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Abstract

In situations where both extreme and non-extreme data are of interest, mo-

delling the whole data set accurately is important. In a univariate frame-

work, modelling the bulk and tail of a distribution has been studied before,

but little work has been done when more than one variable is of concern. A

dependence model that blends two copulas with different characteristics over

the whole range of the data support is proposed. One copula is tailored to

the bulk and the other to the tail, with a dynamic weighting function em-

ployed to transition smoothly between them. Tail dependence properties are

investigated numerically and simulation is used to confirm that the blended

model is sufficiently flexible to capture a wide variety of structures. The

model is applied to study the dependence between temperature and ozone

concentration at two sites in the UK and compared with a single copula fit.

The proposed model provides a better, more flexible, fit to the data, and is

also capable of capturing complex dependence structures.

∗Corresponding author
Email address: l.andre@lancaster.ac.uk (L. M. André)
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1. Introduction

1.1. Motivation

When dealing with environmental phenomena such as high temperatures,

wind speeds or air pollution, or with financial applications such as insurance

losses, interest often lies in modelling the extreme observations, which are

typically scarce. For such cases, a model with focus on the tail of the distri-

bution is required as common statistical models that may be used to fit the

entire data set lead to poor estimates of the extremes. To overcome this issue,

models based on extreme value theory (EVT) can be applied; these aim to

quantify the behaviour of a process at extremely large (or small) values of a

series. Typically, the generalised extreme value (GEV) distribution is fitted

to block maxima, often annual maxima, or the generalised Pareto distribution

(GPD) is fitted to data exceeding a high threshold. The former can be seen

as a wasteful approach if there are more data on extremes available, while

the latter usually requires a subjective choice of threshold, which inevitably

leads to uncertainty, with different choices leading to different results; see

Coles (2001).

However, in some cases, interest not only lies in modelling the extreme obser-

vations accurately but also fitting the non-extremes well, meaning a flexible

model over the whole support of the distribution is required. For instance,

the concentration of pollutants in the air may be so high that harmful levels

are actually in the body of the data set. Thus, from a public health pers-

pective, we care not only about the probability of exceeding extreme, and
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potentially more dangerous, pollutant levels but also about the probability

of exceeding harmful yet locally moderate levels. Fitting a model to both

the bulk (i.e., the non-extreme observations) and tail (i.e., the extreme obser-

vations) of a data set has been dealt with in the univariate framework but

little work has been done in extending to a multivariate setting. In this work,

we outline an approach that offers dependence models for the bulk and tail,

while ensuring a smooth transition between the two.

1.2. Background

In the univariate setting, several models have been proposed to join one

distribution for the bulk to a GPD for the tail. Scarrott and MacDonald

(2012) review several of these approaches, hereafter referred to as extreme

value mixture models, or EVMMs. These models aim to account for the

uncertainty in the choice of threshold, by implicitly or explicitly estimating

it. With EVMMs, care is needed so that the bulk and tail are not excessively

influenced by each other, though they cannot be fully disjoint since they

share information. Parametric EVMMs entail fitting a specified distribution

to the bulk and a GPD to the tail, while semi-parametric models fit a GPD

to the tail with a more flexible model in the bulk. Behrens et al. (2004)

propose a parametric model, which exhibits discontinuity at the threshold;

Carreau and Bengio (2009) avoid this by forcing continuity up to the first

derivative of the density function. On the other hand, Frigessi et al. (2002)

fit two distributions to the whole data, giving more weight to the bulk at

low ranges in the support and to the GPD in the upper tail by means of

a dynamic weighting function p(x; θ) ∈ (0, 1]. The density of their model is
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defined as

h(x; θ,β,α) =
[1− p(x; θ)]f(x;β) + p(x; θ)g(x;α)

K(θ,β,α)
,

where g(x;α) is the density of the GPD with vector of parameters α, f(x;β)

is a density with a lighter tail and vector of parameters β, K(θ,β,α) is a

normalising constant and p(x; θ) is increasing in x for all θ. Because p(x; θ)

depends on x, it favours the GPD in the upper tail whilst the lower tail is

controlled by f(x;β). However, careful choice of the weighting function is

needed since some functions, such as the unit step function, may lead to

a discontinuity in the transition between the two distributions; see Frigessi

et al. (2002) for details. More recently, methods introduced by Naveau et al.

(2016) and Stein (2021) aim to model the lower and upper tails of the data

with GPDs, while ensuring a smooth transition between the regions. The

former achieve this by constructing a model relying on compositions of func-

tions, where one is a cumulative distribution function (CDF) of a GPD, and

the other is a CDF that satisfies certain constraints to ensure both tails follow

a generalised Pareto-type distribution. The model proposed by Stein (2021)

also assumes a composition of functions, where one is a monotone-increasing

function that controls both the lower and upper tails, and the other is a

Student t CDF. Finally, Krock et al. (2022) extend the latter approach to

incorporate non-stationarity. The methods proposed by Frigessi et al. (2002),

Naveau et al. (2016), Stein (2021) and Krock et al. (2022) avoid the choice

of threshold.

In a semi-parametric framework, Cabras and Castellanos (2010) approximate

the bulk distribution by an equi-spaced binning of the data followed by a

Poisson log-link generalised linear model fit to the counts with a polynomial
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smoother for the mean parameter. Nascimento et al. (2011) define the bulk

distribution as a weighted mixture of gamma densities, extending the method

proposed by Behrens et al. (2004), while Huang et al. (2019) estimate the

log-density by first transforming the data and then applying a cubic spline

to the histogram. Tencaliec et al. (2020) propose a method based on the

extension of the GPD proposed by Naveau et al. (2016). Finally, Tancredi

et al. (2006) and MacDonald et al. (2011) propose non-parametric fits to

the data. In the former, the bulk model is fitted via a mixture of uniform

distributions whereas in the latter a kernel density estimator is used instead.

When we move to the multivariate setting, there is an extra difficulty; not

only is it important to model the margins of the data correctly, but the de-

pendence between the variables is also of interest since the behaviour of one

variable can influence the behaviour and value of another. It is common

practice to measure this relationship using correlation coefficients, such as

Pearson’s linear correlation or Kendall’s concordance (Kendall, 1938). How-

ever, these only give information about the association between variables as

a whole. An alternative is to use copulas, which fully capture the dependence

between two or more variables. According to Sklar’s Theorem (Sklar, 1959),

the multivariate distribution function, F, of the random vector (X1, . . . , Xd)

can be written as the composition of a copula, C, and the marginal distribu-

tions of each Xi, FXi
(Xi), i = 1, . . . , d, d ≥ 2, as follows

F (x1, . . . , xd) = C (FX1(x1), . . . , FXd
(xd)) .

If the variables are continuous, then the copula C is unique. One advantage

of copulas is that they are able to describe the dependence structure of two

or more variables in a way that does not depend on the margins. Where it
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exists, the copula density c (FX1(x1), . . . , FXd
(xd)) can be obtained by taking

the dth order derivative with respect to the variables FX1(x1), . . . , FXd
(xd).

There is a large literature on dependence modelling for extremes, which usu-

ally involves defining a multivariate threshold above which an asymptotically-

motivated copula is assumed to hold. However, models specifically aimed at

to capturing the behaviour of extremes as well as the body of the data,

while permitting a likelihood-based approach to inference, are scarce in the

literature. Both defining and performing inference on such models can be

challenging compared to univariate models.

Methods for constructing more flexible copula families have been increasing

in recent years, especially in financial applications. For instance, Durrleman

et al. (2000), Morillas (2005), Klement et al. (2005b) and Durante et al.

(2010) propose transforming known copulas, especially from the Archimedean

family, by means of bijections on [0, 1]. In particular, the methods proposed

by Durrleman et al. (2000) and Durante et al. (2010) allow for a more accurate

fit of the dependence structure. Given a bijection γ : [0, 1] → [0, 1], the

copula C is transformed into a new copula Cγ in the following way Cγ(x, y) =

γ−1(C(γ(x), γ(y))). Moreover, depending on specific conditions imposed on

γ, the dependence structure of Cγ contrasts with that of C in different ways.

Specifically, in the method proposed by Durrleman et al. (2000), changes in

the overall dependence measures of C, such as Kendall’s τ, are possible while

C and Cγ share the same extremal behaviour. On the other hand, Durante

et al. (2010) study how the dependence in the extremes changes from C to

Cγ−1 , while the fit in the body remains the same between the two.

Other possibilities for building new copula families rely on piecewise cons-
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tructions or convex combinations. For the former, by constructing box co-

pulas (i.e., copulas nested in each other), Hummel (2009) is able to control

and modify the dependence in the tail. For the latter, Bacigál et al. (2010)

propose new construction techniques through additive generators of binary

Archimedean copulas, whereas Shamiri et al. (2011) construct a Clayton-

Gumbel copula, where, by means of a standard mixture model, two individual

copulas are joined into one. This model allows for asymmetry in the data

while being able to capture strong dependence in both tails.

Alternatively, patchwork copulas can offer a way to capture dependence

structures that are not well suited to standard copulas. These allow for

different copula models to be fitted to several regions of [0, 1]2 based on their

characteristics; see for example Pfeifer and Ragulina (2021). Particular cases

of patchwork copulas include those based on ordinal sums (Alsina et al.,

2006); gluing copulas, where two or more copulas are scaled back to boxes in

a region of the unit square and glued together along some hyperplane (Mesiar

et al., 2008; Siburg and Stoimenov, 2008); and copulas based on rectangular

constructions, where it is possible to have a copula in the body and another

in the upper tail by defining two rectangles (disjoint up to their boundaries)

over the diagonal, for example; see Durante et al. (2009) for more details. A

generalised method to construct patchwork copulas that include the above

mentioned cases is given in Durante et al. (2013). Given a copula C, a patch-

work copula derived from it features the same probability mass distribution

as C, excluding a d-dimensional box (⊆ [0, 1]) in which the probability mass

is distributed differently. These models can be used to modify the extremal

behaviour of a copula in two or more corners of [0, 1]d, and allow strong
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positive tail dependence to be induced if the application requires it. In this

way, patchwork copulas aim to overcome the issue of misrepresentation of

the extremes, when considering the whole data set. However, the transi-

tion between the non-extreme and the extreme regions is not smooth and

therefore may be unsuitable in many real applications.

Aulbach et al. (2012a,b) suggest an extension to the multivariate setting

of the model proposed by Behrens et al. (2004). They define a novel co-

pula model by joining two d-dimensional (d ≥ 2) copulas, one for the upper

tail and the other for the body, in a manner that produces a new copula.

Specifically, the authors assume two independent random vectors, each of

which follow an arbitrary copula, that is V = (V1, . . . , Vd) ∼ C1 and Y =

(Y1, . . . , Yd) ∼ C2. It is also required that the copulas are defined in [−1, 0]d,

which is not a problem since, if U follows a copula C : [0, 1]d → [0, 1], then

Ũ = U − 1 follows a copula C̃ with shifted support i.e., C̃ : [−1, 0]d → [0, 1].

Then, by an appropriate choice of threshold vector t = (t1, . . . , td), they

construct a random vector Q, whose ith element is given by

Qi := Yi1Yi≤ti − tiVi1Yi>ti , i = 1, . . . , d. (1)

The authors prove that Q also follows a copula on [−1, 0]d, which coincides

with C1 on the region (t1, 0]× . . .×(td, 0] and with C2 on the region [−1, t1]×

. . .× [−1, td]. An exact representation of the method is presented in Aulbach

et al. (2012b). However, the model not only requires a choice of cut-off values

ti, i = 1, . . . , d, to define the regions to fit each copula but, as with patchwork

copulas, the transition between the two copulas may not be smooth. Figure

1 displays an example of a data set simulated according to equation (1); the

discontinuity at the threshold is evident. Moreover, this method does not
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offer a convenient formulation of the likelihood, which results in difficulties

for inference.
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Figure 1: Example of Q simulated according to equation (1) with a Gumbel copula with

parameter α = 2 selected for the upper tail copula C1 and Gaussian copula with parameter

ρ = 0.6 selected for the body copula C2 of the model proposed by Aulbach et al. (2012a).

For illustration purposes, the vector of thresholds was chosen to be t = (0.8, 0.5).

More recently, Pfeifer et al. (2017) and Pfeifer et al. (2019) propose infinite

discrete and continuous partition-of unity copulas, respectively; these are

flexible in higher dimensions and can be applied when there is asymmetry in

the data. Similar to patchwork copulas, these copulas allow for implement-

ing positive dependence in the tails; the density of the proposed model is

approximated by an infinite mixture of functions, and careful choice of these

functions can modify the tail behaviour if required.

A different type of approach was taken by Hu and O’Hagan (2021), who

consider averaging different copula families that have been fitted to the whole
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distribution, in order to obtain a more robust estimate of the tail dependence

of the data set. However, the use of BIC in the calculation of the weights

assigned to each copula places the focus on the body and not on the tail of

the data.

In a spatial context, Gräler (2014) proposes capturing the dependence of

skewed spatial random fields (that display extreme events) by considering

convex combinations of bivariate copulas in the construction of a spatial

copula. In this way, between each location, a different dependence model

is obtained. More recently, Krupskii et al. (2018) and Zhang et al. (2022)

each propose models fitted to both the body and tail of a distribution. The

former outlines a copula model based on the assumption that there exists

a common factor which affects the joint dependence of all the observations

of the underlying process, and which is able to model both tail dependence

and asymmetry. Numerical integration over this factor variable leads to

a likelihood that can be fitted to all data. The latter propose using the

generalised hyperbolic copula, which is flexible due to having a relatively

large number of parameters. For both of these models, the authors show that

there is reasonable flexibility for capturing both body and tail, yet a primary

motivation for fitting to all data is the desire to avoid the computational

difficulty involved in using censored likelihoods for extremes.

1.3. Extremal dependence properties

When the focus lies on extreme values, studying the extremal dependence

between the variables is of interest. Two variables are said to be asympto-

tically dependent (AD) if joint extremes occur at a similar frequency to

marginal extremes, or asymptotically independent (AI) otherwise. This de-
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pendence can be quantified through the measure χ = lim
r→1

χ(r) ∈ [0, 1], where

the limit exists, with

χ(r) = P [FY (Y ) > r | FX(X) > r] =
1− 2r + C(r, r)

1− r
, r ∈ (0, 1), (2)

where C is the copula of (X, Y ); see Joe (1997) or Coles et al. (1999). The

random variables X and Y are asymptotically independent if χ = 0, whereas

if χ > 0 they are asymptotically dependent.

A complementary measure to χ is the residual tail dependence coefficient

η ∈ (0, 1] proposed by Ledford and Tawn (1996). For a function L that is

slowly-varying at zero, they assume that the joint tail can be written as

P [FY (Y ) > r | FX(X) > r] ∼ L(1− r)(1− r)
1
η
−1 as r → 1. (3)

The variables are asymptotically dependent if η = 1 and L(1 − r) ̸→ 0

as r → 1, and asymptotically independent otherwise. Additionally, if η ∈

(0, 1/2) , the variables show negative extremal association; positive extremal

association if η ∈ (1/2, 1] and they exhibit near extremal independence if

η = 1/2.

Similarly to χ(r), for a particular value of r ∈ (0, 1), η(r) can be obtained as

η(r) =
log (P [FX(X) > r])

log (P [FX(X) > r, FY (Y ) > r])
, (4)

with η = lim
r→1

η(r).

This paper is organised as follows: in Section 2 we present our proposed

model and its properties. Inference for the model is studied in Section 3,

complemented by a simulation study to demonstrate performance in correctly

specified and misspecified scenarios. We then apply our methodology to

ozone and temperature data in the UK in Section 4 and conclude with a

discussion in Section 5.
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2. Weighted copula model

2.1. Model definition

Our interest lies in accurately modelling both the bulk and the tail of the

whole distribution. From existing literature in the dependence context, Hum-

mel (2009), Aulbach et al. (2012a,b), Durante et al. (2013) and Pfeifer et al.

(2017, 2019) are concerned with representing both regions correctly. How-

ever, our model differs from these approaches in that we aim for a smooth

transition between the two regions and allow for likelihood-based inference.

To do so, we propose a mixture model where we fit two copulas to the whole

range of the support and blend them by means of a dynamic weighting func-

tion π; in this way, data can be allowed to favour the “best” copula for each

region, avoiding the subjective choice of thresholds often present in EVT

applications. This approach can be seen as an extension to the multivaria-

te framework of the model proposed by Frigessi et al. (2002) mentioned in

Section 1.2.

Although our ideas could theoretically be applied in higher dimensions, we

restrict ourselves to the bivariate setting for computational simplicity. Let

ct and cb be copula densities representing the tail and the body, with vectors

of parameters α and β, respectively. For (u∗, v∗) ∈ [0, 1]2, we define a new

density c∗ by

c∗(u∗, v∗;γ) =
π(u∗, v∗; θ)ct(u

∗, v∗;α) + [1− π(u∗, v∗; θ)]cb(u
∗, v∗;β)

K(γ)
, (5)

where γ = (θ,α,β) is the vector of model parameters and

K(γ) =

∫ 1

0

∫ 1

0

[π(u∗, v∗; θ)ct(u
∗, v∗;α) + (1− π(u∗, v∗; θ))cb(u

∗, v∗;β)] du∗ dv∗
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is a normalising constant. The weighting function π depends on the data, and

is specified such that, for small values of u∗ and v∗, more weight is given to cb

and, for larger values, more weight is given to ct. Thus, for a fixed value of the

parameter θ, the function π : (0, 1)2 → (0, 1) should be increasing in u∗ and

v∗. We note that having a dynamic weighting function is a modelling choice,

but without this equation (5) simply represents a standard mixture model.

Moreover, π is not required to be monotonic and can be defined based on

the application, which might make more sense outside of the extreme value

context.

A direct consequence of π(u∗, v∗; θ) depending on the data is that the margins

of the density c∗ are non-uniform; this leads to complications for inference.

That is, we cannot fit c∗ directly to the data as it is not a copula density.

We overcome these issues by fitting the copula of the density in equation (5),

which requires numerical integration to calculate. The first stage is to obtain

the true margins of (U∗, V ∗) ∼ c∗ as

FU∗(u∗) = P [U∗ ≤ u∗] =

∫ u∗

0

∫ 1

0

c∗(u, v)dv du,

and similarly for FV ∗ , and then the corresponding inverse functions, F−1
U∗ and

F−1
V ∗ so that we can transform the margins to Uniform(0, 1) via the probability

integral transform. The resulting copula is thus represented as

c(u, v;γ) =
c∗
(
F−1
U∗ (u), F−1

V ∗ (v);γ
)

fU∗
(
F−1
U∗ (u)

)
fV ∗

(
F−1
V ∗ (v)

) , (6)

where fU∗ and fV ∗ are the marginal probability density functions of c∗ and

γ = (θ,α,β) is the vector of model parameters, common to the density in

equation (5). Note that each of fU∗ , fV ∗ , FU∗ and FV ∗ depends on γ, but

this is suppressed in the notation for readability.

13



2.2. Simulation

It is important to be able to sample from the proposed model so that it can

be validated. To do so, we first note that we can rewrite the density (5) as

a standard mixture of two densities

c∗(u∗, v∗;γ) =
Kt

K
ft(u

∗, v∗; θ,α) +

(
1− Kt

K

)
fb(u

∗, v∗; θ,β),

where K = K(γ) and

ft(u
∗, v∗; θ,α) =

π(u∗, v∗; θ)ct(u
∗, v∗;α)

Kt

,

fb(u
∗, v∗; θ,β) =

[1− π(u∗, v∗; θ)]cb(u
∗, v∗;β)

Kb

,

Kt =

∫ 1

0

∫ 1

0

π(u∗, v∗; θ)ct(u
∗, v∗;α)du∗ dv∗,

Kb =

∫ 1

0

∫ 1

0

[1− π(u∗, v∗; θ)]cb(u
∗, v∗;β)du∗ dv∗.

Note that K = Kt + Kb. Thus, to simulate from c∗(u∗, v∗;γ) we need to

be able to sample from the two densities ft(u
∗, v∗; θ,α) and fb(u

∗, v∗; θ,β),

which are non-standard as they depend on the weighting function π(u∗, v∗; θ)

as well as the copula densities. However, as we can sample from the densities

ct(u
∗, v∗;α) and cb(u

∗, v∗;β), we can use a rejection sampling scheme to

simulate from the required densities ft and fb.

Note that, since the weighting function π(u∗, v∗; θ) is in (0, 1), it is the case

that

sup
(u∗,v∗)∈(0,1)2

ft(u
∗, v∗;α)

ct(u∗, v∗;α)
= sup

(u∗,v∗)∈(0,1)2

π(u∗, v∗; θ)ct(u
∗, v∗;α)

Ktct(u∗, v∗;α)
=

π(u∗, v∗; θ)

Kt

≤ 1

Kt

.

Similarly, the ratio fb/cb is bounded by 1/Kb. The rejection algorithm for

sampling from c∗ via ft and fb is then as follows:
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1. Simulate n draws from ct(u
∗, v∗;α) and keep each with probability

ft(u
∗, v∗; θ,α)

(1/Kt)ct(u∗, v∗;α)
=

Ktπ(u
∗, v∗; θ)ct(u

∗, v∗;α)

Ktct(u∗, v∗;α)
= π(u∗, v∗; θ).

The expected number of returned draws from ft is nKt.

2. Simulate n draws from cb(u
∗, v∗;β) and keep each with probability

fb(u
∗, v∗; θ,β)

(1/Kb)cb(u∗, v∗;β)
=

Kb[1− π(u∗, v∗; θ)]cb(u
∗, v∗;β)

Kbcb(u∗, v∗;β)
= 1−π(u∗, v∗; θ).

The expected number of returned draws from fb is nKb.

The total expected number of draws from both distributions together is

n(Kt + Kb) = nK; these are in proportions Kt/K and Kb/K = 1 − Kt/

K, and consequently we have a random sample from density c∗. To get a

fixed sample size n′, we simply take sufficiently large n and keep n′ draws at

random.

Figure 2 illustrates two examples of random samples from our weighted co-

pula model with different weighting functions. In each case we take a Gumbel

copula with α = 2 as ct and a Gaussian copula with ρ = 0.6 as cb, which

are the same components as the example in Figure 1. See Appendix A for

a directory of copula models and their parameterisations. Contrary to the

Aulbach et al. (2012a) approach, we see that there is no cut-off between the

two regions, with a smooth transition from data points mainly derived from

cb in the bottom left to those mainly derived from ct in the top right. The

influence of the choice of weighting function is also visible; for the same value

of θ, a preference for ct over cb is shown in the right plot.
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Figure 2: Example of data points from two weighted copula models simulated according

to the sampling procedure detailed in Section 2.2. In both cases, a Gumbel copula with

parameter α = 2 is taken as ct and a Gaussian copula with parameter ρ = 0.6 as cb.

Two weighting functions are used with θ = 1.5 in both: π(u∗, v∗; θ) = (u∗v∗)θ (left) and

π(u∗, v∗; θ) = exp{−θ(1−u∗)(1− v∗)} (right). Points in blue originate from cb and points

in red originate from ct.

2.3. Extremal dependence properties

We are interested in understanding the extremal dependence properties of

the proposed model and, to do so, we compute the dependence measures χ

and η mentioned in Section 1.3. However, since they are defined in terms of

the joint survival function of (FX(X), FY (Y )) , which we do not have, and

the integral of the density in equation (5) is intractable, χ and η are mainly

obtained numerically. We have, however, derived these measures for one

particular case with two different weighting functions; these are presented in
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the Supplementary Material. For a set of bivariate copulas, Heffernan (2000)

and Joe (2014) study these dependence measures; a selection of which are

summarised in Table 1.

Table 1: χ and η for a selection of copulas; ρ is the parameter of the Gaussian copula, and

α the parameter of the Gumbel and Hüsler-Reiss copulas.

Copula χ η

Gaussian 0 (1 + ρ)/2

Frank 0 1/2

Gumbel 2− 21/α 1

Hüsler-Reiss 2− 2Φ(1/α) 1

We consider mixtures of these four copulas to study the dependence pro-

perties of our model. In addition, we study the influence of the weighting

function π(u∗, v∗; θ) and its parameter θ. Thus, we consider two functions,

π(u∗, v∗; θ) = (u∗v∗)θ and π(u∗, v∗; θ) = exp{−θ(1− u∗)(1− v∗)}, each with

θ ∈ [0.2, 15]. The dependence measures χ(r) and η(r) were computed for 10

different threshold values r ranging from 0.7 to 0.9998779, which is 1− (2×

Machine Epsilon)0.25 in R, according to equations (2) and (4). For small θ,

the weighting functions are closer to 1 at lower levels u∗ and v∗, meaning that

the tail copula dominates over a larger region, and vice versa for large θ. In

general, we expect that, in the limit r → 1 and with a weighting function

that goes to 1 with u∗ and v∗, the dependence properties of our model are

dominated by those from the copula tailored to the tail, with similarities

to the body copula for large θ and smaller r. Table 2 shows the theoretical

values for χ and η for each of the copulas used in the four weighted copula
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models, and Figure 3 shows the outcomes of our numerical investigations for

Case 3. The remaining results are shown in the Supplementary Material.

For use in Table 2 and beyond, we let ηt and χt represent η and χ for the

tail copula, and similarly ηb and χb for the body copula.

Table 2: Theoretical values for χ and η for each of the copulas considered in the weighted

copula models studied based on Table 1. AD denotes “asymptotically dependent”; AI

denotes “asymptotically independent”.

Case Body Copula cb Tail Copula ct χt χb ηt ηb

1 Frank (AI) α = 2 Gaussian (AI) ρ = 0.6 0 0 0.8 0.5

2 Frank (AI) α = 1 Gumbel (AD) α = 3 0.74 0 1 0.5

3 Gumbel (AD) α = 1.2 Gaussian (AI) ρ = 0.5 0.22 0 1 0.75

4 Gumbel (AD) α = 2 Hüsler-Reiss (AD) α = 2 0.62 0.59 1 1
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Figure 3: χ(r) and η(r) for different thresholds r ∈ [0.7, 1) for the proposed model with

both π(u∗, v∗; θ) when cb is Gumbel (AD) and ct is Gaussian (AI). The coloured lines

represent the 10 different models depending on different values of θ; the thick black lines

represent the single copula models - Gumbel (dashed) and Gaussian (solid). The theore-

tical values for the Gumbel and Gaussian copulas based on Table 2 are represented by the

horizontal dashed lines.
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We can see from Figure 3 that, in the limit r → 1, χ(r) and η(r) of the

weighted copula model tend towards χt and ηt for both weighting functions.

However, the results in the Supplementary Material suggest that this does

not hold true for each of the combinations we consider. Depending on the

weighting function, our investigations suggest that cb has an influence on

the extremal dependence properties of the model in some cases. In parti-

cular, if ct is an asymptotically dependent copula and the weighting func-

tion is π(u∗, v∗; θ) = (u∗v∗)θ, we observe that the limiting value of χ for

the weighted copula model is dominated by χt with an influence from χb.

For an asymptotically independent tail copula and/or the weighting func-

tion π(u∗, v∗; θ) = exp{−θ(1 − u∗)(1 − v∗)}, our investigations suggest that

the limiting extremal dependence properties of the model are those from ct.

Moreover, the influence of the parameter θ differs since π(u∗, v∗; θ) = (u∗v∗)θ

grows more slowly than π(u∗, v∗; θ) = exp{−θ(1−u∗)(1−v∗)} as u∗, v∗ → 1.

When θ is larger, χ(r) and η(r) are closer to χb(r) and ηb(r), particularly for

smaller r, where χb(r) and ηb(r) are the sub-asymptotic extremal dependence

measures χ(r) and η(r) for cb.

We note that this investigation suggests that there are some interesting sub-

tleties in the tail dependence of models constructed in this way, and does

not provide general conclusions. As shown theoretically for some of the

considered cases, the weighted copula model has some intriguing features,

such as the influence that the body copula might have when the tail compo-

nent is asymptotically dependent for a given weighting function, which are

worth investigating further. However, for specific cases, similar numerical or

theoretical investigations can be carried out for any copulas and weighting
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functions of interest.

3. Inference

3.1. Parameter estimation

In order to estimate γ, we maximise the log-likelihood function of model (6),

ℓ(γ) =
n∑

i=1

log c(ui, vi;γ), ui, vi ∈ [0, 1]2, i = 1, . . . , n, (7)

assuming n independent observations from the copula. Because F−1
U∗ and

F−1
V ∗ are computationally expensive to obtain by a root finding algorithm,

these are approximated using a smooth spline, following Zhang et al. (2021).

We found the spline approximation produces results with a similar degree

of precision to the root finding algorithm, while reducing the computational

time considerably.

We conduct a simulation study to verify that inference on the proposed model

produces reasonable estimates for the vector of model parameters γ, and

their inherent uncertainty. To do so, we consider two examples with different

sample sizes: 500 and 1000 data points. Data are sampled from density (5)

via the sampling procedure outlined in Section 2.2.

For the first case, we take cb to be the Clayton copula density with α = 1,

and ct to be the Gumbel copula density with α = 2. For the second example,

cb is taken as the Joe copula density with α = 2 and ct is the Gaussian copula

density with ρ = 0.6. The parameter of the weighting function is set to be

θ = 0.8 in the first example and θ = 1 in the second case. Each data set is

simulated 100 times.
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Figure 4 displays the results of the simulation study. For each parameter, the

left boxplot shows the spread of estimates when n = 500, and the right box-

plot displays this for n = 1000. We observe that estimation seems generally

unbiased and uncertainty reduces when the sample size increases.
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(a) Parameter estimates of ct (left plot), cb

(middle plot), and the weighting parameter θ

(right plot) for n = 500 and n = 1000. The true

values for the parameters are shown in red.
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(b) Parameter estimates of ct (left plot), cb

(middle plot), and the weighting parameter θ

(right plot) for n = 500 and n = 1000. The true

values for the parameters are shown in red.

Figure 4: Estimation variability obtained by simulating each case 100 times.

Because the copula density (6) relies on numerical integration to obtain F, f

and F−1, it is important to assess the computational effort required to per-

form inference. Figure 5 displays the time taken to optimise the likelihoods

on an internal computing node running CentOS Linux, with an Intel CPU

running at 500GB of RAM. We can see that, for each of the models, the time

taken increases with the sample size, which is to be expected. It also varies

with the chosen copulas; for example, to evaluate the likelihood with n = 500

data points, the first model took around 30 minutes while the second took

around 50 minutes.
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(b) Case when ct is Gaussian and cb is Joe for

n = 500 (left) and n = 1000 (right).

Figure 5: Time (minutes) taken to optimise the log-likelihood (7) for each simulation.

3.2. Model misspecification

In addition to checking if inference on the model produces reasonable es-

timates for γ, we study the ability of the model to capture a misspecified

dependence structure. We consider two situations: the case where the un-

derlying data set comes from a single copula and we fit our model with this

copula as one of the components; and the case where the fitted model does

not contain the true copula. In the first case, we investigate whether the

estimate of the parameter of the weighting function θ agrees with the true

data. Since π(u∗, v∗; θ) is increasing in (0, 1), we expect θ̂ to be large (small)

when the true copula is tailored to the body (tail) of the distribution. In

the second case, we investigate whether our model still produces reliable es-

timates of various dependence summaries even though the true dependence

structure cannot be captured.

For the first case, we generate 1000 data points from a Joe copula with α = 2

and fit two weighted copula models: one with the true copula as ct and a

Gaussian copula as cb, and the other with the true copula as cb and a Clayton
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copula as ct. As before, 100 simulations for each case were performed and the

results are shown in the boxplots in Figure 6.
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Figure 6: Estimation variability obtained by simulating each case 100 times.

We observe that, when the Joe copula is taken as ct, the estimates for θ

are all less than 1, and when it is taken as cb, these are considerably larger

(here we use the logarithm of θ for ease of visualisation). Looking at the

estimates for the parameter of the true copula, although they show some

bias, they are fairly close to the true values, represented by the red lines.

Finally, the estimates for the parameters of the misspecified copula show

larger variability, which is to be expected as most of the weight is on the

true copula. Figure 7 shows a comparison between the AIC of the true

and weighted copula models, respectively. In the majority of cases (89% for

the first and 92% for the second), the true model outperforms the weighted

copula model in terms of AIC, as expected.
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copula as ct.

Figure 7: Comparison between the AIC of the true model and the fitted model.

For our second experiment, to evaluate the outcome of not being able to

capture the true dependence structure, we simulate 1000 data points from

a Gaussian copula with ρ = 0.65 and from a Galambos copula with α = 2.

For both cases, we generate 50 repetitions of the data set and fit a variety of

weighted copula models, selecting the best model based on the average AIC

values. In order to assess if the selected weighted copula model is flexible

enough to capture the dependence of the true data sets, we compute three

measures of dependence: Kendall’s τ, and χ(r) and η(r) from equations (2)

and (4), respectively, at several thresholds r ∈ (0, 1). We show how the model

performs by comparing with the theoretical values of the underlying models;

the results are shown in Figures 8 and 9.

Figure 8 displays the results for the weighted copula model where ct is in-

verted Gumbel, cb is Student t, and the true underlying structure is Gaus-

sian. The results for the second model where the true underlying structure

is Galambos and the selected weighted copula model is Coles-Tawn as ct

and Frank as cb are shown in Figure 9. In both cases, we observe that the

25



misspecified models capture the three dependence measures fairly well.
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Figure 8: Model and theoretical (in red) χ(r) (top left) and η(r) (top right) at levels

r ∈ {0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99}, and Kendall’s τ (bottom) for the selected

model when the true model is Gaussian with ρ = 0.65.
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Figure 9: Model and theoretical (in red) χ(r) (top left) and η(r) (top right) at levels

r ∈ {0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99}, and Kendall’s τ (bottom) for the selected

model when the true model is Galambos with α = 2.

4. Case study: ozone and temperature data

4.1. Data and background

The relationship between ozone concentration and temperature has been

analysed previously in the literature. For instance, Finch and Palmer (2020)

show that there is an increase of exceeding regulated thresholds for ozone

when the temperature is high. More recently, Gouldsbrough et al. (2022)

study how extreme levels of ozone concentration are influenced by temper-

ature in the UK by applying a temperature-dependent univariate extreme
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value model. They show that, with the increase in temperatures, the prob-

ability of exceeding a moderate regulated threshold of ozone concentration

has increased over the last decade; this leads to this event no longer being

considered extreme. The analysis of Gouldsbrough et al. (2022) only consid-

ers the univariate distribution of ozone extremes conditional upon the value

of temperature. Since both temperature and ozone concentration are mea-

surements of random variables, we can apply our weighted copula model to

learn about the relationship between these variables at all levels. Specifically,

we study the dependence between temperature and ozone concentration at

two UK sites: Blackpool (urban background) and Weybourne (rural back-

ground). Table 3 shows the regulated threshold indexes for the levels of air

pollution for Ozone in the UK.

Table 3: Daily Air Quality Index (DAQI) for ozone (O3) concentrations in the UK.

Levels Low Moderate High Very High

O3 (µg/m
3) [0, 100] [101, 160] [161, 240] > 240

We took the daily maxima from 8-hour running means ozone concentra-

tion available on the UK’s Automatic Urban and Rural Network (AURN)

(https://uk-air.defra.gov.uk) and obtain the corresponding daily maxi-

mum temperature data from the Centre for Environmental Analysis (CEDA)

archive (https://archive.ceda.ac.uk). Since higher temperatures are ex-

pected during summer, and in order to overcome the non-stationarity often

present in temperature data, we restrict our analysis to the summer months

(June-August). Based on the available data, we consider the years from 2011

to 2019 for Blackpool and from 2010 to 2019 for Weybourne; this results in
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827 and 892 observations, respectively. Figure 10a shows the scatterplot of

the daily maxima of temperature and the daily maxima of ozone for the sum-

mers of 2011 to 2019 in Blackpool and the respective regulated UK thresh-

olds, while Figure 10b shows the relationship between the variables when

transformed to uniform margins using a semi-parametric approach with a

GPD fit to the tail of both distributions. That is, we estimate the CDF of

each marginal distribution via

F (x) =


F̃ (x), x ≤ r,

1− ϕr

[
1 +

ξ(x− r)

σ

]−1/ξ

+
, x > r,

(8)

where F̃ (x) is the empirical distribution function, ϕr is the probability of

exceeding a selected high threshold r, and ξ and σ are the GPD shape and

scale parameters, respectively. The corresponding analysis for Weybourne is

presented in the Supplementary Material; the results show similar conclusions

to the analysis for Blackpool.
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Figure 10: Summer data from 2011 to 2019 for Blackpool, UK.

4.2. Model fitting

We start by fitting a single copula model to the whole data set for comparison

with the weighted copula model. Looking at Figure 10b, the variables seem

to exhibit positive correlation when they are both extreme, but negative de-

pendence otherwise. We anticipate that the weighted copula model may be

flexible enough to capture this, whereas a single copula is likely to be too

rigid. Table 4 shows the MLEs obtained by fitting a range of copulas and the

corresponding AIC values. From the copulas considered, the only ones capa-

ble of capturing negative dependence are the Gaussian and Frank, when their

parameters are negative, and the Student t (which also exhibits lower and

upper tail dependence). However, all parameter estimates are positive. In
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terms of AIC, the best fit is the Joe, followed by the Galambos, Hüsler-Reiss,

Gumbel and Coles-Tawn copulas; these are all known to be asymptotically

dependent copulas, which appears to agree with the dependence in the upper

tail shown in Figure 10b. As a further diagnostic, we compute the depen-

dence measure η(r) from equation (4) for r ∈ (0, 1) empirically, as well as

for the five best models in terms of AIC, and for the Gaussian and Frank

copulas; this is shown in Figure 11. The confidence intervals in Figure 11

were obtained via block bootstrapping the data with a block length of 14

days, to reflect temporal dependence in the extremes. It is evident that none

of the copulas fit the model well in the whole support based on this measure.

However, the Joe copula (in orange) appears to give the best fit in the tail,

consistent with its AIC value being lowest.

Table 4: MLEs for ten copulas and their AIC values. Lower AIC values are preferred.

Copula Parameter AIC

Clayton 1.22× 10−8 2.0

Frank 0.92 -15.8

Gumbel 1.20 -97.4

Inverted Gumbel 1.04 0.1

Galambos 0.46 -99.0

Gaussian 0.19 -28.6

Joe 1.41 -143.6

Student t 0.16 4.52 -52.8

Hüsler-Reiss 0.82 -99.1

Coles-Tawn 0.24 0.22 -95.9
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Figure 11: Empirical η(r) (in black) and η(r) for seven copulas (in colour) for r ∈ (0, 1).

The 95% confidence bands were obtained by block bootstrapping. Note that the η(r) for

the Galambos, the Hüsler-Reiss, the Gumbel and the Coles-Tawn copulas overlap.

We next fit the weighted copula model to the whole data set taking the

weighting function π(u∗, v∗; θ) = (u∗v∗)θ. We consider several copulas with

different extremal dependence characteristics to fit both cb and ct; Table

5 shows the MLEs obtained by optimising the log-likelihood (7) and their

AIC values for some of the models considered. According to AIC, there is

a preference for models with the Gaussian and Frank as candidates for cb

and AD copulas, such as the Galambos, Hüsler-Reiss, Joe and Coles-Tawn

copulas, as ct. In contrast to the single copula fits, the parameter estimates for

the Gaussian and the Frank copulas are negative, which mirror the negative

association visible in the body of Figure 10b.
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Table 5: MLEs for different weighted copula models and their AIC values when the weight-

ing function used is π(u∗, v∗; θ) = (u∗v∗)θ. Lower AIC values are preferred.

Model ct cb α̂ β̂ θ̂ AIC

Model 1 Hüsler-Reiss Gaussian 1.24 -0.40 0.35 -176.1

Model 2 Galambos Gaussian 0.79 -0.41 0.34 -172.1

Model 3 Coles-Tawn Gaussian 0.35 2.86 -0.33 0.43 -158.4

Model 4 Coles-Tawn Frank 0.33 4.80 -2.52 0.37 -163.2

Model 5 Joe Frank 1.61 -4.11 0.18 -184.9

Model 6 Clayton Gaussian 12.10 -0.20 2.10 -129.9

Model 7 Inverted Gumbel Gaussian 2.65 -0.29 0.90 -153.4

Model 8 Hüsler-Reiss Joe 1.28 1.30 3.18 -145.6

Model 9 Student t Galambos 0.72 4.98 0.28 2.59 -125.0

Model 10 Gaussian Clayton 0.81 3.38× 10−4 2.80 -132.6

Model 11 Gumbel Joe 1.52 1.18 0.91 -145.1

We next consider a different weighting function, π(u∗, v∗; θ) = exp{−θ(1 −

u∗)(1 − v∗)}, in the five models with the lowest AICs. The MLEs and the

AIC values are shown in Table 6. In terms of AIC, these models are all better

fits to the data, while the negative correlation is still captured by cb, and is

now stronger. Because these models represent a better fit based on AIC, we

focus on them for the rest of the analysis.
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Table 6: MLEs for five weighted copula models and their AIC values when the weighting

function used is π(u∗, v∗; θ) = exp{−θ(1− u∗)(1− v∗)}. Lower AIC values are preferred.

Model ct cb α̂ β̂ θ̂ AIC

Model 1 Hüsler-Reiss Gaussian 1.33 -0.74 3.32 -240.1

Model 2 Galambos Gaussian 0.90 -0.72 3.55 -237.2

Model 3 Coles-Tawn Gaussian 0.85 0.79 -0.74 3.25 -234.8

Model 4 Coles-Tawn Frank 0.869 1.02 -4.51 4.33 -235.7

Model 5 Joe Frank 1.72 -6.49 2.45 -232.9

4.3. Diagnostics

To check the adequacy of the model fits, we compare a variety of empiri-

cal dependence measures to their model-based counterparts. These include

Kendall’s τ, the dependence measures χ(r) and η(r) for r ∈ (0, 1), and some

probabilities of interest. Specifically, we look at the probability of ozone

concentrations exceeding the so-called moderate threshold (i.e., 100 µg/m3)

when the temperature is high or low, and the probability of O3 exceeding

this and the higher threshold of 160 µg/m3, knowing that the temperature

is in a specific range.

Figure 12 displays χ(r) and η(r) for r ∈ (0, 1). A clear improvement from the

single copula models shown in Figure 11 can be seen as now all five models

offer a reasonable fit throughout the whole support. In addition, model 5

(in light green) seems to provide slightly better χ(r) and η(r) estimates at

median values of r and in the tail.
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Figure 12: Dependence measures χ(r) and η(r).
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The average temperature in summer in Blackpool is between 17◦C and 20◦C

and the observed 90th, 95th and 99th percentiles of the temperature are ap-

proximately 22◦C, 24◦C and 28◦C, respectively. Thus, we focus on probabili-

ties based on these values of temperature; these are presented with Kendall’s

τ in Table 7. We can see that the five models give very similar probabilities

and they are all inside the 95% confidence interval of the empirical values, ex-

cept for P [T ≤ 16, O3 ≥ 100] and P [O3 ≥ 160 | 28 ≤ T ≤ 29]. The empirical

probability and its 95% confidence interval of the latter are explained by the

low number of observations present in the data set. When there are no ob-

servations in a certain region then this will be true of each bootstrap sample

as well. Gouldsbrough et al. (2022) obtained the mean probability of exceed-

ing the high threshold 160 µg/m3 at the 99th percentile of temperature for

urban and rural backgrounds across the UK. These were 0.0002 ([0, 0.0004])

for an urban background and 0.006 ([0.003, 0.009]) for a rural background.

We obtained higher probabilities of exceeding this threshold given that the

temperature is close to the observed 99th percentile (we refer readers to the

Supplementary Material for the results for Weybourne). This might be due

to having only considered two sites within the UK, and potentially some of

the characteristics of the relationship between temperature and ozone being

better captured with the weighted copula model than with the univariate

conditional model.
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Table 7: Diagnostics for the best five models based on their AIC values. The 95% confi-

dence intervals for the empirical values were obtained by block bootstrapping.

Model Kendall’s τ P [T ≤ 16, O3 ≥ 100] P [T ≥ 22, O3 ≥ 100]

Empirical 0.0821 0.0012 0.0363

(95% CI) (0.0173 , 0.1867) (0.0000 , 0.0011) (0.0170 , 0.0601)

Model 1 0.0690 0.0036 0.0332

Model 2 0.0663 0.0040 0.0336

Model 3 0.0770 0.0039 0.0338

Model 4 0.0779 0.0035 0.0348

Model 5 0.0718 0.0036 0.0353

Model P [T ≥ 24, O3 ≥ 100] P [O3 ≥ 100 | 22 ≤ T ≤ 23] P [O3 ≥ 160 | 28 ≤ T ≤ 29]

Empirical 0.0302 0.1330 0.0000

(95% CI) (0.0147 , 0.0544) (0.0227 , 0.1944) (0.0000 , 0.0000)

Model 1 0.0246 0.1441 0.0070

Model 2 0.0250 0.1412 0.0062

Model 3 0.0251 0.1429 0.0061

Model 4 0.0262 0.1392 0.0055

Model 5 0.0267 0.1366 0.0050

An advantage of this modelling approach in comparison to the conditional

univariate modelling of Gouldsbrough et al. (2022) is that we are able to

extrapolate and consider probabilities of ozone exceeding certain thresholds

at temperature values that have not been observed in the data set. In this

way, we can consider probabilities such as P [O3 ≥ 160 | 33 ≤ T ≤ 35], which

we estimate to be 0.6944 for Model 1, for example.
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5. Conclusions and discussion

In this paper, we introduced a dependence model that is able to capture both

the body and tail of a bivariate data set. This is important when we aim

to obtain an accurate representation of the data in both regions. The model

has the advantage of not requiring a choice of thresholds above which we fit

the copula tailored to the extreme observations. Moreover, it offers a smooth

transition between the two copulas. Through simulation studies, we have

shown that the model behaves as expected when only a single dependence

structure is present, and that it is sufficiently flexible to capture misspecified

dependence structures. We applied the weighted copula model to study the

relationship between temperature and concentrations of air pollution in the

UK and showed that this model performs substantially better than fitting a

single copula model to the data. In fact, in this particular application, we

were able to capture the negative dependence exhibited by the bulk and the

positive association present in the upper tail, which was not possible through

fitting a single copula.

A drawback of the weighted copula model is that it is computationally ex-

pensive due to the need for numerical integration and inversion. As shown

in the simulation studies in Sections 3.1 and 3.2, for a sample size of 1000,

optimising the log-likelihood takes more than one hour to compute, although

the run time also varies depending on the chosen copulas. Whilst in principle

the weighted copula model could be extended to higher dimensions, doing so

would exacerbate the computational issues.

For the temperature and ozone data, we have χ(r) > 0 and η(r) < 1, for

the largest values of r, which does not allow us to draw conclusions about
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the extremal dependence. This is a common situation in practice but results

in complications if we wish to extrapolate for larger values than the ones

observed. Incorporating a more flexible copula as the tail component of the

proposed model is a possibility to overcome this issue. Such a copula could be

the one proposed by Huser and Wadsworth (2019), which is able to capture

both dependence classes with the transition between them occurring at an

interior point of the parameter space. However, because it is computationally

expensive on its own, when applied as the tail component in our model, the

computational time required was not feasible.

It would be an advantage to have a copula model that could accommodate

changes in the dependence structure due to covariates over the whole support

of the distribution. Until now, we have been assuming stationarity, which is

rarely the case in real world situations. Non-stationary multivariate extreme

value methods naturally focus on capturing trends present in the extreme

observations. However, data may be extreme in only one variable and thus

studying the trends present in the body of the data is of importance as well.

Incorporating covariates in the proposed model would also be an interesting

avenue for future work.

Finally, some theoretical aspects of the weighted copula model remain open

for further work. For instance, it would be interesting to investigate bounds

on differences between cb and/or ct with the copula c of c∗, or whether we

could identify the family of the resulting copulas in specific cases such as

when both ct or cb are from the same family. Further theoretical exploration

of extremal dependence properties of the weighted copula model would also

be valuable as only particular cases were considered.
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Appendix A. Copula densities

In this appendix we give the copula distribution function C and density

function c for all copulas used in the paper.

Appendix A.1. Gaussian copula

The Gaussian copula with correlation parameter ρ ∈ (−1, 1) is given by

C(u, v; ρ) = Φ2

(
Φ−1

1 (u),Φ−1
1 (v); ρ

)
, u, v ∈ (0, 1),

where Φ2(·, ·; ρ) is the bivariate standard normal distribution function with

correlation ρ and Φ−1
1 (·) is the inverse of the univariate standard normal

distribution function. The Gaussian copula density can be written as

c(u, v; ρ) =
1√

1− ρ2
exp

{
−ρ2x2 + ρ2y2 − 2ρxy

2(1− ρ2)

}
, u, v ∈ (0, 1),

where x = Φ−1
1 (u) and y = Φ−1

1 (v).

Appendix A.2. Student t copula

The Student t copula with correlation parameter ρ ∈ (−1, 1) and ν > 0

degrees of freedom is given by

C(u, v; ρ, ν) = T2,ν

(
T−1
ν (u), T−1

ν (v); ρ
)
, u, v ∈ (0, 1),

where T2,ν(·, ·; ρ) is the bivariate t distribution function with correlation pa-

rameter ρ and T−1
ν (·) is the inverse of the univariate t distribution function.

The Student t copula density can be written as

c(u, v; ρ, ν) =
1√

1− ρ2

Γ
(
ν+2
2

)
Γ
(
ν
2

)
Γ
(
ν+1
2

)2
[(

1 + x2

ν

)(
1 + y2

ν

)](ν+1)/2

[
1 + (x2+y2−2ρsr)

ν(1−ρ)2

](ν+2)/2
, u, v ∈ (0, 1),

where x = T−1(u) and y = T−1(v).
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Appendix A.3. Frank copula

The Frank copula with parameter α ∈ R \ {0} is given by

C(u, v;α) = − 1

α
log

(
1− (1− e−αu) (1− e−αv)

1− e−α

)
, u, v ∈ (0, 1),

and its density can be written as

c(u, v;α) =
α(1− e−α)e−α(u+v)

[1− e−α − (1− e−αu)(1− e−αv)]2
, u, v ∈ (0, 1).

Appendix A.4. Clayton copula

The Clayton copula with parameter α ∈ R+ is given by

C(u, v;α) =
(
u−α + v−α − 1

)−1/α
, u, v ∈ (0, 1),

and its density can be written as

c(u, v;α) =
(α + 1)(uv)α

(uα + vα − (uv)α)1/α+2
, u, v ∈ (0, 1).

Appendix A.5. Joe copula

The Joe copula with parameter α > 1 is given by

C(u, v;α) = 1− [(1− u)α + (1− v)α − (1− u)α (1− v)α]
1/α

, u, v ∈ (0, 1),

and its density can be written as

c(u, v;α) = (xα + yα − (xy)α)1/α−2 (xy)α−1 (α− 1 + xα + yα − (xy)α) , u, v ∈ (0, 1),

where x = 1− u and y = 1− v.
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Appendix A.6. Gumbel copula

The Gumbel copula with parameter α > 1 is given by

C(u, v;α) = exp
{
− (xα + yα)1/α

}
, u, v ∈ (0, 1),

where x = − log(u) and y = − log(v). The Gumbel copula density can be

written as

c(u, v;α) =
C(u, v;α)

uv
(xy)α−1 (xα + yα)1/α−2

[
(xα + yα)1/α + α− 1

]
, u, v ∈ (0, 1).

The Inverted Gumbel copula density is obtained if we substitute u and v by

(1− u) and (1− v), respectively.

Appendix A.7. Hüsler-Reiss copula

The Hüsler-Reiss copula with parameter α ∈ R+ is given by

C(u, v;α) = exp

{
−xΦ

(
1

α
+

α

2
log

(
x

y

))
− yΦ

(
1

α
+

α

2
log

(
y

x

))}
, u, v ∈ (0, 1),

where x = − log(u) and y = − log(v). The Hüsler-Reiss copula density can

be written as

c(u, v;α) =
C(u, v;α)

uv

[
Φ

(
1

α
+

α

2
log

(
x

y

))
Φ

(
1

α
+

α

2
log

(
y

x

))
+

α

2y
ϕ

(
1

α
+

α

2
log

(
x

y

))]
, u, v ∈ (0, 1).

Appendix A.8. Galambos copula

The Galambos copula with parameter α ∈ R+ is given by

C(u, v;α) = exp
{
−x− y +

(
x−α + y−α

)−1/α
}
, u, v ∈ (0, 1),
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where x = − log(u) and y = − log(v). For u, v ∈ (0, 1), the Galambos copula

density can be written as

c(u, v;α) =
C(u, v;α)

uv

[
1− (x−α + y−α)−1−1/α(x−α−1 + y−α−1)

+(x−α + y−α)−2−1/α(xy)−α−1
(
1 + α + (x−α + y−α)−1/α

)]
.

Appendix A.9. Coles-Tawn copula

The Coles-Tawn copula with parameters α, β ∈ R+ is given by

C(u, v;α, β) = exp {−x (1− Be(q;α + 1, β))− yBe(q;α, β + 1)} , u, v ∈ (0, 1),

where x = − log(u), y = − log(v), q =
αx

αy + βx
and Be(q; a, b) represents

the Beta distribution function with shape parameters a > 0 and b > 0. The

Coles-Tawn copula density can be written as

c(u, v;α, β) =
C(u, v;α, β)

uvx2y2

[
x2y2 (1− Be (q;α + 1, β)) Be (q;α, β + 1)

+
αβΓ(α + β + 1)

Γ(α)Γ(β)

qα−1(1− q)β−1

(α/x+ β/y)3

]
, u, v ∈ (0, 1).
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1. Extremal dependence properties

From equation (2) of Section 1.3 of the main text, we have

χ = lim
r→1

χ(r) = lim
r→1

P [U∗ > r, V ∗ > r]

P [U∗ > r]

= lim
r→1

(1/K)
∫ 1

r

∫ 1

r
fct(u

∗, v∗;α, θ)dv∗ du∗ + (1/K)
∫ 1

r

∫ 1

r
fcb(u

∗, v∗;β, θ)dv∗ du∗

(1/K)
∫ 1

r

∫ 1

0
fct(u

∗, v∗;α, θ)dv∗ du∗ + (1/K)
∫ 1

r

∫ 1

0
fcb(u

∗, v∗;β, θ)dv∗ du∗

= lim
r→1

∫ 1

r

∫ 1

r
fct(u

∗, v∗;α, θ)dv∗ du∗ +
∫ 1

r

∫ 1

r
fcb(u

∗, v∗;β, θ)dv∗ du∗∫ 1

r

∫ 1

0
fct(u

∗, v∗;α, θ)dv∗ du∗ +
∫ 1

r

∫ 1

0
fcb(u

∗, v∗;β, θ)dv∗ du∗
,

where fct = Ktft and fcb = Kbfb with Kt, Kb, ft, fb and K as defined in

Section 2.2 of the main text.

1.1. Case 2: cb is a Frank copula, ct is a Gumbel copula and π(u∗, v∗; θ) =

(uv)θ

Assuming π(u∗, v∗; θ) = (u∗v∗)θ, we have

fcb(u
∗, v∗; β, θ) = [1− (u∗v∗)θ]

β(1− exp{−β}) exp{−β(u∗ + v∗)}
[1− exp{−β} − (1− exp{−βu∗})(1− exp{−βv∗})]2
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and

fct(u
∗, v∗;α, θ) = (u∗v∗)θ

Ct(u
∗, v∗;α)

u∗v∗
(xy)α−1 (xα + yα)1/α−2

[
(xα + yα)1/α + α− 1

]
=(u∗v∗)θ−1Ct(u

∗, v∗;α)(xy)α−1 (xα + yα)1/α−2
[
(xα + yα)1/α + α− 1

]
,

with x = − log(u∗), y = − log(v∗) and Ct(u
∗, v∗;α) = exp

{
− (xα + yα)1/α

}
.

1.1.1. Effect of the body copula cb

Since the interest is on the limit when u∗ and v∗ are very near (1,1) and

fcb(u
∗, v∗; β, θ) is defined at (1,1), a Taylor approximation of order 1 can be

used about (1,1) with point (1 − s, 1 − t) for
∫ 1

r

∫ 1

r
fcb(u

∗, v∗)dv∗ du∗, where

s, t → 0. Therefore, for some norm ∥ · ∥ near 0, we have

fcb(1− s, 1− t; β, θ) = fcb(1, 1)− s
∂fcb
∂s

(1, 1)− t
∂fcb
∂t

(1, 1) +O
(
∥(s, t)∥2

)
,

where

∂fcb
∂s

=
2β2[1− (st)θ](1− exp{−β})(1− exp{−βt}) exp{−β(2s+ t)}

[1− exp{−β} − (1− exp{−βs})(1− exp{−βt})]3

− βθsθ−1tθ(1− exp{−β}) exp{−β(s+ t)}
[1− exp{−β} − (1− exp{−βs})(1− exp{−βt})]2

− β2[1− (st)θ](1− exp{−β}) exp{−β(s+ t)}
[1− exp{−β} − (1− exp{−βs})(1− exp{−βt})]2

.

At the point (1,1), fcb(1, 1) = 0 and
∂fcb
∂s

(1, 1) =
∂fcb
∂t

(1, 1) = −βθ (1− exp{−β})−1.

So,

fcb(1− s, 1− t; β, θ) = βθ (1− exp{−β})−1 (s+ t) +O
(
∥(s, t)∥2

)
.

2



Taking s = 1− u∗ and t∗ = 1− v∗, we have∫ 1

r

∫ 1

r

fcb(u
∗, v∗)dv∗ du∗ =

∫ 1−r

0

∫ 1−r

0

βθ (1− exp{−β})−1 (s+ t)dt ds+O
(
(1− r)4

)
=βθ (1− exp{−β})−1

∫ 1−r

0

∫ 1−r

0

(s+ t)dt ds+O
(
(1− r)4

)
=βθ (1− exp{−β})−1 (1− r)3 +O

(
(1− r)4

)
.

Similarly, for
∫ 1

r

∫ 1

0
fcb(u

∗, v∗)dv∗ du∗, a Taylor approximation of order 1 can

be used about (1, v∗) with point (u∗, v∗). Thus, we have

fcb(u
∗, v∗; β, θ) = fcb(1, v

∗) + (u∗ − 1)
∂fcb
∂u∗ (1, v

∗) +O
(
(u∗ − 1)2

)
,

where

fcb(1, v
∗) =

(1− (v∗)θ)β exp{−β(1− v∗)}
1− exp{−β}

= Av∗,β,θ

and

∂fcb
∂u∗ (1, v

∗) =
2β2(1− (v∗)θ)(1− exp{−βv∗}) exp{−2β(1− v∗)}

(1− exp{−β})2

− βθ(v∗)θ exp{−β(1− v∗)}
1− exp{−β}

− β2(1− (v∗)θ) exp{−β(1− v∗)}
1− exp{−β}

= Bv∗,β,θ.

So, fcb(u
∗, v∗) = Av∗,β,θ +Bv∗,β,θ(u

∗ − 1) +O ((u∗ − 1)2) , and we obtain∫ 1

r

∫ 1

0

fcb(u
∗, v∗)dv∗ du∗ =

∫ 1

r

∫ 1

0

[Av∗,β,θ +Bv∗,β,θ(u
∗ − 1)]dv∗ du∗ +O

(
(1− r)3

)
=

∫ 1

0

Av∗,β,θ

∫ 1

r

du∗ dv∗ +

∫ 1

0

Bv∗,β,θ

∫ 1

r

(u∗ − 1)du∗ dv∗ +O
(
(1− r)3

)
=(1− r)

∫ 1

0

Av∗,β,θdv
∗︸ ︷︷ ︸

Cβ,θ

−1

2
(1− r)2

∫ 1

0

Bv∗,β,θdv
∗︸ ︷︷ ︸

Dβ,θ

+O
(
(u∗)2

)

=Cβ,θ(1− r)− Dβ,θ

2
(1− r)2 +O

(
(1− r)3

)
3



1.1.2. Effect of the tail copula ct

Contrarily to fcb(·), fct(u∗, v∗;α, θ) is not finite at (1,1). For this reason, it

is not possible to use a Taylor approximation about (1,1). Instead, we use

asymptotics near this point. Specifically, we now write u∗ and v∗ in terms of

s and t, where s, t > 0 and u∗ = 1− s+ o(s) and v∗ = 1− t+ o(t) as s, t → 0.

This describes the behaviour of u∗ and v∗ as they tend to 1. Thus, for the

first term of fct , we have

(u∗v∗)θ−1 =(1− s)θ−1(1− t)θ−1 + o(s) + o(t)

=[1− (θ − 1)s][1− (θ − 1)t] + o(s) + o(t),

as s, t → 0.

Let us first consider the case when x = − log(u∗) > y = − log(v∗). For

(u∗, v∗) → (1, 1), i.e., s → 0 and t → 0, with t/s → c for c ∈ (0, 1), the

copula density term follows asymptotically

ct(u
∗, v∗;α) ∼ (α− 1)x−αyα−1

[
1 +

(y
x

)α]1/α−2

.

Analogously, when x < y, i.e., s → 0 and t → 0, with t/s → c for c ∈ (1,∞),

ct(u
∗, v∗;α) ∼ (α− 1)y−αxα−1

[
1 +

(
x

y

)α]1/α−2

.

Moreover, x = s + o(s) and y = t + o(t) as s, t → 0. So, considering the

symmetry between cases x > y and x < y, and recalling u∗ = 1 − s + o(s)

and v∗ = 1− t+ o(t),∫ 1

r

∫ 1

r

fct(u
∗, v∗)dv∗ du∗ = P [1− S > r, 1− T > r] = 2P [S < 1− r, T < S].

4



So, we have

P [S < 1− r, T < S] =

∫ 1−r

0

∫ s

0

f ∗
ct(s, t;α, θ)dt ds

=

∫ 1−r

0

∫ s

0

[1− (θ − 1)s][1− (θ − 1)t](α− 1)s−αtα−1

[
1 +

(
t

s

)α]1/α−2

dt ds+ o
(
(1− r)2

)
= (α− 1)

∫ 1−r

0

[1− (θ − 1)s]s−α

∫ s

0

[1− (θ − 1)t]tα−1

[
1 +

(
t

s

)α]1/α−2

dt︸ ︷︷ ︸
A(s)

ds+ o
(
(1− r)2

)

as r → 1. Evaluating A(s) by parts, we get∫ s

0

[1− (θ − 1)t]tα−1

[
1 +

(
t

s

)α]1/α−2

dt

=
21/α−1sα

1− α
− 21/α−1(θ − 1)sα+1

1− α
− sα

1− α
− (1− θ)sα+1

1− α
Cα,

with Cα =

∫ 1

0

(1 + qα)1/α−1dq. And, by substituting A(s) in the outer inte-

gral, we obtain

P [S < 1− r, T < s] =(1− 21/α−1)(1− r) +
[
(21/α − 1− Cα)(θ − 1)/2

]
(1− r)2

+ o
(
(1− r)2

)
,

as r → 1. Then,∫ 1

r

∫ 1

r

fct(u
∗, v∗)dv∗ du∗ =2(1− 21/α−1)(1− r) + 2

[
(21/α − 1− Cα)(θ − 1)/2

]
(1− r)2

+ o
(
(1− r)2

)
=(2− 21/α)(1− r) + (21/α − 1− Cα)(θ − 1)(1− r)2

+ o
(
(1− r)2

)
,

as r → 1.
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Since for
∫ 1

r

∫ 1

0
fct(u

∗, v∗)dv∗ du∗ we need to integrate over the support for

v∗, it is not possible to approximate fct(·) as above. Instead, we take the

change of variable y = xz, with z = y/x ∈ R+, so we have u∗ = exp{−x}

and v∗ = exp{−xz}. Thus, we obtain∫ 1

r

∫ 1

0

fct(u
∗, v∗;α, θ)dv∗ du∗

=

∫ 1

r

∫ 1

0

(u∗v∗)θ−1Ct(u
∗, v∗;α)(xy)α−1 (xα + yα)1/α−2

[
(xα + yα)1/α + α− 1

]
dv∗ du∗

=

∫ − log(r)

0

∫ ∞

0

exp
{
−x
[
θ(1 + z) + (1 + zα)1/α

]}
zα−1 (1 + zα)1/α−2

×
[
x (1 + zα)1/α + α− 1

]
dz dx

=

∫ − log(r)

0

∫ ∞

0

x zα−1 (1 + zα)2/α−2︸ ︷︷ ︸
g(z)

exp

−x
[
θ(1 + z) + (1 + zα)1/α

]︸ ︷︷ ︸
h(z)

 dz dx

+ (α− 1)

∫ − log(r)

0

∫ ∞

0

zα−1 (1 + zα)1/α−2︸ ︷︷ ︸
f(z)

exp

−x
[
θ(1 + z) + (1 + zα)1/α

]︸ ︷︷ ︸
h(z)

 dz dx

=

∫ ∞

0

g(z)

∫ − log(r)

0

x exp{−xh(z)}dx︸ ︷︷ ︸
B(z,r)

dz + (α− 1)

∫ ∞

0

f(z)

∫ − log(r)

0

exp{−xh(z)}dx︸ ︷︷ ︸
C(z,r)

dz.

Evaluating B(z, r) by parts, we get∫ − log(r)

0

x exp{−xh(z)}dx =

[
− x

h(z)
exp{−xh(z)}

]x=− log(r)

x=0

−
[

1

h2(z)
exp{−xh(z)}

]x=− log(r)

x=0

=
log(r)

h(z)
rh(z) − 1

h2(z)
rh(z) +

1

h2(z)
.

Analogously, by evaluating C(z, r), we have∫ − log(r)

0

exp{−xh(z)}dx =

[
− 1

h(z)
exp{−h(z)x}

]x=− log(r)

x=0

=− 1

h(z)
rh(z) +

1

h(z)
.
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Substituting B(z, r) and C(z, r) in the outer integral, we obtain∫ 1

r

∫ 1

0

fct(u
∗, v∗;α, θ)dv∗ du∗ = log(r)

∫ ∞

0

g(z)

h(z)
rh(z)dz +

∫ ∞

0

g(z)

h2(z)

(
1− rh(z)

)
dz

+ (α− 1)

∫ ∞

0

f(z)

h(z)

(
1− rh(z)

)
dz.

Evaluating

∫ ∞

0

f(z)

h(z)

(
1− rh(z)

)
dz by parts, we have

∫ ∞

0

f(z)

h(z)

(
1− rh(z)

)
dz =

[
1

1− α
(1 + zα)1/α−1 1− rh(z)

h(z)

]∞
0

−
∫ ∞

0

1

1− α
(1 + zα)1/α−1

(
h′(z)

(
rh(z) − 1

)
h2(z)

− log(r)h′(z)rh(z)

h(z)

)
dz︸ ︷︷ ︸

D(r)

=
1

1− α
lim
z→∞

(1 + zα)1/α−1 1− rθ(1+z)+(1+zα)1/α

θ(1 + z) + (1 + zα)1/α

− 1

1− α

1− rθ+1

θ + 1
−D(r)

=
1

1− α
lim
z→∞

z1−α rz(θ+1)

z(1 + θ)
+

1− rθ+1

(α− 1)(θ + 1)
−D(r)

=
1

1− α
lim
z→∞

z−α r
z(θ+1)

1 + θ
+

1− rθ+1

(α− 1)(θ + 1)
−D(r)

=
1− rθ+1

(α− 1)(θ + 1)
−D(r).

Noting that h′(z) = θ+zα−1(1+zα)1/α−1, and recalling that g(z) = zα−1(1+
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zα)2/α−2, D(r) can be simplified as below

D(r) =

∫ ∞

0

1

1− α
(1 + zα)1/α−1

(
h′(z)

(
rh(z) − 1

)
h2(z)

− log(r)h′(z)rh(z)

h(z)

)
dz

=

∫ ∞

0

1

1− α
(1 + zα)1/α−1 [θ + zα−1(1 + zα)1/α−1

] (rh(z) − 1
)

h2(z)
dz

− log(r)

∫ ∞

0

1

1− α
(1 + zα)1/α−1 [θ + zα−1(1 + zα)1/α−1

] rh(z)
h(z)

dz

=− θ

∫ ∞

0

1

1− α
(1 + zα)1/α−1

(
1− rh(z)

)
h2(z)

dz −
∫ ∞

0

1

1− α
zα−1 (1 + zα)2/α−2

(
1− rh(z)

)
h2(z)

dz

− θ log(r)

∫ ∞

0

1

1− α
(1 + zα)1/α−1 r

h(z)

h(z)
dz − log(r)

∫ ∞

0

1

1− α
zα−1 (1 + zα)2/α−2 r

h(z)

h(z)
dz

=
θ

α− 1

∫ ∞

0

(1 + zα)1/α−1

(
1− rh(z)

)
h2(z)

dz +
1

α− 1

∫ ∞

0

g(z)

h2(z)

(
1− rh(z)

)
dz

+
θ log(r)

α− 1

∫ ∞

0

(1 + zα)1/α−1 r
h(z)

h(z)
dz +

log(r)

α− 1

∫ ∞

0

g(z)

h(z)
rh(z)dz.

Thus, we have∫ 1

r

∫ 1

0

fct(u
∗, v∗;α, θ)dv∗ du∗ = log(r)

∫ ∞

0

g(z)

h(z)
rh(z)dz +

∫ ∞

0

g(z)

h2(z)

(
1− rh(z)

)
dz

+ (α− 1)
1− rθ+1

(α− 1)(θ + 1)
− (α− 1)

θ

α− 1

∫ ∞

0

(1 + zα)1/α−1

(
1− rh(z)

)
h2(z)

dz

− (α− 1)
1

α− 1

∫ ∞

0

g(z)

h2(z)

(
1− rh(z)

)
dz − (α− 1)

θ log(r)

α− 1

∫ ∞

0

(1 + zα)1/α−1 r
h(z)

h(z)
dz

− (α− 1)
log(r)

α− 1

∫ ∞

0

g(z)

h(z)
rh(z)dz

=
1− rθ+1

θ + 1
− θ

∫ ∞

0

(1 + zα)1/α−1

(
1− rh(z)

)
h2(z)

dz − θ log(r)

∫ ∞

0

(1 + zα)1/α−1 r
h(z)

h(z)
dz

=1− r − θ

2
(1− r)2 + o

(
(1− r)2

)
,

where −θ
∫∞
0

(1 + zα)1/α−1 (1−rh(z))
h2(z)

dz − θ log(r)
∫∞
0

(1 + zα)1/α−1 rh(z)

h(z)
dz =

o((1−r)2) as r → 1. Additionally, rθ+1 = 1−(θ+1)(1−r)+[θ(θ + 1)/2] (1−

r)2 + o ((1− r)2) as r → 1 by the Binomial expansion.
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1.1.3. Extremal dependence χ for this case

Let

c1 = 2− 21/α = χGumbel, c5 = −θ/2 + o
(
(1− r)2

)
,

c2 = (21/α − 1− Cα)(θ − 1), c6 = Cβ,θ = β (1− exp{−β})−1

∫ 1

0

(1− (v∗)θ)e−β(1−v∗)dv∗,

c3 = βθ (1− exp{−β})−1 , c7 = −Dβ,θ/2.

c4 = 1,

We then have

χ = lim
r→1

c1(1− r) + c2(1− r)2 + c3(1− r)3 + o ((1− r)3)

c4(1− r) + c5(1− r)2 + c6(1− r) + c7(1− r)2 + o ((1− r)2)

= lim
r→1

(
c1

c4 + c6
+

[
c2 − c1(c5 + c7)

(c4 + c6)2

]
(1− r) +O

(
(1− r)2

))
=

c1
c4 + c6

=
2− 21/α

1 + β (1− exp{−β})−1 ∫ 1

0
(1− (v∗)θ)e−β(1−v∗)dv∗

(1)

For the vector of parameters γ = (3, 1, 1.844444), c1 ≈ 0.740079, c5 = 1 and

c7 ≈ 0.5630892. Thus, from equation (1), we have χ ≈ 0.473472. Moreover,

from the numerical investigation, χ(r) ≈ 0.4699556 with r = 0.9998779.

Figure 1 shows this comparison.

9



0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Thresholds

χ

χ(r)

χb

χt

χmodel

Figure 1: The blue line represents χ(r) for r ∈ [0.7, 1) with weighting function

π(u∗, v∗; θ) = (u∗v∗)θ and θ = 1.84444. The thick black lines represent the single cop-

ula models - Frank (dashed) and Gumbel (solid). The theoretical values for the Frank

and Gumbel copulas based on Table 2 of Section 2.3 from the main text are represented

by the horizontal dashed lines, and the value derived for the model is represented by the

pink dashed line.

For the vector of parameters γ = (1.5, 3, 3.488889), c1 ≈ 0.4125989, c5 =

1 and c7 ≈ 0.5555462. Thus, from equation (1), we have χ ≈ 0.2652438.

Moreover, from the numerical investigation, χ(r) ≈ 0.2842924 with r =

0.9998779. Figure 2 shows this comparison.
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Figure 2: The blue line represents χ(r) for r ∈ [0.7, 1) with weighting function

π(u∗, v∗; θ) = (u∗v∗)θ and θ = 3.488889. The thick black lines represent the single copula

models - Frank (dashed) and Gumbel (solid). The theoretical values for the Frank and

Gumbel copulas based on Table 2 of Section 2.3 from the main text are represented by

the horizontal dashed lines, and the value derived for the model is represented by the pink

dashed line.
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1.1.4. Extremal dependence η for this case

As χ > 0, we should expect η = 1. Following equation (4) of Section 1.3 from

the main text, we have

η = lim
r→1

log (P [U∗ > r])

log (P [U∗ > r, V ∗ > r])

= lim
r→1

log [c4(1− r) + c5(1− r)2 + c6(1− r) + c7(1− r)2 + o ((1− r)2)]

log [c1(1− r) + c2(1− r)2 + c3(1− r)3 + o ((1− r)3)]

(∞
∞)
= lim

r→1

−c4 − c6 − 2(c5 + c7)(1− r) + o(1− r)

−c1 − 2c2(1− r)− 3c3(1− r)2 + o ((1− r)2)

c1 + c2(1− r) + c3(1− r)2 + o((1− r)2)

c4 + c6 + (c5 + c7)(1− r) + o (1− r)

=
c4 + c6

c1

c1
c4 + c6

= 1,

by L’Hôpital’s Rule.

1.2. Case 2.1: cb is a Frank copula, ct is a Gumbel copula and π(u∗, v∗; θ) =

exp{−θ(1− u∗)(1− v∗)}

Let us now assume a different weighting function π(u∗, v∗; θ) = exp{−θ(1−

u∗)(1− v∗)}. We have

fcb(u
∗, v∗; β, θ) =[1− exp{−θ(1− u∗)(1− v∗)}]

× β(1− exp{−β}) exp{−β(u∗ + v∗)}
[1− exp{−β} − (1− exp{−βu∗})(1− exp{−βv∗})]2

and

fct(u
∗, v∗;α, θ) = exp{−θ(1− u∗)(1− v∗)}Ct(u

∗, v∗;α)

u∗v∗
(xy)α−1 (xα + yα)1/α−2

×
[
(xα + yα)1/α + α− 1

]
,

with x = − log(u∗), y = − log(v∗) and Ct(u
∗, v∗;α) = exp

{
− (xα + yα)1/α

}
.
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1.2.1. Effect of the body copula cb

As the above case, a Taylor approximation of order 1 can be used about (1,1)

with point (1−s, 1−t) for
∫ 1

r

∫ 1

r
fcb(u

∗, v∗)dv∗ du∗, where s, t → 0. Therefore,

for some norm ∥ · ∥ near 0, we have

fcb(1− s, 1− t; β, θ) = fcb(1, 1)− s
∂fcb
∂s

(1, 1)− t
∂fcb
∂t

(1, 1) +O
(
∥(s, t)∥2

)
,

where

∂fcb
∂s

=− exp{−θ(1− s)(1− t)}2β
2(1− exp{−β})(1− exp{−βt}) exp{−β(2s+ t)}

[1− exp{−β} − (1− exp{−βs})(1− exp{−βt})]3

− exp{−θ(1− s)(1− t)} β(1− exp{−β})[θ(1− t)− β] exp{−β(s+ t)}
[1− exp{−β} − (1− exp{−βs})(1− exp{−βt})]2

.

At the point (1,1), fcb(1, 1) = 0 and
∂fcb
∂s

(1, 1) =
∂fcb
∂t

(1, 1) = −β2 (1− exp{−β})−1.

So,

fcb(1− s, 1− t; β, θ) = β2 (1− exp{−β})−1 (s+ t) +O
(
∥(s, t)∥2

)
,

and we obtain∫ 1

r

∫ 1

r

fcb(u
∗, v∗)dv∗ du∗ =

∫ 1

r

∫ 1

r

β2 (1− exp{−β})−1 (s+ t)dt ds+O
(
(1− r)4

)
=β2 (1− exp{−β})−1 (1− r)3 +O

(
(1− r)4

)
.

Similarly, for
∫ 1

r

∫ 1

0
fcb(u

∗, v∗)dv∗ du∗, a Taylor approximation of order 1 can

be used about (1, v∗) with point (u∗, v∗). Thus, we have

fcb(u
∗, v∗; β, θ) = fcb(1, v

∗) + (u∗ − 1)
∂fcb
∂u∗ (1, v

∗) +O
(
(u∗ − 1)2

)
,

where fcb(1, v
∗) = 0 and

∂fcb
∂u∗ (1, v

∗) =− 2β2(1− exp{−β}) exp{−2β(1− v∗)}
(1− exp{−β})2

− βθ(1− v∗) exp{−β(1− v∗)}
1− exp{−β}

+
β2 exp{−β(1− v∗)}

1− exp{−β}
= Av∗,β,θ.

13



So, fcb(u
∗, v∗) = Av∗,β,θ +O ((u∗ − 1)2) , and we obtain∫ 1

r

∫ 1

0

fcb(u
∗, v∗)dv∗ du∗ =

∫ 1

r

∫ 1

0

Av∗,β,θ(u
∗ − 1)dv∗ du∗ +O

(
(1− r)3

)
=

∫ 1

0

Av∗,β,θ

∫ 1

r

(u∗ − 1)du∗ dv∗ +O
(
(1− r)3

)
=− 1

2
(1− r)2

∫ 1

0

Av∗,β,θdv
∗︸ ︷︷ ︸

Bβ,θ

+O
(
(1− r)3

)

=− Bβ,θ

2
(1− r)2 +O

(
(1− r)3

)
1.2.2. Effect of the tail copula ct

Let us again write u∗ and v∗ in terms of s and t, where s, t > 0 and u∗ =

1 − s + o(s) and v∗ = 1 − t + o(t) as s, t → 0. As before, this describes the

behaviour of u∗ and v∗ as they tend to 1. For the weighting function term of

fct , we have

exp{−θ(1− u∗)(1− v∗)} = exp{−θst}+ o(s) + o(t),

as s, t → 0.

Similarly to the previous case, we consider x = − log(u∗) > y = − log(v∗).

For (u∗, v∗) → (1, 1), i.e, s → 0 and t → 0, with t/s → c for c ∈ (0, 1), the

copula density term follows asymptotically

ct(u
∗, v∗;α) ∼ (α− 1)x−αyα−1

[
1 +

(y
x

)α]1/α−2

.

And, when x < y, i.e, s → 0 and t → 0, with t/s → c for c ∈ (1,∞),

ct(u
∗, v∗;α) ∼ (α− 1)y−αxα−1

[
1 +

(
x

y

)α]1/α−2

.

Finally, x = s + o(s) and y = t + o(t) as s, t → 0. Thus, considering the

symmetry between cases x > y and x < y, and recalling u∗ = 1 − s + o(s)

14



and v∗ = 1− t+ o(t),∫ 1

r

∫ 1

r

fct(u
∗, v∗)dv∗ du∗ = P [1− S > r, 1− T > r] = 2P [S < 1− r, T < s].

So, we have

P [S < 1− r, T < s] =

∫ 1−r

0

∫ s

0

f ∗
ct(s, t;α, θ)dt ds

= (α− 1)

∫ 1−r

0

∫ s

0

exp{−θst}s−αtα−1

[
1 +

(
t

s

)α]1/α−2

dt ds+ o
(
(1− r)2

)
= (α− 1)

∫ 1−r

0

s−α

∫ s

0

exp{−θst}tα−1

[
1 +

(
t

s

)α]1/α−2

dt︸ ︷︷ ︸
A(s)

ds+ o
(
(1− r)2

)
as r → 1. Evaluating A(s) by parts, we get∫ s

0

exp{−θst}tα−1

[
1 +

(
t

s

)α]1/α−2

dt =
21/α−1 exp{−θs2}sα

1− α
− sα

1− α

+
θsα+2

1− α
Cα − θ2sα+4

1− α
C∗

α,

with Cα =

∫ 1

0

(1 + qα)1/α−1dq and C∗
α =

∫ 1

0

q(1 + qα)1/α−1dq. By substitut-

ing A(s) in the outer integral, we obtain

P [S < 1− r, T < s] =− 21/α−1

∫ 1−r

0

e−θs2ds+

∫ 1−r

0

ds

− θCα

∫ 1−r

0

s2ds+ θ2C∗
α

∫ 1−r

0

s4ds+ o
(
(1− r)2

)
=− 21/α−1

∫ 1−r

0

(1− θs2)ds+ (1− r) + o
(
(1− r)2

)
=(1− 21/α−1)(1− r) + o

(
(1− r)2

)
,

as r → 1 and where exp{−θs2} = 1− θs2 +O ((1− r)4) as s → 0. Thus,∫ 1

r

∫ 1

r

fct(u
∗, v∗)dv∗ du∗ =2(1− 21/α−1)(1− r) + o

(
(1− r)2

)
=(2− 21/α)(1− r) + o

(
(1− r)2

)
,
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as r → 1.

As before, for
∫ 1

r

∫ 1

0
fct(u

∗, v∗)dv∗ du∗, we take the change of variable y = xz,

with z = y/x ∈ R+, so we have u∗ = exp{−x} and v∗ = exp{−xz}. Thus,

we obtain∫ 1

r

∫ 1

0

fct(u
∗, v∗)dv∗ du∗

=

∫ 1

r

∫ 1

0

exp{−θ(1− u∗)(1− v∗)}Ct(u
∗, v∗;α)

u∗v∗
(xy)α−1 (xα + yα)1/α−2

×
[
(xα + yα)1/α + α− 1

]
dv∗ du∗

=

∫ − log(r)

0

∫ ∞

0

exp{−θ(1− exp{−x} − exp{−xz}+ exp{−x− xz})− x(1 + zα)1/α}

× zα−1 (1 + zα)1/α−2
[
x (1 + zα)1/α + α− 1

]
dz dx

We have exp{−x} = 1− x+
x2

2
+O

(
x3
)
, exp{−xz} = 1− xz +

x2z2

2
+O

(
x3
)

and exp{−x(1+ z)} = 1− x(1 + z) +
x2(1 + z)2

2
+O

(
x3
)
as x → 0. So, the

exponential term

exp{−θ(1− exp{−x} − exp{−xz}+ exp{−x(1 + z)})− x(1 + zα)1/α}

=exp

{
−θ

[
1−

(
1− x+

x2

2

)
−
(
1− xz +

x2z2

2

)
+

(
1− x(1 + z) +

x2(1 + z)2

2

)]
−x(1 + zα)1/α

}
+O

(
x3
)
= exp{−θx2z − x(1 + zα)1/α}+O

(
x3
)

=exp{−x(1 + zα)1/α}+O
(
x2
)

as x → 0.
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So, we have∫ 1

r

∫ 1

0

fct(u
∗, v∗)dv∗ du∗ =

∫ − log(r)

0

∫ ∞

0

exp{−x(1 + zα)1/α}zα−1 (1 + zα)1/α−2

×
[
x (1 + zα)1/α + α− 1

]
dz dx

=

∫ − log(r)

0

∫ ∞

x

exp{−w}
( x
w

)α
(w + α− 1)

1

x
dw dx

=

∫ − log(r)

0

∫ w

0

xα−1 exp{−w}w−α(w + α− 1)dx dw

+

∫ ∞

− log(r)

∫ − log(r)

0

xα−1 exp{−w}w−α(w + α− 1)dx dw

=

∫ − log(r)

0

exp{−w}w−α(w + α− 1)

[
xα

α

]w
0

dw

+

∫ ∞

− log(r)

exp{−w}w−α(w + α− 1)

[
xα

α

]− log(r)

0

dw

=
1

α

∫ − log(r)

0

exp{−w}(w + α− 1)dw

+
[− log(r)]α

α

∫ ∞

− log(r)

exp{−w}w−α(w + α− 1)dw

=
1

α

∫ − log(r)

0

w exp{−w}dw +
α− 1

α

∫ − log(r)

0

exp{−w}dw

+
[− log(r)]α

α

∫ ∞

1

rt[− log(r)t]−α(− log(r)t+ α− 1)(− log(r)dt

=
1

α
(r log(r)− r + 1) +

α− 1

α
(−r + 1)

+
− log(r)[− log(r)]−α[− log(r)]α

α

∫ ∞

1

rtt−α(− log(r)t+ α− 1)dt

=
r log(r)

α
+ 1− r − log(r)

α

∫ ∞

1

rtt−α(− log(r)t+ α− 1)dt,
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where w = x(1 + zα)1/α and t = w
− log(r)

. As r → 1, we have∫ 1

r

∫ 1

0

fct(u
∗, v∗)dv∗ du∗ =

r log(r)

α
+ 1− r − log(r)

α

∫ ∞

1

t−α(α− 1)dt

=
r log(r)

α
+ 1− r − log(r)

α

=

(
1− log(r)

α

)
(1− r) =

(
1− −(1− r) +O ((1− r)2)

α

)
(1− r)

=(1− r) +
1

α
(1− r)2 +O

(
(1− r)3

)
.

1.2.3. Extremal dependence χ for this case

Let

c1 = 2− 21/α = χGumbel, c3 = 1/α,

c2 = 1, c4 = −Bβ,θ/2.

we then have

χ = lim
r→1

c1(1− r) + o ((1− r)2)

c2(1− r) + c3(1− r)2 + c4(1− r)2 + o ((1− r)2)

= lim
r→1

(
c1
c2

− c3 + c4
c22

(1− r) +O
(
(1− r)2

))
=

c1
c2

= 2− 21/α (2)

For the vector of parameters γ = (3, 1, 1.844444), c1 ≈ 0.740079 and c5 =

1. Thus, from equation (2), we have χ ≈ 0.740079. Moreover, from the

numerical investigation, χ(r) ≈ 0.7350891 with r = 0.9998779. Figure 3

shows this comparison.
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Figure 3: The blue line represents χ(r) for r ∈ [0.7, 1) with weighting function

π(u∗, v∗; θ) = (u∗v∗)θ and θ = 1.84444. The thick black lines represent the single cop-

ula models - Frank (dashed) and Gumbel (solid). The theoretical values for the Frank

and Gumbel copulas based on Table 2 of Section 2.3 from the main text are represented

by the horizontal dashed lines, and the value derived for the model is represented by the

pink dashed line. Note that the theoretical value for the Gumbel copula, χt, is the same

as the one derived for the model, χModel.

For the vector of parameters γ = (1.5, 2, 3.488889), c1 ≈ 0.4125989 and

c5 = 1. Thus, from equation (1), we have χ ≈ 0.4125989. Moreover, from

the numerical investigation, χ(r) ≈ 0.4093587 with r = 0.9998779. Figure 4

shows this comparison.
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Figure 4: The blue line represents χ(r) for r ∈ [0.7, 1) with weighting function

π(u∗, v∗; θ) = (u∗v∗)θ and θ = 3.488889. The thick black lines represent the single copula

models - Frank (dashed) and Gumbel (solid). The theoretical values for the Frank and

Gumbel copulas based on Table 2 of Section 2.3 from the main text are represented by

the horizontal dashed lines, and the value derived for the model is represented by the pink

dashed line. Note that the theoretical value for the Gumbel copula, χt, is the same as the

one derived for the model, χModel.

1.2.4. Extremal dependence η for this case

As χ > 0, we should expect η = 1. Following equation (4) of Section 1.3 from

the main text, we have

20



η = lim
r→1

log (P [U∗ > r])

log (P [U∗ > r, V ∗ > r])

= lim
r→1

log [c2(1− r) + c3(1− r)2 + c4(1− r)2 + o ((1− r)2)]

log [c1(1− r) + o ((1− r)2)]

(∞
∞)
= lim

r→1

−c2 − 2(c3 + c4)(1− r) + o (1− r)

−c1 + o (1− r)

c1 + o ((1− r)2)

c2 + (c3 + c4)(1− r) + o ((1− r)2)

=
c2
c1

c1
c2

= 1

by L’Hôpital’s Rule.

2. Extremal dependence properties: numerical investigation

Figures 5 and 6 show the results of the numerical study presented in Section

2.3 of the main text for the remaining three models considered.
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Figure 5: χ(r) and η(r) for r ∈ [0.7, 1) with weighting function π(u∗, v∗; θ) = (u∗v∗)θ.
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Figure 6: χ(r) and η(r) with weighting function π(u∗, v∗; θ) = exp{−θ(1 − u∗)(1 − v∗)},

for r ∈ [0.7, 1).
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3. Ozone and temperature analysis for Weybourne, UK

Following the same structure as the case study in Section 4 in the main

paper, the analysis for the summers of 2010 to 2019 of Weybourne, UK, is

presented here. Figures 7a and 7b show the scatterplots of the daily maxima

of temperature and the daily maxima of ozone on the original scale and on

uniform margins, respectively.
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(a) Daily maxima of temperature and

ozone. The moderate, high and very high

DAQI are represented by the yellow, orange

and red lines, respectively.
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(b) Daily maxima of temperature (u) and ozone

(v) on uniform margins. The corresponding

moderate, high and very high DAQI are rep-

resented by the yellow, orange and red lines,

respectively.

Figure 7: Summer data from 2010 to 2019 for Weybourne, UK.

3.1. Model fitting

Table 1 shows the MLEs obtained by fitting a range of single copulas and

the corresponding AIC values, whereas Figure 8 illustrates the comparison

between the empirical extremal dependence measure η(r) for r ∈ (0, 1) and

the model-derived ones.
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Table 1: MLEs for ten copulas and their AIC values. Lower AIC values are preferred.

Copula Parameter AIC

Clayton 7.21× 10−9 2.0

Frank 0.94 -19.2

Gumbel 1.18 -81.7

Inverted Gumbel 1.03 0.9

Galambos 0.43 -82.9

Gaussian 0.18 -27.6

Joe 1.34 -113.8

Student t 0.17 8.95 -34.9

Hüsler-Reiss 0.82 -99.1

Coles-Tawn 0.16 0.24 -80.4
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Figure 8: Empirical η(r) (in black) and η(r) for seven copulas (in colour) for r ∈ (0, 1).

The 95% confidence bands were obtained by block bootstrapping. Note that the η(r) for

the Galambos, the Hüsler-Reiss, the Gumbel and the Coles-Tawn copulas overlap.

Table 2 shows the MLEs when fitting a range of weighted copula models

with π(u∗, v∗; θ) = (u∗v∗)θ and their AIC values. Table 3 shows the MLEs

of the five best models according to AIC when the weighting function is

π(u∗, v∗; θ) = exp{−θ(1− u∗)(1− v∗)}.
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Table 2: MLEs for different weighted copula models and their AIC values when the weight-

ing function used is π(u∗, v∗; θ) = (u∗v∗)θ. Lower AIC values are preferred.

Model ct cb α̂ β̂ θ̂ AIC

Model 1 Hüsler-Reiss Gaussian 1.08 -0.23 0.34 -124.2

Model 2 Galambos Gaussian 0.66 -0.23 0.33 -121.9

Model 3 Coles-Tawn Gaussian 0.29 1.10 -0.22 0.34 -122.5

Model 4 Coles-Tawn Frank 0.30 1.22 -1.59 0.32 -123.8

Model 5 Joe Frank 1.46 -1.95 0.16 -126.7

Model 6 Clayton Gaussian 14.99 -0.05 4.33 -92.8

Model 7 Inverted Gumbel Gaussian 2.33 -0.15 0.96 -105.4

Model 8 Hüsler-Reiss Joe 1.19 1.26 4.93 -112.2

Model 9 Student t Galambos 0.69 4.82 0.27 2.71 -98.0

Model 10 Gaussian Clayton 0.75 1.16× 10−5 2.45 -99.1

Model 11 Gumbel Joe 1.47 1.26 4.27 -111.8

Table 3: MLEs for five weighted copula models and their AIC values when the weighting

function used is π(u∗, v∗; θ) = exp{−θ(1− u∗)(1− v∗)}. Lower AIC values are preferred.

Model ct cb α̂ β̂ θ̂ AIC

Model 1 Hüsler-Reiss Gaussian 1.12 -0.52 3.21 -158.5

Model 2 Galambos Gaussian 0.72 -0.51 3.48 -159.2

Model 3 Coles-Tawn Gaussian 0.46 0.82 -0.48 4.13 -158.1

Model 4 Coles-Tawn Frank 0.48 0.74 -3.05 3.61 -150.0

Model 5 Joe Frank 1.52 -2.63 2.85 -147.1
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3.2. Diagnostics

Figure 9 displays χ(r) and η(r) for r ∈ (0, 1) for the five models considered.

A clear improvement from the single copula models shown in Figure 8 can

be seen as now all five models offer a reasonable fit throughout the whole

support of the data. In summer, the average temperature in Weybourne is

between 18◦C and 22◦C and the observed 90th, 95th and 99th percentiles

of the temperature are around 24◦C, 26◦C and 29◦C, respectively. Table 4

shows Kendall’s τ and some probabilities of interest.
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(a) Empirical χ(r) (in black) and χ(r) for the five models (in colour) for r ∈ (0, 1). The 95%

confidence bands were obtained by block bootstrapping.
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(b) Empirical η(r) (in black) and η(r) for the five models (in colour) for r ∈ (0, 1). The 95%

confidence bands were obtained by block bootstrapping.

Figure 9: Dependence measures χ(r) and η(r).
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Table 4: Diagnostics for the best five models according to their AIC values. The 95%

confidence intervals for the empirical values were obtained by block bootstrapping. The

empirical probability P [O3 ≥ 160 | 29 ≤ T ≤ 30] and its 95% confidence interval are

explained by the low number of observations present in the data set.

Model Kendall’s τ P [T ≤ 15, O3 ≥ 100] P [T ≥ 24, O3 ≥ 100]

Empirical 0.0966 0.0045 0.0460

(95% CI) (0.0555 , 0.1934) (0.0000 , 0.0050) (0.0338 , 0.0667)

Model 1 0.0881 0.0072 0.0491

Model 2 0.0900 0.0076 0.0502

Model 3 0.0853 0.0084 0.0509

Model 4 0.0944 0.0069 0.0512

Model 5 0.0882 0.0068 0.0517

Model P [T ≥ 26, O3 ≥ 100] P [O3 ≥ 100 | 24 ≤ T ≤ 25] P [O3 ≥ 160 | 29 ≤ T ≤ 30]

Empirical 0.0291 0.1520 0.0000

(95% CI) (0.0189 , 0.0438) (0.0488 , 0.2800) (0.0000 , 0.0000)

Model 1 0.0283 0.2557 0.1912

Model 2 0.0287 0.2617 0.1982

Model 3 0.0300 0.2516 0.1894

Model 4 0.0298 0.2573 0.1921

Model 5 0.0297 0.2646 0.2176
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