
TWARE

ware development
for an intelligent

ard and Alastair Garman

The key problems in producing
software to control intelligent robots
are identified, the principal one being
the difficulty of producing a detailed
requirements specification. A series of
process steps is defined and described
in relation to the development of an
intelligent robot excavator. The
importance of a rational decomposition
of the system into modules is stressed,
and one particular component of the
robot excavator is discussed in some
detail-the activities manager. It is
shown how techniques such as a
‘production system’ and a ‘blackboard’
were implemented in Ada to produce a
flexible and easily maintainable
system. Two other components are
described-the low-level controller and
the safety manger. A brief description
of the hardware platforms used is
included.

here is currently a great deal of research and
development going on throughout the world
in the area of intelligent robots, particularly
for use in hazardous environments such as

nuclear decommissioning, toxic waste tips and subsea. In
order to carry out useful tasks in unstructured environ-

ments, robots inevitably require a richer sensory system
than conventional industrial robots, and much increased
intelligence to make sense of their more complex world.
They also need the intelligence to carry out work
sequences that involve subtle and adaptive operations
without constant reference to human operators. This
means that the proportion of system costs occupied by
software will continue to increase for the foreseeable
future, and probably dominate hardware costs.

There are specific problems in developing software for
intelligent robots, and these problems must be faced and
overcome if such robots are to escape from the research
laboratories and become viable commercial products.
This article sets out to investigate the problems of
software development for intelligent robots by reference
to a research project to develop a robot excavator. The
lessons learned from this project are formulated into a
series of steps that constitute a suitable process model for
software development.

Background
For the last five years, staff and students at Lancaster

University have been involved in the development of an
autonomous robot excavator, and the end result of this
work is LUCIE-the Lancaster University Computerised
Intelligent Excavator.l An excavator provides a good
opportunity for development, as it is basically a highly
efficient and well developed four-degree-of-freedom
manipulator arm, but with the complete absence of
automation or intelligence. The aim of the project is to
add autonomy in order to produce a robot excavator with
the following characteristics:

It should concentrate on the task of treuzchipzg, and be
able to produce a good quality and accurate smooth-
bottomed trench.

0 It should adapt to different soil types without human
intervention.
It should cope with obstructions, such as boulders in
the trench.

COMPUTING & CONTROL ENGINEERING JOURNAL APRIL 1996

Authorized licensed use limited to: Lancaster University Library. Downloaded on December 12, 2008 at 07:14 from IEEE Xplore. Restrictions apply.

SOFTWARE

The project needed to be organised in such a way that:

It is capable of incremental development with different
design teams completing a stage of the work through-
out an academic year.

0 It is highly modular to provide for the possibility of
adding, as yet, undeveloped technologies, such as a
navigation system and a system for the detection of
hidden service pipes.

A working prototype has been produced and the above
aims achieved (see Fig. 1). A hardware platform was
provided by the JCB excavator company in the form of a
JCB 801 tracked mini-excavator. Many lessons have been
learned, particularly in the field of software engineering,
which are relevant to the generic class of intelligent
robots.

The nature of the problem
The conventional opinion in software engineering

emphasises the need for a complete and unambiguous
definition of the system requirements before moving to
the design stage (although it is now accepted that this is
usually unrealistic, and some iteration between require-
ments and design is required). Herein lies the major
difficulty with this class of intelligent robot. In our case
the task of digging a trench is a subtle manual task that
has never been properly defined. Indeed it is clear from
the observation of skilled human drivers that their tactics
are constantly being modified to maintain efficient
operation as ground conditions vary. They make wide
use of many sensory feedback loops (e.g. listening to the
sound of the engine) to optimise the path of the excavator
bucket. Even if the human approach was fully
understood, it would still leave a significant problem in
knowing how closely an automated method should mimic
it. What is needed is a development system that allows

tactical experimentation. Furthermore, this experimenta-
tion requires at least a prototype havdwave system (not
just the software). Thus we require a ‘whole system’
development process.

A modern excavator has a very high power-to-weight
ratio-about ten times that of a. conventional industria1
robot. In fact an excavator arm can apply a force which
is sufficient to turn itself over. This, combined with
mobility, means that safety is an important issue.

The problems of system development can therefore be
summarised as follows:

0 It is not possible to write the complete system
requirements in advance, and hence they must be
further refined throughout the development process.

0 The undefined nature of the task means that there is a
need to be able to tune the system during operation.
This points to the necessity for a ‘training’ facility,
where tactics Carl be refined in the field without the
need for constant re-compiling of the software code.
A working hardware prototype is required for the
refinement of the requirements. Consideration was
given to software simulation, but this was discounted
as the primary tool on the grounds that the simulation
of soil with realisl ic non-homogenous properties is too
difficult.
Large systems will usually consist of many off-the-
shelf components and so a top-level architecture which
stresses high modularity is vital for the flexible
integration of subsystems. An example of such a
component is a satellite global positioning system
which contains both hardware and software
components. The architecture of the system must cope
with software components implemented in different
computer languages.
It must be possible to validate the safety of the
complete system.

Fig. 1 LUCIE the
robot excavator
being trained

COMPUTING & CONTROL ENGINEERING JOURNAL APRIL 1996 87

Authorized licensed use limited to: Lancaster University Library. Downloaded on December 12, 2008 at 07:14 from IEEE Xplore. Restrictions apply.

Stages of development
Of the established software development models, that

which comes closest to providing a framework for
this development is the Boehm Spiral Model.? This
encourages the reduction of development risks by
incorporating prototypes, simulations and models.
However, the suggested steps given below are based more
on a critical review of the experience gained on the project
than strict adherence to the model:

1 Problem definition and scope
This is to define the principle objectives of the robotic

system, and also to indicate estimates of available
resources in terms of equipment, finance, manpower and
time.

2 Knowledge acquisition
This stage may involve observation and interrogation

of human operators so that the robot’s operational
process can be understood and the functionality and
target performance of the system de f in~d .~ In the
particular case of the robot excavator this stage also
included a theoretical study of ‘soil cutting’, and an
analysis of excavator kinematics and forces.

3 Preliminary system requirements definition and
feasibility study

A high-level description of what is required from the
robotic system is produced in written form. This is then
compared with available technical resources to see if it is
feasible.

4 Global system decomposition
The overall system is broken down into manageable

modules which can be relatively independently

Fig. 2 Fifth-scale model of excavator arm

developed. A rational decomposition is one of the most
vital steps in system development, and is dealt with in
rnoie detail below.

5 Detailed requirements spec@ations for subsystems
usipig a rapid prototype

The risks associated with developing each module
should be considered, and as a result of this, the most
appropriate process model(s) adopted. If modules can be
tightly specified at an early stage, then this should be
carried out using a specification technique such as
DeMarco’s Structured Data Flow Diagrams.“

A rapid prototype of both the hardware and software
is required for further refinement of the requirements, for
those modules which cannot be adequately defined. For
large robots it may be advantageous to also build a
software or hardware scale model. This is discussed in
more detail below. In general the rapid prototype will use
off-the-shelf hardware components, which will probably
bear little resemblance to a finished production system,
and will be far from optimum in terms of cost, robustness,
compactness and performance.

6 Design and implementation of a development
prototype followed by experimental tuning and
production of a detailed requirements spec@cation

This stage will build on the experience gained from
stage 5 and the aim is to build a robot which has the full
functionality of the final system, but also has additional
capabilities for tuning and adjustments so that the
detailed requirements can be finalised. It would be
expected that many of the hardware and software
components would be re-usable in the production version.

7 Design and implementation of the production version
to meet the detailed requirements dejned in stage 6.

The final production version is likely to contain more
highly optimised but less adaptable software, but
supported by a professional user interface.

With simpler robots it should be possible to merge steps
5 and 6. The success of the design of the high-level system
architecture at stage 5 can be measured by how similar
it is to the final product at the end of stage 7. For one-off
or low volume robots the development would cease at
stage 6. Some specific points from the above steps will
now be considered in more detail.

The use of robot models
There are strong arguments for including models

throughout the development. These can take the form of
mathematical models, graphical computer simulations or
physical scale models.

Mathematical models are required for the production of
effective control algorithms, particularly when the robot
involves complex kinematics or fast moving parts, which
add a dynamic component to the problem. This was not

COMPUTING Br CONTROL ENGINEERING JOURNAL APRIL 1996

Authorized licensed use limited to: Lancaster University Library. Downloaded on December 12, 2008 at 07:14 from IEEE Xplore. Restrictions apply.

an important issue with LUCIE as the excavator arm is
well damped by the soil when actually digging, and when
moving in air does not need to be accurately positioned.
Graphical computer simulations are useful for defining
basic geometry, evaluating working strategies and, as
part of the safety analysis, to avoid collisions. Software
tools of various complexity are now available for both the
above, but are beyond the scope of this article.

Hardware scale models are of particular advantage
when developing large robots, and they should, where
possible, be designed to be driven by'the same software
interface as the full-sized prototype. The key benefits are:

Control software can be tested under laboratory
conditions.
In the case of the excavator, trial holes can be easily
dug and refilled without the need to hire a driver.

0 There are clear safety advantages compared to testing
new control software on large and powerful robots.

0 They provide a good demonstrator to motivate staff,
provide confidence and encourage further funding.
They can often be quicker and cheaper to develop than
equivalent software simulations.

Fig. 2 shows a fifth-scale model of an excavator arm that
was used to test control software and develop digging
strategies in a sand box. This model had a similar electro-
hydraulic system to the full-scale excavator and was
controlled through an identical software interface. It is
important that such models are easily scaleable. In this
case the same software was successfully used to drive
both the fifth-scale model and the full-sized excavator-
it was only required to change the geometry and a few
control parameters.

Decomposition of system components
A logical top-down decomposition of system compo-

nents is the key to achieving a flexible and easily

SOFTWA

maintainable system. (An exception to this can occur
when using off-the-shelf components which may dictate
some bottom-up considerations to allow for specific
interfacing restrictions.) An important software engin-
eering concept that can help in obtaining a coherent
decomposition is coupling.5 The degree of coupling is a
measure of the amount and range of data-flow that occurs
between system modules. For ease of long-term mainten-
ance coupling should be minimised. A useful aid for
identifying the high-level modules is to consider where
a human would intervene in the system assuming
hardware or software faults at various stages in the
system. These interventions normally occur at points
where coupling is minimised. Fig. 3 illustrates the top-
level decomposition for the LUCIE excavator together
with the obvious human interventions in the event of
system failure. The safety manager occupies a unique
position in relation to the other modules and so is not
shown connected at this stage.

Two of the modules in Fig. 3-the low-level arm
controller and the activities manager-have been fully
implemented and the safety manager is currently under
development. These will be discussed in the following
sections.

Low-level arm controller
The purpose of the low-level arm controller is to take

movement commands from the activities manager and
send the appropriate control signals to the electro-
hydraulic valves. Experiments with the fifth-scale model
in step 5 revealed the desirability of a dual control
strategy which is closely reflected in the human approach
to digging:

0 When moving in air (i.e. tipping the spoil and
positioning the bucket 1 eeth) a positional controller is
required. The commands from the activities manager
thus instruct the bucket to move to specific x,y,z co-

I conventional l I setting-out I 1
-> safety manager

and movement controller hidden cable detector

I I observer looks
for cables

Fig. 3 Top-level
decomposition with
points of human
intervention

COMPUTING & CONTROL ENGINEERING JOURNAL APRIL 1996 89

Authorized licensed use limited to: Lancaster University Library. Downloaded on December 12, 2008 at 07:14 from IEEE Xplore. Restrictions apply.

TWARE

ordinates in space. Angle sensors were placed on the
arm joints to provide closed-loop control.

a When moving in soil a velocity controller is required.
The commands from the activities manager instruct
the tip of the bucket teeth to comply with a particular
velocity vector (i.e. speed and direction). This strategy
accepts the fact that movement in the ground needs to
be highly adaptive as ground conditions change, and
that there is little likelihood of reaching a specific point
via a predetermined path. Error feedback is used by
the activities manager to modify the velocity command
in order to optimise performance. Thus if the exca-
vator cannot achieve the demanded velocity because
the ground is too hard, the activities manager will
direct the low-level controller to attempt a shallower
dig where the ground is ex)ected to be softer. This
approach has proved very effective in providing
pseudo-force feedback without the need of additional
force sensors.

The low-level arm controller is currently implemented
in ‘(2.

Development prototype of the
activities manager

Of the above high-level modules, it is most difficult to
provide an early detailed requirements specification for
the activities manager. The activities manager is the
module that directs the digging process and has
knowledge of the tactics required for efficient operation.
The knowledge required by the developers was obtained
by observing human operators, theoretical studies and
trial and error experimentation. This section describes
how the module was tackled at the development
prototype stage (step 6).

Because the requirements for the activities manager
are not completely defined it is necessary to prototype the
control software. The prototyping process helps to
identify and clarify the requirements specification of the
control software.

To help the prototyping of the activities manager a
design platform concept was used. The design platform
allows the developers to try out and modify ideas, as well
as reacting swiftly to requirements changes in other
system components.

Design platform concept
The aim of the design platform is to provide maximum

flexibility without compromising on maintainability.
Maintainability is essential not only because of the
potentially fast and possibly radical prototyping process,
but also because of the unstable nature of developing the
system using students. The purpose is to produce a
detailed and static specification of the activities manager
module. This specification is then used to produce an
optimised and well engineered software solution.

In order to construct a design platform, it is necessary

to have at least a basic understanding of the robotic
system and the high-level goals of the control software.
Most useful intelligent robots will be finite state
machines. These are systems which are in one or other
particular state of activity depending on the stimuli
received. These stimuli can be as a result of signals from
sensors, timers, switches or work instructions from a
higher level program. The stimuli trigger the switch from
one state to another. Fig. 4 shows a state transition
diagram for ‘digging within reach’. The words inside the
boxes describe particular states and the words in italics
outside the boxes indicate the stimuli that triggers the
transition from one state to another.

The digger can only be in one state at any one time and
the process is performed by moving from a completed
state to the next state. If implemented with care, the finite
state machine approach provides both flexibility and
maintainability. Flexibility comes from the ease of adding
new states to the finite state machine. The maintain-
ability comes from the inherent modular structure of the
finite state machine. Running one state at a time improves
the performance of the whole system.

An interesting question arises as to ‘where is the
intelligence in such a system?’. Briefly, it lies in the
algorithms that control the particular states, the sequence
of states and the rules that control the transition between
the states. This combination enables the system to adopt
appropriate behaviour in an unstructured environment.

The next step is to identify key design features,
around which to build the design platform. In the case
of the activities manager these were: a real-time com-
ponent, a non-real-time component, a means of applying
knowledge and a control structure to model the phases of
the digging process. These design features have to be
merged with flexibility and maintainability character-
istics to produce a design platform.

Features of the activities manager3 design platform
The use of a high-level programming language is

important, and the language used to implement the
activities manager is Ada. This provides a modular
approach, information hiding and meaningful data
structures, which are all necessary for a maintainable
system.

The activities manager involves a real-time component
which was one of the critical design issues. A trade off
exists between on the one hand maintainability and
flexibility, and on the other hand real-time performance.
The strict real-time option in Ada is called tasking, but
this was rejected primarily because its complexity makes
it unsuitable for a flexible, rapid prototyping process.
Instead, simplicity, efficiency and a fast processor were
used to provide an ‘as fast as possible’ solution. This
solution does not compromise the high flexibility and
maintainability characteristics of the system.

The next problem was how to embed knowledge in the
activities manager. A well known technique is to use a

COMPUTING & CONTROL ENGINEERING JOURNAL APRIL 1996

Authorized licensed use limited to: Lancaster University Library. Downloaded on December 12, 2008 at 07:14 from IEEE Xplore. Restrictions apply.

SOFTWARE

acdepth

-4 positioning teeth b-

b u c k e t p

4 height_OK

4 location-OK

released
vibrating bucket

Fig. 4 State transition
diagram for ‘digging
within reach‘

production system. This consists of three components:

A list of rules of the form: IF (condition true) THEN
(perform action). Currently about 30 rules are used for
a single digging cycle.

0 A working memory containing the current value of all
system data. Much of this data emanates from the low-
level arm controller and can be considered to be
displayed on a blackboard for use by any of the
programme modules. The use of a blackboard is a
well known technique for communicating between
asynchronous processes which may be running on
different processors and perhaps written in different
computer languages. A particular section of memory
can be allocated to hold the blackboard data.

0 An inference engine which cycles through the rules,
checks the conditions and instigates actions.

With complex systems this can result in having to check
hundreds of rules at each cycle, and this can be a penalty
in real-time systems. The solution was to place a separate
production system in each of the states. In order to
maintain performance, the production systems were kept
small and efficient. If a production system became too big,
the state was split into two or more substates. Each state
is implemented as an Ada procedure with a ‘while’ loop
forming the basis of the inference engine. When a
transition state is reached the next desired state is

transmitted to the working memory. If the most
important and most likely rules are given the opportunity
to fire first, then each iteration of the production system
rules is performance optimised. The addition, modifi-
cation and deletion of the rule is simple and therefore
provides a flexible and maintainable knowledge base.

The production systems need data in order to work.
The data structures required must be flexible and
meaningful, in ordler to be maintainable. The data
structures provided by high-level languages such as Ada
are ideal for this purpose, as they provide flexibility,
information hiding, logical structuring and meaningful
naming. Two examples of abstract data types used are
firstly that which contains the current state information
as displayed on the blackboard:

type StateTableType is
record

TiltAngle:integer:=O;
BucketAngle:integer:=O;
xError:inte,ger:=O;
yError:inte,ger:=O;
VirtualPosition:Location:= (O,O,O);
RealPositio n:Location:=(O,O,O);

end record

Secondly the following data structure contains the
commands which are issued to the low level controller:

COMPUTING & CONTROL ENGINEERING JOURNAL APRIL 1996 91

Authorized licensed use limited to: Lancaster University Library. Downloaded on December 12, 2008 at 07:14 from IEEE Xplore. Restrictions apply.

TWARE

type CommandType is
record

Velocity:Vector:=(O,O);
Position:Location:=(O,O,O);
BucketAngle:integer:=O;

end record;

Another feature of the design platform was the removal
of all constants from the source code. Constants are
inflexible and were therefore replaced by variables which
can be changed, as required by the prototyping process,
without having to recompile the source code. The
‘variable constants’ can be changed by using a user
interface, to edit external files. These configuration files
contain the values that the ‘variable constants’ should
have. They are read by the activities manager and placed
into internal data structures. This method provides a
certain amount of flexibility without having to recompile
the source code, which is a great advantage in a rapid
prototyping process.

The design platform can also be used as a test harness
by simulating the input and analysing the output. This is
again achieved by reading input in from external files
and writing output out to external files. This enabled the
activities manager to be tested without the digger and
also before the digger was finished.

The safety manager
The concept of a safety manager is currently being

investigated under the Safe-SAM project which is
supported by the DTIEPSRC safety-critical systems
programme.“ Mainstream thinking in safety-related
systems is to develop a safety case based on making
systems as deterministic as possible. Rigorous testing,
static and dynamic analysis andor formal methods can
be used in an attempt to verify that a system performs
safely to specification. For the robot excavator, which
uses a knowledge base to produce adaptive control in
an unstructured environment, such an approach is not
realistic and could not be justified on economic grounds.
For this reason the concept of a safety manager is being
developed. The safety manager’s role is to be aware of
objects in the working environment, and to sanction only
safe behaviour. It will be resident on a separate processor
and, in biological terms, play the role of a ‘conscience’ to
the system. Another analogy is a nuclear protection
system, which is not concerned with the functional
process of the plant, but has the power to intervene to
prevent hazards arising. The safety manager is being
implemented in Pascal using a validated compiler.

Brief comments on hardware
Although not the prime purpose of this article, a few

comments on the hardware environment may be of
interest. The initial rapid prototype used a single
powerful RTX2000 processor to run both the activities
manager and the low-level controller. Both programs

were written in the language FORTH for which this
processor is optimised. Off -the-shelf eurocards communi-
cating via an STE bus were used for the processor and
supporting sensor and electro-hydraulic valve interface
cards. These were rack mounted on the roof of the
excavator, as shown in Fig. 1. Performance was
satisfactory but the system was bulky, relatively
expensive and lacked robustness in a high-vibration
environment.

For the later development prototype a more
conventional route is being followed with the use of
multiple 486 PCs in the ultra-compact PC104 format. So
far, one PC is being used for navigation and track control,
one for the activities manager and low-level controller
and one for the safety manager. Communications
between the cards is via CAN (controller area network)
bus. It is the long-term aim to provide all on-board
sensors with intelligent CAN bus interfaces which will
significantly reduce wiring.

Summary and conclusions
Software development for intelligent robots is difficult

because it is usually not possible to define the software
requirements in sufficient detail at the start of the project.
Prototyping provides a means of refining requirements,
but this requires a hardware as well as a software
prototype. Scale models are useful, particularly with
large robots, and they should be scaleable and capable of
being driven by the same software as the full-sized robot.

The development process for the generic class of
intelligent robots can be described in a series of seven
steps, which may be reduced to six for simple or one-off
systems.

The design platform concept provides the flexibility
for those modules that need to be changed at the proto-
type stage. This should be written in a high-level
language such as Ada, so that it can be easily changed
and maintained. The use of well known techniques such
as finite state modelling, production systems and black-
board architectures can be combined to form an efficient
and coherent intelligent knowledge-based controller.

References
1 SEWARD, D. W.: ‘LUCIE-the autonomous robot excavator’,

Industrid Robot, 1992, 19, (1) (MCB University Press)
2 BOEHM, B. W.: ‘A spiral model of software deveiopment and

enhancement’, IEEE Computer, 1988,20, (9), pp.43-58
3 GREEX, F’., SEWARD, D. W., and BRADLEY, D. A.: ‘Knowledge

acquisition for a robot excavator’, 7th Int. Symp. on Robotics in
Construction, Bristol, 1990, pp.351-357

4 DeMARCO, T.: ‘Structured analysis and system specification’
(Yourdon Press, New York, 1978)

5 YOURDON, E., and CONSTANTINE, L. L.: ‘Structured design’
(Prentice-Hall, 1979)

6 ‘Safe system architectures for large mobile robots’, EPSRC, ref.
GFUJ18064

6 IEE: 1996
Derek Seward is with the Department of Engineering and
Alastair Garman is with the Department of Computing,
Lancaster University, Lancaster LA1 4YR, LJK

COMPUTING & CONTROL ENGINEERING JOURNAL APRIL 1996

Authorized licensed use limited to: Lancaster University Library. Downloaded on December 12, 2008 at 07:14 from IEEE Xplore. Restrictions apply.

