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Abstract 
Thermoelectric Generators (TEGs) utilise the Seebeck effect which can directly convert 

heat energy into electricity. When a temperature difference is created across the TEG 

modules, an electromotive force will be generated if the modules are connected in an electric 

circuit with a load. As the planet aims to reduce its carbon footprint clean methods of 

generating electricity are increasing in demand, and therefore so is the research into the use 

of TEG modules. 

This research aimed to determine how TEGs could be used in utilising the temperature 

difference between the inside of a small submarine and the water which surrounds it and 

predict how much electrical power could be produced. This was done using both Ansys 

software and physical experiments. A test rig was built to emulate the conditions which 

would be experienced by the TEG modules in a submarine, with a warmer constant 

temperature on one side and the other side cooled by flowing chilled water. Many materials 

and the potential addition of heat transfer fins were tested, and all experimental tests 

performed were then simulated in Ansys Fluent and Thermal Electric to ascertain how 

accurate the simulations represent real-world results. The tests were performed from 

temperatures ranges between approximately 5⁰C ≤ T ≤ 20⁰C, it was decided that all 

temperatures 17⁰C and below simulated in Ansys would give a fair representation of how 

much power the TEGs could produce. 

Using the information from these tests and simulations, scaled up models we simulated in 

Ansys to model the TEG modules in a submarine section. These results showed that the use 

of heat transfer fins was not necessary due to the thickness of the submarine wall and the 

velocity at which the submarine would travel. At a temperature difference of 15⁰C between 

the inside of the submarine and the water flowing around it, four TEG modules connected 

in series can be expected to produce 0.35W.  
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Introduction 

1.1 Background 

The world is changing. After years of relentlessly burning fossil fuels for energy and 

releasing harmful gases into the Earth’s atmosphere scientists across the globe have detected 

the damage caused and predict a worrying future if things were to stay the same. According 

to (NCDC, 2020), the average surface temperature has risen 1.18⁰C since the late 19th 

century due to human activity which is producing greenhouse gases. To the average person 

1.18⁰C in over a hundred years may not sound a lot but the damage is frightening, and 

projections are only showing this to keep rising. The rising temperature is causing glaciers 

to retreat and Arctic Sea ice to melt which is causing sea levels to rise and endanger 

coastlines and low-lying cities. Extreme events such as river flooding are happening at an 

increasingly alarming rate due to the warming climate a study by (Manuela I. Brunner, 

2021) confirms, this shows how not only the coastal cities are affected. Climate change will 

not only damage communities and threaten people with flooding, but the high temperatures 

are also increasing the likelihood of droughts and temperatures which cause risk to health. 

For example, in the United Kingdom in 2022 the temperatures in some areas saw record 

highs, even reaching 40.3⁰C in Lincolnshire. This temperature in a country such as England 

where houses do not generally have air-conditioning and are designed to keep heat in is not 

just uncomfortable but can endanger the lives of residents, especially the elderly and 

vulnerable population. A study by (Raju, 2022) found that this specific heatwave was made 

at least ten times more likely due to human made climate change. Figure 1 shows graphs 

depicting the highest temperature experience in the UK each year (a) and the highest two-

day average temperature experienced each year (b). It is clear to see that the extremity of 

temperature the UK is experiencing is trending upwards as both graphs show a positive 

correlation. 

 

 

Figure 1 (WWA, 2022):UK max temperature experienced each year (a) and UK two-day average max temperature (b) 

 

It is common knowledge across the globe that there must be change for the benefit of planet, 

and it is clear to see in recent years on a large scale what is being done, from renewable 

energy such as solar and wind, to the gradual drive away from fossil fuelled vehicles. What 

may not be as clear to the public is the smaller forms of reducing carbon footprint by 

converting waste energy from a system into a usable form. Systems such as regenerative 

braking in vehicles help convert kinetic energy into usable electrical energy. 

Sustainable- “capable of being maintained or continued at a certain rate or level” (OED, 

2022). It is clear to the modern public that the burning of fossil fuels is not sustainable for 

the future of energy production, what may not be obvious is that electric power via batteries 

is not a solution for every energy problem. Largely due to the increase in popularity of 
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electric vehicles, the demand for lithium to be used in the batteries has risen rapidly. 

Currently the raw materials for producing Lithium-Ion batteries are not being mined at a 

rate fast enough to keep up with demand which is causing prices to ascend rapidly, as shown 

by figure 2.  

 

 

Figure 2 (Benchmark Minerals, 2021): Price index for raw materials used in Lithium-Ion batteries 

 

A solution to reducing the need for batteries is to have methods of electrical power 

generation which are directly linked to a system, rather than having to use a battery to store 

the electrical power. 

One form of renewable energy conversion which is not used for mass electricity production 

in the sense that wind turbines are is Thermoelectric Generators converting heat energy 

directly to electrical. These generators are currently used in limited applications, most of 

which are used to utilise waste heat lost from a system. Although this technology is not new 

and rare comparatively with other renewable energy generators, there has been an increase 

in interest in recent years due to its little to no maintenance required among other 

advantages. 

 

1.2 Project Focus 

Submerged water vehicle such as Autonomous Underwater Vehicles (AUVs) and small 

Submarines are common across the globe now and are used for many purposes for example 

surveying the seabed. The temperature of the Oceans/Seas decrease with depth. This project 

aimed to utilise the temperature difference between the inside of an AUV and the water 

surrounding it by means of thermoelectric generation. This project focused on both physical 

and mathematical modelling (using ANSYS Workbench) to test the system. A system like 

this would make a greener alternative to using another battery or recharging a battery. 

 

1.3 Problem Statement 

This investigation aimed to confirm the hypothesis, if thermoelectric generators produce 

electricity via utilising temperature differences across systems, then they will be viable 

additions to submarines to generate additional usable power to either be stored or power a 

submarines sub-system. 
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1.4 Aims & Objectives 

The main aim of this project was to determine whether the use of Thermoelectric Generators 

to harvest electricity from the temperature difference between the inside of an AUV and the 

water surrounding is viable for extending mission time or powering an electrical subsystem, 

economically and logistically. 

To fulfil the aim of this project the following key objectives must be achieved: 

• A suitable test rig which would accurately simulate the conditions the AUV will experience 

must be built. This should mimic the effect of different methods of heat exchange on the 

vessel, to ascertain which Is most effective. The system needed to be waterproof and 

possible to replicate in Ansys.  

• A control panel needed to be manufactured to accurately control and measure parameters 

when tests were performed on the TEGs.  

• The extra power which will be used due to changes to the geometry of the AUV must be 

calculated to determine the net power produced by the system. This will allow understanding 

of whether the system is beneficial. This is not necessary if the geometry does not need to 

be changed. 

• A parameter study would take place to determine how the material of the heat exchange 

surface and extra geometry such as heat transfer fins would affect the power output of the 

TEGs. This data helps with the design of the scaled-up system. 

• The real-world results need to be compared with simulation results to determine how 

accurate the simulations are. The test rig is be deemed accurate if the power produced in the 

simulations is within the standard error of the physical test results. The standard error is 

calculated by dividing the standard deviation of the results by the square root of the number 

of samples. 

• Using the information from the comparison of the test rig and the simulations of it, further 

simulations need to be done to see how the TEGs may perform when scaled up in an actual 

AUV/Submarine. This would involve determining the best orientation/locations for the 

TEGs and deciding on if the potential power they can produce would make it worth 

implementing them into submarines economically and logistically in the future.  

 

 

1.5 Delkia Role in Project 

Delkia are a company which specialise in systems integration focusing within the aerospace, 

clean energy, and maritime industries. The company played a large role in supporting the 

project financially by contributing funding towards the project. However, arguably even 

more valuable to the project was the resources and support provided by their engineers 

throughout the project, especially when designing and manufacturing the control unit which 

was completed at the Delkia workshops. The company also provided useful resources such 

as dimensions for submarines, which made scaling up the system to fit a real world design 

more accurate. 
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2 Literature Review 

2.1 Autonomous Underwater Vehicles (AUVs) 

Autonomous Underwater Vehicles (AUVs) are a class of vehicle which are designed to 

operate underwater without the need for any crew onboard. The specifications of these 

vehicles vary greatly depending on its desired use. AUVs range from small gliders which 

can be propelled by changes to its buoyancy such as (Douglas C. Webb, 2001) to much 

larger battery propelled AUVs. Many of these larger electric propelled AUVs can only be 

submerged for up to 48 hours or shorter due to the limited power that the batteries can carry. 

 

2.2 AUV/Submarine Environment 

Most AUVs are designed to operate in large bodies of water such as the seas and oceans. 

The temperature of these bodies of water changes with depth due to the water at the surface 

being influenced by factors such as amount of sunlight and local air temperature. Figure 3 

shows temperature data recorded by (Carl Freitas, 2021) in the North Sea off the coast of 

Norway.  

 

 

Figure 3 (Carl Freitas, 2021): Sea temperature by depth and month in the North Sea off the coast of Tved, Norway and 

the location of Cod at these measurements (pink dots). 

 

Figure 4(Nicholas K. Dulvy, 2008): Mean winter bottom temperature of the North Sea from 1980-2008. 

From looking at Figure 3 it appears that the water 35m deep and below averages a 

temperature of about 7⁰C and even hits lows of approximately 4⁰C. The water at depths of 

less that 35m fluctuates in temperature much more, this is due to the air/wind temperature 

on the surface having an effect. The water at the surface can reach near 1⁰C in the winter 

months. 

Figure 4 shows the recorded mean temperature at the bottom of the North Sea through winter 

which further supports figure 3 that the mean temperature is approximately 7⁰C, although 

this data is a decade old it correlates with the recent data shown in figure 3. 
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2.3 The History of Thermoelectric Generators 

Thermoelectric Generators (TEGs) work by converting heat energy into electrically energy 

directly without any mechanical work. This effect was discovered by Thomas Johann 

Seebeck in 1821 when he found that if two dissimilar metals were connected in circuit and 

a temperature gradient was maintained across the metals, then an Electromotive force is 

produced. This is known as the Seebeck effect. 

Later in 1834, Jean Charles Athanase Peltier discovered what would be the reverse of the 

Seebeck effect, if two dissimilar materials were connected in circuit and a current was 

passed through, a temperature difference across the material junctions would appear as heat 

would travelled away from the cold junction to the hot. This became known as the Peltier 

effect and is very important in refrigeration technology. 

The third and final thermoelectric effect discovered to date was in 1854 by William 

Thomson, later known as Lord Kelvin from 1892. The effect that Thomson discovered 

differed in a sense from the prior two as it is present in a single material rather than a 

thermocouple. It is the effect in which when an electric current passes through a 

homogenous material with a temperature difference across it in circuit causing heat to either 

be released or absorbed. Thomson not only discovered this effect (the Thomson effect), but 

he also derived relationships between the thermoelectric effects, known as the Kelvin 

relations. The Peltier coefficient (π) and Seebeck coefficient (α) are related by equation (1). 

 

 𝜋𝑃𝑁 = 𝛼𝑃𝑁𝑇 (1) 

 

The P and N subscripts refer to the positive and negative elements in the thermocouple 

respectively. The Thomson coefficients (τ) of a thermocouple can be related to the Seebeck 

coefficient by equation (2). 

 

 
𝜏𝑃− 𝜏𝑁 = 𝑇 ∙

𝑑𝛼𝑃𝑁
𝑑𝑇

 

 

(2) 

 

This phenomenon largely remained unused in practical technologies as the power output 

was very small. According to (Davide Beretta, 2019) in the first half of the 20th century 

research into the use of semiconductors began. This revolutionised the potential for practical 

uses of TEGs as semiconductor materials much higher power outputs than what was 

previously seen, although still low comparatively with other forms of electrical generation 

methods.  

 

2.4 Physics of Semiconductors 

A good TEG will have three properties: high Seebeck coefficient ‘α’, high electrical 

conductivity ‘σ’, and low thermal conductivity ‘λ’. This is shown by equation (3) 

determining the value of the figure of merit ‘z’ for an individual material (Goldsmid, 2017). 
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It is believed that the figure of merit was first referenced by Edmund Altenkirch in 1909 

(Kar, 2016). 

 

 𝑧 = 𝛼2 ∙
𝜎

𝜆
 (3) 

 

The reason semiconductors have been favoured as TEG materials is that it is possible to 

optimise the three properties which affect the figure of merit with different techniques, one 

of which involves doping the materials to increase the charge concentration. To understand 

how doping benefits, the band theory must be understood. 

Electrons are contained in states in different bands of energy within the crystal lattice of a 

semiconductor. The Fermi level in the band theory is defined as the energy level at which 

there is a 50% probability of occupation of an electron at any temperature. Figure 5 shows 

how the location of the Fermi level in comparison the both the Conduction band and Valence 

band affect what polarity the semiconductor is. 

 

 

Figure 5 (Rioult, 2015): Fermi energy level location in intrinsic, n-type, and p-type semiconductors 

 

The electrical conductivity and Seebeck coefficient are dependent on how close the Fermi 

level is from the bands. If the Fermi level is closer to the Conduction Band, then the amount 

of quasi-free electrons outweighs the number of holes and vice versa.  Doping with elements 

that act as electron donors will increase charge carrier concentration in n-type 

semiconductors, whilst doping with elements which act as electron acceptors will increase 

the charge carrier concentration in p-type semiconductors. 

Another method of optimising a semiconductors figure of merit which was first proposed 

by (Dresselhaus, 1993) in which they investigated the effect of nanomanufacturing the 

semiconductor material into one dimensional nanowires. When the thickness of the material 

becomes incredibly small (2 or 1 dimensional), the figure of merit rises due to an increase 

in the effective density of states at the Fermi level. This discovery had a positive impact on 

the electronic properties of TEGs in theory, however according to a book by (Oliver Eibl, 

2015) this initial research was not as useful in practice as nanomanufacturing thermoelectric 

materials to reduce into superlattices to reduce thermal conductivity, which in turn rises the 

ZT (Dimensionless Figure of Merit) value.   
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It is common knowledge throughout the science community which bulk semiconductor 

materials perform best at which temperature ranges; much of the modern research being 

carried out for semiconductors is into increasing the properties of these materials via means 

of dopants and nano structuring superlattices.  

 

2.5 Current Thermoelectric Generators & their applications 

2.5.1 Background 

TEGs are an attractive concept due to their low maintenance, low noise, and usefulness on 

capturing waste heat there is a lot of research conducted for these technologies. The main 

aim which researchers try to achieve when developing TEG materials is to produce a 

material with a high dimensionless figure of merit (ZT) for the temperature which it will 

operate at. Most TEGs used in the real world are some form of semiconductor. Figures 6 & 

7 shows a comparison of the ZT of some of the most common semiconductors used at a 

range of temperatures. 

 

 

Figure 6 & Figure 7(Snyder G.J., 2008): ZT of some common semiconductor materials based on operating temperature. 

 

2.5.2 Common Applications for TEGs 

One of the most important applications for TEGs is in the aerospace industry where TEGs 

convert heat released from the decay of a radioactive isotope to generate electricity for 

spacecrafts and satellites, semiconductor materials would be chosen for this application of 

TEG. This method of TEG has been in use for a long time as proven by a patent by (Jordan, 

1958).  

A few decades later the use of TEGs was implemented into the automotive industry to 

convert waste heat from exhaust gases into usable electricity, the first patent for this type of 

system to my knowledge was by (Bass & C., 1993). TEGs in automobile exhausts use 

semiconductors. An earlier patent from (Kiekhaefer, 1965) aimed to directly convert waste 

heat directly from an internal combustion engine into electricity using TEGs however this 

method does not appear to be as common as the use in the exhaust system.  

TEGs are also used in electronic systems to recover waste heat from batteries/circuits to 

power other electrical components. A system using this technology was patented by (Suski, 

1996) which converted heat generated from a semiconductor circuit into usable electricity. 

A new approach with this technology is to convert waste heat from circuits in mobile phones 

into usable electricity, this system was invented by (Jorge Luis Rosales, 2018).  
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There has also been research into the use of TEGs in building to recover heat from pipes 

containing hot water from the boiler (X.F. Zheng, 2014), this however is not common 

practice today.  

There has been lots of research into TEGs in wearable devices for sport or medical purposes 

to utilise humans body heat to generate electricity. These devices usually power sensors 

which measure medical data from a person or can be used to examine data of a person 

playing sport and the main characteristic of these devices is that the TEG must be flexible, 

which has encouraged research into polymer and thin-film technologies. These types of 

TEGs are further discussed by (Thielen M., 2017). 

 

2.5.3 Maximum Power Point Tracking (MPPT) 

TEGs compared to other forms of generators do not generate a massive amount of power 

therefore it is crucial to make sure the TEG is operating at its maximum power point by 

means of Maximum Power Point Tracking (MPPT). MPPT aims to track the specific voltage 

and current values which will produce the highest power output for the TEG at its 

instantaneous operating conditions for a variable power source. This has been used for more 

common variable power sources such as photovoltaic solar systems for some time. Figure 

8 shows graphically the locations for the MPP (Maximum Power Point) at different 

temperatures particular TEG module. Two key papers on the use of this in TEGs are (Jensak 

Eakburanawat, 2005) and (Marcos Compadre Torrecilla, 2019). MPPT requires and control 

unit using an algorithm which will adjust the voltage using a SEPIC (Single-Ended Primary-

Inductor Convertor) to achieve the maximum power output. SEPIC type convertors are 

favoured for this as they can step voltage both up and down. 

 

 

 

Figure 8(O. Maganga, 2014): MPP at different temperatures for module GM25-127-14-10 from European 

Thermodynamics. 
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2.5.4 Thermoelectric Modules 

There are many TEG modules available to buy, these are not built for a specific application 

but instead consist of too thermally conductive ceramic plates either side of an array of 

thermoelectric pellets of both p-type and n-type. These can come in a range of sizes, 

operating temperature, expected power outputs, and prices. 

 

2.6 Novel Thermoelectric Technologies 

2.6.1 TEGs in AUVs 

The idea of using the thermal energy stored in the ocean to power AUVs is not a new idea, 

a recent paper by (Guohui Wang, 2020) reviews what attempts have been made so far into 

this area. This review shows that most of the research into this area so far is into the use of 

PCMs utilising the oceans temperature gradient to adjust the buoyancy of an AUV.  

The use of TEGs in AUVs has been researched by only two papers to the authors knowledge, 

(J.R. Buckle, 2013) and (J. Falcão Carneiro, 2018). The first of these papers (J.R. Buckle, 

2013), aimed to model a TEG system for an AUV using MATLAB & Simulink. He 

modelled a system in which the TEGs heat emitting side was directly in contact with the 

water and an energy store material of stainless-steel was used. (J. Falcão Carneiro, 2018) 

aimed to build on the research from (J.R. Buckle, 2013) and simulate a model with different 

energy store materials. Furthermore, (J. Falcão Carneiro, 2018) believed aluminium heat 

transfer fins would be required to act as a heat sink. Both papers however target underwater 

gliders rather than battery powered AUVs and neither of these papers perform any physical 

simulations. 

 

2.6.2 Uses of Software for Analysing TEGs 

Each year simulation software is becoming more capable, (Ayman Eldesoukey, 2019) 

utilised ANSYS Fluent software to analyse which position in a chimney could generate the 

most power for a TEG module. This research did a mesh study to determine the variation in 

TEG power based upon number of elements to see what mesh size is required for accurate 
results. This same software could be used for simulating waters flow over a TEG built into 

a structure to determine its best position and if it benefits from additional structures (such 

as heat transfer fins).  

Work by (Artur Wodołazski, 2021) also used Ansys CFD (Computational Fluid Dynamics) 

software Fluent to analyse a TEG cooled by an air heat sink, in this meshes were trialled in 

a study to find a mesh of the highest quality, this produces more accurate simulation results. 

A k-epsilon model was used in this research however this does not translate that this model 

is suitable for the research in the report as water will be the fluid for this research as opposed 

to air.  

Ansys is a very useful software not only for analysing a system with CFD, but it also 

provides useful tools for Finite Element Modelling (FEM) of systems. A paper by (P. 

Ziolkowski, 2010) showed how TEG performance could be analysed using FEM using 

Ansys, the software capabilities and accuracy will have improved since this work with 

Ansys always updating its software. 

A paper by (A. S. Korotkov, 2017) presented how on a more modern version of Ansys 

workbench, FEM software could be used to analyse TEGs, the practical applications of the 

software and potential uses for it and compared the results with that of simulations used 
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from COMSOL Multiphysics software. This research concluded that Ansys was especially 

useful software for analysis as it can solve various physical problems. This paper concluded 

how the use of Ansys to analyse TEG modules is especially useful for determining the most 

effective operating conditions for the module. The models simulated in this paper on Ansys 

used median temperature conditions on the TEG modules, as opposed to heat flux or 

convection conditions. The paper also stated that the use of temperature dependence on the 

material properties increased a correction of up to 15%. Another paper by the same author 

from that year (Alexander Korotkov, 2017) went further in comparing experimental data 

with the results obtained using Ansys FEM software for analysis TEGs. This research 

concluded that Ansys provides reliable data on power outputs of TEGs using different 

temperature conditions and load resistances. 

A paper by (Saleh, 2021) used a modern version of Ansys from 2021 to model a TEG 

module and determine how much power could be produced by it with very low temperature 

difference of a few degrees Celsius across the module. This research used four conditions 

in the Thermal-Electric simulations, three temperatures across the system and a low voltage 

condition. The use of the three temperatures rather than just a hot and a cold side condition 

could increase the accuracy of simulations slightly, although the effect could be minor. 

Ansys is not the only software which can be utilised for simulating TEGs, COMSOL can 

also be used to simulate thermoelectric effects. Research by (R. Kiflemariam, 2014), (S. 

Mahmoudinezhada, 2019), and (Murat Emre Demira, 2017) used COMSOL to simulate 

Solar-TEG hybrid-based systems. (S. Mahmoudinezhada, 2019) compared its results from 

COMSOL with experiment, the results showed close agreement with each other. Although 

COMSOL clearly appears to also provide accurate data, Ansys was chosen due to the 

favourable reasons given in (A. S. Korotkov, 2017), the ease of using Ansys for both CFD 

simulations and Thermal-Electric makes for uncomplicated transfer of data between the 

two. 

A paper by (Topal, 2011) showed how COMSOL Multiphysics could be used to model a 

TEG with a fluid flow providing forced convection. The paper proved that the use of forced 

convection via fluid flow increased the amount of power generated by 3.5 times. 

Other notable research using COMSOL Multiphysics to model TEGs includes (Sun Jin 

Kim, 2014), (Tulaev, 2019), and (Jaegle, 2007). 

Unlike the previous papers, one piece of research by (Abolhasan Khajepoura, 2017) used a 

combination of Ansys, COMSOL, and MCNP to simulate TEG powered by a radioisotope 

heat source. The authors described the use of a combination of these software as enabling 

them to precisely design various types of radioisotope heat sources. 

Ansys have many guides to help use their software to its maximum capabilities, (Ansys, 

2009) gives a guide on how to perform successful FLUENT simulations for an older version 

of the software, however the points are still valid with the present version. 

 

2.6.3 Novel Semiconductor Materials 

With a materials performance as a TEG being dependant on operating temperature research 

must be done to create materials tailored to these desired temperatures. This project is 

focused on TEGs operating about room temperature or slightly below. Many materials are 

known to perform well at room temperature such as Bismuth Telluride and Antimony 

Telluride; a lot of the research aims to use these base compounds and improve their 

performance by doping them with other elements or nano-manufacturing them to increase 
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their ZT value. A largely cited article by (Rama Venkatasubramanian, 2001) claimed to 

have developed p-type Bi2Te3/Sb2Te3 based superlattices with a ZT of 2.4 at room 

temperature, a record high recorded at the time. Research by (Cheng Jin An, 2017) claimed 

to have developed an organic TEG using directly spun carbon nanotubes with multiple 

molecular dopants which had the best maximum power factor for organic materials to date 

and was similar rating to bismuth telluride. (Hyeongdo Choia, 2018) claimed to develop a 

method of developing TEG materials which was reliable, flexible, and easily reproducible 

in results due to the materials being screen printed. (Seong Eun Yang, 2021) claimed to 

have developed materials consisting of BixSb2-xTe3 with record high efficiencies of 8.7%, 

fabricating it by 3D printing. A material developed by (Dehua Hu, 2020) is an n-type 

perylene bisimide which claimed to have record-high induced thermoelectric properties 

induced by Soret effect.  

 

2.6.4 Novel Non-Semiconductor Materials 

With semiconductor elements often being rare and therefore relatively expensive, there has 

been some research into the potential for ceramic or polymer-based TEG materials. 

Research by (Nesrine Jaziri, 2021) developed a ceramic based low temperature TEG design 

to harvest heat from power circuits which produced 81µW at ΔT=114⁰C which was deemed 

acceptable for this paper and is a large power output for a ceramic based TEG of its size 

however it still does not compare to the capabilities of semiconductors today. A lot of the 

research into ceramic based TEGs is into the use of them in very high temperature 

applications due to their high melting points, some of these key investigations include 

(Geppert, 2014), (G. Constantinescu, 2013), and (Gabriel Constantinescu, 2021); although 

this does not make these technologies relevant to the objectives of this report (room 

temperature operation). One of the main problems with ceramics when compared to 

semiconductors is their very high electrical resistivities which reduce the figure of merit 

value. This means that although they may have a place in future thermoelectric technologies, 

they will not be suitable for this project. 

Polymers as thermoelectric materials as discussed are a desire for the future due to them 

being cheaper like ceramics, however unlike ceramics, there is a lot of excitement about the 

ability for flexible polymer-based TEGs. Research by (Ming He, 2013) discussed how 

improving the ZT of polymer-based materials involves the same type of techniques as with 

semiconductors such as doping and nanomanufacturing. It also stated however, that at the 

time of writing (2013) the maximum recorded ZT to date of polymer-based materials was 

0.25, which is very low compared to the semiconductors of the time (some ZT > 2). A 

polymer investigated by (Kim, 2016) recorded a ZT of 0.32 which to the authors knowledge 

was a record for a polymer at the time. However, to the authors knowledge the best ZT 

recorder for a polymer-based material was by (Cong Jiang, 2021) which recorded ZT≈1.1, 

which is competitive with a lot of semiconductor values and has excellent flexibility. Even 

with the advances in polymer-based TEG technology, semiconductors still have much more 

data supporting higher ZT values than 1.1 and therefore the correct semiconductors will 

produce a higher output than the polymer-based materials. 

 

2.6.5 Other Novel TEG applications 

With TEGs showing clear potential to be used in systems with a natural temperature 

difference across an interface, there has been plenty of research into implementing them. A 

paper by (D. Samson T. O., 2010) aimed to utilise the temperature difference found on the 
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outside of an aeroplane and its inner fuselage to generate electricity via the Seebeck effect. 

In this paper specifically simulations were performed to mimic the conditions which would 

be experienced for the TEGs in an aircraft. Following this paper, (D. Samson M. K., 2011) 

was released where further simulations were done to refine the shape and size of the energy 

store and a prototype was created ready for testing with a power management system. 

Finally, in (D. Samson M. K., 2012) the prototype was tested in a real flight on an aeroplane. 

The final results concluded both that the simulations were accurate representations of how 

the system would perform and that the system was reliable for its purpose. 

 

 

2.7 Heat Transfer 

2.7.1 Calculations 

Calculating the heat transfer in the situation of forced convection over a flat plate does not 

have a set method and is in fact still being researched to find the most accurate method of 

calculating the heat transfer coefficient. It is especially difficult to approximate the heat 

transfer coefficient in the turbulent regions of flow. Another issue when calculating the heat 

transfer coefficient is that the Prandtl number of water varies massively with temperature 

changes therefore estimating the exact Prandtl number can be difficult. The Prandtl number, 

named after Ludwig Prandtl, is a measure of the ratio momentum diffusivity to thermal 

diffusivity (Nuclear Power, 2022).  

One paper by (Lienhard, 2020) calculates average heat transfer coefficients by integrating 

across the “transition point” which allows a good estimation of heat transfer coefficients for 

flows with turbulent behaviour and across the transient region. 

There are well documented methods of calculating the heat transfer coefficient in a laminar 

region of flow, a book by (Mayhew, 1992) contains a method which produce results which 

agrees with (McConkey, 1993) method. The Nusselt, named after Wilhelm Nusselt, is the 

ratio of convective to conductive heat transfer across a boundary and is therefore essential 

in finding the heat transfer coefficient. The equation for Nusselt number (Nu) over a flat 
plate is the same in both (Mayhew, 1992) & (McConkey, 1993) and can be found in equation 

4. 

 

 
𝑁𝑢 = 0.332 ∙ (Pr)

1
3 ∙ (𝑅𝑒)

1
2 

 

(4) 

 

Both books differ slightly on the way they display the equation the calculate the heat transfer 

coefficient however the results are the same. The average heat transfer coefficient according 

to (McConkey, 1993) is calculated using equation 5 where λ is fluid thermal conductance 

and L is the length of the plate. 

 

 
ℎ = 2 (

𝑁𝑢 ∙ λ

𝐿
) 

 

(5) 
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This method was used in this research for the calculations when the flow is laminar. Finally, 

the heat transfer rate can be calculated using equation 6 

 

 𝑞̇ = ℎ𝐴∆𝑇 

 

(6) 

 

2.7.2 Computational Fluid Dynamics Turbulence Models 

CFD software allows highly accurate analysis of complex heat transfer problems which 

involve a moving fluid. When it comes to analysing heat transfer with turbulent flow, there 

are many different methods as there is no set way of calculating the fluids behaviour, only 

methods of prediction. The different methods yield different results and have great 

differences in the amount of time they take to simulate. There is not one method that is more 

accurate in all situations, the method of turbulence modelling should be chosen based upon 

the model being simulated. In Ansys there are many turbulence models which generally 

come in different variations. Some of these models include: 

k-ε: The k-ε turbulence model is one of the most common turbulence models used due to 

the speed in which simulations can be produced as it only uses two equations and does not 

require as fine a mesh near the boundary as the k-ω model. The two transport equations used 

in this model aim to obtain the turbulent kinetic energy (k) and its rate of dissipation (ε). 

The work previously mentioned by (Artur Wodołazski, 2021) used the k-ε model when 

simulating wind flow over a heat sink for a TEG model. A study by (Mohamed Elkhmri, 

2021) used the standard k-ε to model the convective heat transfer over narrow side up 

isothermal flat plates. 

k-ω: Like the k-ε model, this model uses two equations. It also aims to obtain the turbulent 

kinetic energy (k) and the specific dissipation rate (ω). The model was proposed by (Wilcox, 

1998). This model accurately predicts the flow near the boundary layer, but it is necessary 

to refine the mesh near the boundary using an inflation layer, this can increase the time taken 

to simulate. Research by (Chethan R Patil, 2021) used both the k-ε (CFX) and the k-ω SST 

(CFD) model to analyse heat transfer around an aircraft engine blade. Both models showed 

no significant variation in obtaining the heat transfer/temperature results. The k-ω SST 

(Shear Stress Transport) is a variation of the standard turbulence model which uses the 

standard k-ω near the wall, which gradually blends into the transformed k-ε model away 

from the wall. This aims to optimise the benefits of the near wall capabilities of the k-ω 

model near the boundaries and minimise the limitations which the k-ω model can have in 

the free stream flow. A paper by (Dawid Taler, 2014) used the k-ω SST model to analyse 

heat transfer around tubes in a car radiator to compare the Nusselt number values produced 

with experimental tests, the results differed slightly due to thermal contact resistance 

between the fins and tubes but this was expected therefore the model could be deemed 

adequate. Research by (Antar M.M. Abdala, 2013) compared both the k-ε and k-ω models 

in predicting improvements in film cooling across a plate with a narrow trench. The results 

were compared with experimental results and at high blowing ratios both models under 

predicted however at low blowing ratios the k-ω model reigned superior when comparing 

the results with experimental data. Research by (M Ajmi, 2020) tested four versions of the 

k-ε and k-ω models in analysing the dynamic and thermal of a heated offset jet. The SST k-

ω model was the only model that proved accuracy in resolving the flow.  
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There are more turbulence models which use a larger number of equations such as The 

Reynolds stress model however these were not considered for this research due to the 

already large simulation time which would be excessive for these models. 

 

2.8 Literature Conclusion 

As stated, (J.R. Buckle, 2013) used steel as a thermal store due to its high thermal capacity 

per volume. This research does not intend to use a thermal store; however, steel was chosen 

as the material of which its temperature would be regulated to keep the hot side of the TEGs 

stable due to this specific thermal property. 

A mesh study was performed in this research in a similar manner as shown by (Ayman 

Eldesoukey, 2019) to find the ideal number of elements for CFD simulations. 

Work by (A. S. Korotkov, 2017) found that using temperature dependence properties of 

materials makes a 15% correction increase in simulation results, therefore for this work the 

thermal electric simulation material properties all used temperature dependence properties. 

It is clear from the literature that both the k-ε and k-ω model have both been used previously 

for analysing heat transfer over plates and other surfaces. This research decided to use the 

k-ω SST model due to papers such as by (Antar M.M. Abdala, 2013) and (M Ajmi, 2020) 

which compared both k-ε and k-ω and found that the k-ω SST performed superior. 
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3 Methodology 

3.1 Introduction 

There are many different calculations, simulations, and experiments performed in this 

research. Firstly, the hand calculations for both the steady-state thermal analysis and the 

heat transfer analysis over a flat plate were completed. These give a rough idea of what the 

values produced from the simulation should look like and make it easier to understand if 

there are any concerns with the simulation results. So, although these values are not really 

analysed in the results section, they help understand if early simulation appear to be 

accurate. 

One of the most crucial parts of the research is the physical experiments. These results give 

data with no assumptions, and the best understanding of how the TEGs would perform in 

the real world. Before simulating the scaled-up system, it is ideal to simulate replicas of the 

test rig which performed the physical tests. This was done to see how valid the simulations 

were compared to data obtained from physical tests.  

Finally, once the simulations results were validated by the physical test results, the scaled-

up system was simulated in a similar manner to that of the previous simulations for 

reproducible results.  

 

3.2 Test Rig Layout 

3.2.1 Criteria & Reasoning 

The main criteria which the test rig was manufactured to is as follows: 

• It needed to be possible to control and regulate the temperatures on both the hot and cold 

side of the experiment to a high level of accuracy. 

• The test rig must be structurally sound and strong enough to support the weight not just of 

itself, but of the water which will be mimicking the sea. 

• It is essential that the rig was waterproofed properly, as there was water located directly 

above electrical components with only a sheet metal acting as a barrier. 

• It must be possible to easily change the heat transfer surface between the TEGs and the 

water, as multiple metals and thickness will be tested. 

• There were no gaps between the TEGs and their adjacent interfaces to allow all heat transfer 

from hot to cold side to take place via conduction. 

• Conduction between the hot and cold sides that is not through the TEGs was minimalised. 

To maintain the temperature on the hot side of the TEGs, a steel block was chosen to be in 

contact with the TEGs. The aim was to regulate the temperature of this block at the desired 

temperature (to simulate the inside of an AUV), steel was chosen as it has a high thermal 

capacity per volume (≈3650kJ/m3K) therefore changes in its temperature were gradual and 

easy to control.  

The cold side of the TEGs was designed to replicate the sea. The walls of the bath containing 

the water were made of steel to ensure it was strong enough to hold the water. The base of 

the water container (the heat exchange surface) was changed to test different thicknesses 

and materials.  

To avoid water leaking between the steel walls of the bath and the base material plumbers 

putty was used to plug and cracks/gaps. Nylon bolts were used for the assembly of the steel 
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block to the heat exchange surface to ensure nearly all heat transfer occurs via conduction 

through the TEG modules. 

 

3.2.2 Building Processes 

Walls of bath: 

The walls of the bath were made from steel sheets of 1.2mm thickness. The thickness of 

sheet was chosen as it was thin enough to bend without issues, however it was also thick 

enough that it had the strength to hold the water, and the area to weld the sheets together 

without issues. 

The first step to manufacturing the walls of the bath involved water cutting the sheet metal 

to the correct dimensions and cut out features such as holes and gaps to allow for the 

fastenings. Four sections were cut, two longer walls and two shorter walls. The structure 

had to be cut into multiple parts to make the bending possible.  

The next step was the bending to create flanges which will be used for fastening. The method 

of bending used was wiping. 

Finally, the four parts were welded together carefully to make sure the seal is watertight. It 

was key to make sure the flanges sat level when welding, this was more important that the 

top of the walls being level for watertightness. 

Holes were drilled into the smaller walls near the bottom to add hose tails in. The hose tails 

used were made of brass to be resistant to corrosion and were 12mm in diameter to fit the 

same size flexible hose as the chiller. The hose tail was fastened in using brass nuts and a 

rubber O-ring on each side to seal the fasten watertight. 

The walls of the bath were the first part of the rig’s assembly manufactured as it is the most 

difficult to be precise on the locations of the holes for the fasteners, therefore the rest of the 

parts can be manufactured based off this part. 

 

Rubber Gasket/Sealant: 

The rubber chosen for the gasket was made from EPDM (Ethylene Propylene Diene 

Monomer) sheet with a thickness of 2mm. The sheet of rubber was first cut out to the exact 

dimensions of the flanges on the walls of the bath by tracing around with a Stanley knife. 

The holes for fastening were slightly trickier as because it was rubber, drilling was not really 

an option. A bit of steel pipe was sharpened at the end, this was hammered into the places 

where the holes were required to cut out the rubber. Finally, the inside section was cut out 

using a Stanley knife also, leaving a slight overlay of material inside from the walls. 

After trialling the rubber gasket, it was not possible for the corners of the water basin to be 

sealed with it due to the limit which the steel could be welded down. After trialling multiple 

sealants, it was clear that this would not waterproof the system for the duration of the tests 

with the water flowing. This was a major concern as the water is flowing directly above live 

electrical wires from the TEGs, so leakage could be hazardous. It was decided to remove 

the gasket completely and test sealing the gaps between the bath walls and the heat exchange 

surface using plumbers putty. This worked perfectly at sealing the system watertight in all 

conditions and therefore plumbers putty was chosen for the actual tests. 

 

Heat Exchange Surface: 



28 

 

The sheet metals being tested for the heat exchange surface were all purchased in the exact 

dimensions required. The holes for the fastening bolts were drilled using a 9mm drill bit. 

 

Steel Block: 

There were no steel blocks with the required thickness for a reasonable price. To resolve 

this, a steel flat 20mm thick and 70mm wide was bought at double the desired length of the 

steel block. The flat was first cut in half, to create two flats of 254mm length. The next step 

was to extract some material creating grooves on one side of each of the flats, this will create 

a hole in the final block for the heating element to rest. Once this has been machined, the 

two flats of steel were welded together, ensuring good thermal contact between the two 

parts. Holes were then drilled near the top of the block to allow temperature sensors to 

measure the temperature close to the TEGs. 

The block requires some form of flange to allow fastening to the heat exchange surface. To 

allow this, a section of steel sheet 1.2mm thick is cut out with the same dimensions as the 

block with flanges on the side and holes in the flanges for fasteners. This was cut using the 

water cutter. Once this was completed the sheet that was cut was then welded onto the steel 

block, ensuring good thermal contact between the metals was essential for the temperature 

readings from the sensors being representative of the temperature near the TEGs. Figure 9 

shows the steel block with the TEG modules sat in place on it. The block is insulated in 

rubber covering almost all of it to minimise heat loss. 

 

 

Figure 9: Steel block with the TEG modules arrayed on top 

 

Thermal Insulation: 

To insulate around the TEGs so heat is not lost through convection out of their sides, the 

same rubber used for the gasket was cut the same shape as the steel sheet on top of the 

blocks using a laser cutter. The only difference being that the sheet is hollowed out by a 

section of 248mm x 62mm to fit the TEGs in. Two of these sheets are cut out and glued 

onto the steel stacked on each other. Finally gaps for the TEGs wires were cut out using a 

Stanley knife. 
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Heat Transfer Fins: 

Segments of aluminium sheet of 2mm thickness were cut to a height of 30mm. A base 

aluminium piece also of 2mm thickness had holes drilled in using a pillar drill, these were 

used to fasten the heat transfer fins to the heat exchange surface. Finally, the segments of 

fin which were cut prior were welded onto the aluminium base with equal distance from 

each other. Figure 10 shows the finished heat transfer fins welded on to fastening base. 

 

 

Figure 10: Heat Transfer Fins welded onto Aluminium base (attempt 1) 

 

When the fins were welded onto the base, the heat caused the base by the fins to buckle 

upwards. This is not ideal as the base requires full thermal contact with the heat exchange 

surface. To resolve this the areas which had buckled were hammered down with a block of 

wood and a hammer. The base was the ran on the belt sanding machine to aim to flatten and 

grooves or ridges. After testing it was apparent that this had not worked, and the base was 

still not flat enough to obtain suitable results. 

To aim to resolve this some heat transfer fins were welded directly onto the 6mm aluminium 

plate after it had already been tested on its own. This caused slight bending on the plate; 

however, it was not as extreme as the previous attempt (due to a thicker surface to weld 

onto). Figure 11 shows the heat transfer fins welded onto the plate using this new method. 

 



30 

 

 

Figure 11: Heat Transfer Fins welded onto 6mm thick Aluminium plate 

 

 

3.2.3 Assembly 

Section 3.1.2 described the processes of making the different parts of the test rig, this section 

aims to show how these parts were assembled for testing. Figure 12 shows a side view of 

all the parts of the test rig assembled for testing with numbered labels to annotate the 

location of the parts. 

 

 

Figure 12: Side view of assembly with 2mm thick heat exchange surface 

 

Label 1 in figure 12 shows the walls of the steel bath and label 2 shows the heat exchange 

surface, which in this image is 2mm thick aluminium. These two parts are fastened together 

1 

2 3 

4 
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with steel bolts and nuts surrounding the walls of the water basin. There is in fact twelve of 

these bolts to faster these two parts together. Label 3 shows the TEG module layer, 

consisting of the four TEG modules adjacent to one another. The modules are surrounded 

by black rubber sheet to thermally insulate the modules. The modules are held in place due 

to the fastenings between parts 2 and 4 which compress the modules between the heat 

exchange surface and the steel vessel. A layer of thermal grease sits on the outer surface of 

both alumina plates of each module. Label 4 shows the steel vessel, which is surrounded by 

rubber sheet to minimise heat loss and keep the temperature more stable. The steel vessel is 

bolted onto the heat exchange surface by nylon bolts as shown in the image. The bolts are 

fastened in the flange of the steel block, the steel and heat exchange surface are separated 

by rubber sheet with identical thickness to the TEG modules (4mm). 

 

3.3 Electrical Layout 

The way that the TEGs are connected in circuit will affect the Voltage/Current produced. If 

the TEGs are connected in series, then the total voltage produced is calculated by the sum 

of each individual modules voltage values whilst the current remains the same. On the 

contrary, If the TEGs are connected in parallel, the sum of each modules current will be the 

total current produced and the voltage will remain the same as one module. For this research 

the TEG modules were set out in series to increase to total voltage produced. This is because 

the TEGs produce a very low voltage which is unusable for most applications therefore it is 

required to produce as high a voltage as is possible from the modules. Research by (Andrea 

Montecucco, 2014) aimed to identify experimentally the effect of the orientation (parallel 

and series) of TEG modules on their performance. It is expected due to resistance through 

wires that connecting multiple modules in a circuit will cause some power loss, this research 

aimed to produce comparable data on this. The research found that when the 3 TEG modules 

were connected in series, they produced 9.22% less power than they would individually. It 

also found that when connected in parallel, they produced 12.9% less power than they would 

individually; consequently, according to (Andrea Montecucco, 2014) it is more efficient to 

connect TEG modules in series rather than parallel. 

According to Ohms law, the current ‘I’ flowing through a circuit can be found using 

equation 7 

 

 
𝐼 =

𝑉

𝑅
 

 

(7) 

 

In practice, due to the likelihood of all the modules connected having the exact ΔT being 

very small, the actual current can be calculated using equation 8 which is sourced from 

(Andrea Montecucco, 2014). 

 

 
𝐼 =

𝑉1 + 𝑉2 + 𝑉3 + 𝑉4 − 𝑉𝑆
𝑅1 + 𝑅2 + 𝑅3 + 𝑅4

 

 

(8) 
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Where the voltages subscripted 1 to 4 are the open circuit voltage of each module, VS is the 

voltage at the array’s terminals, resistances subscripted 1 to 4 are the internal resistance 

values for each module. 

For the experiments in this project the load on the power produced was a variable resistor 

(potentiometer), with both an ammeter and voltmeter recording the instantaneous power 

being produced.  

The potentiometers (variable resistor) resistance was changed based upon the mean 

temperature across the TEG to achieve maximum power output. For this experiment, the 

aim was to satisfy that the load resistance RL is equal to the internal resistance of the four 

TEG module combined, Rint. According to (Goldsmid, 2017), this load resistance will 

produce the maximum power output for the TEGs. 

The potentiometer chosen had to be of a low resistance as the internal resistance of the TEGs 

is very low at most temperatures, any product over 100Ω was instantly ruled out as it would 

be tough to achieve an accurate load resistance. 

If the electrical energy produced by the TEGs is to be useful for a particular application, 

such as charging a battery of reserve power or powering a sub-system in the AUV, then it 

will need passed through a step-up convertor most likely to produce the voltage required by 

the battery/system. 

The electrical components purchased for this research and their manufacturer/product codes 

are listed in table 1 

 

Table 1: Electrical Components purchased for this Research 

Component Name/Code Manufacturer 

TEG- GM250-127-28-12 European Thermodynamics 

4.7Ω Potentiometer- 

PE60L0FGW4R7MA 

Vishay 

 

 

3.4 Control & Logging Layout 

3.4.1 Control 

For this research the two main variables of the system that were controlled are the 

temperature of the water and the temperature of the steel vessel. 

The water temperature was regulated/cooled by an aquarium chiller. The chiller chosen for 

the testing can operate down to 0⁰C and can cool both regular water and saltwater. The 

chiller uses a closed loop control system which can control the water temperature to a high 

accuracy of 0.5⁰C. The chiller does not have a built-in pump therefore a pump was 

purchased to circulate the water through the system. The pump chosen has options for flow 

rate options between 750L/hour to 2,500L/hour. The pump uses sine wave control 

technology. The chiller connects to the system using 12mm diameter flexible tubing which 

is held on using jubilee clamps. The pump required pipe adapters and connectors to attach 

a hose tail which would fit the flexible tubing on. Jubilee clamps were also used here. The 

pump flows the water into the chiller’s inlet, through the chiller where it is cooled, out the 

chiller outlet, though the test rig (over the heat exchange surface), and back to the pump 
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inlet, as shown by figure 13. The pump operates at max flow rate for the experiments in this 

paper, which is 2500L/min. 

The second temperature which needs to be regulated is that of the steel vessel. A heating 

element is embedded in the centre of the steel block, which is controlled by a PID based 

temperature controller, which is taking readings from a PT100 RTD sensor embedded at the 

top of the steel block, as close to the TEG modules as possible. PT100 RTD sensors were 

chosen over thermocouples as they are more accurate in reading temperatures, which is the 

most important feature for the temperature sensors in this study. 

Although the voltage and current produced by the TEGs are not being controlled and are 

rather being measured, their instantaneous readings will be displayed on the control panel 

to help us see how the TEGs perform whilst the test is underway. 

A block diagram to display how the control panel will interface with the rest of the setup is 

shown in figure 13 

 

 

Figure 13: Block Diagram displaying how the control panel links to the test rig and electrical systems (Data Logging 

Equipment Excluded) 

The control panel was built with my industry partner Delkia at their workshops. 

Table 2 shows the parts purchased for the control section of the project and their 

manufacturers. 

 

Table 2: Control Components purchased for this Research 

Component Name/Code Manufacturer 

Chiller- TK150 Teco 

Pump- DCP-2500 Jecod 

PT100 RTD- R14-1B2-4/50T2000 Reckmann 

Heating Element- 860-6823 RS Components 
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Temper Controller- 124-1058 RS Components 

 

 

3.4.2 Data Logging 

To accurately log the exact instantaneous temperature, voltage, and current being produced 

in the test rig a data logger was used. The data logger chosen was produced by measurement 

systems limited and contained four ports which allowed the reading of four values at one 

time. This logger was chosen as for this system exactly four values must be read, these are: 

The temperature at the top of the steel vessel close to the hot side of the TEGs, the voltage 

produced by the TEGs, the current produced by the TEGs, and the temperature of the water 

close to the heat exchange surface. 

The data logger works with additional software, which allows graphical representations of 

the results to be made displaying how the variables affect the electrical output values 

produced by the TEGs. 

Table 3 shows the parts purchased for the data logging section of the project and their 

manufacturers. 

 

Table 3: Control Components purchased for this Research 

Component Name/Code Manufacturer 

Voltmeter- APM-VOLT-APO Trumeter 

Ammeter- APM-AMP-APO Trumeter 

Data Logger- USB-5106 

 

Measurement 

Systems Limited 

Temperature Sensor- TMC6-HD 

 

Measurement 

Systems Limited 

 

The temperature sensors used for the data logging possessed an accuracy of ±0.25⁰C. 

 

3.4.3 Connections/Network 

This section shows how the control and data logging elements are connected to each other 

and the test rig. The figures in this section contain images of the system set up with 

numbered labels of different parts. The parts which correspond to each number can be found 

in table 4 
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Table 4: Section 3.4.3 figure part labels 

Label Number Part 

1 Data logger temperature sensor water 

2 Data logger temperature sensor steel 

3 Temperature controller sensor 

4 Ammeter 

5 Temperature Controller 

6 Voltmeter 

7 Data Logger 

8 Potentiometer 

9 Water chiller 

10 Water pump 

11 Heating Element 

 

Figure 14 shows the location of the temperature sensors within the system. Part 1 shows 

that the location of the data logging sensor in the cold side (water) is placed equal distance 

from the inlet and outlet hose tails and rests with the tip touching the heat exchange surface 

but the rest of the sensor floating in the water. This was decided to be the best place to get 

the bulk average temperature of the water flowing across the plate. Part 2 shows the data 

logging temperature sensor embedded in the steel vessel, approximately 7mm from the TEG 

modules ceramic surface and located dead centre laterally in the steel vessel to measure the 

best average across the whole steel, as near the inlet hose tail the steel will get colder than 

near the outlet. Part 3 is the temperature sensor for the temperature controller, this is located 

close to the TEG modules but is less centred laterally as this value of temperature is not as 

critical as the one being logged. 
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Figure 14: Temperature sensor locations, water & steel vessel, image taken mid test with flowing water 

 

Figure 15 shows the control panel during an experiment. Part 4 and 6 show the ammeter and 

voltmeter respectively, built into the wall of the control panel. The wires connecting these 

to the TEGs and potentiometer are hidden behind the door of the control panel. Part 5 shows 

the temperature controller built into the control panel wall also, this is connected to both a 

temperature sensor and the heating element. Part 7 shows the data logger which sits on the 

door of the control panel magnetically. This data logger is connected to the two temperature 

sensors parts 1 and 2 by cables. The data logger also has a cable connecting it to the laptop 

with the data logging software downloaded onto it. Part 8 shows the potentiometer built into 

the door of the control panel. The part visible is the nob which can be twisted to adjust the 

potentiometers resistance. The wires connecting potentiometer to the TEGs also sit behind 

the control panel door. All the wires which connect the outside of the control panel to the 

contents inside leave the panel by glands located on the bottom of the panel. The panel sits 

on two wooden blocks to allow room for the wires to leave the glands on the bottom. 

 

 

1 

3 

2 
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Figure 15: Control Panel & Data logging in action mid experiment 

 

Figure 16 shows the plumbing/water-based control elements of the system. Part 9 is the 

water chiller, electrically this is connected to the mains, the outlet of the chiller has hose 

connecting to the inlet of the steel water basin. The inlet of the chiller takes in water through 

flexible tubing from the pump. The pump is labelled as part 10 and receives water in its inlet 

through the tubing connected to the outlet of the steel water basin. 

 

7 4 5 6 

8 
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Figure 16: Chiller, Pump, and Plumbing of the system in action mid experiment 

 

Figure 17 shows the frontal view of the system with the heating element location. This is 

the side of the basin with the outlet hose tail. Part 11 shows the heating element location, 

the hole is located centrally laterally and vertically in the cross-section of the steel vessel 

and its wires are connected using Wago clips to wires which lead to the power supply unit 

and the temperature controller. 

 

 

Figure 17: Heating element location in Steel Vessel 

 

 

9 

10 

11 
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3.5 Thermal Analysis 

3.5.1 Hand Calculations 

The temperature across the TEGs can be calculated if the thermal conductivity of each 

component is known, and the exact temperate at the water by the wall and the steel block 

are known. This analysis was undertaken to determine how likely the thickness of the heat 

transfer surface and its material are to affect the temperature difference across the TEGs. 

This shows whether many thicknesses/materials need to be tested of just the extremities. 

The values in this section were assumed for material properties, temperatures, and Si paste 

thickness, as this was just an estimation. 

Figure 18 shows the labels for the positions of the temperatures which can be measured. 

 

 

Figure 18: Layers of test setup and the location of temperatures measurable by hand calculations. 

If T1 is known, and we assume T5 to be the same temperatures as the bulk water temperature, 

the other temperatures can be calculating using the following method: 

The overall heat transfer coefficient can first be calculated using equation 9, where U is the 

heat transfer coefficient and K is the thermal conductivity of the material between the two 

points. 

 

 1

𝑈
=
𝑥12
𝐾12

+
𝑥23
𝐾23

+
𝑥34
𝐾34

+
𝑥45
𝐾45

 

 

(9) 

 

This heat transfer coefficient can then be used to calculate the overall heat transfer rate ‘𝑞̇’ 

with equation 10. 

 

 𝑞̇ = −𝑈(𝑇5 − 𝑇1) (10) 

 

The heat transfer rate ‘𝑞̇’ can then be used with equation 11 in which it is possible to find 

all the temperatures by inserting the known values. 
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𝑞̇ = −𝐾12

𝑇2 − 𝑇1
𝑥12

= −𝐾23
𝑇3 − 𝑇2
𝑥23

= −𝐾34
𝑇4 − 𝑇3
𝑥34

= −𝐾45
𝑇5 − 𝑇4
𝑥45

 

 

(11) 

 

These equations were sourced from (Mayhew, 1992) and will work no matter how many 

layers/walls there are if the end two temperatures are known. These equations also assume 

that all heat transfer occurs via conduction in the direction towards the cold temperature, 

whereas some heat will be lost to the surrounding air around the steel block. 

Using these equations, the thermal conductivity values of each component and setting 

T1=20⁰C, T5=4⁰C, the following temperature differences can be found across the TEGs in 

table 5 The thickness of the TEGs is 4mm and the thickness of the Si paste was assumed to 

be 0.2mm. The thermal conductivity of the TEGs is assumed to be 1.643W/mK (this value 

changes with temperature) and the thermal conductivity of the Si paste is 5W/mK. The 

thermal conductivity of the aluminium was assumed to be 237.5W/mK. 

 

Table 5: Hand Calculations of Temperature Difference across TEGs when total temperature difference across system is 

16⁰C for different heat exchange materials with different thicknesses (Celsius) 

 Temperature difference across TEGs (T2-T3) 

2mm Thick 6mm Thick 

Aluminium 1050 15.44 15.33 

Mild Steel CR4 15.21 14.69 

 

It is clear to see from these calculations results that the thickness of the heat exchange 

surface should not have a major effect on the temperature gradient across the TEG module 

and therefore there is no need to test any thicknesses between 2mm and 6mm. 

 

3.5.2 Ansys Steady-State Thermal Analysis 

It is possible to perform a temperature analysis such as the one done using hand calculations 

in Ansys using the steady-state thermal package. Like in section 3.4.1, the temperatures 

were set as T1=20⁰C and T5=4⁰C. The thermal conductivity values for each layer were all 

set the same as section 3.4.1 except the TEGs. It is possible to plot the thermal conductivity 

graphically using Ansys, therefore for this simulation the thermal conductivity of the TEGs 

was set to change with temperature in accordance with the function from their datasheet 

(ETD, 2022). The simulation was performed with the heat exchange material set as 

Aluminium of 2mm thickness. The results from Ansys are displayed in figure 19. 
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Figure 19: Screen grab from Ansys steady-state thermal analysis on system to find temperatures, heat exchange 

material- Aluminium 2mm thickness 

 

Figure 19 shows that using Ansys, T2=19.74⁰C and T3=4.06⁰C. This is a temperature 

difference across the TEGs of 15.68⁰C using Ansys, slightly higher than the 15.44⁰C 

calculated in section 3.4.1. This slight difference will be due to the shifting nature of the 

TEGs thermal conductivity value. 

 

3.6 Heat Transfer Analysis 

3.6.1 Hand Calculations 

As discussed in the literature review, the heat transfer coefficient is a complex value to 

estimate, especially in turbulent flow. One major problem is that all calculations for flow 

over a flat plate assume that the flow begins laminar and uniform at the start of the plate, 

when the flow will be coming entering the flat plate from a pipe which will disrupt the 

uniformity of the flow. 

If we assume that the flow begins uniform and laminar at the start of the plate, it is possible 

to estimate the heat transfer coefficient with relatively simple calculations. These equations 

can be found in part 2.7 of this document in equations 4 & 5 To use these equations however, 

the Prandtl number and Reynolds number must be calculated first. 

Calculating the Reynolds number also helps us determine whether the flow is laminar, 

turbulent, or in a transitional phase. It is a measure of the ratio between the inertia forces 

and viscous forces within a fluid (NASA, 2021). The Reynolds number of a system can be 

calculated using equation 12 

 

 
𝑅𝑒 =

𝜌𝑉𝐿

𝜇
 

(12) 

 

The other value required to calculate the Nusselt number is the Prandtl number. The 

equation for Prandtl number can be written as shown in equation 13 
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𝑃𝑟 =

𝐶𝑝𝜇

𝑘
 

(13) 

 

As stated in the literature review, the Prandtl number is hard to predict for calculation, 

especially in a test which will cover a wide range of fluid temperatures due to both the 

dynamic viscosity and the thermal conductivity of the fluid being affected by temperature. 

The velocity of the fluid is another factor which will make a large difference to the heat 

transfer by convection away from the plate. AUVs can travel at a range of speeds depending 

on the specific vehicle. For this case study the data was provided by the partner company 

for this research Delkia based upon real AUVs. 

For the experiments, using the chiller that we are using it is not possible to fully reach the 

fluid velocity which is likely to be experienced by a cruising AUV. The chiller and pump 

operate at a flow rate of 2500litres/hour (0.000694̇m3/s). The width of the plate which will 

experience the water flowing over it is approximately 66mm. The shallower the water in the 

basin, the faster the bulk fluid velocity will be however it is important not to test the water 

in a basin with water too shallow that it is not deep enough to have sperate boundary layer 

and bulk flow. The thickness of the boundary layer in laminar flow can be calculated using 

equation 14, which is derived from the Blasius solution of the flow governing equations 

(Nuclear Power, 2022).  

 

 
𝛿 ≈

5

√𝑅𝑒𝑥
𝑥 

(14) 

 

The value ‘𝑥’ is the distance along the flat plate, to find the thickness of the boundary layer 

at this point. The boundary layer will only get thicker as the distance across the plate 

increases if the width of the plate stays constant therefore, to find the boundary layer 

thickness at the thickest point ‘𝑥’ is equal to the length of the plate. 

Calculating the bulk fluid velocity requires the flow rate (m3/s) and the cross-sectional area 

which the fluid is flowing through (m2). Using these values, the bulk fluid velocity is 

calculated using equation 15 

 

 
𝑈𝑏𝑢𝑙𝑘 =

𝑄

𝐴
 

 

(15) 

 

If the depth of the water is tested at 52mm, then the bulk fluid velocity will be approximately 

0.2m/s.  

The fluid used in the tests performed was de-ionised water, the properties of this can be 

found in table 6, the dynamic viscosity was taken to be 0.007kg/ms at this temperature and 

the thermal conductivity 0.545W/mK. 

 

Table 6: Properties of Deionised Water, density and specific heat taken from Ansys Fluent database, thermal 

conductivity and dynamic viscosity taken from (A. Abdullah, 2016) 



43 

 

Property Value 

Density kg/m3 998.2 

Specific Heat Capacity J/kg K 4182 

Thermal Conductivity W/m K 0.545 (5⁰C) – 0.59 (30⁰C) 

Dynamic Viscosity kg/m s 0.007 (5⁰C) – 0.0056 (30⁰C) 

 

 

Using these properties, the dimensions of the water container, the equations listed, and the 

bulk flow velocity as 0.2m/s, the following values can be calculated in table 7. 

 

Table 7: Calculated properties of the system with deionised water at a bulk fluid velocity 0.2m/s to find the heat transfer 

coefficient between the heat exchange surface and the fluid (ΔT=16⁰C) 

Property  Value 

Reynolds Number Re 10,153 (Laminar) 

Boundary Layer Thickness δ 17.7mm 

Prandtl Number Pr 53.71 

Nusselt Number Nu 126 

Average Heat Transfer Coefficient h 386.5W/m2 K 

Heat Transfer Rate 𝐪̇ 149.7W 

 

 

3.6.2 Ansys FLUENT (CFD) Flat Plate 

Even though it is possible to calculate by hand heat transfer for flat plate conditions, it is 

much more effective to use software as many more parameters can be analysed this way. 

The software used in this project was Ansys, which offers its FLUENT package for CFD 

analysis, and a Thermal-Electric package which is used later in this report. As shown in the 

literature review Ansys is a common tool in engineering for both types of analysis due to its 

ease of use in doing many simulations quickly and its accuracy, this is the reason it was 

chosen for this project. 

The geometry for the CFD of the flat plate simulations was all designed is Solidworks and 

imported into Ansys Fluent. All the models were the same geometry except for one part, the 

heat exchange surface which changed based on which test was being simulated. The fluid 

was modelled as a solid part in Solidworks with the exact dimensions of the test rig and a 

depth of 52mm. The geometry of the rig from Solidworks can be seen in figure 20 where 

the inlet was chosen as the circular face on the end of the pipe. The outlet was located at the 

exact same location on the other side of the fluid block. 
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Figure 20: Test Rig model in Solidworks for the 2mm Heat Exchange Plate 

 

Once imported into Ansys, the geometry was edited in Ansys design modeller to allow parts 

and faces to be named. Firstly, the fluid block was edited to be a fluid rather than a solid (its 

default). All the individual parts were named to differentiate them to allow material 

selection in the setup section. The only part not named was the TEG pellets as these were 

grouped in material selection as an average of both negative and positive pellets at 12⁰C 

which is 1.658W/mk. The faces which parameters were set, and which intend to be analysed 

must also be named. The inlet and outlet were named on each end of the fluid. Each of the 

individual outer alumina ceramic plate faces on the TEGs were named to allow analysis of 

the temperatures on them. The location on the steel where the temperature is measured in 

the physical test was named as a face to allow the hot side temperature to be inputted as a 

parameter. The face of the heat exchange surface in contact with the fluid was also named 

to allow the heat transfer to be analysed. Once all of this was complete the next step was to 

mesh. 

When meshing in Ansys it is crucial to aim for a high-quality mesh to produce the most 

accurate results possible. Two key measures of mesh quality are mesh skewness and 

orthogonal quality. For a high-quality mesh ideally the skewness of elements should be as 

low as possible, and the orthogonal quality of elements should be as high as possible. As 

stated on (Avraham, 2019): Orthogonal quality is defined as how close adjacent element 

faces/edges are to optimal angle. Skewness is a measure of element deviation from optimal 

volume. Calculating an elements skewness is possible using equation 16 (Avraham, 2019). 

 

 

 
𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑐𝑒𝑙𝑙 𝑠𝑖𝑧𝑒 − 𝑐𝑒𝑙𝑙 𝑠𝑖𝑧𝑒

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑐𝑒𝑙𝑙 𝑠𝑖𝑧𝑒
 

 

(16) 

 

The orthogonal quality can be calculated using equation 17 (Avraham, 2019), the variables 

in this equation are shown on an element in figure 21 
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(17) 

 

 

 

Figure 21 (Avraham, 2019), Orthogonal quality variables on a tetrahedral mesh element 

 

Simulations with the exact same orthogonal quality and skewness values can produce 

different output values when performed if they have different element sizes and number of 

elements. A mesh with large elements sizes and therefore a smaller number of elements can 

be described as coarse. On the other hand, a mesh with small element sizes and a large 

number of elements can be described as fine. A finer mesh with the same orthogonal quality 

and skewness values as a coarse mesh will produce more accurate results. Why not just 

always simulate with as fine of a mesh as possible. The finer the mesh is, the longer the 

simulation will take as the solver must process a much larger amount of information per 

iteration. Ideally the mesh should be at a point where it is fine enough to obtain as accurate 

results as possible, but coarse enough that the simulations can be performed in a suitable 

time with the hardware available. 

As described in section 2.6.2, (Ayman Eldesoukey, 2019) completed a mesh study in which 

they started with a coarse mesh and gradually refined it to see at what number of elements 

the results obtained plateaued. The same method was applied in this research but using 

slightly different results to measure this. For this research the mesh was initial achieved 

using the default element size settings which were gradually made finer. The results that 

were analysed in this mesh study were the average temperature difference across the 

alumina faces on both sides of the TEG modules (⁰C). This result was chosen for the mesh 

study as it is the parameter which will be used in the thermal electric analysis and will 

directly affect the power produced in the thermal electric simulations. For the initial mesh 

study, the flat plate test rig test was simulated with a 2mm aluminium heat exchange surface. 

This initial mesh study is the most thorough as it will give an idea of how many elements 

are required for the other simulations. The input parameters (fluid velocity, temperatures) 

chosen for the simulations in this study were taken from the biggest ΔT obtained from the 

physical test of the 2mm aluminium flat plate. These are shown in table 8. 
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Table 8: CFD input parameters for mesh study 

Parameter Value 

Fluid Velocity 0.18475 

Fluid Temperature 6.246 

Hot side temperature 25.76 

 

Every simulation in the study had approximately 100% of the elements with an orthogonal 

quality of 1 (perfect) as this model was simplified to have a rectangular inlet with no pipes. 

After performing the mesh study, the results for the temperature differences based upon the 

number of elements is shown in figure 22. 

 

 

Figure 22: ΔT on Alumina plates in initial mesh study against number of elements. Tests performed for flat plate 

aluminium heat exchanger 2mm thickness 

When decreasing the default element size, the number of elements increases rapidly. Table 

9 shows the results from figure 22 plus the default element sizes used. 

 

Table 9: Results from initial mesh study 

Default Element Size (m) Number of Elements ΔT (⁰C) 

0.01842 2538 1.349 

0.01 4286 1.963 

0.006 10556 2.909 

0.004 30254 5.378 

0.002 193426 7.5 

0.0015 448395 8.092 

0.001 1462972 9.358 

0.0008 2995722 9.75 

0.0007 4187110 9.716 
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0.0006 6730302 9.606 

0.0005 11510740 9.597 

 

Based off the results from the mesh study, it was decided that the results plateaued at about 

an element size of 0.001m. Therefore, all the flat plate CFD simulations were performed 

with this element size. Furthermore, this element size would be the starting point for the 

other simulations (rather than the default of 0.01842m). 

The k-ω SST model was chosen for reasons supported in section 2.8 of this report. As this 

model was chosen, the model aimed for a y+ of 1 (Ansys, 2010). As the k-ω model is being 

used, an inflation layer is required to achieve a first cell height with a y+ of 1. In calculating 

the first cell height ‘y’, first the skin friction must first be calculated using equation 18. 

 

 𝐶𝑓 = 0.058𝑅𝑒𝑙
−0.2 

 

(18) 

 

This value is then used in predicting the wall shear stress using equation 19. 

 

 
𝜏𝑊 =

1

2
𝐶𝑓𝜌𝑈∞

2  

 

(19) 

 

Using the wall shear stress value, the shear velocity can be calculated using equation 20. 

 

 

𝑈𝜏 = √
𝜏𝑊
𝜌

 

 

(20) 

 

Finally, the desired first cell heights can be calculated using equation 21. 

 

 
𝑦 =

𝑦+𝜇

𝑈𝜏𝜌
 

 

(21) 

 

Using the parameter values for this model and the equations stated, y=9.6805x10-5m, 

therefore after rounding the aim is to achieve a first cell height of approximately 0.0001m. 

The inflation option chosen for this research was smooth transition, therefore the growth 

rate and maximum layers will determine the first cell height. To achieve the desired first 
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cell height, the growth rate and maximum number of layers should satisfy equation 22 

(Uygun, 2020) 

 

 𝐻𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑙𝑎𝑠𝑡 𝑃𝑟𝑖𝑠𝑚

𝐻𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑙𝑎𝑦𝑒𝑟
≈ 𝐺𝑟𝑜𝑤𝑡ℎ 𝑅𝑎𝑡𝑒𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑦𝑒𝑟𝑠−1 

 

(22) 

 

The height of the last prism was 0.001m and the height of the first layer was desired to be 

0.0001m, therefore the growth rate chosen was 1.259 and the number of layers was chosen 

to be 11. The transition ratio was chosen to be 0.7. 

This initial mesh study was done using approximations of the final model (laminar 

turbulence model and rectangular inlet instead of a pipe) for simplicity.  

For the actual simulations the inlet was pipe shaped to emulate the tubing in the test rig. 

The mesh for both the 2mm and 6mm plate systems had minimum orthogonal quality above 

0.1 and a maximum skewness below 0.9. 

The first part of the setup of interest is the models. Under here the energy equation was 

turned on as there is heat transfer involved in these simulations. As shown in section 3.1.1 

it was expected that the flow would be laminar for the flat plate tests. As stated, the k-ω SST 

model was selected. The next step is to fill out the material properties to assign to the parts. 

For the solids, thermal conductivity is the only material property of interest in these 

simulations. The material properties used in the CFD flat plate simulations are shown in 

table 10. 

 

Table 10: Thermal Conductivity of Materials used in CFD Simulations 

 Thermal 

Conductivity 

(W/mK) 

Source 

Aluminium 1050 121 (121-193) (Metals4U, 2022) 

Mild Steel CR4 25 (25-93) (MatMatch, 2022) 

Thermal Grease 5 (RS Components, 2022) 

Alumina 13.739 Ansys Granta 

Copper 393.98 Ansys Granta 

TEG Pellets 1.658 (Average) (RS Components, 2022) 

 

The aluminium and steel thermal conductivity on the sources was given as a range as shown 

in the brackets within the table. The thermal conductivity chosen was based on a value in 

this range which produced the closest simulation results to the physical tests. The thermal 

conductivity for the TEG pellets was given as an average of both the positive and negative 

pellets at 12⁰C (a middle temperature for the tests being performed). 

The final material of which was inputted was the fluid, which in the case of this experiment 

was water. More than just the thermal conductivity of the fluid effected the results of the 
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simulation. The properties of water were taken from the Ansys Fluent materials database 

and from literature are shown in table 6. 

Once all the materials and their properties had been added to the set up, they were assigned 

to the parts which were named in the design modeller section, this is done in the cell zone 

conditions part of set up. 

After the materials were assigned, the boundary condition section were set up. The first 

boundary conditions to add are on the inlet of the fluid. The height of the fluid was set to be 

tested at 52mm as with this height and the pump working at full power the fluid velocity 

would be 0.2m/s, as stated in section 3.6.1. The inlet velocity in the simulations however 

was coming through the pipe with a smaller cross-sectional area, the pump was also 

operating at 21W instead of 23W. Therefore, the flow rate was 6.3406x10-4m3/s, this 

equated to an inlet velocity of 5.6m/s in the pipe. The inlet temperature of the fluid was set 

as the fluid temperature recorded from the physical test in the simulation being performed. 

The outlet fluid temperature was also set as this recorded temperature. The final boundary 

condition set was the temperature on the hot side. For this the face on the bottom of the steel 

block which is in line with where the temperature sensor was located was set as the recorded 

temperature from the tests. 

Under the methods tab the pressure-velocity scheme was set as coupled and the rest of the 

setting were left as default, it was tested to see if changing these influenced results and the 

results stayed identical. The relaxation factors under the controls tab were all left as default. 

Aside from the standard residuals monitored, the mass flow rate at the outlet was observed 

under the report definitions tab as once this value stabilises it gives a good understanding of 

when the system has also stabilised. All the residual monitors were left as default, when the 

absolute criteria were made smaller it had no impact on the results obtained therefore default 

was adequate. The residuals are monitored until they reach the absolute criteria, once this 

has happened the simulation ends as the residuals have converged to a point which deems 

the simulation accurate. Essentially, the residuals are a function of the error in the model 

therefore the lower the value of the residual, the less error at the current iteration. The 

residuals monitored in this section were: the directional velocities (X, Y, & Z), the 

continuity which is related to the mass imbalance throughout the model, and the energy as 

the energy equation is turned on (because there is heat transfer in the model). Finally the k 

and ω residuals are monitored due to this turbulence model being used. 

Once all these steps were completed, the simulation could be initialised and ran to obtain 

the desired results. 

Many methods were tested from using the data from the CFD in the Thermal-Electric 

simulations to see which yielded the most accurate results in comparison with the physical 

tests performed. For example, the average heat transfer rate on the heat exchange surface 

was tested along with trying the average temperature of this surface and other temperatures. 

The most effective and accurate way of converting the CFD data after trialling was to use 

the average temperatures on each of the individual ceramic plates of the TEG modules. This 

would give eight different temperature conditions to use within the Thermal-Electric 

simulations. The likely reason for this producing the most accurate Thermal-Electric results 

is down to the use of more conditions rather than one large average, and the location of these 

conditions being so close to the TEG pellets. 
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3.6.3 Ansys FLUENT (CFD) Heat Transfer Fins 

The hand calculation as shown in section 3.5.1 can be used for a simple example such as 

flow over a flat plate however, when the geometry is more complicated for example flow 

across heat transfer fins, hand calculations are not possible. In this situation Computational 

Fluid Dynamics (CFD) software is required to obtain information such as heat transfer 

coefficients. The CFD software is used in this case to determine the heat transfer coefficients 

with different size fins, to determine the optimum size fin for diffusing heat from the system. 

This model was like the model simulated in the previous section however the heat exchange 

surface had heat transfer fins added. Four 30mm high aluminium fins were added as shown 

by the dimensions in figure 23 

 

 

Figure 23: Dimensions of the Heat Transfer Fins which were simulated in Ansys 

 

The fluid region for the CFD study on the heat transfer fins was designed as an object in 

Solidworks as a block, the area where the heat transfer fins intersect this block was 

subtracted from the fluid region using the Boolean function in design modeller. 

Due to the added complexity of shape from the heat transfer fins, obtaining a good quality 

mesh was also more complex than the flat plate system. The element sizes for this mesh 

were chosen to be 1x10-3m like the flat plate models (as the model is the same size). The 

inflation layer had the same parameters as section 3.6.2 as the element size and most 

parameters were the same, the only change was the addition of heat transfer fins to the plate. 

The mesh generated at no element with an orthogonal quality value less than 0.1 and 

skewness greater than 0.9. 

The set up within fluent was identical to the previous section apart from the fluid 

temperatures tested. 

 

3.6.4 Ansys FLUENT (CFD) Scaled up Model 

The previous results sections show how reliable the Ansys software is at predicting the 

power output of TEGs, section 4.4 results on the other hand should give us a prediction on 

how an integrated TEG system could perform in a submarine operating in real world 

scenarios. Submarines come in many shapes and sizes, but generally they are cylindrical for 

much of their surface. When modelling the scaled-up system, it was decided that using real 
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world dimensions/geometry of a chosen submarine would give the best representation of 

how the system would behave. Our business partner Delkia which this project is in 

collaboration with are involved with the submarine industry, they kindly shared a concept 

submarine CAD model to use its dimensions for my scaled-up system. Figure 24 shows the 

CAD model of the concept submarine in Solidworks. 

 

 

Figure 24: (Delkia, 2022): Concept Submarine CAD model in Solidworks 

The simulations performed in this section did not require the full CAD model shown in 

figure 24, as only the section of the submarine where the TEGs are located will be simulated. 

The three parameters required were: cross-sectional cylinder radius, wall thickness, and 

submarine material. The parameters of the submarine are shown in table 11 

 

Table 11: Submarine parameter used for scaled-up simulations 

Parameter Value 

Cylinder Radius 2005mm 

Wall Thickness 38mm 

Wall Material HY-80 Steel 

 

The scaled-up simulations did not only aim to see how the TEGs would perform in real 

world scenarios, but also aimed to see what the best configuration is for maximum power 

output. Four different configurations were tested, each containing the exact same TEG 

modules as the previous tests for reproducible results. The four models consisted of two 

models with heat transfer fins and two models without. Each two models consisted of one 

with the TEG modules in a lateral formation across the cross-section of the submarine and 

one longitudinal formation down the length of the submarine. The TEGs were positioned 

near the roof of the submarine as this is the area which is most likely to be impacted by 

convection from the flowing water. Figure 25 shows the longitudinal model with no heat 

transfer fins with the fluid region which would be located on the top of the wall hidden. 
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Figure 25: Longitudinal layout model with no heat transfer fins (scaled up model) 

 

The height of the heat transfer fins was determined using equation 24 where the heat transfer 

coefficient used in the equation was an approximation based upon the heat transfer 

coefficient contours on the surface of the sub wall for the simulations without fins (water at 

10⁰C). The ideal lengths were calculated to be 83mm for the longitudinal model and 64mm 

for the lateral model.  

The start of the TEG modules for all the models are exactly 0.2m from the inlet. The fluid 

flow is expected to become turbulent at approximately 0.1715m from the inlet, 0.2m was 

chosen to make sure the flow was turbulent at the location of the TEGs and to be consistent 

across all models tested. 

Initially, the element size chosen for meshing was 0.001m. This was chosen as it was seen 

to be the ideal size for the simulations of the test rig and many of the components are the 

same as these simulations therefore it is a good starting point. However, it was found that 

with the hardware used in this research and the size of the model, the computers would not 

run simulations with mesh elements of this size. An element size of 0.002m was chosen as 

this was the finest mesh that the hardware was able to simulate with such a large model. 

The flow for the scaled-up models was expected to be turbulent, therefore a suitable 

turbulence model must be chosen. The k-Ω SST model was chosen meaning y+ value of 1 

is desired. Using the equations from section 3.6.3 it was possible to calculate that the first 

cell height of the inflation layer should be approximately 1x10-5m. 

 

Table 12: Inflation layer properties for scaled up models 

Model Growth Rate Maximum Layers Transition Ratio 

Long 1.303 21 0.7 

Long W/ Fin 1.303 21 0.77 

Lat 1.303 21 0.7 

Lat W/ Fin 1.303 21 0.77 
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Table 13: Mesh quality values for the scaled-up models (to three significant figures) 

Model Orthogonal Quality Skewness 

Min Max Average Min Max Average 

Long 0.179 1 0.831 0 0.821 0.169 

Long W/ Fin 0.0205 1 0.803 0 0.898 0.194 

Lat 0.185 1 0.833 0 0.815 0.166 

Lat W/ Fin 0.0141 1 0.783 0 0.887 0.214 

 

It was not possible to get all elements to have an orthogonal quality below 0.1 for the models 

with heat transfer fins however this did not appear to disrupt the results obtained. 

The only new solid materials used in this set of simulations were the steel which the 

submarine was made from and the thermal insulation which was chosen to be expanded 

polystyrene foam. The hull of the submarine was assumed to be made from HY-80 steel. A 

paper by (Brad Baker, 2015) stated the thermal properties of this type of steel, table 14 

shows the thermal properties for HY-80 steel and expanded polystyrene foam (from Ansys 

Granta database) at room temperature. 

 

Table 14: Thermal Properties of HY-80 Steel, and Expanded Polystyrene used in Ansys Fluent 

Property Density 

kg/m3 

Specific 

Heat J/kgK 

Thermal 

Conductivity W/mK 

HY-80 Steel 7750 500 34 

Expanded Polystyrene 29.933 1210 0.0329 

 

The properties of the water simulated in the scaled up Ansys simulations were different to 

that of the previous simulations, as seawater contains salt which causes it to behave 

differently, which needs to be considered for optimum accuracy. The North Sea has a 

salinity level of about 34 to 35g/l (New World Encyclopedia, 2018). Because we have data 

on water properties at 35g/l, we will use this salinity for this research. The properties of 

saltwater (35g/l salinity) used in these calculations are found in table 15  

 

Table 15: Properties of water with a salinity of 35g/l at 20⁰C (Engineering ToolBox, 2005) 

Property Value 

Density ρ 1025 kg/m3 

Dynamic Viscosity μ 0.00109 Ns/m2 

Specific Heat Cp 4007 J/kgK 

Thermal Conductivity k* 0.6 W/mK 

 

The ‘*’ in table 15 is to indicate that this value was taken from Fluent database and not the 

source referenced.  
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The next step in the method of simulating the scaled-up model was to input the boundary 

conditions. At the inlet the velocity was set to 3.09m/s, this is the velocity which a specific 

AUV travels when submerged according to data provided by Delkia. The inlet and outlet 

water temperatures were tested at 5, 10, & 15⁰C which are a range of temperatures 

experienced at different depths in the North Sea. Lastly the temperature for the inside of the 

submarine must be set. The face on the bottom of the insulation and the bottom of the steel 

holding the TEGs are both set to 20⁰C (room temperature). 

Like the CFD simulations completed in the previous sections, the same residuals were 

monitored with the same absolute criteria of convergence. The mass flow rate at the outlet 

was also monitored for the same reason as stated previously. 

 

3.7 Ansys Thermal-Electric Set-Up 

3.7.1 Materials & Geometry 

To simulate the TEG modules, a replica to the exact dimensions had to be designed in CAD 

software. The software chosen for this was Solidworks and the TEG module designed is 

shown in figure 26 with the red pellets being positive and the black ones being negative. 

 

 

Figure 26: TEG Module GM250-127-28-12 designed using Solidworks 

 

The dimensions drawing of the module from a side view are shown in figure 27. 

 

 

Figure 27: Dimensions of TEG Module GM250-127-28-12 from Solidworks Drawings, values in mm. 

 

Ansys workbench 2021 R2 software was used for simulating the system, specifically the 

Thermal-Electric section within the software. The first section to complete for the 

simulations to be accurate is the engineering data section. In this part the materials being 

simulates and their properties were added. 
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The ceramic heat transfer plates sandwiching the contents of the module are made of 

Alumina, and the contact pads electrically connecting the pellets are made of copper. The 

properties of both these materials as inputted in Ansys can be found in table 16 and are the 

properties for the materials as used in Ansys Granta database, which is a large databased of 

material properties. 

 

Table 16: Properties of TEG module parts as inputted in Ansys 

Property Alumina Copper 

Thermal 

Conductivity W/mK 

13.74 393.8 

Electrical Resistivity 

Ohm.m 

1012 1.68×10-8 

 

The properties of the TEG pellets are temperature dependent, the equations governing the 

properties of both the positive and negative pellets can be found it table 17, with the 

temperature being values being inputted in Kelvin. These properties are from the modules 

datasheet (Eauropean Thermodynamics, 2022). 

 

Table 17 (ETD, 2022): Temperature (T-Kelvin) Dependent Properties of the Pellets within the TEG module 

Property P-Type N-Type 

Thermal 

Conductivity W/mK 

0.0000361558×T2 -

0.026351342×T+6.22162 

0.0000334545×T2 -

0.023350303×T+5.606333 

Seebeck Coefficient 

10-6V/K 

-0.003638095×T2 

+2.74380952×T-

296.214286 

0.001530736×T2 -

1.08058874×T-28.338095 

Electrical 

Conductivity 102S/m 

0.015601732×T2 -

15.708052×T+4466.38095 

0.01057143×T2 -

10.16048×T+3113.71429 

 

These properties were inputted into the Ansys data sheet to be applied to the pellets on the 

model of the module. The resistivity was calculated as 1/Electrical conductivity, as the 

values in Ansys use electrical resistivity as opposed to conductivity. 

As stated previously in section 3.3, for the power output of the module to be at its maximum 

the internal TEG resistance should be equal to the resistance of the load. Based upon data 

from (ETD, 2022), the expected internal resistance of one TEG module was expected to be 

0.575Ω at 12⁰C. Using equation 23 it was possible to create a length of material with a 

chosen resistivity to produce the desired load resistance. The load resistance desired for the 

simulations was approximately 2.3Ω. 

 

 

 
𝜌 =

𝑅𝐴

𝐿
 

(23) 
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The length of the resistor built in Ansys was 0.24194m, the cross-sectional area was 

5.625x10-7m2, therefore the resistivity of the material was set to be 5.3474x10-6ohm m.  

The next section which is required is the geometry. The module designed in Solidworks and 

shown in figure 26 was imported into Ansys Spaceclaim four times and the modules were 

lined up adjacently, as they would be in the real test rig. The rest of the geometry was built 

around these using Ansys Spaceclaim. The final geometry is shown in figure 28 built into a 

larger assembly within Solidworks. This consisted of the four modules lines up adjacent to 

one another and connected in series via wires of copper. The modules were also connected 

to the resistor with the dimensions stated previously. The rest of the system, including the 

thermal grease, steel, and heat exchange surface were assembled around the modules. The 

steel was modelled to have a height of 7mm, the distance from the PT100 sensor which is 

logging the data to the steel in which the TEGs rest upon. The rubber insulation surrounded 

the TEGs was not modelled in Ansys, as the thermal conductivity is so low it is believed it 

would make very little difference if simulation.  

 

 

Figure 28: Assembly of flat plate 2mm heat exchange surface thickness system from Solidworks 

 

3.7.2 Set-up within Ansys- Meshing & Analysis 

As stated previously, the maximum power produced by the TEGs will occur when the load 

resistance is equal to the internal resistance of the TEGs. The internal resistance of the TEGs 

will change mildly with the changing temperature throughout the experiments/simulations; 

for simplicity, a resistor of 2.3Ω was simulated which is the expected TEG internal 

resistance across the 4 modules at 12⁰C, the average temperature across the TEGs at the last 

step of the simulations. 

There are three main conditions which must be added in the set up for this simulation to 

work. These are: the temperature on the hot side, the temperature on the cold side, and a 

voltage condition. 

The temperature conditions (eight in total) are split, four on the hot side ceramic plates, and 

four on the cold side ceramic plates. The values for these temperatures were calculated from 

CFD simulations using Ansys Fluent and are shown in section 4.2.1. The temperature values 

used as the conditions are averages from the CFD simulations. 

Because the temperature conditions were all chosen to be on the ceramic Alumina plate 

surfaces, the heat exchange surface, steel, and thermal grease parts of the model could be 
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supressed. When tested with these unsuppressed, the difference between the results 

produced was negligible. 

The voltage is set at 0V on the negative wire from the end TEG near the resistor. This will 

allow us to clearly see the voltage distribution across the TEGs and the resistor.  

A convection condition was also set on the load resistor to avoid it getting too hot in 

simulations and allow easier analysis of the temperature post simulation of the TEGs 

without a skewed scale. 

 

 

3.8 Test Conditions 

3.8.1 Materials & Conditions 

The focus of this project is on the potential use of TEGs in Submarine/AUVs; therefore, the 

test conditions must replicate the potential conditions experienced in the Ocean water on 

one side, and on the inside of an AUV for the other side. The main conditions here which 

were to be focused on was the temperatures, as this is what determined the power outage of 

the TEGs.  

Data for the temperatures experienced in the North Sea are cited in the literature review, the 

North Sea was chosen as it is local to where this project is being carried out. The data from 

(Carl Freitas, 2021) suggests highs of around 20⁰C at the surface (in warmer seasons) and 

lows of about 4⁰C.  

As stated in the literature review, simulations on TEGs in AUVs using MATLAB & 

Simulink have been performed by both (J.R. Buckle, 2013) & (J. Falcão Carneiro, 2018). 

These two papers simulated with the temperature of the water ranging between 20⁰C→5⁰C 

& 27⁰C→4⁰C respectively.  

The temperature on this inside of the AUV/Submarine is believed to stay relatively constant, 

which is the reason for the steel block with a high thermal capacity being used as it should 

keep the temperature on this side relatively constant. For the tests the temperature on this 

side of the system was aimed to be kept constant at approximately 25⁰C. 

The tests were done covering all potential temperatures and the data was logged to see how 

this affects the power output from the TEGs. The max temperature seen in the North Sea 

from (Carl Freitas, 2021) shows that it can reach 20⁰C at the surface in summer therefore 

this was the maximum water temperature tested. The temperature was gradually decreased 

for each test to as low as possible for a large range of data, but the data was always collected 

up to 6⁰C as this is the minimum which the chiller can realistically stay stable at during tests 

and is close to the minimum temperature experience in the North Sea.  

The materials selected for testing were chosen for the following reasons: Aluminium is 

being tested as due to its high thermal conductivity making it an ideal material for 

conducting heat away from the TEGs at the cold side. Steel is being tested as it is the most 

common material for Submarines/AUVs to be made from due to its mechanical properties, 

however steel does not have as ideal thermal properties as aluminium. 

The heat transfer material between the TEGs and the water is not the only variable which 

was tested. (J. Falcão Carneiro, 2018) previously stated that heat transfer fins would be 

necessary due to high thermal convective resistance caused by a small heat transfer area. 

With both materials, Aluminium heat transfer fins were to be manufactured to bolt on and 
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test whether they make an improvement on the power produced by the TEGs; Aluminium 

was chosen due to its high thermal conductivity. The length of heat transfer fins makes a 

great difference on how they will perform, for the purpose of this research the ideal length 

of the heat transfer fins was calculated using equations from (Michael Freunek, 2009). These 

equations were as follows. 

 

 
𝐿𝑓𝑖𝑛 =

2.3

𝜂
 

 

(24) 

 

Where ‘𝛿’ can be calculated using equation 25 

 

 

𝜂 = √
ℎ𝐻2𝑂𝑓𝑖𝑛 ∙ (2 × 𝑒𝑓𝑖𝑛 + 2 × 𝑤𝑓𝑖𝑛)

𝑘𝑓𝑖𝑛 × 𝑒𝑓𝑖𝑛 × 𝑤𝑓𝑖𝑛
 

 

(25) 

 

The heat transfer fins will be welded onto an aluminium plate of 2mm thickness, which was 

designed in such a manner that it could easily be bolted onto the heat exchange surface.  

The length of the heat transfer fins were chosen to be 30mm and we also 2mm thickness. 

Four fins were welded to the plate with equal distance between them. 

 

3.8.2 Test Procedure 

Both the physical test and the simulations will aim to mimic conditions which would be 

experienced for an AUV which is gradually descending into deep water by gradually 

decreasing the temperature of the water. 

Each test will be set up using the following order: 

1. The rig was assembled by bolting on the heat transfer surface which is being tested to the 

steel bath walls, with the plumbers putty in place to waterproof. 

2. The tank is then filled with water to ensure there are no leaks with the hose tails at either 

side covered, if there is a leak gasket sealant or more putty may be required, dependent on 

leak location. 

3. The tank is emptied for the rest of the assembly. 

4. Next, the Silicone paste should be evenly spread as a thin layer on each side of the TEG 

modules which are then placed on the steel block adjacent to one another, with the wires 

all facing the same direction between the gaps of rubber insulation. The TEGs should all 

have the same face in contact with the same surface, so that the power all flows the same 

direction. The paste needs to be applied aiming not to let it get inside the TEGs as the will 

decrease their power output. 

5. The block holding the TEGs is then bolted to the heat transfer surface (nylon bolts). 

6. The heating element and temperature probes are then inserted into the steel block, and the 

TEGs are connected to the potentiometer, voltmeter, and ammeter. 

7. The potentiometer resistance is set using a multi-meter to achieve desired resistance. 
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8. The temperature probe is also secured in the desired location of the water tank. 

9. The tank is then be filled up with de-ionised water, with the chiller and pump connected. 

10. The control panel is switched on to allow the heating element and temperature controller 

to help the steel block achieve the desired temperature. 

11. Next the pump is switched on and off a few times till all air bubbles are forced out of the 

pipeline. 

12. Once all bubbles are gone, the water depth is measured and adjusted by slowly filling the 

water till the desired depth is reached, before turning the pump back on. 

13. As the pump is flowing, not before, the chiller is then turned on with the desired 

temperature set at 20⁰C 

14. The system is allowed time to reach a steady state on both sides of the TEGs. 

15. Once at a steady state, the data logger is switched on. 

16. The chiller temperature is set to decrease by 2⁰C every time the system has stabilised, and 

the results being produced are relatively constant. All whilst the data is being logged from 

the TEGs and temperature sensors. The hot side temperature must be within 24-26⁰C when 

data is being logged for reproducibility. 

17. Once complete, all electrics are turned off and the TEGs wires are separated from the rest 

of the system to remove risk of electrical fire. 

18. Finally, the water is emptied and the assembly is unscrewed and cleaned, ready for the 

next tests to be completed. 
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4 Results 

4.1 Experimental Results 

4.1.1 Aluminium 2mm Flat Plate Exchanger 

The results from the experiment consisted of the voltage and current produced by the TEGs 

at instantaneous temperature differences. For these tests the heat exchange surface was made 

of Aluminium and had no heat transfer fins. Figure 29 shows the instantaneous voltage and 

current produced by the TEGs when the data was recorded. 

 

 

Figure 29: Current and Voltage produced by TEGs in experiment with 2mm thick Aluminium heat exchanger 

 

Figure 29 shows a positive correlation with both the current and voltage produced as the 

temperature difference increases. Both graphs show a linear trendline, this is as expected 

based off the manufacturer datasheets. There is only one potentially anomaly in this data is 

the voltage at the temperature difference of 9.73⁰C. 

Figure 30 shows the power produced by the TEGs against the temperature difference in the 

system. The power is calculated as the product of the Voltage and the Current. 
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Figure 30: Power produced by TEGs in experiment with 2mm thick Aluminium heat exchanger 

 

Figure 30 also shows a positive correlation however this graph is not linear in the data 

trendline. This is expected as it is a product of the voltage and current which are both linear 

graphs. Excel allows trendlines for power graphs to be produced automatically, which is 

what was used for the power results in this report. 

 

4.1.2 Aluminium 6mm Flat Plate Exchanger 

The results in this section were recorded in the same manner as section 4.1.1, the difference 

for these results was that the heat exchange surface was 6mm thick rather than 2mm. Figure 

31 shows the instantaneous voltage and current produced by the TEGs when the data was 

recorded. 

 

Figure 31: Current and Voltage produced by TEGs in experiment with 6mm thick Aluminium heat exchanger 

 

Both graphs in figure 31 show a positive correlation as temperature difference increases 

which is expected. No anomalies are shown away from the trendlines. 

Figure 32 shows the power produced from these tests calculated with the current and voltage 

from the tests. 
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Figure 32: Power produced by TEGs in experiment with 6mm thick Aluminium heat exchanger 

 

Figure 32 shows a positive correlation, and all the points are close enough to the trendline 

that the data can be said to have no anomalies. 

 

4.1.3 Steel 2mm Flat Plate Exchanger 

The results displayed in this section differ from the prior two in the manner that the heat 

exchange surface material used is steel. Figure 33 shows the instantaneous voltage and 

current produced by the TEGs when the data was recorded. 

 

Figure 33: Current and Voltage produced by TEGs in experiment with 2mm thick Steel heat exchanger 

 

Both graphs in figure 33 show a positive correlation and all the points fit almost perfectly 

on a linear trendline which on initial viewing implies accurate results. 

Figure 34 shows the power produced from these tests calculated with the current and voltage 

from the tests. 
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Figure 34: Power produced by TEGs in experiment with 2mm thick Steel heat exchanger 

 

Figure 34 shows a positive correlation as expected, all the points fit almost perfect to the 

trendline. 

 

4.1.4 Steel 6mm Flat Plate Exchanger 

The results in this section are similarly obtained to the ones in section 4.1.3 however these 

tests used a 6mm thick steel heat exchanger as opposed to 2mm. Figure 35 shows the 

instantaneous voltage and current produced by the TEGs when the data was recorded. 

  

Figure 35: Current and Voltage produced by TEGs in experiment with 6mm thick Steel heat exchanger 

 

Both graphs in figure 35 show a positive correlation as temperature difference increases 

which is expected. No anomalies are shown away from the trendlines. 

Figure 36 shows the power produced from these tests calculated with the current and voltage 

from the tests. 

 

 

Figure 36: Power produced by TEGs in experiment with 6mm thick Steel heat exchanger 
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Figure 36 shows a positive correlation, and all the points are close enough to the trendline 

that the data can be said to have no anomalies. 

 

 

4.1.5 Flat Plate Comparisons 

The results one their own give an idea of how much power can be produced by the TEGs, 

comparing the results allows understanding of how the thickness and material used as the 

heat exchanger affects the outputs of the system. Figure 37 shows a comparison of the 

trendlines for the current produced by each of the flat plate tests. 

 

 

Figure 37: Comparison of the Current produced by the tests of the different thickness and material flat plates (no heat 

transfer fins) 

 

The aluminium heat exchange surfaces clearly produce a greater current than that of the 

steel heat exchange surface. The thicker heat exchange surface appears to perform better 

than that of the thin one when comparing the tests using steel. The thickness of the heat 

exchange surface seems to have very little impact on the aluminium tests. 

Figure 38 compares the voltage produced by each of the flat plate tests. 
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Figure 38: Comparison of the Voltage produced by the tests of the different thickness and material flat plates (no heat 

transfer fins) 

 

It is clear to see that all the tests follow the expected linear trend of as ΔT increase, so does 

the voltage. As with the current, the aluminium heat exchange surface produced a larger 

voltage than the tests with the steel heat exchanger. When comparing the thickness of the 

exchangers, the 6mm (thick) plates produced a higher voltage than the 2mm (thin) plates of 

the same material. 

The power output of the system was clearly affected by the change in heat exchange system, 

however not as initially expected as shown in figure 39. 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

4 6 8 10 12 14 16 18 20

V
o

lt
ag

e 
(V

)

ΔT (Celsius)

Linear (Al2mm) Linear (Al6mm) Linear (Steel2mm) Linear (Steel6mm)



66 

 

 

Figure 39: Comparison of the Power produced by the tests of the different thickness and material flat plates (no heat 

transfer fins) 

 

As is clear to see from figure 39 all four of the different tests produced trendlines with a 

positive correlation and the expected increasing gradient as ΔT increases. Also, as expected 

the aluminium tests produced a higher power output than that of the steel. What was not 

expected is that the thicker heat exchange tests (6mm) had a higher power output than that 

of the thinner tests (2mm). The thinner exchange surfaces should hypothetically produce 

the most power due to less distance for the heat to travel through to the convective surface. 

 

4.1.6 Heat Transfer Fin Tests 

The initial method for testing the plates with heat transfer fins which involved bolting on an 

aluminium base with heat transfer fins welded onto it was unsuccessful. The results obtained 

produced less power than without the heat transfer fins, this was due to lack of contact 

between the base for the fins and the plate it was bolted onto. The lack of contact was due 

to the 2mm thick aluminium base buckling when it was welded. To aim to gather a more 

accurate representation of how heat transfer fins may affect power produced, they were 

welded directly onto the 6mm aluminium plate, in the hope that the thicker base would stay 

flat during welding. The plate still bent in the welding process causing poor contact on one 

side of the plate with the TEGs, however the results obtained were better than the initial 

method of fins used. 

All the results in this section compare the 6mm flat plate tests with the heat transfer fin tests 

with the fins welded directly onto the 6mm aluminium plate. Figure 40 compares the current 

produced in both tests. 
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Figure 40: Comparison of the Current produced in the tests with a 6mm thick aluminium heat exchange plate with and 

without heat transfer fins 

 

The trendline for current is almost identical throughout all cases of ΔT, with the flat plate 

tests being only slightly higher at larger ΔT.  

Figure 41 compares the voltages produced from both tests. 

 

 

Figure 41: Comparison of the Voltage produced in the tests with a 6mm thick aluminium heat exchange plate with and 

without heat transfer fins. 

 

The voltage produced is increasing at a faster rate as ΔT increase with the heat transfer fins 

in comparison to the flat plate test. It is clear to see that at higher ΔT values the voltage 

produced in the heat transfer fin tests is higher, although not by a considerable amount. 

Figure 42 compares the power produced in both the tests. 
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Figure 42: Comparison of the Power produced in the tests with a 6mm thick aluminium heat exchange plate with and 

without heat transfer fins. 

 

The power produced in the heat transfer fin tests increases at a slightly faster rate as ΔT 

increases in comparison to the flat plate tests. It was expected that the heat transfer fins 

would increase the power produced, although for these tests it was expected to have a greater 

impact if the heat exchange surface had better contact with the TEGs in the heat transfer fin 

tests. 

 

4.2 Ansys Simulations of Test Rig- Flat Plate 

4.2.1 CFD Results 

The method for obtaining the results from the CFD can be found in section 3.5.2. As stated 

in that section the aim of the CFD simulations was to obtain average temperatures of each 

Alumina plate on the TEGs which will be used as input parameters on the Thermal-Electric 

simulations. The temperature values are taken from the outer faces of the Alumina plates on 

the TEGs. 

The CFD simulations were performed using Ansys FLUENT, the results for the system with 

an Aluminium flat plate heat exchanger 2mm thickness are shown in table 18. 
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Table 18: Alumina plate temperature results obtained from the CFD Simulations for the Aluminium heat exchange 

surface 2mm thickness, all results in ⁰C 

ΔT (⁰C)  Front Second Third Rear 

19.51 Hot 21.732 22.063 22.855 23.958 

Cold 11.399 12.586 15.393 19.325 

13.82 Hot 22.885 23.099 23.843 24.667 

Cold 15.703 16.47 19.108 22.063 

7.31 Hot 24.152 24.282 24.722 24.965 

Cold 21.221 21.689 23.279 24.128 

 

It is clear from table 18 that the plates at the front of the system which experience the water 

flow first experience colder temperatures based upon the simulations due to it experiencing 

the coldest flow of water. The water warms as it travels through the system. The rest of the 

CFD simulations for the other thickness/materials of heat exchange surface are shown in 

the tables 19, 20, & 21. 

 

Table 19: Alumina plate temperature results obtained from the CFD Simulations for the Aluminium heat exchange 

surface 6mm thickness, all results in ⁰C 

ΔT (⁰C)  Front Second Third Rear 

19.05 Hot 21.639 22.116 23.014 23.892 

Cold 11.658 13.352 16.549 19.683 

13.02 Hot 22.487 22.712 23.308 23.905 

Cold 15.856 16.66 18.777 20.912 

7.58 Hot 24.366 24.573 25.042 25.382 

Cold 20.935 21.665 23.343 24.564 

 

 

Table 20: Alumina plate temperature results obtained from the CFD Simulations for the Steel heat exchange surface 

2mm thickness, all results in ⁰C 

ΔT (⁰C)  Front Second Third Rear 

19.53 Hot 21.732 22.067 22.784 23.814 

Cold 11.642 12.862 15.415 19.089 

13.33 Hot 22.675 22.855 23.597 24.387 

Cold 16.009 16.54 19.302 22.132 

6.58 Hot 23.818 23.948 24.241 24.371 

Cold 21.78 22.248 23.321 23.786 
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Table 21: Alumina plate temperature results obtained from the CFD Simulations for the Steel heat exchange surface 

6mm thickness, all results in ⁰C 

ΔT (⁰C)  Front Second Third Rear 

19.2 Hot 21.717 22.003 22.83 24.025 

Cold 12.172 13.192 16.127 20.377 

13.11 Hot 22.793 22.985 23.53 24.092 

Cold 16.658 17.351 19.288 21.302 

6.75 Hot 23.797 23.981 24.275 24.491 

Cold 21.62 22.281 23.336 24.109 

 

The rest of these results all show the same pattern as table 18 

Looking at figure 43 it is clear to see that the temperature of the boundary layer of the fluid 

warms as it approaches the outlet of the system which causes the alumina plates at the rear 

of the system to be warmer. 

 

 

Figure 43: Steel 6mm Flat Plate high ΔT simulation, temperature contour plane 

 

Figure 44 shows the velocity contours for the same system with a 6mm thick steel heat 

exchanger. The highest fluid velocities are seen at the inlet and outlet pipes of the system. 

The slower speeds near the surface of the heat exchange plate are likely to decrease the heat 

exchange rate which shows as the velocity of the fluid is lower near the  
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Figure 44: Steel 6mm Flat Plate high ΔT simulation, velocity contour plane 

 

4.2.2 Simulation Results  

For the simulation there were three results which were of interest to us: Temperature, Total 

Current Density, and Electric Voltage, but specifically the latter two. 

When reading the voltage, it is key that we always probe the value from the same point for 

reproducible results. The location which is probed is at the end of the wire touching the 

resistor for the high voltage end of the circuit (positive end wire). Figure 45 shows the 

voltage contour of the simulations in Ansys Thermal Electric for the data from the test rig 

simulations with the Aluminium heat exchange surface (6mm thickness). This figure shows 

the location of the probe in which the voltage is being taken from the simulations. 

 

 

 

Figure 45: Thermal Electric Analysis of test rig with Aluminium Heat Exchange Plate (6mm), Voltage Probe Location 

 

The voltage produced in this simulation as shown by figure 45 is 0.79443V. 

The current values given as results within Ansys Thermal-Electric are given as total current 

densities with the units A/m2. To find the value for current flowing through the resistor in 

Amperes the current density must be probed and then multiplied by the cross-sectional area 

of the resistor, which is as stated previously 5.625x10-7m2. Figure 46 shows the location of 

the total current density probe reading. 

 



72 

 

 

Figure 46: Thermal Electric Analysis of test rig with Aluminium Heat Exchange Plate (6mm), Current Probe Location 

 

 

Figure 47: Thermal Electric Analysis of test rig Total Current Density Vectors of TEG pellets 

As shown by the CFD results, for each of the heat exchange plates there were three 

temperature differences simulated, the highest, lowest, and middle from the physical tests. 

This was done so that it was possible to get trendlines to analyse for the power output of 

each of the flat plate scenarios. The first of these was the current produced in the 

simulations, figure 48 compares the current trendlines for all four heat exchange plates. 
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Figure 48: Current trendlines for Simulations of flat plate heat exchangers 

 

All the simulations results for current produced fit a linear trendline with a positive 

correlation against an increase in ΔT as expected. Generally, there was not a large difference 

in the current production expected between the plates, generally as expected aluminium is 

expected to produce greater current as a heat exchange plate and the thinner plates should 

produce a larger current. 

Figure 49 shows how the voltage was affected by the different heat exchange plates in the 

Ansys simulations. 

 

 

Figure 49: Voltage trendlines for Simulations of flat plate heat exchangers 

As with the results for current output, all voltage trendlines show a linear, positive 

correlation as ΔT increases. The same trends are apparent with the voltage as aluminium 

and 2mm thick plates reign superior at producing higher voltages. 
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Figure 50 shows the calculated power trendlines for the flat plate simulations using the 

voltage and current output data. 

 

 

Figure 50: Power trendlines for Simulations of flat plate heat exchangers 

 

This data shows that the thinner plates should produce a larger power than the thicker ones, 

and for the most part that aluminium heat exchangers should produce higher power outputs 

than steel. The gradients of the curves are slightly skewed against each other which may be 

due to different ΔT values being tested to match the physical data. 

 

4.3 Ansys Simulations of Test Rig- Heat Transfer Fins 

4.3.1 CFD Results 

The methodology for calculating the CFD results was outlined in section 3.6.3. Like the flat 

plate CFD simulations, the main results of interest were the average temperatures on the 

surface of the ceramic plates of the TEG modules. This meant 8 temperatures were obtained 

per simulation. The maximum, minimum, and median ΔT tested in the physical tests were 

simulated. The results obtained using Ansys FLUENT are shown in table 22 
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Table 22: Alumina plate temperature results obtained from the CFD Simulations for the Aluminium heat exchange 

surface 6mm thickness with Heat Transfer Fins, all results in ⁰C 

ΔT (⁰C)  Front Second Third Rear 

19.97 Hot 21.671 21.942 21.992 21.651 

Cold 11.478 12.443 12.625 11.389 

11.9 Hot 22.372 22.586 22.593 22.331 

Cold 15.93 16.688 16.711 15.763 

7.57 Hot 24.321 24.478 24.501 24.32 

Cold 21.317 21.875 21.955 21.31 

 

The values in table 22 show that the temperatures are more distributed and there is not a 

steep increase like there is with the flat plates. The fins allow better heat transfer across the 

whole plate rather than just the part closest to the inlet. This is supported by figure 51 which 

shows the temperature contours on the heat transfer fins at the largest ΔT tested. 

 

 

Figure 51: Heat Transfer Fin Temperature contours for maximum ΔT simulated 

 

4.3.2 Simulation Results 

The three temperature differences were simulated to allow the development of trendlines 

for voltage, current, and power to compare with the flat plate simulations. As stated 

previously, the heat transfer fins were welded directly onto the 6mm thick aluminium plate, 

therefore all these results for the heat transfer fins will be compared with the simulations for 

the 6mm aluminium flat plate. Figure 52 shows the trendlines for the current produced in 

the simulations with and without the heat transfer fins. 
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Figure 52: Current produced from Ansys simulations for the test rig with 6mm aluminium heat exchange plate, 

comparing with and without heat transfer fins 

It is clear to see from figure 52 that it should be expected the addition of heat transfer fins 

would increase the current produced and the rate current increases as ΔT increases. 

Figure 53 compares the voltage produced between the two models. 

 

 

Figure 53: Voltage produced from Ansys simulations for the test rig with 6mm aluminium heat exchange plate, 

comparing with and without heat transfer fins 

 

The addition of heat transfer fins according to the simulations should increase the voltage 

produced and increase the rate at which the output voltage increases as ΔT increases. It 

appears from the trendlines that at ΔT=20⁰C the voltage produced form the heat transfer fin 

model should be approximately 0.24V higher than the flat plate. 

Figure 54 shows how the addition of heat transfer fins affects the power produced in the 

simulations. 
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Figure 54: Power produced from Ansys simulations for the test rig with 6mm aluminium heat exchange plate, comparing 

with and without heat transfer fins 

 

The addition of heat transfer fins would expect an increase in power produced across all ΔT 

values tested, according to the Ansys simulations. The difference in the amount of power 

produced between the simulations increases with an increase in ΔT, with at ΔT=20⁰C the 

power from the heat transfer fin simulations being approximately 0.54W, whereas the 

simulations without expect about 0.34W. These simulations expect that the addition of heat 

transfer fins increase power produced by 58% for ΔT=20⁰C. 

 

4.4 Physical Test & Simulation Comparison 

4.4.1 Aluminium 2mm Flat Plate 

As stated previously in this thesis, the reason behind completing both physical tests and 

simulations was to compare both sets of results to understand how simulations in Ansys 

reflect results obtained in real life. The three results compared are current, voltage, and 

power produced by the TEGs. The first scenario tested was the flat plate heat exchanger of 

2mm thickness made of aluminium. Figure 55 shows a comparison of the current produced 

between the physical tests and the simulations. 
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Figure 55: Comparison of Current produced by TEGs in physical tests and simulations, heat exchange surface 

aluminium 2mm thickness (Flat) 

 

It is clear to see that the current from the physical tests is greater than the simulations 

throughout, however the gradient of the linear trendlines show that the current from the 

simulations is increasing at a faster rate as ΔT increases. 

Figure 56 shows a comparison of the voltage produced in the physical tests and the 

simulations. 

 

 

Figure 56: Comparison of Voltage produced by TEGs in physical tests and simulations, heat exchange surface 

aluminium 2mm thickness (Flat) 

The voltage from the simulations is higher for all ΔT values greater that 7 in the simulations 

and appears to be increasing at a steeper gradient. 

Figure 57 compares the power produced by the physical tests and the simulations. 
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Figure 57: Comparison of Power produced by TEGs in physical tests and simulations, heat exchange surface aluminium 

2mm thickness (Flat) 

 

At the lower ΔT the power produced is larger in the physical tests than the simulations 

however the simulation power curve is increasing at a steeper gradient and at approximately 

ΔT=13⁰C the simulation power overtakes that of the physical tests. At the largest ΔT tested 

(19.51⁰C), the difference between the power values recorded is 0.075W. The physical test 

value at this point is producing 77% power of the simulations. 

 

4.4.2 Aluminium 6mm Flat Plate 

For this section the 6mm thick aluminium heat exchanger tests, both physical and 

simulation, are compared. Figure 58 compares the current produced in both forms of testing. 
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Figure 58: Comparison of Current produced by TEGs in physical tests and simulations, heat exchange surface 

aluminium 6mm thickness (Flat) 

The current produced in the physical tests is greater than the simulations for all the physical 

tests in comparison to the simulations. However, the current in the simulations is increasing 

at a faster gradient as ΔT increases. 

Figure 59 compares the voltage produced from the physical tests and simulations. 

 

 

Figure 59: Comparison of Voltage produced by TEGs in physical tests and simulations, heat exchange surface 

aluminium 6mm thickness (Flat) 

 

The voltage obtained from the simulations is higher than that of the physical tests across 

nearly all the temperature differences tested. The gradient of the simulation’s voltages 

trendline obtained appears to be slightly steeper than the physical tests. 

Figure 60 shows a comparison of the power produced by both methods of testing. 
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Figure 60: Comparison of Power produced by TEGs in physical tests and simulations, heat exchange surface aluminium 

6mm thickness (Flat) 

The power produced at the lower ΔT values tested is larger in the physical tests, however 

the simulation curve is increasing at a faster rate and overtakes the physical test trendline at 

approximately ΔT=14⁰C. At the largest ΔT tested the difference between the power 

produced in both tests is 0.036W. The physical tests are producing 87% of the power 

generated from simulations at this point. 

 

4.4.3 Steel 2mm Flat Plate 

The tests and simulations compared in this section are both using a steel flat plate heat 

exchanger with a thickness of 2mm. Figure 61 compares the current produced between the 

physical tests and the simulations. 
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Figure 61: Comparison of Current produced by TEGs in physical tests and simulations, heat exchange surface steel 

2mm thickness (Flat) 

 

Initially at the lowest ΔT tested, the physical tests produce a larger current than the 

simulations. However, the results show that at around ΔT=15⁰C the trendline of the 

simulation surpasses the physical tests and any temperature difference greater than this the 

simulations produce a higher current than the physical tests. 

Figure 62 compares the voltage produced in the two methods of testing. 

 

 

Figure 62: Comparison of Voltage produced by TEGs in physical tests and simulations, heat exchange surface steel 

2mm thickness (Flat) 

 

The voltage produced in the simulations is higher than the physical tests for all temperature 

differences tested above 8⁰C. The voltage trendline in the simulations appears to be 

increasing at a faster rate than the physical tests as ΔT increases. 

Figure 63 compares the power output of the simulations and physical tests. 
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Figure 63: Comparison of Power produced by TEGs in physical tests and simulations, heat exchange surface steel 2mm 

thickness (Flat) 

At the lowest ΔT value tested the power produced is slightly higher in the physical tests. 

When we look at the largest ΔT tested this difference is drastically bigger as the simulation 

trendline increases in gradient much faster than the physical tests. The difference in power 

at the largest ΔT is 0.153W. The physical tests produced just 51% of the power compared 

to the simulations at this point. 

 

4.4.4 Steel 6mm Flat Plate 

The comparisons in this section are between the physical tests and simulations of the flat 

plate system using a 6mm thick steel heat exchanger. Figure 64 shows a comparison of the 

results for the current produced between the two methods. 

 

 

Figure 64: Comparison of Current produced by TEGs in physical tests and simulations, heat exchange surface steel 

6mm thickness (Flat) 
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The current produced in the physical tests is higher for every ΔT tested. It can be assumed 

that for any value after what was tested based upon the gradients, the simulation would be 

higher. 

Figure 65 compares the voltage produced between the two methods. 

 

 

Figure 65: Comparison of Voltage produced by TEGs in physical tests and simulations, heat exchange surface steel 

6mm thickness (Flat) 

 

The voltage from the simulations is higher for every ΔT > 10⁰C tested in comparison to the 

physical tests. The gradient of the linear trendline for the simulations is steeper than the 

physical tests. 

Figure 66 compares the power produced by both methods of testing. 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

4 6 8 10 12 14 16 18 20

V
o

lt
ag

e 
(V

)

ΔT (Celsius)

Physical Tests Simulations Linear (Physical Tests) Linear (Simulations)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

4 6 8 10 12 14 16 18 20

P
o

w
er

 (
W

)

ΔT (Celsius)

Physical Tests Simulations Power (Physical Tests) Power (Simulations)



85 

 

Figure 66: Comparison of Power produced by TEGs in physical tests and simulations, heat exchange surface steel 6mm 

thickness (Flat) 

 

The power for the physical tests is initially higher however the simulation trendline 

overtakes and for any value after ΔT=15 the simulation power is higher. The difference in 

power produced at the largest temperature difference is 0.053W. The physical test value at 

this point is producing 80% of the power expected from the simulations. 

 

4.4.5 Aluminium 6mm Heat Transfer Fins 

The comparisons in this section are between the physical tests and simulations for the test 

rig with the 6mm aluminium heat exchange surface plus heat transfer fins. Figure 67 

compares the current produced by both the physical tests and the simulations. 

 

 

Figure 67: Comparison of Current produced by TEGs in physical tests and simulations, heat exchange surface 

aluminium 6mm thickness with heat transfer fins 

 

The current produced in the simulations is higher for every value of ΔT greater than 12⁰C 

in comparison with the physical tests. 

Figure 68 compares the voltages produced from both methods of testing. 
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Figure 68: Comparison of Voltage produced by TEGs in physical tests and simulations, heat exchange surface 

aluminium 6mm thickness with heat transfer fins 

The voltage produced in the simulations is higher than the physical tests for all values of 

ΔT tested. 

Figure 69 compares the power produced by both methods of testing for a range of 

temperature differences. 

 

 

Figure 69: Comparison of Power produced by TEGs in physical tests and simulations, heat exchange surface aluminium 

6mm thickness with heat transfer fins 

 

The power produced from the simulations is similar at lower values of ΔT however as the 

temperature difference increases, the power produced in the simulations increases much 

faster than the physical tests. At ΔT=19.82 (the largest tested), the difference in power 
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produced between both methods is 0.212W. The physical tests at this point are only 

producing approximately 57% of the power expected from the simulations.  

 

4.4.6 Summary 

The flat plate tests using the Aluminium 2mm, 6mm and the steel 6mm heat exchange plates 

all produced relatively similar results the simulations (77%, 87%, & 80% of the simulation 

power at maximum ΔT). The steel 2mm plate however produced only 51% of the power 

from the simulations at the highest ΔT, this could be due to the rusting which had begun on 

the surface of the steel causing a thermal resistance.  

The heat transfer fins physical tests produced 57% of the power produced in the simulations 

in the largest ΔT tested. This underperformance was likely due to the buckling caused to the 

plate in manufacturing which will have reduced the thermal contact between the TEGs and 

the heat exchange plate. 

 

4.5 Scaled up Ansys Simulations 

4.5.1 CFD Results 

The methodology for obtaining the temperature parameters to input in the Ansys thermal 

electric model was outline in section 3.6.4. Tables 23, 24, 25, & 25 shows the temperature 

parameters obtained through the Ansys Fluent simulations for the different scaled up 

models. For all the CFD simulations performed in this section the residuals converged to 

the absolute criteria. 
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Table 23: Alumina plate temperature results obtained from the CFD Simulations for scaled up longitudinal layout with 

no fins, all results in ⁰C 

ΔT (⁰C)  Front Second Third Rear 

15 Hot 18.84 18.874 18.878 18.834 

Cold 10.396 10.851 10.885 10.502 

10 Hot 19.227 19.249 19.252 19.224 

Cold 13.597 13.901 13.923 13.668 

5 Hot 19.613 19.625 19.626 19.612 

Cold 16.613 16.951 16.962 16.834 

 

 

Table 24: Alumina plate temperature results obtained from the CFD Simulations for scaled up lateral layout with no 

fins, all results in ⁰C 

ΔT (⁰C)  Right Second Third Left 

15 Hot 18.864 18.96 18.96 18.886 

Cold 10.72 11.536 11.535 10.773 

10 Hot 19.245 19.307 19.31 19.26 

Cold 13.829 14.359 14.381 13.871 

5 Hot 19.626 19.649 19.658 19.638 

Cold 16.94 17.151 17.21 16.995 

 

 

Table 25: Alumina plate temperature results obtained from the CFD Simulations for scaled up longitudinal layout with 

heat transfer fins, all results in ⁰C 

ΔT (⁰C)  Front Second Third Rear 

15 Hot 18.203 18.305 18.306 18.209 

Cold 10.665 11.213 11.221 10.705 

10 Hot 18.802 18.87 18.871 18.806 

Cold 13.777 14.142 14.147 13.803 

5 Hot 19.401 19.435 19.435 19.403 

Cold 16.888 17.071 17.074 16.902 
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Table 26: Alumina plate temperature results obtained from the CFD Simulations for scaled up lateral layout with heat 

transfer fins, all results in ⁰C 

ΔT (⁰C)  Right Second Third Left 

15 Hot 18.954 19.033 19.032 18.932 

Cold 11.345 12.135 12.122 11.271 

10 Hot 19.303 19.355 19.354 19.288 

Cold 14.23 14.756 14.748 14.181 

5 Hot 19.651 19.678 19.677 19.644 

Cold 17.115 17.378 17.374 17.091 

 

These tables show numerically the data which is needed to be inputted as parameters into 

the thermal electric simulations, however looking at the tables does not show a picture of 

how the whole system performed, just the TEGs plates. Figure 70 shows a plane of the 

temperature contours for the longitudinal layout with no fins. 

  

Figure 70: Temperature Contours for the longitudinal layout with no fins. The enlarged section shows the boundary 

between the sub wall and fluid with the black lines highlighting this surface location. 

The black line in the figure connects the sub wall surface in contact with the water in both 

the figure and it enlarged section. It is clear to see that there is not a drastic temperature drop 

between the submarine wall and the fluid, this is likely due to the high fluid speed and thick 

submarine wall. The expanded polystyrene (insulation) clearly works successfully as base 

upon the temperatures in the sub wall it is clear to see that the heat from the inside is mainly 

travelling through the TEGs as this area above them of the wall is warmer. 
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4.5.2 Simulation Results- Comparison of Layouts 

Four layouts were simulated for comparison. The TEGs were tested laid both longitudinally 

and laterally, with and without fins. All results in this section, like the previous tests, all use 

a load with a resistance of 2.3Ω. Figure 71 compares the current produced by the TEGs in 

each layout. 

 

 

Figure 71: Comparison of Current output from the scaled-up models Ansys results 

From the simulations, the layouts with the heat transfer fins produce an almost identical 

current trend which is the lowest recorded. The highest current produced was by the TEGs 

with no heat transfer fins in the longitudinal layout. 

Figure 72 compares the voltage outputs produced by the four models. 

 

 

Figure 72: Comparison of Voltage output from the scaled-up models Ansys results 
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The trendlines for the voltage show an almost identical pattern as the current outputs, the 

models with fins produce the lowest voltages whilst the longitudinal model without fins 

produces the highest voltage. 

Figure 73 compares the power produced from all four of the models simulation results. 

 

 

Figure 73: Comparison of Power output from the scaled-up models Ansys results 

 

It is clear to see that the power produced in the longitudinal layout without fins is superior 

across all values of ΔT simulated. The lateral layout without fins followed closely behind 

and the two models with fins interestingly produced the least power. 

 

4.5.4 Chosen System & Optimisation 

As is shown in the previous section, the superior layout was the TEGs in a longitudinal 

formation with no heat transfer fins. This system produced a greater power output than the 

others across all ΔT simulated, making it a clear winner. 

All the simulations in the previous section were carried out with a load resistance of 2.3Ω 

as this was approximately the expected internal load resistance of the four modules. Now 

that it is clear which layout performs best, it is possible to see what load resistance produces 

the maximum power point at each temperature and what the maximum power point is. To 

do this, the thermal electric simulations for the longitudinal layout parameters are done 

whilst adjusting the load resistance to analyse its effect on the power output. Figure 74 

shows the results for all three temperature differences simulated with load resistance values 

ranging between 1.1Ω - 2.3Ω. 
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Figure 74: MPP for the longitudinal scale up model with no fins. Temperature differences of 5,10, & 15⁰C 

 

The maximum power point for all three ΔT values simulated all occurred with a load 

resistance of 1.7Ω. Table 27 shows all the output values when the load resistance is set to 

1.7Ω. 

 

Table 27: Output result from thermal electric simulation of longitudinal scaled-up model with load resistance set at 

1.7Ω 

ΔT (⁰C) Current (A) Voltage (V) Power (W) 

5 0.154 0.262 0.0403 

10 0.303 0.514 0.156 

15 0.454 0.771 0.35 

 

Looking at this table, when the ΔT value triples from 5⁰C to 15⁰C, the Power output 

increases by a multiplication factor of 8.7. This shows just how important it is to try to 

increase the temperature difference across the TEGs as much as possible. The power output 

compared with the temperature differences for this table can be seen in figure 75. 
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Figure 75: Power Output for the scaled up longitudinal model with no fins when the load resistance is 1.7Ω 
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5 Discussion 

5.1 Assumptions & Limitations 

The simulations are not expected to produce the exact same results as the physical tests 

number for number due to assumptions made in simulations and limitations of physical 

testing. Some of the assumptions and limitations include: 

• There are potential discrepancies in the testing apparatus such as the voltmeter, ammeter, 

temperature probes and multi-meter used in the tests. To aim to minimise the risk of this 

happening the voltmeter and ammeter were cross checked with a power supply unit.  

• Another issue with testing was one of the TEG modules ceramic plates became damaged in 

clamping as a small corner broke off (please see figure 76). 

 

 

Figure 76: Broken ceramic on one of the TEGs, potentially from excessive clamping. 

 

It was decided that the damage was not enough to cause concern as it had not broken deep 

enough to affect the semiconductor pellets.  

• Another limitation from the physical tests was the corrosion of the surface of the steel 2mm 

plate which was used to modify the test rig. The numerous tests performed with this plate 

caused it to corrode, this rust was sanded off with wet and dry paper however it is hard to 

achieve the smoothness of the original plate once this damage has occurred. 

• The heat transfer fins produced had buckling at the base when they were welded as the 

material used was aluminium and the base was too thin. In future, if heat transfer fins were 

to be tested they should be produced by either die casting or CNC machining. 

• Finally, a jet effect was produced at the inlet of the system  

Assumptions within Ansys which have potential to produce skewed results include: 

• It was not possible to know the exact material properties used for every material in the 

simulations.  

• The contact between all surfaces was assumed to be perfect which is unlikely to be the case.  

• It was assumed that there was not heat loss through convection to the air, this was minimised 

by insulating the physical test rig with rubber sheeting.  
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• It was also assumed that the temperature of the water at the inlet and outlet on the 

simulations was the same as the recorded temperature which was recorded in the centre of 

the equidistant from the inlet and outlet in the physical tests.  

• The temperature of the steel was assumed constant across the surface at the hot end of the 

system, which was likely not the case for the physical tests. 

 

 

5.2 Physical Test Results 

5.2.1 Flat Plate Results 

The flat plate tests in theory, and in practice were the easier of the tests to perform. Initially 

there was issues with the insulating rubber surrounding the TEGs being too thick reducing 

the contact on between the TEGs and the heat exchange surface however this was quickly 

resolved by using thinner rubber sheet. After that all tests were easily performed. 

As shown in section 4.1 all the current, voltage, and power trendlines for the physical tests 

show a positive correlation with increase in ΔT and follow the expected gradients. It was 

expected that the tests with aluminium as the heat exchange surface would produce higher 

output values (current, voltage, power) than the tests with steel due to the higher thermal 

conductivity of aluminium as a material. It was also expected that the thinner heat exchange 

materials would produce higher output values as section 3.5 of this report predicted that this 

would create a larger ΔT across the TEG modules. This was not the case; the thicker plate 

tests produced higher output values with both materials. The reason for this cannot be known 

for certain, however it is possible to hypothesise on potential reasons for this unexpected 

result. One key reason which could have contributed to this could be that the thinner material 

experience slight bending when clamped which would reduce the contact in places between 

the TEG modules and the heat exchange surface. The thick plates will be less malleable and 

stiffer, therefore when they were clamped, they experienced less bending than the thinner 

ones, to resolve this issue for future experiment it would be ideal to have more clamping 

points spread around the areas of the TEG modules. Another potential cause for this 

unexpected result could be that both the thinner plates were used multiple times in tests 

trying to perfect the test rig and testing methods. This will have caused erosion from the 

times which water had passed over the heat exchange surfaces. The plates were sanded with 

wet and dry paper to try to minimise this effect however this may not have got them to the 

same condition as the unused thicker plates. In particular, the aluminium plate had a near 

perfect shiny surface when new which was not possible to obtain from the sanding 

performed. The final potential reason which could have affected these results was that it 

appears the steel plates sent by the supplier were not of the exact same mild steel. Although 

both were mild steel, the thicker plate was slightly darker in colour and did not rust quite as 

fast as the thinner plate, this steel may have had slightly different and potentially more 

beneficial properties for this system. 

 

5.2.2 Heat Transfer Fin Results 

Trying to test the plates with heat transfer fins caused a few more problems than the tests 

discussed in section 5.1.1. The initial plan desired to test all four of the flat plates with 

aluminium heat transfer fins to see how it affected each heat exchange test for greater 

comparison. To do this the heat transfer fins were welded onto an aluminium base which 

was intended to be bolted onto each heat exchange surface to be tested. The welding of the 
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fins onto the base however caused some issues, as it caused the areas of the base in contact 

with the fins to buckle upward, making the base not flat and reducing the contact possible 

with the heat transfer plates in the most crucial areas. To attempt to resolve this issue, a 

block of wood was placed on the fins and a hammer was used to spread an even force which 

would push the malleable aluminium base back to a flatter shape. This helped but there was 

still much to be desired in terms of the flatness of the base. To further try to resolve this the 

base was placed on a belt sander in the aim of removing material which was blocking the 

contact of the concave areas. The base was finally sanded using wet and dry paper to create 

as smooth a surface as possible. The base was then bolted onto the 2mm thick aluminium 

plate with thermal grease between the surfaces to aim to increase thermal contact area. The 

test was performed and unfortunately this method was deemed unsuccessful as even with 

these adjustments the power output was lower than the test of the flat plate 2mm aluminium 

heat exchange surface. In an ideal scenario, to perform this method of bolt on heat transfer 

fins, a block of aluminium should have been CNC machined into the desired shape of the 

fins and base. Another method which would have worked better would be to die cast the 

heat transfer fins from molten aluminium. However, these methods would have put large 

economical strain on the project which was deemed unnecessary at the time of planning. 

With the time and resources available, it was decided to weld some heat transfer fins directly 

onto the 6mm thick aluminium plate for testing to see how they may perform. The 6mm 

plate was chosen to reduce the risk of the plate buckling or bending during the welding 

process. 

 

5.3 Validation of the Tests 

5.3.1 Ansys Simulations 

Two methods were used to model the test rig in Ansys. The results from the physical tests 

were modelled in Ansys using a rectangular inlet in the dimensions of the cross-section of 

the fluid domain with a laminar flow for simplicity. The second method used a circular inlet 

and outlet to emulate the pipes used in the real tests. The method which has been heavily 
documented through the report was using the pipe inlet and outlet with the k-ω turbulence 

model as this way these simulations are set up as like the scaled-up models as possible. 

With all the simulations completed, the residuals converged to the absolute criteria and the 

other monitors showed no sign of error therefore there was no worry about the accuracy of 

simulations on initial sight. After analysing the results from the simulations of the test rig 

they all followed the patterns expected generally but some of the results are slightly skewed 

because the ΔT values simulated were different for each model. This was to allow 

comparison between physical tests and simulations however as the lowest ΔT simulated for 

the aluminium 6mm flat plate was higher than the rest of the plates, it appeared to decrease 

the gradient of the power curve slightly. In general, all the flat plate tests produced similar 

results to one another which was expected as the thickness and material should have only 

made a small difference with the thicknesses tested. 

 

5.3.2 Comparisons & Validation 

As stated in the objectives of this report, the results will be deemed valid if the simulation 

results lie within the standard error of the physical tests. The results graphs in section 4.4 

for the power comparisons show the standard error bars for the physical tests. 
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For the 2mm Aluminium flat heat exchange plate, the data shows that the simulations are 

within the standard error of the physical tests for 67% of the points tested. The simulation 

results are within the standard error values of the physical tests for ΔT values under 

approximately 16⁰C.  

For the simulations involving the 6mm flat aluminium plate as the heat exchange surface 

78% of the simulation results can be deemed valid as they fit within the standard error of 

the physical tests. Upon looking at figure 60 it appears that all temperature differences below 

approximately 17⁰C are within tolerance. 

The tests for the 2mm thick steel heat exchange plate did not shows as accurate results as 

the aluminium plates. Only 56% of the physical test points had a simulation power within 

the standard error tolerance range. It showed that all the points below approximately 14⁰C 

were within tolerance.  

For the 6mm steel flat plate scenario, only 44% of the test points had simulation power 

within the tolerance. This appears much worse than it is due to two points near ΔT≈10⁰C 

just having the simulation results fall outside the tolerance. The rest of the values stay within 

tolerance up to approximately a ΔT of 16⁰C. 

For the simulations with the heat transfer fins on the 6mm aluminium plate only 44% of the 

simulation results can be deemed valid. Any ΔT higher than 11⁰C had simulation results out 

of tolerance. 

 

5.3.3 Validation Decision 

As stated, there were limitations such as bending which may have resulted in some of the 

physical results being lower than expected. With the knowledge of the limitations of some 

of the plates, the aluminium 6mm plate was the one which appeared to have the least issues 

as the steel plates had issues with corrosion and the thinner plates had potential issues with 

bending. Therefore, the results from the aluminium 6mm plate will be used to validate the 

scaled-up model. This is that all results ≤17⁰C will be deemed valid. At ΔT≈20⁰C, the power 

produced is likely to be approximately 87% of what is shown in the simulations. 

 

5.4 Scaled-Up Model 

5.4.1 Ansys Simulations 

As described four models were simulated to analyse how the TEGs may perform once 

scaled-up into a submarine. The TEG modules were positioned longitudinally in line with 

the submarine, with and without a heat transfer fin, and laterally across the cross section of 

the submarine, with and without heat transfer fins. What may come as a surprise on first 

sight of the results is that both the models with heat transfer fins produced less power than 

the models without. Heat transfer fins are usually added to increase the rate of forced 

convection, so why in this case does it decrease the amount of power produced? To 

understand this, we look at figure 70 which shows a cross sectional view of the temperature 

contours in the longitudinal layout with no fins. Due to the thickness of the submarine hull 

and the speed at which it is travelling, there is no large temperature drop from the surface 

of the submarine wall to the fluid in the boundary layer. In fact, the temperature near the 

surface of the hull is nearly the same as the free stream fluid temperature. The 

recommendation by (J. Falcão Carneiro, 2018) that an AUV using TEGs would require heat 

transfer fins was likely based upon a slower moving AUV with a much thinner wall. The 
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heat transfer fins added in this research appear to just increase the distance in which the heat 

must travel to reach the forced convection rather than adding any benefit. This can be looked 

at as good news as the installation of this system would not require the addition of any 

external features to the submarine which would cause additional drag and potentially upset 

the handling of the submarine. Four modules were simulated in the system, however if more 

power was desired then the number of modules could be increased, if a higher voltage was 

desired then these could be connected in series in addition to the original modules. This will 

likely be required if the system is to charge a backup battery as at the maximum power point 

for ΔT=15⁰C the voltage produced is 0.771V which is unlikely to be enough to charge a 

useful battery. 

 

5.3.2 Implementation of the system 

Looking at the power, voltage, and current values being produced by the system there are 

two clear methods for utilising the electricity generated, it could either power a subsystem 

within the submarine/AUV or charge up a backup battery to be used however is required. 

In both cases, some form of DC-DC conversion would likely be necessary to convert the 

voltage to a usable form. In a similar manner to (Jensak Eakburanawat, 2005), it would be 

possible to utilise the energy to charge a 6V battery and store the power as useful electrical 

energy. To optimise the power produced by the TEGs when charging the battery, the correct 

number of modules should be chosen based upon where the submarine will operate. 

For the sake of this report, it is presumed that the submarine in question will operate at a 

depth which creates a ΔT of 15⁰C between the submarine interior and the water. To achieve 

maximum power output the system described in this report should be laid out eight time 

connected in series electrically. This should create a voltage of approximately 6.2V which 

would be suitable for charging the battery. It is unlikely the temperature difference will stay 

the same throughout the journey therefore a SEPIC convertor like the one described in to 

(Jensak Eakburanawat, 2005) should be used to keep the voltage at a suitable level to charge 

the battery. 
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6 Conclusions 

6.1 Current Research 

This research aimed to determine whether the use of TEGs in submarines/AUVs was 

logistically and economically viable. The system logistically is definitely viable as it would 

be relatively easy to implement. All that would be required to be made would be a steel 

holding base for the TEGs and an aluminium heat transfer surface which can transfer the 

heat from the TEGs to the submarine wall. These could be CNC machined or die cast. 

Thermal insulation would also have to be used on the submarine wall in the vicinity of the 

system. Economically, the system would be relatively expensive at first, as if the scenario 

described in section 5.3.2 is used, ideally 32 TEG modules should be used. This would cost 

approximately £3,200 for just the TEGs. However, this would be an investment for the 

future as the modules require no maintenance and will produce a passive energy source for 

a massive amount of time. The TEG modules will not need replacing unless they are 

damaged, giving them an advantage over many other sources of power. 

This thesis has developed a method of analysing how TEGs will perform in a system with 

forced convection using water to maintain a temperature difference across TEGs for power 

generation. The results from simulations were deemed viable for the temperature ranges 

which would be found in the scenarios analysed in this research, therefore the scaled-up 

models simulating how the system would perform in a submarine can judged to be an 

accurate representation. 

This thesis also confirmed that the use of heat transfer fins is not necessary for a submarine 

with a hull thickness like the one studied in this report (38mm). The research also showed 

that the TEGs being line longitudinally down the submarine is superior to laterally across 

the cross section of the hull. 

The results obtained from this research show that Ansys Fluent and Thermal Electric are 

can both be used to obtain accurate predictions of how TEG modules may perform in a 

system with forced convection to increase heat transfer. The research not only showed that 

this is possible but has displayed a method which clearly works when analysing systems 

with a low temperature difference (ΔT ≤ 17⁰C). 

 

6.2 Future Recommendations 

If a project like this was to be carried out, a few recommendations on improving the 

accuracy of the results include: 

• More temperature sensors should be used in the water. If temperature sensors in the water 

at both the inlet and outlet were used, then the simulation input values in Ansys for 

temperatures of the water could have been more accurate. A further temperature sensor 

could also be used in the middle of the flow as was used in this, for an average temperature 

at the mid-point of the flow. 

• Like the previous point, more temperature sensors would be advised for used in the steel on 

the hot side of the system. It is suggested by the author that in future, a temperature sensor 

under each TEG module would be ideal; this would allow for four different input 

temperatures when simulating in Ansys rather than one average. This will produce more 

accurate results. 
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• As stated in section 5.1, if heat transfer fins are to be manufactured out of aluminium, die 

casting or CNC machining is recommended to avoid welding induced buckling of the 

material. 

• For future work, the transitions from the hose to the area of water being simulated should 

be made more gradual by using a funnel shaped design to gradually increase the cross-

sectional area. This may reduce the complexity of the flow which the simulations must 

calculate whilst also producing a more similar flow to that which would be experienced in 

a system on a real submarine. 

The simulations in this research give a good estimate of how TEGs should perform when 

implemented into a system such as a submarine/AUV. For future work it is recommended 

that a system like the one designed in this research is built and implemented into a submarine 

to be tested in a mission to understand exactly how much power it could produce in the real 

world. This research has shown how based upon simulations, heat transfer fins should not 

be necessary for submarine due to the thickness of the hull. This makes a system much 

easier to build and implement for testing in a real submarine mission. 

Further research into specific sub-systems within a submarine which the system could 

power would be beneficial for implementing the system in the real world. 
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Appendix 

The main contour of interest for analysis in the Ansys Fluent study was the temperature in 

this research, the velocity and pressure contours however give a good understanding as to 

whether the results will be accurate. The velocity and pressure contours for the longitudinal 

layout over the fin shows the expected areas of low velocity in the wake of the fin and on 

its front face. This can be seen in figure 77. 

 

 

Figure 77: Scaled up model, Longitudinal layout with heat transfer fin, Velocity Contour 

 

 

Figure 78: Scaled up model, Longitudinal layout with heat transfer fin, Pressure Contour 

 

As stated in the research two methods were chosen to model the test rig in Ansys, using pipe 

inlet and using a rectangular inlet with laminar flow. The pipe inlet with turbulent flow was 

used in the research as it showed a higher accuracy and more similarity to the conditions of 

the real experiment. Figure 79 shows the results using the rectangular laminar inlet for the 

aluminium flat heat exchange plate of 6mm thickness. 
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Figure 79: Power comparison for the simulations using a rectangular inlet and outlet with a 0.18475m/s inlet velocity 

(simplified model), aluminium 6mm flat plate 
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