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Fig. 8. Performance metrics for four ODRAM simulations at 10 test riometer locations (in order of increasing
geomagnetic latitude). a) RMSE, b) Bias.
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Other tests indicated that while including riometers from auroral latitudes aids the optimisation of the rigidity
cutoff latitude boundary, they can bias the PCA model coefficients m, and m . Ideally, a polar-cap riometer
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* Moderate improvements to Polar Cap Absorption model performance are achieved when assimilating
contemporary riometer measurements (CNA). However, issues of poor calibration and auroral absorption
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