Turvey, G. J. and Mulcahy, N. and Widden, M. B. (2000) Experimental and computed natural frequencies of square pultruded GRP plates: effects of anisotropy, hole size ratio and edge support conditions. Composite Structures, 50 (4). pp. 391-403.
Full text not available from this repository.Abstract
Experiments have been carried out to determine the free vibration frequencies and mode shapes of 3.2 mm thick, pultruded GRP, square plates with six combinations of clamped (C), simply supported (S) and free (F) edge supports. Comparison of experimental and theoretical/numerical frequencies confirms that thin homogeneous orthotropic/anisotropic plate theory provides a reasonable model for predicting the free vibration response of pultruded GRP plates. Additional vibration experiments were carried out on plates with central circular cutouts. The hole size ratios were varied from about 0.1 to 0.4 for three combinations of clamped (C) and simply supported (S) edge conditions. Finite-element (FE) frequency and mode shape predictions based on orthotropic plate theory were again shown to be in reasonable agreement with the experimental frequencies and modes.