Lancaster E<=
University © ¢

Llama: Towards Low Latency Live

Adaptive Streaming

Tomasz Lyko, BSc Hons
School of Computing and Communications

Lancaster University

A thesis submitted for the degree of
Doctor of Philosophy

August, 2023

Declaration

I declare that the work presented in this thesis is, to the best of my knowledge and
belief, original and my own work. The material has not been submitted, either in whole
or in part, for a degree at this, or any other university. This thesis does not exceed the
maximum permitted word length of 80,000 words including appendices and footnotes,

but excluding the bibliography. A rough estimate of the word count is: 44776

Tomasz Lyko

Llama: Towards Low Latency Live Adaptive Streaming
Tomasz Lyko, BSc Hons.
School of Computing and Communications, Lancaster University

A thesis submitted for the degree of Doctor of Philosophy. August, 2023

Abstract

Multimedia streaming, including on-demand and live delivery of content, has become
the largest service, in terms of traffic volume, delivered over the Internet. The
ever-increasing demand has led to remarkable advancements in multimedia delivery
technology over the past three decades, facilitated by the concurrent pursuit of efficient
and quality encoding of digital media. Today, the most prominent technology for online
multimedia delivery is HTTP Adaptive Streaming (HAS), which utilises the stateless
HTTP architecture - allowing for scalable streaming sessions that can be delivered to
millions of viewers around the world using Content Delivery Networks. In HAS, the
content is encoded at multiple encoding bitrates, and fragmented into segments of equal
duration. The client simply fetches the consecutive segments from the server, at the
desired encoding bitrate determined by an ABR algorithm which measures the network
conditions and adjusts the bitrate accordingly. This method introduces new challenges
to live streaming, where the content is generated in real-time, as it suffers from high
end-to-end latency when compared to traditional broadcast methods due to the required
buffering at client.

This thesis aims to investigate low latency live adaptive streaming, focusing on
the reduction of the end-to-end latency. We investigate the impact of latency on the
performance of ABR algorithms in low latency scenarios by developing a simulation
model and testing prominent on-demand adaptation solutions. Additionally, we
conduct extensive subjective testing to further investigate the impact of bitrate changes
on the perceived Quality of Experience (QoE) by users. Based on these investigations,
we design an ABR algorithm suitable for low latency scenarios which can operate with a
small client buffer. We evaluate the proposed low latency adaption solution against on-
demand ABR algorithms and the state-of-the-art low latency ABR algorithms, under

realistic network conditions using a variety of client and latency settings.

Publications

Tomasz Lyko et al. “Evaluation of CMAF in Live Streaming Scenarios”. In: Proceedings
of the 30th ACM Workshop on Network and Operating Systems Support for Digital
Audio and Video. NOSSDAV ’20. Istanbul, Turkey: Association for Computing
Machinery, 2020, pp. 21-26. 1SBN: 9781450379458. DOI: 10.1145/3386290.3396932

T. Lyko et al. “Llama - Low Latency Adaptive Media Algorithm”. In: 2020 IEEE
International Symposium on Multimedia (ISM). 2020, pp. 113-121. por: 10.1109/
ISM.2020.00027

Tomasz Lyko et al. “Improving quality of experience in adaptive low latency live
streaming”. In: Multimedia Tools and Applications (July 2023). 1SSN: 1380-7501.
DOI: 10.1007/s11042-023-15895-9

https://doi.org/10.1145/3386290.3396932
https://doi.org/10.1109/ISM.2020.00027
https://doi.org/10.1109/ISM.2020.00027
https://doi.org/10.1007/s11042-023-15895-9

Acknowledgements

I would like to thank my PhD supervisors: Dr Nicholas Race and Dr Matthew
Broadbent, for their invaluable guidance and support throughout my PhD. I would
also like to thank Mike Nilsson, Paul Farrow, and Steve Appleby for their input and
assistance during this project. I also thank the UK Engineering and Physical Sciences
Research Council (EPSRC) and British Telecom (BT) for funding this work.

And most importantly, I would like to thank my friends and family, for their

unconditional support and encouragement throughout this entire time.

10

11

Contents

1 Introduction 20
1.1 Multimedia Delivery over the Internet 21
1.1.1 HTTP Adaptive Streaming 23
1.1.2 Low Latency Live Adaptive Streaming 23

1.2 Motivation 24
1.3 Thesis Aims & Research Question 25
1.4 Thesis Contributions 27
1.5 Thesis Structure.o 29
2 Background 30
2.1 Multimedia Compressiono 31
2.1.1 MPEG-1 31
21.2 MPEG-2 32
2.1.3 MPEG-4 33

2.2 Multimedia Delivery over the Internet 34
2.2.1 Real-Time Protocol Suite 34
2.2.2 Multicast Broadcastso 36
2.2.3 Peer-To-Peer Streaming 37
2.2.4 HTTP Adaptive Streaming 39
2.2.4.1 Adobe HTTP Dynamic Streaming 40

2.2.4.2 Microsoft Smooth Streaming 40

2.2.4.3 Apple HTTP Live Streaming 41

12

2.2.4.4 Dynamic Adaptive Streaming over HT'TP 42

2.2.4.5 Common Media Application Format 47

2.3 SUmmary .. o.o. .o 49
Related Work 52
3.1 Low Latency Live Adaptive Streaming 52
3.2 Quality of Experience 56
321 QoE Factors 57
322 QoEModels 58
3.2.3 Summary e 62

3.3 ABR Algorithms 62
3.3.1 Client-based adaptation 63
3.3.1.1 Bandwidth-based ABR algorithms 63

3.3.1.2 Buffer-based ABR algorithms 65

3.3.1.3 Proprietary ABR algorithms 66

3.3.1.4 Mixed ABR algorithms 66

3.3.1.5 Machine-learning ABR algorithms 68

3.3.1.6 Low latency ABR algorithms 69

3.3.2 Server-based adaptation 71
3.3.3 Network-assisted adaptation 72
3.3.4 Hybrid adaptation 72

3.4 Summary 73
Llama: QoE Analysis 74
4.1 Aims and Objectives Lo 75
4.2 Methodology 79
4.3 Results and Discussion 0L 86
4.3.1 Comparison of patterns within groups. 87
4.3.2 Comparison of patterns within supergroups. 90

4.4 Summary ... e 95

13

5 Llama: ABR Design 98

5.1 Aims and Objectives 98
5.2 Design Analysis 100
5.2.1 Methodology 100
5.2.2 Results and Discussion 102
5221 DASH 102

5222 CMAF 104

5.2.3 SUmMmary e 106

5.3 Design Goals 107
5.4 Llama Design Lo 110
5.5 Summary .. o.o. ... 119
6 Implementation 120
6.1 Simulation Modelo 120
6.1.1 Existing Model oo 121
6.1.2 Live DASH and Latency Configuration 124
6.1.3 CMAF Chunks and HTTP/1.1CTE 126
6.1.4 Traffic Shaping 129
6.1.5 Additional ABR Algorithms 130
6.1.6 Client Configuration 131
6.1.7 Verificationo 133

6.2 Summary 135
7 Evaluation 136
7.1 Aims and Objectives 136
7.2 Methodology 137
7.2.1 Simulation Model oo 138
7.2.2 Test Content and Encoding 139
7.2.3 Throughput Traces 140
7.2.4 Performance Metrics 141

7.3 Comparison with prominent on-demand ABRs 142

14

7.3.1 Results. 143

7.3.1.1 DASH 143
7312 CMAF 147
7.3.2 Discussion 151
7.4 Comparison with state-of-the-art low latency ABRs 154
741 Results. 154
7411 DASH 154
7412 CMAF 157
7.4.1.3 Single Scenario L 160
7.4.2 Discussion 163
7.5 SUMMATY o 165
8 Conclusions 166
8.1 Thesis Contributions 167
8.1.1 Investigation of low latency live adaptive streaming and the
impact of latency on ABR algorithm performance 168
8.1.2 Investigation of quality switches and their impact on the overall
Quality of Experience in adaptive streaming 169
8.1.3 Llama, a Low Latency Adaptive Media Algorithm 170
8.1.4 Commercial and Wider Research Impacts 172
8.2 Future Work 173
8.3 Summary 175
Appendix A Subjective Study: Participant Information Sheet 178
Appendix B Subjective Study: Consent Form 182
Appendix C Subjective Study: Invitation Email 184
References 186

15

List of Figures

2.1
2.2
2.3
24
2.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8

4.9

5.1

5.2

Overview of video streaming using DASH.
Structure of the MPD manifest file in DASH.
Client buffer stages in DASH.
Live adaptive streaming using DASH.
Comparison between live adaptive streaming using DASH & CMAF. . .

Video quality patterns used in the subjective study.
Structure of the online survey used in the subjective study.
Thumbnails of selected video clips for the subjective study.
Spatial and Temporal Information of each video clip.
VMATF score of each test sequence used in the subjective study.

Age distribution of all recruited participants for the subjective study.
Mean Opinion Scores of common test sequences within each experiment
group with Confidence Interval of 95% plotted in the error bars.
Mean Opinion Scores of all test sequences for patterns within the first
supergroup with the 95% Confidence Interval plotted in the error bars.
Mean Opinion Scores of all test sequences for patterns within the second

supergroup with the 95% Confidence Interval plotted in the error bars.

Average P.1203 MOS and Live Latency as a function of Target Latency
for each ABR algorithm, when used in a DASH client.
Average P.1203 MOS and Live Latency as a function of Target Latency
for each ABR algorithm, when used in a CMAF client.

16

76

30

82

83

84

87

91

93

103

2.3
5.4
2.9

6.1
6.2
6.3
6.4
6.5

7.1

7.2
7.3
7.4
7.5
7.6

Adaptation logic of a simple bandwidth-based ABR algorithm. 111
Adaptation logic of the proposed ABR algorithm, Llama. 114

Sample trace with base measurements & moving harmonic mean plotted. 116

Diagram showing the overall structure of the simulation model. 121
On-demand content delivery implementation in the simulation model. . 123
Live content delivery implementation in the simulation model. 125
Implementation of CMAF chunks and HTTP/1.1 CTE delivery. 127
Difference in the performance of the NS-3 and Dash.JS frameworks. . . 134

Distribution of bandwidth measurements below 5 Mbps in the 7,000

throughput traces, along with an example showing one of the traces. . . 141
Performance of four on-demand ABRs and Llama, when used in DASH. 144
Performance of four on-demand ABRs and Llama, when used in CMAF. 148
Performance of all four low latency ABRs, when used in a DASH client. 155
Performance of all four low latency ABRs, when used in a CMAF client. 158

Performance of all four low latency ABRs in a single scenario. 161

17

List of Tables

4.1
4.2

0.1

5.2

2.3

6.1

7.1

7.2

7.3

Source clips assigned to each experiment group and test set. 84

Key findings from the subjective study. 95

Change in P.1203 MOS for each ABR algorithm and Target Latency

setting, when employed in a CMAF instead of a DASH client. 106
Design goals for a new low latency ABR algorithm. 107
Analysis of throughput traces. 115
Streaming session and client parameters in the simulation model. . . . 132
Video quality representations used for the encoding of content. 140
Percentage of sessions for which Llama achieved better P.1203 MOS than

the tested on-demand ABR algorithms. 151
Percentage of sessions for which Llama achieved better P.1203 MOS than

other low latency ABR algorithms. 163

18

19

Chapter 1
Introduction

Multimedia streaming has become the main service delivered over the Internet,
dominating the bandwidth of Internet Service Providers. Online multimedia streaming
continues to grow, with Cisco predicting that it will account for 82% of all IP traffic by
2022, an increase of 7% from 2017 [21]. While the majority of multimedia streaming
consists of on-demand delivery, the forecast predicts that live multimedia streaming
will increase as well, to 17% of all video traffic by 2022. These forecasts indicate that
the demand for multimedia streaming over the Internet will continue to grow, including
both on-demand as well live broadcasts.

The ever-increasing demand for multimedia streaming has led to major advance-
ments in multimedia delivery technologies, as well as multimedia compression, over the
past three decades. With the intention of matching the increasing demand, multimedia
delivery methods have evolved to become scalable and cost-effective. Today, multimedia
content is segmented and served using standard HTTP servers, allowing for the use of
scalability solutions such as Content Delivery Networks. This method, being a relatively
recent change, consists of a trade-off between encoding efficiency and scalability.

While online multimedia delivery technologies have evolved with scalability and
cost-effectiveness in mind, their main focus has been on-demand delivery, where the
content is already fully generated prior to the streaming session start, as it is the

common method of content delivery. In the context of live streaming, where the

20

Chapter 1. Introduction 1.1. Multimedia Delivery over the Internet

content is generated in real-time and only certain parts of the content are available at
the beginning of a streaming session, this introduces new challenges which are further
amplified in the context of low latency live adaptive streaming.

Currently, typical online live streaming broadcasts are significantly behind the
traditional broadcasting methods, experiencing a latency of 60-90s as opposed to the
latency of 4-6s of terrestrial and satellite television. This latency gap can have a
significant negative impact on the perceived quality of online live transmissions as it can
lead to situations in which the user can be notified of the content ahead from sources
where latency is considerably lower. For example, a user could hear their neighbour
cheering for a goal in a football match a minute before they can experience it on
their screen, if the neighbour is watching the same match using terrestrial or satellite
television while the user is watching an online broadcast.

Achieving low latency in live adaptive streaming requires a small client video buffer,
which can impact the performance of the adaptation logic employed, in turn leading to
a challenging balancing act between minimising the latency and maximising the Quality

of Experience.

1.1 Multimedia Delivery over the Internet

The way in which multimedia is delivered to the user over the Internet has changed
dramatically over the past three decades. The Internet, being a best effort-network,
presents unique challenges to reliable multimedia delivery. First, the bandwidth
of the link between the broadcasting source and the client is not static and can
change significantly over time, as opposed to traditional broadcasting methods such
as terrestrial or satellite television, where the bandwidth of the link remains constant.
Second, the links between the broadcasting source and each individual client are not
identical, meaning, one client might be capable of receiving the broadcast at a much
higher quality than others, while in traditional broadcasting methods all clients receive
the broadcast at the same quality, creating a uniform experience across the clients.

One of the major advancements in the past three decades has been multimedia

21

Chapter 1. Introduction 1.1. Multimedia Delivery over the Internet

compression, which, is a critical element in the evolution of multimedia delivery systems.
Multimedia compression focuses on the encoding of video and audio in a manner that
results in fewer bits required to represent the digital media elements. Over the years,
the compression has improved significantly, in terms of quality as well as efficiency,
mainly driven by the increase in computational power available in consumer electronics.
Today, the most common encoding formats enable efficient use of bandwidth, as well
as, support packet-switched networks such as the Internet.

Initial delivery methods consisted of the content being transmitted using a stateful
architecture, between a server and a client. In order to begin a streaming session, the
client would connect to the server, after which the server would begin to transmit video
and audio. The client would control the streaming session by issuing commands to the
server, such as Pause and Play. In this architecture, the server was required to keep the
state of each client and streaming session, leading to scalability issues as the demand
for multimedia streaming increased.

Subsequent advancements in multimedia delivery over the Internet aimed to solve
the issue of scalability. Multicast broadcasts utilised the IP multicast to increase the
efficiency of the transmitted data, as it allowed the broadcast to be transmitted by
the server once and then propagated by the network to all of the subscribed clients.
This delivery method introduced new challenges, as individual clients could not control
the entire streaming session, leading to issues with the re-transmission of corrupt data.
Additionally, IP multicast required specialised hardware, hindering its deployment on
the Internet.

Peer-to-peer streaming was another technology designed to ease the scalability issues
of multimedia delivery over the Internet. It consisted of a decentralised architecture,
made up of equal peers capable of receiving and transmitting multimedia data in
the streaming session. The server would serve the content to only a subset of peers,
which then would consume as well as re-send the content to other peers. Similarly to
multicasts, peer-to-peer suffered from issues with re-transmission of data. Additionally,
the bandwidth between pairs of peers could differ significantly, with some unable to

transmit the content in a timely manner leading to reliability issues down the chain.

22

Chapter 1. Introduction 1.1. Multimedia Delivery over the Internet

1.1.1 HTTP Adaptive Streaming

HTTP Adaptive Streaming has become the most common method for multimedia
delivery over the Internet. In this stateless architecture, most of the control is shifted
to the client. The content is encoded into multiple quality bitrates, each requiring
different bandwidth, and divided into short segments of equal duration. The quality
bitrate can be changed at the segment level, as segments of different quality bitrates
are interchangeable. The resulting segments are served on a standard HTTP server. In
order to begin a streaming session, the client first fetches a manifest file, using a standard
HTTP request, which describes the available content, including the segment duration
as well as the quality bitrates and their bandwidth requirements. Once the manifest
file has been fetched, the client proceeds to fetch the content, segment by segment, by
issuing HTTP requests. Additionally, the client usually employs an ABR algorithm
which monitors the network conditions and selects an appropriate quality bitrate for
each segment. Stateless architecture combined with the utilisation of standard HTTP
servers makes this solution scalable and cost-effective, as the content can be distributed

using services such as Content Delivery Networks.

1.1.2 Low Latency Live Adaptive Streaming

Adaptive streaming enables the content to be delivered in both: on-demand as well as
live mode. In live mode, the content is generated in real-time and hence only some of
it is available at the beginning of a streaming session. The manifest file is extended
to indicate the time at which each segment becomes available, that is, the time at
which the segment is fully generated and reachable on the server. Just as in on-demand
mode, the client requests content, segment by segment, however, in live mode the client
issues a HTTP request for a segment only once the segment has become available on
the server. Since segments are of equal duration, they become available on the server
periodically, every segment duration. A streaming session begins when the server starts
to produce content, after which the client can join the session, based on its target latency

setting which dictates the desired time behind the live edge. In order to achieve low

23

Chapter 1. Introduction 1.2. Motivation

latency, the target latency setting must be minimised, resulting in the client following
the stream much more closely. Additionally, to facilitate low latency settings, the
segment duration must be significantly reduced, introducing encoding overhead as well

as network overhead due to the increased number of segment requests.

1.2 Motivation

HTTP Adaptive Streaming presents new challenges to live broadcasts, which are further
magnified in low latency scenarios. In adaptive streaming, the content is encoded
into multiple quality bitrates, each with different bandwidth requirements, and divided
into segments of equal duration. The client fetches the content, segment by segment,
by issuing standard HTTP requests while utilising an ABR algorithm to select the
appropriate quality bitrate of each segment. Additionally, the client employs a video
buffer, which holds already fetched segments queued for playback, in order to give the
client enough time to adapt the quality bitrate, at which the segments are fetched, to
changes in network conditions without playback interruptions.

In live adaptive streaming, that is when the content is generated in real-time, the
client suffers from high latency due to the required client video buffer. In order to fill the
client buffer to a specific duration, the client needs to join a streaming session at least
this duration since the session’s beginning, as the client can only fetch segments that
have already been generated. In live adaptive streaming, segments become available
periodically, every segment duration. On the other hand, reducing the desired client
video buffer size, which in turn will result in lower latency, can lead to degradation in
the overall Quality of Experience as the ABR algorithm employed by the client might
struggle to adapt the quality bitrate, when the network conditions deteriorate, in a
timely manner, that is, before the client video buffer is fully depleted and consequently
the playback is interrupted.

Low latency adaptive streaming further escalates the issue of the limited client video
buffer. The target latency, the time between a segment being generated and presented

to the user, must remain low, typically under six seconds. This results in an even more

24

Chapter 1. Introduction 1.3. Thesis Aims & Research Question

restricted client video buffer, presenting challenging conditions for the ABR algorithm
as it now needs to be able to detect changes in network conditions and counteract them
by changing the quality bitrate, in a significantly limited amount of time. Failure to
do so will lead to a significant deterioration in the overall Quality of Experience as
the playback might be interrupted. Current ABR algorithms have been designed with
on-demand streaming in mind, as it is the main application of multimedia streaming
over the Internet, and have not been tested in low latency scenarios. Live, especially
low latency, streaming might require specialised ABR algorithms as they present unique
conditions and constraints.

Recently, the Common Media Application Format (CMAF) has been standardised
which can enhance low latency live adaptive streaming, as it allows for segments to
be further divided into chunks of equal duration. Each chunk can be played out as
soon as received by the client, reducing the periodical content generation time from
a segment duration to a chunk duration. The quality bitrate can still be changed at
the segment level only, reducing the encoding overhead significantly. When combined
with HTTP/1.1 Chunked Transfer Encoding (CTE), the transport overhead can be
significantly reduced as the client will continue to request each segment once, after
which the first chunk can be fetched, and the remaining chunks will be transmitted by
the server as they become available - without additional HT'TP requests. The impact
of CMAF on ABR algorithms, and by extension on the overall Quality of Experience

in low latency live adaptive streaming has not been investigated.

1.3 Thesis Aims & Research Question

This thesis aims to explore the following research question:

In live adaptive streaming, what impact does the requirement of low
latency have on the client buffer, and in turn on the design of the adaptation
algorithm required to ensure optimal Quality of Experience?

The work required to answer this research question can be divided in the following

four steps:

25

Chapter 1. Introduction 1.3. Thesis Aims & Research Question

1. Investigate the impact of latency on the Quality of Experience in
low latency live adaptive streaming. Challenging conditions presented by low
latency in live adaptive streaming can have a significant impact on the performance
of the ABR algorithm employed, in turn having a significant impact on the overall
Quality of Experience of a streaming session. The relationship between latency
and ABR algorithm performance needs to be investigated in order to determine
the suitability of state-of-the-art adaptation solutions for low latency live adaptive
streaming. Additionally, the results of such investigation can be utilised to inform
design decisions of an ABR algorithm constructed specifically to operate in low latency
conditions.

2. Investigate the impact of changes in playback bitrate on the Quality
of Experience in adaptive streaming. Playback bitrate can be changed at segment
level in adaptive streaming, meaning, it can be changed every segment duration by
any number of encoding bitrates. This can result in highly irregular quality bitrate
which can have great repercussions to the overall Quality of Experience. The number
of possible quality bitrate patterns grows exponentially with the number of encoding
bitrates employed, making it an extremely challenging research topic. Taking current
literature into account, additional video quality bitrate patterns need to be investigated
to improve our understanding of the relationship between the changes in quality bitrate
and the overall Quality of Experience.

3. Design the necessary adaptation algorithm for low latency live
adaptive streaming. Since low latency live adaptive streaming presents unique
conditions and constraints to ABR algorithm performance, what adaptation logic
needs to be employed in such conditions to improve the overall Quality of Experience
while trying to minimise the average latency of a streaming session? The challenging
balancing act of trying to minimise the average latency while trying to maximise the
overall Quality of Experience of a streaming session might require a new ABR algorithm
to be created, one that is compatible with prominent methods of low latency live
adaptive streaming over the Internet. This thesis aims to develop a new ABR algorithm,

designed to improve the Quality of Experience in low latency live adaptive streaming.

26

Chapter 1. Introduction 1.4. Thesis Contributions

4. Evaluate the performance of the proposed low latency adaptation
algorithm against state-of-the-art ABR algorithms. A newly proposed ABR
algorithm must be evaluated against existing state-of-the-art adaptation solutions. This
will require the testing of said ABR algorithms under multiple client configurations in
a variety of realistic network conditions, as both factors can have a significant impact
on the performance of ABR algorithms. This thesis aims to perform an extensive
evaluation of the proposed ABR algorithm in order to determine its suitability for low
latency live adaptive streaming scenarios, compared to the state-of-the-art adaption

solutions.

1.4 Thesis Contributions

This thesis investigates low latency live adaptive streaming with the intention of
improving the state-of-the-art delivery of multimedia generated in real-time and
delivered to the client in low latency conditions. The main contributions of this thesis
are as follows.

1. Investigation of low latency live adaptive streaming and the impact of
latency on ABR algorithm performance. This thesis investigates the two main
delivery methods of low latency live adaptive streaming, and how the reduced target
latency affects ABR performance. In order to carry out this task, this thesis evaluates
four prominent on-demand ABR algorithms, under a large number of target latency
settings and network conditions, in low latency adaptive streaming when used in a
regular DASH client and a CMAF client. In order to facilitate this extensive evaluation,
a simulation model was developed which accurately imitates low latency live adaptive
streaming using DASH and CMAF while allowing for faster than real-time evaluation
of streaming sessions. The results of this evaluation will be used to determine whether
CMAF chunks are beneficial to low latency live adaptive streaming, as well as, the
impact of latency on the performance of prominent on-demand ABR algorithms. The
simulation model was made available to the research community on GitHub [99], along

with the throughput traces used to simulate realistic network conditions [128].

27

Chapter 1. Introduction 1.4. Thesis Contributions

2. Investigation of video quality switches and their impact on the overall
Quality of Experience in adaptive streaming. This thesis investigates the impact
of video quality bitrate changes in adaptive streaming on the perceived Quality of
Experience by users. In order to achieve this task, this thesis conducts a subjective
study, using the standard methodology for video quality assessment, which evaluates 28
different video quality bitrate patterns using 14 pieces of content. The evaluated quality
bitrate patterns depicted a variety of video quality impairments in order to determine
their effect on the overall QoE. The key findings of this investigation were used to
construct QoE-oriented design goals for a new ABR algorithm aiming to maximise the
Quality of Experience.

3. Llama, a Low Latency Adaptive Media Algorithm. This thesis proposes
a new ABR algorithm, designed to be employed in low latency conditions where the
client video buffer is severely limited due to decreased latency. Llama was designed
using the conclusions of the two investigations discussed above. First, the proposed
ABR algorithm is designed to improve over on-demand ABR algorithms in low latency
conditions, and second, the proposed ABR algorithm is designed using the key findings
from the subjective testing evaluation. The design and implementation of the proposed
ABR algorithm are detailed in this thesis.

Additionally, this thesis evaluates the proposed ABR algorithm against prominent
on-demand, as well as, the recently published, state-of-the-art low latency ABR algo-
rithms. This requires the evaluation of ABR algorithms under a large number of target
latency settings and network conditions, in both DASH and CMAF implementations of
low latency live adaptive streaming. To perform an extensive evaluation, compromising
a large number of client settings and network profiles, all ABR algorithms have been
implemented in the simulation model mentioned earlier, which allows for faster than
real-time evaluation of streaming sessions. The achieved Quality of Experience by each

ABR algorithm has been presented using a standardised methodology.

28

Chapter 1. Introduction 1.5. Thesis Structure

1.5 Thesis Structure

This thesis is presented in eight individual chapters. After the introduction, presented
in this chapter, we discuss the background material in Chapter 2 which describes the
evolution of multimedia streaming over the past 30 years.

Chapter 3 presents the related work, focusing on advancements in HT'TP Adaptive
Streaming, including low latency live adaptive streaming. Relevant work in the areas
of Quality of Experience (QoE) and ABR algorithms is covered in this chapter.

In Chapter 4, we discuss the extensive subjective study carried out to further
investigate the impact of video quality impairments on the perceived Quality of
Experience. The chapter details the methodology behind the experiment as well as
an in-depth analysis of the presented results, concluding with key findings.

Chapter 5 presents the proposed ABR algorithm, Llama, developed to operate in
low latency live adaptive streaming. It describes the analysis of prominent on-demand
ABR algorithms, based on which, in conjunction with key findings from the previous
chapter, the design goals for a low latency ABR algorithm were constructed. The
adaption logic of the proposed ABR algorithm is presented in detail.

In Chapter 6, we discuss the implementation of the simulation model used to
evaluate the proposed ABR algorithm under a large number of settings and conditions.
The model was verified against a real DASH player.

Chapter 7 presents an extensive evaluation of the proposed ABR algorithm, Llama.
It is first evaluated against four prominent on-demand ABR algorithms, and later
against three state-of-the-art low latency ABR algorithms, using the simulation model
described in Chapter 6. The ABR algorithms have been tested using twelve latency
settings, as well as, 7000 throughput traces in both modes of low latency live adaptive
delivery, DASH and CMAF. Their performance is presented using individual QoE
factors, as well as a standardised QoE model which combines all of the QoE factors
into a single metric.

In Chapter 8, we conclude by discussing and summarising the contributions of this

thesis. Additionally, potential future work is outlined.

29

Chapter 2
Background

In this chapter, we discuss the evolution of multimedia delivery over the Internet. The
increasing demand for online multimedia streaming has led to rapid improvements in
online multimedia delivery technology since its inception in the 1990s, facilitated by the
improvements in media compression which we describe in the first part of this chapter.
In the second part, we focus on the key technologies for multimedia delivery over the
Internet developed over the past three decades.

Multimedia streaming refers to the method, in which media is being transmitted
and consumed continuously, from a broadcasting source to a client, where the client
is not required to store the entire multimedia element. The alternative approach to
streaming is file downloading, where the entire multimedia file must be fetched by the
client before it can be consumed. Multimedia streaming can be divided into two main
modes of delivery: on-demand and live streaming. The former approach focuses on the
delivery of already produced content while the latter focuses on the delivery of content
generated in real-time, simulating a live television broadcast.

The Internet, being a best-effort network, presents significant challenges to the
design and implementation of multimedia transmission. In traditional broadcast
methods, such as terrestrial and satellite television, all clients receive the content in the
same quality due to static bandwidth, leading to a uniform experience across users. This

is difficult to achieve in multimedia delivery over the Internet, where the clients can vary

30

Chapter 2. Background 2.1. Multimedia Compression

significantly in terms of resources, including the computational power and bandwidth.
Additionally, the client’s bandwidth is not static and can increase or decrease during a
multimedia stream, potentially leading to insufficient bandwidth for the transmission

which will cause the playback to stall.

2.1 Multimedia Compression

Advancements in media compression played a key role in the evolution of multimedia
delivery over the Internet. Media compression, also known as source coding, primarily
focuses on the encoding of video and audio that results in fewer bits required to represent
the digital media elements. Over the years, media compression has improved in terms
of efficiency and quality, enabled by the increase in available computational power in
consumer electronics. In 1988, the International Organization for Standardization (ISO)
have created the Moving Pictures Experts Group (MPEG), tasked with the development
of standards for coding and transmission of digital media. In this section, we briefly
describe the main three standards created by the MPEG group, which, mainly focused
on creating standards for decoding of media; allowing manufacturers to implement

custom coding techniques.

2.1.1 MPEG-1

Created in 1993, MPEG-1 (ISO/IEC 11172) was the first standard developed by the
group, primarily designed to allow the storage of video and audio on Compact Disc (CD)
media which supported the maximum bitrate of 1.5 Mbps. The supported resolution
and frame rate were the Source Input Format: 352x240 at 30 frames per second (NTSC)
or 352x288 at 25 frames per second (PAL).

In this standard, the video is encoded by aggregating frames into groups of pictures
(GOPs), and frames within each GOP are coded using the following frame types.
Each GOP starts with an I-frame (Intra-Frame), also known as a keyframe, which

can be decoded independently of other frames. I-frames are the largest as they contain

31

Chapter 2. Background 2.1. Multimedia Compression

complete information needed to decode the frame. Consecutive frames in the GOP
are inter-frame coded into P-frames or B-frames. P-frame (Predicted-frame) contains
less information than an I-frame as it only stores the difference between the current
frame and the nearest previous I-frame or P-frame. B-frame (Bidirectional-frame) is the
smallest in terms of size as it uses the nearest I-frames or P-frames in both directions
as references. This layered approach to video encoding has been continued in future
MPEG standards.

The MPEG-1 standard also specifies three layers of audio encoding with each
consecutive layer increasing in complexity allowing for more efficiency at the same
bitrate. Each layer supports channel encoding settings of mono, stereo, and dual (two
independent mono channels), sampling rates of 32, 44.1, and 48 kHz, as well as the
minimum bitrate of 32 kbit/s. The maximum bitrates supported by Layer I, Layer
II, and Layer III were 448, 384, and 320 kbit/s respectively. MPEG-1 Layer II audio,
better known as the MP3 format, is still widely used today in services such as music
delivery over the Internet. Audio encoding employs psychoacoustics to compress audio,
meaning, parts of the audio that cannot be heard by the human ear are discarded or

reduced.

2.1.2 MPEG-2

In 1995, MPEG-2 (ISO/IEC 13818) was standardised with a much broader scope of
application in mind, which allowed for the transmission of media over packet-switched
networks, such as the Internet. It offers significant improvements over its predecessor,
the MPEG-1 standard, in multiple areas. Video encoding now supported interlaced
video as well as higher resolutions and bitrates.

MPEG-2 standard introduced video profiles and levels to support a broad scope
of applications. An application can support certain profiles and levels, meaning, it
can support only the relevant subset of the standard. Video profiles define supported
features such as frame types and chroma format, while levels refer to resolutions, frame

rates and maximum bitrates. The standard was later extended to support HDTV

32

Chapter 2. Background 2.1. Multimedia Compression

resolutions, an extension originally planned to be released as a new standard MPEG-3.

The standard also improves multiple aspects of audio encoding. MPEG-2 now
supports multiple audio channels, up to 5.2 multichannel significantly improving over
MPEG-1 standard’s two-channel (stereo) limitation. It also introduced Advanced Audio
Coding (AAC), a successor to the MP3 format. AAC supports more channels (up to
48) and more sample rates (up to 96 kHz), as well as higher coding efficiency when
compared to its predecessor allowing for higher sound quality at the same bitrate. It
employed a modified discrete cosine transform (MDCT) algorithm to achieve better

compression efficiency.

2.1.3 MPEG-4

In 1998, the MPEG-4 (ISO/IEC 14496) standard was finalised, three years after its
predecessor. It incorporates most of the features from the previous two standards while
significantly expanding the scope of applications. It introduced new features including
object-oriented media files, external Digital Rights Management (DRM), and Virtual
Reality Modelling Language (VRML) support. The standard significantly improved
coding efficiency over its predecessor and allowed for the encoding of mixed video,
audio, and speech.

Regarding video encoding, the MPEG-4 standard introduced Advanced Video
Coding (AVC), also known as the H.264 coder, to significantly improve compression
efficiency as it allowed for the same video quality at half or less the bitrate achieved
by the previous standards. AVC was designed to be transmitted over many different
types of networks as the video coding layer is separated from the transport bitstream
using the Network Abstraction Layer (NAL). AVC has been improved over the years
and is currently the most common video encoding method used for video delivery over
the Internet. One of the new features offered by AVC was Scalable Video Coding
(SVC), where the video was encoded into multiple layers which could be transmitted
independently over the network. The video could then be decoded by combining one

or more layers, with more layers used resulting in higher video quality.

33

Chapter 2. Background 2.2. Multimedia Delivery over the Internet

The MPEG-4 standard further improved audio encoding by introducing new formats
and enhancing the Advanced Audio Coding (AAC) to allow for better sound quality at
the same bitrate. MPEG-4 was designed to handle a larger variety of audio formats,
from speech to music, and from lossy to lossless coding. The standard introduced Audio
Object Types (AOT), with each audio format assigned a unique AOT, which define the
tools and coding methods required to encode each audio format. The standard also
introduced Audio Profiles, each supporting a subset of Audio Object Types, which
define supported features as well as the tools and possible parameters required for

audio encoding of the supported Audio Object Types.

2.2 Multimedia Delivery over the Internet

In this section, we describe the history of multimedia streaming over the Internet,
focusing on the main technologies and approaches created in the past three decades.
Multimedia delivery over the Internet has improved drastically over the years, not just
in terms of the video and audio quality transmitted, but also in terms of efficiency and
scalability. Initial media streaming relied on a stateful architecture where the server had
to keep track of each client session. Today, media streaming is much more cost-effective
as well as more efficient, mainly using a stateless architecture, allowing for broadcasts
over the Internet to be watched by millions of viewers around the world concurrently.
The developments in multimedia compression, described in the first section of this

chapter, were an important factor in this advancement.

2.2.1 Real-Time Protocol Suite

In the 90s, numerous protocols in the Real-Time family have been standardised,
including Real-Time Transfer Protocol (RTP[44, 113]), Real-Time Control Protocol
(RTCP[113]), and Real-Time Streaming Protocol (RTSP[112]). All three protocols
combined were used for low latency media streaming over the Internet.

Real-Time Transfer Protocol (RTP), standardised by the Internet Engineering Task

34

Chapter 2. Background 2.2. Multimedia Delivery over the Internet

Force (IETF) in 1996, is a network protocol developed for real-time transmission of
audio and video data over Internet Protocol (IP) networks. RTP can be used over
the two main Transport Protocols, Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP), with the latter being the most common choice. It supports
jitter compensation, out-of-order delivery, packet loss detection, and IP multicast. The
protocol also supports multiple multimedia formats by defining profiles, with each
profile assigned a payload format. RTP packet header includes the following key fields
which allow for real-time streaming of media. The sequence number, which specifies
each packet’s order number allowing for detection of packet loss and the receiving of
packets out-of-order. Timestamp, which contains the timing information, allows for
synchronisation of media as well as jitter detection. CSRC identifiers, which contain
the unique identifiers of contributing sources, allow for mixed media to be received from
multiple sources.

Real-Time Control Protocol (RTCP), defined in the same standard, is used in
combination with RTP. It provides each participant in a streaming session with Quality
of Service (QoS) feedback which includes jitter statistics, packet loss, round-trip time
(RTT) and packet delay variation. The QoS feedback is sent periodically by all
participants and can be used by the application to adapt the stream parameters to
changing network conditions.

Published in 1998 by the Internet Engineering Task Force (IETF), the Real-Time
Streaming Protocol (RTSP) allows for real-time media transmission between a client
and a server. The protocol is used to establish and control a streaming session. The
actual media data is transmitted using another protocol, most of the time using RTP.
The streaming session is controlled in a VCR-like manner, with the client capable
of issuing the server commands, such as Play and Pause, to control the multimedia
playback. The commands can also be issued by the media server. RTSP is similar to
the Hypertext Transfer Protocol (HTTP), mainly in terms of syntax and operation,
however with one key difference — it is a stateful protocol as opposed to the stateless
HTTP protocol. RTSP uses the connection-oriented TCP as a transport protocol to

maintain a reliable connection between the client and the server. The client can join a

35

Chapter 2. Background 2.2. Multimedia Delivery over the Internet

streaming session using an RTSP URL, after which it first issues a Describe command.
The media server responds with a description of the available media streams. Then,
the client issues a Setup command to start a streaming session — the server responds
with a session identifier. The client begins the multimedia playback by issuing a Play
command, after which the playback can be paused and resumed using Pause and Play
commands. The client can issue additional commands, such as Set Parameter to modify
the settings of a media stream. Finally, the client can end the streaming session by
issuing a Teardown command.

IETF has published RTSP 2.0 in 2016 [111] which mainly addresses issues around
NAT traversal of media streams. The protocol is still being used today — mostly in the

first mile of video broadcasting, as well as in CCTV applications.

2.2.2 Multicast Broadcasts

Delivery of unicast video streams to a large number of viewers can be an inefficient use
of bandwidth. For example, a stream delivered to 1000 clients will require the server to
send the exact same video data 1000 times, resulting in high bandwidth consumption
and leading to scalability issues due to potential bandwidth bottlenecks in the network.
In 1986, IP multicast [29] has been standardised, an extension to the IP protocol which
can be used to solve this issue. Multicasting allows the media server to send the data
to the network once, after which the data will be propagated through the network
to all of the subscribed clients. This can significantly improve bandwidth efficiency.
However, multicasting introduces new issues when used for the delivery of multimedia
over the Internet. The first issue is the lack of interactivity, the client cannot control
the media playback as the same data is being transmitted to all clients. There is also no
re-transmission mechanism, requiring the clients to employ new methods to deal with
potential errors in data as the clients cannot request the lost or corrupted data to be
sent again.

IP multicast utilises the Internet Group Management Protocol (IGMP [29, 38, 15]).

In order to participate in a multimedia stream, the client will need to send a join message

36

Chapter 2. Background 2.2. Multimedia Delivery over the Internet

using the IGMP protocol to the network. Upon receiving the message, a multicast router
will subscribe the client to the specified multicast group. Multicast groups are specified
by IP addresses in the range between 224.0.0.0 and 239.255.255.255. Once subscribed,
the client will begin to receive the multicast multimedia stream. The media server
transmits the multimedia data to the network only, which is then propagated by the
multicast routers to all of the subscribed clients. To quit a streaming session, the client
needs to send a leave message using the IGMP protocol.

One of the most prominent multicast technologies was Mbone (Internet Multicast
Backbone [34]), developed in 1992. It was free software that created a virtual network
that ran on top of the Internet, capable of multicasting packets. At the time,
most routers did not support IP multicast, hence Mbone employed a virtual network
architecture to overcome the hardware limitations where multicast packets could be
converted into traditional unicast packets through tunnelling. One of its key features
is the mechanism to limit the scope of the transmitted data over multicast to prevent
it from over saturating the Internet with multicast packets. This was implemented
by setting a time to live (TTL) counter for each packet, which decreased by one each
time the packet propagated through Mrouters. In 1994, the first live music concert was

transmitted over the Internet to a large number of viewers using the Mbone technology.

2.2.3 Peer-To-Peer Streaming

Another technology utilised to help with scalability issues of traditional unicast
multimedia streams was Peer-To-Peer streaming, with multiple schemes proposed
for on-demand [45, 133, 46, 4] and live streaming [17, 70, 84, 150]. In Peer-To-
Peer streaming, clients were receiving data from the media server or other clients
participating in the streaming session. This means, that clients were now not only
receiving data but also sending the data to other clients. This approach significantly
reduces the bandwidth requirements of a media server, making it a much more cost-
effective broadcasting method when compared to traditional client-server architectures.

However, the Peer-To-Peer architecture introduces new challenges and limitations when

37

Chapter 2. Background 2.2. Multimedia Delivery over the Internet

employed for multimedia streaming over the Internet.

In Peer-To-Peer (P2P) networks all nodes (known as peers) are equal, creating
a decentralised distribution of nodes, where each node contributes a share of their
resources to the network. P2P networks became widespread in the early 2000s due
to their applicability in file-sharing software. P2P architecture can be divided into
unstructured and structured networks, as well as hybrid models. In unstructured
networks, the node distribution is truly decentralised, and all peers are equal as there
is no global management of the nodes. Nodes join the network by simply connecting
to other nodes. This approach can cause scalability issues, as in large networks peers
will need to search the network for required data by flooding the network with requests
which will lead to a large portion of resources being spent by nodes on the management
of search queries. Additionally, there is no guarantee for a search query to be resolved
- leading to nodes being unable to fetch the required data. These issues can be solved
by structured P2P networks, which impose a specific topology for all nodes. Each peer
stores a list of its neighbour nodes to improve traffic routing efficiency. A distributed
hash table (DHT) is also commonly used and stored by each peer. DHT stores the
information regarding the ownership of each file using hashing, allowing each peer to
quickly find a node serving the required file. Hybrid models further improve search
efficiency by employing a centralised server that hosts information regarding other nodes
and available files in the P2P network. Peers can fetch this information by contacting
the server using a traditional client-server model, after which the required files can be
fetched from other nodes using the P2P network.

One of the main issues in P2P streaming is the lack of Quality of Service (QoS)
management. In unicast streams, the media server can provide reliable transmission
of data to the client. Additional mechanisms can also be implemented to measure and
manage the QoS between the client and the server. However, in P2P networks this is
challenging as peers cannot provide reliable media streams due to significant differences
in terms of available resources including the computational power and bandwidth. Any
disruption in the media stream higher up the chain will negatively impact the peers

down the chain. Another issue is the delay, since the media stream is shared in chains

38

Chapter 2. Background 2.2. Multimedia Delivery over the Internet

of peers, each subsequent peer in the chain will experience an increasing delay, making

this approach unsuitable for low latency media streaming.

2.2.4 HTTP Adaptive Streaming

Prior to the adoption of HT'TP Adaptive Streaming, HT'TP Progressive Streaming was
the middle ground between downloading the complete multimedia file before playback
and real-time multimedia streaming. In progressive streaming, the client leverages the
HTTP progressive download approach, where the client can request a specific byte-
range of a multimedia file to avoid having to fetch the entire file before the playback
can begin. Range requests feature was added to HTTP /1.1 by IETF in 2014 [39].

With the first prototype created in 2002 by the DVD Forum, HTTP Adaptive
Streaming has significantly improved over the years, becoming the dominant technology
for media streaming today, as well as, producing several standards and implementations
along the way. The fundamental features of HI'TP Adaptive Streaming are bitrate
flexibility and high scalability.

Bitrate flexibility allows the media server to serve video and audio to a broad range
of clients, supporting a wide spectrum of client characteristics such as computational
power and available bandwidth. Multimedia content is firstly encoded into multiple
bitrates, each offering a different quality while having different bandwidth requirements,
and secondly partitioned into short-duration segments. The client can change the
quality bitrate throughout the stream, at the segment level. The client adapts the
quality bitrate mainly to counteract changes in the available bandwidth to avoid
playback interruption, caused by the media buffer being fully depleted. An adaptive
bitrate (ABR) algorithm is employed by the client to measure the network conditions
and select appropriate quality bitrate in order to maximise the user’s Quality of
Experience (QoE).

High scalability is the second fundamental feature of HT'TP Adaptive Streaming,
achieved via the utilisation of standard HTTP server architecture which allows for

compatibility with Content Delivery Networks (CDNs). Multimedia content can be

39

Chapter 2. Background 2.2. Multimedia Delivery over the Internet

encoded into multiple quality bitrates and stored on standard HTTP servers. Clients
fetch the multimedia content by simply issuing HTTP requests for each segment
at the desired quality bitrate. This client-driven approach eliminates the need for
specialised media servers as the server does not need to maintain a session state for
each individual client, further supporting compatibility with standard HTTP servers
and CDNs. Content Delivery Networks play a key role in achieving high scalability,
as they allow the media content to be delivered to users more efficiently by replicating
the media stream from the origin server to thousands of edge servers located closer to
the users. In the following sections, we describe the most influential HT'TP Adaptive

Streaming implementations.

2.2.4.1 Adobe HTTP Dynamic Streaming

Developed by Adobe, HTTP Dynamic Streaming (HDS[72]) supports the transmission
of H.264 encoded videos over HT'TP connections. The format supports both on-demand
video as well as live streaming, and is compatible with Content Delivery Networks.
Media content can be encoded into multiple bitrates, however, the H.264 codec must
be used for encoding. HDS was supported only by the Adobe Flash Player, a browser
plugin which enabled the viewing of multimedia elements and rich internet applications
before the standardisation of HTML5. Since then, the plugin has lost adoption as most
of its functionality was now included in HTML5, and hence supported natively by web

browsers, with Adobe ending the support for the plugin at the end of 2020.

2.2.4.2 Microsoft Smooth Streaming

Smooth Streaming [148], developed by Microsoft, is another implementation of HTTP
Adaptive Streaming, which was supported by a range of Microsoft services and devices,
including Silverlight, Xbox as well as Windows Phone. This implementation utilises
the Protected Interoperable File Format, standardised by Microsoft and based on the
ISO/IEC base media file format. It differs from other implementations, as the encoded

content is not segmented, but instead, HT'TP progressive downloads are utilised which

40

Chapter 2. Background 2.2. Multimedia Delivery over the Internet

are more efficient. However, this approach requires specialised media servers which
reduces its compatibility with Content Delivery Networks. Microsoft Smooth Streaming

support both on-demand video as well as live streaming, including HD and 3D video.

2.2.4.3 Apple HTTP Live Streaming

Developed by Apple, HTTP Live Streaming (HLS[1]) is one of the two main
implementations of HT'TP Adaptive Streaming in use today. It was published by Apple
as an IEEE RFC draft in 2017 (RFC 8216). The standard is widely supported, with
native support present in most modern operating systems, and can be employed for both
on-demand video as well as live streaming. However, HLS is the only HTTP Adaptive
Bitrate implementation natively supported by Apple devices. It supports H.264 and
H.265 formats for video encoding and the following formats for audio encoding: AAC,
MP3, AC-3 and EC-3.

In HTTP Live Streaming, media content is encoded into multiple quality bitrates,
after which it is segmented into fragments of equal duration. In 2016 the default
fragment duration was reduced from 10s to 6s, however, it can be adjusted. The
fragmented files are referenced in the index file, in the format of an extended M3U
playlist, and stored together on a standard HT'TP server. The client initiates a media
stream by fetching the index file which indicates the available quality bitrate and where
the file fragments can be found. Once the index file has been analysed by the client,
it fetches the video, fragment by fragment, by issuing HTTP requests for consecutive
fragments of desired quality bitrate. Quality bitrate can be changed by the client at
fragment level, allowing for an implementation of an ABR algorithm to measure the
network conditions and adapt the quality bitrate accordingly. Media encryption which
allows for simple Digital Rights Management (DRM) and dynamic ad insertion are
some of the key features of HI'TP Live Streaming.

In 2019, Apple proposed an extension to the standard which focuses on enabling
low latency in live streaming scenarios. It supports the concept of further segmenting
fragments into sub-fragments, similarly to the CMAF Chunks which we describe later

in this chapter. Sub-fragments can become available for download before the entire

41

Chapter 2. Background 2.2. Multimedia Delivery over the Internet

fragment is generated. This can approach can aid to reduce latency with little to
no encoding penalty. Additionally, to eliminate network transfer overhead of sub-
fragments, the extension introduces HTTP/2 Server Push support. In the earlier
version of HTTP, the client would need to request a resource, after which it can be
transmitted by the server to the client. HTTP/2 Server Push allows for data to be
sent to the client by the server without the client requesting each resource individually.
It is especially useful in environments with high round-trip time (RTT) and can be
used with regular fragments as well as sub-fragments. The extension also tackles the
problem of large playlist transfer overhead. When employing HLS for live streaming,
the index file grows in size as the stream continues, with new fragments added to the
index requiring the client to periodically fetch the index file. The extension introduces
playlist delta updates, allowing the client to periodically fetch only the new parts of the
index file to avoid having to fetch the entire file each time, significantly reducing the
bandwidth used. Low-Latency HT'TP Live Streaming is supported by Apple devices
running the most up-to-date operating system; however, the proposed extension is not

widely supported in other devices.

2.2.4.4 Dynamic Adaptive Streaming over HTTP

MPEG group has standardised an implementation of HT'TP Adaptive Streaming in
2012 under the name of Dynamic Adaptive Streaming over HTTP (MPEG-DASH), the
second main implementation in use today. It can be employed for both, on-demand
video as well as live streaming. It is the only implementation of HT'TP Adaptive
Streaming that is codec agnostic, meaning, video and audio can be encoded using any
encoding format. It is also the only implementation that is an international standard,
with many companies from the streaming industry participating in the standardisation
process. DASH is widely supported via Media Source Extensions in web browsers and
continues to grow in adoption. The DASH Industry Forum (DASH-IF), consisting
of companies from the streaming and media industries, oversees interoperability and
adoption of the standard. The group created the open-source MPEG-DASH reference
player, dash.js.

42

Chapter 2. Background 2.2. Multimedia Delivery over the Internet

Server Client
[‘Segmenﬂ Segment 2 | Segment 3 [
i i
@ @
=z | Segment1 | Segment 2 | Segment 3 =z | Segment 1
3 3
T Segment 1 Segment 2 Segment 3 T Segment 3
Time: > Time: >
& &
Network
Cal = il
=
5
m
Time »

Figure 2.1: Overview of video streaming using DASH.

In DASH, a video is usually encoded into multiple bitrates, segmented and stored
on a standard HTTP server along with a manifest file describing the content. The
segments are of equal duration. The client first requests the manifest file, after which,
it requests the video by issuing standard HTTP requests for each segment. The quality
bitrate of each segment is selected by the ABR algorithm, usually deployed at the client
side, which monitors network conditions and adjusts the quality bitrate accordingly
to maximise the user’s Quality of Experience. Quality bitrate can be changed at
the segment level, that is, every segment duration. ABR algorithms usually measure
network conditions by calculating the throughput of past segment downloads, the buffer

level, or the buffer depletion rate. Figure 2.1 demonstrates the overview of video

43

Chapter 2. Background 2.2. Multimedia Delivery over the Internet

—— Period > Segment

1
‘ MPD Pariod Representation }*—P Segment
\ J Adaptation Set

— Segment
Period Representation 9

Adaptation Set

—> Segment

Figure 2.2: Structure of the MPD manifest file in DASH.

streaming using DASH, where the client requests the content segment by segment,
adapting the quality bitrate of each segment to the perceived available bandwidth in
the network.

Manifest files, specified as Media Presentation Descriptions (MPD), describe
the stream parameters as well as the available multimedia content along with the
available quality bitrates in an Extensible Markup Language (XML) format. Stream
configuration includes parameters such as minimumBufferTime, which specifies the
client target buffer level, and suggestedPresentationDelay, which specifies the target
latency in the case of live streaming. Available video content is described using
a hierarchy of Periods, Adaptation Sets, Representations and Segments, as seen in
Figure 2.2. A video can be divided into periods, each containing a different scene or
chapter. Each period is further divided into adaptation sets, with video and audio
elements being presented in separate adaptation sets. Each adaptation set specifies
the encoding format used and is further divided into representations, which include
the content encoded using multiple parameters. For example, a video can be encoded
into multiple representations, each offering a different resolution and bitrate. Finally,
the representations are divided into segments of equal duration. The client can switch
between representations at the segment level.

When employed for live streaming, the manifest file also specifies each segment’s

44

Chapter 2. Background 2.2. Multimedia Delivery over the Internet

. ——Buffer Growing Stage | | Steady Stage |

[

Sagment Download

¥

Time

Figure 2.3: Client buffer stages in DASH.

availability time, allowing the client to request a new segment once it has been
generated. The minimum latency in Live DASH is the duration of one segment. The
client also needs a reasonable buffer of at least a few segments in order to be able to
react to changes in network conditions before the player’s buffer is fully depleted and the
playback stalls. Achieving low latency in regular DASH would require short segments,
resulting in significantly reduced encoding efficiency and increased number of HTTP
requests needed, thereby increasing the transport overhead. Recently, the concept of
further dividing segments into chunks has been introduced, using the Common Media
Application Format (CMAF), which in combination with HT'TP /1.1 Chunked Transfer
Encoding can be utilised to achieve low latency in live DASH with little to no encoding
as well as transport overhead. We describe this approach in more detail in the next
section.

In on-demand delivery mode, as seen in Figure 2.3, at the beginning of a streaming
session the client enters the buffer growing stage as it downloads the consecutive
segments, back to back, until the configured minimum video buffer level is reached.
Afterwards, the client enters the steady stage, where the client video buffer is depleted
by one segment periodically, every segment duration, and therefore only one segment
needs to be fetched in the background to fill the client video buffer back to the minimum
level again. At this stage, the client does not utilise the available bandwidth fully if

the segment download time is less than the segment duration, leaving the client idle

45

Chapter 2. Background 2.2. Multimedia Delivery over the Internet

[
-

Server
Segment Generation

v

Time

[
[

—————Target Latency——

Segment Download

Client

v

Time

Client joins the streaming session

Figure 2.4: Live adaptive streaming using DASH.

between the download completion time and the current segment completing playback.
In the case of multiple clients sharing the same bottleneck link, this leads to incorrect
bandwidth estimation by ABR algorithms, resulting in clients either underestimating or
overestimating the bandwidth and leading to unfair distribution of bandwidth between
the clients. Additionally, incorrect bandwidth estimation can have a significant negative
impact on the Quality of Experience.

Figure 2.4 demonstrates live streaming using DASH, where the content is generated
in real-time. As the content is captured, segments are generated periodically every
segment duration, becoming available on the server as specified in the manifest file. The
client uses a Target Latency configuration parameter, which specifies how far behind the

live edge the client should follow the stream. The client can join the streaming session

46

Chapter 2. Background 2.2. Multimedia Delivery over the Internet

when the duration equal to the Target Latency setting has elapsed since the beginning of
the streaming session. Once the client joins the streaming session, it enters the buffer
growing stage and begins to download the already available segments. The number
of available segments at this point is dictated by the client’s Target Latency setting,
with higher settings resulting in a higher buffer level at the cost of higher latency.
Once the initial segments have been fetched, the clients enter the steady stage, where it
downloads segments as they become available periodically, every segment duration. For
example, as seen in Figure 2.4, if the Target Latency setting is set to three segments,
resulting in latency of three segment durations, the client will be able to download three
segments back to back when it joins the streaming session, after which it will continue

to download segments periodically, every segment duration.

2.2.4.5 Common Media Application Format

In 2018, the Common Media Application Format (CMAF[54]) has been standardised
by the MPEG group. It is not another implementation of HT'TP Adaptive Streaming,
but rather an encoding and packaging format for segmented media. It introduces a
common format for DASH and HLS, aiming to improve interoperability between the
two implementations. DASH and HLS use different packaging formats, fragmented MP4
and MPEG-TS respectively. In order to serve content via both standards, the same
video and audio data must be packaged into two different formats, doubling the required
storage and packaging cost. CMAF offers a solution to this problem by introducing a
common packaging format — ISOMFF fragmented MP4. The format, which introduces
CMAF segments, is supported by both DASH and HLS, however, separate index files
need to be created for both formats, an MPD file and an M3U playlist respectively.
Another important feature offered by CMAF is the standardisation of Digital Rights
Management (DRM) modes. It offers the following modes: AES-128 CTR, DRM used
by DASH, and SAMPLE-AES CBC, used by HLS and later added to DASH.
Common Media Application Format introduces the concept of a CMAF chunk.
Video can be divided into CMAF segments, which can now be further divided into

smaller CMAF chunks. Chunks can be transmitted as soon as generated, as well as,

47

Chapter 2. Background 2.2. Multimedia Delivery over the Internet

Y
=
L]
[=]
=
=
[=]
a
I =
2| €
= n
= &
ol
>
/"’ Time
Client requests a segment
A
=
(]
=]
[=
=
=]
w| S
< =
= =z
o O
>
Tima
Client requests a segment

Figure 2.5: Comparison between live adaptive streaming using DASH & CMAF.

played out by the player as soon as received. This can reduce the minimum latency in
live DASH from one segment duration to one chunk duration, allowing for low latency
live streaming. Each segment contains one keyframe, in the first chunk, to reduce
encoding overhead, meaning, the quality bitrate can only be changed at segment level
just as in regular DASH. In order to minimise the transport overhead, CMAF chunks can
be transmitted using HTTP /1.1 Chunked Transfer Encoding which allows for partial
HTTP responses. The client requests a segment once its first chunk is ready by issuing a
HTTP request, and the server responds with the first chunk, after which, it will transmit
the remaining chunks once they are ready. A segment containing CMAF chunks can
be requested as soon as the first chunk is created.

Figure 2.5 demonstrates the difference between live streaming utilising regular
DASH segments and CMAF chunks combined with HTTP/1.1 Chunked Transfer

Encoding. In this example, the client is close to the live edge, and hence fetches

48

Chapter 2. Background 2.3. Summary

segments as soon as they become available. In the case of regular DASH segments,
the client issues a HTTP request for each segment as soon as it becomes available,
that is when the entire segment has been generated. When close to the live edge, this
occurs periodically every segment duration. In the case of CMAF chunks combined
with HTTP /1.1 Chunked Transfer Encoding, the client issues a HTTP request for each
segment as soon as its first chunk becomes available, whereafter the remaining chunks
are transmitted by the server as they become available - without additional HTTP
requests. In this example, each segment consists of four chunks, meaning, the client
can begin fetching each segment three chunk durations earlier when compared to regular
DASH. HTTP/1.1 Chunked Transfer Encoding introduces new challenges, such as
accurate estimation of the throughput of each individual chunk. Each segment requires
a full HTTP request and response, with all chunk downloads belonging to the same
HTTP response, hence the HT'TP download time of the entire segment includes the idle
periods between chunks being generated, leading to incorrect throughput estimation.
HTTP/2 Server Push could also be used to reduce the network overhead of CMAF
chunks, however, HTTP/1.1 Chunked Transfer Encoding is preferred due to better

client and server support.

2.3 Summary

Multimedia streaming has become one of the largest services delivered over the Internet,
driven by technological advancements throughout the past three decades. Media
compression has evolved drastically, with the influence of the MPEG group, to support
high resolutions, efficient encoding of video and audio, as well as, to enable the
transmission of media over packet-switched networks, such as the Internet.

Delivery mechanisms have evolved in parallel, enabled by the progress in media
compression, from stateful client-server architecture to scalable and stateless archi-
tectures which utilise Content Delivery Networks. Original delivery methods focused
on specialised protocols, such as the Real-Time protocol suite. Today, the dominant

delivery method of multimedia over the Internet is HTTP Adaptive Streaming (HAS);

49

Chapter 2. Background 2.3. Summary

a widely supported method thanks to the use of the HT'TP protocol. In HAS, the
content is encoded into multiple quality bitrates and fragmented into segments of equal
duration. The client fetches the content, segment by segment, by issuing standard
HTTP requests, and is capable of changing the quality bitrate at the segment level. An
ABR algorithm is employed, usually at the client, to monitor the network conditions

and adjust the quality bitrate in order to improve the user’s Quality of Experience.

50

o1

Chapter 3

Related Work

In this chapter, we discuss the relevant literature to the research work presented
in this thesis. In the first section, we highlight the advancements in live adaptive
streaming over the years, including the recent progress in low latency live adaptive
streaming using DASH[119] and CMAF[54] - standards we have described in the
previous chapter. In the second section, we describe the related work around Quality
of Experience in adaptive streaming, an area which encompasses a large amount of
relevant literature, including individual QoE factors, the dynamic relationships between
them, as well as comprehensive QoE models which combine all of the individual factors
in order to calculate an accurate prediction of the overall Quality of Experience of
streaming sessions. In the third section, we discuss the related work in the space of
ABR algorithms for adaptive streaming, describing the entire spectrum of adaptation
solutions while describing in detail client-based ABR algorithms, the prominent type
of adaptation solutions, including the state-of-the-art low latency ABR algorithms. In

the final section, we summarise the entire chapter.

3.1 Low Latency Live Adaptive Streaming

In the early years of HI'TP Adaptive Streaming, which we described in detail in the

previous chapter, it has been utilised mainly for the delivery of on-demand content,

52

Chapter 3. Related Work 3.1. Low Latency Live Adaptive Streaming

that is, where the complete content is generated and encoded before a streaming session
begins. While on-demand delivery is still the prominent application of HT'TP Adaptive
Streaming today, live streaming has become much more prevalent, where the content is
generated in real-time. Most recently, low latency live streaming using HTTP Adaptive
Streaming has become feasible, where the content is generated in real-time and delivered
at low latency, that is, the time between the content being generated and then displayed
at the client is severely minimised.

One of the earliest works in this area focused on the analysis of live streaming using
the HTTP Adaptive Streaming standard. Lohmar et al. [80] defined four sources of
delay that are specific to live HTTP Adaptive Streaming. The main one is the client
video buffer, which we describe later. The remaining three sources of delay are as
follows. Asynchronous fetching of media segments, referring to the time between a
segment becoming available and the client issuing a HT'TP GET request to fetch the
segment. HTTP download time, which is the time required to fetch the requested
segment. It is determined by the available bandwidth, which can change over time,
between the client and the server. Segmentation delay, which introduces a delay of at
least one segment duration.

In live HTTP Adaptive Streaming, the client video buffer is responsible for the
storage of fetched video segments, queued for playback. The size of the client video
buffer is determined by an ABR algorithm’s ability to adapt to changing network
conditions in a timely manner. It needs to be large enough to give the ABR algorithm
enough time to measure changes in network conditions and adjust the quality bitrate
before the client video buffer is fully depleted causing playback interruption. Hence, an
insufficient client video buffer size will lead to frequent playback interruption, resulting
in significant degradation to the overall Quality of Experience.

In order to reduce the client video buffer, and in turn the latency in live adaptive
streaming, segments of shorter duration may be employed which can improve the
performance of the ABR algorithm used. Additionally, shorter segments will reduce
the segmentation delay. However, this will significantly increase the network overhead,

as each segment needs to be requested by the client leading to an increase in the number

93

Chapter 3. Related Work 3.1. Low Latency Live Adaptive Streaming

of HTTP requests. Swaminathan et al. [122] demonstrated how HTTP /1.1 Chunked
Transfer, which allows for partial HI'TP responses, can be utilized to reduce latency in
regular DASH without significant transport overhead.

Wei et al. [136] proposed the use of HTTP /2 Server Push, which allows the server to
serve resources without the client having to explicitly request them, to reduce network
overhead in low latency live adaptive streaming. Two push strategies were presented:
All-Push and k-Push. In the former strategy, the client requests the first segment
after which all of the remaining segments are pushed by the server without additional
requests, while in the latter strategy the client issues a request every k segments. Both
push strategies were shown to effectively reduce the network overhead in low latency
live adaptive streaming. Xiao et al. [139] expanded the k-push strategy to create the
adaptive-push scheme, which dynamically adjusts the value of k based on the observed
bandwidth variation. Xu et al. [140] proposed another HTTP/2 Server Push delivery
strategy, based on the k-Push, which is a QoE-driven dynamic push strategy where
the value of k is optimised to maximise the Quality of Experience. Van Der Hooft
et al. [131] showed how HTTP/2 Server Push can be used to improve the Quality of
Experience of adaptive streaming in mobile networks, where the round-trip time is high.
Huysegems et al. [55] demonstrated how HTTP/2 Server Push can reduce latency and
improve video quality in live adaptive streaming in high round-trip time networks.

The approaches described above successfully reduce the additional network overhead
caused by the use of short segments, however, they do not address the additional
encoding overhead. Each segment needs to begin with a keyframe to allow for the
interchangeability of quality bitrates at the segment level. Reducing the segment
duration will require more keyframes to be employed, resulting in significant additional
encoding overhead. Bouzakaria et al. [13] proposed the use of HTTP/1.1 Chunked
Transfer Encoding combined with the ISO Base Media File Format (ISOBMFF)
container to achieve low latency live adaptive streaming with minimal network and
encoding overhead. ISOBMFF container was later utilised in the Common Media
Application Format (CMAF) as it allows for the further division of segments into

chunks with minimal encoding overhead. CMAF can reduce the segmentation delay

o4

Chapter 3. Related Work 3.1. Low Latency Live Adaptive Streaming

in HTTP Adaptive Streaming to one chunk duration as segments can be divided into
chunks [54].

Essaili et al. [35] demonstrated that the use of CMAF chunks combined with
HTTP/1.1 Chunked Transfer can significantly reduce the latency, as well as, reduce
the initial playback delay at the cost of increased frequency of rebuffering events, with
more chunks per segment resulting in a bigger trade-off between the two Quality of
Experience factors. This suggests that CMAF can be successfully employed to reduce
the latency, however, it requires appropriate adaptation logic to make sure that the
Quality of Experience is not degraded. Viola et al. [132] demonstrated the reduction in
latency due to CMAF chunks combined with HTTP/1.1 Chunked Transfer, however,
they also highlighted the issue of degradation in Quality of Experience as the number
of chunks per segment tested increased, manifested by increasingly frequent rebuffering
events.

While the combination of CMAF chunks and HTTP /1.1 Chunked Transfer Encoding
can significantly reduce the latency in live adaptive streaming, it also introduces the
problem of inaccurate bandwidth estimation, which is partially responsible for the
degradation in Quality of Experience described earlier. As chunk delivery at the live
edge is restricted by the encoder, estimation of network throughput is difficult for
applications that have no direct visibility of the idle periods between chunks, meaning,
the client will interpret each HTTP response as one continuous response where the
response download time includes the idle periods between chunks being generated at
the encoder. Bentaleb et al. [9] attempted to solve this problem by ignoring throughput
measurements for chunks that contain idle time in their download times. Yadav et al.
[142] proposed a solution to this problem with involves the combination of the existing
chunk parser and filtering of downloaded chunk data. Ozcelik et al. [101] proposed a
new bandwidth measurement heuristic that can measure the available bandwidth more
accurately, in low latency live adaptive streaming with CMAF chunks and HTTP/1.1
Chunked Transfer Encoding.

95

Chapter 3. Related Work 3.2. Quality of Experience

3.2 Quality of Experience

Quality of Experience (QoE) is an important aspect of all user-oriented services,
including HTTP Adaptive Streaming which offers great resilience to, even severe,
variations in network conditions. In HTTP Adaptive Streaming, the video quality
can be sacrificed in order to ensure uninterrupted playback of content at the client.
Video quality can be changed every segment duration resulting in high flexibility and
leading to many opportunities at which the client can alter the video quality to try and
maximise the user’s Quality of Experience.

However, the choice of appropriate video quality is not always straightforward,
requiring the client to try and balance different QoE factors, such as the average video
quality and the number of playback interruptions. For example, the client could request
all of the segments at the lowest video quality, ensuring no interruptions to playback
even if the network conditions deteriorate to a certain degree, however, this approach
might result in low overall Quality of Experience, as the lowest video quality might be
poorly perceived by the user. On the other hand, in another extreme scenario, where the
client always picks the highest video quality, which can result in major interruptions to
playback if network conditions deteriorate, might achieve low Quality of Experience as
well. This is because even if the highest video quality is perceived well by the user, the
major playback interruptions might be perceived poorly and even negate the positive
QoE impact of the highest video quality.

In this section, we describe the research in the area of Quality of Experience in
HTTP Adaptive Streaming. In the first part, we focus on the individual QoE factors
which contribute to the overall Quality of Experience, and on the subjective testing
work carried out to investigate how the individual QoE factors contribute to the overall
Quality of Experience. In the second part, we describe QoE models designed for HT'TP
Adaptive Streaming, which combine the various QoE factors to produce a single QoE
metric, aiming to predict the overall Quality of Experience of streaming sessions. QoE
models are a useful tool for quantitative comparison of ABR algorithm performance in

adaptive streaming, including low latency live delivery of content.

o6

Chapter 3. Related Work 3.2. Quality of Experience

3.2.1 QoE Factors

Barman et al.[7] published the most recent survey on Quality of Experience in HTTP
Adaptive Streaming. Based on the analysis presented in the paper, the Quality of
Experience can be divided into the following individual QoE factors.

Start-up delay. It refers to the time between the user requesting the start of
video playback, and the client beginning the video playback. This time depends on
how many segments the client needs to fetch before the playback can begin, as well as,
on the segment duration and download time of the segments.

Rebuffering in terms of duration, frequency and temporal location.
Rebuffering occurs when the client video buffer is completely depleted, causing the
playback to be interrupted as there are no more available segments to be played out
by the player. This usually occurs when the download time of segments exceeds the
segment duration, caused by deteriorations in the network bandwidth. Rebuffering can
be measured in three ways. Rebuffering duration refers to the duration of rebuffering
events, the time it takes for the client video buffer to receive another segment after
the playback has been interrupted. Rebuffering frequency refers to the number of
rebuffering events within a streaming session. The temporal location of rebuffering
refers to the time at which a rebuffering event occurs, relative to the streaming session’s
run time.

Quality switching in terms of frequency and magnitude. In adaptive
streaming, the quality of the video as well as audio can be changed every segment
duration, by any number of supported encoding qualities. Frequency of quality
switching refers to how many times the quality of video or audio has changed throughout
a streaming session, while the magnitude measures by how many encoding qualities the
video or audio has changed.

Quality down-switching and up-switching. Down-switching refers to the video
or audio changing to a lower quality, while up-switching refers to changing to a higher
quality.

Primacy and recency effects. Based on research in psychology, rebuffering or

o7

Chapter 3. Related Work 3.2. Quality of Experience

quality switching can have a different impact on how the user perceives it, depending on
when the experience occurred, with primacy referring to the beginning of the streaming
session and recency referring to the end of the streaming session.

The survey concluded that rebuffering events are the most annoying to users, with
both the duration (as seen in [90], [143], [107], [5], [3], [31]) and frequency (as seen in
[149], [134], [32], [5], [3], [31]) of rebuffering events being relevant, and hence concluded
that an ABR algorithm should aim to minimize both. They also noted that some
studies suggest that very short rebuffering events are not noticeable, and therefore, are
less annoying to users[129].

Furthermore, the survey also mentions quality switching to be another important
QoE factor, where a high number of quality switches can have a negative impact on
the overall QoE, as seen in studies [130], [41] and [121]. They also noted that multi-
level quality switches, where the quality changes across more than one quality level,
can be detrimental to overall QoE [124, 121], suggesting that the magnitude of quality
switching is also important. However, the impact of changes in video quality has been
investigated in less detail than rebuffering, as most studies primarily focus on various
forms of rebuffering. Additionally, since the quality can be changed every segment
duration, the number of possible quality patterns grows exponentially with the number
of supported encoding qualities, making it challenging to evaluate all forms of quality
switching.

Ghadiyaram et al. [43] found that rebuffering events at the beginning of the stream
were less annoying to users than at the end, and attributed it to the hysteresis effect

first observed by Seshadrinathan et al. [114].

3.2.2 QoE Models

Measuring the Quality of Experience of multimedia sessions, including those delivered
using HTTP Adaptive Streaming, is challenging as it requires the assessment of multiple
QoE factors in order to produce a single metric, where the relationships between

individual QoE factors are dynamic, and hence difficult to quantify. Quality of

o8

Chapter 3. Related Work 3.2. Quality of Experience

Experience models can be classified into the following categories, as stated in [123], [145],
and [67]: media-layer models, parametric packet-layer models, parametric planning
models, bitstream-layer models, and hybrid models.

Media-layer models predict Quality of Experience by analysing audio and video
signals. These models, also known as pixel-based models, can be deployed to evaluate
unknown systems as they do not need prior knowledge about the system, such as the
codec used for the encoding of video and audio. Media-layer models can be further
divided into full-reference, reduced-reference and no-reference models. Full-reference
models require full source information and produce the most accurate results out of all
three types of media-layer models. Common examples of such models are Peak Signal to
Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) [50], as well as the
Video Multimethod Assessment Fusion (VMAF[75]). The two proposed models in [134]
utilise PSNR to create a model specifically designed for adaptive streaming. Reduced-
reference models, such as [16], require limited source information. No-reference models
do not require source information to predict quality. Examples of such models include
BLIINDS[110] and NIQUE[93].

Parametric packet-layer models utilise packet header information to predict the
Quality of Experience. These models do not analyse the video or audio included in the
packet payload, resulting in solutions with low computational requirements. The packet
header can contain useful metrics such as packet loss or bitrate, based on which the
Quality of Experience can be estimated. Prominent examples of such models include the
ITU-T Rec. P.564[60] and ITU-T Rec. P.NAMSI[59]. The model presented in [90] and
[92] proposed Quality of Experience estimation for adaptive streaming, based on several
QokE factors: start-up delay, rebuffering frequency and rebuffering duration. The model
presented in [109] focused on rebuffering as well, however, it did consider the temporal
location of rebuffering. The model was further extended in [149] to include more QoE
factors: start-up delay and video quality switching. Video quality alone was utilised in
the model proposed in [51], which predicts Quality of Experience based on two QoE
factors: quality switching and their amplitude, as well as the time spent at the highest

video quality. The model proposed in [76] utilised several QoE factors, represented as

29

Chapter 3. Related Work 3.2. Quality of Experience

functions: video quality switching, rebuffering frequency, frame rate, and rebuffering
duration.

Parametric planning models utilise parameters such as the bandwidth and packet
loss in the network or terminal to estimate the Quality of Experience. These models
cannot be employed to evaluate unknown systems. Examples of such models are ITU-T
Rec. G.1070 [58] and ITU-T Rec. G.107 [10].

Bitstream-layer models do not use pixel information, but instead utilise information
associated with features of the encoded media, derived from the bitstream and packet
layer information. Such features include bitrate, frame rate, motion vector, PLR, and
Quantization Parameter. These models are of low computational complexity, making
them a suitable choice for deployment to measure the Quality of Experience in real-time.
However, most of these models only work with specific codecs. A prominent example of a
bitstream-layer model is ITU-T Rec. P.1202 [61]. The model proposed in [117] predicts
Quality of Experience where H.264 encoder is utilised, by encompassing several QoE
factors: Quantization Parameter, average and maximum rebuffering duration, as well as
rebuffering frequency. In [141] the proposed model predicts Quality of Experience based
on instantaneous and cumulative QoFE factors including video quality, quality switches,
and rebuffering. The introduced model in [47] estimate the Quality of Experience based
on the median and minimum video quality. In [130] and [129], the proposed model
focuses on video quality and the switches in video quality in order to estimate the
Quality of Experience. The model introduced in [107] encompasses more QoE factors
to estimate Quality of Experience, including the video quality and its changes, recency
effect, and rebuffering.

Hybrid models are combinations of any of the models above, resulting in typically
more complex models with higher accuracy of Quality of Experience prediction.
The following hybrid models have been developed over the years. The proposed
model in [28] estimates Quality of Experience by utilising the average video quality,
frequency of video quality changes, and standard deviation of video qualities, along
with tunable parameters. In [19] the introduced model estimates the Time Varying

Subjective Quality, using a Hammerstein-Wiener model with defined functions for input

60

Chapter 3. Related Work 3.2. Quality of Experience

and output. The model demonstrated in [116] estimates Quality of Experience by
considering the video quality of each segment, video quality changes, as well as, primacy
and recency effects. The model shown in [32] estimates the Streaming Quality Index by
utilising several QoE factors including rebuffering, start-up delay, and the video quality,
calculated as a moving average. The proposed models in [5] and [6] employ a machine-
learning approach that combines objective quality metrics with rebuffering and recency.
The model introduced in [115] utilises a recurrent neural network to predict Quality
of Experience. In [36] the demonstrated model estimates Quality of Experience using
a wide range of QoE factors including objective quality metrics, rebuffering frequency
as well as duration, and recency. The proposed model in [33] employs Expectation
Confirmation Theory in order to predict Quality of Experience.

Recently standardised, [TU-T Rec P.1203 [62] is the most prominent hybrid model
designed to estimate Quality of Experience in adaptive streaming. The model consists
of the following three main modules. Pv, a video quality estimation module that
calculates scores per second based on the visual element. Pa, an audio quality estimation
module that calculates scores per second for the audio element. And finally, Pq, an
integration module that combines the scores provided by the previous modules with
additional factors, such as rebuffering. The video module encompasses four modes of
operation, each consecutive mode requiring more information while providing a Quality
of Experience prediction of higher accuracy. Mode 0 requires the following information:
display resolution, frame rate, bitrate of each segment. This information can be supplied
using the manifest file, as well as the general metrics of a streaming session. Mode 1
requires the same information as the previous mode along with the actual video and
audio segments utilised in the streaming session. The segments are inspected using
header information. Mode 2 requires the same information as the two previous modes
along with 2% of media stream information and utilises deep packet inspection as well
as partial bitstream parsing. Mode 3 requires the same information as Mode 1, along
with entire media stream information, collected using bitstream parsing. The model
estimates the Quality of Experience in the form of a mean opinion score on a 5-point

scale designed for subjective testing using the absolute category rating (ACR) method,

61

Chapter 3. Related Work 3.3. ABR Algorithms

standardised in ITU-T Recommendation P.910 [57].

3.2.3 Summary

In this section, we have described the related work in the area of Quality of Experience
in HTTP Adaptive Streaming. We have highlighted the contributing QoE factors,
including the rebuffering and quality switching factors, and the difficulty of quantifying
the relationship between the individual QoE factors and how they contribute to the
overall Quality of Experience. Additionally, we have described relevant QoE models
which aim to tackle this challenge to provide an accurate estimation of Quality of
Experience in HT'TP Adaptive Streaming. The prominent QoE hybrid model, ITU-T
Rec P.1203, has been introduced in the years which offers a comprehensive evaluation
of overall Quality of Experience in HTTP Adaptive Streaming. We employ this model

in the evaluation presented in Chapter 7 of this thesis.

3.3 ABR Algorithms

In the previous section, we have examined the individual QoE factors which contribute
to the overall Quality of Experience, as well as the challenging relationships between
the various factors. In HTTP Adaptive Streaming an ABR algorithm, typically
deployed at the client, is tasked with adapting the quality bitrate to changes in network
conditions. Every segment duration, an ABR algorithm measures the ever-changing
network conditions and selects the appropriate quality bitrate for the next segment to
be fetched. The ABR algorithm aims to achieve the best overall Quality of Experience
possible given the network conditions observed.

Bentaleb et al. [8] published the most recent survey of ABR algorithms designed for
HTTP Adaptive Streaming. They outlined the main objective of an ABR algorithm
as the maximisation of the user’s Quality of Experience. This involves two complex
tasks, the estimation of network conditions and appropriate bitrate selection. The

ABR algorithm must be able to monitor the network conditions accurately, which can

62

Chapter 3. Related Work 3.3. ABR Algorithms

be done in a variety of ways such as throughput estimation or client video buffer level
observation. Based on the network conditions observed, the ABR algorithm must select
the appropriate quality bitrate, that is, quality bitrate which will maximise the overall
Quality of Experience of the streaming session. This involves balancing the different
individual QoE factors, which we described in the previous section of this chapter,
including rebuffering in terms of frequency and duration, as well as, quality switching
in terms of average quality bitrate, frequency and magnitude. In this section, we will
examine ABR algorithms using a classification based on the taxonomy presented in the
survey which groups them into client-based, server-based, network-assisted and hybrid

adaptation solutions.

3.3.1 Client-based adaptation

In client-based adaptations the ABR algorithm is fully implemented at the client, that
is, the client itself measures the network conditions and selects the appropriate quality
bitrate alone. The server does not interfere with the client’s decisions, and there is no
cooperation between the client and the server. This is the most common approach, as it
allows for scalability and cost-effectiveness due to the server not having to keep track of
each client and their state, leading to standard HTTP servers being sufficient to serve
the content — increasing compatibility with Content Delivery Networks. Client-based
ABR algorithms are the most common type of adaptation and are an active area of
research that has produced a broad scope of solutions over the years. Based on the
taxonomy presented in the survey, client-based adaptation solutions can be divided
into the following six categories: bandwidth-based, buffer-based, proprietary, mixed,
machine-learning, and low latency ABR algorithms. In the following subsections, we

discuss each category as well as highlight the prominent ABR algorithms.

3.3.1.1 Bandwidth-based ABR algorithms

Bandwidth-based ABR algorithms select video quality based on estimates of the
available bandwidth, usually by calculating the throughput of the previously fetched

63

Chapter 3. Related Work 3.3. ABR Algorithms

segments. Adaptation solution presented in [78] utilises smoothed throughput esti-
mation, along with step-wise increase and aggressive decrease approach, to select an
appropriate quality bitrate. This approach has been further developed in [79], resulting
in two ABR algorithms that support serial and parallel fetching of segments.

In [106] the proposed ABR algorithm employs throughput prediction in order to
select appropriate quality bitrate. Throughput prediction is performed using the
throughput of the most recently fetched segment, previous throughput estimate, as
well as weighting factors which adjust the impact of the difference between the two
measurements. This approach was further improved in LOLYPOP [86], an ABR
algorithm designed for live streaming in mobile networks. The proposed ABR algorithm
employs throughput predictions on multiple time scales using the Transmission Control
Protocol, as well as relative prediction error distributions. Additionally, the ABR
algorithm aims to maximise the Quality of Experience by heuristically maximising the
average quality bitrate while minimising skipped segments and quality bitrate switches.

ABR algorithm proposed in [73], Panda, utilises smoothed bandwidth estimate
along with a probe-and-adapt approach similar to TCP’s congestion control[64]. It
determines a target average data rate, based on which the appropriate video quality is
selected. It monitors throughput and adjusts the target average data rate accordingly,
as well as calculates the inter-request time for each segment to allow the buffer level
to move towards the configured minimum buffer level. The introduced ABR algorithm
was designed to overcome the fundamental problem of poor bandwidth utilisation by
clients in HT'TP Adaptive Streaming, in order to improve the Quality of Experience in
scenarios where multiple clients share the same bottleneck link.

HTTP Adaptive Streaming suffers from poor bandwidth utilisation by clients. At
the beginning of a streaming session, the client fetches the consecutive segments one
after another without delay, until the configured minimum client video buffer is reached
— this is known as the buffer growing stage of the streaming session. Subsequently,
the client enters the steady state, where the client video buffer is depleted by one
segment periodically, every segment duration, and therefore only one segment needs

to be fetched, in the meantime, to fill the client video buffer to the minimum level

64

Chapter 3. Related Work 3.3. ABR Algorithms

again. At this stage, the client does not utilise the available bandwidth fully if the
segment download time is less than the segment duration, leaving the client idle
between the download completion time and the current segment completing playback.
In the case of multiple clients sharing the same bottleneck link, this leads to incorrect
bandwidth estimation by ABR algorithms, resulting in clients either underestimating

or overestimating the bandwidth which can result in degraded Quality of Experience.

3.3.1.2 Buffer-based ABR algorithms

Buffer-based ABR algorithms select video quality based on the client video buffer
level alone, usually only selecting a video quality once a specific buffer level threshold
has been reached or utilising the buffer level in an optimisation problem. This
approach is especially effective in conditions where throughput estimation is inaccurate
or unavailable, requiring an alternative indicator of network conditions. Throughput
estimation might be inaccurate in scenarios where multiple clients share the same
bottleneck link due to the poor bandwidth utilisation by clients, as described in the
previous section.

The introduced adaption solution in [95] aims to detect oscillations and compensate
in such scenarios as the clients end up over-subscribing or under-subscribing the shared
bottleneck link once they reach the steady state. The proposed ABR algorithm utilises
a buffer model which is based on a mathematical function that limits quality bitrate
levels according to the buffer level. To detect oscillations, the ABR algorithm uses an
oscillation factor based on the quality bitrate switching variance. Once oscillations have
been detected, the ABR algorithm employs a Compensation Algorithm to smooth it.

The proposed ABR algorithm in [53], BBA-0, selects the quality bitrate based on
the current video buffer level. BBA-0 operates using a rate map, which calculates the
required buffer level threshold for each quality bitrate. Additionally, the ABR algorithm
defines the safety area as a reservoir, which dictates the minimum buffer level threshold
needed to absorb network variation caused by segment download. The authors have
found the buffer-based approach to be effective when the client is in the steady state,

however, they also note that the bandwidth-based approach is more effective when the

65

Chapter 3. Related Work 3.3. ABR Algorithms

client is in the buffer growing stage.

The proposed adaptation solution in [120], Bola, utilises Lyapunov optimisation
methods to minimize rebuffering and maximize video quality. The authors have
formulated bitrate adaption as a utility maximisation problem which includes two
QoE metrics: average quality bitrate and rebuffering, where the former increases the
utility, and the latter decreases it. Bola is an online bitrate adaptation algorithm
that incorporates Lyapunov optimisation, using the buffer level alone, to maximise the
defined utility function. Bola is one of the default ABR algorithms implemented in the
DASH reference player [25].

3.3.1.3 Proprietary ABR algorithms

Proprietary adaptations include ABR algorithms from proprietary adaptive streaming
standards and implementations. The adaptation logic included in the proprietary
standards is not transparent as it is a critical part of the commercial products built
upon these standards. These include the adaptation solutions found in Adobe HTTP
Dynamic Streaming (HDS) [72], Microsoft Smooth Streaming (MSS) [148], and Apple
HTTP Live Streaming (HLS)[1]. In the previous chapter, we have discussed these
proprietary streaming standards in more detail. Several studies have evaluated the
performance of these proprietary ABR algorithms [22, 137, 96] and found the ABR
algorithms to struggle in scenarios where multiple clients share the same bottleneck
link.

3.3.1.4 Mixed ABR algorithms

Mixed ABR algorithms include those that take into account multiple metrics such as
bandwidth estimation, buffer level, and segment duration when selecting video quality.
The adaption solution proposed in [74] utilises an online algorithm combined with
dynamic programming to solve an optimisation problem using both, the bandwidth
estimate and buffer level. The optimisation problem is defined as an alpha-fairness

utility function of any general QoE metric. The proposed solution was combined with

66

Chapter 3. Related Work 3.3. ABR Algorithms

Panda [73], a bandwidth-based ABR algorithm we have described before, to improve
its performance.

The proposed ABR algorithm in [118] utilises Fuzzy logic which takes into account
both bandwidth estimate as well as the buffer level. It was designed to improve QoE
fairness in scenarios where multiple clients share the same bottleneck link. The ABR
algorithm leverages the buffer level to progressively download segments of higher quality
bitrate than the estimated bandwidth to fully utilise the available bandwidth. It uses
a Grey-model predictor to estimate future buffer level, allowing the ABR algorithm
to react sooner to changes in network conditions than traditional ABR algorithms to
effectively reduce rebuffering.

The introduced ABR algorithm in [27], ELASTIC, uses the feedback control theory
and aims to fully utilise the available bandwidth in order to improve QoE fairness
in scenarios where multiple clients share the same bottleneck link. Similarly to the
previous ABR algorithm, ELASTIC fully utilises the link by selecting higher quality
bitrate than the estimated bandwidth once the client reaches the steady state. The
ABR algorithm employs the feedback linearization technique to select an appropriate
quality bitrate in order to drive the buffer level towards a set point.

In [65] the proposed ABR algorithm, Festive, employs a random scheduler using the
buffer level and estimates bandwidth using a harmonic mean. The harmonic mean is
robust to outliers, which improves bandwidth estimation, while the random scheduler
requests segments independently of the player’s start time, which improves the fairness
between multiple clients sharing the same bottleneck link. The proposed ABR algorithm
consists of three components: chunk scheduling, bandwidth estimation and bitrate
selection. Chunk scheduling utilises a random scheduler, which adds a small and random
delay to segment requests. This approach results in the segments being downloaded
periodically, but with a small difference in request timings. In scenarios where multiple
clients share the same bottleneck link, this approach is beneficial as the clients do not
start to fetch segments at the exact same time. Bandwidth estimation is performed
using a harmonic mean, resulting in a smoothed estimate. Bitrate selection component

compromises of two parts, stateful bitrate selection and delayed update, and is designed

67

Chapter 3. Related Work 3.3. ABR Algorithms

to ensure fair bandwidth allocation in scenarios where multiple clients share the same
link, as well as, to improve quality stability.

The proposed ABR algorithm in [146], RobustMPC, utilises a model predictive
control algorithm to solve an optimization problem for a number of segments ahead.
It requires both throughput estimation and buffer level, optimizing towards a defined
Quality of Experience model. The authors have proposed a sample QoE model which
can be re-configured as well as improved in the future. It combines rebuffering, average
quality bitrate, and quality switching QoE factors to produce a single metric. The
ABR algorithm selects an appropriate quality bitrate for each segment by solving a
QoE maximisation problem using a moving horizon of segments. It performs the
following three tasks. First, the algorithm predicts the throughput for a number of
segments ahead. Next, the ABR algorithm solves an optimisation problem, using the
predicted throughput, the buffer level, and previous bitrate as input, to find the optimal
quality bitrate for the next segment. Finally, the ABR algorithm applies the optimal
quality bitrate. Additionally, the authors have developed FastMPC, a version of the
algorithm that requires significantly less computational power at the expense of minimal

performance penalty.

3.3.1.5 Machine-learning ABR algorithms

Machine learning adaptions utilise algorithms from the machine-learning research area,
including reinforcement-learning and deep-reinforcement-learning. ABR algorithm
proposed in [102] utilises reinforcement-learning in order to improve the Quality of
Experience, especially in scenarios where multiple clients share the same bottleneck
link. The proposed adaptation solution is a Q-Learning-based algorithm that is capable
of learning and dynamically adapting its policy according to the network conditions
present, aiming to maximise the Quality of Experience. It employs a Homo Egualis-
like reward term in the reward function, allowing for clients to reduce their Quality of
Experience in order to improve the QoE of under-performing clients, resulting in greater
QoE fairness in multi-client scenarios. The learning process utilises both bandwidth

estimation and buffer level.

68

Chapter 3. Related Work 3.3. ABR Algorithms

Adaptation solution proposed in [85], Pensieve, employs a reinforcement learning
approach to generate ABR algorithms. It does not use pre-programmed control rules or
explicit assumptions, making it a flexible model which can be combined with a variety of
Quality of Experience models and used in any environment. Pensieve utilises a neural
network model which can be trained based on past streaming sessions to select the
appropriate quality bitrate. The neural network maps past observations, consisting of
throughput, buffer, and segment sizes, to quality bitrate decisions of future segments.
It utilises the actor-critic A3C [89] as its reinforcement-learning algorithm with the
training process involving evaluation of sessions using simulations runs across a large
number of bandwidth profiles.

ABR algorithm presented in [40], D-DASH, employs a combination of deep learning
and reinforcement learning to optimise the Quality of Experience in DASH streaming.
It consists of deep neural networks and a reinforcement learning mechanism. D-DASH
utilises a reward function that takes into consideration the main QoE factors: quality
bitrate variations and rebuffering events. Its learning architecture compromises of two
twin neural networks along with a replay memory to improve the stability and efficiency
of the proposed learning algorithm. The computational cost of the proposed solution
can be greatly reduced by performing a pre-training phase, allowing for its deployment
in real DASH clients.

3.3.1.6 Low latency ABR algorithms

Low latency ABR algorithms have been designed specifically for low latency live
adaptive streaming, where the focus on achieving as low latency as possible introduces
new challenges. To achieve the low latency, the client buffer must be severely limited
as the multimedia content is generated in real-time, meaning, only already generated
segments can be fetched which become available periodically every segment duration,
resulting in the client’s potential maximum buffer level to be limited by the target
latency. For example, when the client is configured to the target latency of 4s, and
the segment duration is 1s, the potential maximum buffer level will equal to four

segments or 4s. Therefore, low latency configuration reduces the ABR algorithm’s time

69

Chapter 3. Related Work 3.3. ABR Algorithms

to react to changes in network conditions before the client buffer is depleted, leading
to interruption in playback. In 2020, the following three low latency ABR algorithms
have been published, the first adaptation solutions of this kind.

L2A[68] is based on Online Convex Optimization and aims to minimise the latency
without negatively impacting the Quality of Experience. It does not require parameter
tuning and can be deployed in any environment. The ABR algorithm does not require
throughput estimation, making it a suitable adaptation solution for environments
with a combination of CMAF chunks and HTTP/1.1 Chunked Transfer Encoding,
where bandwidth estimation is difficult. It utilises Online Convex Optimization, an
online optimisation method, to create an online learning framework that has low
computational requirements. In this framework, the client learns to make decisions
that aim to minimise the adversarial loss function. L2A defines the adversarial loss
function as latency, indicated by the average buffer displacement. It makes decisions
regarding the quality bitrate according to a probability distribution and derives a convex
constraint for the upper threshold of the buffer.

LoL+[77] offers both heuristic and learning-based approaches, optimising towards
a defined Quality of Experience equation. It consists of two modules: playback
control and throughput estimation. The playback control module optimises the
Quality of Experience in low latency live adaptive streaming environments, while the
throughput estimation module focuses on providing accurate throughput measurements
in environments where the combination of CMAF chunks and HTTP/1.1 Chunked
Transfer Encoding is used. LoL+ defines a Quality of Experience model for both
approaches which compromises of the following individual QoE factors: quality bitrate,
quality switches, rebuffering duration, live latency, and playback speed. The heuristic-
based algorithm builds upon FastMPC[146], and calculates the potential QoE for all
possible decisions for a number of segments ahead, using the new QoE model which
incorporates live latency and playback speed — QoE factors which are not present in
the MPC algorithms. The second approach, the learn-based algorithm, utilises the Self
Organising Maps (SOM) [69] technique used for unsupervised classification problems.

Stallion[48] uses a sliding window to measure the arithmetic mean and standard

70

Chapter 3. Related Work 3.3. ABR Algorithms

deviation of throughput and request latency. The algorithm measures the arithmetic
mean of throughput and adjust it by subtracting the standard deviation of throughput
multiplied by the throughput safety factor. Latency is measured, referring to the
latency of HT'TP requests, as the arithmetic mean and adjusted by adding the standard
deviation of latency multiplied by the latency safety factor. This approach allows
the ABR algorithm to detect fluctuations in bandwidth, as well as the delay of the
link. The highest quality bitrate sustainable on the adjusted throughput and latency

measurements is selected.

3.3.2 Server-based adaptation

In server-based adaptations, ABR algorithms utilise the server alone to measure the
network conditions in order to select appropriate quality bitrate for each client in the
streaming session. Quality bitrate is selected by the server only, requiring the server
to keep the state of each client which reduces the scalability of the overall system as
it requires specialised HTTP servers. However, this approach can significantly improve
quality bitrate fairness among clients sharing the same link, leading to a more uniform
Quality of Experience across the clients. Estimation of each client’s available bandwidth
at the server can be challenging, and incorrect measurements can lead to unsustainable
quality bitrate selections causing interrupted playback, and in turn detrimental Quality
of Experience.

Server-based adaptation can be performed by utilising traffic shaping methods as
seen in [2] and [52]. Server-based adaption proposed in [26] focuses on adjusting the
quality bitrate to ensure a stable buffer level of each client connected to the server.
Other adaption solutions have been proposed such as [30] which modify the manifest
file, and [14] where the segments can be fetched from multiple servers. Server-based
ABR algorithms can be used to deploy efficient caching mechanisms as the content

served is fully controlled by the server.

71

Chapter 3. Related Work 3.3. ABR Algorithms

3.3.3 Network-assisted adaptation

Network-assisted adaptations consist of ABR algorithms that keep the adaption logic at
the client but are enhanced by information from the network, which includes statistics
regarding network conditions as well as suggested quality bitrates. This is done by
a proxy node, deployed in the network, which monitors the network conditions and
transmits the network-level information to the client. The client can utilise this
additional information to aid better selection of appropriate quality bitrate and can
ignore any quality bitrate suggestions made by the proxy node. This approach suffers
from one major disadvantage, the additional network overhead, which can increase
significantly as both the complexity of information and the update rate increase.

Network-assisted adaptation which focuses on improving the Quality of Experience
of clients was proposed in [91] and [12]. The ABR algorithm proposed in [71] focuses
on predicting clients’ buffer levels based on the network traffic. Adaptation solution
presented in [24] proposed a distributed system where the central node aims to improve
the Quality of Experience of all clients. Further adaption solutions have been proposed
in [103] and [66] to address the issue of fairness of Quality of Experience between clients.
Common bottleneck problems are especially persistent in mobile networks with several
ABR algorithms proposed over the years to address this issue such as [144], [147], and
[49].

3.3.4 Hybrid adaptation

In hybrid adaptations, ABR algorithms consist of many nodes in the network
collaborating to aid client quality bitrate selection. They can be classified into SDN-
based and server-and-network-assisted ABR algorithms. SDN-based adaptations allow
for global monitoring and control of the quality bitrate of clients in the network, which
can be especially useful in a network where many clients share the same bottleneck,
competing for bandwidth leading to unfair bandwidth allocation and unstable quality
bitrate.

In [42] and [37] SDN-based adaptation solutions which focus on improving Quality

72

Chapter 3. Related Work 3.4. Summary

of Experience fairness have been presented. SDN-based adaption with global network
monitoring was presented in [97] and [135]. Adaptation solution proposed in [104]
focused on reducing rebuffering by implementing a prioritisation process that can
help clients with low client buffer. Server-and-network assisted adaptation focuses on
utilising communication between the clients and servers with the intention of sharing
metrics and feedback that can aid quality bitrate selection. Server-and-network assisted

ABR algorithms have been proposed in [126] and [127].

3.4 Summary

In this chapter, we have discussed the related work to the research presented in
this thesis. In the first section, we have examined the advancements in low latency
live adaptive streaming, including the review of latency contributors in live adaptive
streaming as well as the utilisation of the recently standardised Common Media
Application Format (CMAF).

In the second section, we have discussed the relevant literature on the Quality of
Experience in adaptive streaming. We have outlined the individual contributing QoE
factors and described the studies investigating the dynamic relationships between them.
Additionally, we have outlined the existing QoE models which combine all or some of
the individual QoE factors in order to produce a single metric, which can be used to
assess the overall QoE of streaming sessions in adaptive streaming.

In the third section, we have examined the existing ABR algorithms designed for
adaptive streaming. These algorithms are tasked with the selection of an appropriate
video quality bitrate for each segment, based on the estimates of the ever-changing
network conditions, aiming to maximise the Quality of Experience of a streaming
session. We have described existing adaptation solutions, including the state-of-the-
art client-based low latency ABR algorithms, published the same year as the proposed

adaptation solution in this thesis.

73

Chapter 4
Llama: QoE Analysis

Quality of Experience (QoE) is an essential component of HTTP Adaptive Streaming,
however, the relationships between the different contributing QoE factors are complex
and dynamic. As seen in the previous chapter, one of the main QoE factors is
rebuffering, where the playback is interrupted due to the client buffer being fully
depleted before the next consecutive segment is fully fetched. Rebuffering can have
a significant negative impact on the overall QoE, depending on its duration, frequency,
and temporal location [90, 143, 107, 5, 3, 149, 134, 32, 31].

Another crucial QoE factor is the video quality, which in HTTP Adaptive Streaming
can be highly dynamic as it can be adjusted every segment duration. It is usually
changed to counteract fluctuating network conditions to ensure uninterrupted playback.
Understanding the impact of video quality variations is difficult as it encompasses a
broad spectrum of possible encoding bitrates and quality switch patterns. Current
literature agrees that frequent quality switches and multi-level switches can negatively
impact the overall QoE [130, 41, 121, 124].

In this chapter, we further investigate the impact of video quality changes on the
perceived Quality of Experience by performing an extensive subjective study. In the
first section, we describe the aims and objectives of our investigation, including the
video quality patterns selected for this experiment. In the second section, we detail the

methodology of our subjective study, including the testing procedure and the developed

74

Chapter 4. Llama: QoFE Analysis 4.1. Aims and Objectives

online survey tool. In the third section, we present the results of our experiment, as
well as, discuss our findings. In the last section, we summarise this chapter, concluding

with key findings from the subjective study.

4.1 Aims and Objectives

We have designed this subjective study to further investigate how different video quality
impairments impact the overall Quality of Experience. In this experiment, we focus
solely on video quality variations as the current literature is clear on the negative
impact of rebuffering on the overall QoE. Additionally, rebuffering events will increase
the end-to-end latency by rebuffering duration in low latency live streaming scenarios
when there is no playback catch-up mechanism employed at the client. Considering
these two points we have decided to treat rebuffering as the primary negative QoE
factor, meaning, a low latency ABR algorithm should prioritise avoiding rebuffering, as
it increases the end-to-end latency, over trying to maximise the video quality.

As described earlier, video quality variations can span over a large variety of
encoding bitrates and quality switch patterns. In order to carry out this subjective
study within a reasonable time and resource budget, a limited number of video quality
patterns was selected for testing. Video quality patterns were divided into seven groups,
each designed to test a specific video quality impairment. Each group contains from
three to five video quality patterns. Figure 4.1 presents all 28 video quality patterns
from the following seven experiment groups: Spike, Drop, UnstableHigh, UnstableLow,
GradualHigh, GradualLow, and DoubleDrop. The average video quality bitrate of
each pattern is shown in the yellow box. Each pattern was constructed of seven
segments, each 2s long, resulting in a playback duration of 14s. The video quality
index corresponds to bitrates of {400, 800, 1200, 2400, 4800} (kbps) with encoding
resolutions {426x240, 640x360, 854x480, 1280x720, 1920x1080}.

Each experiment group was designed to test a specific video quality impairment.
Group ‘Spike’ deals with a single temporary increase in video quality, where the first

pattern consists of all segments at the lowest quality level while the remaining patterns

5

Chapter 4. Llama: QoFE Analysis

/1.

Aims and Objectives

Video Quality Video Quality Video Quality Video Quality Video Quality Video Quality

Video Quality

Spike_1
4 pike_.
34
2
14{400 kbps
0
0 2 4 6 8 10 12 14
Playback Time (s)
Spike_5
44
3
2
141029 kbps
04
0 2 4 6 8 10 12 14
Playback Time (s)
Drop_4
4+
34
24
144229 kbps
0
0 2 4 6 8 10 12 14
Playback Time (s)
UnstableHigh_3
3
2
1412514 kbps
0 T T T T T T
0 2 4 6 8 10 12 14
Playback Time (s)
GradualHigh_1
44
34
24
14 14 kbps
o4 v
0 2 4 6 8 10 12 14
Playback Time (s)
4 Graduallow_1
34
2
14
0 T T T T T
0 2 4 6 8 10 12 14
Playback Time (s)
N DoubleDrop_1
34
24
1412057 kbps
0 T

=}

2 4 6 8 10 12 14
Playback Time (s)

Video Quality Video Quality Video Quality Video Quality Video Quality Video Quality
oL N WA oORr N WA

Video Quality
o N WA

Spike_2

=}

2 4 6 8 10 12 14
Playback Time (s)

Drop_1

0 2 4 6

> 4 6 5 10 12 14
Playback Time (s)

Drop_5

0 2 4 6

8 10 12 14
Playback Time (s)

UnstableLow_1

=}
N

4 6 8 10 12 14
Playback Time (s)

GradualHigh_2

0 2 4 6

> 4 6 & 10 12 14
Playback Time (s)

GraduallLow_2

orRrN WA

o
N

4 6 8 10 12 14
Playback Time (s)

DoubleDrop_2

=3

2 4 6 8 10 12 14
Playback Time (s)

Video Quality
orNW

Video Quality Video Quality Video Quality Video Quality
SN WM O N WA

Video Quality

Video Quality

Spike_3

2 4 6
Playback Time (s)

o

Drop_2

2 4 6
Playback Time (s)

(=}

UnstableHigh_1

2 4 6
Playback Time (s)

o

UnstableLow_2

02 4 6
Playback Time (s)

GradualHigh_3

44

3

2

14{2114 kbps

0+ —————

0 2 4 6 8 10 12 14
Playback Time (s)

4 GraduallLow_3

3

2

14

[}

4 6
Playback Time (s)

=}
N

DoubleDrop_3

2 4 6
Playback Time (s)

O N WM

o

8 10 12 14

§ 10 12 14

8 10 12 14

8 10 12 14

8 10 12 14

8 10 12 14

Video Quality Video Quality Video Quality Video Quality Video Quality Video Quality
oHNWA

o HN WSS

Video Quality
oOHNWL

Spike_4

OHNWA O NWLA O N WA

O NWA

2 4 6 8 10 12 14
Playback Time (s)

o

Drop_3

2 4 6 8 10 12 14
Playback Time (s)

=}

UnstableHigh_2

2 4 6 8 10 12 14
Playback Time (s)

o

UnstableLow_3

0 2 4 6 8 10 12 14
Playback Time (s)

GradualHigh_4

2 4 6 8 10 12 14
Playback Time (s)

<}

GradualLow_4

2 4 6 8 10 12 14
Playback Time (s)

=}

DoubleDrop_4

2 4 6 8 10 12 14
Playback Time (s)

o

Figure 4.1: Video quality patterns used in the subjective test. Each graph shows a

single pattern, with the video quality plotted against playback time, along with the

resulting average bitrate shown in the yellow box.

76

Chapter 4. Llama: QoFE Analysis 4.1. Aims and Objectives

consist of all segments at the lowest quality except the middle segment where the video
quality increases by various degrees. The average bitrate varies significantly in this
group, with the first pattern at 400kbps, and the last at 1028kbps. In this group, we
investigate the impact of a temporary increase in video quality on the overall Quality
of Experience, since it can significantly increase the average bitrate. Typically, an
ABR algorithm will try to maximise the video quality presented to the user, increasing
it when the network conditions improve, however, if the ABR overestimates the new
available bandwidth, it will have to correct the video quality and reduce it to avoid
rebuffering.

Group ‘Drop’ tests a single temporary decrease in video quality of various
magnitudes. The first pattern consists of all segments at the highest quality level, while
the remaining patterns consist of all segments at the highest quality except the middle
segment where the video quality decreases by various degrees. This group consists of
patterns with high variance in average bitrate, with the first pattern at 4800kbps and
the last at 4171kbps. An ABR algorithm might need to decrease the video quality
in order to avoid rebuffering when the network conditions worsen, however, in a case
of an overreaction, that is, when the network conditions immediately improve or the
video quality was reduced by too many levels, the drop in quality might have been
unnecessary. In this group, we investigate the impact of such, unnecessary, temporary
video quality drops on the overall Quality of Experience.

Group ‘UnstableHigh’ compares constant video quality against two forms of unstable
quality, where the average bitrate of the two latter patterns is within 5% of the former.
The first pattern offers constant second highest video quality. In the two remaining
patterns, the video quality oscillates every segment duration between the lowest and the
highest quality level in pattern 2, as well as, the second lowest and the highest quality in
pattern 3. In environments with unstable network conditions, an ABR algorithm that
uses a smoothed estimate of the available bandwidth will be able to provide a constant
video quality, given it employs a sufficient client buffer, however, an ABR algorithm
that uses a fine-grain throughput estimation method will change the video quality

frequently, leading to highly unstable video quality. In this group, we investigate the

7

Chapter 4. Llama: QoFE Analysis 4.1. Aims and Objectives

impact of both approaches, where the network instability is high, on the overall Quality
of Experience.

Group ‘UnstableLow’ also compares constant video quality against two patterns of
unstable video quality, with the average bitrates of the latter being within 7% of the
average bitrate of the former. In this group, the instability of video quality in the two
latter patterns is significantly smaller. The first pattern offers constant second lowest
video quality. The two remaining patterns consist of video quality oscillating every
segment duration between the lowest and the middle quality level. The only difference
between these patterns is that one starts and ends at the lowest quality level, while the
other pattern starts and ends at the middle quality level resulting in a higher average
bitrate. Similarly to the previous group, we investigate the impact of unstable video
quality on the overall Quality of Experience, however, in this group the video quality
instability is of a much smaller magnitude.

Group ‘GradualHigh’” focuses on comparing gradual and instant multi-level video
quality switches, that is, where the video quality is switched between more than two
consecutive quality levels. In the first two patterns, the video quality is switched from
the highest to the lowest, where in the first pattern the switch is performed gradually,
meaning, the video quality is switched by one level every segment duration, and in the
second pattern the switch is performed instantly. The two remaining patterns contain
reversed video quality switches, where the video quality is switched from the lowest
to the highest, gradually and instantly. The average bitrate in this group ranges from
2114kbps to 2285kbps. An ABR algorithm can change the video quality every segment
duration, by any number of encoding bitrates, meaning, the video quality could be
changed from the lowest to the highest between two consecutive segments. In this
group, we investigate the impact of instant multi-level video quality switches, when
compared to gradual and slower switches over the entire encoding bitrate spectrum.

Group ‘GradualL.ow’ also focuses on comparing gradual and instant multi-level video
quality switches, however, of much smaller magnitude. In the first two patterns, the
video quality is changed from the second highest to the second lowest, where in the

first pattern the change occurs gradually, and in the second pattern the change occurs

78

Chapter 4. Llama: QoFE Analysis 4.2. Methodology

instantly. In the two remaining patterns, the video quality is switched from the second
lowest to the second highest, gradually in the first pattern, and instantly in the second
one. The average bitrate ranges between 1485kbps and 1542kbps. In this group, we
investigate the impact of instant multi-level video quality switches, when compared to
gradual and slower switches, similar to the previous group, however, in this group the
video quality is changed by only two levels.

Group ‘DoubleDrop’ tests video quality drops of various frequencies and the same
duration, over two orders of magnitude. In the first two patterns, the video quality
decreases by one level, for the period of one segment, which occurs twice, in the first
pattern, while in the second pattern the video quality drops for the period of two
segments, which occurs only once. In the two remaining patterns, the video quality
decreases by two levels, for the duration of one segment, twice, in the first pattern,
and for the duration of two segments, once, in the second pattern. The average bitrate
in the first two patterns equalled to 2057kbps, while in the two remaining patterns, i