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Half-integer quantized flux vortices appear in honeycomb lattices when the signs of an odd number
of couplings around a plaquette are inverted. We show that states trapped at these vortices can
be isolated by applying inhomogeneous strain to the system. A vortex then results in localized
mid-gap states lying between the strain-induced pseudo-Landau levels, with 2n + 1 midgap states
appearing between the nth and the n + 1st level. These states are well-defined spectrally isolated
and spatially localized excitations that could be realized in electronic and photonic systems based on
graphene-like honeycomb lattices. In the context of Kitaev’s honeycomb model of interacting spins,
the mechanism improves the localization of non-Abelian anyons in the spin-liquid phase, and reduces
their mutual interactions. The described states also serve as a testbed for fundamental physics in
the emerging low-energy theory, as the correct energies and degeneracies of the excitations are only
replicated if one accounts for the effective hyperbolic geometric induced by the strain. We further
illuminate this by considering the effects of an additional external magnetic field, resulting in a
characteristic spatial dependence that directly maps out the inhomogeneous metric of the emerging
hyperbolic space.

I. INTRODUCTION

Topological defects attract attention as they can give
rise to robust states that are both spatially and ener-
getically well localized [1–3]. The spatial localization
arises from the pinning of the states to surfaces, edges,
or points, while the energetic localization often takes the
form of exact zero-mode quantization in the middle of a
gap, as enforced, e.g., by a particle-hole or chiral symme-
try. In many contexts, the topologically induced states
carry unconventional spin, charge, and exchange statis-
tics [4–12].

A prominent example with possible applications in
topological quantum computations are the anyons in Ki-
taev’s honeycomb model, an interacting spin system that
is exactly integrable when the spin operators are ex-
pressed in terms of Majorana fermions [13–15]. In this
effective description, the system is equivalent to a homo-
geneously strained version of graphene that is functional-
ized by half-integer flux vortices, corresponding to a sign
change of an odd number of coupling constants around
a plaquette. The homogenous strain opens a gap with
anyonic low-energy excitations that can be used to real-
ize the toric code, a paradigmatic platform for topolog-
ically protected quantum computation [16]. The anyons
are bound to the flux plaquettes, and the configurations
are topologically protected by time-reversal symmetry,
which enforces the coupling constants to remain real.
Furthermore, when the gap is closed the system realizes a
spin liquid with non-Abelian low-energy excitations that
again depend on the flux-vortex configuration [17].

Here, we combine the topological features of such vor-
tex states with a well-known time-reversal-invariant ana-
logue of a magnetic field, which appears when the effec-
tive strain in the system becomes inhomogeneous [18–
22]. This pseudomagnetic field leads to the formation of

pseudo-Landau levels (pLLs), which have been realized
in experiments on various honeycomb systems [23–32].
Notably, the microscopic model dictates an optimal ge-
ometry and maximal strain value at which the system be-
comes exactly solvable in absence of a vortex [30, 33, 34].
The pLLs then become exactly degenerate, implying hid-
den topological and geometric features in a finite, spa-
tially inhomogeneous system. Identifying the nature and
consequences of these features is a central goal of this
work. In particular, we demonstrate that in the inter-
play with such inhomogeneous strain, a vortex induces
an additional sequence of isolated states that appear in
the gaps between the pLLs — one state between the 0th
and first pLL, three states between the first and the sec-
ond pLL, and in general 2n + 1 states between the nth
and the n + 1st pLL (n ≥ 0; the sequence is repeated
symmetrically for negative energies).

We develop these insights by placing the problem into
the broader context of the interplay of strain and mag-
netic fields. This leads us to obtain three key results,
which are illustrated in Fig. 1. Firstly, we will estab-
lish the consistency of the microscopic model with the
appropriate continuum theory, which takes the form of
a Dirac equation in a curved hyperbolic space [35–38],
even though the system is physically flat. The emerging
curvature explains the exact position of the pLLs in the
optimal strain configuration (see panel(a)), which differs
from the conventional estimate obtained by simply rein-
terpreting the pseudomagnetic field as a valley-dependent
magnetic field (marked in red). Furthermore, we show
that the exact expression for the degeneracy of these lev-
els is consistent with the relativistic Wen-Zee shift [36–
38], which is a topological characteristic of relativistic
Landau levels. Secondly, we show that the emerging ge-
ometry induces a spatial dependence on the effects of an
additional external magnetic field, resulting in a broad-
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Figure 1. Strain-dependence of the energy levels of a triangular honeycomb ake (a), in the presence of an additional
background magnetic �eld B = 0 :05� max (b), and with a half-integer ux vortex instead placed into the center of the ake
(c). The ake measures 90 hexagons across and is terminated by zigzag edges, conforming to the geometry in Fig. 2. The
strain is given in terms of the strength � of the dimensionless pseudomagnetic �eld (see Eq. (2)), while the eigenvalues are
given in units of the coupling strength t of the pristine system. As we show in Sec. III, the precise energies and degeneracies
of the levels in (a), marked by the horizontal and vertical lines, reveal the e�ects of an emergent curvature in the continuum
description of the model, including the Wen-Zee shift (vertical tick marks show the results without these shifts). The underlying
hyperbolic geometry leads to the broadening of levels in (b), which is in striking contrast to the splitting of the levels expected
in conventional low-energy theory, as we describe in Sec. IV. Flux vortices induce a characteristic sequence of midgap states
(c), which we describe in Sec. V, while Sec. VI contains the application to the Kitaev honeycomb model of interacting spins.

ening of the levels as observed in panel (b). As we will
see, this e�ect directly reects the inhomogeneous metric
of the emerging geometry, which naturally becomes sin-
gular at the boundaries of the system. Thirdly, we show
that a ux vortex induces the characteristic sequence of
mid-gap states already indicated above, which in panel
(c) is illustrated for the case of a half-integer ux vor-
tex placed into the center of the system. For this, we
generalize the insights of Refs. [30, 33, 34] to obtain an
exact construction of pseudo-Landau levels in the micro-
scopic model including a ux vortex, and present detailed
derivations of the midgap states in the continuum theory,
where both aspects again complement each other consis-
tently. As mentioned, such half-integer ux vortices are
of particular interest because they naturally appear in
the Kitaev honeycomb model of interacting spins. Sup-
plementing our �ndings for such vortices by numerical
results for the many-body case, we further establish that
the strain also improves the spatial localization of the
corresponding many-body excitations, and reduces the
range of their mutual interactions.

The paper is organized according to the underlying

physical �eld con�gurations, which are introduced into
the model as described in Sec. II. In Sec. III, we estab-
lish the consistency between exact results in the opti-
mally strained tight-binding model and the continuum
theory with an emergent hyperbolic geometry. In Sec. IV
we describe how this geometry modi�es the interplay
with an additional external magnetic �eld. In Sec. V
we describe the formation mechanism of the ux-pinned
midgap states in the single-particle picture, while Sec. VI
considers the e�ective interactions of the states and con-
tains the application to the Kitaev honeycomb model of
interacting spins. In the concluding Sec. VII, we discuss
the general implications of these �ndings for the inter-
play of topology and geometry in �nite inhomogeneous
systems, and identify further applications.

Appendix A provides background on the continuum
theory, Apps. B, and C apply this to derive results for sys-
tems with uniform pseudomagnetic and magnetic �elds,
and App. D contains additional numerical results.
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Figure 2. (a) Zig-zag terminated triangle of a honeycomb lattice in the coupling con�guration (2), which is indicated
by the thickness of the lines. This system supports precisely at pseudo-Landau levels, which serve as the reference for the
additional e�ects from magnetic �elds. We include these magnetic �elds via a Peirls substitution either as a uniform background
contribution (b), corresponding to �xed plaquette factors � p , or as localized vortices (c), including half-integer vortices that
naturally appear in the theory of the Kitaev honeycomb model of interacting spins.

II. MODEL AND CONFIGURATIONS

The general theme of this paper is the interplay of
magnetic �elds and emergent geometry in lattice systems
with inhomogeneous coupling con�gurations. The micro-
scopic description is provided by a tight-binding Hamil-
tonian

H =
X

hij i

t ij  y
i  j ; (1)

where indicesi and j enumerate points on a honeycomb
lattice, which we de�ne with bond length a � 1 (see
Fig. 2). As indicated there, the lattice is bipartite, allow-
ing to assign sites to two sublatticesA and B . The �eld
operators  i obey an algebra that depends on whether
the underlying system is fermionic, bosonic, or anyonic.
As the system is quadratic, the corresponding single-
particle picture only depends on the nearest-neighbour
couplings t ij = t �

ji , which we specify to combine the
contributions of e�ective pseudomagnetic and magnetic
�elds, including ux vortices at designated positions.

In the pristine system all couplings are equal,t ij = t
with real t, resulting in the conventional dispersion re-
lation E(k) = � t j1 + 2ei 3k y =2 cos(

p
3kx =2)j of graphene

[39]. In the low-energy theory, this dispersion can then
be approximated by Dirac conesjE j = vF jk � K 0j around
the K and K 0points in the Brillouin zone, with vF = 3 t=2
and K 0 = ( � 4�= 3

p
3; 0). A precisely uniform pseudo-

magnetic �eld of dimensionless strength� is obtained by
modifying these couplings to [18{20, 40{43]

t ij = t
�
1 �

�
2

��� ij � r ij

�
� t0

ij ; (2)

where��� ij is the bond vector from the site i to site j and
r ij is the bond center, both taken in the pristine (un-
strained) system. Notably, in this coupling con�guration,
commensurate values� = 4=N with integer N enforce a
system of �nite size, as the couplings drop to zero around
the edges of a triangle with zigzag edges [33], leading to
the geometry illustrated in Fig. 2(a). The microscopic
model is then exactly solvable [34], displaying a sequence

of precisely at pLLs that serves as the reference point
for all results in this paper. We discuss this reference
con�guration in detail in Sec. III, where we establish its
connection to an emerging hyperbolic geometry.

Our subsequent focus is on the interplay of these strain-
induced features with additional magnetic �elds, which
either act uniformly across the system, as illustrated
in Fig. 2(b) and discussed in Sec. IV, or are localized
into ux vortices, as illustrated in Fig. 2(c) and dis-
cussed in Sec. V. In the microscopic model, these ef-
fects are included by a standard Peierls substitutiont ij =
t0
ij exp(i� ij ) with � ij = � � ji [44]. The physical e�ects

are then captured by the ux factors � p =
Q

p exp(i� ij ),
de�ned by transversing the bonds around the plaque-
tte in a loop with mathematically positive direction as
shown in the inset of Fig. 2(b). From all con�gurations of
phases� ij , only these plaquette uxes are physically sig-
ni�cant when the local U(1) gauge freedom of the �elds
 i is taken into account. A uniform background mag-
netic �eld is obtained by setting the uxes to a common
value throughout the system (see Fig. 2(b)), while local-
ized vortices of arbitrary ux are obtained by modifying
the couplings along a line from a plaquette to the edge
(see Fig. 2(c)). In particular, half-integer vortices are
modeled by inverting the sign of some of the couplings,
t ij = � ij t0

ij , � ij = � ji = � 1. The plaquette operators
� p =

Q
p � ij then take the values +1 in the absence of a

vortex, and � 1 in the presence of a vortex. By adding the
phases� ij of such con�gurations, they can be combined
to obtain general vortex patterns above a background
magnetic �eld, while the pseudomagnetic �eld continues
to determine the coupling strengths jt ij j = t0

ij according
to Eq. (2).

III. PSEUDO-LANDAU LEVELS AND
HYPERBOLIC GEOMETRY

We �rst describe the correspondence of the description
of pseudo-Landau levels in the microscopic model and in
the appropriate continuum theory. This theory takes the
form of a Dirac equation in a curved hyperbolic space
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[35{38], which we review in Appendix A. The emerg-
ing curvature characteristically a�ects the energies and
degeneracies of the levels, allowing us to recover results
from the microscopic model exactly, as we discuss now.

We establish the consistency of both descriptions in
the optimally strained reference con�guration, forming
a triangular ake terminated by zigzag edges as illus-
trated in Fig. 2(a). As mentioned in the de�nition of the
model, this geometry maximizes the range of the pseu-
domagnetic �eld � so that the couplings t0

ij =t > 0 re-
main positive throughout the sample. Figure 1(a) shows
how pLLs form as a function of the pseudomagnetic �eld
strength in a triangle with N = 90 sites along each edge.
Within conventional low-energy theory that ignores the
curvature e�ects, the pseudomagnetic length is given by
` = 1=

p
j� j, and the energies are predicted to cluster into

pLLs at

~En = vF sgn (n)
p

2� jnj; (3)

enumerated by an integer indexn with jnj < N . How-
ever, we can improve beyond this simple estimate. At
the maximal value � = � max � 4=N, the microscopic
model can be solved exactly, and the pseudo-Landau lev-
els become precisely at [30, 33, 34] (we recapitulate the
construction in App. V A 1). The energies then take the
exact values

E (max)
n = (2 vF =N) sgn (n)

p
jnj(2N � j nj); (4)

which systematically deviate from ~En as the level index
increases. Furthermore, thenth pLL contains exactly

Dn = N � j nj (5)

degenerate levels, displaying a systematic depletion that
is absent from conventional Landau levels.

These exact energies and degeneracies match perfectly
with the continuum theory. Applied to the coupling con-
�guration (2), this not only induces a uniform pseudo-
magnetic �eld of strength B = � , but also a constant
negative curvature K = � � 2=4 (see App. B). The exact
energy levels (4) then correspond precisely to the Landau
levels [35, 43, 45]

En = vF sgn(n)
p

2jnBj + n2K (6)

of Dirac fermions on a hyperbolic surface with a constant
negative curvature

K = �
� 2

max

4
= �

4
N 2 (7)

and a pseudomagnetic �eld

B = � max =
4
N

; (8)

which are both induced by the space-dependent coupling
pro�le (2). The di�erence between the exact levels in-
cluding the curvature and the approximation ignoring the
curvature is illustrated in Fig. 3.

Figure 3. System-size dependence of the pLL energies (6) at
maximal strain � max in the continuum theory with curvature
(thick blue curves), which exactly recovers the result (4) of the
microscopic model in the optimally strained geometry. The
red lines show the conventional estimate (3) of these levels
when the curvature is ignored. For clarity, we only show the
levels with index n = 1 to 5.

Furthermore, the degeneracy depletion of the Landau
levels exactly matches the relativistic Wen-Zee shift [35{
38]

Dn = D0

�
1 + jnj

K
B

�
= N

�
1 �

jnj
N

�
: (9)

Here, the degeneracyD0 = N of the 0th pLL can be
inferred from the sum rule

P
n Dn = N 2, accounting for

all states in Hilbert space [46].
We note that in the tight-binding model, this degen-

eracy arises because the speci�ed geometry contains ex-
actly N more sites on the A sublattice than on the B
sublattice. Based on the chiral symmetry of the model,
this di�erence �xes the number of zero modes indepen-
dent of the coupling con�guration. Indeed, the curvature
does not break the chiral symmetry of the continuum the-
ory, and therefore also preserves the consistency of other
symmetry-enforced features, such as the symmetry of the
level spectrum itself. Furthermore, the theory recovers
that the 0th pLL is sublattice-polarized on the A sub-
lattice while all other pLLs have equal weight on both
sublattices [30, 33, 42], which again conforms to the sum
rules for these subspaces.

These observations are remarkable because we derived
the continuum theory by expanding around the center
of the system, where we can treat both low-energy val-
leys separately. The theory then approximates the sys-
tem as a hyperbolic disk of radiusr = 4=j� j, de�ned by
the distance where the metric becomes singular, which
happens to coincide with the �nite system size of the op-
timally strained microscopic system. Choosing a di�er-
ent expansion point, we can extend these considerations
qualitatively to capture additional features, such as the
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Figure 4. E�ect on the pLLs from an additional external magnetic �eld, demonstrating the curvature-enforced broadening
described in the text. (a) The upper half of the numerical level sequence in an optimally strained triangle of size N = 90,
subject to an additional magnetic �eld of strength B = 0 :01� max . (b) Comparison of the numerically obtained energies (data
points) to the predicted broadening intervals (shaded regions) for pLLs 1 to 5, at B=� max = 0 :01; 0:05; 0:1 (subpanels, left to
right). (c) Detailed broadening of the 3rd pLL, for B=� max = 0 :05; 0:01; 0:05 (gray, orange, and blue). The solid black line
shows the exact position (6) of the pLL at B = 0, while the dashed line is the conventional approximation (3) ignoring the
curvature.

opening of a local gap in the regions around the corner
of the triangle. This then explains the spatial support
of the low-lying pLLs, which �ll out an approximately
triangular region in the center of the system [30, 33] (see
Fig. 11 in the numerical Appendix D).

Overall, the continuum theory therefore captures
global and local features of the pLL spectrum and states,
and reveals their connection to geometric curvature ef-
fects. In turn, the underlying microscopic model realizes
these often elusive e�ects precisely. This provides the
platform on which we can now include the e�ects of ad-
ditional magnetic �elds, extended across the system or
localized in vortices.

IV. INTERPLAY WITH A UNIFORM
EXTERNAL MAGNETIC FIELD

As we establish next, the strain-induced hyperbolic ge-
ometric a�ects the interplay of the pseudomagnetic �eld
with an additional external magnetic �eld B , even when
the latter is physically uniform across the system. In
general, both types of �elds can be distinguished by their
symmetry properties. A real magnetic �eld breaks time-
reversal and parity symmetry, and enters with the same
sign in the two sectors of the continuum theory, which are
associated with the low-energy valleys near the K and K0

points. Furthermore, as in these sectors the role of the
sublattices is interchanged, the 0th Landau level from a
magnetic �eld is not sublattice polarized. In contrast,
the pseudomagnetic �eld preserves both symmetries, but
switches its sign between both valleys, and therefore
supports the sublattice-polarized 0th level, as discussed
above. The conventional low-energy theory would there-
fore predict that an additional magnetic �eld splits each
pLL into two distinct levels. However, as we will discuss
now, the geometric curvature changes this picture drasti-
cally, so that one instead obtains continuously broadened

pLLs that remain centered at the value without a mag-
netic �eld, as already illustrated in Fig. 1(b).

As derived in Appendix C, this additional feature be-
comes visible when one combines the two �elds in the
continuum theory. We �nd that the curvature remains
intact at K = � � 2=4. However, the combined e�ective
�eld

BK = � + ~B; BK 0
= � � + ~B (10)

seen by Dirac fermions nearK and K 0 points features an
e�ectively space-dependent magnetic �eld

~B =
B
p

g
= B j1 � � 2(x2 + y2)=16j: (11)

As indicated, this spatial dependence directly tracks
back to the inhomogeneous metric of the system, which
is encoded in the quantity g. We note that this expres-
sion directly encodes the distancer = 4=j� j at which the
metric in the continuum theory becomes singular. The
e�ective magnetic �eld ~B then varies from B near the
center to 0 near the boundary of the system.

At the center of the sample, the combined e�ective �eld
therefore takes the valley-dependent magnitudejBj =
j � � + B j, but at the boundaries it reduces to the valley-
independent magnitude jBj = j� j from the pseudomag-
netic �eld. As the e�ective magnetic �eld varies slowly
over the sample and the underlying at-band states can
be de�ned with a local support, we obtain the predic-
tion that instead of becoming split, the energies become
spread out between two values

E K
n = vF sgn (n)

r

2jn(� + B )j � n2 � 2

4
; (12)

E K 0

n = vF sgn (n)

r

2jn(� � + B )j � n2 � 2

4
; (13)

where we again included the contributions from the cur-
vature. This prediction is expected to be valid as long
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as the perturbed Landau levels remain well separated,
which implies that jnj . j�=B j, and hence also that the
magnetic �eld is not too strong. Higher up in the spec-
trum, we encounter a continuous spectrum, which can
be physically attributed to magnetic edge states �lling
out all gaps (see Fig. 10 in the numerical Appendix for
further illustration).

This picture is con�rmed in Fig. 4, where we com-
pare the predicted broadening to numerical results for
optimally strained triangles with an additional magnetic
�eld of various strengths. This broadens the levels as
expected, with an inection point at the energy (6) of
the system without the additional �eld. As already men-
tioned, this behavior is in striking contrast to the con-
ventional low-energy prediction without curvature, which
would result in the splitting of each pLL into two distinct
levels. A well-de�ned splitting can only be observed when
the system is studied locally, as done experimentally, e.g.,
in Ref. [26], and this observation also prepares our study
of ux vortices in Secs. V and VI.

V. FLUX VORTICES

As already mentioned in the introduction, the interplay
of strain and magnetic �elds takes a particularly striking
form when the latter are localized in ux vortices. As il-
lustrated in Fig. 1(c) for a half-integer ux vortex placed
into the center of the system, this induces a characteristic
sequence of midgap states, where we �nd 1 state between
the 0th and �rst pLL, 3 states between the �rst and the
second pLL, and in general 2n +1 states between thenth
and the n + 1st pLL. This goes along with a reduction
of the degeneracy in the pLLs by 2jnj (therefore, the nth
pLL contains N � 3jnj states). This indicates that from
each pLL, jnj states each are donated to the gap above
and below. For example, the seven midgap states be-
tween pLLs 3 and 4 then correspond to the combination
of 3 states missing from the 3rd pLL and 4 states missing
from the 4th pLL. In the following, we will con�rm this
picture in detail. For this, we �rst explain the modi�ed
degeneracy pattern of the pLLs microscopically in the
optimal strain con�guration. Then, we utilize the con-
tinuum theory to describe the formation of the midgap
states themselves.

A. Flux-modi�ed pLL degeneracy

To explain the modi�ed degeneracy pattern of the
pLLs in the presence of a ux vortex, we adapt the con-
struction principle of these states in the case without a
ux [34]. As further shown in [30], the original construc-
tion can be used �rst to determine a zero mode localized
on the A sites along one of the edges of the triangle,
and then construct the remaining zero modes recursively
by including A sites on successive parallel lines. With
Ref. [34], the states in the �nite-energy pLLs are then

Figure 5. Division of an optimally strained triangle into zigzag
chains labelled by l , as used for the construction of exact pLL
states in Sec. V A. The amplitudes specify a state in the �rst
pLL for system size N = 5. This state is supported by the blue
trapezoidal region, and hence is una�ected by the indicated
ux vortex, which is generated by a phase shift of the deep
red coupling.

obtained by combining such solutions recursively from
triangles of di�erent sizes, where one level is lost in the
passage from one pLL to the next.

To adapt this formalism to the system with a vortex,
we proceed in two steps, each presented in a separate
subsection. We �rst generalize this procedure to gener-
ate exact pLL states with compact trapezoidal support.
Then, we apply these insights to combine states from
several trapezoidal regions that suitably cover the sys-
tem while avoiding the position of the ux vortex, and
obtain from this the degeneracy of the exact pLL states.

1. Exact pseudo-Landau level states with trapezoidal
support

To obtain exact pLL states with a trapezoidal support,
we bring the results from Ref. [34] into an explicit form,
where we are guided by Refs. [30, 33]. This is achieved
by dividing the triangular system into N zigzag chains of
alternating A and B sites, running parallel to one of the
edges, as illustrated in Fig. 5. Along thelth chain, we de-
note the amplitudes on the A sites asA l;m (m = 1 : : : l )
and on the B sites asB l;m (m = 1 : : : l � 1). As indi-
cated, each chain contains one more A site than B sites.
Furthermore, along this chain the couplings alternate as

3t
N

(l � 1; 1; l � 2; 2; : : : ; 2; l � 2; 1; l � 1); (14)

while the coupling between chainsl and l + 1 is given by
3t(N � l)=N. This suggests to sett = N=3 so that all
couplings are integers, which we adopt from here on. The
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eigenvalue equation can then explicitly be written as

EA l;m = ( l � m)B l;m + ( m � 1)B l;m � 1 + ( N � l)B l +1 ;m ;
(15)

EB l;m = ( l � m)A l;m + mA l;m +1 + ( N � l + 1) A l � 1;m :
(16)

We next construct the exact zero-energy states of the
system. Because of the chiral symmetry and the imbal-
ance of sites on both sublattices, these are all localized
on the A sites. Throughout the system, we then have to
ful�ll the condition

0 = ( l � m)A l;m + mA l;m +1 + ( N � l + 1) A l � 1;m ; (17)

which provides a solution of Eqs. (15), (16) with vanish-
ing amplitude B l;m . We �nd the explicit solutions

AN; 0;k
l;m = ( � 1)l + m

�
N � k
m � 1

��
k � 1
N � l

�
; (18)

where
� r

s

�
denotes binomial coe�cients, N denotes the

system size, andk = 1 ; : : : ; N labels the di�erent states.
Importantly, each of these states has �nite amplitudes

on only k chains adjacent to the edge, covering a trape-
zoidal region with N � k + 1 � l � N . Such a state
remains an exact solution even when we remove or mod-
ify parts of the system away from its support.

Starting from these states, the �nite-energy pLLs can
be constructed recursively by setting [34]

AN;n +1 ;k
l;m = ( l � m)AN � 1;n;k

l � 1;m + ( m � 1)AN � 1;n;k
l � 1;m � 1

+ ( N � l)AN � 1;n;k
l;m ; (19)

B N;n +1 ;k
l;m = EN;n +1 AN � 1;n;k

l � 1;m : (20)

This automatically ful�lls Eq. (15), while consistency
with Eq. (16) enforces the quantization condition EN;n =
sgn (n)

p
jnj(2N � j nj). Furthermore, each level contains

one fewer state, giving the degeneracyDn = N �j nj, with
� N < n < N . As

P
n Dn = N 2 equals the number of

sites on the triangle, this exhausts all states in the Hilbert
space of the system.

Starting the recursion with states from Eq. (18), we see
that each index k delivers a sequence of pLL states with
jnj < k . Just as the initializing zero-energy state, these
states furthermore have a �nite support in a trapezoidal
region of width k, as we illustrate by an example in Fig. 5.
These states, therefore, remain exact solutions when the
system is truncated to these regions, and can be directly
transferred to a triangular system with an additional ux
vortex placed outside the trapezoid, as again illustrated
in the Figure. This is our main technical result from this
construction.

2. Combined degeneracy from a trapezoidal covering

The trapezoidal support of the states constructed
above implies that their construction carries over to a

Figure 6. Construction principle of exact pLL states in an
optimally strained triangle with a ux vortex, marked in red,
which is obtained by a Peirls substitution along the line of the
shaded plaquettes. The desired states are obtained by adopt-
ing their construction principle in absence of the vortex, which
can be used to produce a basis of zero modes with trape-
zoidal support. We use this to construct three trapezoidal
systems whose pLLs are exact solutions of the triangle with
the vortex, but are not a�ected by its existence (the remain-
ing shaded plackets do not carry any ux, so this also holds
true for subsystem 1). The combined Wen-Zee shift from the
three systems exactly accounts for the observed number of
midgap states produced by the vortex.

system with a ux vortex, as long as one avoids cross-
ing the corresponding plaquette. We therefore proceed
as illustrated in Fig. 6, and approach the vortex from
three sides. This produces three separate sets ofN i zero
modes that sum to

P
i N i = N . As indicated in the �g-

ure, each set corresponds to the 0th pLL of a system of
reduced size, with the shape modi�ed into a trapezoid.
The string of modi�ed couplings connecting the ux pla-
quette to the boundary only a�ects one subsystem, and
crosses it completely, so that it can be gauged away, sub-
ject to a gauge transformation  l ! exp� i'  l for all
sites below the string.

For each of these subsystems, we can then construct
N i � j nj states in the higher pLLs recursively as in the
original approach, where again one level is lost in the pas-
sage from one pLL to the next. These particular states
then provide solutions of the triangular system including
the vortex, for arbitrary ux (the subsystems also con-
tain additional states, as their combined Hilbert space
dimension is larger than in the original system). The
three sets of states all feature sites in their support not
covered by other states, so that they are linearly inde-
pendent. Therefore, the degeneracy of each pLL in the
triangular system with the vortex obtained in this way
is

P
i N i � j nj = N � 3jnj. This recovers the observed

reduced degeneracy, with the de�cit of states given by
the midgap states.

As we will show next, these midgap states can be ex-
actly accounted for in the continuum theory. Speci�cally,
from each pLL in the vortex-free system,jnj such states
are donated to the upper gap, while an equal number of
jnj states are donated to the lower gap. Therefore, in the
continuum theory, the same modi�ed degeneracy of pLLs
is obtained by a remarkable combination of the Wen-Zee
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