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Abstract: Selective logging and smallholder clearing are the dominant drivers of tropical forest 14 

disturbances in Cameroon (CAM). However, they are difficult to monitor accurately by satellite remote 15 

sensing because openings in the canopy can be very small, the vegetation is generally fast-growing, and 16 

cloud cover is common. Norway's International Climate and Forest Initiative (NICFI) provides access to 17 

monthly and biannual collections of 5 m Planet images in the tropics, creating a great opportunity for 18 

mapping tropical forest disturbances. In this paper, we develop a method to monitor monthly small-scale 19 

tropical humid forest disturbances using 2021 Planet NICFI images. First, a cloud mask for each of the 20 

monthly Planet NICFI images was predicted by integrating a cloud cover possibility map with a haze 21 

optimal transformation (HOT) index image. Second, possible monthly forest disturbances were mapped 22 

from a self-referenced Hue_forest (rHue_forest) index image. Finally, an adjusted monthly forest 23 

disturbance map was produced by eliminating many false positives with a spatio-temporal filter. Results 24 

in CAM demonstrated that the method applied to monthly Planet NICFI images was effective in 25 

identifying numerous small-scale tropical forest disturbances that were short-lived, lasting only a few 26 

months. After filtering out new possible forest disturbances in 2021 which did not meet a temporal 27 

permanence criterion based on the monthly images, the adjusted user´s and producer´s accuracies for 28 

CAM were 84.7 ± 2.9% and 61.5 ± 46.4%, respectively (± 95% confidence intervals). Our results provide 29 

much greater spatial detail than forest disturbance methods based on Sentinel-1 and Landsat images. The 30 

adjusted disturbed area of humid forests in CAM was estimated as 1,168 ± 882 km2 in 2021. The 31 

proposed method for monthly mapping of forest disturbance using Planet NICFI images has great 32 
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potential to complement existing forest cover change products and monitor hitherto neglected tropical 33 

forest disturbances due to small-scale clearing. 34 

Keywords: Forest disturbance, Planet NICFI, selective logging, smallholder clearing, Cameroon. 35 

1. Introduction 36 

The world’s tropical forests hold more than half of the global aboveground carbon stocks and 37 

provide immense environmental and economic value, not least through their role in the global carbon 38 

cycle (Baccini et al., 2017). During the past three decades, 17% of the world’s tropical forests were 39 

deforested and 10% degraded at the pantropical scale (Vancutsem et al., 2021), leading to massive 40 

changes in carbon flux and biodiversity losses (Baccini et al., 2017; Gibson et al., 2011). Satellite-derived 41 

monitoring of tropical forest disturbances is needed urgently to support tropical forest conservation and 42 

promote sustainable tropical forest uses (Dong et al., 2012; Hansen et al., 2013; Qin et al., 2019; 43 

Vancutsem et al., 2021; Zhu and Woodcock, 2014). 44 

Satellite sensor images with various spatial resolutions ranging from 10 m to 250 m have been used 45 

widely to map tropical forest disturbances (Bullock et al., 2020; Hethcoat et al., 2019; Reiche et al., 2021; 46 

Tang et al., 2019; Zhang et al., 2019; Zhang et al., 2021). During the past two decades, it is noteworthy 47 

that many ready-to-use remote sensing-based forest cover change products were developed, and they can 48 

be applied to monitor tropical forest disturbances (Table 1). For example, Hansen et al. (2002) developed 49 

the annual MODIS Vegetation Continuous Fields (VCF) product to monitor global tree canopy cover 50 

dynamics since 2001, but its spatial resolution of 250 m is too coarse to provide sufficient spatial detail 51 

(Francini et al., 2020). As solutions, Sexton et al. (2013) and Vancutsem et al. (2021) applied Landsat 52 

images to map 30 m global VCF and forest cover changes every five years. Shimada et al. (2014) used 53 

ALOS/ALOS-2 PALSAR/PALSAR-2, a dual-pole L-band Synthetic Aperture Radar (SAR), during 54 

2007-2010 and 2015-2017 to estimate global forest cover maps with a spatial resolution of 25 m. Hansen 55 

et al. (2013) released an annual 30 m global forest change (GFC) map since 2001. Among the ~30-m 56 

scale products, the GFC product has the outstanding capability to monitor large-scale forest disturbances, 57 

but the annual updating frequency remains too coarse to monitor the sub-annual tropical forest 58 

disturbances (Francini et al., 2020). 59 

To provide near real-time monitoring of tropical forest disturbances, Hansen et al. (2016) developed 60 

a 30 m tropical forest disturbance (loss) alerting system based on all available Landsat images, which 61 
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was released in Global Land Analysis & Discovery (GLAD). Although Landsat has a 16-day revisit 62 

period, the extremely frequent cloud cover in the tropics limits the application of the GLAD forest loss 63 

alerting product (Francini et al., 2020; Zhang et al., 2018; Zhang et al., 2021). Watanabe et al. (2021) 64 

developed a 50 m spatial resolution near real-time forest early warning system in the tropics (JJ-FAST) 65 

by using ALOS-2 PALSAR-2 mosaics during 2019-2022. JJ-FAST can be applied in all weather 66 

conditions by taking advantage of the PALSAR-2, L-band´s capacity to penetrate smoke, clouds and 67 

heavy rain. Moreover, Reiche et al. (2021) developed a 10 m forest disturbance alerting system based on 68 

Sentinel-1 C-band SAR images, with the benefit of penetrating smoke, clouds and rain and a finer spatial 69 

resolution compared to Landsat and PALSAR-2 images. However, Sentinel-1 imagery is heavily affected 70 

by noise pixels and topographic conditions, and it has the challenge of separating accurate noise pixels 71 

from some forest disturbance pixels, particularly for the mono-temporal Sentinel-1 image (Francini et 72 

al., 2020; Hethcoat et al., 2021; Zhao et al., 2022). 73 

Table 1. Summary of global and pantropical forest cover change monitoring products based on various satellite 74 
images. 75 

Name 
Spatial 

resolution 
Updating 
frequency 

Available 
period 

Data 
source 

Spatial 
extent 

Prediction 
model Affiliation Reference 

RADD forest alert 10 m 6-12 days 
Since 
2019 Sentinel-1 

Tropic
s 

Probabilistic 
algorithm 

Wageningen 
University 

Reiche et 
al. (2021) 

GLAD forest loss 
alert 

30 m 16 days 
Since 
2001 Landsat 

Tropic
s 

Machine 
learning 

University 
of Maryland 

Hansen et 
al. (2016) 

Global forest 
change (GFC) 

30 m Annual Since 
2001 

Landsat Global Machine 
learning 

University 
of Maryland 

Hansen et 
al. (2013) 

Global 
Forest/Non-forest 

Map 

25 m Annual 
2007-
2010, 

2015-2017 

ALOS/A
LOS-2 

PALSAR/
PALSAR-

2 

Global 
Segmentatio

n JAXA 
Shimada et 
al. (2014) 

Forest Cover 
Changes in the 
Humid Tropics 

30 m Every 5 
years 

1990-2019 Landsat Tropic
s 

Decision tree European 
Commission 

Vancutsem 
et al. (2021) 

Landsat Vegetation 
Continuous Fields 

30 m 
Every 5 

years 2000-2015 Landsat Global 
Machine 
learning 

University 
of Maryland 

Sexton et 
al. (2013) 

JICA-JAXA Forest 
Early Warning 
System in the 

Tropics (JJ-FAST) 

50 m Annual 2019-2022 
ALOS-2 

PALSAR-
2 

Tropic
s 

Segmentatio
n JAXA 

Watanabe 
et al. (2021) 

MOD44B 
Vegetation 

Continuous Fields 

250 m Annual Since 
2001 

MODIS Global Machine 
learning 

NASA Hansen et 
al. (2002) 

In Cameroon (CAM), one of the six Congo Basin countries, smallholder clearing and selective 76 

logging were the dominant drivers of tropical forest disturbances (Kleinschroth et al., 2019; Laporte et 77 

al., 2007; Tyukavina et al., 2018). Compared with large-scale forest disturbances, selective logging and 78 
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smallholder clearing are more difficult to monitor accurately with most satellite sensor images, due to 79 

small-scale openings within the canopy, fast-growing vegetation and frequent clouds (Asner et al., 2005; 80 

Francini et al., 2020; Hethcoat et al., 2021; Hethcoat et al., 2019; Zhang et al., 2021). Selective logging 81 

roads in the rainforest have an average width of <7 m (Kleinschroth et al., 2019), which is finer than the 82 

pixel size of most satellite sensors, including Landsat, Sentinel-2, PALSAR and Sentinel-1 (Table 1). 83 

Given the narrowness of logging roads, a method utilizing the Normalized Difference Fraction Index 84 

was developed to monitor tropical forest degradation, and it can be used to extract sub-pixel selective 85 

logging from Landsat images (Souza et al., 2005), but the spatial distribution of sub-pixels is yet to be 86 

provided (Zhang et al., 2018). Smallholder clearing and selective logging of tropical forests will be 87 

followed commonly by fast-growing vegetation (e.g., shrubs and trees) within several months. To 88 

monitor accurately the small-scale tropical forest disturbances due to selective logging and smallholder 89 

clearings in CAM, satellite sensor images are required that have both fine spatial and temporal resolutions 90 

(Francini et al., 2020; Kleinschroth et al., 2019). 91 

Very fine spatial resolution (VFR) satellite sensor images, such as Quickbird, IKONOS, Worldview, 92 

RapidEye, SPOT and GaoFen, can be used as alternative data sources to estimate small-scale tropical 93 

forest disturbances (Franke et al., 2012; Souza et al., 2003; Wagner et al., 2019). However, the revisit 94 

period of these VFR satellite sensors is always too coarse to monitor short-term tree canopy openings 95 

caused by smallholder clearing and selective logging (Francini et al., 2020), and the data licenses of these 96 

commercial satellites are expensive. The new PlanetScope CubeSat constellation is composed of more 97 

than 200 Dove satellites and provides four-band multispectral images with a daily revisit time and spatial 98 

resolution of 3 m. Planet is the first satellite system with a unique combination of large coverage, daily 99 

frequency, and meter-level spatial resolution (Cheng et al., 2020; Roy et al., 2021; Wang et al., 2021).  100 

It is noteworthy that Francini et al. (2020) applied firstly the daily 3 m PlanetScope images to map near 101 

real-time forest cover changes from May 2018 to June 2019 in Tuscany, Italy, and indicated that 102 

PlanetScope images were an attractive choice for fine spatio-temporal resolution tropical forest 103 

disturbance mapping. However, the 3 m daily PlanetScope images are not freely available presently at a 104 

large scale and the dense long-term daily fine spatial resolution images require heavy computational 105 

processing. Moreover, the Dove satellites have an off-nadir view angle tolerance of 0-5 degrees, in which 106 

a larger off-nadir view angle would affect the ability to consistently detect a particular small-scale 107 

clearing or a narrow logging road over time. This may limit their potential widespread usage, especially 108 
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for monitoring forest disturbances on a large scale, such as the entire country of CAM.  109 

With the primary objective of reducing and reversing tropical forest disturbances, Norway's 110 

International Climate and Forest Initiative (NICFI) provides access to monthly and biannual collections 111 

of Planet images with a spatial resolution of 4.77 m (~5 m) for the pantropical region. Covering the three 112 

regions of tropical Africa, tropical Americas and tropical Asia, Planet NICFI provides biannual satellite 113 

composite mosaics to users from December 2015 to August 2020 and monthly satellite composite 114 

mosaics after September 2020. Planet NICFI image collections, especially the monthly mosaics, open a 115 

great opportunity for monitoring tropical forest disturbances with meter-level spatial resolution and at 116 

monthly temporal resolution, available in near real-time.  117 

Given the great potential of monthly Planet NICFI images for tropical forest disturbance mapping, 118 

we aim to develop a method to monitor monthly small-scale tropical humid forest disturbances based on 119 

the Planet NICFI images and primary humid forest cover map. The entire CAM, which is a typical area 120 

of selective logging and smallholder clearing in the Congo’s tropical forests (Tyukavina et al., 2018), 121 

was chosen as the study site, and it is expected to use the proposed method to monitor hitherto neglected 122 

humid small-scale forest disturbances dominated by selective logging and smallholder clearing in CAM 123 

during 2021.  124 

2. Study site and dataset 125 

As shown in Fig. 1, the entire CAM, with an area of 475,442 km2, was selected as the study site. 126 

Similar to the other five Congo Basin countries, CAM has a humid and hot climate, particularly in the 127 

south. The rainfall season in CAM is from May to October, with maximum rainfall in July and August, 128 

and the temperature is relatively stable between 22℃ and 25℃. Agricultural smallholder clearing and 129 

industrial selective logging are the top-two dominant drivers of Congo’s tropical forest disturbances 130 

(Kleinschroth et al., 2019; Tyukavina et al., 2018). Specifically, based on the Landsat images during 131 

2001-2014 and stratified sampling method, Tyukavina et al. (2018) found that ~80% of the forest 132 

disturbances in CAM was caused by small-scale forest disturbance, in which smallholder clearing was 133 

the largest driver of forest disturbances and contributed about 58.0 ± 8.0% of the total loss area and the 134 

percentage of selective logging was 21.8 ± 7.9%. By analyzing two widely used humid tropical forest 135 

disturbances based on Landsat images (Hansen et al., 2016) and Sentinel-1 images (Reiche et al., 2021), 136 

we found that there were more forest disturbances during 2021 in CAM than in Gabon and Republic of 137 
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Congo. Thus, CAM was selected as the study site to monitor the representative selective logging and 138 

smallholder clearing of tropical forests.  139 

The proposed method aims to produce a monthly forest disturbance map for CAM in 2021, and it 140 

is based on two types of datasets. Firstly, a primary humid forest cover map in 2020 (Fig. 1(a)) was 141 

generated using the humid tropical forest cover map in 2001 (Turubanova et al., 2018), annual forest loss 142 

map during 2001-2020 in GFC product (Hansen et al., 2013), RADD Sentinel-1 forest disturbances map 143 

during 2019-2020 (Reiche et al., 2021), Landsat tree canopy height in 2020 (Potapov et al., 2021) and 144 

Sentinel-2 land cover map in 2020 (Zanaga et al., 2021). It is noteworthy that the minimum disturbance 145 

patch size detection thresholds used for the GFC product and RADD Sentinel-1 forest disturbances map 146 

are 0.5 ha (~6 pixels of 30 m×30 m) and 0.2 ha (20 pixels of 10 m×10 m), respectively (Hansen et al., 147 

2013; Reiche et al., 2021). Detailed processing of the primary humid forest cover map will be described 148 

in section 3.2.1. 149 

 150 
Fig. 1. Humid tropical forest cover map, Planet NICFI images, reference validation points and annual precipitation 151 
for the study site of CAM. (a) Primary humid tropical forest cover map in 2020; (b) Planet NICFI RGB true colour 152 
image in December 2021 and 1400 reference random validation samples (see Table 2); (c) 1000 m spatial resolution 153 
annual precipitation based on monthly precipitation during 2007-2019. 154 

Secondly, monthly four-band Planet NICFI mosaic images around 2021 were used as input data, as 155 

illustrated in Fig. 1(b). These monthly Planet basemaps were preprocessed by NICFI in Google Earth 156 

Engine (GEE) platform, with the spatial resolution unified to 5 m, and they are freely available via 157 

https://www.planet.com/nicfi/ after registration. The Planet NICFI mosaic image includes four bands of 158 
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blue, green, red and near-infrared, in which the bit depth of each band is 16 bits, and the pixel values of 159 

each band were converted to surface reflectance. The Planet NICFI mosaics were composed of images 160 

from hundreds of different Dove/Superdove satellite sensors. To amalgamate different sensors into the 161 

mosaic, normalization and harmonization operations are required to intercalibrate the differences 162 

between the sensors. Moreover, a standard scene selection algorithm and co-registration with many 163 

ground control points (GCPs) were used for the Planet NICFI mosaics to provide acceptable geolocation 164 

error. More detailed information about Planet NICFI mosaic images can be found in 165 

https://assets.planet.com/docs/NICFI_Basemap_Spec_Addendum.pdf. 166 

Following Francini et al. (2020), we used the stratified random sampling method to validate the 167 

monthly forest disturbance maps produced by the proposed method in CAM (Cochran, 1977; Stehman, 168 

2014). The monthly forest disturbance map is produced with a spectral index, and the detailed processing 169 

will be described in the later section 3.2. As shown in Table 2, 14 strata, including a total of 1400 170 

validation sample points extracted from the primary humid forest cover map and monthly forest 171 

disturbance map, were used in the stratified random sampling, in which two of the strata belong to the 172 

category of “non-forest disturbances” and the others are in the category of “monthly forest disturbances”. 173 

Due to the monthly adjusted forest disturbance map in 2021 were produced based on the primary humid 174 

forest cover map in 2020, the strata of “stable humid forest” and “other land covers” were used together 175 

with the stratum of “forest disturbance at ti” (ti means Jan. to Dec. in 2021. The sample size of 400 was 176 

allocated to the strata of “stable humid forest” and “other land covers”, respectively, while the sample 177 

size of 50 was allocated to the stratum of “forest disturbance at ti” for each of the months in 2021. The 178 

stratum label of each sample point is determined by the stratum associated with the stratification layer in 179 

which the sample point is located. Specifically, the time-series monthly Planet NICFI images were used 180 

for the determination process based on visual interpretation. The sampling unit (spatial size) refers to the 181 

5 m × 5 m Planet image pixel. To decrease the uncertainty of visual interpretation, three experienced 182 

interpreters interpreted visually the reference class of each sample unit with the help of time-series 183 

monthly Planet NICFI images and very fine spatial resolution (e.g., 0.5 m) Google Earth images 184 

(McRoberts et al., 2018), and the disagreement frequency among them was 32.43%. It is noted that the 185 

latest (circa 2022) Google Earth images contain finer spatial resolution tree canopy cover information 186 

than the 5 m Planet NICFI images, and they can be used to determine whether a sample belongs to stable 187 

humid forest or other land covers. Finally, the majority reference class predicted visually among the three 188 
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interpreters was used as the reference. 189 

Table. 2. Summary of the strata used to validate the possible and adjusted monthly forest disturbance maps. 190 

Category Stratum Sample size Stratum size (pixels) Source 

Non-forest 

disturbances 

Other land 

covers 
400 0.79×1010 

Primary humid forest 

cover map & adjusted 

monthly forest 

disturbance map 

Stable humid 

forest 
400 

0.72×1010 

Monthly forest 

disturbances 

Jan. 50 3.53×106 

adjusted monthly forest 

disturbance map 

Feb. 50 5.99×106 

Mar. 50 8.83×106 

Apr. 50 6.81×106 

May 50 2.29×106 

Jun. 50 0.72×106 

Jul. 50 0.17×106 

Aug. 50 0.38×106 

Sep. 50 1.43×106 

Oct. 50 1.07×106 

Nov. 50 1.26×106 

Dec. 50 1.42×106 

3. Methodology 191 

The proposed method comprises three main steps as shown in Fig. 2: 1) predict a cloud mask for 192 

each of the monthly Planet images by integrating the cloud cover possibility map and haze optimal 193 

transformation (HOT) index map; 2) produce a possible monthly forest disturbance map from the self-194 

referenced Hue_forest (rHue_forest) index based on the cloud-masked Planet images and primary humid 195 

forest cover map; 3) produce an adjusted monthly forest disturbance map by eliminating false positives 196 

with a spatio-temporal filter, which requires at least three out of five consecutive observations (one before 197 

the present observation and three after the present) to confirm each of the possible disturbances at present. 198 

Step 1 is used to mask the cloud in the monthly Planet images, which are used as one of the input data 199 

of step 2 to produce the possible monthly forest disturbance map, and step 3 is used to produce the 200 

adjusted monthly forest disturbance map by eliminating many false positives.  201 
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 202 

Fig. 2. The proposed methodology. 203 

3.1 Cloud masking of monthly Planet NICFI images 204 

Due to the lack of SWIR bands, cloud estimation for the four-band (e.g., Blue, green, red and Nir) 205 

satellite sensor images is always a challenging task for Planet imagery. The usable data mask 206 

(UDM/UDM2) layer developed by the Planet team was used to remove cloud and cloud shadow pixels 207 

during the generation of the monthly Planet NICFI composite images, but many clouds still remain 208 

(Frazier and Hemingway, 2021; Pascual et al., 2022). Our research used two methods to predict any 209 

clouds in the monthly Planet NICFI images. For each of the monthly Planet images, the random forests 210 

(RF) machine learning method developed by Breiman (2001) was applied first to produce a cloud cover 211 

possibility map (Pal, 2005). In general, we could collect training samples from each of the monthly Planet 212 

NICFI images, but this would be time-consuming for the study site of CAM. Considering that cloud 213 

cover is expected to produce higher reflectance than the other land covers, the maximal composite Planet 214 

images from January to December 2021 can, thus, identify most of the clouds in the monthly images. 215 

We, therefore, collected cloud and non-cloud sample pixels by visual interpretation, which were used in 216 

the RF model to establish the cloud cover possibility map for monthly Planet NICIF images, and 217 

threshold values ranging from 20% to 40% were used to predict the cloud masks of different seasons. 218 

Besides the above cloud cover possibility maps, the cloud index of “haze optimal transformation 219 

(HOT)” was also used here to create the cloud mask (Zhang et al., 2002), and it is expressed as 220 
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2

(blue) (red)
HOT = 

1

a b

a

   


,                         (1) 221 

where (blue)  and (red)  are the spectral reflectance values of bands 2 and 3 in the Planet image, 222 

and the parameters a and b refer to the slope and intercept of the clear-sky line. The clear-sky line is a 223 

linear regression adjusted in some attribute space of pixels captured under a clear sky with no cloud, 224 

cloud shadow and haze, in which the axes of this attribute space are the spectral reflectance values of the 225 

blue and red bands. We used the maximal composite Planet image to predict the slope and intercept. With 226 

the slope and intercept estimates, HOT index images were predicted for each of the monthly Planet 227 

images, and threshold values ranging from 0.016 to 0.028 were used to predict the cloud masks. The 228 

optimal HOT threshold value for each monthly Planet NICFI image was chosen by comparing cloud 229 

masking performance using threshold values ranging from 0.004 to 0.04 with an interval of 0.04. 230 

3.2 Possible and adjusted monthly forest disturbance mapping 231 

3.2.1 Primary humid forest cover map in 2020 232 

Primary humid forests contain the greatest terrestrial ecosystem biodiversity compared to many 233 

other forests (Betts et al., 2017; Hansen et al., 2016). In general, it is difficult to map directly the spatial 234 

extent of primary humid forest cover using satellite sensor images, as the spectral and spatial features of 235 

primary humid forests are similar to those of many other forests. It is noteworthy that Turubanova et al. 236 

(2018) developed a baseline map of primary humid tropical forests in 2001. In this research, the annual 237 

forest loss map during 2001-2020 in the GFC product developed by Hansen et al. (2013), Sentinel-1 238 

forest disturbance map during 2019-2020 developed by Reiche et al. (2021), Landsat tree canopy height 239 

in 2020 (Potapov et al., 2021) and Sentinel-2 land cover map in 2020 (Zanaga et al., 2021) were used to 240 

predict the spatio-temporal dynamic of forest cover before 2021. To produce the primary humid forest 241 

binary map in 2020, all the forest pixels marked as forest disturbance pixels in the GFC and Sentinel-1 242 

forest disturbance maps before 2021 and the non-forest covers in the Sentinel-2 land cover map in 2020 243 

were excluded in the baseline map. According to the report presented by Turubanova et al. (2018), the 244 

average height of primary humid forest in the Democratic Republic of the Congo (DRC) ranged from 15 245 

m to 29 m. Therefore, as CAM and DRC are both Congo Basin countries, the minimal average height of 246 

15 m was, thus, applied to the Landsat tree canopy height in 2020 to exclude many non-humid forests in 247 

the baseline map. 248 
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3.2.2 Self-referenced Hue_forest (rHue_forest) index 249 

Although most of the clouds can be removed using the above cloud cover possibility maps and HOT 250 

index images, some small-scale clouds will remain. It is noteworthy that Francini et al. (2020) have 251 

illustrated firstly the superiority of the Hue index in near real-time forest disturbance detection with 252 

PlanetScope images. The Hue index has the advantage of being robust to clouds and cloud shadows, with 253 

small values for clouds and cloud shadows pixels, but large values for forest cleared pixels (Francini et 254 

al., 2020). The Hue index (https://www.indexdatabase.de/db/i-single.php?id=34) is expressed as, 255 

2 (red) (green) (blue)
Hue = ( (green) (blue))

30.5
arctg

         
 

           (2) 256 

where (red)  , (green)   and (blue)   are the spectral reflectance values of bands 3, 2 and 1 of 257 

PlanetScope image, respectively. The Hue index is based on the arctangent function, and its value is in 258 

the range of [-π/2, π/2]. In this research, we focused on the Hue pixels within the primary humid forest 259 

cover map in 2020, expressed as, 260 

Hue_forest   if _ 1 
Hue_forest = 

0                  if _ 0

Map forest

Map forest


 

                 (3) 261 

where Map_forest is the primary humid forest binary map in 2020, and Hue_forest is the Hue index 262 

image for the primary humid forest pixels. 263 

Small values of Hue_forest may be caused by illumination geometries, atmospheric conditions and 264 

seasonal phenological changes, which may potentially be confused with the signal of interest relating to 265 

small-scale openings. A focal operation for noise removal was, thus, applied to the Hue_forest index to 266 

enhance the spectral signal of small-scale forest disturbances (Langner et al., 2018; Zhang et al., 2021), 267 

expressed as, 268 

*rHue_forest  = Hue_forest Hue_forest( ,  )median r ,                   (4) 269 

*
*

*

1   if rHue_forest  > 1 
rHue_forest  = 

0   if rHue_forest  < 0





                      (5) 270 

*rHue_forest     if -0.1 Hue_forest 0.3 

rHue_forest = 0.3                  if Hue_forest 0.3

0                     if Hue_forest<-0.1 

  
 



,                (6) 271 

in which Hue_forest(median, r) is the median filtered image of the original Hue_forest index map, 272 

produced using a circular moving kernel median filter with a radius of r, which is always set in the range 273 

200-400 m. In this research, the radius r is 300 m. rHue_forest* in Eq. (4) is in the range -1 to 1, and any 274 
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negative values in it are reassigned to 0 and any values larger than 1 are set as 1 by using Eq. (5). In 275 

general, the rHue_forest* index works well for indicating forest disturbances when the maximal width of 276 

the opening in tropical forests is smaller than twice the radius of the kernel median filter (Langner et al., 277 

2018). However, some large-scale tropical forest disturbance areas may remain in real the situation. Eq. 278 

(6) was, thus, used here to constrain the rHue_forest index to a large value of 0.3 if the Hue index was 279 

larger than an empirical value of 0.3. Meanwhile, in Eq. (6), rHue_forest was assigned a small value of 280 

0 if the Hue index was smaller than an empirical value of -0.1, as a very small Hue value (e.g., <-0.1) 281 

often indicates a closed forest. 282 

3.2.3 Possible monthly forest disturbance mapping 283 

Forest disturbance in this research is denoted as openings in the tree canopy, predicted by an increase 284 

of rHue value for the pixel of primary humid forest cover, in which the original rHue value of the forested 285 

pixel approximates 0. By iterating over the above monthly rHue_forest images from January to December, 286 

if a pixel value in the rHue_forest index image was larger than T (a threshold parameter), it was regarded 287 

as possible forest disturbance; and the first month (m) with the rHue_forest index value larger than T was 288 

identified as the forest disturbance time. Meanwhile, the rHue_forest value of pixel i at the most recent 289 

month before the observation year (e.g., 2021 in this study) should be less than T, to guarantee that the 290 

pixel has not been regarded as forest disturbance before the observation period. The monthly forest 291 

disturbance mapping process for pixel i is expressed as Eq. (6), 292 

 1, 2, ,12     if rHue_forest( , )
Fdt( , ) = 

0                            otherwise

  



m m i T
i first


,                (7) 293 

in which Fdt(i, first) means the first possible forest disturbance time of pixel i and rHue_forest(m, i) is 294 

the value of rHue_forest index for pixel i at the mth month in 2021. 295 

3.2.4 Adjusted monthly forest disturbance mapping with spatio-temporal filter 296 

The above possible monthly forest disturbance map may contain some false positives caused by 297 

remaining clouds, registration errors and spectral outliers in the time-series Planet NICFI images. 298 

Moreover, for the identification of the first month of a disturbance, if it is a very small temporal change 299 

in rHue_forest (from slightly below T to slightly above T) compared to the previous, the disturbance 300 

could be a false positive. Generally, false positives are always ephemeral and exist within a short period, 301 

but the areas caused by real forest disturbances will present continuously as bare land for several months 302 

(e.g., three months). Based on this principle, as shown in Fig. 3, we developed a spatio-temporal filter to 303 
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eliminate false positives for the adjusted monthly forest disturbance map, expressed as: 304 

 1, 2, ,12     if rHue_forest( , ) & Fre( ) 3
F̂dt( , ) = 

0                            otherwise

   



m m i T i
i first ,          (8) 305 

Fre( ) = ( , )
m P

i Dis m i

 ,                                (9) 306 

1,   rHue_forest( , ) 3( , )
0,   otherwise

Tm i
Dis m i

  


,                        (10) 307 

where Fre(i) is the frequency of pixel i regarded as forest disturbance within the period of P months, after 308 

the month of possible first detection. The observation period P ranges from the m-1th to m+3th month, 309 

and this means there should be one month Planet image before the mth month and three months Planet 310 

images after the mth month. Dis(m, i) is a binary function and refers to 1 if the rHue_forest index value 311 

of pixel i in mth month is larger than T/3, otherwise, it is 0. Different from using threshold value T to track 312 

the first forest disturbance time in Eq. (7), a smaller threshold value (e.g., T/3) used in Eq. (10) can record 313 

more unique information before and after the forest disturbance. To provide a balance between false 314 

positives and false negatives for the detected disturbances, we chose a threshold of T = 0.09 in this 315 

research. See section 4.3 for support of this choice. Based on the spatio-temporal filter in Eqs. (9)-(10), 316 

the adjusted forest disturbance time of pixel i can, thus, be predicted, which means that if the rHue_forest 317 

index value of the humid forest pixel is larger than T and the disturbing frequency is larger than 3, the 318 

first disturbing time is real, otherwise, it is a false positive. It is noteworthy that if the disturbing 319 

frequency threshold is 1, the adjusted monthly forest disturbance map would be the same as the possible 320 

monthly forest disturbance map in section 3.2.2. Finally, the forest disturbance patches, which are 321 

composed of less than 7 pixels within a neighborhood window size of 15 pixels × 15 pixels, will be 322 

regarded as noise and deleted in the postprocessing of the possible and adjusted monthly forest 323 

disturbance maps. 324 
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 325 

Fig. 3. Illustration of using the spatio-temporal filter to estimate the adjusted monthly forest disturbance map. 326 

3.3 Comparison, area and accuracy estimators 327 

To provide a comprehensive validation of the performance of the proposed method based on Planet 328 

NICFI images, as listed in Table 1, two near real-time tropical forest disturbance maps based on RADD 329 

Sentinel-1 (Reiche et al., 2021) and GLAD Landsat (Hansen et al., 2016) were used as comparisons. 330 

Simultaneously, the forest loss map in the GFC product (Hansen et al., 2013), which can only provide 331 

the forest disturbing time annually, was also used as the comparison here. As the three forest disturbance 332 

maps have spatial resolutions (10 m and 30 m) coarser than the Planet images, they are used mainly for 333 

comparison of spatial distributions (i.e., visual comparison) with the monthly forest disturbance map. 334 

For the area and accuracy assessments of the possible monthly forest disturbance map (section 3.2.3) 335 

and adjusted monthly forest disturbance map (section 3.2.4) in CAM, the area proportion for the 336 

reference classes, and the producer’s accuracy and user’s accuracy of the map classes, were used. Assume 337 

that the region of interest (i.e., the population) is partitioned into H strata with N pixels, *
hN  is the size 338 

of each stratum h ( h H  ). Based on the stratified random sampling, *
hn   sample units are selected 339 

randomly from the *
hN  pixels of stratum h. It is noteworthy that the stratum label is extracted from a 340 

map that may be different from the map being assessed, and the method, which estimates area and 341 

accuracy using indicator functions, described by Stehman (2014) was then applied here. Firstly, the 342 

stratified estimator of the proportion of area of class k based on the indicator function can be expressed 343 

as: 344 
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*

1

1
ˆ

H
A k
k h h

h

p N y
N 

  ,                               (11) 345 

*

*

1

/
hn

k k
h u h

u

y y n


 ,                               (12) 346 

 
1,  if pixel  is reference class 

0,  otherwise
k
u

u k
y


,                      (13) 347 

in which ˆ A
kp  is the proportion of area of class k, k

uy  is a binary element of class k within *
hn  samples 348 

of stratum h, and k
hy  is the sample mean of the k

uy  values that have the reference class k in stratum h. 349 

An estimator of the standard error of ˆ A
kp  is 350 

*2 * * *
2

1

1
ˆ ) (1 / ) ( ) /

H
A k
k h h h h h

h

SE(p N n N Var y n
N 

  ,                    (14) 351 

where ˆ )A
kSE(p  is the standard error and ( )k

hVar y  is the variance of k
uy  values of all samples that 352 

have the reference class k in stratum h. 353 

Secondary, the stratified estimator of producer’s accuracy and user’s accuracy of class k based on 354 

two indicator functions can be expressed as the ratio ˆ
kR : 355 

*

1

*

1

ˆ

H
k

h h
h

k H
k

h h
h

N y
R

N x









.                                 (15) 356 

where k
hy  and k

hx  are the sample mean of the k
uy  and k

ux  values, which are based on two indicator 357 

functions. Similar to equations (12) and (13), k
hy   is the sample mean of the k

uy   values (indicator 358 

function) that have the same reference and map class k (i.e., correctly classified as class k) in stratum h. 359 

If ˆ
kR  refers to the producer’s accuracy, the k

hx  is the sample mean of the k
ux  that have reference 360 

class k in stratum h. By contrast, if ˆ
kR  refers to the user’s accuracy, the k

hx  is the sample mean of the 361 

k
ux that have map class k in stratum h. An estimator of the standard error of ˆ

kR  is 362 

*2 * * 2 *

2
1

1ˆ ˆ ˆ) (1 / )( ( ) ( ) 2 ( , )) /
ˆ

H
k k k k

k h h h h k h k h h h
h

SE( R N n N Var y R Var x R Cv y x n
X 

    ,      (16) 363 

*

1

ˆ
H

k
h h

h

X N x


 ,                               (17) 364 
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Where ˆ )kSE( R   is the standard error of producer’s accuracy or user’s accuracy, ( )k
hVar y   is the 365 

variance of k
uy   values that have the same reference and map class k in stratum h, ( )k

hVar x   is the 366 

variance of k
ux  values that have reference class k in stratum h if it is used for producer’s accuracy and 367 

that have map class k for user’s accuracy, ( , )k k
h hCv y x  is the covariance between k

ux  and k
uy . 368 

To provide approximate 95% confidence intervals for the area proportion, producer’s accuracy and 369 

user’s accuracy, ˆ ˆ1.96 ( )SE     was used here, where ̂  is the target parameter to be estimate and SE 370 

is the standard error of the estimate (Francini et al., 2020; Olofsson et al., 2014). 371 

4. Results 372 

4.1 Possible and adjusted monthly forest disturbance maps 373 

The possible and adjusted monthly forest disturbance maps in CAM are shown in Fig. 4, and five 374 

zoomed areas are used to illustrate the spatial detail of the small-scale forest disturbances predicted by 375 

selective logging and smallholder clearing. Forest disturbances distribute widely across the humid forests 376 

in CAM, and many are along the boundaries of humid forests. Figs. 4(b1)-(b2) and Figs. 4(c1)-(c2) are 377 

two typical examples of forest disturbances caused by selective logging, and the forest logging roads 378 

form complex networks, in which the long main logging roads are wider than many of the short logging 379 

roads along them (see Figs. 4(b11)-(b21)). Moreover, it is interesting, although not unexpected, to find 380 

that there are many small-scale forest disturbances along both sides of the logging roads. Figs. 4(d1)-(d2) 381 

and Figs. 4(e1)-(e2) are two typical examples of smallholder clearing and Figs. 4(f1)-(f2) are used to 382 

show a mixture of selective logging and smallholder clearing. Many of the forest disturbances caused by 383 

smallholder clearing hold spatial sizes larger than the small-scale forest disturbances along the selective 384 

logging roads (see Figs. 4(d11)-(d21)). In all the zoomed areas, it is obvious to find that possible forest 385 

disturbances are much more than the adjusted forest disturbances, such as wider selective logging roads, 386 

more smallholder clearings and larger spatial extents. 387 
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 388 
Fig. 4. Possible and adjusted 5 m monthly forest disturbance maps of CAM in 2021 produced by the proposed 389 
method. (a) Adjusted monthly forest disturbance map of CAM in 2021; (b1)-(b2) Subset possible and adjusted forest 390 
disturbance maps caused by selective logging for location box ‘b’ in (a); (c1)-(c2) Selective logging; (d1)-(d2) 391 
Smallholder clearing; (e1)-(e2) Smallholder clearing; (f1)-(f2) A mixture of selective logging and smallholder 392 
clearing; (b11)-(b21) and (d11)-(d21) Zoomed areas in (b1)-(b2) and (d1)-(d2) and the time-series bimonthly Planet 393 
NICFI image. 394 

The last two rows beginning at Fig. 4(b11) and Fig. 4(d11) illustrate the logging and recovery 395 

process of small-scale forest disturbances caused by selective logging and smallholder clearing, 396 

respectively. By matching the monthly forest disturbance maps with the bimonthly Planet RGB images, 397 

the expansion of logging roads and small-scale forest disturbances from February to December in the 398 

two subsites can be seen clearly. On the other hand, it can also be seen that many forest disturbances 399 

were covered again by vegetation within two-to-four months if they were abandoned after disturbance. 400 

The smaller the spatial size of forest disturbances areas, the quicker the recovery process, and this 401 

indicates that it is necessary for satellite sensor images to monitor selective logging and smallholder 402 

clearing within two-to-four months after disturbance, otherwise, the vegetation growth in the forest 403 

disturbance areas may reduce the satellite spectral signals of openings of the tree canopy (Francini et al., 404 

2020). 405 
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4.2 Comparison to other forest disturbance maps 406 

As shown in Fig. 5, the RADD Sentinel-1 alert can detect and monitor many forest disturbances 407 

(particularly in the black ovals of zoomed area ‘c’), but it also gives the visual impression of having been 408 

smoothed by a majority filter, causing narrow logging roads to break into pieces and causing shrinkage 409 

of small-holder clearing patches, particularly in the black ovals of zoomed area ‘e’. This may be because 410 

the accuracy decreases for detection of disturbance patches smaller than 0.2 hectares (i.e., 20 pixels) 411 

Reiche et al. (2021). Compared with the results of Sentinel-1, many selective logging and smallholder 412 

clearing events were missed in the results of GLAD and GFC based on Landsat images, although the 413 

GFC Landsat results are preferable to the GLAD Landsat results. However, for the possible and adjusted 414 

monthly forest disturbance maps based on Planet images, more forest disturbances and spatial details of 415 

selective logging and smallholder clearing are identified clearly, which are more matched to the logging 416 

roads and small-scale bareland in the monthly Planet RGB images in December (the last column in Fig. 417 

5). Compared with the NICFI Planet possible forest disturbances, many false positives were eliminated 418 

in the adjusted forest disturbances, but many real forest disturbances were also removed, as is clear from 419 

the visual comparison to the Planet RGB images as references. The proposed method based on Planet 420 

images can monitor many narrow logging roads and small-scale forest disturbances along the logging 421 

roads, and the spatial extension process of smallholder clearing from a central point to its vicinity is also 422 

predicted. This indicates the superiority of monthly Planet NICFI images in predicting the spatial and 423 

temporal dynamics of small-scale forest disturbances. 424 



 19 / 30 
 

 425 
Fig. 5. Comparison of the monthly forest disturbance maps produced from the Planet NICFI, RADD Sentinel-1 alert, 426 
GLAD Landsat alert and GFC product for the five zoomed areas in Fig. 4. 427 

To provide a comprehensive comparison of the spatial distribution of forest disturbance maps 428 

extracted by the different methods, four 1 km spatial resolution proportional forest disturbance maps for 429 

CAM in 2021 are shown in Fig. 6. All the coarse spatial resolution proportional maps were predicted by 430 

spatially averaging the different fine spatial resolution forest disturbance maps. The GLAD Landsat 431 

proportional forest disturbance map has the least spatial extent of forest disturbances (see Fig. 6(d)), and 432 

there is an improvement for the GFC proportional forest disturbance map (see Fig. 6(e)). In the RADD 433 

Sentinel-1 proportional forest disturbance map, the spatial extent of forest disturbance is much more 434 

widely seen across CAM than those of GLAD and GFC based on Landsat images (see Fig. 6(c)). As 435 
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shown in Fig. 6(a), the proportional possible forest disturbance map produced by the proposed method 436 

has the greatest spatial extent of forest disturbance, especially in the west coast areas with frequent clouds, 437 

as it includes many false positives of forest disturbances caused by remaining clouds. In the proportional 438 

adjusted forest disturbance map of Fig. 6(b), many false positives were eliminated, and most of the forest 439 

disturbance hot spots (e.g., proportional value >0.2) match well with the those of RADD Sentinel-1 (Fig. 440 

4(c)) and GFC Landsat (Fig. 4(e)). 441 

 442 
Fig. 6. Comparison of proportion of 1 x 1 km cells with forest disturbances occurring in 2021, by different methods 443 
and sensors. (a) Planet NICFI proportional possible forest disturbance map; (b) Planet NICFI proportional adjusted 444 
forest disturbance map; (c) RADD Sentinel-1 proportional forest disturbance map; (d) GLAD Landsat proportional 445 
forest disturbance map; (e) GFC Landsat proportional forest disturbance map. 446 

Based on the stratified estimator of the proportion of area shown in equations (10)-(13), the total 447 

adjusted forest disturbance area from January to December was estimated as 1,168 ± 882 km2 for CAM 448 

in 2021. As listed in Table 3, the possible monthly forest disturbance from January to December has the 449 

best producer’s accuracy of 96.85 ± 2.65% but the least user’s accuracy of 21.37 ± 16.91%, which means 450 

it has many commission errors (false positives). By contrast, the adjusted monthly forest disturbance map 451 

has the best user’s accuracy of 84.67 ± 2.89% by eliminating many false positives with the spatio-452 

temporal filer, but its producer’s accuracy, 61.46 ± 46.43%, is not that good, which means it has many 453 

omission errors (false negatives). For the adjusted monthly forest disturbance map, the user’s accuracy 454 

and producer’s accuracy of other land covers and stable humid forest are 88.50 ± 3.13% and 88.71 ± 455 

2.72%, respectively. The accuracies of these two classes are high, but some other land covers were 456 

misclassified as humid forests, which also decreases the accuracy of monthly forest disturbance mapping 457 
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(e.g., leads to many false positives). 458 

Table 3. Accuracy assessment and area statistics of the possible and adjusted monthly forest disturbance maps, “±” 459 
means 1.96 standard errors or, equivalently, approximate 95% confidence intervals. 460 

Stratum 

Possible monthly forest disturbance map Adjusted monthly forest disturbance map 

Producer’s accuracy 
User’s 

accuracy 

Producer’s 

accuracy 

User’s 

accuracy 

Area (×104 

ha) 

Other land covers 99.19±0.86% 87.72±3.19% 98.93±0.99% 88.50±3.13% -- 

Stable humid forest 85.80±3.06% 99.19±0.88% 88.71±2.72% 98.75±1.09% 
2003.91±65.

06 

Jan.-Dec. 96.85±2.65% 21.37±16.91% 61.46±46.43% 84.67±2.89% 11.68±8.82 

Jan. 71.64±14.11% 75.12±12.62% 83.58±12.74% 84.00±10.27% 0.89±0.16 

Feb. 59.91±12.60% 17.78±27.34% 75.24±10.77% 86.00±9.72% 1.71±0.28 

Mar. 25.49±35.03% 25.09±33.98% 28.05±38.42% 82.00±10.76% 6.46±8.83 

Apr. 90.22±8.46% 19.33±28.01% 90.66±7.20% 70.00±12.83% 1.31±0.24 

May 80.25±10.38% 7.35±13.00% 84.62±7.56% 68.00±13.06% 0.46±0.08 

Jun. 71.11±15.75% 2.09±4.00% 78.37±15.13% 60.00±13.72% 0.14±0.04 

Jul. 74.31±27.05% 62.22±14.31% 76.97±27.51% 58.00±13.82% 0.03±0.01 

Aug. 55.34±17.47% 0.67±0.93% 60.53±18.07% 70.00±12.83% 0.11±0.03 

Sep. 76.21±12.14% 2.44±3.31% 84.01±9.49% 70.00±12.83% 0.30±0.06 

Oct. 78.60±14.00% 65.29±14.72% 93.15±8.85% 64.00±13.44% 0.18±0.04 

Nov. 86.81±11.90% 3.70±6.89% 93.01±9.04% 60.00±13.72% 0.20±0.05 

Dec. 87.10±10.66% 78.57±12.54% 97.66±4.50% 74.00±12.28% 0.27±0.05 

4.3 Effect of parameter T on monthly forest disturbance mapping 461 

T in Eqs. (6)-(9) is an important parameter used to convert the rHue_forest index into a binary forest 462 

disturbance map, prior to applying the spatio-temporal permanence criterion. Given the two typical 463 

examples of selective logging and smallholder clearing, Fig. 7 illustrates the monthly forest disturbance 464 

maps using values of T ranging from 0.03 to 0.15 with an interval of 0.03. In the study site representing 465 

selective logging, small values of T lead to forest disturbance maps with wider logging roads and many 466 

small-scale forest disturbances along the roads. With an increase in T, the width of the logging roads 467 

narrows and the small-scale forest disturbances along the roads disappear eventually. Compared to 468 

selective logging, smallholder clearing is not particularly sensitive to changes in T, especially for some 469 

large-scale forest disturbed patches. When T is too small (e.g., 0.03), there exist many noise pixels, 470 

caused mainly by changes in irradiance and vegetation phenology across the monthly Planet images. 471 

When T is too large (e.g., 0.15), although many noise pixels are eliminated, some intact forest disturbance 472 

patches are separated into subset patches. Therefore, T ranging from 0.06 to 0.12 is suggested for the 473 

rHue_forest index to monitor Planet monthly forest disturbances in real applications. In this research, T 474 
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was set to 0.09 to eliminate many false positives and maintain sufficient real forest disturbances. 475 

 476 

Fig. 7. An illustration of monthly forest disturbance maps for two typical examples of selective logging and 477 
smallholder clearing with T ranging from 0.03 to 0.15. 478 

4.4 Effect of spatio-temporal filter on the adjusted monthly forest disturbance mapping 479 

The disturbance frequency in the spatio-temporal filter is crucial for the adjusted monthly forest 480 

disturbance mapping in Eq. (7). Given the typical example of selective logging, Fig. 8 illustrates the 481 

monthly forest disturbance maps by using disturbance frequency thresholds ranging from 1 to 5 with an 482 

interval of 1, which is the number of months (with a cap of 5) for a new disturbance that continues to be 483 

classified as non-forest. As shown in the black oval of zoomed area A, some logging roads are presented 484 

as red and green outliers in the Planet NICFI images of February and July, and they disappeared totally 485 

in the following months of March and August. These outliers were regarded as forest disturbances in the 486 

possible forest disturbance map when the disturbing frequency threshold was no less than 1, but they 487 

were almost eliminated when the disturbance frequency threshold was no less than 2. A similar trend can 488 

also be observed for the black oval of zoomed area B, a few cloud pixels with a small size in July were 489 

not removed by the cloud masks, and they were first regarded as forest disturbances when the disturbance 490 

frequency threshold is no less than 1. However, the false positives caused by remaining clouds shown in 491 

in zoomed area B were also eliminated when the disturbance frequency threshold was no less than 2 or 492 

3. If the disturbance frequency threshold was set too large, such as 4 and 5, some real forest disturbances 493 
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were also deleted, as shown in zoomed area B (the black oval of the last column of Fig. 8). In general, 494 

the occurrence of false positives is always ephemeral, but real forest disturbances will present 495 

continuously as bare land (or low-density vegetation) for several months (e.g., 3 months). Therefore, an 496 

appropriate frequency threshold value of 2 or 3 is suggested for the proposed method to eliminate some 497 

false positives in the adjusted monthly forest disturbance map. 498 

 499 
Fig. 8. An illustration of monthly forest disturbance maps with different numbers of post disturbance monthly 500 
confirmations ranging from 1 to 5 months in the spatio-temporal filter to eliminate many false positives. See text for 501 
explanation of black ovals and codes A and B. 502 

5. Discussion 503 

5.1 Timeliness of Planet NICFI monthly forest disturbance map 504 

Timeliness is essential for the estimation of forest disturbances, particularly for near real-time 505 

monitoring systems, but there is always a trade-off between the accuracy and timeliness of forest 506 

disturbance mapping (Bullock et al., 2022; Francini et al., 2020; Tang et al., 2019; Zhu et al., 2020). As 507 

illustrated in the above results, the possible monthly forest disturbance map has the advantage of alerting 508 

to forest loss once the latest monthly Planet NICFI image is available, but the predicted forest 509 

disturbances have small confidence due to the commission error (e.g., false positives) caused by 510 

remaining clouds, registration errors and spectral outliers. The adjusted monthly forest disturbance map 511 

can increase the accuracy and confidence of estimated forest disturbances, but this decreases the 512 
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timeliness and increases the omission error (e.g., false negatives), and we can only adjust the forest 513 

disturbances three or more months after the first occurrence. Therefore, it is suggested to use 514 

simultaneously the possible and adjusted monthly forest disturbance maps in real applications. Besides 515 

the delay influenced by our proposed algorithm, the observation lag and data processing lag are two 516 

primary sources for determining the timeliness of forest disturbance monitoring. Although it is possible 517 

to calculate the observation lag if the satellite has standard revisit times and can penetrate clouds (Bullock 518 

et al., 2022), the cloud-free observation lag of Planet NICFI images can hardly be predicted due to the 519 

widespread clouds in southern CAM. The spatial distribution of annual precipitation shown in Fig. 1(c) 520 

is expected to match that of the observation lag for Planet NICFI images. Specifically, CAM’s western 521 

coastal areas, which are covered by frequent clouds and rain all year round, have the longest observation 522 

lag, and the observation lag will be extended in the rainy season lasting from May to November. Once 523 

the latest monthly Planet image is released in the GEE platform by NICFI, the proposed method can be 524 

used to monitor monthly forest disturbances. To improve the efficiency of data processing, the entire 525 

study area of CAM was divided into 214 grid cells, and it would require about one week to complete all 526 

the data processing based on one GEE account. However, by dividing the 214 grid cells into several parts 527 

within more GEE accounts, the data processing lag can be shortened. 528 

5.2 Limitation and uncertainty 529 

To improve the mapping of small-scale forest disturbances caused by selective logging and 530 

smallholder clearing, we developed a rHue_forest index and spatio-temporal filter to monitor possible 531 

and adjusted monthly forest disturbances from Planet NICFI images, but some limitations remain. Firstly, 532 

although the proposed rHue_forest index is based on the Hue index (Francini et al., 2020) and aims to 533 

reduce the effect of clouds and cloud shadows to some extent, it is still sensitive to the frequent clouds 534 

and cloud shadows in the tropics that were not perfectly removed. Secondly, the adjusted monthly forest 535 

disturbance map produced by the spatio-temporal filter can eliminate many false positives in most cases, 536 

but it will also delete some real forest disturbances if clouds are extremely frequent. There is always a 537 

trade-off in achieving both small commission (false positives) and omission (false negatives) errors for 538 

a forest disturbance monitoring system (Bullock et al., 2022). Moreover, the cloud masks based on the 539 

cloud cover possibility map and the HOT index may also incorrectly delete some real forest disturbance 540 

in the monthly Planet NICFI images. These two aspects will lead to an underestimation of forest 541 
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disturbance in some local regions, such as the west coast areas with abundant rainfall and clouds in CAM. 542 

Thirdly, the proposed rHue_forest index is sensitive to spectral change in the tree canopy cover, meaning 543 

that forest disturbances may be over-estimated if there exist some deciduous forests or forests with strong 544 

phenology features (e.g., flowering) in the humid forest cover map in 2020. Fourth, although the adjusted 545 

monthly forest disturbance map produced by the spatio-temporal filter can eliminate many false positives 546 

in the possible map, it requires three months of Planet images after the first disturbance occurrence time. 547 

Fifth, if the forest degradation causes a slight tree canopy change in the Planet sub-pixel scale and there 548 

is no obvious forest cover change, it may also be difficult for the proposed method to tackle. In this 549 

situation, a specific method of time-series Normalized Difference Fraction Index based on spectral 550 

unmixing could be used to monitor tropical forest degradation (Bullock et al., 2020; Souza et al., 2005). 551 

The primary humid forest cover map in 2020 is a prerequisite for the proposed rHue_forest index 552 

used to estimate the monthly forest disturbance map, and then its uncertainty will propagate to the final 553 

monthly forest disturbance maps (Esteban et al., 2020). In fact, the humid tropical forest cover map in 554 

2001 (Turubanova et al., 2018), annual forest loss map during 2001-2020 in GFC product (Hansen et al., 555 

2013), Sentinel-1 forest disturbances map during 2019-2020 (Reiche et al., 2021), Landsat tree canopy 556 

height map in 2020 (Potapov et al., 2021) and Sentinel-2 land cover map in 2020 (Zanaga et al., 2021) 557 

were fused to generate the primary humid forest cover in 2020. Each of the five typical maps has 558 

uncertainty in distinguishing the primary humid forest cover, for example, the Sentinel-1 forest 559 

disturbances map may be affected by the speckle noise and side-looking geometry error within Sentinel-560 

1 SAR images (Reiche et al., 2021), and their uncertainties were contained finally in the humid forest 561 

cover map. Moreover, the coarser spatial resolutions and poorer spectral discrimination of the five 562 

thematic maps compared to the 5 m four bands of Planet NICFI image will also lead to the uncertainty 563 

in the humid forest cover map, and result in some false positives of disturbance in 2021. However, as 564 

listed in Table 3, the stable humid forest in 2020 has PA and UA values of 88.71 ± 2.72% and 98.75 ± 565 

1.09%, which means that combining the five thematic maps can predict humid forest cover in 2020 with 566 

high accuracy. 567 

To further decrease the uncertainty of the humid forest cover map in 2020, as shown in Fig. 2, we 568 

used the Planet NICFI image in December 2020 to exclude some of the false positives of forest 569 

disturbances in 2021 caused by the pixels misclassified as humid forest cover in 2020. However, the 570 

areas that are masked by clouds in the Planet NICFI image of December 2020 carry no information with 571 
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which to exclude the false positives of disturbances related to uncertainty in the humid forest cover map. 572 

To solve this problem, one could focus on increasing the accuracy (especially the user’s accuracy) of the 573 

humid forest cover map, to increase the accuracy of the resultant Planet NICFI monthly forest disturbance 574 

map. It is, therefore, of great interest to apply some powerful methods (e.g., machine learning and deep 575 

learning-based classifiers) to time-series Planet NICFI images to further decrease the uncertainty of the 576 

humid forest cover map in 2020, and thereby increase the accuracy of the Planet monthly forest 577 

disturbance mapping. 578 

5.3 Future research 579 

Compared with the forest disturbance maps based on RADD Sentinel-1 and GFC Landsat, the 580 

developed Planet NICFI possible and adjusted monthly forest disturbance maps also cannot find the 581 

forest loss that occurred in all time periods, as shown in section 4.2. However, the developed Planet 582 

NICFI monthly forest disturbance maps have great potential to complement existing forest cover change 583 

products, and it is, therefore, of great interest to have a combination of our product and many other forest 584 

disturbance alerts in future applications, so as to provide more accurate monitoring of small-scale tropical 585 

forest disturbances. Removing perfectly the clouds in Planet images with only four bands is a challenging 586 

task, especially for tropical regions with extremely frequent clouds (Roy et al., 2021). Shendryk et al. 587 

(2019) proposed a deep learning-based classification method to estimate clouds and cloud shadows in 588 

Planet images. Wang et al. (2021) proposed an automated method to remove the clouds and cloud 589 

shadows in daily 3 m PlanetScope satellite sensor images in tropical areas. These two advanced 590 

approaches can be applied to the monthly Planet NICFI images to further remove the clouds and cloud 591 

shadows, and future research should focus on promoting these methods via the GEE platform for large-592 

scale online computation. The proposed rHue_forest index is based on the classical index of Hue, as used 593 

widely for satellite sensor images with only four bands. However, many other vegetation indices based 594 

on the four bands of Planet images, such as the soil adjusted vegetation index (SAVI) (Huete, 1988) and 595 

the modified soil adjusted vegetation index (MSAVI2) (Qi et al., 1994), can also be applied for the 596 

proposed method. In this research, we focus on the CAM to study small-scale forest disturbances caused 597 

by selective logging and smallholder clearing, but it is of interest to apply the proposed method to the 598 

full range of tropical forests in the Congo Basin or, indeed, pantropical, as it can monitor many of the 599 

missed forest disturbances in tropical regions (Zhang et al., 2021). 600 
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6. Conclusions 601 

Based on the PlanetScope Hue index proposed by Francini et al. (2020), this research developed a 602 

method, which is composed mainly of the rHue_forest index and spatio-temporal filter, to monitor 603 

monthly small-scale tropical humid forest disturbances with Planet NICFI images in CAM. The proposed 604 

method produced possible monthly forest disturbances in CAM with the best producer’s accuracy of 605 

96.85 ± 2.65% but least user’s accuracy of 21.37 ± 16.91%, while the adjusted monthly forest 606 

disturbances with the best user’s accuracy of 84.67 ± 2.89% and a producer’s accuracy of 61.46 ± 46.43%. 607 

Compared to the equivalent forest disturbances based on RADD Sentinel-1, GLAD Landsat and the GFC 608 

product, our results were able to estimate more forest disturbances arising from selective logging and 609 

smallholder clearing with greater spatial detail. Many narrow logging roads and the spatial expansion 610 

process of smallholder clearing were also well represented by the proposed method. By using the 611 

stratified sampling and estimators, we have produced and reported statistically rigorous estimates of 612 

humid forest disturbances in CAM, estimated as 1,168 ± 882 km2 in 2021. These advantages arise 613 

because Planet images have a daily revisit time, leading to the greatest possible number of images for 614 

compositing the monthly Planet NICFI mosaics with a spatial resolution of 5 m. The proposed method 615 

based on Planet NICFI images has great potential to complement existing forest cover change products 616 

and estimate hitherto neglected small-scale tropical forest disturbances. We will share publicly the 617 

possible and adjusted monthly forest disturbance map in 2021 for CAM once the paper has been 618 

published. 619 

Acknowledgments 620 

The authors wish to thank the NICFI for providing the monthly Planet images and thank Francini et al. 621 

(2020) for applying successfully the PlanetScope Hue index in forest change detection. This research 622 

was supported by the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (ZDBS-623 

LY-DQC034), National Natural Science Foundation of China (42271400, 62071457), the Hubei 624 

Provincial Natural Science Foundation of China for Distinguished Young Scholars (2022CFA045), the 625 

Hubei Provincial Natural Science Foundation of China (2020CFB233), the joint Postdoctoral Program 626 

of China Scholarship Council and Lancaster University during 2021-2023, the Young Top-notch Talent 627 

Cultivation Program of Hubei Province, and the Yellow Crane Talent Program of Wuhan. 628 

References: 629 



 28 / 30 
 

Asner, G.P., Knapp, D.E., Broadbent, E.N., Oliveira, P.J.C., Keller, M. and Silva, J.N., 2005. Selective 630 
Logging in the Brazilian Amazon. Science, 310(5747): 480-482. 631 

Baccini, A., Walker, W., Carvalho, L., Farina, M., Sulla-Menashe, D. and Houghton, R.A., 2017. Tropical 632 
forests are a net carbon source based on aboveground measurements of gain and loss. Science, 633 
358(6360): 230-234. 634 

Betts, M.G. et al., 2017. Global forest loss disproportionately erodes biodiversity in intact landscapes. 635 
Nature, 547(7664): 441-444. 636 

Breiman, L., 2001. Random Forests. Machine Learning, 45(1): 5-32. 637 
Bullock, E.L., Healey, S.P., Yang, Z., Houborg, R., Gorelick, N., Tang, X. and Andrianirina, C., 2022. 638 

Timeliness in forest change monitoring: A new assessment framework demonstrated using 639 
Sentinel-1 and a continuous change detection algorithm. Remote Sens. Environ., 276: 113043. 640 

Bullock, E.L., Woodcock, C.E. and Olofsson, P., 2020. Monitoring tropical forest degradation using 641 
spectral unmixing and Landsat time series analysis. Remote Sens. Environ., 238: 110968. 642 

Cheng, Y., Vrieling, A., Fava, F., Meroni, M., Marshall, M. and Gachoki, S., 2020. Phenology of short 643 
vegetation cycles in a Kenyan rangeland from PlanetScope and Sentinel-2. Remote Sens. 644 
Environ., 248: 112004. 645 

Cochran, W.G., 1977. Sampling techniques. John Wiley & Sons. 646 
Dong, J., Xiao, X., Sheldon, S., Biradar, C., Duong, N.D. and Hazarika, M., 2012. A comparison of forest 647 

cover maps in Mainland Southeast Asia from multiple sources: PALSAR, MERIS, MODIS and 648 
FRA. Remote Sens. Environ., 127: 60-73. 649 

Esteban, J., McRoberts, R.E., Fernández-Landa, A., Tomé, J.L. and Marchamalo, M., 2020. A Model-650 
Based Volume Estimator that Accounts for Both Land Cover Misclassification and Model 651 
Prediction Uncertainty. Remote Sens., 12(20): 3360. 652 

Francini, S., McRoberts, R.E., Giannetti, F., Mencucci, M., Marchetti, M., Scarascia Mugnozza, G. and 653 
Chirici, G., 2020. Near-real time forest change detection using PlanetScope imagery. Eur. J. 654 
Remote Sens., 53(1): 233-244. 655 

Franke, J., Navratil, P., Keuck, V., Peterson, K. and Siegert, F., 2012. Monitoring Fire and Selective 656 
Logging Activities in Tropical Peat Swamp Forests. IEEE J. Sel. Top. Appl. Earth Obs. Remote 657 
Sens., 5(6): 1811-1820. 658 

Frazier, A.E. and Hemingway, B.L., 2021. A Technical Review of Planet Smallsat Data: Practical 659 
Considerations for Processing and Using PlanetScope Imagery. Remote Sens., 13(19). 660 

Gibson, L. et al., 2011. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature, 661 
478(7369): 378-381. 662 

Hansen, M.C., DeFries, R.S., Townshend, J.R.G., Sohlberg, R., Dimiceli, C. and Carroll, M., 2002. 663 
Towards an operational MODIS continuous field of percent tree cover algorithm: examples 664 
using AVHRR and MODIS data. Remote Sens. Environ., 83(1): 303-319. 665 

Hansen, M.C. et al., 2016. Humid tropical forest disturbance alerts using Landsat data. Environ. Res. 666 
Lett., 11(3): 034008. 667 

Hansen, M.C. et al., 2013. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, 668 
342(6160): 850-853. 669 

Hethcoat, M.G., Carreiras, J.M.B., Edwards, D.P., Bryant, R.G. and Quegan, S., 2021. Detecting tropical 670 
selective logging with C-band SAR data may require a time series approach. Remote Sens. 671 
Environ., 259: 112411. 672 

Hethcoat, M.G., Edwards, D.P., Carreiras, J.M.B., Bryant, R.G., França, F.M. and Quegan, S., 2019. A 673 



 29 / 30 
 

machine learning approach to map tropical selective logging. Remote Sens. Environ., 221: 569-674 
582. 675 

Huete, A.R., 1988. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ., 25(3): 295-309. 676 
Kleinschroth, F., Laporte, N., Laurance, W.F., Goetz, S.J. and Ghazoul, J., 2019. Road expansion and 677 

persistence in forests of the Congo Basin. Nat. Sustainability, 2(7): 628-634. 678 
Langner, A. et al., 2018. Towards Operational Monitoring of Forest Canopy Disturbance in Evergreen 679 

Rain Forests: A Test Case in Continental Southeast Asia. Remote Sens., 10(4). 680 
Laporte, N.T., Stabach, J.A., Grosch, R., Lin, T.S. and Goetz, S.J., 2007. Expansion of Industrial Logging 681 

in Central Africa. Science, 316(5830): 1451-1451. 682 
McRoberts, R.E., Stehman, S.V., Liknes, G.C., Næsset, E., Sannier, C. and Walters, B.F., 2018. The 683 

effects of imperfect reference data on remote sensing-assisted estimators of land cover class 684 
proportions. ISPRS J. Photogramm. Remote Sens., 142: 292-300. 685 

Olofsson, P., Foody, G.M., Herold, M., Stehman, S.V., Woodcock, C.E. and Wulder, M.A., 2014. Good 686 
practices for estimating area and assessing accuracy of land change. Remote Sens. Environ., 687 
148: 42-57. 688 

Pal, M., 2005. Random forest classifier for remote sensing classification. Int. J. Remote Sens., 26(1): 689 
217-222. 690 

Pascual, A., Tupinambá-Simões, F., Guerra-Hernández, J. and Bravo, F., 2022. High-resolution planet 691 
satellite imagery and multi-temporal surveys to predict risk of tree mortality in tropical eucalypt 692 
forestry. J. Environ. Manage., 310: 114804. 693 

Potapov, P. et al., 2021. Mapping global forest canopy height through integration of GEDI and Landsat 694 
data. Remote Sens. Environ., 253: 112165. 695 

Qi, J., Chehbouni, A., Huete, A.R., Kerr, Y.H. and Sorooshian, S., 1994. A modified soil adjusted 696 
vegetation index. Remote Sens. Environ., 48(2): 119-126. 697 

Qin, Y. et al., 2019. Improved estimates of forest cover and loss in the Brazilian Amazon in 2000–2017. 698 
Nat. Sustainability, 2(8): 764-772. 699 

Reiche, J. et al., 2021. Forest disturbance alerts for the Congo Basin using Sentinel-1. Environ. Res. Lett., 700 
16(2): 024005. 701 

Roy, D.P., Huang, H., Houborg, R. and Martins, V.S., 2021. A global analysis of the temporal availability 702 
of PlanetScope high spatial resolution multi-spectral imagery. Remote Sens. Environ., 264: 703 
112586. 704 

Sexton, J.O. et al., 2013. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling 705 
of MODIS vegetation continuous fields with lidar-based estimates of error. Int. J. Digital Earth, 706 
6(5): 427-448. 707 

Shendryk, Y., Rist, Y., Ticehurst, C. and Thorburn, P., 2019. Deep learning for multi-modal classification 708 
of cloud, shadow and land cover scenes in PlanetScope and Sentinel-2 imagery. ISPRS J. 709 
Photogramm. Remote Sens., 157: 124-136. 710 

Shimada, M., Itoh, T., Motooka, T., Watanabe, M., Shiraishi, T., Thapa, R. and Lucas, R., 2014. New 711 
global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens. Environ., 712 
155: 13-31. 713 

Souza, C., Firestone, L., Silva, L.M. and Roberts, D., 2003. Mapping forest degradation in the Eastern 714 
Amazon from SPOT 4 through spectral mixture models. Remote Sens. Environ., 87(4): 494-715 
506. 716 

Souza, C.M., Roberts, D.A. and Cochrane, M.A., 2005. Combining spectral and spatial information to 717 



 30 / 30 
 

map canopy damage from selective logging and forest fires. Remote Sens. Environ., 98(2): 329-718 
343. 719 

Stehman, S.V., 2014. Estimating area and map accuracy for stratified random sampling when the strata 720 
are different from the map classes. Int. J. Remote Sens., 35(13): 4923-4939. 721 

Tang, X., Bullock, E.L., Olofsson, P., Estel, S. and Woodcock, C.E., 2019. Near real-time monitoring of 722 
tropical forest disturbance: New algorithms and assessment framework. Remote Sens. Environ., 723 
224: 202-218. 724 

Turubanova, S., Potapov, P.V., Tyukavina, A. and Hansen, M.C., 2018. Ongoing primary forest loss in 725 
Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett., 13(7): 074028. 726 

Tyukavina, A. et al., 2018. Congo Basin forest loss dominated by increasing smallholder clearing. Sci. 727 
Adv., 4(11): eaat2993. 728 

Vancutsem, C. et al., 2021. Long-term (1990–2019) monitoring of forest cover changes in the humid 729 
tropics. Sci. Adv., 7(10): eabe1603. 730 

Wagner, F.H. et al., 2019. Using the U-net convolutional network to map forest types and disturbance in 731 
the Atlantic rainforest with very high resolution images. Remote Sens. Ecol. Conserv., 5(4): 732 
360-375. 733 

Wang, J. et al., 2021. Automatic cloud and cloud shadow detection in tropical areas for PlanetScope 734 
satellite images. Remote Sens. Environ., 264: 112604. 735 

Watanabe, M., Koyama, C.N., Hayashi, M., Nagatani, I., Tadono, T. and Shimada, M., 2021. Refined 736 
algorithm for forest early warning system with ALOS-2/PALSAR-2 ScanSAR data in tropical 737 
forest regions. Remote Sens. Environ., 265: 112643. 738 

Zanaga, D. et al., 2021. ESA WorldCover 10 m 2020 v100. ESA WorldCover project  739 
Zhang, Y., Foody, G.M., Ling, F., Li, X., Ge, Y., Du, Y. and Atkinson, P.M., 2018. Spatial-temporal 740 

fraction map fusion with multi-scale remotely sensed images. Remote Sens. Environ., 213: 162-741 
181. 742 

Zhang, Y., Guindon, B. and Cihlar, J., 2002. An image transform to characterize and compensate for 743 
spatial variations in thin cloud contamination of Landsat images. Remote Sens. Environ., 82(2): 744 
173-187. 745 

Zhang, Y. et al., 2019. Mapping annual forest cover by fusing PALSAR/PALSAR-2 and MODIS NDVI 746 
during 2007–2016. Remote Sens. Environ., 224: 74-91. 747 

Zhang, Y. et al., 2021. Tracking small-scale tropical forest disturbances: Fusing the Landsat and Sentinel-748 
2 data record. Remote Sens. Environ., 261: 112470. 749 

Zhao, F. et al., 2022. Monthly mapping of forest harvesting using dense time series Sentinel-1 SAR 750 
imagery and deep learning. Remote Sens. Environ., 269: 112822. 751 

Zhu, Z. and Woodcock, C.E., 2014. Continuous change detection and classification of land cover using 752 
all available Landsat data. Remote Sens. Environ., 144: 152-171. 753 

Zhu, Z., Zhang, J., Yang, Z., Aljaddani, A.H., Cohen, W.B., Qiu, S. and Zhou, C., 2020. Continuous 754 
monitoring of land disturbance based on Landsat time series. Remote Sens. Environ., 238: 755 
111116. 756 

 757 


