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The key problems in producing 
software to control intelligent robots 
are identified, the principal one being 
the difficulty of producing a detailed 
requirements specification. A series of 
process steps is defined and described 
in relation to the development of an 
intelligent robot excavator. The 
importance of a rational decomposition 
of the system into modules is stressed, 
and one particular component of the 
robot excavator is discussed in some 
detail-the activities manager. It is 
shown how techniques such as a 
‘production system’ and a ‘blackboard’ 
were implemented in Ada to produce a 
flexible and easily maintainable 
system. Two other components are 
described-the low-level controller and 
the safety manger. A brief description 
of the hardware platforms used is 
included. 

here is currently a great deal of research and 
development going on throughout the world 
in the area of intelligent robots, particularly 
for use in hazardous environments such as 

nuclear decommissioning, toxic waste tips and subsea. In 
order to carry out useful tasks in unstructured environ- 

ments, robots inevitably require a richer sensory system 
than conventional industrial robots, and much increased 
intelligence to make sense of their more complex world. 
They also need the intelligence to carry out work 
sequences that involve subtle and adaptive operations 
without constant reference to human operators. This 
means that the proportion of system costs occupied by 
software will continue to increase for the foreseeable 
future, and probably dominate hardware costs. 

There are specific problems in developing software for 
intelligent robots, and these problems must be faced and 
overcome if such robots are to escape from the research 
laboratories and become viable commercial products. 
This article sets out to investigate the problems of 
software development for intelligent robots by reference 
to a research project to develop a robot excavator. The 
lessons learned from this project are formulated into a 
series of steps that constitute a suitable process model for 
software development. 

Background 
For the last five years, staff and students at Lancaster 

University have been involved in the development of an 
autonomous robot excavator, and the end result of this 
work is LUCIE-the Lancaster University Computerised 
Intelligent Excavator.l An excavator provides a good 
opportunity for development, as it is basically a highly 
efficient and well developed four-degree-of-freedom 
manipulator arm, but with the complete absence of 
automation or intelligence. The aim of the project is to 
add autonomy in order to produce a robot excavator with 
the following characteristics: 

It should concentrate on the task of treuzchipzg, and be 
able to produce a good quality and accurate smooth- 
bottomed trench. 

0 It should adapt to different soil types without human 
intervention. 
It should cope with obstructions, such as boulders in 
the trench. 
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The project needed to be organised in such a way that: 

It is capable of incremental development with different 
design teams completing a stage of the work through- 
out an academic year. 

0 It is highly modular to provide for the possibility of 
adding, as yet, undeveloped technologies, such as a 
navigation system and a system for the detection of 
hidden service pipes. 

A working prototype has been produced and the above 
aims achieved (see Fig. 1). A hardware platform was 
provided by the JCB excavator company in the form of a 
JCB 801 tracked mini-excavator. Many lessons have been 
learned, particularly in the field of software engineering, 
which are relevant to the generic class of intelligent 
robots. 

The nature of the problem 
The conventional opinion in software engineering 

emphasises the need for a complete and unambiguous 
definition of the system requirements before moving to 
the design stage (although it is now accepted that this is 
usually unrealistic, and some iteration between require- 
ments and design is required). Herein lies the major 
difficulty with this class of intelligent robot. In our case 
the task of digging a trench is a subtle manual task that 
has never been properly defined. Indeed it is clear from 
the observation of skilled human drivers that their tactics 
are constantly being modified to maintain efficient 
operation as ground conditions vary. They make wide 
use of many sensory feedback loops (e.g. listening to the 
sound of the engine) to optimise the path of the excavator 
bucket. Even if the human approach was fully 
understood, it would still leave a significant problem in 
knowing how closely an automated method should mimic 
it. What is needed is a development system that allows 

tactical experimentation. Furthermore, this experimenta- 
tion requires at least a prototype havdwave system (not 
just the software). Thus we require a ‘whole system’ 
development process. 

A modern excavator has a very high power-to-weight 
ratio-about ten times that of a. conventional industria1 
robot. In fact an excavator arm can apply a force which 
is sufficient to turn itself over. This, combined with 
mobility, means that safety is an important issue. 

The problems of system development can therefore be 
summarised as follows: 

0 It is not possible to write the complete system 
requirements in advance, and hence they must be 
further refined throughout the development process. 

0 The undefined nature of the task means that there is a 
need to be able to tune the system during operation. 
This points to the necessity for a ‘training’ facility, 
where tactics Carl be refined in the field without the 
need for constant re-compiling of the software code. 
A working hardware prototype is required for the 
refinement of the requirements. Consideration was 
given to software simulation, but this was discounted 
as the primary tool on the grounds that the simulation 
of soil with realisl ic non-homogenous properties is too 
difficult. 
Large systems will usually consist of many off-the- 
shelf components and so a top-level architecture which 
stresses high modularity is vital for the flexible 
integration of subsystems. An example of such a 
component is a satellite global positioning system 
which contains both hardware and software 
components. The architecture of the system must cope 
with software components implemented in different 
computer languages. 
It must be possible to validate the safety of the 
complete system. 

Fig. 1 LUCIE the 
robot excavator 
being trained 
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Stages of development 
Of the established software development models, that 

which comes closest to providing a framework for 
this development is the Boehm Spiral Model.? This 
encourages the reduction of development risks by 
incorporating prototypes, simulations and models. 
However, the suggested steps given below are based more 
on a critical review of the experience gained on the project 
than strict adherence to the model: 

1 Problem definition and scope 
This is to define the principle objectives of the robotic 

system, and also to indicate estimates of available 
resources in terms of equipment, finance, manpower and 
time. 

2 Knowledge acquisition 
This stage may involve observation and interrogation 

of human operators so that the robot’s operational 
process can be understood and the functionality and 
target performance of the system de f in~d .~  In the 
particular case of the robot excavator this stage also 
included a theoretical study of ‘soil cutting’, and an 
analysis of excavator kinematics and forces. 

3 Preliminary system requirements definition and 
feasibility study 

A high-level description of what is required from the 
robotic system is produced in written form. This is then 
compared with available technical resources to see if it is 
feasible. 

4 Global system decomposition 
The overall system is broken down into manageable 

modules which can be relatively independently 

Fig. 2 Fifth-scale model of excavator arm 

developed. A rational decomposition is one of the most 
vital steps in system development, and is dealt with in 
rnoie detail below. 

5 Detailed requirements spec@ations for  subsystems 
usipig a rapid prototype 

The risks associated with developing each module 
should be considered, and as a result of this, the most 
appropriate process model(s) adopted. If modules can be 
tightly specified at an early stage, then this should be 
carried out using a specification technique such as 
DeMarco’s Structured Data Flow Diagrams.“ 

A rapid prototype of both the hardware and software 
is required for further refinement of the requirements, for 
those modules which cannot be adequately defined. For 
large robots it may be advantageous to also build a 
software or hardware scale model. This is discussed in 
more detail below. In general the rapid prototype will use 
off-the-shelf hardware components, which will probably 
bear little resemblance to a finished production system, 
and will be far from optimum in terms of cost, robustness, 
compactness and performance. 

6 Design and implementation of  a development 
prototype followed by experimental tuning and 
production of a detailed requirements spec@cation 

This stage will build on the experience gained from 
stage 5 and the aim is to build a robot which has the full 
functionality of the final system, but also has additional 
capabilities for tuning and adjustments so that the 
detailed requirements can be finalised. It would be 
expected that many of the hardware and software 
components would be re-usable in the production version. 

7 Design and implementation of the production version 
to meet the detailed requirements dejned in stage 6. 

The final production version is likely to contain more 
highly optimised but less adaptable software, but 
supported by a professional user interface. 

With simpler robots it should be possible to merge steps 
5 and 6. The success of the design of the high-level system 
architecture at stage 5 can be measured by how similar 
it is to the final product at the end of stage 7. For one-off 
or low volume robots the development would cease at 
stage 6. Some specific points from the above steps will 
now be considered in more detail. 

The use of robot models 
There are strong arguments for including models 

throughout the development. These can take the form of 
mathematical models, graphical computer simulations or 
physical scale models. 

Mathematical models are required for the production of 
effective control algorithms, particularly when the robot 
involves complex kinematics or fast moving parts, which 
add a dynamic component to the problem. This was not 
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an important issue with LUCIE as  the excavator arm is 
well damped by the soil when actually digging, and when 
moving in air does not need to be accurately positioned. 
Graphical computer simulations are useful for defining 
basic geometry, evaluating working strategies and, as 
part of the safety analysis, to avoid collisions. Software 
tools of various complexity are now available for both the 
above, but are beyond the scope of this article. 

Hardware scale models are of particular advantage 
when developing large robots, and they should, where 
possible, be designed to be driven by'the same software 
interface as the full-sized prototype. The key benefits are: 

Control software can be tested under laboratory 
conditions. 
In the case of the excavator, trial holes can be easily 
dug and refilled without the need to hire a driver. 

0 There are clear safety advantages compared to testing 
new control software on large and powerful robots. 

0 They provide a good demonstrator to motivate staff, 
provide confidence and encourage further funding. 
They can often be quicker and cheaper to develop than 
equivalent software simulations. 

Fig. 2 shows a fifth-scale model of an excavator arm that 
was used to test control software and develop digging 
strategies in a sand box. This model had a similar electro- 
hydraulic system to the full-scale excavator and was 
controlled through an identical software interface. It is 
important that such models are easily scaleable. In this 
case the same software was successfully used to drive 
both the fifth-scale model and the full-sized excavator- 
it was only required to change the geometry and a few 
control parameters. 

Decomposition of system components 
A logical top-down decomposition of system compo- 

nents is the key to achieving a flexible and easily 

SOFTWA 

maintainable system. (An exception to this can occur 
when using off-the-shelf components which may dictate 
some bottom-up considerations to allow for specific 
interfacing restrictions.) An important software engin- 
eering concept that can help in obtaining a coherent 
decomposition is coupling.5 The degree of coupling is a 
measure of the amount and range of data-flow that occurs 
between system modules. For ease of long-term mainten- 
ance coupling should be minimised. A useful aid for 
identifying the high-level modules is to consider where 
a human would intervene in the system assuming 
hardware or software faults at various stages in the 
system. These interventions normally occur at points 
where coupling is minimised. Fig. 3 illustrates the top- 
level decomposition for the LUCIE excavator together 
with the obvious human interventions in the event of 
system failure. The safety manager occupies a unique 
position in relation to the other modules and so is not 
shown connected at this stage. 

Two of the modules in Fig. 3-the low-level arm 
controller and the activities manager-have been fully 
implemented and the safety manager is currently under 
development. These will be discussed in the following 
sections. 

Low-level arm controller 
The purpose of the low-level arm controller is to take 

movement commands from the activities manager and 
send the appropriate control signals to the electro- 
hydraulic valves. Experiments with the fifth-scale model 
in step 5 revealed the desirability of a dual control 
strategy which is closely reflected in the human approach 
to digging: 

0 When moving in air (i.e. tipping the spoil and 
positioning the bucket 1 eeth) a positional controller is 
required. The commands from the activities manager 
thus instruct the bucket to move to specific x,y,z co- 

I conventional l I setting-out I 1 
-> safety manager 

and movement controller hidden cable detector 

I I observer looks 
for cables 

Fig. 3 Top-level 
decomposition with 
points of human 
intervention 
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ordinates in space. Angle sensors were placed on the 
arm joints to provide closed-loop control. 

a When moving in soil a velocity controller is required. 
The commands from the activities manager instruct 
the tip of the bucket teeth to comply with a particular 
velocity vector (i.e. speed and direction). This strategy 
accepts the fact that movement in the ground needs to 
be highly adaptive as ground conditions change, and 
that there is little likelihood of reaching a specific point 
via a predetermined path. Error feedback is used by 
the activities manager to modify the velocity command 
in order to optimise performance. Thus if the exca- 
vator cannot achieve the demanded velocity because 
the ground is too hard, the activities manager will 
direct the low-level controller to attempt a shallower 
dig where the ground is ex)ected to be softer. This 
approach has proved very effective in providing 
pseudo-force feedback without the need of additional 
force sensors. 

The low-level arm controller is currently implemented 
in ‘(2. 

Development prototype of the 
activities manager 

Of the above high-level modules, it is most difficult to 
provide an early detailed requirements specification for 
the activities manager. The activities manager is the 
module that directs the digging process and has 
knowledge of the tactics required for efficient operation. 
The knowledge required by the developers was obtained 
by observing human operators, theoretical studies and 
trial and error experimentation. This section describes 
how the module was tackled at the development 
prototype stage (step 6). 

Because the requirements for the activities manager 
are not completely defined it is necessary to prototype the 
control software. The prototyping process helps to 
identify and clarify the requirements specification of the 
control software. 

To help the prototyping of the activities manager a 
design platform concept was used. The design platform 
allows the developers to try out and modify ideas, as well 
as reacting swiftly to requirements changes in other 
system components. 

Design platform concept 
The aim of the design platform is to provide maximum 

flexibility without compromising on maintainability. 
Maintainability is essential not only because of the 
potentially fast and possibly radical prototyping process, 
but also because of the unstable nature of developing the 
system using students. The purpose is to produce a 
detailed and static specification of the activities manager 
module. This specification is then used to produce an 
optimised and well engineered software solution. 

In order to construct a design platform, it is necessary 

to have at least a basic understanding of the robotic 
system and the high-level goals of the control software. 
Most useful intelligent robots will be finite state 
machines. These are systems which are in one or other 
particular state of activity depending on the stimuli 
received. These stimuli can be as  a result of signals from 
sensors, timers, switches or work instructions from a 
higher level program. The stimuli trigger the switch from 
one state to another. Fig. 4 shows a state transition 
diagram for ‘digging within reach’. The words inside the 
boxes describe particular states and the words in italics 
outside the boxes indicate the stimuli that triggers the 
transition from one state to another. 

The digger can only be in one state at any one time and 
the process is performed by moving from a completed 
state to the next state. If implemented with care, the finite 
state machine approach provides both flexibility and 
maintainability. Flexibility comes from the ease of adding 
new states to the finite state machine. The maintain- 
ability comes from the inherent modular structure of the 
finite state machine. Running one state at a time improves 
the performance of the whole system. 

An interesting question arises as to ‘where is the 
intelligence in such a system?’. Briefly, it lies in the 
algorithms that control the particular states, the sequence 
of states and the rules that control the transition between 
the states. This combination enables the system to adopt 
appropriate behaviour in an unstructured environment. 

The next step is to identify key design features, 
around which to build the design platform. In the case 
of the activities manager these were: a real-time com- 
ponent, a non-real-time component, a means of applying 
knowledge and a control structure to model the phases of 
the digging process. These design features have to be 
merged with flexibility and maintainability character- 
istics to produce a design platform. 

Features of the activities manager3 design platform 
The use of a high-level programming language is 

important, and the language used to implement the 
activities manager is Ada. This provides a modular 
approach, information hiding and meaningful data 
structures, which are all necessary for a maintainable 
system. 

The activities manager involves a real-time component 
which was one of the critical design issues. A trade off 
exists between on the one hand maintainability and 
flexibility, and on the other hand real-time performance. 
The strict real-time option in Ada is called tasking, but 
this was rejected primarily because its complexity makes 
it unsuitable for a flexible, rapid prototyping process. 
Instead, simplicity, efficiency and a fast processor were 
used to provide an ‘as fast as possible’ solution. This 
solution does not compromise the high flexibility and 
maintainability characteristics of the system. 

The next problem was how to embed knowledge in the 
activities manager. A well known technique is to use a 
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vibrating bucket 

Fig. 4 State transition 
diagram for ‘digging 
within reach‘ 

production system. This consists of three components: 

A list of rules of the form: IF (condition true) THEN 
(perform action). Currently about 30 rules are used for 
a single digging cycle. 

0 A working memory containing the current value of all 
system data. Much of this data emanates from the low- 
level arm controller and can be considered to be 
displayed on a blackboard for use by any of the 
programme modules. The use of a blackboard is a 
well known technique for communicating between 
asynchronous processes which may be running on 
different processors and perhaps written in different 
computer languages. A particular section of memory 
can be allocated to hold the blackboard data. 

0 An inference engine which cycles through the rules, 
checks the conditions and instigates actions. 

With complex systems this can result in having to check 
hundreds of rules at each cycle, and this can be a penalty 
in real-time systems. The solution was to place a separate 
production system in each of the states. In order to 
maintain performance, the production systems were kept 
small and efficient. If a production system became too big, 
the state was split into two or more substates. Each state 
is implemented as an Ada procedure with a ‘while’ loop 
forming the basis of the inference engine. When a 
transition state is reached the next desired state is 

transmitted to the working memory. If the most 
important and most likely rules are given the opportunity 
to fire first, then each iteration of the production system 
rules is performance optimised. The addition, modifi- 
cation and deletion of the rule is simple and therefore 
provides a flexible and maintainable knowledge base. 

The production systems need data in order to work. 
The data structures required must be flexible and 
meaningful, in ordler to be maintainable. The data 
structures provided by high-level languages such as Ada 
are ideal for this purpose, as they provide flexibility, 
information hiding, logical structuring and meaningful 
naming. Two examples of abstract data types used are 
firstly that which contains the current state information 
as displayed on the blackboard: 

type StateTableType is 
record 

TiltAngle:integer:=O; 
BucketAngle:integer:=O; 
xError:inte,ger:=O; 
yError:inte,ger:=O; 
VirtualPosition:Location:= (O,O,O); 
RealPositio n:Location:=(O,O,O); 

end record 

Secondly the following data structure contains the 
commands which are issued to the low level controller: 
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type CommandType is 
record 

Velocity:Vector:=(O,O); 
Position:Location:=(O,O,O); 
BucketAngle:integer:=O; 

end record; 

Another feature of the design platform was the removal 
of all constants from the source code. Constants are 
inflexible and were therefore replaced by variables which 
can be changed, as required by the prototyping process, 
without having to recompile the source code. The 
‘variable constants’ can be changed by using a user 
interface, to edit external files. These configuration files 
contain the values that the ‘variable constants’ should 
have. They are read by the activities manager and placed 
into internal data structures. This method provides a 
certain amount of flexibility without having to recompile 
the source code, which is a great advantage in a rapid 
prototyping process. 

The design platform can also be used as a test harness 
by simulating the input and analysing the output. This is 
again achieved by reading input in from external files 
and writing output out to external files. This enabled the 
activities manager to be tested without the digger and 
also before the digger was finished. 

The safety manager 
The concept of a safety manager is currently being 

investigated under the Safe-SAM project which is 
supported by the DTIEPSRC safety-critical systems 
programme.“ Mainstream thinking in safety-related 
systems is to develop a safety case based on making 
systems as deterministic as possible. Rigorous testing, 
static and dynamic analysis andor formal methods can 
be used in an attempt to verify that a system performs 
safely to specification. For the robot excavator, which 
uses a knowledge base to produce adaptive control in 
an unstructured environment, such an approach is not 
realistic and could not be justified on economic grounds. 
For this reason the concept of a safety manager is being 
developed. The safety manager’s role is to be aware of 
objects in the working environment, and to sanction only 
safe behaviour. It will be resident on a separate processor 
and, in biological terms, play the role of a ‘conscience’ to 
the system. Another analogy is a nuclear protection 
system, which is not concerned with the functional 
process of the plant, but has the power to intervene to 
prevent hazards arising. The safety manager is being 
implemented in Pascal using a validated compiler. 

Brief comments on hardware 
Although not the prime purpose of this article, a few 

comments on the hardware environment may be of 
interest. The initial rapid prototype used a single 
powerful RTX2000 processor to run both the activities 
manager and the low-level controller. Both programs 

were written in the language FORTH for which this 
processor is optimised. Off -the-shelf eurocards communi- 
cating via an STE bus were used for the processor and 
supporting sensor and electro-hydraulic valve interface 
cards. These were rack mounted on the roof of the 
excavator, as shown in Fig. 1. Performance was 
satisfactory but the system was bulky, relatively 
expensive and lacked robustness in a high-vibration 
environment. 

For the later development prototype a more 
conventional route is being followed with the use of 
multiple 486 PCs in the ultra-compact PC104 format. So 
far, one PC is being used for navigation and track control, 
one for the activities manager and low-level controller 
and one for the safety manager. Communications 
between the cards is via CAN (controller area network) 
bus. It is the long-term aim to provide all on-board 
sensors with intelligent CAN bus interfaces which will 
significantly reduce wiring. 

Summary and conclusions 
Software development for intelligent robots is difficult 

because it is usually not possible to define the software 
requirements in sufficient detail at the start of the project. 
Prototyping provides a means of refining requirements, 
but this requires a hardware as well as a software 
prototype. Scale models are useful, particularly with 
large robots, and they should be scaleable and capable of 
being driven by the same software as the full-sized robot. 

The development process for the generic class of 
intelligent robots can be described in a series of seven 
steps, which may be reduced to six for simple or one-off 
systems. 

The design platform concept provides the flexibility 
for those modules that need to be changed at the proto- 
type stage. This should be written in a high-level 
language such as Ada, so that it can be easily changed 
and maintained. The use of well known techniques such 
as finite state modelling, production systems and black- 
board architectures can be combined to form an efficient 
and coherent intelligent knowledge-based controller. 
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