strategies as well as the potential for species 221 

to respond to continued change to their habitat (Kessel et al., 2018). 222 

As indicated, moving from a freshwater environment to marine imposes considerable 223 

physiological demands on fishes but also our ability to utilise AT to monitor migration, 224 

without the natural ‘bottleneck’ that rivers provide. Array design between habitats can vary 225 

substantially (Fig. 2) highlighting the need to carefully consider species ecology. For 226 

diadromous species like freshwater eels (Anguilla spp.) that mature in rivers and estuaries 227 

before undertaking their only spawning migration to the open ocean, understanding the 228 

timing, drivers and threats to migration is vital for conserving these imperilled species 229 

(Jacoby et al., 2015). Béguer-Pon et al. (2014) successfully deployed acoustic receivers 230 

covering a distance of 420 km to monitor the ‘silver eel’ escapement of mature America eels 231 

Anguilla rostrata (Lesueur 1821) as they headed out towards the Sargasso Sea to spawn 232 



from the St Lawrence River. The acoustic data revealed substantial individual variation in the 233 

timing and speed of migration, but for the first time a strong reliance on nocturnal, ebb tide 234 

transport by silver eels to escape the estuary (Béguer-Pon et al., 2014). When tracking 235 

species in the marine environment, horizontal migration is typically detected on departure 236 

and arrival by strategically-deployed receiver arrays, as documented for example in bull 237 

sharks Carcharhinus leucas (Müller & Henle 1839) (Daly, Smale, Cowley, & Froneman, 2014; 238 

Heupel et al., 2015). Alternatively, with depth-temperature sensor tags, active acoustic 239 

tracking can provide a window into the short-term vertical migrations (e.g. diel vertical 240 

migration) of highly-mobile species of pelagic fishes (Block, Booth, & Carey, 1992; Nakano, 241 

Matsunaga, Okamoto, & Okazaki, 2003). Finally, long-distance movements in the marine 242 

environment, normally outside the capabilities of passive AT, are beginning to be captured 243 

via coordinated networks of acoustic arrays operating data sharing agreements to track 244 

cross-jurisdictional migration of wide ranging, commercially important or threatened 245 

species (Lédée et al., 2021; Young et al., 2020). 246 

 247 

Space use and fine-scale movement strategies 248 

Across most aquatic environments, AT has been used to great effect to estimate fish activity 249 

space, home range, core areas or ‘central places’ and residency patterns, in addition to how 250 

these parameters vary by species, sex or time of day, month or year (Garcia, Mourier, & 251 

Lenfant, 2015; Heupel, Simpfendorfer, & Hueter, 2004; Heupel, Lédée, & Simpfendorfer, 252 

2018; Kirby, Johnson, & Ringler, 2017; Nakayama et al., 2018; Papastamatiou et al., 2018; 253 

Simpfendorfer, Heupel, & Hueter, 2002; Watson et al., 2019). The accuracy of space use 254 

estimates derived from passive telemetry data are very much dependent on the metric used 255 



(Dwyer et al., 2015). Some of the most widely used are now built into bespoke packages, 256 

such as those in the R statistical environment (R Core Team, 2022) for example VTrack, 257 

offering standardised tools for deriving and comparing these metrics between locations 258 

(Udyawer et al., 2018). It is important to stress however, that there remain a number of 259 

challenges associated with estimating space use from AT data, not least that estimates are 260 

constrained by the size of the array, limiting reliability to species that use smaller areas than 261 

are being monitored. Accurate estimation of space use and home range of fishes is first 262 

contingent on precise estimation of location (Hostetter & Royle, 2020), and must consider 263 

biases that include autocorrelation, small numbers of tagged individuals (sample size) and 264 

irregular data collection. The pros and cons of home range estimator methods have been  265 

discussed in detail by Silva et al., (2022) and (Kraft et al., 2023) offering accessible guides to 266 

choosing between the different options, in addition to R code for applying autocorrelated 267 

kernel density estimators (AKDEs) for home range analyses. With these caveats in mind, and 268 

for species that show some form of site-attachment or fidelity, AT has remained invaluable 269 

for understanding space use at multiple spatial scales, particularly in recent years with the 270 

advent of open source data platforms enabling the coordination of data streams from 271 

multiple acoustic arrays to cover significantly broader spatial ranges for more mobile species 272 

(Brownscombe, Lédée, et al., 2019; Campbell et al., 2012; Harcourt et al., 2019; Heupel,  273 

Kessel, Matley & Simpfendorfer, 2018; Udyawer et al., 2018). 274 

Aggregated by species or sex, movement metrics (including range and dispersal) 275 

provide an important overview of space use at the population level. However, metrics from 276 

individual animals inform another important area of research; the role of individual 277 

variability or personalities (consistent individual behaviours) and behavioural syndromes (a 278 



correlated suite of behaviours) on population stability and adaptive resilience (Villegas-Ríos 279 

et al., 2017). Using Atlantic cod Gadus morhua L. as a model species, Villegas-Ríos, Réale, 280 

Freitas, Moland, & Olsen (2018) exposed individuals to repeated and standardised 281 

behavioural laboratory assays prior to releasing them with acoustic tags into a high-282 

resolution, acoustic tracking array (Innovasea Positioning System, VPS) to monitor their 283 

movements in response to changes in sea surface temperature. From hyperbolic positioning 284 

within the VPS array and depth-sensing tags, fine-scale reconstructions of three-dimensional 285 

(3D) movements were modelled against individual home range across the proactive (bold) 286 

to reactive (shy) behavioural spectrum. In short, one of the key results to come from this 287 

novel work was that personality was found to be a significant predictor of changes in home 288 

range size (Villegas-Ríos et al., 2018). 289 

 290 

Habitat connectivity and energy landscapes 291 

The design of a passive acoustic array and the equipment used, can vary significantly (Fig. 2). 292 

As such, data can be generated as discrete, presence-only packages associated with 293 

important monitoring locations or as discussed, near-continuous, high-resolution 3D 294 

individual tracks reliant on receiver overlap and considerable post-processing of the data to 295 

determine fine-scale position. Particularly when tracking species in the marine environment 296 

or in very large water bodies, positional accuracy is regularly sacrificed for spatial coverage.  297 

Arrays can be designed around habitats of interest such as reefs, islands or atolls (Espinoza, 298 

Heupel, Tobin, & Simpfendorfer, 2015; Papastamatiou, Meyer, Kosaki, Wallsgrove, & Popp, 299 

2015), or as gridded arrays and receiver lines, which are sometimes adopted where the 300 

physical geography of the study location and the research question permits, such as 301 



bottlenecks or enclosed embayments (Block et al., 2019; Braccini, Rensing, Langlois, & 302 

McAuley, 2017; Farmer & Ault, 2011; Hussey et al., 2017) (Fig. 2). 303 

When covering broad geographic areas or different habitat types, discrete spatial data 304 

lend themselves well to spatial network analyses of movements between receiver locations 305 

(Jacoby et al., 2012). The true strength of network analyses is that they offer a scalable 306 

method with which to quantify linkages, measure relative centrality or importance of 307 

receivers, explore connectivity and determine the extent to which landscape (structural) 308 

and behaviour (functional) processes facilitate or impede movement between habitat 309 

patches or resources (Baguette & Van Dyck, 2007; Bélisle, 2005). Indeed coupling 310 

movement networks with Stable Isotope Analyses (SIA) has led to important and novel 311 

discoveries around energy landscapes, for example, the classification of permit Trachinotus 312 

falcatus into two distinct ecotypes within the Florida Keys, US; one, with a heavy reliance on 313 

movements between the Florida reef tract and seagrass beds and their associated prey, and 314 

a second that primarily occupy artificial reefs relying almost exclusively on pelagic prey, with 315 

clear implications for the management of the fishery (Brownscombe et al., 2022). 316 

Consequently, it is becoming increasingly apparent that AT-derived fish movements, in 317 

combination with bioenergetic models, can greatly inform our understanding of nutrient 318 

dynamics with network approaches being adopted to predict the distribution and quantities 319 

of nitrogen egestion by predators on coral reefs (Williams et al., 2018). Using a similar 320 

coupled approach, Eggenberger et al., (2019) were able to demonstrate variation in the 321 

behaviour and habitat selection of Common Snook Centropomus undecimalis (Bloch 1792), 322 

despite similar trophic ecology, in response to mesotrophic (higher mobility) and eutrophic 323 

(higher residency) conditions. 324 



The application of network analyses to tease apart some of these processes is still in 325 

its relative infancy, particularly the utilisation of edge durations (time associated with 326 

movements from one receiver to another) to explore some of the mechanisms driving 327 

connectivity. These detection ‘gaps’ have proven useful for inferring different fish 328 

behaviours associated with ‘restricted' movements and ‘out-of-range’ dispersal (Williamson 329 

et al., 2021). To date, network approaches have been successfully applied to AT data to 330 

show how reef-associated shark species connect different management zones in the Great 331 

Barrier Reef (Espinoza et al., 2015a), and how movement strategies can influence species 332 

risk to illegal fishing inside marine protected areas (Jacoby et al., 2020). Furthermore, 333 

network metrics, that capture dynamic movements, appear both consistent with and 334 

complementary to more traditional estimates of space use (Lédée et al., 2015), offering an 335 

extended toolkit to the AT practitioner (Jacoby & Freeman, 2016). For example, the 336 

repeated path use of young G. morhua between habitats within a coastal fjord system was 337 

strongly, negatively correlated with water temperature, a finding revealed through 338 

measuring the relative abundance of different types of triadic network motif, or three 339 

receivers linked by directed movements (Staveley et al., 2019). 340 

Segregation 341 

In addition to using AT to quantify space use, we might wish to explore some of the 342 

mechanisms driving this space use. Individual behavioural signatures, whether in two or 343 

three dimensions, may be dictated by their local environment or by the presence of 344 

conspecifics of a different sex or size or individuals of different species altogether, 345 

manifesting itself as spatial and/or temporal differences in habitat use. Realistically, it is 346 

likely to be a combination of factors, yet understanding the dynamics of segregation within 347 



a population is important, particularly when considering species that face spatially- or 348 

seasonally-focused exploitation or partial spatial protection (Mucientes et al., 2009). Using 349 

Innovasea’s (Amirix Systems, Nova Scotia, Canada) accelerometer and pressure transmitters 350 

(V9AP and V13AP) for example, Payne et al. (2015) were able to demonstrate diurnal 351 

segregation on a vertical plane between an estuarine piscivore, mulloway Argyrosomus 352 

japonicus (Temminck & Schlegel 1844) and benthic carnivore, sand whiting Sillago ciliate 353 

(Cuvier 1829) in south-eastern Australia. Interestingly, the authors utilise these multi-354 

purpose tags to monitor the impact of short-term stochastic weather events on segregation; 355 

the study reveals that rain precedes a switching of spatial segregation to temporal 356 

segregation (increased nocturnal activity in A. japonicus and decreased nocturnal activity in 357 

S. ciliata), a result compellingly supported by 10 years of commercial set-net CPUE data, 358 

which show increased rainfall produce higher catch rates for A. japonicus but lower catch 359 

rates for S. ciliata (Payne et al., 2015). 360 

Sexual segregation is relatively well documented in marine fishes (Wearmouth & Sims, 361 

2008) and here too AT has played a key role in distinguishing both sexual segregation within 362 

adult populations of elasmobranchs (e.g. Kock et al., 2013), as well as female-only refuging 363 

behaviour as a reproductive strategy for numerous species (e.g. Hight & Lowe, 2007; Sims, 364 

Nash, & Morritt, 2001). Furthermore, mobile, predatory elasmobranchs also have a 365 

tendency to demonstrate segregation by species; processes such as competitive exclusion 366 

within specific habitat types (Papastamatiou, Bodey, et al., 2018) or dynamic, temporal 367 

segregation driven by tidal cycles (Lea et al., 2020) have been demonstrated in remarkably 368 

small systems – relative to the movement capabilities of the study species – such as remote 369 

isolated atolls, using long-term AT data (e.g. Heupel et al., 2018). Despite having similar 370 



isotopic niches, AT has also revealed that leopard coral grouper Plectropomus leopardus 371 

(Lacépède 1802) and spotted coral grouper Plectropomus maculatus (Bloch 1790) had 372 

minimal spatial overlap, yet similar space use patterns, due to vertical segregation in the 373 

water column (Matley et al., 2017). Again, network analyses have been put to good use to 374 

show, for example, that even amongst apparently sympatric species, sharks vary 375 

considerably in their choice of habitat, route choice and connectivity within a gridded 376 

receiver array in the southern Great Barrier Reef, Australia (Heupel et al., 2018). Other 377 

applications include the use of community detection algorithms to networks of movements 378 

between different species and age classes, to explore dissimilarity in movement within 379 

complex fish assemblages (e.g. Casselberry et al., 2020).  380 

 381 

Fish interactions 382 

Aggregation and social structure inference  383 

With enough individuals tagged simultaneously within a population, AT can be hugely 384 

informative for identifying and exploring fish aggregations and their key drivers, most 385 

notably spawning (Domeier & Colin, 1997), predation (Temming et al., 2007), refuging and 386 

nursery behaviours (Bass et al., 2017; Jacoby, Croft, & Sims, 2012). In teleost reef predators 387 

such as grouper, determining the location, timing and composition of reproductive 388 

aggregations is crucial to not only answer fundamental questions about population biology, 389 

but also inform spatial protection measures because aggregations are commonly targeted 390 

by fishers (Keller et al., 2020; Rowell et al., 2015). Indeed, the tendency of numerous pelagic 391 

species, including tropical tuna, to aggregate around floating objects has long been 392 

exploited to aid harvest through the deployment of artificial Fish Aggregating Devices 393 



(FADs). The relative ease of instrumenting FADs with acoustic receivers and other sensors 394 

has enabled substantial knowledge gains about movement ecology (Pérez et al., 2020), the 395 

social interactions of individuals (Stehfest et al., 2013), and the vulnerability of target and 396 

bycatch species to exploitation (Forget et al., 2015). In freshwater, the locations of adult 397 

lake trout Salvelinus namaycush (Walbaum 1792) aggregations in Lake Huron, North 398 

America, determined from 5 years of acoustic positioning data within an extensive (19 to 27 399 

km2) receiver array revealed hitherto unknown putative spawning sites which were 400 

subsequently confirmed by diver surveys of egg deposition (Binder et al., 2018). Several of 401 

these sites were too small or obscure to have been identified by bathymetric survey or did 402 

not conform to the conceptual model of a spawning habitat, so without telemetry would 403 

have otherwise likely been overlooked (Binder et al., 2018). Indeed, temperature and depth 404 

sensors on acoustic transmitters can reveal the abiotic conditions that favour aggregation. 405 

For example, having gained this information through AT, Bajer et al. (2011) used the Judas 406 

technique, that is tracking an individual to reveal the location of an aggregation, to assist in 407 

the removal of invasive common carp Cyprinus carpio L. aggregations, with an efficiency of 408 

up to 94%. 409 

Determining the mechanism driving aggregation or social behaviour from remote, 410 

passive data is in some instances non-trivial and in others near impossible depending on the 411 

ecology of the species. Consequently, a new line of questioning has emerged that uses 412 

machine learning inference to define multi-individual clustering events in acoustic time-413 

series data that indicate the spatial and temporal co-occurrence of individuals (Jacoby, 414 

Papastamatiou, & Freeman, 2016; Mourier, Lédée, Guttridge, & Jacoby, 2018). Extracting 415 

these events using Bayesian inference reduces the subjectivity around predefining a 416 



sampling window with which to measure ‘social’ behaviour (10 mins? 10 hours?), relying 417 

more on the natural and variable clustering of the visitation patterns produced by 418 

gregarious fishes. Co-occurrence networks can then be generated from the clusters and 419 

worked up using common quantitative network analysis methods (Jacoby & Freeman, 420 

2016), however careful interpretation of social networks produced using these methods is 421 

needed as the distance over which individuals may be socialising (i.e. co-occurring) is not 422 

always known (Mourier, Bass, Guttridge, Day, & Brown, 2017; see Fine scale social 423 

associations for more discussion around this). Caveats aside, this method has enabled 424 

exploration of the mechanisms behind social behaviour in highly mobile, free-ranging fishes 425 

for the first time, revealing for example stable social bonds in reef sharks that can last for 426 

years and likely function to facilitate information exchange (Papastamatiou et al., 2020). 427 

  428 

Fine-scale social associations and trophic interactions 429 

The fine-scale co-occurrences of individuals, whether between conspecifics as mutually 430 

beneficial social affiliations, or between predator and prey species as direct interactions and 431 

displacements, are an important factor that can strongly influence population dynamics 432 

and/or spatial distributions of species (Morueta-Holme et al., 2016). The encounter rates of 433 

Atlantic tarpon Megalops atlanticus (Valenciennes 1847) with predatory C. leucas and great 434 

hammerhead Sphyrna mokarran (Rüppell 1837) sharks in the Florida Keys for instance, were 435 

elevated at specific locations and prior to spawning aggregation behaviour, a result 436 

identified using machine learning to quantify spatio-temporal overlap in multi-species AT 437 

tracking data (Griffin et al., 2022). To truly understand fine-scale interactions and 438 

associations, however, requires direct measurement rather than inference methods, and at 439 



a precise and known spatial scale (Aspillaga et al., 2021; Mourier et al., 2017). Prototype 440 

methodologies and proof of concept studies have made exciting initial progress towards this 441 

endeavour. For example, recently developed transmitters that switch transmission code 442 

when digested in the stomach of a predator remove much of the uncertainty around 443 

formerly inferring predation events from changes in track characteristics (e.g. Romine et al., 444 

2014), enabling more robust and detailed exploration of fishes’ behaviours immediately 445 

prior to predation (Weinz et al., 2020). To reveal social behaviour using AT, a degree of 446 

control is needed over the system. Using model systems of fish constrained to localised 447 

areas or relatively small lakes, high-resolution tracking in combination with Proximity Based 448 

Social Networks, PBSN (temporal network analysis), significant strides have been taken 449 

towards measuring the wild social behaviour of fish. Vanovac et al. (2021), for example, 450 

tracked 108 freshwater fish (four species) every few seconds for a year to measure the 451 

location and duration of intra- and interspecific sociality. To measure social behaviour in 452 

wider ranging species, beyond the practical limits of pre-defined static receiver arrays, 453 

prototype ‘Business card tags’ have been developed; these operate as both transmitters and 454 

receivers for mobile peer-to-peer communication (Holland et al., 2010). Further, proximity 455 

transmitters, miniaturised receivers that can detect conspecific coded transmitters over 456 

distances <10 m (Guttridge et al., 2010) (Fig. 3, specifically d,e), have shown that an 457 

individual’s actual social encounters can be logged and stored pending transmitter retrieval. 458 

The need for further technological developments in this area however remains; applications 459 

of devices like the Innovasea Mobile Transceiver (VMT) and Sonotronics’ miniSUR - which 460 

are hybrid devices that transmit coded signals like acoustic transmitters, but also record 461 

transmissions from other tagged animals on the same frequency like monitoring receivers – 462 

are currently limited to small numbers on relatively large animals (e.g. Barkley et al., 2020; 463 



Haulsee et al., 2016), and in situations where the unit  can be recovered to obtain the data. 464 

In all likelihood, advances in the 3D accuracy of spatial positioning of multiple tagged fish 465 

will yield the most insight into fine-scale social behaviours over the next few years (Aspillaga 466 

et al., 2021).  467 

As with many aquatic tracking technologies, data retrieval continues to be a significant 468 

hurdle to overcome, particularly for studies involving multiple individuals and their 469 

interactions, as the data can grow exponentially with the addition of every individual. That 470 

said, current off-the-shelf mobile receivers, in combination with other sensors have 471 

provided tantalising insight into the interactions of particularly elusive and cryptic species. 472 

Barkley et al., (2020) for example, use VMTs, accelerometers, radio antennae combined in a 473 

pop-off package to describe increased activity (acceleration and depth changes) in slow 474 

growing, seemingly solitary Greenland sharks Somniosus microcephalus (Bloch & Schneider 475 

1801), when in the presence of conspecifics. Furthermore, the encounter rates of 476 

commercially important fish species (G. morhua, Salmo salar and A. rostrata) and 477 

opportunistic mammalian predators have been gleaned through standard tagging (of fishes) 478 

with coded transmitters and the deployment of VMT receivers and GPS tags to grey 479 

seals Halichoerus grypus (Fabricius 1791) in Canada (Lidgard et al., 2014). Finally, as we have 480 

already discussed, AT combined with investigations into stable isotope ratios, blood plasma 481 

and other physiological processes, have greatly furthered our understanding of trophic 482 

dynamics, food web structure and niche partitioning within species that share habitat 483 

(Dwyer et al., 2020; Matich & Heithaus, 2014). With the advent of increasingly open-source 484 

tracking technologies, we envisage exciting progress in this area in the next 10 years. 485 

 486 



Depth preferences and temperature regulation 487 

Detailed knowledge of how fish move through all three dimensions of the space they inhabit 488 

is often pivotal to our understanding of the mechanisms underpinning their behaviour. 489 

Further, the predominance of ectothermy among fishes means depth selection and 490 

thermoregulation are closely coupled. Water temperature together with dissolved oxygen 491 

levels, light, salinity gradients, prey availability, predation risk, and physical habitat features 492 

are among the key factors shown to drive vertical movements (Hussey et al., 2015) ranging 493 

from localised diel migrations for example, in Myliobatid rays (Matern, Cech, & Hopkins, 494 

2000) to large-scale seasonal habitat shifts in S. vitreus (e.g. Raby et al., 2018). As we have 495 

seen, ongoing refinement of hardware and analytical techniques can enable sub-metre 496 

positions on the z-axis to be determined directly from the acoustic ping, and in near real-497 

time, using hyperbolic positioning. This has been used to good effect to elucidate how 498 

different structures, flow field and temperature characteristics around hydropower facilities 499 

affect the vertical distribution and corresponding downstream passage outcome for 500 

migrating juvenile salmonids (Arenas et al., 2015; Deng et al., 2011; Li et al., 2015; Ransom 501 

et al., 2007). However, it is worth highlighting here that different manufacturers use 502 

different transmitter coding systems in an attempt to minimise both tag clashes and false 503 

positive detections and this can impede compatibility and collaboration between networks 504 

of researchers using different technologies (see Reubens et al., (2021) for discussion around 505 

this issue). Further, the comprehensive receiver arrays required for continuous 3D 506 

positioning often render its application unfeasible in the open ocean and large, deep lakes 507 

where species can be far-ranging in all dimensions. While in shallow water there may be too 508 

little vertical separation in the locations of the hydrophones to adequately resolve 509 

transmitter depth (Cooke et al., 2005; Semmens, 2008).  510 



Combining pressure and temperature sensors with acoustic transmitters offers a 511 

widely applicable and often more cost-effective alternative (both in terms of hardware and 512 

data processing requirements), and can still provide high accuracy and precision (Baktoft et 513 

al., 2015). For example, Schurmann, Claireaux, & Chartois (1998) were able to demonstrate 514 

that a change in the amplitude of diurnal migrations of sea bass Dicentrarchus labrax L. 515 

resulted from manipulating vertical oxygen gradients in the water column within an 516 

experimental tank, down to an accuracy of ± 5 cm using acoustic pressure sensor 517 

transmitters. However, in field environments with extreme variation in environmental 518 

parameters (e.g. salinity, water temperature, flow rate) high accuracy in depth 519 

measurements may require additional field calibration (Brownscombe et al., 2019a; Veilleux 520 

et al., 2016). Technical issues aside, acoustically transmitted temperature and/or depth 521 

sensor data has been used to investigate the influence of feeding regimes on vertical activity 522 

of cage cultured S. salar (Føre et al., 2017), vertical thermoregulation in sunfish Mola mola 523 

L. (Cartamil & Lowe, 2004), vertical separation of year classes through predator-prey 524 

dynamics in bull trout Salvelinus confluentus (Suckley 1859)(Gutowsky et al., 2013), the 525 

impact of seismic surveying on G. morhua and saithe Pollachius virens L. distribution 526 

(Davidsen et al., 2020) and sea trout Salmo trutta L. use of vertical gradients as a response 527 

to parasite loading (Mohn et al., 2020). Direct measurement of the temperatures and 528 

depths that free ranging fish move through has allowed us to move beyond broad 529 

correlational inferences derived from 2D location data alone and advance understanding of 530 

fundamental aspects of fish physiology and environment selection. Nevertheless, there is 531 

the risk that without corresponding environmental data collected at biologically relevant 532 

temporal and spatial resolution, studies will lack the ability to fully contextualise such 533 

animal borne data. For example, despite gaining detailed movement data, including depth, 534 



from Mekong giant catfish Pangasianodon gigas (Chevey 1931) tracked for up to nine 535 

months in a reservoir, insufficient collection of concurrent temperature and dissolved 536 

oxygen datasets meant it was not possible to draw robust conclusions about the 537 

mechanisms driving their behaviour (Mitamura et al., 2008). Into the future, there is great 538 

potential for repeating tracking studies that have produced well defined relationships 539 

between fish distribution, behaviour and water temperature as a tool to identify and predict 540 

the impacts of a changing climate. 541 

 542 

Invasion biology	543 

An important prerequisite to applied measures for combating the growing list of fish species 544 

becoming established in non-native locations, is to understand the impact they have on 545 

native species and habitats. This might include monitoring the spread, movement 546 

capabilities, reproductive ecology and competitive interactions with other species (Deacon 547 

et al., 2011; Mills et al., 2004). AT has been pivotal in revealing some of this ecological 548 

information which can then inform more targeted mitigation measures. One of the first fish 549 

to ever be domesticated, the goldfish Carassius auratus L., now considered as one of the 550 

world’s most invasive species, were tracked in a river in south-western Australia using AT to 551 

show that some individuals were capable of moving >200 km per year; crucially this study 552 

was also able to infer that movements into lentic habitat coincide with spawning behaviour 553 

in this species providing vital knowledge for control programmes (Beatty et al., 2017). 554 

Monitoring a newly-established source population of round goby Neogobius melanosto- 555 

mus (Pallas 1814) within the Rideau Canal in Ontario, Canada, Bergman et al. (2022) were 556 

able to track the invasion front of this species which is normally native to the Black and 557 



Caspian Seas. Dispersal amongst a quarter of the tagged individuals was established via 558 

receivers situated within canal locks which were hypothesised to enhance passage 559 

(Bergman et al., 2022). The scale of the challenge facing marine invasive control has been 560 

demonstrated through a study on lionfish Pterois volitans L. in the western Atlantic, showing 561 

an eight-fold variation in individual home range estimates (~48000 – 379000 m2) and ~40% 562 

of individuals travelling >1 km from the tagging site towards deeper habitat (Green et al., 563 

2021). With the success of species invasion often contingent on species-community 564 

interactions (Lodge, 1993), multispecies AT tagging programmes will be key, as will 565 

developments to overcome the challenges discussed in the previous section around 566 

measuring fine-scale interactions.  567 

 568 

2) Applied Research 569 

There are many cases in which the ecological information gleaned from AT studies on fish 570 

are an important precursor to applied management measures, mitigation strategies or 571 

conservation interventions. In this section we explore more explicitly how AT has 572 

fundamental application in the management and conservation of aquatic resources.  573 

  574 

Species conservation and management 575 

Evaluating extinction risk and threat assessments 576 

Continuing data deficiency in even basic population parameters hinders the robust 577 

classification of extinction risk for a fifth of global fish species as assessed by the IUCN 578 



(IUCN, 2020) and prevents the potential for their protection within legal frameworks 579 

(VanderZwaag et al., 2013). The assessment of endangerment relies on fundamental 580 

knowledge of demographic parameters to estimate absolute population size, trends in 581 

abundance and geographic range (IUCN, 2012). By tracking individuals from different 582 

components of the population, for extended periods of time, and with the ability to 583 

determine much more precisely when mortality occurs compared to traditional mark-584 

recapture approaches, AT provides a powerful means of collecting such data for fishes (Lees 585 

et al., 2021). Further, telemetry-derived data can facilitate quantification of the main 586 

processes driving species decline and extinction (habitat loss and alteration, 587 

overexploitation; introduced species; pollution, and climate change), most obviously in the 588 

context of how the spatial ecology of a species predisposes it to specific impacts (Cooke, 589 

2008). In a notably rare example of deep water AT, southern dogfish Centrophorus zeehaanii 590 

(White, Ebert & Compagno 2008) were tracked for 15 months at depths of between 300 – 591 

700 m, to demonstrate the effectiveness of a large (100 km long) fishery closure to conserve 592 

this species, extirpated from much of its range off southern Australia (Daley et al., 2015). 593 

Although clearly possible, there remain substantial limitations to tracking wide-ranging 594 

species and/or those that occupy deep water habitats. Technical and logistical challenges in 595 

deploying deep water arrays have constrained the majority of AT studies to depths under 50 596 

m (Loher et al., 2017), and bringing physoclistous species to the surface to tag poses the risk 597 

of damage and mortality due to barotrauma and post-release predation (e.g. Bohaboy et al., 598 

2020; Curtis et al., 2015). The increasing use of in-situ tagging methods at depth and 599 

improvements to surface tagging protocols such as employing descender devices and rapid 600 

tag attachment methods to minimise time at the surface will further unlock the huge 601 



potential of AT to study fish movements and population dynamics in the deep sea (Edwards 602 

et al., 2019; Runde & Buckel, 2018). 603 

Threats to fishes, especially those with complex lifecycles that undertake migrations 604 

between habitats, vary through their lifetimes, making the study of all life-stages 605 

imperative. Minimum acoustic transmitter size has historically prohibited the study of small, 606 

juvenile life-stages (see Tracking small species and life-stages), the population component 607 

which for many endangered fish species, suffers high human-induced mortality (e.g. 608 

Chinook salmon Oncorhynchus tshawytscha (Walbaum 1792) Perry et al., 2010). Further, for 609 

long-lived species transmitter life duration may be prohibitively short (Donaldson et al., 610 

2014). Technological advances, the growth of large transnational receiver networks (e.g. 611 

Great Lakes Acoustic Telemetry Observation System [GLATOS], Ocean Tracking Network 612 

[OTN], European Tracking Network [ETN]) and new approaches to data analysis such as 613 

incorporating acoustic data into mark-recapture models (Bird et al., 2014; Dudgeon et al., 614 

2015), as well as the growth of spatially explicit integrated population models (Goethel et 615 

al., 2021) that better estimate abundance and predict the impacts of environmental change, 616 

are all expanding the utility of AT for threat assessments and conservation planning. 617 

However, AT remains just one in a suite of necessary tools, as exemplified by studies on S. 618 

microcephalus, a species for which significant knowledge gaps remain. Effective 619 

management is most likely to be realised through a multi-method approach integrating 620 

biologged physiological, environmental and movement data with population genetics and 621 

genomics, stable isotope analysis and commercial catch data (Edwards et al., 2019). 622 

 623 



Fisheries management 624 

AT has enabled vast knowledge gains about the spatial ecology of fishes, which in the 625 

context of exploited species, especially those that are wide-ranging and/or straddle national 626 

boundaries, is fundamental to effective fisheries management. In the first instance, AT can 627 

be far more effectively employed to define the stock unit than traditional approaches such 628 

as mark-recapture (Donaldson et al., 2014). For example, acoustic tracking of Greenland 629 

halibut Reinhardtius hippoglossoide (Walbaum 1792) revealed connectivity between its use 630 

of inshore fjords and offshore habitats around Baffin Island, Canada, casting doubt on the 631 

status of separate inshore ‘resident’ and offshore stocks and highlighting the need for a 632 

shared quota (Barkley et al., 2018). Conversely, the discovery of high site fidelity and 633 

presumed natal homing has challenged the assumption of common stocks in many species 634 

including G. morhua (Robichaud & Rose, 2001; Svedäng et al., 2007), Pacific cod Gadus 635 

microcephalus (Tilesius 1810) (Cunningham et al., 2009), and C. undecimalis (Young et al., 636 

2014). There is also growing recognition of how individual and ontogenetic variation in 637 

spatial responses to environmental conditions and exploitation, drive the dynamics of 638 

populations (Alós et al., 2019; Goethel et al., 2021).  In addition to this increasingly fine-639 

scale understanding of the structure and spatial dynamics of exploited stocks, many of the 640 

life-history parameters required for stock assessment models can be directly determined 641 

using AT (Crossin et al., 2017). These include instantaneous mortality rate (Block et al., 642 

2019), survival probabilities related to life-stage and migration pattern (Chaput et al., 2019; 643 

Perry et al., 2010), delayed mortality from by-catch or recreational catch and release 644 

activities (Curtis et al., 2015; Halttunen et al., 2010; Yergey et al., 2012), predation 645 

(Berejikian et al., 2016), and the spawning contribution of different stock components (Faust 646 

et al., 2019). Crucially for fisheries management, this information is attainable at the scale of 647 



the specific stock (DeCelles & Zemeckis, 2014). By bringing together datasets on spatial 648 

dynamics with these population parameters, spatially explicit integrated population models 649 

offer great potential to more accurately predict species’ responses to dynamic processes 650 

such as harvest mortality and climate-induced changes (Goethel et al., 2021). Nonetheless, 651 

despite the versatility and breadth of AT for informing fisheries management, in a review of 652 

global AT studies on all aquatic animals, Matley et al., (2021) found a lack of management 653 

driven applications, with most studies focussed on generating general movement data. They 654 

also highlight key challenges to be addressed such as developing analytical tools and 655 

standardised approaches among research groups to allow the potential of the vast 656 

quantities of AT data being collected globally to be fully realised (Matley et al., 2023, 2021). 657 

It is the integration of AT with other approaches and the development of real-time 658 

tracking that offers most promise for more nuanced, creative and adaptive management of 659 

fisheries into the future. The increasing use of additional sensors such as heart-rate and 660 

electromyograms enable quantification of the sub-lethal fitness impacts of fishing activities 661 

such as the stress-induced physiological changes from catch and release (Donaldson, 662 

Arlinghaus, Hanson, & Cooke, 2008 and references therein). Within the context of 663 

ecotoxicological studies that have the dual purpose of understanding the impact of pollution 664 

on exploited stocks, as well as the human health risks of consumption, AT provides the 665 

opportunity to relate individual fish movements to contaminant burden and thereby 666 

manage exposure risk (Taylor et al., 2018). Crucially, AT enables an understanding of trait 667 

variation (e.g. movement) between individuals, relative to the population mean, which for 668 

fisheries that can unknowingly selectively harvest, can have important implications for 669 

ecosystem functioning when combined with physiological data (Allgeier et al., 2020). 670 



Further, behavioural change in response to hyperdepletion effects, such as reduced 671 

vulnerability or increased timidity can also be measured with AT, providing critical 672 

information for stock assessments and harvest control (Arlinghaus et al., 2017). Equally, 673 

integration with genomics promises insight into how genetic variation drives individual 674 

behaviour, with applications ranging from predicting the ways in which environmental 675 

change may impact highly locally adapted yet exploited species such as Arctic char 676 

Salvelinus alpinus L. (Moore et al., 2017), to understanding the extent to which fishing 677 

exerts a selective pressure on wild populations (Olsen et al., 2012; Villegas-Ríos et al., 2017). 678 

Gaining increasingly detailed information on threats enables continued refinement of 679 

conservation and fisheries management policies. For example, Forget et al., (2015) used AT 680 

to determine the vulnerability of target and non-target species to FADs used in the tuna 681 

purse seine fishery, identifying how impacts on non-target species could be reduced. Finally, 682 

by removing the time lapse associated with periodic receiver download, real-time tracking 683 

opens up huge possibilities for adaptive management, an approach that has also garnered 684 

much attention in aquaculture (Føre et al., 2017; Hassan et al., 2019). In one of the first 685 

examples from a wild fishery, on the Sacramento River, USA, receivers transmitting near 686 

real-time data to a communications centre, alerted water managers to the earlier than 687 

expected migration of O. tshawytscha smolts. In response, water diversion structures into 688 

the Delta were closed, greatly reducing the loss of fish through that route (Klimley et al., 689 

2017). 690 

 691 



Evaluating spatial protection 692 

Integrated data and the organised collaboration of ‘individual’ acoustic telemetry projects 693 

(Taylor et al., 2017), is already proving invaluable for managers to assess connectivity 694 

created by long-range movements between areas of concern (Lédée et al., 2021). This can 695 

also provide important information guiding the restoration of critical habitat (Brooks et al., 696 

2017) and enable adaptive management of river water control structures to enhance 697 

connectivity during key fish migration events (Klimley et al., 2017; Teichert et al., 2020). 698 

Consequently, through either manual tracking or passive arrays, AT remains one of the 699 

primary tools for assessing the space use of imperilled species residing within existing or 700 

proposed aquatic protected areas (Cooke et al., 2005). Novel approaches, for example those 701 

that combine AT with Resource Selection Functions that integrate movement data with data 702 

on resource availability, are beginning to be adopted to assist with the initial prioritisation 703 

and evaluation of habitat to be conserved (Griffin et al., 2021). Additionally, diversification 704 

of environmental DNA (eDNA) approaches to assess the spatio-temporal distribution of 705 

cryptic species will likely require the increasing support of AT to assist in validating positive 706 

eDNA detections (Harris et al., 2022) as this relatively recent methodology continues to be 707 

developed and refined. 708 

The ability to accurately assess the efficacy of protected areas using AT, however, is 709 

highly dependent on the size of the area under protection and the ability of the species in 710 

question to make long-range movements. Even for highly mobile species within Very Large 711 

Marine Protected Areas (VLMPAs), data from array-based acoustic telemetry can be 712 

analysed using dynamic Brownian Bridge Movement Models, which account for the distance 713 

and elapsed time between consecutive detections, and can establish the extent of an 714 



animal’s home range that is encapsulated within the protected area (e.g. Carlisle et al., 715 

2019); although note earlier discussion around the challenges in doing this. For the shark 716 

species within this study, it was estimated that grey reef sharks Carcharhinus amblyrhynchos 717 

(Bleeker 1856) required at least one year, and silvertip sharks Carcharhinus albimarginatus 718 

(Rüppell 1837), two years of monitoring to effectively estimate their activity spaces (Carlisle 719 

et al., 2019). Alternatively, even species capable of making long-distance movements, well 720 

beyond the range of acoustic receivers, may show high levels of residency or site fidelity to 721 

specific places and at specific times of year (Curnick et al., 2020) which may be sufficient to 722 

offer a degree of protection during important behaviours or key life-history stages. Thus, 723 

assessing the space use of multiple species concurrently can help to demonstrate enhanced 724 

efficacy of marine spatial protection, particularly as MPAs are rarely established with a 725 

single species in mind (Casselberry et al., 2020; Hays et al., 2020). Once a tagged fish moves 726 

outside of the range of a receiver however, there is a significant degree of uncertainty; even 727 

notoriously site faithful C. amblyrhynchos for example, can appear to undertake different 728 

scales of ‘long-range’ movements (134 km derived from acoustic telemetry [Heupel, 729 

Simpfendorfer, & Fitzpatrick, 2010] and 926 km derived from satellite tracking [White et al., 730 

2017]). This is beginning to be remedied, in part, through cross-boundary tracking initiatives 731 

such as the FACT Network, the Integrated Tracking of Aquatic Animals in the Gulf of Mexico 732 

(iTAG), OTN and the Integrated Marine Observing System (IMOS), but remains an issue for 733 

non-networked, isolated or remote protected areas. AT remains a powerful and persuasive 734 

tool for quantifying full or partial space use inside current or proposed protected areas 735 

(Barnett et al., 2012; Knip et al., 2012), movements between different management zones 736 

operating as a network (Espinoza et al., 2015a), estimation of species-specific risk from 737 



illegal fishing activity (Jacoby et al., 2020) and for improving spatial conservation by directly 738 

informing policy (Lea et al., 2016). 739 

 740 

Human-wildlife conflict 741 

Establishing the cause and effect of human-wildlife conflict in aquatic environments remains 742 

challenging and is infrequently documented. Additionally, the (often) passive nature of 743 

more recent AT studies mean that data are rarely available to inform real-time responses to 744 

potential conflict. However, the network of arrays around the coast of Australia, that 745 

comprise the IMOS (formerly the Australian Animal Tagging and Monitoring System, 746 

AATAMS), offer an exception to this general trend. Over the last decade, passive arrays in 747 

Western Australia have been supplemented with satellite-linked Innovasea VR4 Global 748 

(VR4G) receivers at some of the most popular beaches for people (McAuley et al., 2016). 749 

Providing near real-time data retrieval, AT is being linked to social media platforms to 750 

generate ‘live alerts’ to beach goers when white sharks Carcharodon carcharias L. tagged 751 

with acoustic transmitters approach the area. Building on the back of a large collaborative 752 

research programme, the Shark Monitoring Network initiative has informed thousands of 753 

water users about hundreds of potential ‘shark hazard events’ (McAuley et al., 2016). The 754 

advent of increasingly accessible, real-time data however, is not without its potential 755 

problems, with these same data being used to locate and kill ‘problem individual’ sharks, 756 

undermining not only the safeguarding intentions of the initiative, but also the science and 757 

the conservation behind the project (Meeuwig et al., 2015). This has led to calls for a more 758 

proactive approach to mitigating the potential unintended consequences of animal tracking, 759 



and the associated data use, that may manifest as increased exploitation and disturbance of 760 

threatened species (Cooke et al., 2017). 761 

Elsewhere, within recreational catch-and-release fisheries, estimates of post-release 762 

survival are often inaccurate with mortality sometimes occurring immediately, for example 763 

as a result of barotrauma, or a short while after as stress and injury from capture make 764 

individuals more susceptible to depredation (Raby et al., 2014). Quantifying the extent and 765 

timescale of mortality however remains a challenge but fortunately one where AT is 766 

beginning to make inroads. It was recently estimated, using a 3D acoustic positioning array 767 

in the Gulf of Mexico, that 83% of red snapper Lutjanus campechanus (Poey 1860) and 100% 768 

of gray triggerfish Balistes capriscus (Gmelin 1789) mortality was a result of post-release 769 

depredation. However, for snapper at least, releasing individuals with descender devices 770 

(weighted devices that assist in returning the fish to depth), did significantly reduce 771 

mortality (Bohaboy et al., 2020). It is important to remember of course that once collected, 772 

AT data might also reveal unintended insight. The near simultaneous loss in December 2014 773 

of 15 acoustic transmitters from an array in a protected area in the central Indian Ocean for 774 

example, was found to be indicative of a suspected illegal fishing event, once natural tag 775 

loss from the system had been controlled for (Tickler et al., 2019). As pressure on aquatic 776 

resources continue to increase, as well as increasing potential for distributional shifts of 777 

species in response to climate change, we envision that issues around human-wildlife 778 

conflict will continue to increase, presenting further opportunities for AT to play a role in 779 

monitoring and mitigation.  780 

 781 



Kinematics, energetics and physiological impacts of human modified systems  782 

In its simplest form, AT enables an individual to be detected at two spatially and temporally 783 

separated points allowing estimation of minimum distance moved over time, i.e. swim 784 

speed over ground, and thus broad inference about behavioural state and energy costs in 785 

free-swimming fish (e.g. Madison, Horrall, Stasko, & Hasler, 1972). The more spatially 786 

and/or temporally separated these detection events are, the larger the error in such 787 

estimates due to failure to capture variations in path curvature and depth, as well as 788 

behaviours such as resting and burst swimming (Cooke et al., 2004b). The increasing 789 

resolution and near-continuous positioning afforded by dense passive receiver arrays and 790 

active tracking technologies enables more accurate determination of swim path metrics 791 

such as speed, turn angle and direction of movement; although active tracking can 792 

practically only achieve this for a small number of individuals over limited temporal and 793 

spatial scales (Meese & Lowe, 2020). From these, key descriptors of path characteristics 794 

(e.g. tortuosity) can be derived to determine how well a track conforms to established 795 

movement models (e.g. correlated random walk, biased correlated random walk, Lévy 796 

walk), helping to develop more accurate models of dispersal (Papastamatiou et al., 2011). 797 

Overlaying fine-scale (± <5 m) 2D and 3D individual trajectories from acoustic 798 

positioning with concomitant environmental data, has proven key to understanding the 799 

mechanisms underpinning individual behavioural responses to anthropogenic perturbations. 800 

For example, near-continuous tracks of migratory European eel Anguilla anguilla and S. 801 

salar have been analysed in relation to flow fields on their approach to hydropower and 802 

water withdrawal facilities. These study systems have proven significant in unravelling the 803 

complex interactions between fish and the multiple hydrodynamic variables that elicit 804 



behaviours such as rejection on the approach to accelerating flows (Piper et al., 2015), 805 

milling (Svendsen et al., 2011b) and fine-scale adjustments in swimming direction and speed 806 

(Silva et al., 2020). Further, precise, real-world data are invaluable for the parametrisation 807 

and validation of agent-based models. Predictive behavioural models, that enable testing of 808 

different management scenarios aimed to reduce fish mortality and delay, are a key area of 809 

focus for  hydropower, water abstraction and flood defence managers (Goodwin et al., 810 

2006, 2014). 811 

Even at fine resolution however, inferences about the energetics of movements and 812 

behaviours derived from position data alone will be inherently lacking through failure to 813 

consider the dynamics of the fluid in which the fish is moving and the physiological state of 814 

the individual. Thorough understanding of the biomechanics and energetics of free-815 

swimming fish therefore requires moving beyond an animal’s track characteristics. 816 

Measurement and modelling of salient metrics of the surrounding hydrodynamic 817 

environment such as flow velocity, turbulence intensity and hydraulic strain have revealed 818 

much about how migrating fish attempt to optimise energy usage (Piper et al., 2015; Silva et 819 

al., 2020; Svendsen, Aarestrup, Malte, Thygesen, Baktoft, Koed, Deacon, Cubitt, et al., 2011). 820 

For example, the modelled energy costs of a pallid sturgeon Scaphirhynchus albus (Forbes & 821 

Richardson 1905) actively tracked during its upstream spawning migration through a 822 

velocity-surveyed section of the Missouri River, USA, were lower than those calculated for 823 

105 random paths in the same reach (McElroy et al., 2012). A suite of fish-borne sensors 824 

enable time-stamped monitoring of an individual’s physiological processes such as muscle 825 

activity (Cooke et al., 2004b), heart rate (Lucas et al., 1991) and tail beat frequency 826 

(Watanabe et al., 2012), while accelerometers and speedometers provide a measure of 827 



speed (Block et al., 1992). These have been used successfully alongside acoustic positioning 828 

techniques to explore fish activity patterns and their associated energy expenditures 829 

(Meese & Lowe, 2020), as well as the stress responses and energy costs resulting from 830 

human disturbances such as recreational fishing (McLean et al., 2019), hydropower 831 

generation (Burnett et al., 2014) and seismic surveying (Davidsen et al., 2020). While such 832 

technologies began as stand-alone and typically data storage devices (Cooke et al., 2004b), 833 

the evolution of transmitting sensors and those integrated within acoustic positioning 834 

technologies offer much greater scope to derive detailed data from free-swimming fish 835 

without the need for recapture (Cooke et al., 2016; Lennox et al., 2017). Further, rapidly 836 

evolving data compression and transfer techniques to embed additional sensor data within 837 

the transmitted acoustic signals will serve to deepen our mechanistic understanding of 838 

fishes’ behaviours as they move through their increasingly human-impacted environments 839 

(Cooke et al., 2022). 840 

 841 

3) Future directions and considerations 842 

In this section we look ahead to some of the innovations that we envisage will further 843 

enhance the application of AT in fish biology. We highlight areas in which innovations are 844 

likely to have the biggest impact, and discuss some of the more generic issues and 845 

considerations that still present a challenge for AT.  846 

 847 



Tracking small species and life-stages 848 

Historically, the large size of transmitters has biased the application of AT towards adult life-849 

stages and/or juveniles of large taxa only. Further, for species that exhibit sexual body size 850 

dimorphism such as anguillid eels, acoustic tracking has been skewed towards larger 851 

females (Bultel et al., 2014; Piper et al., 2013). This challenges the principal assumption that 852 

studied individuals are representative of the wider population and risks the erroneous 853 

extrapolation of findings.  In applied research, this can have serious negative consequences 854 

such as misdirection of conservation funds or ineffective mitigation measures. To remedy 855 

this, continuing efforts towards transmitter miniaturisation, aided by substantial 856 

improvements in battery and microprocessor technologies, are greatly increasing the range 857 

of life-stages and species that can be tracked (Fig 3)(Lennox et al., 2017). When studying 858 

small species and life-stages for which commercially available transmitters may approach 859 

the limits of the acceptable tag to body weight ratio (traditionally the 2% rule, [Winter, 860 

1983], although this is increasingly being questioned, [e.g. Brown, Cooke, Anderson, & 861 

McKinley, 1999]), body morphology also becomes an important consideration. The narrower 862 

body cavity relative to fish size among species with an elongated shape requires even 863 

smaller transmitters. New transmitters as small as 12.0 x 2.0 mm, weighing as little as 0.08 864 

grams in air and lasting 30 days at a 5-second ping rate interval have been recently tested in 865 

juvenile lamprey Entosphenus tridentatus (Richardson 1836) and A. rostrata (Mueller, Liss, & 866 

Deng, 2019, Fig 3a). Although AT has been used across a wide range of taxa, the scale of 867 

investment directed towards juvenile salmonid research to assess stocks (see Fisheries 868 

management) and quantify anthropogenic impacts such as hydropower facilities continues 869 

to drive much of the innovation within the field (Cooke et al., 2013; Walker et al., 2016). For 870 

example, injectable acoustic transmitters have been developed for small fish sizes but also 871 



the volume of individuals and speed required to tag statistically meaningful samples, given 872 

the high mortality rate of juvenile out-migrating salmon smolts (Deng et al., 2015). 873 

Long battery lives are required to track species across multiple life-history stages. The 874 

lifetime of an acoustic transmitter however, reflects the trade-off between battery power 875 

and the frequency and strength of transmissions, along with any additional power burden 876 

from integrated sensors. For smaller species and life-stages, the need for miniaturisation 877 

inevitably results in a transmitter with a shorter battery life and typically smaller detection 878 

range. Currently the smallest available acoustic transmitters are best suited to capturing 879 

brief windows of activity rather than providing near whole lifecycle data. Life-time tracking 880 

will significantly improve our understanding of small and cryptic species conservation 881 

however, and small battery-less tag technologies, for example passive integrated 882 

transponders (PIT) remain viable on a multi-decadal scale, enabling near whole lifetime 883 

studies. Near whole lifetime, AT studies of small individuals may be possible in the future 884 

using self-powered transmitters that incorporate a transducer to use the energy from fish 885 

locomotion to power the tag (Li et al., 2016). More sophisticated programming regimes, 886 

such as multiple time-limited transmission rates and dormancy, offers researchers 887 

increasing flexibility to extend the life of small transmitters to capture discrete periods of 888 

interest. These are, at present, pre-programmed and so require detailed a priori knowledge 889 

of predictable behaviours and/or life histories to be of most use (Davies et al., 2020; 890 

Stevenson et al., 2019). Further development of responsive acoustic transmitters that can 891 

dynamically adapt settings, for example transmission frequency or dormancy, in response to 892 

distinct changes in activity or environmental conditions such as the transition between fresh 893 



and saltwater, as has been trialled in Combined Acoustic and Radio Transmitter tags (Deary 894 

et al., 1998), would vastly improve their usefulness.     895 

Notwithstanding the restrictions posed by transmitter size, our application of AT to 896 

small species and/or life-stages is often limited by their inherent spatial ecology. The 897 

microscale movements relevant to many small fish species, for example, anemonefish 898 

Amphiprion sp. whose home range is often less than a metre (Kobayashi & Hattori, 2006), 899 

are smaller than can be effectively studied given the current accuracy of most technologies. 900 

Advancements in hyperbolic positioning systems have enabled researchers to reliably 901 

achieve 2D and 3D positions at sub-metre accuracy and precision in small individuals (e.g. 902 

Leclercq, Zerafa, Brooker, Davie, & Migaud, 2018)(Fig. 2). In a novel study, the JSATS,  903 

Juvenile Salmon Acoustic Telemetry system (Lotek Wireless, Canada), was employed in a 904 

challenging open marine environment to simultaneously track large numbers of individuals 905 

as small as 90 mm (Aspillaga et al., 2021). But challenges remain for many applications, 906 

especially in complex habitats such as rocky areas, coral reefs and macrophyte beds where 907 

detections are impeded (Baktoft et al., 2015). 908 

 909 

Multi-sensor transmitters, combined technologies and surrogates 910 

Multi-sensor acoustic transmitters and AT studies that integrate additional biologging 911 

technologies (accelerometers, magnetometers, physiological sensors etc), and in some 912 

instances, direct observations, clearly facilitate broader research questions (Fig. 3). This has 913 

promoted greater exploration, for example, of the proximate mechanisms underpinning 914 

specific population level processes such as group living, social behaviour or individual 915 

behavioural variation/consistency through time (Villegas-Ríos et al., 2017; Wilson et al., 916 



2015). Knowledge of these mechanisms for specific fish populations has the potential to 917 

greatly advance how we conserve and manage commercially important or highly threatened 918 

species (Villegas-Ríos et al., 2022). Importantly, the four major AT manufacturers (Thelma 919 

Biotel; Lotek; Innovasea, Sonotronics), offer different sensor combinations with some 920 

facilitating bespoke sensor integration into transmitters. Careful consideration of the end 921 

user of AT data and anticipated collaborations with other research groups is needed prior to 922 

deciding on where to source equipment. Currently, not all suppliers provide integration of 923 

all sensor combinations into their transmitters, and restrictions remain around the 924 

compatibility between transmitters and receivers from different suppliers.  925 

The recent modification and miniaturisation of RAFOS technology (a form of sound 926 

fixing and ranging) has presented the potential to track relatively small marine fish species 927 

across large areas of the ocean. The ROAM (RAFOS Ocean Acoustic Monitoring) approach 928 

uses moored acoustic transmitting units emitting acoustic signals that carry up to 1000 km, 929 

offering potential to conduct whole ocean scale tracking studies. Individual study fish are 930 

equipped with a RAFOS float receiver that detects the sound pulses from fixed stations and 931 

triangulates position. This logged information is either recovered by recapturing fish 932 

returning to known areas e.g. salmonid spawning rivers (which permits a significantly 933 

smaller tag than PSAT technologies), or can be transmitted to land via satellite after the 934 

float pops-up at a predefined time for species able to accommodate the larger tag this 935 

requires (Bronger & Sheehan, 2019). Clearly, these innovations have the potential to 936 

provide much greater insight into highly migratory species, particularly those that face 937 

multiple threats during long-distance movements. 938 



Yet despite many encouraging examples within the literature where technological 939 

innovation or integration of sensors has provided true insight and/or policy-relevant data, 940 

combining technologies may not be a viable solution in instances where mortality is high 941 

(Klinard & Matley, 2020). Ethical, logistical and financial drivers are increasingly promoting 942 

approaches that reduce, or even remove, the requirement to capture and tag live fish to 943 

derive biologically meaningful data. For example, in perilous scenarios such as during transit 944 

of water control and power generation infrastructure, multi-sensor passively conveyed 945 

devices have been employed to collect environmental data on the likely experience and fate 946 

of fish (Deng et al., 2017; Pflugrath, Boys, Cathers, & Deng, 2019). By incorporating key 947 

locomotory and behavioural characteristics, it is hoped that evolving robotic fish surrogates 948 

(Fig. 3c), combined with computational fluid mechanics and predictive modelling, will 949 

ultimately eliminate the need for live fish transit experiments at hydropower facilities 950 

(RETERO project - https://retero.org/). Many of the research areas discussed may be 951 

advanced by applying increasingly sophisticated analyses to historic acoustic telemetry 952 

datasets, and by combining biological, physiological and behavioural data to produce 953 

predictive models to allow scenario testing of management interventions, thus greatly 954 

reducing the costs and animal use associated with the traditional ‘build and test’ approach 955 

(Goodwin et al., 2014; Snyder et al., 2019). 956 

 957 

Live data for near real-time management 958 

AT systems which instantaneously relay detection data to a computer or data transfer unit 959 

at the surface present an opportunity for assessment of and dynamic adaptation to 960 

activities that may be stressful, harmful or fatal to fish. So-called ‘live’ AT technologies mean 961 



fish tracks can be reconstructed, in near real-time, to measure the impact on fish of human 962 

disturbance activities such as marine infrastructure development (e.g. pile driving, gas and 963 

oil exploration and extraction, wind farms and port development). The potential for this 964 

approach is in its infancy but has been installed as part of the innovative adaptive planning 965 

consent process for a major road/airport infrastructure scheme with potential to disrupt 966 

important salmonid migration routes in a Norwegian fiord (Davidsen et al., 2021). Data 967 

retrieval however, continues to be a limiting factor for many AT studies that would benefit 968 

from live or near-live upload. In many instances, it can be extremely expensive and/or 969 

unreliable. Consequently, there has been significant interest in innovation that can provide 970 

reliable, real-time, long-range wireless access to AT systems. A recent proof of concept of 971 

the Internet of Fish (IoF), uses Low Power Wide Area Networks (LPWANs) and LoRa (Long 972 

Range wireless data protocol with low power modulation) to achieve just this, presenting an 973 

exciting opportunity for long-term, real-time behavioural monitoring of fish in commercial 974 

settings for example (Hassan et al., 2019). The implications of this innovation could be huge 975 

for improving fish welfare in intensive aquaculture. With increased global scrutiny around 976 

the ethics of intensive fish farming it seems likely that AT technologies could become a 977 

routine tool to manage and demonstrate fish welfare (Matley et al., 2021). 978 

 979 

Accuracy, precision and validation 980 

Irrespective of the scale and complexity of a receiver array, or the study question being 981 

addressed, robust interpretation of animal movement data requires some quantitative 982 

measure of the accuracy and precision at which a transmitter can be detected. Crucially, this 983 

should capture the influence of spatial and temporal variation on detections within the 984 



specific study environment. Such sources of detection error are frequently overlooked or 985 

only partially accounted for in acoustic tracking studies (Brownscombe, Griffin, et al., 2019; 986 

Kessel et al., 2014; Klinard, Halfyard, Matley, Fisk, & Johnson, 2019). Equally, reflecting on 987 

detection efficiency during a study might also reveal redundancy within the array design 988 

(Gabriel et al., 2021) that once identified, might free up a proportion of valuable receivers to 989 

monitor new locations.  990 

Advances in transmitter and receiver design and data processing techniques provide 991 

increasing capability to achieve high accuracy and precision from both cabled and non-992 

cabled arrays. For example, more sophisticated transmitter programming has reduced data 993 

loss from transmission collision when multiple transmitters are present and increased 994 

detection probability and positioning accuracy (Cooke et al., 2005), even in acoustically 995 

noisy environments (Bergé et al., 2012; Leander et al., 2019; Weiland et al., 2011). Fine-996 

scale positioning studies typically require substantial post-processing to derive 2D or 3D 997 

positions from detection data, but the continual refinement of positioning methods is 998 

improving accuracy and reducing data omission during this process. For example, by 999 

employing a time-of-arrival rather than time-difference-of-arrival algorithm and 1000 

incorporating a random walk movement model, the YAPS (Yet Another Positioning Solver) 1001 

approach developed by Baktoft, Gjelland, Økland, & Thygesen (2017) out-performed 1002 

comparable methods in terms of both accuracy and number of positions resolved, a method 1003 

that has been successfully applied to acoustically reflective environments (Vergeynst et al., 1004 

2020). On a broader scale, where receivers may be dispersed over a wide area, model 1005 

simulations that predict each receiver’s theoretical detection range based on site-specific 1006 

architecture, environmental variables and target species characteristics can be useful at the 1007 



design stage (Gjelland & Hedger, 2013; Hobday & Pincock, 2011). Subsequent 1008 

parametrisation with empirical environmental datasets and detection range tests collected 1009 

within the study, enables calibration of live animal detection data post-collection. 1010 

Brownscombe, Griffin, et al. (2019) developed an approach that uses variation in the 1011 

detection efficiency of fixed reference transmitters collected at a subset of representative 1012 

‘sentinel receivers’ as a proxy measure for detection range across the whole array. 1013 

Application of the detection range correction factors they generated to a data set on T. 1014 

falcatus from the Florida Keys, showed substantial departure from the raw data (up to 1015 

127%) with most difference in the space use patterns associated with habitat and diel 1016 

differences (Brownscombe et al., 2019b). 1017 

 1018 

Conclusions 1019 

Meeting the needs required of our rapidly changing aquatic environments, and doing so in 1020 

ways that are fair, equitable, sustainable and responsive, is not trivial. In 2017, Lennox et al., 1021 

(2017) set out a vision for how multiplatform tracking systems will be utilised in the future 1022 

to monitor simultaneously the position, physiology and activity of aquatic animals and their 1023 

environment. They highlight the four pillars of progress required to achieve this as “(1) 1024 

technological and infrastructural innovations; (2) transdisciplinary integration of collected 1025 

data and new methods of analysis; (3) emergent applications for telemetry data in fisheries, 1026 

ecosystems, and the global management of aquatic animals; and (4) looking forward to 1027 

solving challenges that currently inhibit progress in telemetry research” (Lennox et al., 1028 

2017). Since then, there have been advances in AT technology, data integration, analyses 1029 



and application, many of which we have tried to cover in this review, but all of which have 1030 

significantly progressed research within the key themes discussed (see summary in Table 1).  1031 

As AT users continue to diversify, alongside an ever-growing list of analyses and 1032 

packages designed to handle the associated data, there is a need to consolidate the current 1033 

state of the field of AT which remains a ‘go to’ approach for addressing key questions within 1034 

fish biology and conservation. This comes at a time when the pathway from fundamental 1035 

species ecology to end-user management and policy making is clearer than ever before;  1036 

careful consideration of AT application, study design and interpretation, including the 1037 

potential pitfalls, is needed to ensure transparency during all stages of this process 1038 

(Brownscombe et al., 2019a). As we outline here, AT is both broadly applicable and highly 1039 

nuanced, enabling us to tease apart patterns of space use, segregation and migration, and 1040 

through increasingly more accurate high-resolution tracking, interactions and associations 1041 

between individual fish. Combined with machine learning approaches, physiological or 1042 

energetic sensors, or by coupling with ecotoxicology, eDNA or stable isotope analyses, AT 1043 

can be even more powerful an approach for monitoring the behaviour of individuals and 1044 

groups of fish. As both technological and analytical developments continue apace, this is an 1045 

exciting time to track fish using acoustics. We hope that the field will continue to attract 1046 

innovation that will generate new insight for mitigating threats, managing our stocks and 1047 

protecting the species occupying imperilled aquatic environments.  1048 
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