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Abstract 

Vibrations of gear transmission systems (GTSs) are the key problems in the 

machinery industry. In the previous vibration analysis of GTS, the rotor is usually 

regarded as a rigid part. The rigid-shaft gear-transmission dynamic system RGDS) 

model cannot solve the differences of vibrations of rotor at different axial positions. To 

solve this problem, a flexible-shaft gear- transmission system dynamic (FGDS) model 

is established by using the finite element method. In the FGDS, the GTSs is separated 

into some flexible shaft segments, gear meshing unit and bearing unit. The bearing 

stiffness, bearing contact force, time-varying meshing stiffness and damping force of 

gear are considered. The time- and frequency-domain vibrations of FGDS and RGDS 

model under different rotational speeds are compared and analyzed. Note that the FGDS 

can obtain more accurate results than the RGDS model. The vibrations from FGDS are 

less than those from RGDS model. This paper can give some new approach for the 

dynamic modeling and vibration analysis of flexible GTSs. 
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1. Introduction 

As an important part, gear-transmission-systems (GTSs) are used in the various 

transmission machinery [1,2,3]. The GTSs consist of shafts, rolling bearing, and gears. 

The vibrations of the GTSs are complex and difficult to be analyzed and diagnosed. A 

more comprehensive dynamic model of GTSs can be helpful for the vibrations analysis 

and fault diagnosis. 

Many works were focused on the vibrations of the rotor system. Neriyal et al. [4] 

used a FE method to simulate the bending-torsional coupling vibrations of gear 

transmission system. Zhu et al. [5] proposed a GTS dynamic model considering the 

elastic support of gearbox. Liu et al. [6] established a gear transmission dynamic model 

to study the nonlinear characteristics of a gear pair with variable center distance. 

Howard et al. [7] established a simplified gear transmission system dynamic model, 

which considered the gear tooth torsion and time-varying meshing stiffness. Mohamme 

et al. [8] established a gear transmission model and studied the vibrations along the 

meshing line. Bozca et al. [9] established a gear transmission system model and found 

that the vibrations of gear box could be reduced by reducing the transmission error of 

gear pair. Theodossiades et al. [10] proposed a gear transmission model to estimate the 

vibrations of gear pairs under different working conditions. Dikmen et al. [11] proposed 

a finite-element (FE) model for analyzing the influence of the bearing stiffness on the 

natural frequencies of flexible shaft system. Xi et al. [12,13] established a shaft-bearing 

system dynamic model based on the FE analysis and studied the relationship between 

the system manufacturing error and vibrations. Hamzehlouia and Behdinan [ 14 ] 

established a flexible multi-rotor model based on the FE theory. They studied the 

influence of the damping lubrication on the vibrations of rotor system. The above works 

mailto:jliu@cqu.edu.cn


2 

regarded the rolling bearing as spring in the study of the rotor system vibrations. 

Obviously, this assumption ignores the nonlinearity of the rolling bearing. The 

vibrations obtained by the methods in their works are unreasonable and cannot fully 

represent the vibrations of the rotor systems. 

Moreover, some scholars studied the vibrations of the rotor system considering the 

rolling bearing nonlinearity [15-19]. Cao et al. [20] proposed a dynamic model of rigid 

shaft-bearing system considering the manufacturing error and bearing support stiffness. 

Liu et al. [21,22] thought the shaft and bearing house deformations have significant 

effects on the rotor system vibrations. They proposed an optimization method of the 

shaft and bearing house stiffness for a rotor system to reduce the vibrations. Li et al. 

[23] proposed a dynamic model for a rotor-bearing system with bolted-disk joint. They 

studied the effect of bolted joint stiffness on the rotor dynamic response. Jin et al. [24] 

proposed a dynamic model for a dual rotor system considering the nonlinearities of the 

supporting bearing. Liu et al. [25] introduced a flexible-rotor system dynamic model 

considering the effects of the nonlinear bearing contact forces. They compared the 

results obtained by Hertzian and cubic polynomial nonlinear contact force methods and 

found that cubic polynomial nonlinear contact force has a significant difference in high 

speed compared to Hertzian method. Cao et al. [26] studied the vibrations of a rotor-

bearing-pedestal systems considering the outer ring-pedestal fit clearance. Wang and 

Zhu [27] established a dynamic model for a rotor system. They studied the effect of 

bearing on the rotor vibrations and load sharing performance. 

Many works were also focused on the gear dynamic modeling. Kong et al. [28] 

proposed a new meshing stiffness calculation method considering the gear flexibility. 

They studied the gear flexibility on the vibrations of GTS. Hu et al. [29] investigated 

the effect of stagger angle excitations on the GTS vibrations and load sharing features. 

They also obtained the natural characteristics of GTS. Huangfu et al. [30] proposed a 

GTS dynamic model considering the flexibility of gear foundations. They used 

Mindlin-Reissner shell elements to model gear foundations. Wan et al. [31] proposed 

an improved meshing stiffness calculation method for helical gears. They studied the 

effects of different helical gear parameters on the mesh stiffness based on the proposed 

method. Through above discussions, we can find that few works investigated the effects 

of flexible shaft, time-varying mesh stiffness and bearing nonlinearity together. 

Moreover, few people focused on the multi-stage transmission system dynamic 

modeling. This paper will overcome this problem. 

In this paper, the vibrations of a shaft-gear-bearing system is studied. Based on the 

FE method, a GTS considering the flexible shaft (FGDS) is established. Compared with 

the rigid GTS model with the same parameters, the differences of vibrations at each 

node under different input speeds are analyzed. The Newmark-beta method is used to 

simulate the dynamics of two models in the Matlab software. The simulation results in 

time- and frequency-domain are compared. The results show that the simulation results 

will be more accurate when the flexibility of shaft in the GTS is considered. This 

research can provide a new method and idea for dynamic modeling and vibration 

analysis of GTSs. 

2. Dynamic modelling of FGDS 

2.1 Dynamic modelling of flexible shaft segments 

In this paper, the shafts of FGDS model are divided into several flexible shaft 

segments, which is used to realize the flexibility of shaft. The flexible shaft needs to 

consider the shaft deformations in the lateral, longitudinal and torsional directions. The 

Timoshenko beam theory and the Euler-Bernoulli beam theory can all satisfy this 

requirement. The Euler-Bernoulli beam theory assume that the beam cross section is 
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perpendicular to the central axis both before and after lateral deformation. This 

assumption is applicable for the slender shafts. However, the shafts in mechanical 

transmission systems usually cannot satisfy this assumption. Thus, the Timoshenko 

beam element is used to establish the dynamic model of shaft segment element based 

on the method in Ref. [32 ]. The center of cross sections at two ends of each axial 

segment is the node with six degrees of freedom, which can be represented by the 

displacement vector vg, as shown in Figure 1. The length of shaft segment is represented 

by l. 
 

Fig 1. One element of flexible shaft segment. 

 The displacement vector vg is given as 
T

g 1 1 1 1 1 1 2 2 2 2 2 2[ ]x y z x y zx y z x y z     =v      (1) 

where Ix represents the inertia moment of section of flexible shaft segment in the Y-Z 

coordinate plane, Iy is the inertia moment of section of flexible shaft segment in the X-

Z coordinate plane. The matrix of mass inertia matrix Ms can be given as 
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s22 s11=M M  s21 s12=M M                          (4) 

where Jp is the polar inertia moment of shaft segment. 

The stiffness matrix of element can be given as[25] 

s11 s12

s

s21 s22

 
=  
 

K K
K

K K
                           (5) 

where Ks11, Ks12, Ks21, and Ks22 in Eq. (5) can be expressed as 
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The damping matrix of flexible axial element is calculated by combining Rayleigh 

damping with Ms and Ks [33], which is given as 

 s 1 s 2 sa a= +C M K                             (10) 

where a1 and a2 are the mass proportionality coefficients and stiffness proportionality 

coefficients. 

The flexible shaft element is given as 

l g l g l g 0+ + =M v C v K v                         (11) 

where v̈g and v̇g are the acceleration and velocity vectors of flexible shaft segment 

derived from the second and first derivatives of vg, respectively. 

2.2 Dynamic modelling of gear and bearing 

The deformations of gear and bearing components during operation are mainly 

contact elastics deformation. The flexible deformations are not significant. The lumped 

parameter method can characterize their vibrations very well and save a huge amount 

of calculation costs. Thus, the lumped parameter method is used to establish gear and 

bearing dynamic models. 

The helical gears are used in FGDS model. The meshing stiffness excitation and 

displacement excitation are mainly considered in the dynamic modeling of gear 

meshing unit. The two kinds of excitation exist simultaneously and interact with each 

other. The dynamic equation of gear meshing unit is expressed as 

m m m m m m s( ) F+ + − =M q C q K q e                   (12) 

where qm is the displacement of gear meshing element node in FGDS model. Mm, Cm, 

and Km represent the mass matrix, damping matrix and stiffness matrix of meshing 

element respectively. Fs represents GTS’s gear meshing force; e is the equivalent 

displacement column vector representing the meshing comprehensive error in the 

direction of six degrees of freedom. The matrix form of Mm is given as 
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where the subscript p and g represent the driving and driven gears in FGDS model, 

respectively. A is the gear end area, b is the gear width, Ix=Iy=1/12(4rf
2+3ri

2+b2), 

Iz=1/2(rf
2+ri

2), rf represents the radius of indexing circle of gears, ri represents the radius 

of hub of gears. 

The stiffness matrix and damping matrix of gear meshing unit are given as 

m11 m12T

m m

m21 m22

k
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K V V

K K
                  (14) 

m11 m12T

m m
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c
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= =  
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C C
C V V

C C
                      (15) 

where km and cm are the time-varying meshing stiffness and meshing damping of gears 

respectively. The time-varying meshing stiffness calculation method is based on Ref. 

[34]. V represents the projection vector of transformation from the displacements in all 

directions at the gear node to the meshing line direction, which can be expressed by [35] 
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where rp and rg are the radius of base circle of driving and driven gears respectively. βb 

represents the spiral angle of base circle. If the value is positive, it means dextral 

rotation; if the value is negative, it means left-handed rotation; ϕ represents the included 

angle between the meshing line of driving gear face and the vertical positive direction. 

In the FGDS model, each shaft is equipped with two supporting bearings. During 

the operation of system, the outer raceway of roller bearing is fixed on the bearing 

bracket; the inner ring is fixed with the shaft; and the vibration will be generated by the 

vibration of shaft. 
 

Fig 2. Dynamic model of a roller bearing. 

 To consider the influence of the bearing contact force on the vibrations in the 

FGDS model, the dynamic equation of roller bearing is calculated. 

 Here, there are j rollers in the roller bearing. When the ith roller is at any angle 

of bearing, the total contact deformation of bearing inner raceway is given as 

0sin cosi i iy x   = + −                         (17) 

where i = 1,2...... j. αi is the angle between the ith roller and positive direction of X-axis 

as shown in Figure 2, which is given as 

2 ( 1)
i

i

o i b

tr i

r r N
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

−
= +

+
                     (18) 

where ri and ro represent the radii of inner and outer raceways. ω is the rotate speed of 

inner raceway. t is the time. Nb is the total rollers number. 

According to the classical Hertz contact force calculation method, the contact 

force Fb between the rollers and raceways can be expressed as 
n

b g iF K =                            (19) 

where Kg is the Hertz contact stiffness between the raceway and ith roller [36 ]; n 

represents the load deformation coefficient, which is 3/2 for ball bearing [37,38]. 

The contact forces between the ring and rollers along the horizontal (X) and 

vertical (Y) directions are established respectively, and their expressions are as follows 

X

1

( ) ( )sin
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b i i i

i

F F J  
=

=                         (20) 

Y

1

( ) ( )cos
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b i i i

i

F F J  
=

=                         (21)  

In Eqs. (20) and (21), Fb(ςi) is the contact force of ith roller of bearing when the contact 
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deformation is ςi. J(ςi) is a conditional function to determine whether the bearing rollers 

and ring have contact deformation, and its expression is given as 

 
0 0

( )
1 0

i

i

i

J






= 


                       (22) 

The dynamic equation of roller bearing is given as 

x

Y

c 0

c 0

mx x F

my y F

+ + =


+ + =
                       (23) 

where ẋ  and ẍ  represent the speed and acceleration of inner raceway in the X 

direction. 𝑦̇  and 𝑦̈  represent the speed and acceleration of inner raceway in the Y 

direction. m represents the mass of inner ring; and c is the contact damping between the 

raceways and rollers. 
 

Fig 3. The proposed FGDS model. 

2.3 Dynamic modelling of flexible shaft GTS 

After the dynamics model of each unit is determined, the dynamics model of 

FGDS can be established, as is show in Figure 3. By using the dynamic equations of 

flexible shaft segment, gear meshing and rolling bearing, the dynamic equation of 

FGDS model is established as 

   0( ) ( ) ( )t t t+ + =Mv Cv Kv P                    (24) 

In the establishment of FGDS model, each shaft is divided into multiple nodes; and the 

center points of gears and bearings are located on the nodes. One flexible shaft segment 

is connected by two nodes. In Eq. (24), P0 is the forces and torques applied to the system, 

which includes the input and output torques, gear meshing forces, and bearing contact 

forces. M, C, and K can be respectively expressed as 
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(29)  

i 1 i 2 ia a= +C M K                               (30) 

where Ni represents the number of flexible shaft segments of ith shaft. 

At the beginning of modeling, firstly, the information of components of GTS is 

determined, which includes the shaft section, gear, bearing, box and working conditions. 

Then, the overall stiffness, mass, damping matrix and load vector of the system are 

assembled. According to the corresponding relationship between the local number of 

each element node and overall number of system node, the corresponding sub-matrices 

of each degree of freedom of element matrix are successively superimposed to the 

corresponding positions of overall matrix. 

2.4 Experimental validation 

As shown in Figure 4, to validate the presented dynamic model, an experiment is 

applied. The test rig consists of two rotor, helical gearbox, brake, torquemeter, 

supporting bearing, coupling, and motor. The supporting bearing is SKF 6304 and 

helical gears with module 1.5mm is used in this experiment. The detailed parameters 

are shown in Table 1 and Table 2. The braking torque of both the simulation model and 

the test bench was set as 50N·m. The vibration acceleration signal of bearing 1 on the 

input shaft is obtained by vibration acceleration sensor. The vibration acceleration 

signal was transformed by Fourier FFT to obtain the experimental acceleration 

spectrum of bearing 1 in the X and Y directions. 

Based on FGDS model, the vibration acceleration of bearing 1 at four working 

speeds was simulated by Matlab, and the calculated spectrum was obtained by Fourier 

FFT variation. By comparing and analyzing the characteristic frequencies of 

experimental results and simulation results in time domain and spectrum diagram, the 

characteristic frequencies of bearing 1 and in different speed conditions were studied, 

and the validity of FGDS model was verified. The data acquisition system includes an 

accelerometer (sensitivity:9.91 mV/g), a LMS vibration acquisition instrument and a 

computer. The accelerometer is mounted on the top of test bearing’s outer ring to 

measure the vibrations. The signals are obtained at a sampling frequency of 20 kHz and 

a sampling time of 10s. 

Table 1. Helical gear structural parameters 

Parameters Helical gear of input rotor Helical gear of output rotor 

Materials 40Cr 40Cr 
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Young's modulus /E 209 Gpa 209 Gpa 

Poisson's ratio / v 0.30 0.30 

Tooth width 40 mm 40mm 

Module 1.5mm 1.5 mm 

Teeth number 22 81 

Pressure angle 20° 20° 

Spiral angle 15° 15° 

Addendum coefficient 1 1 

Tip clearance 

coefficient 
0.25 0.25 

Table 2. Supporting bearing parameters 

Parameters Value 

Inner diameter Din (mm) 20 

Outer diameter Dou (mm) 52 

Width Bh (mm) 23 

Pitch diameter D (mm) 36 

Ball diameter d (mm) 10.53 

Ball number Z 6 

Outer ring groove curvature radius rou (mm) 5.58 

inner ring groove curvature radius rin (mm) 5.47 

Clearance Cr (μm) 10 

Contact angle α (o) 0 

 

Fig. 4. A shaft gear bearing system test bench. 

The time-domain experimental results and simulation results of vibration 

acceleration of bearing 1 in the X- and Y-directions at the input rotate speed of 2500 

r/min are shown in Figure 5. Experimental test spectrum and simulation spectrum of 

vibration acceleration of bearing in Y-direction are shown in Figure 5 respectively.  It 

can be seen from the figures that in the experimental spectrum and the calculated 

spectrum within 3000Hz, the characteristic frequencies are mainly fi and 3 fi, 5 fi, 6 fi, 

8 fi and 9 fi of the rolling body of the bearing passing through the raceway. The 

characteristic frequency errors of measured acceleration spectrum and simulated 

acceleration spectrum are less than 1%. The simulation results and experimental results 

are in good agreement, and this indicates the correctness of the proposed model to a 

certain extent. 
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(a)  

(b)  

Fig. 5. Comparisons of the Y-direction accelerations from the experiment and 

simualtion at the bearing 1 for the input rotate speed of 2500r/min. 

3. Results and discussions 

To analyze the influence of the shaft flexibility on the vibrations of GTSs, a RGDS 

model is established without considering the flexible shaft, the shafts are regarded as 

the rigid bodies in RGDS model. The element modeling method of RGDS model is the 

same as that of FGDS model. The Newmark-beta integral method is used to solve the 

dynamic equations of RGDS model and FGDS model. By using the Fast Fourier 

Transformation (FFT) method, the spectra of accelerations along the Y- and Z-direction 

of bearings of RGDS model and FGDS model are obtained and compared. This work 

shows the vibrations of bearings to avoid too many similar results in the text. The gear 

parameters used in FGDS model are shown in Table 3. 

Table 3. Gear parameters in FGDS model and RGDS model. 

Parameters gear#1 gear#2 gear#3 gear#4 

Material 40Cr 40Cr 40Cr 40Cr 

Young's modulus/E 209 Gpa 209 Gpa 209 Gpa 209 Gpa 

Poisson's ratio/ v 0.30 0.30 0.30 0.30 

Width/B 40mm 40mm 40mm 40mm 

Modulus 4.5mm 4.5mm 4mm 4mm 

Number of teeth 39 117 44 132 

Pressure angle 20° 20° 20° 20° 

Spiral Angle 13.5° 13.5° 13.5° 13.5° 

Rotation direction right left right left 

Height coefficient 1 
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Clearance coefficient 0.25 

3.1 Vibrations analysis of FGDS in Y direction 

In this section, the vibrations of FGDS in Y direction from the proposed and RGDS 

models are compared. The results for the input shaft rotate speed from 2000r/min to 

4000r/min are analyzed. The input torque is 500Nm in the following analysis.  

(a)  

(b)  

(c)  

(d)  

(e)  

(f)  
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Fig 6. Comparisons of time-domain accelerations of support bearings from FGDS 

model and RGDS model in the Y direction. (a)Bearing#1, (b)bearing#2, (c) bearing#3, 

(d) bearing#4, (e) bearing#5, and (f) bearing#6. 

(a)                                (b) 
 

(c)                                 (d) 
 

(e)                                  (f) 
 

Fig 7. Comparisons of frequency-domain accelerations of support bearings from the 

FGDS model and RGDS model in the Y direction when the input shaft rotate speed is 

2000r/min. (a) Bearing#1, (b) bearing#2, (c) bearing#3, (d) bearing#4, (e) bearing#5, 

and (f) bearing#6. 

To analyze the difference of spectra between the FGDS model and RGDS model 

under various working conditions. The frequencies of radial accelerations of support 

bearings are analyzed here. Figure 6 shows the comparisons of accelerations of RGDS 

model and FGDS model. The input shaft rotate speed is 2000r/min; and the output 

torque is 500N·m. In Figure 6, under the same working conditions, the acceleration 

amplitude of RGDS model is higher than that of FGDS model. The reason for this 

phenomenon is that the rotor structural damping is ignored in the RGDS model. 
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Moreover, the bending and shear deformations of the rotor during the operation are 

ignored. The external force will only change the rotor translation acceleration. This will 

cause the acceleration obtained by the RGDS model is higher than the one obtained by 

the FGDS model. Figure 7 shows the comparisons of spectra of Y-direction 

accelerations of each bearing's outer ring from the FGDS model and RGDS model when 

the input shaft rotate speed is 2000r/min. In Figure 7, the spectra of accelerations of 

bearings on the input shaft are the meshing frequency fm1 

(fm1=fs1×Z1=33.33×39=1300Hz) of gear#1 and gear#2; and its harmonics are 2fm1. The 

spectra of accelerations of bearings on the intermediate shaft include the meshing 

frequency fm1, meshing frequency fm2 (fm2=fs2×Z3=11.11×44=488.8Hz) of gear#3 and 

gear#4, and the harmonics 2fm1 and 2fm2. The spectra of accelerations of bearings on the 

output shaft also contain fm1, fm2 and their harmonics, as well as the rotation frequency 

of input shaft fs1. The peak amplitudes of spectra of accelerations of each bearing from 

the RGDS model are higher than those from the FGDS model. The roller passing 

frequency of the outer raceway harmonics 3fo1 and the roller passing frequency of the 

inner raceway harmonics 3fi1 can be also found in bearing #1 and bearing #2. The reason 

of this phenomenon is that the bearing is considered to have waviness error, whose 

waviness number is 18. The velocities of second and third shaft are relatively low. Thus, 

the roller passing frequency of the outer raceway and inner raceway are not obvious. 

Figure 8 shows the comparisons of spectra of Y-direction acceleration of each 

bearing's outer ring from the FGDS model and RGDS model when the input shaft rotate 

speed is 2500r/min. In Figure 6, the spectra of accelerations of bearings on the input 

shaft are the meshing frequency fm1 (fm1=fs1×Z1=41.66×39=1625Hz) of gear#1 and 

gear#2; and its harmonics are 2fm1. The spectra of accelerations of bearings on the 

intermediate shaft includes the meshing frequency fm1, meshing frequency fm2 

(fm2=fs2×Z3=13.88×44=611.1Hz) of gear#3 and gear#4, and the harmonics 2fm1 and 2fm2. 

The spectra of accelerations of bearings on the output shaft also contain fm1, fm2 and 

their harmonics, as well as the rotation frequency of input shaft fs1. The peak amplitudes 

of spectra of accelerations of each bearing from the RGDS model are higher than those 

from the FGDS model, especially for the bearing#1 and bearing#6. The roller passing 

frequency of the outer raceway harmonics 3fo1 and the roller passing frequency of the 

inner raceway harmonics 3fi1 can be also found in bearing #1 and bearing #2. The reason 

of this phenomenon is that the bearing is considered to have waviness error, whose 

waviness number is 18. The velocities of second and third shaft are relatively low. Thus, 

the roller passing frequency of the outer raceway and inner raceway are not obvious. 

Figure 9 shows the comparisons of spectra of Y-direction acceleration of each 

bearing's outer ring from the FGDS model and RGDS model when the input shaft rotate 

speed is 3000r/min. In Figure 7, the spectra of accelerations of bearings on the input 

shaft are the meshing frequency fm1 (fm1=fs1×Z1=50×39=1950Hz) of gear#1 and gear#2; 

and its harmonics are 2fm1. The spectra of accelerations of bearings on the intermediate 

shaft include the meshing frequency fm1, meshing frequency fm2 (fm2=fs2×Z3=16.66×44 

=733.3Hz) of gear#3 and gear#4, and the harmonics 2fm1 and 2fm2. The spectra of 

accelerations of bearings on the output shaft also contain fm1, fm2 and their harmonics, 

as well as the rotation frequency of input shaft fs1. The peak amplitudes of spectra of 

accelerations of each bearing from the RGDS model are higher than those from the 

FGDS model, especially for the bearing#1 and bearing#6. The roller passing frequency 

of the outer raceway harmonics 3fo1 and the roller passing frequency of the inner 

raceway harmonics 3fi1 can be also found in bearing #1 and bearing #2. The reason of 

this phenomenon is that the bearing is considered to have waviness error, whose 

waviness number is 18. The velocities of second and third shaft are relatively low. Thus, 
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the roller passing frequency of the outer raceway and inner raceway are not obvious. 

(a)                                (b) 
 

(c)                                 (d) 
  

(e)                                  (f) 
 

Fig 8. Comparisons of frequency-domain accelerations of support bearings from the 

FGDS model and RGDS model in the Y direction when the input shaft rotate speed is 

2500r/min. (a) Bearing#1, (b) bearing#2, (c) bearing#3, (d) bearing#4, (e) bearing#5, 

and (f) bearing#6. 

Figure 10 shows the comparisons of spectra of Y-direction acceleration of each 

bearing's outer ring from the FGDS model and RGDS model when the input shaft rotate 

speed is 3500r/min. In Figure 8, the spectra of acceleration of bearings on the input 

shaft are the meshing frequency fm1 (fm1=fs1×Z1=58.33×39=2275Hz) of gear#1 and 

gear#2; and its harmonics are 2fm1. The spectra of accelerations of bearings on the 

intermediate shaft include the meshing frequency fm1, meshing frequency fm2 

(fm2=fs2×Z3=19.44×44=855.6Hz) of gear#3 and gear#4, and the harmonics 2fm1 and 2fm2. 

The spectra of accelerations of bearings on the output shaft also contain fm1, fm2 and 

their harmonics, as well as the rotation frequency of input shaft fs1. The peak amplitudes 
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of spectra of accelerations of each bearing from the RGDS model are higher than those 

from the FGDS model, especially for the bearing#1 and bearing#6. The roller passing 

frequency of the outer raceway harmonics 3fo1 and the roller passing frequency of the 

inner raceway harmonics 3fi1 can be also found in bearing #1 and bearing #2. The reason 

of this phenomenon is that the bearing is considered to have waviness error, whose 

waviness number is 18. The velocities of second and third shaft are relatively low. Thus, 

the roller passing frequency of the outer raceway and inner raceway are not obvious. 

(a)                                (b) 
 

(c)                                 (d)                                                     
 

 (e)                                       (f) 
 

Fig 9. Comparisons of frequency-domain accelerations of support bearings from the 

FGDS model and RGDS model in the Y direction when the input shaft rotate speed is 

3000r/min. (a) Bearing#1, (b)bearing#2, (c) bearing#3, (d) bearing#4, (e) bearing#5, 

and (f) bearing#6. 

Figure 11 shows the comparisons of spectra of Y-direction accelerations of each 

bearing's outer ring from the FGDS model and RGDS model when the input shaft rotate 

speed is 4000r/min. In Figure 9, the spectra of accelerations of bearings on the input 
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shaft are the meshing frequency fm1 (fm1=fs1×Z1=66.66×39=2599.7Hz) of gear#1 and 

gear#2; and its harmonics are 2fm1. The spectra of accelerations of bearings on the 

intermediate shaft include the meshing frequency fm1, meshing frequency fm2 

(fm2=fs2×Z3=22.22×44=977.8Hz) of gear#3 and gear#4, and the harmonics 2fm1 and 2fm2. 

The spectra of accelerations of bearings on the output shaft also contain fm1, fm2 and 

their harmonics, as well as the rotation frequency of input shaft fs1. The peak amplitudes 

of spectra of accelerations of each bearing from the RGDS model are higher than those 

from the FGDS model, especially for the bearing#1 and bearing#6. The roller passing 

frequency of the outer raceway harmonics 3fo1 and the roller passing frequency of the 

inner raceway harmonics 3fi1 can be also found in bearing #1 and bearing #2. The reason 

of this phenomenon is that the bearing is considered to have waviness error, whose 

waviness number is 18. The velocities of second and third shaft are relatively low. Thus, 

the roller passing frequency of the outer raceway and inner raceway are not obvious. 

(a)                                       (b)  
 

(c)                                      (d)  
 

(e)                                        (f) 
 

Fig 10. Comparisons of frequency-domain accelerations of support bearings from the 
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FGDS model and RGDS model in the Y direction when the input shaft rotate speed is 

3500r/min. (a) Bearing#1, (b)bearing#2, (c) bearing#3, (d) bearing#4, (e) bearing#5, 

and (f) bearing#6. 

Figure 12 shows the comparisons of RMS values of Y-direction accelerations of 

each bearing's outer ring from the FGDS model and RGDS model when the input shaft 

rotate speed is form 2000r/min to 4000r/min; and the output torque is 500N·m. The 

calculation method for the RMS value is given in Ref. [39]. In Figure 10, the RMS 

values of RGDS model are much higher than those of FGDS model especially for 

bearing#6’s RMS; and both the RMS values of RGDS model and FGDS model increase 

with the increment of input rotate speed. 

(a)                                        (b)  
 

(c)                                        (d)  
 

(e)                                        (f)      
 

Fig 11. Comparisons of frequency-domain accelerations of support bearings from the 

FGDS model and RGDS model in the Y direction when the input shaft rotate speed is 

4000r/min. (a) Bearing#1, (b) bearing#2, (c) bearing#3, (d) bearing#4, (e) bearing#5, 

and (f) bearing#6. 
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(a)                     (b)                   (c) 
 

(d)                     (e)                   (f) 
 

Fig 12. Comparisons of RMS values of support bearings from the FGDS model and 

RGDS model in the Y direction. (a) Bearing#1, (b) bearing#2, (c) bearing#3, (d) 

bearing#4, (e) bearing#5, and (f) bearing#6. 

3.2 Vibrations analysis of FGDS in Z direction 

In this section, the vibrations of FGDS in Z direction obtained by the proposed 

model and the RGDS model are compared. Figure 13 gives the accelerations obtained 

by the RGDS model and FGDS model when the input shaft rotate speed is 2000r/min. 

The acceleration amplitude in Z direction of FGDS model is higher than that of RGDS 

model. Moreover, the accelerations in Z direction are less than the ones in Y direction. 

The reason for this phenomenon is that the meshing force radial component is larger 

than the axial component. Figure 14 gives the comparisons of spectra of Z direction 

accelerations of each bearing’s outer ring from the FGDS model and RGDS model 

when the input shaft rotate speed is 2000r/min. In Fig. 14, the spectra of accelerations 

of bearings are the meshing frequency fm1 (fm1=fs1×Z1=33.33×39=1300Hz) of gear #1 

and meshing frequency fm1 (fm1=fs2×Z3=11.11×44=488.8Hz) of gear #2, their harmonics 

2fm1 and 2fm2, and fm1±fm2. The amplitudes of these frequencies obtained by the FGDS 

model are larger than that of the RGDS model. These are opposite to the results in Y 

direction. The reason for this phenomenon is that the stiffness in Z direction is higher 

than Y direction. Thus, the vibrations in Z direction are more sensitive to the change of 

external force. The meshing deformation in the FGDS model is higher than the one in 

the RGDS model. The RGDS model can be considered to have large stiffness. The axial 

stiffness of RGDS model is higher than the one of FGDS model. However, the meshing 

forces in the FGDS model are larger than the ones of RGDS model. The increases of 

meshing forces have a more significant effect on the vibrations in Z direction. The radial 

stiffness of RGDS model is much higher than the one of FGDS model. Thus, the 

acceleration amplitude in Z direction of FGDS model is higher than that of RGDS 

model, but the acceleration amplitude in Y direction of FGDS model is less than that of 

RGDS model. 
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(a)  

(b)  

(c)  

(d)  

(e)  

(f)  

Fig 13. Comparisons of time-domain accelerations of support bearings from FGDS 

model and RGDS model in the Z direction. (a)Bearing#1, (b)bearing#2, (c) bearing#3, 

(d) bearing#4, (e) bearing#5, and (f) bearing#6. 
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(a)                                        (b) 
 

(c)                                        (d) 
 

(e)                                        (f) 
 

Fig 14. Comparisons of frequency-domain accelerations of support bearings from the 

FGDS model and RGDS model in the Y direction. (a) Bearing#1, (b)bearing#2, (c) 

bearing#3, (d) bearing#4, (e) bearing#5, and (f) bearing#6. 

Figure 14 shows the comparisons of RMS values of Z-direction accelerations of 

each bearing's outer ring from the FGDS model and RGDS model when the input shaft 

rotate speed is form 2000r/min to 4000r/min; and the output torque is 500N·m. In Fig. 

15, the RMS values of FGDS model are much higher than those of RGDS model; and 

both the RMS values of RGDS model and FGDS model increase with the increment of 

input rotate speed. 
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(a)                    (b)                     (c) 
 

(d)                    (e)                     (f) 
 

Fig 15. Comparisons of RMS values of support bearings from the FGDS model and 

RGDS model in the Z direction. (a) Bearing#1, (b) bearing#2, (c) bearing#3, (d) 

bearing#4, (e) bearing#5, and (f) bearing#6. 

3.3 Frequency-amplitude characteristics analysis 

In Fig. 16, the frequency-amplitude characteristics of bearing #1, bearing #2, 

bearing #3, bearing #4, bearing #5, and bearing #6 are given. The resonance peak 

appears in 1350r/min. The peak amplitudes of bearing #1, bearing #2, bearing #3, 

bearing #4, bearing #5 and bearing #6 are 3.69μm, 3.03μm, 4.33μm, 3.46μm, 3.82μm 

and 3.44μm, respectively. The peak amplitude of bearing #3 is the maximum. The peak 

amplitude of bearing #2 is the minimum. 

(a)  (b)

(c)  (d)
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(e) (f)  

Fig. 16. Frequency-amplitude characteristics of (a) bearing#1, (b) bearing#2, (c) 

bearing#3, (d) bearing#4, (e) bearing#5, and (f) bearing#6. 

4 Conclusions 

In this paper, a FGDS model of the multi-stage transmission system is established. 

The shafts’ transverse, longitudinal and torsional vibrations are all considered. The 

Timoshenko beam element with 6 DOFs is used to establish the dynamic model of shaft 

segment element. The lumped parameter method is used establish gear and bearing 

dynamic models. The vibrations of the multi-stage transmission system in Y (radial 

direction) and Z (axial direction) directions are analyzed. An experiment is conducted 

to prove the correctness of the proposed model. The analysis results may give a new 

method to decrease the vibrations and improve the quality of GTSs. The conclusions 

are as follows. 

1) The characteristic frequency errors of measured acceleration spectrum and 

simulated acceleration spectrum are less than 1%. The simulation results and 

experimental results are in good agreement, and this indicates the correctness of the 

proposed model to a certain extent. 

2) Duo to the RGDS model ignores the shaft structural damping and considers the 

structural stiffness is very large, the acceleration amplitude of RGDS model in Y 

direction is higher than that of FGDS model. 

3) Duo the meshing forces in the FGDS model are larger than the ones of RGDS 

model, the acceleration amplitude of RGDS model in Z direction is less than that of 

FGDS model. This is opposite to the results in Y direction because that the increases of 

meshing forces have a more significant effect on the vibrations in Z direction, but the 

radial stiffnesses have a more significant effect on the vibrations in Y direction 

4) In the spectra in Y direction, the meshing frequencies (fm1 and fm2) and their 

harmonics (2fm1 and 2fm2) can be found. In the spectra in Z direction, fm1, fm2, 2fm1, 2fm2, 

and fm1±fm2 can be found. 

5) When the input shaft rotates speed increases, the vibrations of FGDS model and 

RGDS model have the tendency of increasing. Compared with the RGDS model, the 

amplitude and waveform of different positions of FGDS model have more differences. 

Therefore, the dynamic model of GTS considering the shaft flexibility can show the 

vibration differences of GTS at different positions, which is more authentic and reliable. 
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