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Abstract

The need for a timely and detailed measure of the economy has become increasingly

important in recent years due to sudden periods of economic growth and decline. It has

become imperative for policymakers and practitioners to accurately capture short-term

dynamics and trajectories as we emerge from shocks. However, relying on traditional

survey-centric economic indicators presents challenges, as they often lack granularity

and are published with significant delays. For this reason, National Statistics Institutes,

such as the UK’s Office for National Statistics, are undergoing a transformation by

incorporating administrative and alternative data-sources as key components of their

statistical frameworks. These data sources offer several benefits, including timeliness,

cost-effectiveness, reliability, and comprehensive coverage of economic processes. While

a sense of awareness for these new data-sources is being established, the statistical

methodology to calibrate insights from these sources remains under-developed.

This thesis develops new methodology for producing timely and interpretable eco-

nomic statistics. Specifically, it proposes novel techniques to address the crucial tasks

of temporal disaggregation and nowcasting when dealing with large volumes of high-

dimensional data. The frameworks developed in this research leverage the growing

body of literature on sparsity-inducing regularisers, allowing for interpretable measures

of relevant data-sources. Acknowledging the importance of reproducibility, the work

presented is developed into R packages, and a wide range of case studies are extensively

covered to showcase applicability of the proposed methodologies.
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Chapter 1

Introduction

The world’s economic landscape has faced many changes in recent years, both on a global

and localised scale. Much of this change may be attributed to the coronavirus pandemic

and related restrictions on trade and movement of people. Prior to the pandemic, which

rapidly spread at the end of 2019 (reaching UK shores early 2020), the last global

financial shock to meaningfully impact the UK was that of the financial crisis of 2008.

The cause of these shocks are drastically different, as are the potential consequences

and trajectories of the economy as we emerge. Fundamentally, to examine the impact

of economic events and assess these trajectories, we first need to accurately measure

activity across the economy.

In the UK, the Office for National Statistics (ONS) has a primary responsibility

for this task, and reports on a wide range of statistics of interest, from headline Gross

Domestic Product (GDP) figures, inflation indices, to novel indicators of economic

activity and social change (ONS, 2022a). These latter measures have been more recently

introduced, in part as a response to the 2016 Independent Review of UK Economic

Statistics (Bean, 2016) that identified increasing the timeliness and granularity of

economic statistics as key to improving the situational awareness of policy makers,

government agencies and statistical organisations. Similar reports (e.g. Pfeffermann,

1
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2015; Eurostat, 2017; Hand et al., 2018) have explored the way in which official statistics

are gathered and motivated attempts to move away from the traditional survey-centric

approach. In particular, there has been a notable shift towards embracing alternative1

and administrative data sources that offer timeliness, cost-effectiveness, and reliability,

while also capturing numerous processes (Fuleky, 2019). While traditional, low-frequency

data sources will remain critical, their role will evolve to complement and enhance the

measurement capabilities of the new higher-frequency sources (Jarmin, 2019).

The ONS has made great strides in improving the timeliness of its key statistics, for

instance through integrating Value Added Tax (VAT) return data to construct a monthly

indicator index of GDP (ONS, 2022b,d), and developments into using supermarket

scanner data for constructing consumer inflation indices (ONS, 2021). However, many

statistics of interest are not produced on a timescale relevant to understanding the

fast moving economic environment that we have faced in the last few years, and the

statistical methodology to calibrate insights from large collections of alternative data

sources remains under-developed.

This thesis explores new methods for producing timely and interpretable economic

statistics. In particular, I propose novel techniques for the tasks of temporal disag-

gregation and nowcasting when in the presence of large (high-dimensional) amounts

of data. Temporal disaggregation (Dagum and Cholette, 2006) is a method for esti-

mating a high-frequency (e.g. monthly) version of a low-frequency (e.g. quarterly)

time series using related high-frequency indicator series (if available). The resulting

high-frequency series is constrained to be temporally consistent with the low-frequency

series for every low-frequency period observed. Temporal disaggregation is an important

task for National Statistical Institutes (NSIs) because it provides a coherent way to

combine precise but not very timely aggregate data from National Accounts with timely

1Alternative data sources include a wide range of examples, such as satellite imagery for address
registry (ONS, 2017b), road traffic sensor data, and ship tracking (ONS, 2019a), as well as internet
search data from Google Trends (Ferrara and Simoni, 2022). Chapter 1 of Fuleky (2019) provides
numerous additional illustrations.
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indicators capable of revealing short-term dynamics. Nowcasting, on the other hand,

is a technique for estimating current or very recent values of a time series based on

available information. Popularised in economics by Giannone et al. (2008), nowcasting

has become an important tool to provide real-time information on the current state of

the economy, which consequently can be used to make timely and informed decisions.

As the majority of official statistics are published with delay, nowcasts can be used as

an early estimate and avoid the long delay.

With the prevalence of large volumes of high-frequency administrative and alternative

data sources NSIs endeavour to incorporate into the production of official statistics,

it becomes imperative to draw upon the extensive body of literature concerning high-

dimensional statistics (Bühlmann and Van De Geer, 2011) and how this can be used in

conjunction with the well-established temporal disaggregation and nowcasting litera-

ture. A crucial aspect of the methodology developed in this context is interpretability.

How does one interpret estimates of economic statistics obtained from a potentially

overwhelming amount of data? Transparency is crucial in today’s fast-paced economy,

where decisions have to be made in short spaces of time. Identifying relevant variables

gives the user knowledge on the main driving forces behind estimates, helping with

future data revisions and the understanding of policy effects and shocks. If appropriate

variables and features can be isolated, then estimates are likely to be more accurate and

more consistent as noise from irrelevant variables is mitigated.

1.1 Main Contribution and Thesis Structure

The primary contribution of this thesis is to provide novel, coherent and reproducible

methodologies for the tasks of temporal disaggregation and nowcasting in high-dimensional

scenarios. The two main methodologies of Chapter 3 and 4 have been made into R pack-

ages available on the Comprehensive R Archive Network (CRAN) for reproducibility.
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They should allow the reader a practical way to implement and interpret a high-

dimensional amount of time series for the purpose of producing timely and accurate

estimates of target variables. Throughout the thesis, we shall see several case studies

across a range of important real data applications. The structure of the thesis is as

follows.

Chapter 2 aims to provide the background knowledge and statistical tools required

for the main contributions of the thesis. It begins by exploring the fundamental concepts

of time series analysis. Subsequently, a thorough literature review is presented, focusing

on the methods and motivations behind two crucial topics: temporal disaggregation and

nowcasting.

Chapter 3 introduces a new method, named Sparse Temporal Disaggregation (spTD),

that extends the well-established Chow and Lin (1971) family of methods for temporal

disaggregation to allow for a high-dimensional set of indicators. A regularised M-

estimation framework that is able to simultaneously select the relevant indicators

and estimate their impact is established. The advantages of the proposed method is

demonstrated through simulation study. The chapter then presents two case studies

implementing spTD using a high-dimensional mixture of traditional and alternative data-

sources. The first attempts to accurately disaggregate quarterly UK GDP and inform us

on the most relevant indicators for this task. The second attempts to disaggregate the

quarterly index of service turnover for transportation in Italy and compares the accuracy

and stability of spTD with competing methods in a pseudo-real time nowcasting exercise.

Chapter 4 formally introduces a new class of sparse Dynamic Factor Models (DFMs).

DFMs are a very popular tool for modelling high-dimensional time series and in par-

ticular for the task of nowcasting, however, it is often hard to interpret the meaning

of the latent factors. In the proposed methodology, DFMs are estimated using an

expectation-maximisation (EM) algorithm to enable estimation of model parameters

using a regularised quasi-maximum likelihood. The regularisation (ℓ1-norm) is placed on
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the loadings parameter of the DFM to obtain a sparse amount of non-zero loadings for

the estimated latent factors. This provides much greater interpretation into the factor

structure, allowing us to identify which series, or group of series, are influencing the

dynamics of the system. Synthetic experiments demonstrate consistency in terms of

estimating the loading structure, and superior predictive performance where a low-rank

factor structure may be appropriate. The utility of the method is further illustrated by

two case studies in distinct fields. The first is an econometric application that looks

to nowcast 9 of the main trade commodities the UK exports worldwide. The second is

an energy application that forecasts electricity consumption across a large set of smart

meters across a University campus.

Chapter 5 presents results of a case study attempting to produce timely estimates of

the subdivisions of UK Trade in Services, with particular focus on how the trajectory may

have varied throughout the months of the coronavirus pandemic and Brexit transition

period. For this task, a large state-space framework is constructed combining the sparse

dynamic factor model with multivariate temporal disaggregation to produce a quarterly-

to-monthly disaggregation of quarterly service data with the ability to obtain real-time

nowcasts - avoiding the 3 month publication delay service data currently possess. In

addition, an intervention study employing an interrupted time series model is conducted,

which explores the potential impacts that Brexit has exerted on UK trade with EU

countries.

Chapter 6 provides details on the two R packages available on CRAN called

DisaggregateTS and sparseDFM implementing the methods in Chapter 3 and Chapter

4 respectively. The core structure and functionality of the packages are presented, as

are detailed walk-through examples on synthetic and real data applications on how one

might use the packages in practice.

Chapter 7 gives concluding remarks, highlighting the main takeaways from each

chapter and presents several avenues for future work.



Chapter 2

Literature Review

A time series (Hamilton, 2020) is a collection of observations made sequentially through

time. In the context of this thesis, the focus lies on the domain of official statistics,

encompassing datasets published by NSIs such as the UK’s ONS. These datasets pre-

dominantly comprise of information derived from surveys, censuses, and administrative

data-sources, covering a wide range of vital indicators such as GDP, unemployment

rates, inflation measures, crime statistics, and demographic data. It is important to note

that all time series examined in this study are discrete, implying that observations are

recorded at specific, evenly spaced intervals, such as months, quarters, or years. This dis-

crete nature contrasts with continuous time series, where observations are continuously

gathered over time.

Figure 2.0.1 illustrates a prominent time series that is used throughout the literature

review. This particular time series corresponds to quarterly GDP data sourced from the

UK’s Quarterly National Accounts (QNA), comprising the period between 2016 and

2022 with key economic events in this period highlighted. The QNA is a vital publication

in the UK, providing a comprehensive and consistent depiction of the economy. Notably,

policymakers and analysts heavily rely on the QNA within government circles and

various industries. At the Bank of England, the country’s central bank, the QNA plays

6
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Figure 2.0.1: UK GDP Quarterly National Accounts time series: chained volume
measures (CVM) and seasonally adjusted (SA). Key dates highlighted: [1] June 23,
2016 Brexit referendum; [2] March 29, 2017 Article 50 of the Treaty on European Union
invoked; [3] March 23, 2020 UK lockdown due to COVID-19 pandemic; [4] 30 December,
2020 UK-EU Trade and Cooperation Agreement signed; [5] Autumn, 2021 Energy crisis
begins; [6] 24 February, 2022 Russia invade Ukraine.

a crucial role in informing the Monetary Policy Committee’s decisions regarding interest

rates. Furthermore, the Office for Budget Responsibility utilises the QNA for economic

growth projections and forecasting public sector debt. For detailed insights into the

construction of the QNA specific to the UK, please refer to ONS (2022c).

Time series data exhibits a distinctive characteristic whereby consecutive time points

are not independently sampled. Consequently, the presence of correlation between these

time points, referred to as autocorrelation, must be accounted for by time series models

when performing inference. In these models, the current observations are typically

expressed as a function of their preceding observations. Notably, observations that are

closer in time tend to exhibit a stronger interdependency relationship compared to those
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with larger time separations.

A popular class of time series models are the autoregressive-moving-average (ARMA)

models (Hamilton, 2020). For a given univariate time series {xt : t ∈ N}, these models

combine an autoregressive component (AR), capturing the linear relationship between

current and past observations, with the moving-average (MA) component capturing the

influence of past error terms {ϵt : t ∈ N}. Formally, an ARMA(p, q) model is defined as:

xt = ϕ1xt−1 + · · ·+ ϕpxt−p + ϵt + ψ1ϵt−1 + · · ·+ ψqϵt−q ,

for p AR lags with AR coefficients ϕ1, . . . , ϕp, and q MA lags with MA coefficients

ψ1, . . . , ψq. The error terms are assumed to be serially uncorrelated and identically

distributed white noise processes. When dealing with multivariate time series, these

models can be extended to vector autoregressive-moving-average (VARMA) models

(Tsay, 2013), enabling the measurement of autocorrelation properties across multiple

time series.

The concept of stationarity is essential in time series analysis. Stationarity refers

to the property of a time series where its statistical properties, such as mean, variance,

and autocovariance structure, remain constant over time. Formally, a time series xt is

considered stationary (or weakly stationary) if it satisfies the following conditions:

• E [xt] = µ for all t;

• E [x2t ] <∞ for all t;

• Cov(xt, xt−k) = γ(k), for all t and k .

A strictly stationary time series maintains an invariant joint probability distribution over

time, while a weakly stationary time series with Gaussian distribution is also strictly

stationary (Brockwell and Davis, 2009). When stationarity is discussed throughout the

thesis, we can assume this is in the weak-sense. Stationarity plays a crucial role in
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simplifying and interpreting time series analysis, serving as a prerequisite for reliable

statistical inference. ARMA models are highly popular because, according to Wold’s

decomposition theorem (Hamilton, 2020), any stationary process can be approximated

by a stationary ARMA model1.

Most time series data exhibit trends, representing long-term increases or decreases,

and seasonality, which refers to repeated cycles at fixed frequencies. These characteristics

make time series inherently non-stationary. To ensure stationarity when modeling,

considerable effort is invested in preparing and publishing official time series data. One

simple technique used to remove trends from a time series is differencing, which involves

computing the differences between consecutive observations. By differencing the data,

non-stationary time series may be transformed into stationary ones. A canonical example

is the ARIMA(p, d, q) that takes on an ARMA(p, q) after differencing d times.

In addition to trends, seasonality can also be addressed through differencing. By

differencing the series at fixed intervals corresponding to the occurrence of seasonality,

the seasonal patterns can be eliminated. The X13-ARIMA-SEATS methodology (U.S.

Census Bureau, 2022) is a highly regarded technique for seasonal adjustment that also

considers holiday effects, and is implemented by several NSIs.

When multiple non-stationary time series are modeled together, it is possible that

they share a stable relationship. Although these series may exhibit independent move-

ments, their average distance remains relatively constant. This property is known as

cointegration (Johansen, 1988). Cointegration allows for the joint modeling of non-

stationary variables, as they will demonstrate a stationary relationship in the long run.

This is particularly useful for capturing the interdependencies and long-term dynamics

among multiple time series.

For a more detailed understanding of time series theory and analysis, refer to the

1ARMA(p, q) models are stationary when the roots of the characteristic equation (the equation
that relates the current observation to past observations) lie outside the unit circle. In other words, all
the roots of the autoregressive polynomial must have magnitudes greater than one. For example, the
frequently used AR(1) model (i.e. ARMA(1, 0)) in this thesis is stationary when |ϕ1| < 1.
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comprehensive books by Brockwell and Davis (2009), Tsay (2013), Box et al. (2015)

and Hamilton (2020). The rest of the chapter provides a detailed literature review for

two important time series techniques in production and publication of official statistics:

temporal disaggregation and nowcasting.

2.1 Temporal Disaggregation

This section aims to provide a detailed literature review for temporal disaggregation

methods. For alternative reviews, see Dagum and Cholette (2006) and Pav́ıa-Miralles

et al. (2010) for surveys of the literature, and Chen (2007) for an empirical comparison

of popular methods using 60 series of annual data from the national accounts of the U.S.

Bureau of Economic Analysis. The concept of temporal disaggregation is motivated and

explained in Section 2.1.1. In Section 2.1.2, the temporal aggregation matrix that ensures

disaggregate estimates are temporally consistent with low-frequency observations is

defined. Section 2.1.3 reviews smoothing methods used for temporal disaggregation that

aim to derive a smooth path for the unobserved series. Section 2.1.4 reviews regression-

based temporal disaggregation methods that make use of a collection of related indicator

series. This section opens the door for the methodology discussed in Chapter 3. Section

2.1.5 concludes with a review on multivariate temporal disaggregation methods where

contemporaneous constraints may be present.

2.1.1 Introduction

Temporal disaggregation is a vital tool for National Statistical Institutes (NSIs) such as

the UK’s Office for National Statistics (ONS) to transform data from a lower to higher

frequency. NSIs often face the challenge of having information not directly observable

at the temporal frequency they desire and are increasingly asked to provide more

frequent publications of headline statistics like GDP, inflation rates, and employment.
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For example, when compiling a country’s Quarterly National Accounts, NSIs often

use comprehensive data sources obtained from annual industry and household surveys.

The typical motivation for providing these more frequent measures is to paint a more

timely picture of the economic health of a country. Data at lower frequencies may miss

short-term fluctuations and trends that could be significant for policy makers when

making informed decisions.

The temporal disaggregation problem is perhaps best explained from the perspective

of a practitioner working in official statistics. The practitioner observes a low frequency

data-stream of a key statistic (such as GDP) that they wish to disaggregate to a

higher frequency. For the sake of clarity, we can assume that this low-frequency data-

stream is at a quarterly scale and denote this as the vector ȳ ∈ Rnl×1, containing

nl quarterly observations. Note, we use the bar notation above variables that are

at the lower temporal frequency and nl will represent the number of low-frequency

data points. The practitioner seeks to construct a disaggregated version of ȳ at a

sub-quarter time resolution. In addition, it is desirable that the disaggregated series

be temporally consistent during each quarter and not contain spurious jumps between

quarters. Consider, by way of example, a setting where one seeks to produce a monthly

version and denote this by y ∈ Rn×1, where n = 3nl in the case of quarterly-to-monthly

disaggregation. The disaggregation challenge lies in developing a principled approach to

interpolate or distribute between each observed quarterly data point.

A common approach to achieve this goal is to use indicator series2 recorded at

the desired high-frequency (monthly) that are believed to indicate the intra-quarter

movements and help with their estimation. We denote a set of high-frequency indicator

series as the matrix X ∈ Rn×p where each column is a monthly time series representing

one of p indicators. By way of example, consider the task of disaggregating the quarterly

series of UK GDP we saw in Figure 2.0.1 to a monthly frequency using the Index of

2Indicator series may also be referred to as related, covariate, predictor or explanatory series.
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Figure 2.1.1: Monthly estimate of UK GDP using Chow-Lin temporal disaggregation
with Index of Production and Services as indicator series. Key dates highlighted: [1] June
23, 2016 Brexit referendum; [2] March 29, 2017 Article 50 of the Treaty on European
Union invoked; [3] March 23, 2020 UK lockdown due to COVID-19 pandemic; [4] 30
December, 2020 UK-EU Trade and Cooperation Agreement signed; [5] Autumn, 2021
Energy crisis begins; [6] 24 February, 2022 Russia invade Ukraine.

Production and Services for the UK as two monthly indicator series. Using the well-

established temporal disaggregation method by Chow and Lin (1971), that is explained

in detail in Section 2.1.4, we obtain a monthly disaggregate series of UK GDP displayed

in Figure 2.1.1. Key events affecting the UK economy are again added to the figure.

Having GDP at the monthly frequency allows us to better understand the short-term

movements around these key dates, informing us on months of economic decline and

recovery. The disaggregate series estimate is constrained such that three monthly values

in a quarter sum to the corresponding observed quarterly figure from the Quarterly

National Accounts. This temporal aggregation constraint is discussed in the next section.
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2.1.2 Temporal Aggregation Constraint

The disaggregate estimates of a low-frequency time series are constrained to be temporally

consistent for each low-frequency period. For example, in a quarterly-to-monthly

disaggregation, three monthly estimates of a quarter must correctly aggregate to their

respective observed quarter figure. The type of aggregation that must be adhered to

depends on the nature of the data in question. With official statistics, data can be

typically classified as either stock or flow. Stock data measures the quantity/level

of a variable at a specific point in time, for example, capital stock at the end of a

year. Flow data measure how much of something has happened over a period of

time, for example, production over a month. Temporal disaggregation of stock data is

essentially an interpolation problem that is constrained to pass through the low-frequency

observations. Typically, the last disaggregate estimate in a low-frequency period is made

equal to the corresponding low-frequency observation. I.e.

ȳτ = yt , for t = 3τ ,

for quarterly-to-monthly disaggregation of all quarters τ = 1, . . . , nl. For disaggregation

of flow data, high-frequency estimates are typically summed or averaged over low-

frequency periods. I.e. in quarterly-to-monthly disaggregation we have

ȳτ =
2∑

i=0

yt−i or ȳτ =
1

3

2∑
i=0

yt−i , for t = 3τ , τ = 1, . . . , nl ,

for sum and average constraints, respectively.

In general, the disaggregate series, y, must satisfy the temporal aggregation constraint

given by

ȳ = Cy ,
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where C is a nl × n temporal aggregation matrix defined by

C = Inl
⊗ c =



c 0 . . . 0

0 c . . . 0

...
...

. . .
...

0 0 . . . c


,

where 0 and c are vectors of length k = n/nl, with 0 containing zeros and c taking

various forms:

• c = (1, . . . , 1) for summing flow series;

• c = ( 1
k
, . . . , 1

k
) for averaging flow series;

• c = (0, . . . , 0, 1) for interpolating stock series.

The applications considered in this thesis aim to find timely estimates of flow data, where

the sum of high-frequency estimates between low-frequency periods are constrained to

equal the corresponding low-frequency observation. Henceforth, the aggregation matrix

is C = In ⊗ c, where c = (1, . . . , 1), the k-dimensional vector of ones.

2.1.3 Smoothing-based Methods

There are several methods that exist to perform the task of temporal disaggregation.

The choice of method ultimately depends on what related information is available at

the high-frequency and the preferences of the practitioner. The most naive approach

would be to simply distribute the unobserved high-frequency values pro-rata, i.e. set

each monthly value in a quarter to be one-third of the observed quarter value. The

problem with this simplistic approach is that it would result in large, spurious jumps

between each quarter and not capture the more realistic smoother, gradual temporal

change economic time series possess.
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When no related high-frequency information (indicator series) are available, the

preferred option is to use constrained smoothing methods that aim to fit a smooth and

continuous curve through high-frequency data points ensuring that temporal additivity

constraints are satisfied. A commonly used smoothing procedure is cubic spline smooth-

ing. A cubic spline is a series of cubic (third-degree) polynomials that interpolate a

tabulated function at certain data points called knots such that the first and second

derivatives of the overall curve at each knot are continuous to guarantee smoothness.

Quenneville et al. (2013) demonstrate how cubic splines can be used for temporal

disaggregation, as the low-frequency observations act as ‘knots’, and, as each cubic

polynomial linking up these knots is a function of time, sub-period estimates can then

be simply derived from each spline. The levels and slopes at adjacent low-frequency

periods are set equal to avoid spurious jumps, and the sum of the values of the spline

over each low-frequency period is set equal to the respective low-frequency value to meet

temporal additivity constraints. The ONS use cubic splines when producing the Index

of Services (ONS, 2017a).

A different smoothing approach in the absence of indicator data is to set up a

constrained quadratic optimisation problem trying to minimise the period-to-period

changes in the disaggregate series subject to observed low-frequency temporal constraints.

Boot et al. (1967) consider minimising the sum of squares of the differences between

successive high-frequency values. Formally, letting dt = yt − yt−1 be the first-difference

process for t = 2, . . . , n, and d be the full vector for all t, they solve the constrained

minimisation given by

min
y

d⊤d = y⊤D⊤Dy s.t. ȳ = Cy , (2.1.1)
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where D is the n× n matrix of first-differences:

D =



1 0 . . . 0 0

−1 1 . . . 0 0

...
...

. . .
...

...

0 0 . . . −1 1


. (2.1.2)

The solution of the constrained minimisation (2.1.1) is

y = (D⊤D)−1C⊤ (C(D⊤D)−1C⊤)−1
ȳ . (2.1.3)

Appendix A.1 provides details for solving a general quadratic optimisation problem with

a linear equality constraint for the purpose of temporal disaggregation. The general

solution derived encompasses solution (2.1.3) for the Boot et al. (1967) smoothing

method, as well as other popular temporal disaggregation methods described in the

subsequent text.

Stram and Wei (1986) generalise the smoothing optimisation method of Boot

et al. (1967) by assuming the latent high-frequency series evolves according to an

ARIMA(p1, d1, q1) process. If p1 = q1 = 0 and d = 1, then this is identical to the

Boot et al. (1967) approach. Stram and Wei (1986) attempt to find solutions of the

constrained minimisation given by

min
y

d⊤V −1
d d = y⊤D⊤V −1

d Dy s.t. ȳ = Cy ,

where Vd is the n × n covariance matrix of d that will depend on the parameters

of the assumed ARIMA model for y. Denton (1971) extends the Boot et al. (1967)

smoothing method by incorporating a single high-frequency indicator series, x, that is

believed to approximate the short-term dynamics of ȳ. Their approach seeks to obtain

a disaggregate series y that maximally preserves the movements in the indicator series
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x while being temporally consistent with ȳ. Formally, they find solutions to

min
y

(y − x)⊤B(y − x) s.t. ȳ = Cy ,

where B is an n× n symmetric, non-singular weighting matrix. Denton (1971) specify

various forms of B including B = D⊤D to preserve period-to-period level changes

between y and x, and B = X̃−1D⊤DX̃ with X̃ = diag(x) to preserve proportional

period-to-period change. The corresponding solution is given by

y = x+B−1C⊤ (CB−1C⊤)−1
(ȳ −Cx) ,

that involves adding a distribution of aggregated residuals to the indicator series x to

ensure temporal consistency.

Denton (1971) is a popular method amongst national statistical organisations to

benchmark unbalanced data. For example, it is used within the X13-ARIMA-SEATS

seasonal adjustment program (U.S. Census Bureau, 2022) to ensure aggregate totals

of seasonally adjusted data matches aggregate totals of non-seasonally adjusted data.

There has been modifications to the original Denton method that include preserving

the percentage growth rate (Causey and Trager, 1981), improving the treatment of the

initial conditions (Cholette, 1984), and accounting for bias and/or errors in the observed

aggregate benchmark series (Cholette and Dagum, 1994).

2.1.4 Regression-based Methods with Indicator Series

Pioneered by the work of Chow and Lin (1971), regression-based methods for temporal

disaggregation allow the practitioner to model more than one related high-frequency

indicator series in the disaggregation of low-frequency data. The premise of the Chow-

Lin framework is to assume that a linear relationship exists between the unobserved

disaggregate target series, y, and the set of high-frequency indicator series, X, through
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the expression

y = Xβ + u , (2.1.4)

where β ∈ Rp×1 is a vector of unknown parameters and u ∈ Rn×1 is a residual vector.

Note, it is possible for the matrix X to contain deterministic terms such as constants

and trends. The residual vector u is mean-zero and has covariance matrix V . Chow and

Lin (1971) assume the data generating process of u follows a first-order autoregressive

(AR(1)) process, ut = ρut−1 + ϵt, with ϵt ∼ N(0, σ2
ϵ ) and |ρ| < 1. This assumption of a

stationary residual process allows a cointegrating relationship between y and X when

they are non-stationary, a likely scenario with economic time series. Thus, the regression

coefficient β measures both the long- and short-run effect of X on y. The resulting

covariance matrix V has the well-known Toeplitz form

V =
σ2
ϵ

1− ρ2



1 ρ . . . ρn−1

ρ 1 . . . ρn−2

...
...

. . .
...

ρn−1 ρn−2 . . . 1


, (2.1.5)

containing two unknown parameters ρ and σ2
ϵ that must be estimated. Alternatives to

the Chow-Lin AR(1) assumption include Fernandez (1981) who assume that residuals

follow a random walk process3 (ut = ut−1 + ϵt), and Litterman (1983) who assume that

residuals follow an ARIMA(1,1,0) process (ut = ut−1 + ϵt and ϵt ∼ AR(1)).

As the dependent variable in (2.1.4) is unobserved, the regression is pre-multiplied

by the nl × n aggregation matrix C to obtain the observable low-frequency counterpart

given by

ȳ = X̄β + ū , (2.1.6)

3The random walk assumption of Fernandez (1981) can be viewed as analogous to the Denton
(1971) additive first-difference method, where B = D⊤D, when a preliminary estimate x is used in the
place of Xβ.
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where ȳ = Cy, X̄ = CX and ū = Cu with covariance matrix V̄ = CV C⊤. The

regression equation in (2.1.6) is now fully observable and can be solved using standard

techniques. As autocorrelation is present in the Chow-Lin assumption of an AR(1)

residual process, this is dealt with by using the generalised least-squares (GLS) estimator:

β̂ = argmin
β∈Rp

{∥∥∥V̄ −1/2
(ȳ − X̄β)

∥∥∥2
2

}
= (X̄

⊤
V̄

−1
X̄)−1X̄

⊤
V̄

−1
ȳ .

The estimator for β is conditional on the covariance matrix V̄ which contains the

unknown parameters ρ and σ2
ϵ . In fact, the σ2

ϵ parameter can be factored out of the

covariance matrix V̄ and will cancel itself out in the estimator β̂. Thus, only ρ has to be

estimated prior to the estimate for β. It follows that β̂, conditional on ρ̂, is a feasible GLS

estimator of β (Kariya and Kurata, 2004). Originally, Chow and Lin (1971) proposed

an iterative procedure to infer the ρ parameter from the observed autocorrelation of

the aggregated residuals by identifying a functional relationship between annual and

quarterly AR(1) processes, however, it has since been shown this method is not very

reliable and suffers when sharp movements are present in the series (Chen, 2007).

Bournay and Laroque (1979) provide a more intuitive method by first estimating β̂ and

ˆ̄V via profile-likelihood maximisation, before searching for the autoregressive parameter

over the stationary range of ρ ∈ (−1, 1). I.e. the profile estimator of β is a function of ρ.

The feasible GLS estimator β̂ (i.e. β̂ρ̂) conditioned on the maximum likelihood

estimate of ρ is used to construct the target high-frequency unobserved series y. Chow

and Lin (1971) show following the standard GLS argument (Kariya and Kurata, 2004)

that the optimal (best linear unbiased) solution is given by

ŷ = Xβ̂ + V CV̄
−1(

ȳ − X̄β̂
)
.
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The first part of this expression Xβ̂ is an estimate for the conditional expectation of

y given X. The second is an estimate of the high-frequency residual u, obtained by

adjusting the observed low-frequency residuals ˆ̄u = ȳ − X̄β̂ with the smoothing matrix

L = V CV̄
−1

to ensure temporal consistency between the estimates ŷ and observations

ȳ. This solution follows the same structure as the derivations in Appendix A.1.

A benefit of a regression approach is the possibility to obtain confidence intervals and

quantify any uncertainty in point estimates. Confidence intervals for the high-frequency

estimates can be calculated from the covariance matrix of estimation errors given by

Cov(ŷ − y|X) = (Im −LC)V + (X −LX̄)(X̄V̄
−1
X̄

⊤
)(X −LX̄)⊤ .

The regression model also provides a natural way to produce forecasts of the high-

frequency target series outside the sample time window by simple extrapolation using

estimated model parameters.

The Chow-Lin family (Chow and Lin, 1971; Fernandez, 1981; Litterman, 1983) of

regression-based temporal disaggregation methods are vital for the production of official

statistics and compilation of national accounts across many national statistical institutes

(Eurostat, 2018). Several authors have considered extensions to the well-established

regression-based framework. Silva and Cardoso (2001) and Proietti (2006) include

dynamic features to the model by adding lagged values of the variable of interest and the

indicator series to the regression equation. Proietti (2006) cast the lagged model into a

state-space form and incorporate a time-varying cumulator variable to systematically

track temporal aggregation constraints. The state-space framework allows inference

to be conducted via the Kalman filter (Harvey, 1990). Moauro and Savio (2005) also

consider the state-space framework by specifying a seemingly unrelated time series

equations (SUTSE) model to take advantages of structural components of related time

series. Labonne and Weale (2020) use the SUTSE model for temporal disaggregation

of low-frequency data that is noisy and overlapping. Mitchell et al. (2005) derive an
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approximation for temporal disaggregation when data are in logarithms. Note, this

is an approximation since logarithms of three monthly estimates do not add up to

the logarithm of the quarterly estimate. Proietti (2006) show how to obtain an exact

disaggregation using a non-linear filtering algorithm in this setting. This is useful when

aggregation constraints are non-linear. Angelini et al. (2006) propose a method to

perform temporal disaggregation using a large, potentially high-dimensional number of

indicator series. They perform principal components analysis on the large indicator set

and use a small number of principal components explaining the majority of variance of

the indicators as a new, low-dimensional indicator set. Chapter 3 introduces a novel

method to perform temporal disaggregation in the presence of a high-dimensional set of

indicator series that is based on a regularised M-estimation framework.

2.1.5 Multivariate Methods with Contemporaneous Constraints

Temporal disaggregation methods discussed so far are essentially univariate, aiming

to obtain a single disaggregate time series, y ∈ Rn×1. These methods can be readily

extended to a multivariate setting aimed at obtaining a matrix of disaggregate series

Y ∈ Rn×m. The m target series in question are likely to not only have to meet temporal

aggregation constraints from the observed low-frequency counterpart of Y , denoted by

Ȳ ∈ Rnl×m, but also contemporaneous aggregation constraints from a cross-sectional

total aggregate series z ∈ Rn×1. For example, multivariate temporal disaggregation

methods can be used when producing more frequent statistics at the regional level

of a nation, where timely regional estimates must reconcile temporally with observed

low-frequency regional figures and contemporaneously with the high-frequency national

figure. In recent years, reports (Pfeffermann, 2015; Bean, 2016; Koop et al., 2020b) have

expressed the importance in understanding the economic disparity between regions and

suggest that, by working out how regions are correlated with each other and deviate from

the national average at a more disaggregate level will significantly help when evaluating
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a nations economy and when making policy decisions. Since 2019, the ONS have been

publishing a quarterly index of GDP for the countries of the UK and nine regions in

England (classified by the International Territorial Level [ITL] 1). Quarterly estimates

of the regions are based on the industry action taking place in that region coming from

Value Added Tax (VAT) returns for almost two million business units to HM Revenue

and Customs (HMRC). See ONS (2019b) for full details of the methodology.

Formally, the multivariate temporal disaggregation problem consists of an aggregation

constraint given by

yc = C̃y , (2.1.7)

where yc = (Ȳ 1, . . . , Ȳ m, z)
⊤ ∈ Rn(m+1)×1 stack each low-frequency observed series in

Ȳ and the cross-section aggregate z on top of each other, y ∈ Rnm×1 stack each high-

frequency target series in Y on top of each other, and C̃ = [C1,C2]
⊤ ∈ Rn(m+1)×nm is the

full aggregation matrix with C1 = Im ⊗C the temporal constraint and C2 = 1m ⊗ In

the contemporaneous constraint with 1m the m-dimensional vector of ones to sum

cross-sectionally across Y . With the complete aggregation constraint (2.1.7) defined,

the univariate regression-based framework (Chow and Lin, 1971) can be adapted to a

multivariate framework:

y = Xβ + u ,

s.t. yc = C̃y ,

where X = diag(X1, . . . ,Xm) is an nm × p block-diagonal matrix of indicator series

for each region j = 1, . . . ,m, with pj indicators in each block and p = p1 + · · · + pm.

The coefficient vector β = (β1, . . . ,βm)
⊤ is a p× 1 vector of unknown parameters and

u = (u1, . . . ,um)
⊤ is the nm × 1 stacked vector of random disturbances which has

mean-zero and covariance matrix V .

Assuming full knowledge of V , the best linear unbiased estimator (BLUE) for y can
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be obtained similarly to before by the equations:

ŷ = Xβ̂ + V C̃
⊤
V +

c

(
yc −Xcβ̂

)
β̂ =

(
X⊤

c V
+
c Xc

)−1
X⊤

c V
+
c yc ,

where Xc = C̃X, Vc = C̃V C̃
⊤
and (·)+ represents the Moore-Penrose pseudo inverse

which is used as the aggregation matrix C̃ becomes singular with the contemporaneous

constraint involved. Furthermore, the error covariance matrix is found to be

Cov(ŷ−y|X) = (InR−V C̃
⊤
V +

c C̃)V +(X−V C̃
⊤
V +

c Xc)(X
⊤
c V

+
c Xc)

−1(X−V C̃
⊤
V +

c Xc)
⊤ .

The solution is dependent on the covariance matrix V . Rossi et al. (1982) and

Di Fonzo (1990) originally proposed the disturbance series u to follow a multivariate

white noise process, V = E(uu⊤) = Σ⊗ In. The m×m matrix Σ can be estimated

using the OLS residuals of separate temporally aggregated regressions Yj = CXj +Cuj ,

for j = 1, . . . ,m. Pav́ıa-Miralles and Cabrer-Borrás (2007) extended this restrictive

assumption to model u as either a multivariate set of independent AR(1) or random

walk processes. Under such assumptions, the AR(1) parameter can be derived for each

uj ∈ Rn×1 separately using the univariate Chow-Lin procedure. They note that in

some applications the non-stationary random walk hypothesis leads to better estimates.

Therefore, they allow residuals to follow a random walk process if they fail to reject a

unit-root, determined via an augmented Dickey-Fuller (ADF) test. The full covariance

matrix V can be constructed as Vi,j = Σi,j ⊗ (Φ⊤
j Φi)

−1 for i, j = 1, . . . ,m, where Φi

is a n× n bidiagonal matrix with ones on the main diagonal and −ϕ̂i (the estimated

AR(1) parameter for region i) on the sub-diagonal, and Σi,j is the covariance of AR(1)

shocks ϵ̂i,t = ûi,t − ϕ̂iûi,t−1. If it assumed that ϕi = ϕ for all i = 1, . . . ,m, then we have

a simpler V = Σ⊗Φ, where Φs,t = ϕ|s−t|/(1−ϕ2) for times s, t = 1, . . . , n. In this case,

Σ can be concentrated out of the the model’s likelihood function and profile-likelihood
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maximisation can be utilised over the stationary range ϕ ∈ (−1, 1) by grid search.

Guerrero and Nieto (1999) propose a model based approach that extends the multi-

variate BLUE procedure to the case where the series follow a general stationary VAR

process. The added flexibility of the VAR enables the data itself suggests the VAR

model as opposed to assuming the error structure beforehand as in the previous methods.

The VAR model allows more complex inter-temporal correlations to be captured among

regions and is estimated using a straightforward procedure (Guerrero and Nieto, 1999).

Authors (Di Fonzo and Marini, 2011, 2015) extend the classic univariate benchmarking

procedure of Denton (1971) to the multivariate setting to adjust multiple time series

at once based on minimising additive and proportional first-differences, respectively.

Proietti (2011b) propose a state-space representation of the multivariate BLUE models

discussed that allows exact treatment of initial conditions when the series are non-

stationary (i.e. via diffuse priors) and the use of the Kalman filter to handle missing

data and perform out-of-sample extrapolation. Recent work (Koop et al., 2020a,b) also

use a state-space framework for the task of producing quarterly estimates of Gross Value

Added (GVA) growth for the ITL 1 regions of the UK satisfying both temporal and con-

temporaneous constraints. They adopt a Bayesian mixed-frequency VAR model treating

unknown quarterly GVA growth as latent states and perform inference using Bayesian

Markov chain Monte Carlo (MCMC) algorithms with a hierarchical Dirichlet–Laplace

prior (Bhattacharya et al., 2015) to induce parsimony in the overparameterised VAR

model.

2.2 Nowcasting

Nowcasting can be thought of as ‘forecasting’ the current or very recent state of the

economy. This section hopes to provide a detailed literature review of the main techniques

used for the task of nowcasting, going from conventional regression-based approaches
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to more complex state-space solutions. For alternative reviews of the literature see

Bańbura et al. (2013), Bok et al. (2018) and Fuleky (2019).

In this review, Section 2.2.1 explains what the nowcasting task involves using a

visual representation that also highlights the challenges we face. Section 2.2.2 reviews

the conventional regression-based approach involving aggregation to the low-frequency,

while Section 2.2.3 introduces Mixed Data Sampling (MIDAS) models that work at

the high-frequency. The rest of the section puts focus on perhaps the most popular

nowcasting technique – Dynamic Factor models, detailing estimation methods in Section

2.2.4 and how they are adopted for mixed-frequency nowcasting in 2.2.5.

2.2.1 Introduction

Headline economic indicators are often released with a lag, which means that policy

makers and econometricians usually have to wait an undesirably long time for information

on economic activity. For example, the Quarterly National Accounts (QNA) release

of UK GDP is around 13 weeks after the end of the reference quarter. Nowcasting

is defined as the prediction of the present, the very near future and the very recent

past (Bańbura et al., 2011) and has become a very popular technique in recent years to

quickly estimate current economic conditions. Rather than wait for an indicators official

release, nowcasts can be made in the weeks leading up to this release using available

information related to the indicator of interest. Take as an example the quarterly GDP

publication from the QNA in Figure 2.0.1. While the goal of temporal disaggregation

was to convert this entire series to a monthly frequency (Figure 2.1.1), nowcasting puts

focus on the very end of the time series and attempts to predict the next quarterly

observation not published yet, e.g. in this case the figure for Q1 2023. Figure 2.2.1

is a visual representation of the nowcasting task we might face in this scenario. It

assumes we are currently in March 2023, where the Q4 2022 figure for GDP has just

been released from the QNA. The current quarter figure (Q1 2023) will not be released
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Figure 2.2.1: Visual representation for the task of nowcasting Q1 2023 GDP.

until June and therefore to avoid this delay, we can use related information (indicators)

available to us in this quarter (e.g. business surveys, inflation indices, unemployment

rate, etc...) along with the previous published quarters of GDP to construct a nowcast

of Q1 2023. The idea is, as we move forward month by month (or week by week) to

June, we obtain more information on Q1 GDP, whether it be from new data releases or

data revisions of indicators. This way we can iteratively update our nowcast, hopefully

becoming more accurate each time, and also track the so called ‘news’ component of

indicator information as we learn more from one revision to the next.

Figure 2.2.1 also highlights the challenges one might face when performing the

nowcasting task. The first problem is to deal with the “curse of dimensionality” when

in situations with relatively more indicators than observations of GDP. As discussed,

practitioners now have an abundance of potentially useful information from all different

areas of the economy they may wish to model and hence this high dimensional situation

is a likely one. The second problem is how one deals with mixed-frequency data. In

the QNA GDP example, the response is quarterly yet the indicators are likely to be at

a monthly frequency (or higher) to incorporate as much information as possible when

constructing nowcasts. In the rest of this section we see methods to deal with mixed-

frequency data, whether it be from simple aggregation to the observed low-frequency or
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more complex state-space frameworks modelling everything at the highest frequency.

A final problem which is very common with economic time series applications is the

so-called ‘ragged edge’ problem – how to deal with missing data at the end of the sample

caused by indicator series having different publication lags. As we see in Figure 2.2.1,

the example gives a mixture of indicators with up to 2 months publication lag and hence

a ragged edge is formed of information that are observed in Q1. A nowcasting model

should efficiently be able to deal with this pattern of missing data, as well as potentially

arbitrary patterns of missing data throughout the sample.

Notation

To introduce notation to the nowcasting task, without loss of generality we can assume

we observe a collection of quarterly variables denoted by ȳi,τ for variables i = 1, . . . ,m

and quarters τ = 1, . . . , nl, and a collection of monthly indicators series Xj,t for variables

j = 1, . . . , px and months t = 1, . . . , n, and wish to obtain a nowcast for the next quarter

of the targets ȳi,nl+1. For the UK GDP example in Figure 2.2.1, we have m = 1 and

nl + 1 = Q1 2023. Let us assume we update our nowcasts for the quarter of interest

every month. In practice, it might be that a practitioner updates their nowcasts weekly,

or even daily, as new information on indicators are released in real-time. This new set

of data release is known as a ‘vintage’ of data occurring at vintage time v. For the

explanation of nowcasting and the models discussed, let us just assume the vintages

occur monthly, i.e. v represents a month.

Formally, the nowcast at a month n aims to obtain a projection

E [ȳiτ | Ωn] ,
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of the quarterly target onto the available information set Ωn defined by

Ωn =
{
Xjt : t = 1, . . . , n− lj, j = 1, . . . , px ;

ȳiτ : τ = 1, . . . , nl, i = 1, . . . ,m
}
,

where lj is the lag (in months) for indicator j. The number of low frequency observations

will be nl = ⌊(n− ly)/3⌋ for a quarterly target with monthly indicators with ly being

the lag (in months) of the quarterly target, e.g. for UK GDP from QNA we have ly = 3.

Of course, the least demanding approach to the nowcasting task is to nowcast ȳi,nl+1

using only its own past, {ȳi,τ} for τ = 1, . . . , nl, e.g. via ARIMA models or exponential

smoothing. This approach can only capture a limited amount of information at the

low-frequency and it is not possible to update nowcasts between published low-frequency

periods (i.e. between two instances of GDP publication from the QNA). The following

sections provide a review of popular nowcasting methods that make full use of all

information in Ωn, allowing intra-quarter updates of nowcasts.

2.2.2 Bridge Equations

Traditionally, applied econometricians at central banks and government agencies would

use regression-based models, referred to as ‘bridge equations’ (Baffigi et al., 2004), for

the task of nowcasting. The nowcasting variable(s) of interest (e.g. quarterly GDP)

is linked, or bridged, in some way to a temporal aggregation of the higher frequency

indicators. Therefore, this can be classed as a two-step approach where in the first

step indicators, Xt, are aggregated to the low-frequency, X̄τ . This could be a standard

aggregation as discussed in Section 2.1.2 of data recorded at their original level, e.g.

monthly flow data summed to be quarterly:

X̄τ =
2∑

i=0

Xt ,
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or it could be an aggregation of transformed data, usually made to ensure stationarity

of the data fitted in models that assume stationarity, e.g. the monthly-to-quarterly sum

of first-differenced data following:

∆X̄τ = X̄τ − X̄τ−1

= (Xt +Xt−1 +Xt−2)− (Xt−3 +Xt−4 +Xt−5)

= (Xt −Xt−1)

+ (Xt−1 −Xt−2) + (Xt−1 −Xt−2)

+ (Xt−2 −Xt−3) + (Xt−2 −Xt−3) + (Xt−2 −Xt−3)

+ (Xt−3 −Xt−4) + (Xt−3 −Xt−4)

+ (Xt−4 −Xt−5)

= ∆Xt + 2∆Xt−1 + 3∆Xt−2 + 2∆Xt−3 +∆Xt−4 ,

with t = 3τ for τ = 1, . . . , nl and first-difference operator ∆ defined as ∆xt = xt − xt−1.

For many nowcasting applications of GDP, it is the growth rate being tracked involving

a log-difference transform, ∆ log(ȳτ ). In this case authors (Aruoba et al., 2009; Bańbura

et al., 2011; Bańbura and Rünstler, 2011) have used the approximation by Mariano and

Murasawa (2003) that roughly equates the arithmetic and geometric means:

1

3
(yt + yt−1 + yt−2) ≈ 3

√
ytyt−1yt−2 ,

while others (Proietti, 2006; Proietti and Moauro, 2006; Proietti, 2011b) have imposed

exact aggregation using a non-linear smoothing algorithm.

Once indicators are aggregated to the low-frequency, the second step involves bridging

the low-frequency variable(s), ȳτ to the aggregated indicators using a bridge equation

of the form:

ȳτ = g(X̄τ ) + ϵτ ,
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where ϵτ is an error process and g(·) is a link function that may involve a distribution

of indicator lags, e.g.

g(X̄τ ) =
L∑
l=0

βlX̄τ−l ,

with βl the coefficients to be estimated for lags l = 0, 1, . . . , L. It is also possible for the

bridge equation to contain lags of the response ȳτ . In Section 2.1.4 we saw a bridge

equation with L = 0 to obtain GLS estimates of β in Chow-Lin temporal disaggregation

(Chow and Lin, 1971).

Drawbacks

While the bridge model approach is popular among NSIs and central banks due to

its simplicity and ease of computation (Baffigi et al., 2004; Diron, 2008; Eurostat,

2017), it is not without its drawbacks. Bridge equations assume that the measurements

are complete (fully observed) at the point of aggregation, for example, in temporal

disaggregation we assumed observed indicators over t = 1, . . . , n = 3nl with ȳnl
observed.

This assumption does not implicitly deal with the ragged edge problem typically faced

in nowcasting applications when tracking a target in real-time. The missing data in

the ragged edge could be initially predicted using univariate forecasting models (e.g.

ARIMA) on each indicator series beforehand, however, this would of course lead to a

large number of parameters needing to be estimated when the number of indicators

is large. In addition to not being able to implicitly deal with the ragged edge, bridge

equation models working at the low-frequency by temporal aggregation may potentially

lead to a loss of information as the dynamics of the aggregate model can be rather

different to that of the high-frequency model (Marcellino, 1999). The remaining methods

model everything at the high-frequency by linking ȳτ directly to Xt, thus avoiding the

potential loss of information from temporal aggregation.
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2.2.3 Mixed Data Sampling

Pioneered by Ghysels et al. (2004), and reviewed by Ghysels et al. (2007) and Andreou

et al. (2011), the Mixed Data Sampling (MIDAS) model is a nowcasting approach

directly linking the low-frequency target ȳτ to the high-frequency indicators Xt via a

single equation given by

ȳτ =

px∑
j=1

βj

k−1∑
i=0

ϕj(i;θj)L
iXj,kτ + ϵτ , (2.2.1)

where k is the number of high-frequency observations per low-frequency period (e.g.

k = 3 when t are months and τ are quarters) and Li is the lag operator such that

LiXj,kτ = Xj,kτ−i. Note the use of kτ instead of t to ensure the correct months are

summed. MIDAS is essentially taking a weighted sum (weighted via ϕj(i;θj)) of the

high-frequency indicators over every low-frequency period of ȳτ and linking them with

a single coefficient βj for each indicator. The role of βj is to capture the overall effect of

an indicator Xj,· via ȳτ . Identification of βj is ensured by the normalisation constraint∑k−1
i=0 ϕj(i;θj) = 1. To avoid the proliferation of parameters, the weighting function

ϕj(i;θj) tends to take simple, parameterised forms such as the exponential Almon

function and the Beta function given by:

Exponential Almon Function: ϕj(i;θj) =
exp(θ1ji+ θ2ji

2)∑k−1
h=0 exp(θ1jh+ θ2jh2)

.

Beta Function: ϕj(i;θj) =
f( i

k
; θ1j, θ2j)∑k−1

h=0 f(
h
k
; θ1j, θ2j)

,

where

f(x; θ1j, θ2j) =
xθ1j−1(1− x)θ2j−1Γ(θ1j + θ2j)

Γ(θ1j)Γ(θ2j)
,

and

Γ(θq) =

∫ ∞

0

e−xxθq−1.dx
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is the standard Gamma function. In both functions θj = (θ1j, θ2j) are hyperparameters

governing the shape of the weighting function. They are very flexible allowing lags that

can decline slowly or fast, or even have a hump shape.

The parameters of the MIDAS regression (2.2.1) can be estimated using non-linear

least squares (Ghysels et al., 2004) and then used to nowcast the current quarter:

ˆ̄yτ+1 =

px∑
j=1

β̂j

k−1∑
i=0

ϕj(i; θ̂j)L
iXj,kτ+k−lj ,

that utilises information in the ragged edge of the final quarter for the indicators with

lags lj. It is possible to add lags of the indicators to the MIDAS regression (2.2.1),

however, this would quickly increase the number of parameters to be estimated. For

example, if l lags are added, then the sum from 0 to k − 1 would need to be done l

times for l different versions of θj.

Several authors have considered extensions to the classic MIDAS. Clements and

Galvão (2009) introduce autoregressive terms of the response and indicators using a

common factor (AR-MIDAS). Foroni et al. (2015) avoid the use of the exponential

weighting function and instead consider an unrestricted lag polynomial of order k − 1

that can be simply estimated via OLS (U-MIDAS). Ghysels et al. (2007) generalise

the non-linear weighting function with an exponential generalized autoregressive con-

ditional heteroscedastic (EGARCH) model useful for financial applications. Galvão

(2013) combine the MIDAS with a smooth transition regression to allow a time-varying

structure that can make changes in the predictive power of the indicators. Guérin and

Marcellino (2013) incorporate regime changes in the parameters of the MIDAS model

by incorporating an ergodic Markov-chain with a finite number of states.
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Drawbacks

The obvious drawback of the MIDAS approach is the amount of parameters that need to

be estimated – for px indicator series considered, this leads to px MIDAS models, which

each may already have a substantial amount of parameters if the temporal aggregation

ratio is large and/or several lags are used. The MIDAS approach is therefore not

practical for the desired scenario of high-dimensional px. Other concerns are that the

MIDAS (2.2.1) is set up for a univariate ȳτ – multivariate output again adds to the

proliferation of parameters. Also, missing data in the ragged edge is handled by just

shifting the end-point of each indicator series to the most recent observed value and no

consideration of the cross-sectional dynamics between indicators is taken into account

that can potentially lead to accurate estimation of this missing data.

Due to these aforementioned shortcomings, econometricians in recent years have

turned to state-space modelling approaches and in particular the use of dynamic factor

models (DFMs). The state-space framework is very flexible and provides a basis for

Kalman filtering and smoothing techniques to be used that can compactly estimate any

missing data present. This naturally allows any low-frequency variables to be modelled

at the high-frequency by writing the low-frequency variable as a partially observed

high-frequency series, for example, a quarterly series can be written as a monthly series

with every 3rd position observed and everywhere else missing. Latent states of the

multivariate framework can capture dynamics of a large number of variables and exploit

the cross-section when nowcasting in the ragged edge.

The next section provides an overview of DFMs and popular estimation strategies,

before Section 2.2.5 presents how DFMs are used for nowcasting purposes. For other

reviews of DFMs see Stock and Watson (2011) and Poncela et al. (2021). Alternative

popular state-space approaches in large-scale macroeconomic problems not considered in

this thesis include the use of mixed-frequency VARmodels (Kuzin et al., 2011; Schorfheide

and Song, 2015; Koop et al., 2020b) and dynamic stochastic general equilibrium models
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(Kremer et al., 2006; Foroni and Marcellino, 2014b).

2.2.4 Dynamic Factor Models

Originally formalised by Geweke (1977), the premise of the dynamic factor model (DFM)

is to assume that the common dynamics of a large number of stationary zero-mean time

series Xt = (X1,t, . . . , Xp,t)
⊤ stem from a relatively small number of unobserved (latent)

factors Ft = (F1,t, . . . , Fr,t)
⊤ where r ≪ p through the linear system

Xt = ΛFt + ϵt , (2.2.2)

for observations t = 1, . . . , n. The p× r matrix Λ provides a direct link between each

factor in Ft and each variable in Xt. The larger the loading |Λi,j| for variable i and factor

j, the more correlated this variable is with the factor. The loading parameter is pivotal

when trying to understand factor structure and is the main topic of discussion in Chapter

4. The common component χt = ΛFt captures the variability in the time series variables

that is due to the common factors, while the idiosyncratic errors ϵt = (ϵ1,t, . . . , ϵp,t)
⊤

capture the features that are specific to individual series, such as measurement error.

Interpreting the common and idiosyncratic components is important when trying to

understand data. For example, in an econometric application, it might be that the

common component represents an underlying business cycle, while the idiosyncratic

component may represent shocks specific to individual industries or regions (Kose et al.,

2008; Forni and Gambetti, 2021).

It is generally assumed the idiosyncratic errors ϵt are zero-mean and cross-sectionally

uncorrelated, meaning their covariance matrix, denoted by Σϵ, is diagonal. Models

with these assumptions are termed exact. Under this assumption, the correlation of one

series with another occurs only through the latent factors Ft. When this assumption

is relaxed, and the idiosyncratic errors are allowed to be (weakly) cross-correlated,
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termed an approximate DFM, consistent estimation of the factors is still possible as

(n, p) → ∞ (Doz et al., 2011). Therefore, the ‘curse of dimensionality’ problem, often

a burden for analysing time series models, is beneficial when estimating approximate

DFMs (Barigozzi and Luciani, 2022).

Canonically, the dynamics of the latent factors in the DFM are specified as a

stationary VAR(1) model:

Ft = AFt−1 + ut , (2.2.3)

where ut is a zero-mean series of disturbances with covariance matrix Σu. The measure-

ment equation (2.2.2) along with the state equation (2.2.3) form a state space model

described as a DFM. Three popular estimation techniques are now presented.

Principal Components Analysis (PCA)

A simple approach to estimate factor loadings, Λ, is to consider the first r eigenvectors of

the sample covariance matrix of X associated with the largest r eigenvalues, essentially

applying PCA to the time series. The factors are the principal components described

by Ft = p−1Λ⊤Xt. This approach has been extensively reviewed in the literature

(Stock and Watson, 2002; Bai, 2003; Doz and Fuleky, 2020). When mild conditions are

placed on the correlation structure of idiosyncratic errors, such that they are assumed

independent and exhibit no contemporaneous or serial correlation, the PCA estimator is

the optimal non-parametric4 estimator for a large approximate DFM. With even tighter

conditions of spherical idiosyncratic components, i.e. they are white noise Gaussian, then

the PCA estimator is equivalent to the maximum likelihood estimator (Doz and Fuleky,

2020). The problem with using non-parametric PCA methods to estimate DFMs is that

there is no consideration of the dynamics of the factors or idiosyncratic components.

In particular, there is no feedback from the estimation of the state equation (2.2.3) to

the measurement equation (2.2.2). For this reason, it is preferable to use parametric

4In the sense that temporal dependence is not restricted to that encoded via a parametric model.
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methods that are able to account for temporal dependencies in the system.

Two-step Framework: PCA + Kalman filter and smoother

Giannone et al. (2008) proposed a two-step framework for estimating DFMs which has

since been theoretically studied by Doz et al. (2011) and successfully applied to the field

of nowcasting. This method involves the following two steps:

Step 1: Preliminary estimates of the loadings Λ and the factors Ft are found via PCA as

as described above. Σϵ is estimated as the empirical covariance of ϵ̂t = Xt− Λ̂⊤F̂t.

The remaining parameters are estimated by fitting a VAR(1) model on F̂t.

Step 2: The model is cast into state space form (2.2.2)-(2.2.3) and the factors are re-

estimated using the Kalman filter and smoother (Shumway and Stoffer, 1982;

Koopman and Durbin, 2000).

The Kalman filter enables the factor estimates to be continually updated as new

observations become available. This way, we are able to assess the impact new data

releases of certain variables have in the nowcasting process, i.e. track the ‘news’. The

Kalman filter provides the basis for smoothing, where the factor at a time t can be

estimated based on all data in the sample. This is very helpful for handling missing

data, whether it be backcasting missing at the start of the sample, forecasting missing

data at the end of the sample in the ragged edge or interpolating arbitrary patterns of

missing data throughout the sample.

Appendix A.2 provides the classic multivariate Kalman filter and smoother (KFS)

equations of Shumway and Stoffer (1982), often used in DFM estimation. Also provided

is the univariate treatment (sequential processing) of the multivariate equations for

fast Kalman filter and smoother seen in Koopman and Durbin (2000) that can lead

to substantial computational gains for exact DFMs. As it is assumed in exact DFMs

that Σϵ is diagonal, it becomes possible to filter the observations Xt one element at a
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time, as opposed to altogether as in the classic multivariate approach. This way, matrix

inversions become scalar divisions and thus significant computational gains are possible.

Expectation Maximisation (EM)

Bańbura and Modugno (2014) build on the DFM representation of Watson and Engle

(1983) and adopt an expectation maximisation (EM) approach to estimate the system

(2.2.2)-(2.2.3) by quasi-maximum likelihood estimation (QMLE)5. Assuming the error

processes {ϵt} and {ut} are Gaussian, and collecting all parameters of the DFM in

θ = (Λ,A,Σϵ,Σu), the idea is to write the joint log-likelihood of Xt and Ft for all

t = 1, . . . , n in terms of both the observed and unobserved data as:

logL(X,F ;θ) =− 1

2
log |P0| −

1

2
(F0 −α0)

⊤P−1
0 (F0 −α0)

− n

2
log |Σu| −

1

2

n∑
t=1

u⊤
t Σ

−1
u ut

− n

2
log |Σϵ| −

1

2

n∑
t=1

ϵ⊤t Σ
−1
ϵ ϵt , (2.2.4)

where ϵt = Xt −ΛFt, ut = Ft −AFt−1, and the factors are assumed to have an initial

distribution at t = 0 of F0 ∼ N (α0,P0). The EM algorithm then involves iterating

between two steps:

E-Step: Compute the expectation of the joint log-likelihood (2.2.4) conditional on the

available information up to n, denoted by Ωn, using the parameters estimated in

the previous iteration, j:

E
[
logL(X,F ;θ(j))|Ωn

]
;

M-Step: Re-estimate the parameters through the maximisation of the conditional expected

5It is described as quasi-maximum likelihood as consistency results are robust to cross-sectional
misspecification, serial correlation of idiosyncratic components, and non-Gaussianity.
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joint log-likelihood:

θ(j+1) = argmax
θ

E
[
logL(X,F ;θ(j))|Ωn

]
,

until convergence. A popular EM convergence criteria presented in Doz et al. (2012) is

to say the algorithm has converged when the value

Mj =
logL(X; θ̂(j))− logL(X; θ̂(j−1))(

logL(X; θ̂(j)) + logL(X; θ̂(j−1))
)/

2
,

becomes less than some chosen threshold. The log-likelihood L(X; θ̂(j)) is presented in

Appendix A.2.

The E-step, involving computation of the conditional expected joint log-likelihood can

be directly obtained from the KFS equations discussed in the two-step framework. The

QMLE estimators in the M-step are shown to be constructed using state expectations

and covariances again obtained from the KFS equations. Details of this M-step is

discussed in Chapter 4 where an extension to the EM framework is presented to allow

for sparse DFMs, i.e. DFMs with the loading matrix Λ assumed sparse. This chapter

also details methods to tune for the number of factors r in the DFM.

Doz et al. (2012) and Barigozzi and Luciani (2022) provide consistency results of

the EM approach as (n, p) → ∞. It is proven under these settings that the estimated

loadings, Λ̂, are
√
n-consistent and asymptotically normal if

√
n/p→ 0, the estimated

factors F̂ are
√
p-consistent and asymptotically normal if

√
p/n→ 0, and the estimated

common component, X̂ = Λ̂F̂⊤, is min(
√
n,

√
p)-consistent and asymptotically normal

regardless of the relative rate of divergence of n and p (Barigozzi and Luciani, 2022).

In terms of macroeconomic forecasting, the EM algorithm approach has many gains

over the PCA and two-step procedures. It is much more efficient in small samples, as

shown by simulation studies of Doz et al. (2012). It is a very flexible framework able to
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deal with arbitrary patterns of missing data in Xt, as shown in Bańbura and Modugno

(2014). It enables one to impose restrictions on parameters when updating them in the

EM algorithm. For example, Bańbura et al. (2011) impose restrictions on the loadings

to reflect temporal aggregation and introduce factor specific groups of variables in their

nowcasting application. Furthermore, it is a computationally efficient algorithm allowing

fast forecasts for policy makers/analysts, as opposed to computationally demanding

Markov Chain Monte Carlo (MCMC) based alternatives.

2.2.5 Nowcasting with Dynamic Factor Models

The ability to handle high-dimensions, interpolate arbitrary patterns of missing data

throughout the sample and make the most of available data in the ‘ragged edge’ at the

end of the sample, has made DFMs very popular amongst the nowcasting literature.

Giannone et al. (2008) first applied DFMs for the nowcasting task when nowcasting

GDP growth at the Board of Governors of the Federal Reserve. Other central banks and

statistical institutes have since followed (Matheson, 2011; Schumacher, 2011; Rünstler,

2016; Castle et al., 2017). Giannone et al. (2008) take a two-step approach whereby

in the first step, common factors, Ft, are extracted from a large monthly indicator set

using the system (2.2.2)-(2.2.3), and in the second step, these factors are aggregated

to a quarterly frequency and regressed on quarterly GDP to obtain current-quarter

nowcasts of GDP growth:

ˆ̄yτ = β̂F̂τ ,

where ȳτ is quarterly GDP growth, F̂τ are the quarterly aggregated correspondent of

F̂t and β ∈ Rm×r are regression coefficients. This two-step approach can be viewed as

a bridge approach, the quarterly target is bridged onto a temporal aggregation of the

factors. Similarly, one could simply bridge estimated factors at the monthly frequency

in a MIDAS regression as in Marcellino and Schumacher (2010).

Alternatively, instead of nowcasting low-frequency targets after estimation of factors,
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one could jointly model low-frequency targets with high-frequency indicators together

in a single, coherent state-space (DFM) framework. This allows factor estimates and

nowcasts of the target series to be obtained simultaneously, bringing in the dynamics

of the entire cross-section of data available and also the ability to perform temporal

disaggregation. The idea is to assume that the completely unobserved monthly version

of the target (e.g. monthly GDP), denoted by yt, t = 1, . . . , n, admits the same factor

model representation as the DFM assumed for the monthly indicators (2.2.2)-(2.2.3):

yt = ΛyFt + ϵ
(y)
t , ϵ

(y)
t ∼ N(0,Σϵ(y)) , (2.2.5)

where Λy ∈ Rm×r and ϵyt ∈ Rm×1 are factor loadings and idiosyncratic errors specific

to variables in y, while Λ ∈ Rpx×r and ϵt ∈ Rpx×1 from (2.2.2) are factor loadings and

idiosyncratic errors specific to the monthly indicators X. To make this assumption,

we require yt to be (weakly) stationary and hence yt is usually the first-differenced

or log-first-differenced (for growth rates) transformation of the monthly target at its

original level, i.e. yt = ∆Yt or yt = ∆ log(Yt), where Yt is the (non-stationary) monthly

target at its original level.

Writing ȳt, t = 1, . . . , n, as the partially observed monthly series which has the

quarterly observations of ȳτ assigned to every 3rd month, t = 3τ , and is missing

everywhere else, this can be expressed as the sum of its unobserved monthly contributions:

ȳt =


yt + yt−1 + yt−2 ; for t = 3, 6, 9, . . .

unobserved; otherwise.

The stationary version of this partially observed monthly series can be found by taking

first-differences or log-first-differences, i.e. Ȳ t = ∆ȳt or Ȳ t = ∆ log(ȳt), where Ȳ t is
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the stationary version, and is linked to the differenced latent monthly data, yt, via

Ȳ t = yt + 2yt−1 + 3yt−2 + 2yt−3 + yt−4 , (2.2.6)

derived in Section 2.2.2 and shown to be an approximation if log-differences are used

(Mariano and Murasawa, 2003).

Bringing equations (2.2.5) and (2.2.6) together, it is possible to write:

Ȳ t = [Λy 2Λy 3Λy 2Λy Λy][Ft · · · Ft−4]
⊤ + [1 2 3 2 1][ϵ

(y)
t · · · ϵ(y)t−4 ]

⊤ . (2.2.7)

The seminal paper by Bańbura et al. (2011), that has become the industry standard

for nowcasting across the Euro area, use the measurement (2.2.7) along with the DFM

of the indicators (2.2.2)-(2.2.3) to construct a new state space framework with the

joint measurement (Xt , Ȳ t) and the latent state (Ft, · · · ,Ft−4, ϵt, ϵ
(y)
t , · · · , ϵ(y)t−4). See

Bańbura et al. (2011) for full details of this state space framework.

This state space framework of Bańbura et al. (2011) is set up with the objective

to nowcast quarterly GDP growth rate, i.e. predict the latest quarterly value of Ȳ t.

Other authors (Angelini et al., 2010; Bańbura and Rünstler, 2011; Proietti, 2011a)

demonstrate how the nowcasting framework can also be adapted for the purpose of

temporal disaggregation, i.e. the estimation of yt for t = 1, . . . , n, by treating the

disaggregate series as latent states in the state vector. When yt represents growth rates,

the approximate temporal aggregation (2.2.6) is converted into a systematic sampling

problem by constructing a cumulator variable defined by the recursive formula:

Ȳ
c
t = ρtȲ t−1 +

1

3
yt

where ρt = 0 when t is the first month of a quarter and ρt = 1 for all other months

(Harvey, 1990). See Bańbura and Rünstler (2011) for full details of the state space
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framework to obtain yt. Proietti (2011a) consider a framework obtaining the disaggregate

monthly series in its original level, i.e. they obtain Yt for t = 1, . . . , n. This is achieved

by iterating between an EM algorithm for DFM estimation and a non-linear smoothing

algorithm for estimation of Yt. The non-linear smoothing algorithm implements exact

aggregation constraints when data in logarithms are used, rather than the Mariano and

Murasawa (2003) approximation in equation (2.2.6). Chapter 5 proposes a joint state

space framework incorporating a sparse dynamic factor model with an application to

disaggregate quarterly UK Trade in Services data and nowcast it at the monthly level.



Chapter 3

Sparse Temporal Disaggregation

Temporal disaggregation is a method commonly used in official statistics to enable

high-frequency estimates of key economic variables, such as GDP. The generalised least-

squares regression approach (Chow and Lin, 1971), introduced in Chapter 2.1.4, have

proven to work well when only a couple of indicator series are used for the disaggregation

task. However, with the integration of alternative and administrative datasets, the

collection of indicator series that can potentially provide important information on the

output is vast and we find ourselves operating in a so-called high-dimensional setting. In

this case, classical methods for temporal disaggregation demonstrably fail. It is precisely

this gap in the temporal disaggregation literature that this chapter seeks to address:

how to build a robust and interpretable methodology that can accurately disaggregate

key survey based statistics by utilizing large numbers of alternative and administrative

data sources. The motivation for high-dimensional temporal disaggregation methods

from the perspective of performing high-frequency disaggregation for UK national GDP

are laid out in Section 3.1, ending with an overview of the chapter’s structure.

43
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3.1 Introduction

The methodology presented in this chapter is motivated by the challenging task of

performing high frequency disaggregation for UK national GDP, moving from a quarterly

to a monthly resolution. A monthly estimate for GDP should accurately capture the

monthly dynamics between quarters while remain temporally consistent with published

quarterly figures. For this task, there are a considerable number of indicator series that

one may wish to use to help indicate the monthly dynamics of GDP. The application in

Section 3.5 considers a mixture of traditional, survey-based indicators, including the

Monthly Business Survey (MBS) for turnover in the production and service industries,

alongside Value Added Tax (VAT) returns data, retail sales indices, and several novel

indicators such as traffic flows at ports and on roads. In total, 97 indicators are

considered, all of which are collected at a monthly frequency.

Given the significant interest in fast measurements of economic activity, the ONS has

developed a monthly GDP index, and published this statistic since May 2018. This index

is constructed using monthly information from the Index of Services, Index of Production

and Index of Construction. For details see ONS (2022b). Even though a monthly index

exists in this case, there is still great interest in performing temporal disaggregation, the

reasons are threefold. Firstly, the monthly index is an output based measure, however

economists may also be interested in both expenditure and income based estimates.

Since, temporal disaggregation can be applied to any output stream, either expenditure

or income based measures could be used. The resulting high-frequency estimate can

thus complement the existing output based index. Secondly, due to the construction

of the index, publication lags the period of measurement, an issue common to most

economic statistics. However, temporal disaggregation can be used to find indicators

that are relevant and updated more frequently, potentially enabling the estimation of

the output statistic at a more frequent rate than is traditionally reported. This way, we

are able to evaluate higher frequency estimates of the economic activity itself, rather
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than an index, and obtain detailed short-term information at the end of the sample.

National Statistical Institutes (NSIs) are actively developing so-called fast-indicators

for exactly this purpose and in this application several of these are considered in the

form of traffic data. Finally, one of the key issues surrounding the fast release of

data is in understanding the associated short-term movements. To this end, temporal

disaggregation using interpretable indicator series can provide insight by highlighting

which indicators are driving movement.

Traditionally, NSIs have relied on the well-established regression-based approach of

Chow and Lin (1971) and its extensions (Fernandez, 1981; Litterman, 1983; Cholette

and Dagum, 1994; Mitchell et al., 2005; Proietti, 2006) to perform the task of temporal

disaggregation. This approach is centred around a generalised least-squares (GLS)

regression that regresses the unobserved high-frequency target series (e.g. monthly

GDP) onto a set of high-frequency indicator series. These methods have relied on only a

couple of high-frequency indicator series to produce estimates. However, the prevalence

of large, and increasing, volumes of administrative and alternative data-sources motivates

the need for such methods to be adapted for high-dimensional settings. In fact, we

naturally find ourselves in this setting when we consider the GDP disaggregation

challenge previously outlined (97 series over 50 quarters).

One way to deal with a high-dimensional set of indicator series would be to just

select a limited set of indicators that are commonly known to have a strong relationship

with the target based on economic sense. For example, just using a total aggregate for

each of the Index of Production, Services and Construction as a small set of indicators.

However, solely relying on economic sense may overlook complex interactions economic

variables possess and leads to subjective judgements rather than selection based on

empirical predictive performance. A second option is to make a selection based on

standard indexes of correlations between the target and indicators or other classical

approaches concerning information criteria as suggested in Ng (2013). As the number
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of indicator series to consider becomes large, these classic approaches quickly become

computationally insufficient and will likely overfit the data. A third option is to extract

a few factors from the large indicator set by means of statistical methods like principal

components analysis (PCA). The idea is that this new, low-dimensional set of factors

are able to explain the majority of variance in the full indicator set and not contain

idiosyncratic noise that arises from features that are specific to an individual indicator

variable such as measurement error. Standard temporal disaggregation procedures can

then be performed using these estimated common factors as predictors (Angelini et al.,

2006; Labonne and Weale, 2020). Although such approaches can be effective, the factor

model approach possesses difficulties regarding specification and interpretability. There

exists uncertainty in how the appropriate factor estimation method is selected, and in

the number of factors used (Kuzin et al., 2013). A more considerable issue is the loss of

interpretation into the individual effects of indicators, as it is the factors or principal

components, that are retained instead of original predictors.

Methodologically, this chapter tackles the high-dimensional temporal disaggregation

problem from the variable selection viewpoint. In particular, the key contribution

is to establish a regularised M-estimation framework, referred to as Sparse Temporal

Disaggregation (spTD), that extends the Chow-Lin approach for high-dimensional

indicator sets and is able to simultaneously select the relevant indicators and estimate

their impact. This approach is the first work to tackle the disaggregation problem

in this way. A key aspect of the method is the incorporation of a penalty function

on the regression parameters which operates alongside the usual GLS cost function.

These regularisation functions are able to take a variety of forms, and help ensure the

estimator is stable in high-dimensional settings (Bühlmann and Van De Geer, 2011).

To illustrate the effectiveness of the methodology, the focus is put on the popular

ℓ1 penalty (LASSO) (Tibshirani, 1996). This has the twin benefits of computational

robustness due to convexity, and interpretation due to its ability to produce sparse
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sets of regression coefficients. In addition, ℓ1 penalisation has rapid, robust algorithms

available to compute parameter estimates over a range of sparsity levels (Efron et al.,

2004).

The remainder of the chapter is structured as follows. Section 3.2 recaps the

well-established regression-based framework of Chow and Lin (1971) and explores

shortcomings when working in high-dimensions. Section 3.3 proposes a sparse modelling

framework for high-dimensional temporal disaggregation and provides details of an

estimation strategy and tuning procedure for ℓ1 penalisation. Section 3.4 highlights the

advantages of the proposed methodology through a simulation study. In Section 3.5,

the method is implemented on real quarterly UK GDP data to construct a monthly

estimate and inform us on the most relevant indicators for this task. Section 3.6 extends

the sparse modelling framework to allow for a stable selection of indicators over time

and this is analysed in a second case study attempting to disaggregate the quarterly

index of service turnover for transportation in Italy1.

3.2 Shortcomings of the Classic Temporal Disaggre-

gation Framework

In Chapter 2.1.4 the well-established regression-based temporal disaggregation framework

of Chow and Lin (1971) was presented. This framework seeks to obtain a high-frequency

unobserved time series, y ∈ Rn, from its observed low-frequency counterpart, ȳ ∈ Rnl ,

using a collection of p observed high-frequency indicator series, X ∈ Rn×p, such that

the unobserved target series y is temporally consistent with ȳ for every low-frequency

period observed. It is assumed that n = knl, where k is the disaggregation ratio,

for example, k = 3 for quarterly-to-monthly disaggregation and k = 4 for annual-to-

1This second case study was undertaken as an independent research project subsequent to the
publication of the remainder of Chapter 3. Consequently, the possibility of inconsistencies arising is
acknowledged.
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quarterly disaggregation. Suppose that the following linear regression model holds at

the high-frequency:

y = Xβ + u ,

where β ∈ Rp×1 is a vector of unknown parameters and u ∈ Rn×1 is a residual vector

with zero mean and covariance matrix V . Chow and Lin (1971) derive that the best

linear unbiased estimator of y that is consistent with the temporal aggregation (defined

in Section 2.1.2) constraint ȳ = Cy, is given by

ŷ = Xβ̂ + V CV̄
−1(

ȳ − X̄β̂
)

(3.2.1)

where X̄ = CX and V̄ = CV C⊤. It is noticed that:

1. β̂ is the GLS estimator of β for the fully observed aggregated model: ȳ = X̄β+ ū,

where ū is the aggregated residual process with mean zero and covariance V̄ . This

GLS estimator is given by

β̂ = argmin
β∈Rp

{∥∥∥V̄ −1/2
(ȳ − X̄β)

∥∥∥2
2

}
= (X̄

⊤
V̄

−1
X̄)−1X̄

⊤
V̄

−1
ȳ . (3.2.2)

2. The estimator in (3.2.1) depends on the assumed distribution of high-frequency

residuals, u. The variations regularly considered are:

- AR(1) model (Chow and Lin, 1971): ut = ρut−1+ϵt, |ρ| < 1 and ϵt ∼ N(0, σ2
ϵ );

- Random walk model (Fernandez, 1981): ut = ut−1 + ϵt, ϵt ∼ N(0, σ2
ϵ );

- Random walk-Markov model (Litterman, 1983): ut = ut−1+ϵt, ϵt = ρϵt−1+et,

|ρ| < 1 and et ∼ N(0, σ2
e).

Despite the popularity of Chow and Lin (1971) to compile national accounts across

Europe (Eurostat, 2018), the method runs into several shortcomings when operating
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in data-rich environments NSIs now find themselves in. Several of these are outlined

below, prior to introducing the novel regularised temporal disaggregation approach in

Section 3.3.

In moderate and high-dimensions, the behaviour of the Chow-Lin procedure faces

several statistical challenges: a) excessive variance in β̂ impacts interpretation in the

weight given to indicator variables; b) unreliable estimation of the AR(1) parameter and

variance (ρ, σ2
ϵ ) leads to poor performance in identifying V , and thus the high frequency

series; c) interpretation into which indicator series are most relevant is hampered since all

indicators will be included in the model by default. Many of these shortcomings will be

identified in the simulation study of Section 3.4. To date, there has been limited research

to answer this collection of shortcomings in the temporal disaggregation literature.

Delving into the details of these challenges a little further, we see the GLS estimator

of (3.2.2) takes the form:

β̂ = (X̄
⊤
V̄

−1
X̄︸ ︷︷ ︸

M

)−1X̄
⊤
V̄

−1
ȳ . (3.2.3)

This solution is only uniquely identified if the matrix M highlighted in (3.2.3) is

invertible. Using well-known linear algebra theory (Strang, 1993), this fails to be the

case in high-dimensional (nl < p) scenarios as rank(M) = nl < dim(M) = p. In

moderate-dimensional scenarios, M may have many eigenvalues close to zero, leading

to estimates β̂ with high variance and inevitably results in overfitting. In such settings,

Ciammola et al. (2005) noted the poor performance of Chow-Lin in estimating the

AR(1) parameter ρ. Further, a reliable estimate of σ2
ϵ is important for quantifying the

uncertainty associated with the estimate β̂. Chow and Lin (1971) use the standard

estimator: σ̂2
ϵ = ∥V̄ −1/2

(ȳ − X̄β̂)∥22/nl, however, it has been shown that even in the

classical nl > p setting such an estimator is biased downwards (Yu and Bien, 2019).

Finally, in addition to the challenges of dimensionality, the Chow and Lin (1971)
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approach offers limited model interpretation as no model selection is performed. Since

it is sometimes difficult to collect high-frequency indicator series, it can be beneficial to

identify which are of most importance when monitoring the economic phenomenon of

interest. This way, when future estimates are made, irrelevant indicators can be avoided,

reducing model complexity and the cost of creating outputs by a great deal.

3.3 Sparse Temporal Disaggregation

This section introduces a novel sparse temporal disaggregation (spTD) method. This

method seeks to provide robust and reliable solutions, with a view to resolving the

aforementioned shortcomings of the classic temporal disaggregation framework. Section

3.3.1 provides a general regularised M-estimation framework that allows us to encompass

a variety of penalty functions in the Chow-Lin regression framework to accomplish

temporal disaggregation in moderate and high dimensions. Section 3.3.2 draws attention

to a specific penalty of the general framework, namely the ℓ1 penalty and provides a

detailed description of the estimation strategy and tuning procedure. Section 3.3.3

concludes with a discussion on how to extend the model when the indicator series are

highly correlated. Let us assume throughout that the indicator set X is fully observed

up to the latest low-frequency observation. Note that, it would be possible to extrapolate

indicator variables forward if they contain end-of-sample missingness by assuming the

indicators follow a certain time series model.

3.3.1 A General Regularised M-estimation Framework for Tem-

poral Disaggregation

With large scale datasets now becoming popular, developing parsimonious models

contains numerous advantages. By imposing the assumption that only a relatively small

subset K = |{βj ̸= 0}| of the p possible indicators may actually be active in the model,
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this gives us scope to achieve good performance in increasing the accuracy of estimators

by discarding noisy information and helps towards revealing underlying characteristics in

the data. The empirical performance of sparse modelling has been examined in various

settings by Meinshausen and Bühlmann (2010) and Bühlmann and Mandozzi (2014).

Mirroring the established Chow and Lin (1971) temporal disaggregation approach to

construct the high-frequency estimator ŷ, we propose to study estimators of the form:

β̂ρ = argmin
β∈Rp

{∥∥∥V̄ −1/2
(ȳ − X̄β)

∥∥∥2
2︸ ︷︷ ︸

Chow-Lin Cost Function

+ Pλ(β)︸ ︷︷ ︸
Regulariser

}
, (3.3.1)

where we explicitly index the solution as a function of ρ to highlight dependence on this

parameter. This estimator incorporates a regularising penalty function in conjunction

with the classic Chow-Lin cost function to encode the assumption of sparsity. It does

this by shrinking coefficients of indicator series, β, towards zero that cause a large

least-squares score in the Chow-Lin cost function. By doing so, we simultaneously

select important indicator series and estimate their regression coefficients with sparse

estimates. This will significantly reduce the variance in moderate dimensions and enable

accurate estimators in high-dimensions. Not only is this novel in the area of temporal

disaggregation, working with a GLS cost function in the high dimensional setting has

to-date received little attention in the statistics literature2.

The regulariser function, Pλ(β), is indexed by the regularisation parameter λ ≥ 0

that controls the degree of shrinkage. This function may take various forms depending on

the assumptions required by the user. As indicated by Hastie et al. (2015) and Bühlmann

and Van De Geer (2011), common choices include ℓq norm penalties Pλ(β) = λ ∥β∥qq =

λ
∑p

j=1 |βj|q for q > 0, and the ℓ0 pseudo-norm penalty λI(β ̸= 0) for q = 0, where

I(β ≠ 0) is the number of non-zero components of β. Estimates have the parsimonious

property with some components being shrunk exactly to zero when q ≤ 1, and the

2More on this is discussed in Chapter 7.



CHAPTER 3. SPARSE TEMPORAL DISAGGREGATION 52

minimisation problem is convex when q ≥ 1.

3.3.2 The ℓ1-spTD method

Given our interest in performing accurate model selection for temporal disaggregation,

we here focus on the LASSO (ℓ1) penalty (Tibshirani, 1996; Hastie et al., 2015). This

specification provides an example of our general M-estimation framework whilst enabling

us to examine the benefits afforded by ℓ1 shrinkage. Notably, out of the class of ℓq norms,

only the ℓ1 penalty has the properties of yielding sparse solutions while maintaining

convexity. We refer to this method as ℓ1-spTD and utilise the regulariser function

Pλ(β) = λ||β||1 := λρ

p∑
j=1

|βj| .

A further useful property of LASSO penalisation is that fast algorithms exist to

find estimators for a range of λ values. These methods are known as path algorithms,

with least angle regression (LARS) (Efron et al., 2004) perhaps being one of the more

widely used approaches. In this work we employ LARS to provide an initial screening

of indicator series by constructing unique solution paths β̂ρ(λ), with varying sparsity

levels controlled by λρ. We suggest an additional re-fitting procedure here to reduce the

bias in the LARS solution paths.

Unlike GLS which generates only one set of coefficient estimates, the loss function in

(3.3.1) will produce a different set of estimates for each value of the regulariser parameter.

Correctly selecting the best λ is vital. If too small, then not enough shrinkage occurs

and we overfit. Conversely, if it is too large then we shrink too much and underfit.

Since the parameter λ, and consequently the coefficient estimate β̂ρ, depend on the

specification of the AR parameter ρ, the estimator in (3.3.1) can be seen as maximising

a penalised profile likelihood as a function of ρ. A final optimisation step searching over

the stationary domain of ρ is then used to obtain a final set of parameter estimates.
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Our approach proceeds according to the following steps, which we now elaborate on:

1. Generating solution paths β̂ρ(λ) for a range of λ using the LARS algorithm;

2. Reducing the bias of these solution paths using a re-fitting procedure;

3. Tuning the model for the best λ and optimising over ρ.

To simplify notation we use ỹ = V̄
−1/2

ȳ, X̃ = V̄
−1/2

X̄ and ũ = V̄
−1/2

ū. This tilde

notation represents the GLS rotated aggregate data we find LASSO solutions for.

Generating Solution Paths

To compute solution paths β̂ρ(λ) of the convex problem (3.3.1), we use the LARS

algorithm (Efron et al., 2004). This combination of forward stagewise regression (Hastie

et al., 2007) and LASSO (Tibshirani, 1996) is able to provide full piecewise linear solution

paths for many values of λ. We use LARS as it is a computationally fast algorithm

that offers interpretable models, with stable and accurate predictions. Furthermore,

the solution path forms a useful graphical output that shows key trade-offs in model

complexity (Hesterberg et al., 2008).

In our approach, we will need to solve Equation (3.3.1) multiple times, over a range

of GLS rotations and regulariser parameters. For any fixed ρ, the LARS procedure

begins with a large value of λ, and correspondingly sets all regression parameters β = 0.

Let the ith indicator series be the one that is most correlated with the response ỹ,

this indicator then enters the active set of relevant predictors. Rather than fit this

predictor completely (i.e. set to OLS solution), the algorithm moves the coefficient βi of

this predictor continuously towards its least squares value, causing its correlation with

the evolving residual to decrease in absolute value. The value of λ is then decreased

until another predictor j has as much correlation with the current residual. At this

point, the process is then paused and j enters the active set. The two corresponding

predictor coefficients (βi, βj) now move in the direction of their joint least squares fit of
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the current residual on the two predictors. The process continues adding predictors in

this fashion by gradually decreasing λ, and is able to remove predictors from the active

set (the LASSO step) if their coefficient hits zero. For this reason, the algorithm usually

has more iterations than the number of predictors, p. Each iteration step s = 1, . . . , S

of the algorithm has a decreasing λ(s) value causing the solution paths to become less

sparse as the algorithm moves forward. The final step occurs when the model becomes

saturated with nl non-zero coefficients. It is interesting to note that the sparsity of this

final step contains no more than δ = min(nl, p) non-zero values. This means that the

number of different LASSO estimated sub-models is typically O(δ), which represents

a huge reduction compared to all 2p possible sub-models, especially in the case where

p≫ nl.

After running the LARS algorithm on the regression we get a set of solution paths

β̂ρ(λ
(s)) for steps s = 1, . . . , S that are of the form:



Step 0: β̂ρ(λ
(0) : λ(0) > 0) = (0, . . . , 0) , with all values zero;

Step 1: β̂ρ(λ
(1) : 0 < λ(1) < λ(0)) = (−−, βρ,−−) , one non-zero;

Step 2: β̂ρ(λ
(2) : 0 < λ(2) < λ(1)) = (−−, βρ;i, βρ;j,−−) , two non-zero;

...

Step S: β̂ρ(λ
(S)) = (−−, βρ;1, . . . , βρ;δ,−−) , with δ = min(nl, p) non-zero.

Figure 3.3.1(a) shows the LARS algorithm applied to a synthetic data-set with

non-stationary indicator series, nl = 100, p = 150, ρ = 0.5 and the true β parameter

having the first 10 values equal to 5 and the other 140 equal to 0. This demonstrates the

algorithm beginning with the null model, then correctly activating the first 10 predictors

towards 5. Then, as the algorithm moves forward, and λ decreases, the model becomes

less sparse until the model is saturated.
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Figure 3.3.1: Random walk synthetic data example using nl = 100, p = 150, ρ = 0.5
and true predictor coefficient β with the first 10 values equal to 5 and the remaining
140 equal to 0. (a) Solution paths generated via LARS, plot shows β̂(λ(l)) as a function
of step l; (b) BIC plot for each step of the LARS algorithm indicating the best step and
cut-off point.

Reducing the Bias in Solution Paths

Before tuning the above algorithm to select the optimal λ(s) for s = 1, . . . , S, we propose

a preliminary step to reduce the bias in the solution paths. The significance of this

preliminary step is assessed in the simulation study in Section 3.4. It is a recognised

drawback of LASSO estimators that they include a small amount of bias, as their

absolute value is typically smaller than that of the true parameter; |E(β̂ρ(λ))− βρ| > 0

for λ > 0. This behaviour can be seen in Figure 3.3.1(a) with the parameter estimates

for the first 10 predictors being slightly below 5, whereas, the unbiased estimator in this
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case would have expectation of exactly 5. Many authors (Bühlmann and Van De Geer,

2011; Zheng et al., 2014) have suggested a simple remedy to this issue is to treat LASSO

as a variable screening procedure and to perform a second refitting step on the selected

support. Belloni et al. (2013) provide a theoretically justified refitting technique which

involves performing a least-squares re-estimation of the non-zero coefficients of the

LASSO solution. We suggest adopting this least-squares re-estimation approach in our

algorithm. With each solution path β̂ρ(λ
(s)) for s = 1, . . . , S obtained from the LARS

algorithm, a new design matrix X̃
′
is constructed containing only the predictors that

have a non-zero coefficient in the corresponding solution path. We then perform usual

least squares estimation on (X̃
′
, ỹ) and obtain estimates β̂ρ without bias.

Tuning Model Parameters

The performance of our estimator relies heavily on the choice of tuning parameter λ

to select the optimal estimate from β̂ρ(λ
(1)), . . . , β̂ρ(λ

(S)). We propose to use the BIC

statistic (Schwarz, 1978) to achieve this and choose λ such that

λ̂ρ = argmin
λ∈{λ(1),...,λ(S)}

{
− 2L(β̂ρ(λ), σ̂

2
ϵ ) + log(nl)Kλ

}
, (3.3.2)

where Kλ = |{j : (β̂ρ(λ))j ̸= 0}| is the degrees of freedom and L(β̂ρ(λ), σ̂
2
ϵ ) is the

log-likelihood of the GLS regression.

Since we are working with relatively small sample size of low frequency observa-

tions, BIC seems more appropriate than resampling procedures such as cross-validation

or bootstrap and comes at a much lower computational expense (Friel et al., 2017).

Furthermore, Efron et al. (2004) show how BIC offers substantially better accuracy

than cross-validation and related non-parametric methods in selecting optimal λ in

LARS. BIC is preferred to other information criteria as parsimony is a primary concern,

and BIC generally places a heavier penalty on models with many variables due to the
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log(nl)Kλ term.

Assuming Gaussian errors, the log-likelihood of the GLS regression (3.3.2) is given

by

L(β, σ2
ϵ ) = −nl

2
log(2π)− nl

2
log(σ2

ϵ )−
1

2
log(|Σ|)− 1

2σ2
ϵ

(ỹ − X̃β)T (ỹ − X̃β) ,

where |Σ| is the determinant of the aggregated covariance matrix Σ such that V̄ = σ2
ϵΣ.

We know Σ is of Toeplitz form (2.1.5) and depends solely on ρ. We can then maximise

this log-likelihood at the reduced-bias estimator β̂ρ(λ) from the re-fitted LARS algorithm

and using an estimator of the error variance σ̂2
ϵ . Finding a good estimator of β has

received considerably more attention in the literature than finding a good estimator

of σ2
ϵ (Reid et al., 2016). However, constructing a reliable estimator of σ2

ϵ in finite

samples is crucial as it enables one to understand the uncertainty in estimating β and

be able to construct p-values and confidence intervals (Yu and Bien, 2019). We utilise

the estimator

σ̂2
ϵ =

1

nl −Kλ

{ỹ − X̃β̂ρ(λ)}⊤{ỹ − X̃β̂ρ(λ)} ,

which de-biases the residual sum of squares by the degrees of freedom. We use this

form of estimator as it has been shown to have promising performance in an extensive

simulation study done by Reid et al. (2016). After substituting the estimators into the

log-likelihood to obtain L{β̂ρ(λ), σ̂
2
ϵ}, we simply search along the solution path to find

the λ that minimises the BIC objective (3.3.2).

In high dimensional settings this BIC heuristic may not be optimal. Indeed, we

find that after a certain number of steps of the LARS algorithm, when Kλ becomes

close to nl, the BIC starts to behave erratic and drop in value. Figure 3.3.1(b) plots

the BIC score for each step of the LARS algorithm applied to the high dimensional

synthetic non-stationary data-set. After around iteration 100, corresponding to Kλ

being around 70, the BIC starts to exhibit this erratic behaviour. Such behaviour may
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be due to the expected increase in variance in estimating σ̂2
ϵ with a small degrees of

freedom. To accommodate this shortcoming, we adopt a heuristic approach and only

considered solution paths β̂(λ) where Kλ is less than nl/2; identified by the cut-off line

shown. Constructing a well-behaved information criteria in high-dimensions is an active

research area in the literature. For instance, the extended BIC formulas of Chen and

Chen (2008), or alternative tuning strategies such as Belloni et al. (2011) form directions

for future research.

Once we have found the LARS step minimising BIC, and thus λ̂, we store the

corresponding BIC score and repeat the process with a new initialisation of ρ ∈ (−1, 1).

The estimate ρ̂ is then given by the ρ that has the lowest overall BIC score in our

search. Using ρ̂, we then have our final parameter estimate β̂ρ̂. The pseudo code

for this procedure can be found in Algorithm 1. Code for implementing the ℓ1-spTD

algorithm, as well as the classic temporal disaggregation methods, can be found in the

R package DisaggregateTS on CRAN. Chapter 6 provides details on the structure and

functionality of this package.

3.3.3 Dealing with Correlated Indicator Series

It is likely that high-dimensional datasets of economic indicator series will exhibit

correlation between series and multicollinearity. It has been shown (Fan and Li, 2001;

Zou, 2006) that in certain correlated design settings the choice of regularisation parameter

λ is not guaranteed to satisfy the oracle properties and this can lead to inconsistent

selection results in high-dimensions. Variable selection consistency is only guaranteed

if the design matrix X of indicators satisfies the so-called irrepresentability condition

(see Zou, 2006, for details). Intuitively, this condition says that relevant indicator series

in the model are not allowed to be too correlated with irrelevant indicator series. If

X violates the irrepresentability condition then an irrelevant variable may enter the

active set in the LARS algorithm before all relevant variables have entered, leading to
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Algorithm 1 ℓ1-spTD

Input: ȳ ∈ Rnl and X ∈ Rn×p

for ρ ∈ (−1, 1) do

Initialise: σ2
ϵ = 1, C = Inl

⊗ 1k and V := Toeplitz(ρ, σ2
ϵ ) ∈ Rn×n

Aggregate: V̄ = σ2
ϵΣ = CV C⊤ ∈ Rnl×nl and X̄ = CX

GLS Rotate: ỹ = V̄
−1/2

ȳ and X̃ = V̄
−1/2

X̄

LARS(ỹ ∼ X̃) =⇒ β̂ρ(λ
(s))

for s = 1 to S do

Find Kλ = {j : β̂ρ(λ
(i))j ̸= 0}

if Perform refitting step to de-bias then

Define X̃
′
= X̃[Kλ]

Derive β̂GLS(λ
(s)) using ỹ ∼ X̃

′

New non-zero values of β̂(λ(s)) are β̂GLS(λ
(s))

end if

end for

for j in 1, . . . ,max{j : Kλ(j) < ⌊nl/2⌋} do

σ̂2
ϵ;j = (ỹ − X̃β̂ρ(λ

(j)))⊤(ỹ − X̃β̂ρ(λ
(j)))/(nl −Kλ)

L(β̂ρ(λ
(j)), σ̂2

ϵ ) = −nl log(2π)/2−nl log(σ̂
2
ϵ;j)/2− log(det(Σ))/2− (nl −Kλ(j))/2

BIC(λ(j)) = −2L{β̂ρ(λ
(j)), σ̂2

ϵ;j}+ log(nl)Kλ(j)

end for

λ̂ = argminλ(BIC)

BICρ = BIC(λ̂)

β̂ρ = β̂ρ(λ̂)

end for

ρ̂ = argminρ(BICρ)

β̂ = β̂ρ̂

ŷ = Xβ̂ + V C⊤V̄
−1
(ȳ − X̄β̂) using ρ̂ for V
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incorrect support recovery. This will cause problems in our re-fitting strategy as an

over-fitted support will be re-fit.

One approach to overcome this difficulty is to apply a different penalty to each

predictor variable by re-weighting the usual ℓ1 penalty. This is the adaptive lasso (Zou,

2006). For a linear model, it is defined as a two-stage procedure:

β̂adapt(λ) = argmin
β

(
||y −Xβ||22 + λ

p∑
j=1

|βj|
|β̂init,j|

)
, (3.3.3)

where β̂init is an initial estimator. Zou (2006) proposes to use the OLS estimate β̂OLS

for β̂init, however, in high-dimensional scenarios Bühlmann and Van De Geer (2011)

propose to use the lasso estimate β̂lasso for β̂init. We propose to use the estimate β̂ρ̂ from

a run of our ℓ1-spTD algorithm for β̂init. That is, using the aggregated indicator matrix

X̃ that has been GLS rotated by ρ̂ obtained from the initial fit, we then re-scale this to

get Xnew = X̃|β̂ρ̂|. A second stage regression is then performed using LARS (with BIC

tuning) on (Xnew,y) to get an estimate β̂∗. Finally, we scale back by β̂adapt = β̂∗|β̂ρ̂|

to obtain the adaptive lasso solution. In non-GLS settings, this has been shown (Zou,

2006; van de Geer et al., 2011) to have variable selection oracle properties even when

the data violates the irrepresentability condition.

Bühlmann and Van De Geer (2011) outline scenarios where the irrepresentability

condition holds despite the predictors in X being correlated. These include scenarios

when the covariance matrix of X has equal positive correlation, Toeplitz structure or

bounded pairwise correlation. In these settings, using LARS without adaptive weighting

has been shown to be stable, Bach et al. (2011) have confirmed this good behaviour

in simulations using different levels of correlation. Furthermore, they compare LARS

against other lasso-solving algorithms such as coordinate-descent, re-weighted-ℓ2 schemes,

simple proximal methods, demonstrating that LARS both outperforms and is faster

than the other methods for small and medium scale problems. LARS also performed
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the best when predictors were highly correlated. This good behaviour is confirmed in

the simulation study of Section 3.4.

3.4 Simulation Study

This section provides an in-depth simulation study to asses the performance of the ℓ1-

spTD algorithm in performing annual-to-quarterly disaggregation in the high dimensional

setting, and compares how the model does against the well-established Chow-Lin (CL)

method (Chow and Lin, 1971) in moderate dimensions. The benefits of the refit step

to reduce the bias of LASSO estimates are also examined. This consists of running

Algorithm 1 and comparing the results with and without the refitting procedure, these

methods are respectively referred to as spTD RF and spTD.

To understand the behaviour of the methods under different covariate inputs, we

consider two data generating processes for the indicator series in X. Firstly, we consider

an example with stationary series by simulating from the standard Normal distribution

and secondly, we consider non-stationary series by simulating from a random walk

process. That is, we consider (i) xt,j ∼ N(0, 1) and (ii) xt,j = xt−1,j + et,j , et,j ∼ N(0, 1)

respectively for t = 1, . . . , n and j = 1, . . . , p, the residual series is given by an AR(1)

process uj = ρuj−1 + ϵj with |ρ| < 1 and ϵj ∼ N (0, 1). We assume a sparse regression

coefficient

β = (5, . . . , 5︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
p−10

) .

This allows us to generate the true ‘unobservable’ quarterly series using y = Xβ + u

and we aggregate this using C = Inl
⊗ 14 to get the ‘observable’ annual series ȳ = Cy.

To explore different situations we use the following scenarios of parameters. We

fix the low-frequency sample size to be nl = 100 and consider three scenarios for the

number of indicator series p. These are p = 30, 90 and 150 to represent low, moderate

and high dimensional settings respectively. We consider three values of the AR(1)
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parameter ρ = 0.2, 0.5 and 0.8 to represent low, medium and high auto-correlation in

the residuals respectively. Under each scenario we perform 1000 simulations and assess

the performance on the following three outcomes:

1. The accuracy of the estimated quarterly disaggregated series ŷ;

2. The recovery of the true regression coefficient parameters β̂ = (β̂1, . . . , β̂p);

3. The distribution of estimates for the true AR(1) parameter ρ̂.

The study is similarly extended to include a correlated design setting for the indicators.

First, a block structure with equal correlation that satisfies the irrepresentability condi-

tion (Bühlmann and Van De Geer, 2011). Second, a random covariance matrix design

that does not satisfy this condition. We adopt the adaptive lasso weighting scheme in

(3.3.3) to assess whether this improves spTD RF in this second setting.

3.4.1 Estimating the True Quarterly Series

To assess how well we estimate y, we compute the root mean squared error (RMSE)

between the true series and our estimate. Figures 3.4.1 and 3.4.2 display the distribution

of RMSE scores over 1000 simulations for ŷ in the stationary and non-stationary

experiments respectively. The first column in each represents the low-dimensional

setting with p = 30. In this setting both CL and the two versions of our method perform

similarly well, with spTD RF performing slightly better. It is interesting to note that

RMSE score is only slightly worse for larger values of the true AR(1) parameter ρ,

thus, the amount of auto-correlation present in the residuals does have much impact on

temporal disaggregation results.

The middle columns represent the moderate dimensional setting, p = 90, and we

start to notice the decrease in performance of CL. To make the comparison visible, we

have taken a log-scale of RMSE scores (keeping y-axis values fixed) as the difference in

performance is so large. Again with spTD RF performing slightly better than spTD, the
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Figure 3.4.1: Boxplots comparing RMSE values of ŷ for CL, spTD and spTD RF in
the stationary i.i.d. standard Normal indicator series experiment. Left, middle and
right columns represent p = 30, 90 and 150 respectively. Top, middle and bottom rows
represent AR(1) parameter ρ = 0.2, 0.5 and 0.8 respectively.
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Figure 3.4.2: Boxplots comparing RMSE values of ŷ for CL, spTD and spTD RF in the
non-stationary random walk indicator series experiment. Left, middle and right columns
represent p = 30, 90 and 150 respectively. Top, middle and bottom rows represent
AR(1) parameter ρ = 0.2, 0.5 and 0.8 respectively.
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proposed methods clearly perform a great deal better in moderate dimension scenarios

in accurately disaggregating time series.

The columns on the right represent the high dimensional setting of p = 150. In this

setting, CL can no longer be used, whereas, both our methods still perform very well

with low RMSE scores across the 1000 simulations. Additionally, experiments with even

larger dimension of p = 400 resulted in similar low RMSE scores for the methods we

propose. A further interesting property of these results is that RMSE scores are generally

lower in all scenarios for the non-stationary random walk indicator series experiment

(Figure 3.4.2). This is a consequence of known results in the statistics literature showing

least-squares estimators of the parameters for non-stationary but co-integrated series

can converge to their true values faster than stationary series (Johansen, 1988).

3.4.2 Recovery of the True Regression Coefficient

In addition to the recovery of the true high-frequency series, a further motivation for

temporal disaggregation is to understand potential drivers of short term change. To

this end, we here assess the recovery of the regression coefficients. Table 3.4.1 provides

the mean and standard deviation (in brackets) across 1000 iterations of our simulation

assessing the recovery of the true β for the three methods CL, spTD and spTD RF. It is

quite clear from this table that spTD RF provides the lowest score on all three metrics

used across all scenarios. The improvement of our method on CL in the moderate

dimension scenario can again be seen by the RMSE scores. Interestingly, as p increases,

the RMSE for our methods decreases, meaning we are closer to recovering the true

values of the support of β. The ℓ∞ := maxi=1,...,p |β̂i − βi| metric has been included to

measure the worst case error, again showing the improvements we make on CL. RMSE

and ℓ∞ are on average lower with non-stationary indicator series, however, more false

positives (FP) are included as seen in the tables. The refitting step certainly reduces

the number of FP and it is interesting to note that as the AR(1) parameter ρ increases,
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the number of FP on average decreases.
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Figure 3.4.3: Boxplots for the estimates β̂1, . . . , β̂p using CL, spTD and spTD RF (left
to right respectively) with ρ = 0.5 and p = 30 (top row) and p = 90 (bottom row) with
stationary indicator series.

Figure 3.4.3 shows the distribution for each β parameter over 1000 iterations in the

stationary indicator series experiment with CL, spTD and spTD RF from left to right

and p = 30 on top and p = 90 on the bottom. There is very large variance in the CL

boxplots, with tails overlapping in the p = 90 setting (plot d). In comparison to our

methods, the variance is very narrow around the true β values at 5 and 0. It is evident

here to see the refitting strategy in action in plots (c) and (f), as the estimates in (b)

and (e) have reduced in bias and shifted upwards towards the true support value of 5.

Furthermore, the shrinkage effect for our methods are evident by there not being boxes

for estimates β̂6 onwards. Except for outliers, which have not been shown on this plot,

our method is able to correctly set coefficients to zero, which from a practical point of

view means analysts/practitioners are able to identify irrelevant indicator series.
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3.4.3 Distribution of AR(1) Parameter Estimate

We restrict our grid search for ρ̂ to the positive stationary domain [0.01, 0.99]. Performing

the search on the positive domain has been motivated previously in Chow-Lin related

studies (Sax and Steiner, 2013; Ciammola et al., 2005; Miralles et al., 2003).

Figure 3.4.4 displays the distribution of ρ̂ over 1000 iterations for the stationary

indicator series experiment. A horizontal line is drawn at the true value of ρ to compare

performance. In the first column representing p = 30 we observe how all three methods

tend to over-estimate the true value of ρ, with CL over-estimating the most. There is

also a large variance associated with the estimator when ρ = 0.2 and this is again the

case when p = 90 (middle column). In this moderate dimensional setting CL fails to

identify the true ρ completely with it seeming to only select ρ at the boundaries of the

search space (0, 1). The proposed methods seem to perform similarly well with the centre

of mass surrounding the correct values. In the high dimensional setting we are again

centred around the true values with a little more variance. We believe these estimates

will be a lot more accurate with a better way of defining BIC in high dimensions.

Figure 3.4.5 shows the distribution of ρ̂ with non-stationary indicator series. It is

evident from these plots that in this non-stationary setting, correctly identifying the

true ρ becomes a lot more challenging. In moderate dimensions (p = 90) CL always

selected 0 as the estimate, whereas, our methods spread the search space, tending to

under-estimate the truth. This large variance in performance may be the result of the

algorithm including a lot more false positives in the non-stationary setting. It is worth

noting that even though estimating the true AR parameter is a lot less accurate in the

non-stationary setting, the recovery of β and y is more accurate in this setting. Thus,

one may conclude that correctly identifying ρ does not play that large of a factor in the

quality of regression estimates.
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Figure 3.4.4: Violin plots showing the distribution of ρ̂ for CL, spTD and spTD RF
using stationary indicator series. Dimension p = 30, 90 and 150 from left to right and
true AR parameter ρ indicated by horizontal dashed line.
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Figure 3.4.5: Violin plots showing the distribution of ρ̂ for CL, spTD and spTD RF
using non-stationary indicator series. Dimension p = 30, 90 and 150 from left to right
and true AR parameter ρ indicated by horizontal dashed line.
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3.4.4 Correlated Design Setting

To investigate the effects of correlation present between indicator series, we extend the

above i.i.d. setting for X to now be generated from two correlated designs. The first

has a block structure with 10 indicators in each block, where each block has a covariance

matrix Σ with Σii = 1 and Σij = θ for i ̸= j. We consider θ = {0.2, 0.6, 0.9} and let

β = (5, . . . , 5︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
5

)

in the first 3 blocks and 0 everywhere after. This equicorrelated design does not violate

the irrepresentability condition. Therefore, in order to assess an even more challenging

situation we further consider a random covariance design setting for X that does break

this condition.

We found the spTD RF method handles the block correlation design setting very

well, presenting accurate predictions for y and recovery of the correct support for β in

all scenarios. Figure 3.4.6 shows the distribution of each βj for the most difficult case of

θ = 0.9. The variance using Chow-Lin is very large in this setting as shown in 3.4.6(d).

We notice some variance around 0 in spTD without refit, whereas spTD RF does an

excellent job in recovering the true support.

In the second experiment considering the design that breaks the irrepresentability

conditions, we use the coefficients

β = (−2, 2,−2 . . . , 2︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
80

)

to allow a change of sign and a lower signal-to-noise ratio than previously. In this

design setting we observe spTD RF is still able to provide accurate estimates for the

high-frequency series ŷ but struggles to obtain the correct support for β. Out of the 1000

simulations, spTD RF produced on average 4.26 false positives with a large standard
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Figure 3.4.6: Boxplots for the estimates β̂1, . . . , β̂p using CL, spTD and spTD RF (left
to right respectively) with ρ = 0.5 and p = 30 (top row) and p = 90 (bottom row) with
correlated (0.9) indicator series.

deviation of 4.03. By re-fitting the obtained estimates using the adaptive re-weighting

scheme outlined in Section 3.3.3, we see significant improvements in the support recovery

performance with 91% of the 1000 iterations achieving exact support recovery and the

remainder having at most 3 false positives.

3.5 Case Study 1 - Temporal Disaggregation of UK

Gross Domestic Product

There are many measures we can use to assess the state of the economy. These are

often disaggregated to different resolution levels, temporally, geographically, and across

business sectors. To illustrate the methods developed, we consider the most popular

measure of a nations production, its GDP as the output series of interest, and a

range of high frequency indicator series as inputs. In our analysis here we deliberately

include indicators which are direct inputs into the deterministic calculation of GDP, for

instance, reports from the monthly business survey (MBS). However, to supplement this

information, we also include a set of relatively novel fast indicators produced by the
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Indicator (No. of series) Description
MBS Turnover in Production (38) Total turnover of production industries in

£million
MBS Turnover in Services (29) Total turnover of service industries in £million
Retail Sales Index (4) Value of retail sales by commodity at current

prices as an index
VAT Diffusion Index (18) Diffusion index tracking industry turnover from

VAT returns
Traffic Flow on Roads (4) Mean 15 minute traffic count for vehicles on

roads across England
Traffic Flow at Ports (4) Mean 15 minute traffic count for vehicles within

10km of a port in England

Table 3.5.1: Summary of indicators used in GDP analysis

ONS, based on VAT receipts, and traffic flows. A summary of the indicators we use in

our analysis is given in Table 3.5.1. The use of sensor data for traffic flows is an indicator

of particular interest here as this aligns with the ONS’ endeavour to incorporate and

gain insight from alternative data sources into the production of official statistics. This

data provides mean 15 minute counts, aggregated to the monthly level, of the number

of vehicles on roads across England and within 10km of ports with details on the size of

the vehicle observed. This has potential to be a key indicator of supply and demand

across England and trade activity at ports.

While it may seem counter-intuitive to try and recover the GDP series from quantities

that directly drive this, there is still significant interest in how temporal disaggregated

estimates align simply using monthly level data. In general, much more information goes

into the estimation of the quarterly GDP results, and these are often considered the gold

standard in terms of calibrated measurements of economic activity. Thus, disaggregating

to a monthly level whilst maintaining consistency with the calibrated quarterly output

is of significant interest. In this example, the output series we aim to disaggregate is the

published quarterly (seasonally adjusted) GDP at chained volume measure from 2008 Q1

to 2020 Q2. To illustrate the behaviour of our monthly disaggregated estimates we make

comparisons with the published monthly GDP index that represents a percentage growth-



CHAPTER 3. SPARSE TEMPORAL DISAGGREGATION 75

rate based on the average of 2016 being 100%. To make these comparison meaningful we

adjust the published monthly index to be a value in £million by benchmarking it onto

the quarterly output using the Denton adjustment method discussed in Chapter 2.1.3.

As we are using a total count of 97 monthly indicator series and output data from

2008 Q1 to 2020 Q2 (nl = 50 quarters) we are firmly in the high dimensional setting,

and thus hope to capitalise on the benefits of sparse temporal disaggregation to produce

a monthly estimate. Additionally, for comparison in the standard dimensional setting

we produce an estimate using only 10 indicator series by aggregating our indicator set

such that we have a single series each for MBS Turnover in Production , and MBS

Turnover in Services, alongside four each for Retail Sales, and the VAT Diffusion Indices.

This allows us to make a comparison with the traditional Chow and Lin temporal

disaggregation procedure.

Before discussing our results, it is worth considering our data-quality checks and

pre-processing routines. Generally, releases from the ONS are of high-quality and based

on robust production pipelines, however, in this case there are a couple of missing

observations from January to March 2015 for the road traffic indicator data. This is due

to a pause in the data being published throughout this period, as it is only 3 months in

total we simply apply imputation based on linearly interpolation for these series. Beyond

issues of data-quality, we need to ensure indicator series are of comparable form, for

instance, if we want to benchmark with respect to a seasonally adjusted output, it would

be prudent to use seasonally adjusted input series. To this end, and to enable better

comparison we therefore seasonally adjust each of the indicator series before performing

temporal disaggregation by making use of the seasonal package in R that calls the

automatic procedures of X13-ARIMA-SEATS to perform seasonal adjustment (Sax and

Eddelbuettel, 2018). The final pre-processing step we perform is to re-scale our indicator

series such that they are comparable in the eyes of the penalised regression problem. For

example, the MBS results and road traffic counts are flow data, whereas VAT diffusion and
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retail sales are indexes. We therefore scale both the inputs and output to have zero mean

and unit variance in order to obtain more interpretable results. To re-scale the monthly

estimate back to the original £million scale we use the following: Final Estimate =

Model Estimate × SD(Quarterly Output) + mean(Quarterly Output)/3.

3.5.1 Results

Given the automatic tuning procedure we have developed both ℓ1-spTD and the Chow-

Lin method can be straightforwardly applied to the data. In the synthetic experiments,

the refitting procedure improved performance over the pure lasso approach, as such we

generally recommend the refitting strategy, and focus on this method in this application.

Figure 3.5.1 shows the monthly estimates of disaggregating quarterly seasonally adjusted

GDP at chained volume measures using Chow-Lin and ℓ1-spTD with 10 indicators (red

and blue respectively) and also using ℓ1-spTD with 97 indicators (green line). Further it

shows the index based monthly GDP series described above to compare against (black).

For the purposes of this discussion, we will refer to this index based series as the true

series. In general, all methods seem to be doing a good job of estimating the true trend

in Fig. 3.5.1(a) with ℓ1-spTD using 97 indicators being the smoothest and most accurate.

This advantage is demonstrated in panels (Fig. 3.5.1b-d) where the absolute error is

shown to be both lower in magnitude, and more consistent over time. For instance, with

the high-dimensional example we do not see large errors in the periods around early

2012, and 2020. This behaviour is further captured by the RMSE errors between the

true monthly series and the estimates. For the Chow-Lin and ℓ1-spTD methods with

10 indicator series we obtain respectively RMSE scores of 1055.74 and 985.13. Given

its access to a wider array of indicator series, the ℓ1-spTD method applied to 97 series

gives significantly improved performance on average with an RMSE of 749.63.

Even though it may seem the performance of the estimates between Chow-Lin and

ℓ1-spTD with 10 indicators is close, the real advantage of ℓ1-spTD stems from the fact
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Figure 3.5.1: Comparison of estimated sequences and the ONS’ monthly GDP index.
a) Estimated high-frequency (monthly) series for 2008-2020. b-d) Absolute difference
between the index and the estimate for each month (millions of pounds), b) CL with
10 indicators, c) ℓ1-spTD with 10 possible indicators, d) ℓ1-spTD with 97 possible
indicators.
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that our method selects a sparse subset of the most relevant indicators. This informs

practitioners and users of this data about the main factors driving the economic variable

of interest; assisting with understanding data revisions and analysis. Table 3.5.2 displays

the coefficient estimates of the 10 indicator series used in the GDP analysis. ℓ1-spTD

selects 3 out of the 10. These are: the aggregate series for MBS Turnover in Production,

the VAT Diffusion Index for Production and the Retail Sales Index for Clothing and

Footwear. Unsurprisingly, MBS for Production appears as one of the main components

that goes into GDP. Perhaps somewhat more surprisingly is the large weight given

to the clothing and footwear sales index. Indeed, if one plots the published monthly

GDP index alongside this indicator it is clear they share very similar dynamics. Table

3.5.3 displays the indicator selected out of 97 in the high-dimensional task and their

corresponding coefficient estimate. They are, 4 MBS Production industries, 7 MBS

Services industries, Vehicles over 11.66m on roads, VAT Diffusion Index for Services,

and the Retail sales Index for Clothing and Footwear. The benefits of using this many

indicators is that we get information on exactly which industries in production and

services are most informative across MBS surveys, alongside the inclusion of faster,

alternative indicators. Interestingly, the fact that vehicles over 11.66m on roads is

selected gives evidence that these relatively novel traffic indicators can be of use for

rapid economic measurement. More large vehicles/lorries on the motorways could be

a sign of increased supply and demand of goods, positively impacting the economy.

Cars and aircraft drive manufacturing movements so it is no surprise they are selected.

Similarly, mining and quarrying are significant in wider production.

Since many of these indicators may be correlated, as a final check we also run the

adaptive lasso extension outlined in Section 3.3.3 to assess the impact on the variables

selected. Table 3.5.2 and 3.5.3 shows the weightings from this adaptive extension. In the

case of 10 indicators the method selects exactly the same variables, whereas in the 97

application, a subset of the indicators is returned as active. We can see in this case, the
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Indicator CL ℓ1-spTD Adaptive
MBS Turnover in Production Aggregate 0.0728 0.121 0.121
MBS Turnover in Services Aggregate 0.0505 0 0
VAT Diffusion Index - Agriculture 0.00327 0 0
VAT Diffusion Index - Production -0.0395 -0.0206 -0.0206
VAT Diffusion Index - Services 0.00235 0 0

VAT Diffusion Index - Construction 0.0138 0 0
Retail Sales Index - Clothing 0.201 0.239 0.239
Retail Sales Index - Food -0.0772 0 0

Retail Sales Index - Household -0.00325 0 0
Retail Sales Index - Non-foods 0.0587 0 0

Table 3.5.2: Coefficient estimates of GDP analysis with 10 indicator series using Chow-
Lin (CL), ℓ1-spTD and adaptive extension

Indicator ℓ1-spTD Adaptive
MBS Production - Mining and Quarrying 0.0232 0.0366

MBS Production - Fabricated Metal Products (excluding weapons) 0.00546 0
MBS Production - Motor Vehicles 0.0305 0.0234

MBS Production - Air and Spacecraft 0.00355 0
MBS Services -Wholesale Retail Trade Repair of Motor Vehicles 0.0599 0.0591

MBS Services - Rail and Land Transport 0.0140 0
MBS Services - Food and Beverage Serving 0.107 0.124

MBS Services - Legal Activities 0.0231 0.0281
MBS Services - Rental and Leasing 0.0344 0.0426

MBS Services - Employment 0.0198 0
MBS Services - Creative Arts and Entertainment 0.0187 0.0168
VAT Diffusion Index - ‘S’ Other Service Activities -0.0201 -0.0216

Retail Sales Index - Clothing 0.00273 0
Vehicles Over 11.66m on Roads Across England 0.0263 0.0397

Table 3.5.3: Non-zero coefficient estimates of GDP analysis with 97 indicator series
using ℓ1-spTD and adaptive lasso extension
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adaptive lasso acts to further prune out potential false positives, however, the RMSE

score of 799.11 is very similar to that achieved without using adaptive weighting.

3.6 Case Study 2 - Indirect Estimation of a Monthly

Service Turnover Indicator in Italy

A second case study is now considered that applies the ℓ1-spTD method to perform

quarterly-to-monthly disaggregation of the quarterly index of service turnover for

transportation in Italy. The purpose of this second case study is to go into further

detail on two important questions: (a) How well does the ℓ1-spTD model predict months

in the current quarter that is not observed yet (i.e. nowcasting) compared to other

popular models? (b) How stable are the indicators selected by ℓ1-spTD overtime as you

make future forecasts? For this second question, an extension to the original ℓ1-spTD

algorithm is proposed that fixes the number of variables to be selected to ensure more

stable results.

The Italian turnover index is released monthly for industry and quarterly for market

services by the Italian National Institute of Statistics (ISTAT) and is crucial for the

estimation of GDP components from the production side in the Quarterly National

Accounts (QNA). The publication delay is around 55 days after the end of the reference

quarter and therefore a preliminary estimate based on an ARIMA forecast is used for

input into the QNA which is published around 30 days after the reference quarter. For

this reason there is great interest in producing an accurate prediction (nowcast) of the

service turnover index before its quarterly release and also the desire to estimate it

monthly.

The application refers to the turnover service index in transportation, particularly

challenging since strongly affected in 2020 by the dramatic movements due to the

COVID-19 pandemic and the resurgence of inflation at end of 2021. The series over the
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sample 2010 Q1 to 2021 Q4 is shown in Figure 3.6.1. Potential monthly indicators are

taken from a total of 143 time series:

• 56 series from Business Surveys (BS) in transports which provide information on

manager’s current assessments and expectations of the main economic variables in

their company;

• 18 series from Assaeroporti (AA) (the association of Italian airports, representing 28

airport management companies for 37 airports at Italian and European institutions)

referring to the number of commercial, cargo and passenger movements in both

national and international flights;

• 69 series of monthly Turnover in Industry (IT) split by both sector of economic

activity and reference market measuring evolution of sales by industrial enterprises

at current prices.

Full details of the indicator data is provided in Appendix B.1.

The estimation sample for the quarterly response series representing service turnover

index in transportation target spans over the quarters 2010 Q1 to 2021 Q4, while the

monthly indicators span the months January 2010 to December 2021. Using this data, a

pseudo-real time nowcasting exercise is set up as follows. The first round of the exercise

involves using data over the sample 2010 Q1 - 2016 Q4 and indicators over January

2010 - March 2017. This represents a scenario where 2017 Q1 has not been released

yet for the response series but we observe indicator information for the months in this

quarter. The indicator information in these months is assumed to be fully observed,

i.e. no ragged edge is considered. From this first round we are able to obtain a first

monthly estimate of the transportation index for the months January 2010 to March

2017. At this point we can assess two results: (i) What indicators have been selected?

(ii) What is the nowcast error if we aggregate the three monthly estimates in 2017 Q1

and compare this to the actual observed 2017 Q1 figure? After this, we can continue
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Figure 3.6.1: Italian quarterly turnover index in transports

to the second round where the data set is augmented moving the sample period one

quarter ahead and the model is re-estimated to obtain estimates over January 2010 to

June 2017. This experiment is iterated until 2021 Q4, a total of 21 steps. Note the final

estimate (step 21) uses all information available and is not involved in calculating the

over all nowcasting error.

Given the low number of available observations in the full sample, we opt to use an

expanding window exercise, letting all available data be part of the in-sample regression

whose parameters are used to generate the forecasts. As benchmark comparisons

to the ℓ1-spTD model, we implement the following. A basic ARIMA model with

parameters automatically selected using the R package ‘RJDemetra’. The classic

temporal disaggregation methods of Chow-Lin (Chow and Lin, 1971) and Fernandez

(Fernandez, 1981) also using ‘RJDemetra’. We apply the Chow-Lin and Fernandez models

for each one of the 143 indicator series separately using the full sample of data (January

2010 - December 2021) and use the single indicator providing the best performance as



CHAPTER 3. SPARSE TEMPORAL DISAGGREGATION 83

the indicator of choice in the nowcasting exercise, i.e. the best indicator is used as a

consistent indicator throughout. Principal components analysis (PCA) is also used as a

final benchmark model where 3 principal components (PCs) are used to summarise the

indicator information set which are then used in a Fernandez temporal disaggregation.

To measure nowcasting error we use the mean absolute error: MAE =
∑n

t=1|ˆ̄y − ȳ|/nl,

between the true quarterly figure, ȳ, and the aggregate monthly estimates, ˆ̄y and then

average this for all 20 steps in the pseudo-real time exercise.

3.6.1 Results

Let us first identify what indicators are being selected for the nowcasting exercise. When

applying the Fernandez method to each of the 143 indicator series in separate temporal

disaggregations using the full sample, we find the number one ranked indicator, in terms

of MAE, is fid ene (domestic industrial turnover [IT] in energy) with an MAE of 2.90.

It turns out the best 4 indicators all represent the energy sector and come from IT.

Unsurprising since transport is a sector strongly dependent on energy in terms of costs

and efficiency. In the PCA, 3 principle components were used to capture the majority

of the variance in the indicator data. Applying PCA to the whole data sample we find

that the first PC mainly consisted of IT indicators, while the second PC consisted of

AA and the third, BS.

For sparse temporal disaggregation, we first apply ℓ1-spTD at each time point in the

expanding window letting all the 143 potential indicators be selected. The result has

been that just 68 of them appears almost once in the selection set over the 21 waves.

A view of this subset is provided in Figure 3.6.2 where the y-axis displays the final

quarter observed and the x-axis represents the index of the indicators out of the 68

unique indicators. Table 3.6.1 provides the corresponding selected indicator indexes of

indicators appearing at least 5 times. The colours are representative of the membership

data set: red = BS, yellow = AA, orange = IT.
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Figure 3.6.2: Chart of the indicators selected at each extension of the sample window.
The y-axis displays the date observed from 2016:Q4 up to 2021:Q4. Refer to Table
3.6.1 for the indicator indexed on the x-axis. The colours are representative of the
membership data-set: red = BS, yellow = AA, orange = IT.

Indicator Dataset N. of times selected Indicator Dataset N. of times selected
fit CA (56) IT 18 bh49 i (33) BS 8
ah49 o (23) BS 16 air ptr (40) AA 7
ah49 z (26) BS 16 air pt (41) AA 7
fie CA (57) IT 15 nh49 i (32) BS 6
fie CI (65) IT 14 air cmt (45) AA 6
air cms (44) AA 12 sh a (1) BS 5
fid ene (50) IT 12 nh a (2) BS 5
fie str (48) IT 11 bh a (3) BS 5
fid B (53) IT 11 nh d (4) BS 5
fit CI (64) IT 11 ah i (13) BS 5
air pin (38) AA 10 sh49 p (21) BS 5
air pnz (37) AA 9 nh49 z (27) BS 5
air pav (42) AA 9 air pue (39) AA 5
fie B (54) IT 9 fie ind (51) IT 5
fie CH (63) IT 9 fid CB (58) IT 5
fie CK (66) IT 9 fit CH (62) IT 5
sh g (11) BS 8 fie CM (68) IT 5

Table 3.6.1: Selected indicators across the 21 sparse disaggregations. Number in brackets
refer to the x-axis index in Figure 3.6.2.
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At first view, Figure 3.6.2 shows the presence in the selected set is stable only for a

handful of indicators throughout all 21 steps in the expanding window. While other

indicators seem representative of specific events or shocks. In terms of data-sources

distribution, we see that 78% of AA are selected, 59% of BS are selected and 30% of IT.

It means that with respect to the original distribution, AA and BS are more represented

at detriment of IT. The dynamic selection moves in a range that goes from a minimum of

8 indicators chosen in 2016:Q4 to a maximum of 24 indicators in 2021:Q2. Interestingly,

the number of indicators increases overtime. In particular, it is 8 at the first run, it

jumps to 14 at the second, then stabilises to 12 until the 8th run (18 at the 7th). The

window of these runs corresponds to the period 2017-18. Then the number moves in

the range 16-18 until the 15th run, period 2019-2020:Q2. Afterwords, it increases again

towards the range 21-24 (apart 17 at the 17th run) in the last runs, when the windows

looks at the rebounding of the economy after the big fall in 2020:Q3 and the most recent

quarters.

Extending ℓ1-spTD for a stable number of indicators

To make the number of indicators selected stable in each nowcasting period, we adjust

the ℓ1-spTD algorithm to produce β estimates of a desired support. We fix the desired

support to be 8, the minimum number of indicators selected, and 24, the maximum

number of indicators selected in the free selection exercise (Figure 3.6.2).

At each step of the LARS algorithm in ℓ1-spTD (Section 3.3.2), for a given tuning

parameter value λ, an indicator enters or leaves the selected support set and therefore

there may be multiple values of λ that lead to the same support size in β̂. The best λ,

and therefore best support size, is found by minimising BIC. This process can be readily

adjusted by collecting all values of λ in the LARS algorithm that generate a solution of

the desired support (8 or 24) and minimise the BIC over these λ values. This gives the

best coefficient estimate of size 8 or 24 for that particular nowcasting window.
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Model
Forecasting accuracy
MAE Relative MAE

ARIMA 4.613 1.000
Chow-Lin 3.390 0.735
Fernandez fid end (best indicator) 2.896 0.628
PCA 4.240 0.919
Sparse TD: free selection 2.399 0.520
Sparse TD: 8 free 2.223 0.482
Sparse TD: 24 free 2.187 0.474
Sparse TD & Fernandez with 8 fixed 2.098 0.455
Sparse TD & Fernandez with 24 fixed 1.657 0.359

Table 3.6.2: Pseudo-real time nowcasting results

When the support size was fixed to be 8, 29 unique indicators were present in the

nowcasting exercise. When the support was fixed to be 24, 83 unique indicators were

present. More detailed results are presented in Appendix B.2. As the number of unique

indicators used does vary, a final approach was taken that uses the 8 indicators selected

in Figure 3.6.2 in 2016:Q4 and the 24 selected in 2021:Q2 as a fixed set of variables for

Fernandez temporal disaggregation. This is made with the purpose of avoiding much

revisions when new data are released. We call this method: Sparse TD & Fernandez

with 8 or 24 fixed. The method of using ℓ1-spTD with a fixed indicator support set is

called Sparse TD: 8 or 24 free, while usual ℓ1-spTD is called Sparse TD: free selection.

The results of all models applied to the pseudo-real time nowcasting exercise is displayed

in Table 3.6.2.

The results suggest that an accurate selection of the indicators using ℓ1-spTD leads to

substantial improvements in nowcasting performance. Indeed, the free selection method

of Sparse TD provides a reduction in MAE of around 50% with respect to ARIMA and of

around 17% with respect to the best Fernandez approach. Further reduction is achieved

in this case when performing the selection strategy using the sparse TD approach under

a fixed support set of 8 or 24 variables. Interestingly, the best approach for this data was

Sparse TD & Fernandez with 24 fixed indicator, with an MAE reduction of around 30%

with respect to the usual ℓ1-spTD method and of around 64% with respect to ARIMA.
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3.7 Conclusion

The process of using high-frequency indicators to construct high-frequency renditions of

low frequency information, known as temporal disaggregation, is widely used in official

statistics. However, traditional methods (Chow and Lin, 1971; Dagum and Cholette,

2006) have become somewhat outdated and may not be compatible with the large-scale,

high-frequency administrative and alternative data sources NSIs increasingly seek to

utilise.

This chapter has introduced a novel Sparse Temporal Disaggregation (spTD) frame-

work that can operate in settings where the number of indicators used can exceed the

low-frequency sample size. The method builds estimators that incorporate regulariser

penalty functions into the well-established Chow-Lin cost function to promote more par-

simonious modelling. By focusing on the ℓ1-norm (LASSO) penalty (Tibshirani, 1996),

methodology produced is able to simultaneously select important indicators and estimate

their regression coefficients. Through extensive simulation studies, the ℓ1-spTD has been

shown to outperform Chow-Lin temporal disaggregation in all moderate dimensional

scenarios and provide accurate and interpretable estimates in high-dimensions. While

recovery of the true high-frequency series and regression parameters becomes slightly

more challenging with a smaller sample size (nl < 100) and smaller regression coefficient

value (βj < 5) than ones considered, extra simulation studies not presented in this thesis

do demonstrate an improved performance over Chow-Lin in these scenarios. As might

be expected with a LASSO related method, when indicators are highly correlated and

break the irrepresentability condition, recovery of the correct support of β is difficult. A

further limitation of the proposed method is in scenarios when the true support of the

indicator set considered is actually dense. As the ℓ1 variant of our method relies on the

assumption of sparsity, it may perform poorly in this setting. Factor based approaches

may be a better option in this setting, or utilising alternative penalisation strategies, i.e.

ridge regression.
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Interestingly, the synthetic analysis also verified the difficulty of estimating ρ in the

temporal disaggregation setting. This was an area of particular weakness for the classical

Chow-Lin method (Ciammola et al., 2005). A similar issue is encountered within Proietti

(2006) where the author suggests using a diffuse prior on the regression coefficients may

help. Sparse TD appears to significantly outperform Chow-Lin in the estimation of ρ,

however, can still struggle in moderate and high-dimensional settings. Interpreting the

ℓ1 penalised solution as a maximum a-posteriori estimator with a Laplacian prior on the

regression coefficients, evidence has been provided that weakly informative priors may

help in both the recovery of the regression and autocorrelation coefficients. Whilst in

the experiments estimation of the autocorrelation structure (via ρ) does not have much

impact on the high-frequency estimates themselves, it could significantly impact the

confidence intervals associated with inference on the regression parameters and their

coverage properties. Technical verification of this claim requires further work, and is

complicated by the nature of the ℓ1 regularisation. There is however a considerable

literature on post-selection inference for the lasso (c.f. van de Geer et al., 2014), and

it is feasible that this can also be adapted to the temporal disaggregation setting, an

exciting direction for future work.

Applying this method to the disaggregation of quarterly GDP data also highlighted

ℓ1-spTD’s ability to achieve an accurate monthly estimate whilst informing us of the

most relevant indicators. Unlike previous approaches there are no restrictions here

on the number of indicators we can input to the model. This application can be

easily extended to produce monthly (or more frequent) estimates of numerous headline

variables and accurate disaggregated estimates can act as cost-efficient alternatives to

sending out expensive surveys frequently. The second case study displays ℓ1-spTD’s

ability to outperform competing methods in a pseudo-real time nowcasting exercise

of quarterly service turnover index of transportation in Italy. This study identified

that working with a fixed support of indicators can lead to more stable and accurate
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estimates.

Whilst developed in the context of official statistics, the methods proposed in this

chapter have application far beyond this domain. For instance, they may be used to

help companies produce more granular estimates of consumer behaviour, or to improve

the resolution at which researchers can assess complex environmental processes.



Chapter 4

The Sparse Dynamic Factor Model:

A Regularised Quasi-Maximum

Likelihood Approach

Dynamic factor models (DFMs) have become popular in the macroeconomic nowcasting

literature due to their ability to parsimoniously handle high-dimensional time series, deal

with arbitrary patterns of missing data and produce predictions in real time. Many of

these qualities and estimation approaches to the DFM were introduced in Section 2.2.4

of Chapter 2. Despite their many qualities, one may argue they suffer from a weakness -

a lack of interpretability. In the classic DFM, with a dense loadings matrix, it can be

difficult to determine which latent factors are driving the behavior of which observed

variables. This chapter formally introduces a class of sparse DFMs whereby the loading

matrices are constrained to have few non-zero entries, thus increasing interpretability

of factors. A regularised M-estimator for the model parameters are presented, along

with an efficient expectation maximisation algorithm to enable estimation. Synthetic

experiments demonstrate consistency in terms of estimating the loading structure, and

superior predictive performance where a low-rank factor structure may be appropriate.

90
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The utility of the method is illustrated with two case studies in distinct fields to

show the model’s versatility1. The first case study consists of an economic nowcasting

problem that attempts to nowcast 9 of the main trade commodities the UK exports

worldwide using a large collection of related series. The second case study is an energy

application forecasting electricity consumption across a large set of smart meters across a

University campus. In both case studies the importance of interpreting factor structure is

highlighted. Section 4.1 introduces the main contribution of the chapter, highlighting the

interpretability shortcomings classic DFMs possess. The section ends with an overview

of the chapter’s structure.

4.1 Introduction

Dynamic factor models (DFMs) are one of, if not the most, popular tool for summarising

the sources of variation among large collections of time series variables. Originally

formalised by Geweke (1977), it was perhaps the application of Sargent et al. (1977)

showing how just two dynamic factors were able to explain the majority of variance

in headline US macroeconomic variables that has led to DFMs popularity in modern

day forecasting and structural analysis with ‘big data’. Their natural state-space

representation makes it possible to conduct inference based on Kalman filtering and

smoothing techniques, allowing a compact framework to handle mixed-frequency and

missing data issues common in economic data sets and the ability to update forecasts in

real-time.

The DFM is nowadays ubiquitous within the economic statistics community, with

applications in nowcasting/forecasting (Giannone et al., 2008; Bańbura et al., 2011;

Foroni and Marcellino, 2014a), constructing economic indicators (Mariano and Murasawa,

2010; Grassi et al., 2015), and counterfactual analysis (Harvey, 1996; Luciani, 2015).

1The case studies presented are based on two distinct projects undertaken both utilising the sparse
DFM. While inconsistencies may arise, both case studies are presented in this chapter to demonstrate
interesting applications.
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Examples in other domains include psychology (Molenaar, 1985; Fisher, 2015), the

energy sector (Wu et al., 2013; Lee and Baldick, 2016) and many more, see Stock and

Watson (2011) and Poncela et al. (2021) for detailed surveys of the literature.

Formally introduced in Section 2.2.4 of Chapter 2, the state-space framework of a

DFM consists of a measurement equation:

Xt = ΛFt + ϵt ,

along with a state equation:

Ft = AFt−1 + ut ,

for observations t = 1, . . . , n, which together assume that the common dynamics of a

large number of stationary time series variables Xt = (X1,t, . . . , Xp,t)
⊤ are driven by a

small number r ≪ p of latent factors Ft = (F1,t, . . . , Fr,t)
⊤ which evolve dynamically as a

VAR(1) process over time. The p× r matrix Λ contains factor loadings representing the

relationship between the measurements and the underlying latent factors that drive their

behaviour. The factor loadings play a critical role in the analysis of DFMs, providing an

insight into the underlying structure of the data and the strength of correlation between

factors and variables.

Unfortunately, in the classic DFM, every variable in Xt is loaded onto the factors

Ft, i.e. Λ is a dense matrix. Often these loading weights are quite large and it is very

difficult, if not impossible, to understand how individual series, or groups of series,

are influencing the dynamics of the estimated latent factors (Despois and Doz, 2023).

If instead, we could obtain factor estimates that are linear combinations of smaller,

distinct groups of variables, where we could associate a given factor estimate with an

underlying feature of the observed data, this would lead to tremendous improvements

in interpretability.

A natural way one could impose this kind of interpretability into the factor structure
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would be through the factor loadings Λ. A classic approach to accomplish this is based

on factor rotations, which has been widely used to minimise the complexity in the factor

loadings to make the structure simpler to interpret. See Kaiser (1958) for the well-

established varimax rotation and see Carroll (1953) and Jennrich and Sampson (1966)

for the well-established quartmin rotation. For a recent paper on varimax rotation see

Rohe and Zeng (2020). The well-established nowcasting paper of Bańbura et al. (2011)

use prior knowledge of the variables to partition the factors into mutually independent

global, real and nominal factors, assuming that the global factor is loaded by all the

variables, while real and nominal factors are specific to real and nominal variables. They

show this is helpful when calculating a global factor. Andreou et al. (2019) is a similar

more recent application for grouped factor structure.

An alternative approach is to utilise modern tools from sparse modelling and regu-

larised estimation to constrain the loading matrix to only have a few non-zero loadings

for each factor, i.e. Λ is sparse. A DFM where the loadings matrix is assumed to be

sparse can be described as a sparse DFM. One way to impose sparse restrictions on Λ

is to estimate it using sparse principal components analysis (SPCA) (Zou et al., 2006).

SPCA is a variation of traditional PCA that incorporates an elastic net penalty (i.e. a

mix of ℓ1 and ℓ2 norms) to induce sparsity. The interpretable principal components can

be viewed as static factors in a factor model and used alongside the Kalman smoother

for prediction purposes. See Croux and Exterkate (2011) for a typical macroeconomic

forecasting setting where they consider a robustified version. Kristensen (2017) use

SPCA to estimate diffusion indexes with sparse loadings. Despois and Doz (2023) prove

that SPCA consistently estimates the factors in an approximate factor model if the ℓ1

penalty is of O(1/
√
p). They compare SPCA with factor rotation methods and show an

improved performance when the true loadings structure is sparse.

This main contribution of this chapter is to introduce a new class of sparse DFMs.

Unlike previous research, the methodology presented implements regularisation within
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an EM algorithm framework, allowing us to robustly handle arbitrary patterns of missing

data, model temporal dependence in the processes, and impose weakly informative

(sparse) prior knowledge on the factor loadings. It is argued that in settings where

autocorrelation is moderately persistent, that the feedback provided through our EM

procedure is important in aiding recovery of the factor loadings, as well as producing

accurate forecasts.

The analysis within this paper is empirical in nature, considering three aspects: i)

how our EM algorithm performs in recovering the true sparsity pattern in the factor

loadings; ii) how the model contrasts with alternative models in a predictive setting,

e.g. where we want to forecast either all the p time series, or just a subset of these; and

iii) how the model and estimation routine can be used in practice to extract insights

from complex real-world datasets.

The rest of the chapter is structured as follows. Section 4.2 formalises our sparse

DFM and the sparsity assumptions placed on the loading matrices. Section 4.3 presents

a regularised likelihood estimator for the model parameters, and introduces an EM

algorithm to enable finding feasible estimates. Tuning procedures and implementation

of the algorithm using the sparseDFM package (Chapter 6) is also discussed. Synthetic

experiments comparing the EM methodology with competing methods are presented in

Section 4.4. Real data examples in economics and the energy sector are presented in

Sections 4.5 and 4.6 respectively. The paper concludes with a discussion of the results,

and how the models and estimators can be further generalised to provide flexibility to

users.
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4.2 The Sparse DFM

Consider the p-variate time series {Xt} and r factors {Ft} related according to the

model

Xt = ΛFt + ϵt (4.2.1)

Ft = AFt−1 + ut ,

where {ϵt} and {ut} are multivariate white noise processes2. For simplicity we assume

E
[
ϵtϵ

⊤
t

]
= Σϵ = diag(σ2

ϵ) and σ2
ϵ ∈ Rp

+ is a vector of idiosyncratic variances. Similarly,

let E
[
utu

⊤
t

]
= Σu and assume the eigenvalues of the VAR matrix are bounded ∥A∥ < 1,

thus the latent process is assumed stationary. This model corresponds to an exact DFM,

where all the temporal dependence is modelled via the latent factors.

In this context, our notion of sparsity relates to the assumption that many of the

entries in the true loadings matrix, Λ, will be zero. For instance, let the support of the

kth column of the loading matrix be denoted

Sk := supp(Λ·,k) ⊆ {1, . . . , p} ,

such that sk = |Sk|. We refer to a DFM as being sparse if sk < p for some or all of the

k = 1, . . . , r factors. In practice, this is an assumption that many of the observed series

are driven by only a few (r) latent factors, and that for many series only a subset of the

factors will be relevant.

2Bańbura and Modugno (2014) show how the DFM can be easily adapted for serially correlated
idiosyncratic errors, ϵt, following an AR(1) process. The sparseDFM package presented in Chapter 6
allows for both white noise and AR(1) ϵt. Appendix D.1 demonstrates why the adaption for AR(1)
errors is computationally slower than white noise errors.
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4.2.1 Consistency and Pervasiveness

In the sparse situation, whereby sk < p, we will be able to model only a subset of

the observations with each factor. To enable us to model all p variables and gain

information relating to the r factors as n, p increase, we assume a couple of conditions

on the specification. First, that the support of the observations, and the union of factor

supports is equal, i.e. ∪r
k=1Sk = {1, . . . , p}, thus all observations are related to at least

one of the factors. Second, that the support for each factor grows with the number of

observed variables, in that {sk} is a non-decreasing sequence in p. Assumptions of this

form would allow us, in principle, to assess the consistency of factor estimation as p

grows.

This asymptotic analysis in p (and n) contrasts with the traditional setting with

a fixed p – for which the factors cannot be consistently recovered and can only be

approximated, with error that depends on the signal-to-noise ratio ∥ΛΣFΛ
⊤]∥/∥Σϵ∥,

where ΣF = E
[
FtF

⊤
t

]
(Bai and Li, 2016). Intuitively, this is due to the fact that if p

is fixed, then we cannot learn anything more about the factor at a specific time t, as

we do not get more information on the factors as n increases, instead we just get more

samples (at different time points) relating to the series {Ft}. When we go to the doubly

asymptotic, or just p→ ∞ setting, then if the number of factors r is fixed or restricted

to slowly grow in n then we can not only recover structures relating to {Ft}, e.g. the

specification of A, but we can also get more information relating to the factor at the

specific time t (Bai and Li, 2016; Barigozzi and Luciani, 2022). One way to ensure this

growing information about the factors is to assume that they are in some sense pervasive

– the more variables p we sample, the more this tells us about the r factors. We note,

that for a more formal analysis of the DFM, a usual pervasiveness assumption placed on

the loading conditions is given by Doz et al. (2011), whereby limp→∞ p−1λmin(Λ
⊤Λ) > 0,

i.e. the average loading onto the least-influential factor is bounded away from zero.

In this work, we choose to focus on the empirical performance of our estimator, thus
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we do not formalise the sparsity assumptions further. However, it is worth noting our

empirical studies meet the pervasiveness assumptions regarding the support of the factor

loadings.

4.2.2 Identifiability

In the following section, we will consider a QMLE estimator for the factor model based

on assuming Gaussian errors ϵt and ut. It is thus of interest to consider how the

associated likelihood relates to the factors and their loadings. Adopting a Gaussian error

structure and taking expectations over the factors, the likelihood for (4.2.1) is given by

L(Λ) ∝ log det(Λ⊤ΣFΛ+Σϵ)−
1

2
tr

[
(Λ⊤ΣFΛ+Σϵ)

−1 1

n

n∑
t=1

XtX
⊤
t

]
.

An obvious identifiability issue arises here, such that if Λ̃ = ΛQ, F̃ t = QFt, for any

unitary matrix Q, i.e. Q⊤ = Q−1, we have L(Λ̃) = L(Λ). Now consider the case of

performing a rotation on the true loadings matrix, denoted by Λ0. Denote the set of all

possible equivalent loadings as

E := {Λ∗
0Q | Q⊤ = Q−1 , Q ∈ Rr×r} .

The invariance of the likelihood to elements of this set mandates that theoretical analysis

of the DFM is typically constructed in a specific frame of reference, c.f. Doz et al. (2011,

2012); Bai and Li (2016). For unique solutions one needs to impose normalisation

constraints or a set of restrictions on Λ, for example, authors (Geweke and Singleton,

1981; Proietti, 2011a) impose r2 restrictions enforced by setting Λ = [Ir ; Λ
∗] where Λ∗

is the (p− r)× r unrestricted loadings matrix. Interestingly, our sparsity assumptions

restrict the nature of this equivalence class considerably, in that only loading matrices

with sparse structure are permitted. In general, there will still be multiple sparse



CHAPTER 4. THE SPARSE DYNAMIC FACTOR MODEL 98

representations that are allowed, and the issue of the scale invariance remains, however,

the latter can be fixed by imposing a further constraint on the norms of the loading

matrices. In this work, we demonstrate empirically that it is possible to construct

estimators that are consistent up to rotations that maintain an optimal level of sparsity,

in the sense that the true loading matrix is given by

Λ0 ∈ argmin
Λ∈E

r∑
k=1

∥Λ·,k∥0 , (4.2.2)

where ∥Λ·,k∥0 := |supp(Λ·,k)| counts the number of non-zero loadings. More generally

(see Remark 1) we could consider selecting on the basis of the ℓq norm, ∥Λ∥q :=

(
∑

ik Λ
q
i,k)

1/q. As Figure 4.2.1 shows, the ℓ1 norm may still provide selection, however,

the ℓ2 norm provides no selection as it maintains the rotational invariance of the

likelihood. In this paper, we restrict our equivalence set on the basis of the ℓ0 norm, as

above, that is, we specify the true loading matrices as those that maintain the highest

number of zero values after consideration for all unitary linear transformations.

In practice, these issues mean we are unable to recover the correct sign of the factor

loadings, whilst columns in the loading matrix may also be permuted, e.g. factor k can

be swapped (under permutation of the columns in the loading matrix) with factor l, for

any k, l ∈ {1, . . . , r}. These are the same identifiability issues which we face in PCA,

whereby the eigenvectors can be exchanged in terms of order and direction. Note that,

if the focus is solely on forecasting ability, then these identifiability issues are not a

concern as forecasts depend on the space spanned by the factors, i.e. ΛF⊤
t , and not the

factors themselves.

Remark 1 (Sparsity and invariance): To illustrate how the sparsity constraint (4.2.2)

breaks the more general invariance that regular DFMs suffer, we can consider the quantity

∥Λ∗
0Qrot(θ)∥q, where Qrot(θ) ∈ R2×2 is a rotation matrix with argument θ ∈ (−π, π),

and Λ∗
0 ∈ R10×2 has the first column half filled with ones, and the rest zero, the second
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Figure 4.2.1: The impact of rotation on the function L(Λ̃(θ)) + ∥Λ̃(θ)∥q for q = 0, 1, 2.
In the case of q = 0, 1, the set of feasible Λ0 from 4.2.2 is restricted to the points
θ ∈ {0,±1

2
π,±π} corresponding to either swapping columns, or flipping signs.

column is set to be one minus the first. As we see from Fig. 4.2.1, without the additional

restriction on our specification of Λ0, via Eq. (4.2.2), we would not be able to determine

a preference for any particular element from the set E := {Λ∗
0Qrot(θ) : | θ ∈ {−π, π}}.

I.e. the likelihood alone L(θ̃) gives the same value for every θ ∈ {−π, π}.

4.3 Estimation

Under the Gaussian error assumption, and collecting all parameters of the DFM (4.2.1)

in θ = (Λ,A,Σϵ,Σu), we are able to write the joint log-likelihood of the data Xt and

the factors Ft as:

logL(X,F ;θ) =− 1

2
log |P0| −

1

2
(F0 −α0)

⊤P−1
0 (F0 −α0)

− n

2
log |Σu| −

1

2

n∑
t=1

u⊤
t Σ

−1
u ut

− n

2
log |Σϵ| −

1

2

n∑
t=1

ϵ⊤t Σ
−1
ϵ ϵt , (4.3.1)
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where ϵt = Xt −ΛFt, ut = Ft −AFt−1, and we have assumed an initial distribution at

t = 0 of the factors as F0 ∼ N (α0,P0).

We propose to induce sparsity in our estimates using the familiar ℓ1 penalty, with

motivation similar to that of the LASSO (Tibshirani, 1996). Alternative penalty

functions are available, however, the convexity of the ℓ1 penalty is appealing. Even

though the overall objective for the parameters is non-convex, due to the rotational

invariance of the log-likelihood, the convexity of the penalty ensures we can quickly

and reliably apply the sparsity constraints. We will make use of this structure in the

algorithms we construct to find estimates in practice. It is worth noting that our

focus here is on the factor loadings, and thus this is the object we regularise, possible

extensions could consider additional/alternative constraints, for instance on the latent

VAR matrix.

Our proposed estimator attempts to minimise a penalised negative log-likelihood, as

follows

θ̂ = argmin
θ

− logL(X,F ;θ) + αR(Λ) , (4.3.2)

where α ≥ 0. A larger α corresponds to a higher degree of shrinkage on the loadings,

e.g. for a larger α we would expect more zero values in the loading matrices3.

4.3.1 A Regularised Expectation Maximisation Algorithm

The regularised likelihood (4.3.2) is incomplete, as whilst we have observations, we

do not observe the factors. To solve this problem, we propose to construct an EM

framework where we take expectations over the factors (fixing the parameters), then

conditional on the expected factors we maximise the log-likelihood with respect to the

parameters θ, we iterate this process until our estimates converge.

3In Chapter 3, λ was used to represent the ℓ1-norm penalty parameter. In Chapter 4 and 5 this
notation is changed to be α to not clash with the factor loadings notation.
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The EM algorithm involves calculating and maximising the expected log-likelihood

of the DFM conditional on the available information Ωn. Given the log-likelihood in

(4.3.1), the conditional expected log-likelihood is

E [logL(X,F ;θ)|Ωn] = −1

2
log |P0| − tr

{
P−1

0 E
[
(F0 −α0)(F0 −α0)

⊤|Ωn

]}
− n

2
log |Σu| −

1

2

n∑
t=1

tr
{
Σ−1

u E
[
u⊤

t ut|Ωn

]}
− n

2
log |Σϵ| −

1

2

n∑
t=1

tr
{
Σ−1

ϵ E
[
ϵ⊤t ϵt|Ωn

]}
. (4.3.3)

Ultimately, we wish to impose our regularisation on the expected log-likelihood, with

our feasible estimator being given by

θ̂ = argmin
θ

[−E [logL(X,F ;θ)|Ωn] + α∥Λ∥1] . (4.3.4)

We now provide details on the maximisation step and expectation step of our EM

algorithm. Full derivations of the parameters obtained in the maximisation step can

be found in Appendix C1. The expectation step involves univariate Kalman filter and

smoother equations given in Appendix A.2.

The maximisation step

We use the following notation for the conditional mean and covariances of the state:

at|s = E [Ft|Ωs] ,

Pt|s = Cov[Ft|Ωs] ,

Pt,t−1|s = Cov[Ft,Ft−1|Ωs] .

conditional on all information we have observed up to a time s, denoted by Ωs.

As shown in Bańbura and Modugno (2014), and fully derived in Appendix C1, the
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maximisation of (4.3.3) results in the following expressions for the parameter estimates:

α̂0 = a0|n ; P̂0 = P0|n

and letting St|n = at|na
⊤
t|n + Pt|n, and St,t−1|n = at|na

⊤
t−1|n + Pt,t−1|n we have

Â =

(
n∑

t=1

St−1|n

)−1( n∑
t=1

St,t−1|n

)
, (4.3.5)

Σ̂u =
1

n

n∑
t=1

[
St|n − Â

(
St−1,t|n

)]
. (4.3.6)

To minimise (4.3.4) for parameters Λ and Σϵ, we should also consider there might

be missing data in Xt. Let us define a selection matrix Wt to be a diagonal matrix

such that

Wt,ii =


1 if Xi,t observed

0 if Xi,t missing

and note that Xt = WtXt + (I − Wt)Xt. The update for the idiosyncratic error

covariance is then given by

Σ̂ϵ =
1

n

n∑
t=1

diag

[
Wt

(
XtX

⊤
t − 2Xta

⊤
t|nΛ̂

⊤ + Λ̂St|nΛ̂
⊤
)
+ (I −Wt)Σ̂

∗
ϵ(I −Wt)

]
,

(4.3.7)

where Σ̂∗
ϵ is obtained from the previous EM iteration. As noted in Algorithm 1, in

practice we update Σ̂ϵ after estimating Λ̂, as the former is based on the difference

between the observations and the estimated common component. The following section

details precisely how we practically obtain sparse estimates for the factor loadings, the

estimates can then be used in (4.3.7) and thus complete the M-step of the algorithm.
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Incorporating sparsity

In this work, we propose to update Λ̂ by constructing an Alternative Directed Method

of Moments (ADMM) algorithm (Boyd et al., 2011) to solve (4.3.4) with the parameters

(Â, Σ̂u, α̂0, P̂0) fixed. We choose to use the ADMM approach as it provides a way

to split up the fairly complex objective function into separate, simpler optimisation

problems, making the variable updates in every iteration much easier. The algorithm

proceeds by sequentially minimising the augmented Lagrangian

C(Λ,Z,U) := −E [logL(X,F ;θ)|Ωn] + α∥Z∥1 +
ν

2
∥Λ−Z +U∥2F , (4.3.8)

where Z ∈ Rp×r is an auxiliary variable, U ∈ Rp×r are the (scaled) Lagrange multipliers

and ν is the scaling term. Under equality conditions relating the auxilary (Z) to the

primal (Λ) variables, this is equivalent to minimising (4.3.4), e.g.

arg min
Z=Λ

max
U

C(Λ,Z,U )

= argmin
Λ

[−E [logL(X,F ;θ)|Ωn] + α∥Λ∥1]

as (4.3.4) is convex in the argument Λ with all other parameters fixed, this argument

holds for any ν > 0 (Boyd et al., 2011; Lin et al., 2015).

The augmented Lagrangian (4.3.8) can be sequentially minimised via the following

updates

Λ(k+1) = argmin
Λ

C(Λ,Z(k),U (k))

Z(k+1) = argmin
Z

C(Λ(k+1),Z,U (k))

= soft(Λ(k+1) +U (k);α/ν)

U (k+1) = U (k) +Λ(k+1) −Z(k+1) .
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for k = 0, 1, 2, . . . , until convergence. Here, soft() refers to the soft thresholding operator

defined by

softκ(x) =


x− κ x > κ ,

0 |x| ≤ κ ,

x+ κ x < −κ .

.

The first (primal) update is simply a least-squares type problem, whereby on vectorising

Λ one finds

vec(Λ(k+1)) =

(
n∑

t=1

St|n ⊗WtΣ
−1
ϵ Wt + νIpr

)−1

×

vec

[ n∑
t=1

WtΣ
−1
ϵ WtXta

⊤
t|n + ν(Z(k) −U (k))

]
. (4.3.9)

Derivations of the updates can be found in Appendix C.2.

Remark 2 (Exploiting dimensionality reduction): For the Λ(k+1) update, the dimen-

sionality of the problem is quite large, leading to a näıve per-iteration cost of order

O(r3p3). A more efficient method for this step can be sought by looking at the spe-

cific structure of the matrix to be inverted. Define At = St|n, Bt = WtΣ
−1
ϵ Wt, and

C =
∑n

t=1 WtΣ
−1
ϵ WtXta

⊤
t|n+ ν(Z

(k)−U (k)), then the solution (4.3.9) can be written as

vec(Λ) =

(
n∑

t=1

At ⊗ Bt + νIpr

)−1

vec(C)

= D−1vec(C) .

Since Σϵ is diagonal in an exact DFM, Bt is also diagonal and thus D is made up of r2

blocks such that each (i, j)th block is a diagonal matrix of length p for i, j = 1, . . . , r.

To speed up the computation, we note that νIpr = νIr ⊗ Ip and use the properties of
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commutation matrices (Magnus and Neudecker, 2019, p. 54), denoted by Krp, to write

(
n∑

t=1

At ⊗ Bt + νIr ⊗ Ip

)−1

=

[
n∑

t=1

Krp(Bt ⊗At)Kpr +Krp(Ip ⊗ νIr)Kpr

]−1

= Krp

(
n∑

t=1

(Bt ⊗At) + (Ip ⊗ νIr)

)−1

Kpr . (4.3.10)

The matrix needing to be inverted in the final line of equation (4.3.10) is now a block

diagonal matrix. We can extract each of the 1, . . . , p blocks separately and invert

them one-by-one. The final result from (4.3.10) has the expected block structure with

a diagonal matrix in each block but we can stack them into a cube to save storage.

Overall, the operations can be completed with cost O(r3p). Given that this needs to be

performed for every iteration of the EM algorithm, our commutation trick results in

significant computational gains.

Whilst other optimisation routines could be used to estimate the sparse loadings, the

ADMM approach is appealing as it allows us to split (4.3.4) into sub-problems that can

easily be solved. If one wished to incorporate more specific/structured prior knowledge,

this approach can easily be altered to impose these assumptions, for instance, future

work could consider group-structured regularisation allowing for more informative prior

knowledge on the factor loadings to be incorporated. Hard constraints, e.g. where we

require a loading to be exactly zero can also be incorporated at the Z update stage by

explicitly setting some entries to be zero. More discussion on future work ideas can be

found in Chapter 7.

The expectation step

So far, we have discussed how to update the parameters conditional on the quantities

E [Ft|Ωn] Cov[Ft|Ωn], and Cov[Ft,Ft−1|Ωn]. In our application, under the Gaussian
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error assumption, these expectations can be easily calculated via the Kalman smoother.

More formally, given a set of parameter estimates θ̂ obtained from the maximisation

step, we can set up the state-space framework of the DFM as in 4.2.1 and run the

univariate Kalman filter and smoothing equations of Koopman and Durbin (2000) to

obtain quantities E [Ft|Ωn] Cov[Ft|Ωn], and Cov[Ft,Ft−1|Ωn]. As discussed in Appendix

A.2, the univariate treatment (sequential processing) of the classical multivariate Kalman

filter and smoother equations can lead to substantial computational gains when p is

large, as processing observations Xt one element at a time, as opposed to updating all

p of them together, allows slow matrix inversions to become fast scalar divisions.

Remark 3 (Calculating the cross-covariance matrix): It is not obvious from Koopman

and Durbin (2000) how the cross-covariance matrix, Cov[Ft,Ft−1|Ωn], is obtained. To

calculate it, we make use of De Jong and Mackinnon (1988)’s theorem:

Pt−1,t|n = Pt−1|t−1A
⊤(Pt|t−1)

−1Pt|n,

which, after transposition, gives

Pt,t−1|n = Pt|n(Pt|t−1)
−1APt−1|t−1. (4.3.11)

This is directly obtainable from the Kalman filter and smoother equations.

The expectation and maximisation steps are iterated until convergence which we

define happens when

logL(X; θ̂(j))− logL(X; θ̂(j−1))(
logL(X; θ̂(j)) + logL(X; θ̂(j−1))

)/
2
< 10−4 , (4.3.12)

for iteration j. The log-likelihood logL(X; θ̂(j)) is given in equation (A.2.5) of Appendix

A.2.
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4.3.2 Parameter Tuning

There are two key parameters that need to be set for the sparse DFM. The first is to

select the number of factors, and the second is to select an appropriate level of sparsity.

One may argue that these quantities should be selected jointly, however, in the interests

of computational feasibility, we here propose to use heuristics, first selecting the number

of factors, and then deciding on the level of sparsity. This mirrors how practitioners

would typically apply the DFM model, where there is often a prior for the number of

relevant factors (or more usually an upper bound). Both the number of factors, and

the structure of the factor loadings impact the practical interpretation of the estimated

factors.

Choosing the number of factors

To calculate the number of factors to use in the model we opt to take the information

criteria approach of Bai and Ng (2002). There are several criteria that are discussed in

the literature, for example, the paper of Bai and Ng (2002) suggests three forms4. We

use the criteria of the following form:

IC(r) = log Vr(F̄ , Λ̄) + r

(
n+ p

np

)
logmin(n, p) , (4.3.13)

where

Vr(F̄ , Λ̄) =
1

np

p∑
i=1

n∑
t=1

E
[
ϵ̄2i,t
]

and ϵ̄i,t = Xt,i − Λ̄i,·F̄ t is found using PCA when applied to the standardised data.

The preliminary factors F̄ correspond to the principal components, and the estimated

loadings Λ̄ corresponding to the eigenvectors. Should the data contain missing values,

they can be interpolated using the median of the series and then smoothed with a simple

4In our experiments and applications, we compared all criteria and they typically give similar
results within ±1 of each other, for simplicity, only one IC is presented here. Other IC are available in
the sparseDFM package discussed in Chapter 6.
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moving window. This is taken as the initialisation step in the sparseDFM package.

Remark 4: We note that ideally one may wish to apply the EM procedure to get

more refined estimates of both the factors and loadings, however, in the interests

of computational cost and in-line with current practice we propose to use the quick

(preliminary) estimates above, denoted with Λ̄ rather than Λ̂.

Tuning the regulariser

Once a number of factors r has been decided, we tune α by performing a simple search

over a logarithmically spaced grid and minimise a Bayesian Information Criteria defined

as

BIC(α) = log
(
Vα(F̂ , Λ̂)

)
+

log(np)

np

r∑
k=1

ŝk , (4.3.14)

where ŝk is the number of non-zero entries in the kth column of the estimated loading

matrix. In this case, we run the EM algorithm until convergence and then evaluate the

BIC using the resulting F̂ and Λ̂, this procedure is repeated for each α in the grid. An

example of the resulting curve can be seen in the empirical applications of Sections 4.5

and 4.6. To limit searching over non-optimal values, an upper limit for α is set whereby,

if the loadings for a particular factor are all set to zero, then we terminate the search.

Remark 5: Tuning both the number of factors, and the regulariser for these models

is a topic of open research and discussion. Indeed, whilst the criteria of Bai and Ng

(2002) are well used, there is still lively debate about what is an appropriate number of

factors, and this usually determined by a mix of domain (prior) knowledge and heuristics

such as those presented above. The heuristics provided here seem reasonable in the

applications and experiments we consider, however, we do not claim they are optimal

for all scenarios.
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4.3.3 Implementation

The estimation routine is implemented as part of the R package sparseDFM available

via CRAN and presented in Chapter 6. In brief, the EM routine and ADMM updates

are implemented in C++ using the Armadillo library. Initialisation of the ADMM

iterates utilises a warm start procedure whereby the solution at the previous iteration

of the EM algorithm initialises the next solution. Furthermore, warm-starts are utilised

when searching over an α tuning grid. As noted in other applications (Hu et al., 2016)

starting the ADMM procedure can lead to considerable speed-ups. With regards to

the augmentation parameter ν in the ADMM algorithm, this is simply set to 1 for the

experiments run in this chapter, however, it is possible that tuning this parameter could

lead to further speedups.

On the first iteration of the algorithm, the EM procedure is initialised by a simple

application of PCA to the standardised data, analogously to how the preliminary factors

F̄ and loadings Λ̄ were found in Section 4.3.2. A VAR(1) model is then fitted to the

preliminary factors to obtain estimates for A and Σu. The initial state distribution

F0 ∼ N(α0,P0) is such that α0 = 0 and Vec (P0) = (Irp −A⊗A)−1Vec(Σu). A

summary of the EM algorithm as a whole is given in Algorithm 2.

4.4 Simulation Study

We provide a Monte-Carlo numerical study to show the performance of our QMLE

estimator in terms of recovery of sparse loadings and the ability of the sparse DFM

to forecast missing data at the end of the sample. In particular, we simulate from a

ground-truth model according to:

Xt = ΛFt + ϵt , ϵt ∼ N(0,Σϵ) ,

Ft = AFt−1 + ut , ut ∼ N(0,Σu) ,
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Algorithm 2 EM algorithm for sparse DFM

Require: X, α

Ensure: Λ, A, Σϵ, Σu

1: Initialize θ = (Λ,A,Σϵ,Σu) via cubic spline fitting (for missing value imputation)

followed by PCA and a VAR fit

2: repeat

3: • E-step:

4: Obtain at|n and Pt|n via univariate Kalman filtering and smoothing

5: Calculate Pt,t−1|n via Eq. (4.3.11)

6: • M-step:

7: Update A and Σu via Eqs. (4.3.5) and (4.3.6)

8: Initialize Λ(0) = Z(0) = U (0) = 0

9: for k = 0, ..., until convergence do

10: Λ(k+1) = argminΛ C(Λ,Z(k),U (k)) via Eqs. (4.3.9) and (4.3.10)

11: Z(k+1) = soft(Λ(k+1) +U (k);α/ν)

12: U (k+1) = U (k) +Λ(k+1) −Z(k+1)

13: end for

14: Update Σϵ via Eq. (4.3.7)

15: until convergence
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for t = 1, . . . , n and Xt having p variables. We set the number of factors to be r = 2

and consider true model parameters of the form:

Λ = I2 ⊗ 1p/2 =

1p/2 0p/2

0p/2 1p/2

 , Σϵ = Ip, A =

a 0

ρ 0

 , Σu =

1− a2 0

0 1− ρ2

 .
The loadings matrix Λ is a block-diagonal matrix which is 1/2 sparse with p/2 ones

in each block. We set up the VAR(1) process of the factors in this way such that we

can adjust the cross-correlation parameter ρ between the factors while having factors

that always have variance one. This allows us to understand how important a cross-

correlation at non-zero lags structure is when assessing model performance. We vary

the ρ parameter between ρ = {0, 0.6, 0.9}, going from no cross-correlation to strong

cross-correlation between the factors. We set the covariance of the idiosyncratic errors

to be Ip in order to have a signal-to-noise ratio between the common component ΛFt

and the errors ϵt equal to one.

4.4.1 Recovery of Sparse Loadings

We apply our sparse DFM (SDFM) to simulated data from the data generating process

above to assess how well we can recover the true loadings matrix Λ. We compare our

method to sparse principal component analysis5 (SPCA) applied to Xt to test which

settings we are performing better in. We tune for the best ℓ1-norm parameter in both

SDFM and SPCA using the BIC function (4.3.14) by searching over a large grid of

logspaced values from 10−3 to 102. We also make comparisons to the regular DFM

approach of Bańbura and Modugno (2014) to test the importance of using regularisation

when the true loading structure is sparse.

The estimation accuracy is assessed with mean absolute error (MAE) between the

estimates and true loadings according to (rp)−1∥Λ̂−Λ∥1. We also provide results for

5The SPCA algorithm is implemented using the elasticnet R package available on CRAN.
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the F1 score for the sparsity inducing methods of SDFM and SPCA to measure how well

the methods capture the true sparse structure. Due to invariance issues discussed in

Section 4.2.2, the estimated loadings may not be on the same scale as the true loadings,

we thus first re-scale the estimated loadings such that their norm is equal to that of

the simulated loadings, i.e. ∥Λ̂∥2 = ∥Λ∥2. The estimated loadings from each model are

identified up to column permutations and therefore we permute the columns of Λ̂ to

match the true order of Λ. We do this by measuring the ℓ2-norm distance between the

columns of Λ̂ and Λ and iteratively swapping to match the smallest distances.

Figure 4.4.1 displays the results for the loadings recovery where we have fixed the

number of observations to be n = 100 and vary the number of variables between

p = {18, 60, 120, 180} along the x-axis and the cross-correlation parameter in the VAR(1)

process between ρ = {0, 0.6, 0.9} going from the left to middle to right plot respectively.

The top panel shows the median MAE score (in logarithms) over 100 experiments

while the bottom panel shows the F1 scores. We provide confidence bands for both

representing the 25th and 75th percentiles.

It is clear from the plots that the sparsity inducing methods of SDFM and SPCA

are dominating a regular DFM when the true loadings structure is in fact sparse. It is

also clear that SPCA performs poorly, compared with SDFM, when the cross-section of

the data increases for a fixed n. This is even more noticeable from the F1 score when ρ

increases. This highlights the importance of the SDFM’s ability to capture correlations

between factors at non-zero lags. Unlike SPCA, the EM algorithm of SDFM allows

feedback from the estimated factors when updating model parameters, allowing it to

capture these factor dependencies. We see improved scores in MAE as the cross-section

increases for SDFM. This follows the intuition of the EM algorithm framework as we

learn more about the factors as the dimension p→ ∞. We should remark that for most

scenarios the F1 score for SDFM is almost one, however, when p = 18 and ρ is high, the

score does drop. In this setting, a low value for α minimises BIC, meaning almost no
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Figure 4.4.1: Median log-MAE score (top panel) and median F1 score (bottom panel)
for recovering factor loadings across 100 experiments with a shaded confidence band of
the 25th and 75th percentile. The plots represent a setting with a fixed n = 100 and
varying number of variables p and where the cross-correlation parameter in the VAR(1)
process is set to ρ = 0 (left plot), ρ = 0.6 (middle plot) and ρ = 0.9 (right plot).
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sparsity is applied (a very similar result to a regular DFM fit). Here, the two factors

are highly correlated and it appears the cross-sectional is not large enough to accurately

separate the factors. In practice it is likely that cross-section will be large and hence

this result is not too concerning.

4.4.2 Forecasting Performance

To evaluate our ability to forecast missing data at the end of the sample, we simulate

data from the data generating process above with n = 200, p = 64 and consider

ρ = {0, 0.6, 0.9}, and assume different patterns of missing data at the end of the sample.

We consider a 1-step ahead forecast case where we set 25%, 50%, 75% and then 100% of

variables to be missing in the final row of X. When allocating variables to be missing

we split the data up into the two loading blocks and set the first 25%, 50%, 75% and

100% of each loading block to be missing. For example, the variables 1 to 8 and 33 to

40 are missing in the 25% missing scenario. We are interested in forecasting the missing

data in the final row of X and we calculate the average MAE over 100 experiments.

We make comparisons with a sparse vector-autoregression (SVAR) model6 as this

is a very popular alternative forecasting strategy for high-dimensional time series that

is based on sparse assumptions. As our factors are generated using a VAR(1) process

with a sparse auto-regression matrix, we are interested to see whether SVAR will be

able to capture the cross-factor auto-correlation when producing forecasts. We also

apply a standard AR(1) process to each of the variables needing to be forecasted as a

benchmark comparison.

Figure 4.4.2 displays the results of the simulations plotting MAE for each of the 3

methods and each simulation setting. In all settings we find SDFM to outperform both

SVAR and AR(1). When ρ is set to be 0.9, we find SVAR does improve its forecasting

6The SVAR algorithm is implemented using the BigVAR R package available on CRAN. This has
a built-in cross-validation mechanism to tune for the best ℓ1-penalty parameter which we use in our
simulations.



CHAPTER 4. THE SPARSE DYNAMIC FACTOR MODEL 115

0.
8

0.
9

1.
0

1.
1

1.
2

% Missing

1−
st

ep
 M

A
E

25% 50% 75% 100%

0.
8

0.
9

1.
0

1.
1

1.
2

% Missing

25% 50% 75% 100%

0.
8

0.
9

1.
0

1.
1

1.
2

% Missing

25% 50% 75% 100%

SDFM SVAR AR(1)

Figure 4.4.2: Average MAE score forecasting, as a function of the level of missing data
in the last sample. From left-right: ρ = 0, ρ = 0.6, ρ = 0.9. Plot indicates the 50th
percentile of performance across 100 experiments with n = 100, p = 64.

performance as opposed to when ρ = 0 as the VAR(1) process driving the factors

becomes more prominent. The results confirm SDFM’s ability to make use of variables

that are present at the end of the sample when forecasting the missing variables. We

see this by the rise in MAE when 100% of the variables are missing at the end of the

sample and the model can no longer utilise available data in this final row. The MAE

remains fairly flat as the amount of missingness rises from 25% to 75% showing SDFM’s

ability to forecast correctly even when there is small amount of data available.

4.4.3 Computational Efficiency

To assess the computational scalability, we simulate from a sparse DFM where Λ =

Ir ⊗ 1p/r and Σϵ = Ip, and the factors are a VAR(1) with A = 0.8 × Ir and Σu =

(1− 0.82)× Ir. We record the number of EM iterations and the time they take for each

ℓ1-norm parameter α up to the optimal ℓ1-norm parameter α̂ and then take the average

time of a single EM iteration. We repeat the experiment ten times for each experimental

configuration.

The results are presented in Figure 4.4.3, which demonstrates scalability as a function
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Figure 4.4.3: Summary of computational cost. Left: as a function of n, with fixed
p = 24. Right: as a function of p, with fixed n = 100. Average performance across 10
experiments.

of n, and p, under different assumptions on the number of factors r = 2, 4, 6, 8. As

expected, the cost is approximately linear in n and p, with increasing cost as a function

of the number of factors r. The results demonstrate the utility of using the univariate

smoothing approach as well as the matrix decomposition when calculating required

inversions.

4.5 Case Study 1 - Nowcasting UK Trade in Goods

This first case study attempts to explore the benefits of our sparse DFM versus the

classic DFM in a typical macroeconomic nowcasting exercise on monthly UK Trade

in Goods exports data with a large set of monthly indicator series. The second case

study in Section 4.6 moves away from the field of economics and uses the sparse

DFM to interpret energy consumption around our university campus and compares its

forecasting performance with competing methods. Together, both case studies hopefully

demonstrate how practitioners can use the sparse DFM to draw conclusions from the

induced sparse factor structure to interpret key data sets and accurately forecast.
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Figure 4.5.1: Breakdown of the 9 trade in goods target series.

4.5.1 Data

The UK’s economy is heavily dependent on international trade, with exports and imports

of goods and services making up a significant proportion of its GDP. In 2022, goods trade

totalled £815 billion, while service trade totalled £902 billion (UK Parliament, 2023).

Currently, the Office for National Statistics (ONS) publish UK trade in goods data

monthly with a 2 month publication lag. This includes a breakdown of all commodities

traded to and from countries worldwide. Trade in services data on the other hand is

only available monthly for an aggregate worldwide figure for total imports and exports,

information on the breakdown of services and country trade is quarterly with a 3 month

publication lag. Given key events in recent years that have imposed restrictions on

international trade for the UK, such as voting to leave the European Union (EU) in 2016

and the coronavirus pandemic reaching UK shores early 2020, it is of significant interest

to produce timely estimates of trade data avoiding the long 2-3 month publication

delays.

In this case study we focus on nowcasting trade in goods data by utilising a large

set of monthly indicators available within the 2 month publication lag window. In
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Label No. Data Description Delay
TiG 9 Trade in Goods Value of UK exports of the 9 main commodities by

current price.
2

IoP 89 Index of Production Movements in the volume of production for the UK
production industries.

2

CPI 166 Consumer Price Infla-
tion

The rate at which the prices of goods and services
bought by households rise or fall.

1

PPI 153 Producer Price Infla-
tion

Changes in the prices of goods bought and sold by
UK manufacturers.

1

Exch 12 Exchange Rates Sterling exchange rates with 12 popular currencies. 1
Conf 2 Confidence Indices Business and consumer confidence indices from

opinion surveys.
1

GT 14 Google Trends Popularity scores of 14 google search queries related
to trade in goods

0

Table 4.5.1: Description of data used in the model including goods target series and
monthly indicator series.

particular, we look to nowcast 9 of the main commodities the UK exports worldwide. A

breakdown of these 9 trade commodities are available in Figure 4.5.1. The nowcasting

task of trade in services data is left for Chapter 5, where a large state-space model

is introduced combing the sparse DFM with a multivariate temporal disaggregation

framework to allow quarterly-to-monthly disaggregation of service data.

As trade data accounts for a large proportion of the UK’s GDP, there are many

potential informative economic indicator series recorded at the monthly frequency (or

higher) available for us to use. It is important to consider the availability of indicators

in the nowcasting months of interest as we wish to extract as much observed information

as possible when projecting the latent targets onto this space. With this in mind, for

the task of nowcasting monthly goods trade data, we use a collection of 434 monthly

indicator variables that are displayed in Table 4.5.1, along with the 9 monthly goods

target series the UK exports worldwide. The second column, No., gives the number of

series used for the data set, while the final column, Delay, gives the publication delay in

months of each variable.

The index of production is used as an important macroeconomic indicator providing

insight into the overall growth of the economy by tracking changes in the output of the
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manufacturing sector. Indices on consumer and producer inflation aim to capture price

changes which may contain information about aggregate demand. They are available

with a 1 month delay and hence we can exploit more information at the end of the

sample. Exchange rates can have significant impact on demand and transaction costs of

goods trade and can affect the price competitiveness of goods in international markets.

Similarly, opinion surveys on business and consumer confidence are soft indicators that

provide economic agents’ estimations on supply and demand of goods. Finally, we use

Google trends data with 14 search queries related to trade in goods. Google trends is a

tool that tracks the frequency and popularity of search terms on Google. It has become

a popular indicator for macroeconomic forecasting purposes in recent years as it allows

the analysis of timely, comprehensive and cost-effective data on consumer behavior and

trends (Choi and Varian, 2012; Ferrara and Simoni, 2022). It is available with no delay,

providing us with real-time information for our nowcasts.

4.5.2 Interpreting Factor Structure

The full data sample we collect is January 2004 to October 2022, with missing data only

present in the ragged edge at the end of the sample, e.g. the months of September and

October 2022 are missing for the goods target series. The data is first made sufficiently

stationary by taking first-differences of all variables. A first task involves getting a

sense of the sources of variation amongst the entire high-dimensional data set. Can we

interpret the latent factor structure that capture the variation? To estimate factors we

first choose the number of factors to use according to the Bai and Ng (2002) criteria

given in (4.3.13). According to this criteria, the best number of factors to use is 7 as

shown in Figure 4.5.2 (top left). However, the screeplot (Fig. 4.5.2 [top right]) seems

to suggest that after 4 factors, the addition of more factors does not add that much in

terms of explaining the variance of the data. For this reason, we choose to use 4 factors

when modelling.
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Figure 4.5.2: Top left: Information Criteria (4.3.13) as a function of number of retained
factors r. Top right: Proportion of variance explained, based on PCA applied to the
scaled and pre-processed data set. Bottom: BIC as a function of α, vertical line indicates
minimiser and the α used in the subsequent analysis.

We now fit the sparse DFM to the entire data set (both monthly targets and

indicators) via the EM procedure in Algorithm 2 and tune for a range of α parameters

in a log-space grid between 10−2 and 103. We restrict α to be 0 (i.e. unregularised OLS

loadings) for the 9 monthly target series as we do not wish to impose sparsity on the

series we wish to nowcast. Figure 4.5.2 (bottom) displays the entire BIC path from

4.3.14 with the realised minimiser at α̂ ≈ 2.984. The BIC quickly starts to rise after

this value as Λ̂ becomes more sparse until the cut-off constraint at α ≈ 10.723 when an

entire column of Λ is set to zero.

The estimated factor loadings using α ≈ 2.984 are presented in Figure 4.5.3 adjacent

to the estimated loadings in a regular DFM fit (α = 0 for all variables). For the regular

DFM, the estimated factor structure is very difficult to interpret as the loadings are

present in each with a high value (in absolute value). Factor 1 could be interpreted as a

measure of inflation (CPI and PPI heavily present), although exchange rates also have
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quite a strong loading. Factor 2 is more heavily weighted with the production index,

however, all other indicators are also heavily present and could be important. Factors 3

and 4 are almost impossible to interpret with every indicator seeming important. The

loading plots from sparse DFM are much easier to interpret with many indicator groups

becoming sparse. Factor 1 is clearly a measure of producer price inflation. We can

observe the dynamics of factors in Figure 4.5.4, and see the top figure, corresponding to

Factor 1, follows very similar dynamics to an overall measure of PPI, with the incline

post 2020. Factor 2 in Figure 4.5.4 shows a clear shock for the COVID-19 pandemic

matching the dynamics of the production index for the UK. We find the loadings of

Factor 2 to be almost entirely weighted by the production index along with certain

google search words to do with trading oil. Factor 3 is almost entirely loaded by CPI

along with google searches to do with manufacturing, cars and animals. Factor 4 is

negatively loaded with a mixture of CPI and PPI and exchange rates data and we see

the dynamics of this factor in Fig. 4.5.4 has rises during the recessions of 2009 and 2020.

4.5.3 Pseudo-Real Time Nowcasting Exercise

The primary objective of the sparse DFM is to make the factor structure for a complex

data set much easier to interpret than a regular DFM – this is apparent in Figure 4.5.3.

It is also of interest to explore if the sparse DFM also produces more accurate nowcasts

than the regular DFM with this data. We can set up a pseudo-real time nowcasting

exercise where we try and predict the missing ragged edge in an expanding window

from August 2018 to July 2022. As it would be difficult to store all previous vintages

of data back to 2018, we just use the complete data set (up to October 2022) and at

each nowcasting window create a ragged edge following the 2 month lag for the targets

and IoP and 1 month lag for everything else except google trends. We begin with the

window Jan 2004 - Aug 2018, where the current available target exports data is June

2018. We produce nowcasts for July 2018 (representing a nowcast 1 month prior to
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(a) DFM factor 1 loadings (b) Sparse DFM factor 1 loadings

(c) DFM factor 2 loadings (d) Sparse DFM factor 2 loadings

(e) DFM factor 3 loadings (f) Sparse DFM factor 3 loadings

(g) DFM factor 4 loadings (h) Sparse DFM factor 4 loadings

Figure 4.5.3: Factor loadings estimates for all 4 factors using a regular DFM and a
sparse DFM. Colour coded by indicator series data group of Table 4.5.1.
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Figure 4.5.4: Estimated factors (black) with original data (grey) as a function of time
using the optimal α ≈ 2.984 chosen according to BIC.

Model Mean 25% 50% 75%

Horizon 1
DFM 373.7 152.4 232.9 455.1
SDFM 297.2 141.1 212.4 306.9

Horizon 2
DFM 437.2 201.8 302.7 515.1
SDFM 357.6 161.9 233.8 366.4

Table 4.5.2: Pseudo real-time nowcasting exercise results.

release) and for August 2018 (representing a nowcast 2 months prior to release). We

produce these nowcasts for horizon 1 and 2 for every month up to July 2022 - a total of

48 months.

Table 4.5.2 displays the average, 25th, 50th and 75th percentiles of the mean absolute

error across the 48 month expanding window for horizon 1 and 2 in both models. It

appears that Sparse DFM is performing better than a regular DFM, with lower average

mean absolute error and tighter bands around the median. As expected, the error for

horizon 1 is slightly lower than horizon 2 as it is able to exploit all indicators with a 1

month lag in its estimation.
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4.6 Case Study 2 - The Dynamic Factors of Energy

Consumption Around a University Campus

This section details application of the sparse DFM to a real-world problem, namely the

forecasting and interpretation of energy consumption across our university campus. This

second case study is provided with hope to demonstrate the sparse DFM’s versatility

on alternative data sets away from economics. Beyond forecasting consumption in the

near-term future, the aim here is to also characterise the usage in terms of what may be

considered typical consumption profiles. These are of specific interest to energy managers

and practitioners, as understanding how energy is consumed in distinct buildings can

help target interventions and strategy to reduce waste. Also demonstrated is how the

sparse DFM, and in particular the EM algorithm, can be used to impute missing data

and provide further insight.

4.6.1 Data and Preprocessing

In this application, the data consists of one month of electricity consumption data

measured across p = 42 different buildings on our universities campus. This data

is constructed based on a larger dataset, which monitors energy at different points

throughout a building, in our case, we choose to aggregate the consumption so that

one data stream represents the consumption of a single building. The data is gathered

at 10 minute intervals (measuring consumption in kWh over that interval), resulting

in n = 3, 456 data points spanning 24 days worth of consumption in November 2021,

we further hold out one day ntest = 144 data points to evaluate the out-of-sample

performance of the DFM model. An example of time series from the data set is

presented in Figure 4.6.1.

In the energy consumption forecasting literature, various alternative methods exist to

model this data, such as generalized additive models (Wood, 2015) and multiple seasonal
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exponential smoothing (Taylor and Short, 2003). For a comprehensive review, refer to

Deb et al. (2017). However, our primary objective in this study is to understand how

consumption in this diverse environment is typically structured i.e. we wish to extract

typical patterns of consumption that can well represent how energy is used across the

campus. To this end, forecasting is of secondary importance to inferring structure and

we decide not to remove the relatively clear seasonal (daily) patterns in consumption

prior to fitting the factor model, the hope being, that these patterns will somehow be

pervasive in the derived factors.

Whilst we do have metadata associated with each of these buildings for sensitivity

purposes we choose to omit this in our discussions here, the buildings are presented as

being approximately categorised under the following headings:

Accommodation: Student residences, and buildings primarily concerned with accom-

modation/student living.

Admin: Office buildings, e.g. HR, administration, and central university activities.

Misc: Other student services, e.g. cinema, shopping, sports facilities.

Mixed: Buildings which mix teaching and accommodation. For instance, seminar

rooms on one floor with accommodation on another.

Services: Management buildings, porter/security offices.

Teaching: Teaching spaces like lecture theatres, seminar rooms.

4.6.2 Factor Estimates and Interpretation

To estimate factors we first choose a number of factors according to criterion (4.3.13),

which leads to 4 factors being specified. Next, we apply the sparse DFM model via

the EM procedure in Algorithm 2. We run the algorithm to scan across a range of α
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Figure 4.6.1: Example of time series readings for the 24 days under analysis. The figures
present the square root of the consumption in each hour (

√
6kWh) for different types of

building, and illustrate the diverse nature of consumption.

parameters, and in this case, the BIC criteria suggests to impose moderate sparsity

corresponding to α ≈ 0.01. To give some intuition, the loadings Λ̂ for α = 0.01 and

α = 0 (classic DFM) are visualised in Figure 4.6.2, a visualisation for the corresponding

factors at|n are given in Figure 4.6.3.

For brevity, we focus on analysing the results of the sparse DFM model. Of particular

interest for the energy manager is the interpretation of consumption that the sparse

DFM model provides, and this is most obvious for the third and fourth factors in this

case. A visualisation of the factor behaviour on a typical weekday is given in Figure

4.6.4 where there is a clear ordering in the uncertainty surrounding the factor behaviour,

e.g. Factor one has small confidence intervals, whereas Factor 4 has more uncertain

behaviour, especially during the working day. Interestingly, the sparse DFM only really

differs from the regular DFM in these third and fourth factors, where the latter exhibits

slightly greater variation in behaviour. The sparse DFM is able to isolate these further

factors to specific buildings. For example, the building identified by the circle in Figure

4.6.2 is known to be active primarily throughout the night, and we see its factor loadings

reflect this, e.g. the regular working day cycles for Factor 1 are not present, however, the

evening and early morning features (Factors 3, and 4) are represented. For the teaching



CHAPTER 4. THE SPARSE DYNAMIC FACTOR MODEL 127

Series

F
ac
to
r F1

F2
F3
F4

A
cc
om
od
at
io
n

A
dm
in

M
is
c

M
ix
ed

S
er
vi
ce
s

Te
ac
hi
ng

−0.10
0.00
0.10

F
ac
to
r F1

F2
F3
F4 −0.15

−0.05
0.05
0.15

Figure 4.6.2: Estimated factor loadings for the regular DFM (top) and sparse DFM
(bottom). Series are categorised according to one of six building types, triangles indicate
the example series plotted in Fig 4.6.1.

−
4

0
4

F
ac

to
r 

1
−

4
0

4

F
ac

to
r 

2
−

4
0

4

F
ac

to
r 

3
−

4
0

4

0 5 10 15 20

F
ac

to
r 

4

Time (days)

Figure 4.6.3: Estimated factors (black) with original data (grey) as a function of time
using the optimal α = 0.01 chosen according to BIC. When multiplied by the factor
loadings (top) gives the estimated common component.

buildings, we see that the loading on Factor 2, and 3, are negative, indicating a sharp

drop-off in energy consumption in the evening/overnight, again, this aligns with our

expectations based on the usage of the facilities.

4.6.3 Forecasting Performance

The primary motivation for applying the sparse DFM in the context of this application

is to aid in interpreting the consumption across campus. However, it is still of interest

to examine how forecasts from the DFM compare with competitor methods. For

consistency, we here provide comparison to the AR(1) and sparse VAR methods detailed

earlier. These models all harness a simple autoregressive structure to model temporal
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midnight. The solid line is a pointwise average of the factor ât|n across the 18 weekdays
in the sample, confidence intervals are constructed as ±1.96 the standard-deviation.

dependence, specifically regressing only onto the last set of observations (or factors),

i.e. they are Markov order one. Our experiments asses performance of the models in

forecasting out-of-sample data, either h = 6 steps ahead (1 hour), or h = 36 steps ahead

(6 hours). The forecasts are updated in an expanding window manner, whereby the

model parameters are estimated on the 24 days of data discussed previously, the forecasts

are then generated sequentially based on n + t = 1, . . . , ntest = 144 − h observations.

An example of the forecasts generated (and compared to the realised consumption)

is given in Figure 4.6.5. A striking feature of the DFM based model is its ability

to (approximately) time the increases/decreases in consumption associated with the

daily cycle. These features in the AR(1) and sparse VAR model are only highlighted

after a period of h steps has passed, e.g. the models cannot anticipate the increase in

consumption.

A more systematic evaluation of the forecast performance is presented in Figure 4.6.6,

where the average error is calculated for each building, for each of the different models.

We see that for the 1 hour ahead forecasts, all methods perform similarly, with the sparse
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DFM winning marginally, and the AR(1) forecasts demonstrating more heterogeneity

in the performance. There is no clear winner across all the buildings, for most (30)

buildings the DFM forecasts prove most accurate, with the AR being best on 2, and

the SVAR winning on the remaining 10. Moving to the 6 hour ahead forecasts, the

dominance of the sparse DFM becomes clear, winning across 39 of the buildings, and the

AR method winning on 3. Interestingly, the SVAR fails to win on any building, falling

behind the simpler AR approach. This suggests, that in this application the activity of

one building may not impact that of another across longer time-frames, however, the

behaviour of the latent factors (common component) does provide predictive power.

One could reasonably argue that we should not use these competitor models in this

way for forecasting, e.g. we would likely look to add seasonal components corresponding

to previous days/times, and/or potentially a deterministic (periodic) trend model.

However, these extensions can also potentially be added to the DFM construction.

Instead of absolutely providing the best forecasts possible, this case-study aims instead

to highlight the differences in behaviour across the different classes of models (univariate,

multivariate sparse VAR, and sparse DFM), and the fact that the sparse DFM can borrow

information from across the series in a meaningful way, not only to aide interpretation of

the consumption, but also to provide more accurate forecasts by harnessing the common

component.

4.7 Conclusion

This chapter has presented a novel method for performing inference in sparse dynamic

factor models via a regularised expectation maximisation algorithm. The analysis of the

related QML estimator provides support for its ability to recover structure in the factor

loadings, up to permutation of columns, and scaling. From the literature, it appears this

is the first time the QMLE approach has been studied for the sparse DFM, with analysis
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(a) 1 hour ahead forecast: Sparse DFM

10 15 20

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

Time of Day (hours)

A
cc

om
od

at
io

n 
C

on
su

m
pt

io
n 

(k
W

h)

(b) 6 hour ahead forecast: Sparse DFM
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(c) 1 hour ahead forecast: AR(1)
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(d) 6 hour ahead forecast: AR(1)
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(e) 1 hour ahead forecast: Sparse VAR(1)
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(f) 6 hour ahead forecast: Sparse VAR(1)

Figure 4.6.5: Example of predicted consumption (
√
kWh) in one (accommodation)

building on the campus. Forecasts are in blue and true data in red. The left column
represents 1 hour ahead forecasts based on an expanding window, whilst the right
column represents 6 hour ahead forecasts. The SDFM and SVAR are tuned on the 24
days of data prior to that presented in the figure. Confidence intervals for the SDFM
are based on 1.96× [Λ̂Pt|nΛ̂

⊤ + Σ̂ϵ]
1/2
ii .
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(b) 6 hour ahead error: Sparse DFM
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(c) 1 hour ahead error: AR(1)
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(d) 6 hour ahead error: AR(1)
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(e) 1 hour ahead error: Sparse VAR(1)
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(f) 6 hour ahead error: Sparse VAR(1)

Figure 4.6.6: Forecast errors (MAE) for each building for (left column) 1 hour ahead
forecast, and (right column) 6 hour ahead forecast. Performance evaluated on one hold
out day (144− h data points). Each bar is colored according to which method performs
best for that building. Blue: SDFM, red: AR(1), grey: SVAR. The solid black line
indicates average performance across all buildings, the grouping of buildings is indicated
via the dashed line under the plots.



CHAPTER 4. THE SPARSE DYNAMIC FACTOR MODEL 132

extending recent investigations by Despois and Doz (2023) using more simplistic sparse

PCA based approaches. When factors are thought to be dependent, e.g. modelled via a

VAR(1) construction, the QMLE approach appears particularly beneficial relative to

SPCA. Empirical exercises have also validated that simple BIC based hyper-parameter

tuning strategies appear to be able to provide reasonable calibration of sparsity in the

high-dimensional setting.

There is much further work that can be considered for the class of sparse DFMs

proposed here, for example looking at developing theoretical arguments on consistency,

of both factor loadings, and the factor estimates themselves. This work opted for an

empirical analysis of the EM algorithm, which perhaps is more immediately useful

for practitioners. Implementation of the methodology is provided in an easy-to-use R

package described in Chapter 6. On a more methodological front, one could consider

extending the ℓ1-norm regularisation strategy to look at different types of sparsity

assumption, or indeed to encode other forms of prior. More detail on these two avenues

of future work is provided in Chapter 7.

To conclude, adding sparsity in the DFM framework seems to be feasible in the sense

that we can construct estimators that can reliably recover this structure. As shown in

the synthetic experiments, the QMLE approach proposed here seems to be favourable

relative to more simplistic sparse PCA approaches, especially in the setting where there

is dependence between the factors and in the high-dimensional setting. The econometrics

application, focused on nowcasting UK trade in exported goods, demonstrates clear

advantages over a regular DFM in terms of interpreting the underlying factor structure

within a complex, high-dimensional dataset. The application to modelling energy

consumption shows the broad utility the DFM has, allowing us to identify distinctive

profiles of buildings that qualitatively align with our intuition as well as forecasting

consumption ahead of time. Overall the sparse DFM provides a useful alternative to

other high-dimensional time series models, for both predictive and inferential tasks. An
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additional benefit of the EM approach is its ability to readily handle arbitrary patterns

of missing data, an issue often faced in the analysis of high-dimensional time series.



Chapter 5

Timely Estimates of UK Trade in

Services: A Sparse Dynamic Factor

Model Approach

Chapter 4 introduced a new class of Sparse Dynamic Factor Models (DFMs) using a

regularised expectation maximisation algorithm that provided interpretation into the

latent factor structure, the ability to handle missing data and demonstrated nowcasting

accuracy. The sparse DFM was applied to a large panel of monthly UK trade in

goods exports data and related indicators to produce nowcasts that avoid the 2 month

publication delay goods data currently possess. This chapter extends the large monthly

panel of goods data and related indicators to include unobserved monthly trade in

services data corresponding to the 11 subdivisions of the service sector. As service

data is only available quarterly with a 3 month publication delay, the sparse DFM is

incorporated into a joint state-space framework that can perform multivariate quarterly-

to-monthly temporal disaggregation of the latent service data. This joint state-space

framework is then used to derive monthly time series estimates of UK service trade

with the European Union (EU) and this statistic is tracked, alongside published UK-EU

134
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monthly trade in goods, over the past 10 years using an interrupted time series model

to explore possible impacts leaving the EU has had on UK trade. Section 5.1 motivates

the work of this chapter and concludes with an overview of the chapter’s structure.

5.1 Introduction

Trade in services is a key economic indicator for the UK economy, as the service industries

account for around 80% of its GDP. While business services and financial services are the

largest components, accounting for around half of UK exports, other service industries

such as tourism and travel, transportation, and telecomms, contribute significantly to

the economic output and generate a great deal of employment. A breakdown of the 11

main subdivisions of the service sector and their contribution to the UK economy in

2021 is presented in Figure 5.1.1. Understanding the structure and dynamics of service

trade is crucial when making informed decisions about economic policies, whether it

be promoting economic growth in service sectors or assessing the impact of tariffs and

trade barriers during trade negotiations – an accurate and comprehensive data set on

trade in services is vital.

Unlike data on trade in goods, which is published monthly by the Office for National

Statistics (ONS), data on trade in services is limited to a quarterly frequency and

published with a 3 month delay1. This delay and lack of granularity for service trade

data makes the task of tracking deviations in this statistic very difficult. A task which

no less gained popularity in recent years as, in June 2016, the UK voted to leave the

European Union (EU) - a significant destination of exports and source of imports for

the UK. Following the 2016 referendum, the EU and UK began negotiations about

the UK’s withdrawal up until January 2020 when the EU-UK withdrawal agreement

1The ONS do in fact publish a total trade in services series monthly representing total imports and
exports to the whole world. This is constructed using ARIMA forecasts benchmarked to the quarterly
measurement. However, data on the subdivisions of the service sector and data on individual countries
or groups of countries (e.g. the EU) the UK trades with is only available quarterly. We compare our
estimates to these published monthly total series in Section 5.5.
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Figure 5.1.1: Contribution of the 11 subdivisions of the service sector in 2021.

came into force. This agreement set the terms of the withdrawal in accordance with

Article 50 of the Treaty of the European Union. The UK then entered a transition

period out of the EU which ended on the 30 December 2020 when the EU-UK Trade and

Cooperation Agreement (TCA) was signed with the UK officially exiting the EU2. While

the TCA ensures there are no tariffs or quotas on trade in services, it does not provide

the same level of access as the UK had when it was a member of the EU free market, as

now service trade must adhere to regulations that vary across different countries of the

EU. Figure 5.1.2 displays the quarterly time series of total imports and total exports

worldwide of UK trade in services during the period of Q1 2015 to Q4 2021, along with

some key dates highlighted.

The three month publication delay of service trade data means that policy makers

and economists have to wait until June 2021 for information on Quarter 1 (Q1) of 2021

and thus assessing the immediate impact the UKs official transition out of the EU had

on UK service trade becomes challenging. This motivates the need for timely estimates

of service trade around the key date of when the TCA was signed. The work presented

in this chapter attempts to achieve exactly this. Specifically, a quarterly-to-monthly

multivariate temporal disaggregation of the observed quarterly service data for the

11 subdivisions of the service sector is performed in conjunction with a nowcasting

2See UK Parliament (2021) for a complete timeline of Brexit events.
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Figure 5.1.2: Quarterly time series of total imports and total exports of UK trade in
services during the period Q1 2015 to Q4 2021.

exercise predicting the months in the current (unpublished) quarter. This hopes to

provide monthly time series spanning the whole observed quarterly period, providing

better visibility of the short-term dynamics of service trade, while also avoiding the

long publication delay through the monthly out-of-sample predictions (nowcasts). The

nowcasts, and disaggregate estimates, can be updated when new indicator information

becomes available within the current quarter and all estimates are produced at their

original current price level (as opposed to growth rates) to observe the value of service

data at a given point in time.

A mixed-frequency state-space framework is constructed that jointly measures a

large panel of monthly indicator series with quarterly observations of the imports and

exports of the subdivisions of service trade. In particular, a sparse dynamic factor model

(DFM), introduced in Chapter 4, is assumed with the unobserved monthly disaggregate

series of service trade treated as latent states along with a few latent factors capturing

the overall variance of the data. This way, the disaggregate targets can be directly

extracted from the Kalman smoother and are ensured to be temporally consistent with

the quarterly observations by augmenting a cumulator variable into the state equation,
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Label No. Data Description Delay
TiS 24 Trade in Services

(Quarterly)
Value of UK exports and imports of services by
current price.

3

TiG 20 Trade in Goods Value of UK exports and imports of goods by cur-
rent price.

2

IoS 90 Index of Services Movements in the volume of output for the UK
services industries.

2

IoP 89 Index of Production Movements in the volume of production for the UK
production industries.

2

PPI 153 Producer Price Infla-
tion

Changes in the prices of goods bought and sold by
UK manufacturers.

1

CPI 166 Consumer Price Infla-
tion

The rate at which the prices of goods and services
bought by households rise or fall.

1

Exch 12 Exchange Rates Sterling exchange rates with 12 popular currencies. 1
GT 17 Google Trends Popularity scores of 17 google search queries related

to trade in services.
0

Table 5.1.1: Description of data used in the model including quarterly target series and
monthly indicator series. No. = number of indicators. Delay = publication delay in
months.

similar to that seen in Harvey (1990), Proietti (2011a) and Frale et al. (2011). The

large panel of monthly indicators considered includes most of those discussed in Case

Study 1 of Chapter 4 (see Table 4.5.1) that are extended to include more relevant

indicators for trade in services. Trade in goods is here used as an indicator as it is

likely to be somewhat interdependent with trade in services. For example, it is common

that industries tend to source goods and services from the same country and therefore

if demand for a good rises this is likely to create demand for a service that supports

the production and distribution of that good. Similarly, if countries impose tariffs or

regulations on the import/export of goods, this may restrict service trade. The Index of

Services is added as a new indicator to track overall growth of the service sector. Google

trends search words are changed to be more relevant for service trade. A full description

of the indicators (and targets) used are displayed in Table 5.1.1.

After the state-space model is fully defined and able to produce monthly estimates

of trade in services data, it is then used to assess the potential impact leaving the EU

(Brexit) has had on UK trade. This purely experimental study uses an interrupted time
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series model (Linden, 2015) on 4 target series of interest to quantify potential Brexit

effects on trade. These targets are the imports and exports of (estimated) monthly UK

trade in services with EU countries and (published) monthly UK trade in goods with

EU countries. January 2021 is used as the “intervention date” corresponding to the

official Brexit date (when the TCA was signed) and the idea is to explore how the trend

of observed UK trade differs to the so-called “counterfactual trend” that would have

occurred if Brexit did not happen. As the intervention date overlaps with the coronavirus

pandemic, it is difficult to distinguish between Brexit effects and coronavirus effects on

trade and therefore a “control group” is used based on UK trade with non-EU countries

to represent those not effected by Brexit. A comparison is made with an interrupted

time series study using quarterly trade data to explore the advantages of working at the

disaggregate (monthly) level. In the literature, numerous studies (Corcoran et al., 2015;

Bernal et al., 2017; Silva et al., 2020) have looked to implement interrupted time series

models within the domains of economics and health. However, to our knowledge, this

study is the first to employ temporally disaggregated data to the model, particularly in

the assessment of Brexit’s impact on UK trade.

The rest of the chapter is structured as follows. Section 5.2 sets up the problem we

face before fully defining the joint state-space framework in Section 5.3 that augments

the sparse DFM (Chapter 4) with the latent monthly targets of service trade. Section

5.4 compares the proposed state-space framework approach with Chow-Lin temporal

disaggregation (Chow and Lin, 1971) and sparse temporal disaggregation (Chapter

3) in a simple simulation study to assess temporal disaggregation ability. Section 5.5

then applies this model to the entire data to estimate latent monthly series for the

subdivisions of the service sector and conducts a pseudo-real time nowcasting exercise

to evaluate accuracy. Section 5.6 concludes with an experimental study assessing the

possible impact Brexit has had on UK trade using an interrupted time series analysis.

Section 5.7 closes with a discussion.
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5.2 Problem Set Up

Let Yit denote the ith unobservable monthly trade in services subdivision at time t, for

i = 1, . . . , py, t = 1, . . . , n. In this application py = 24 corresponding to both imports

and exports of total services plus 11 subdivisions of the service sector we are interested

in. The task at hand is to make accurate estimates of Yit for all t = 1, . . . , n by making

use of all relevant information we have available to us in month n, defined as Ωn. This

information set will consist of the observed quarterly trade in services data Ȳ iτ for

quarters τ = 1, . . . , nl and monthly indicator series Xjt for j = 1, . . . , px where px = 547.

The available information in month n will depend on the publication delays of each

variable and will therefore contain a ragged edge structure at the end of the sample. In

month n, the available information set will be

Ωn = {(Ȳ iτ , Xjt) : i = 1, . . . , py , j = 1, . . . , px , τ = 1 , . . . , ⌊(n−3)/3⌋ , t = 1, . . . , n−lj} ,

where ⌊·⌋ denotes integer division. This takes into account the 3 month publication delay

for the quarterly service data and the different publication delays for the indicators,

where lj is the delay (in months) of indicator j ∈ {1, . . . , px}.

Supposing we are in month n, we aim to estimate monthly trade in services up to

n based on this available information set and hence our target can be denoted by the

conditional expectation

Ŷit = E [Yit|Ωn] ,

for i = 1, . . . , py and t = 1, . . . , n. This involves a temporal disaggregation problem

up to the last available quarter τ = ⌊(n − 3)/3⌋, which obtains estimates Ŷit for

t = 1, . . . , 3× ⌊(n− 3)/3⌋ that are temporally consistent with the observed quarterly

figures (i.e. the sum of three estimated months in a quarter sum to that quarters figure).

It then involves a ‘nowcasting exercise’ for the months t = 3×⌊(n−3)/3⌋+1, . . . , n, using
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Figure 5.2.1: Overview of what our problem would look like if we are currently in March
2021. Release of Q1 Trade in Services data not available until June. Our model is
able to produce monthly nowcasts in Q1 by using the monthly indicator information
available - grouped into data category colours. It also produces a temporally consistent
disaggregate series up to December 2020.

the available information in these last few months. Figure 5.2.1 is a visual interpretation

of the task we face if we were currently in March 2021. In this month the Q4 2020

figure has been released and we can make a temporal disaggregation up to December

2020 and nowcast the months January to March 2021. In these last three months we

have a ragged structure for the indicators and want to exploit the available information

to make accurate nowcasts. We are able to continue this nowcasting process in April

and May until the actual release of Q1 2021 data in June, with each month providing

us with more information from the monthly indicator releases. This allows us to make

early interpretations for Q1 of trade in services avoiding the long wait till June, while

simultaneously providing us with a back series at a more timely frequency than we

currently have. The left-side of the figure highlights three data challenges we face in

this task that our model must be able to handle. These general nowcasting challenges

were also discussed in Chapter 2.2.
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5.3 Joint state-space Framework

Following the trade in goods application of Case Study 1 in Chapter 4, a sparse dynamic

factor model (DFM) is assumed for the large panel of monthly indicator series given by:

Xt = ΛFt + ϵt , ϵt ∼ N(0,Σϵ) , (5.3.1)

Ft = AFt−1 + ut , ut ∼ N(0,Σu) , (5.3.2)

where Xt is first made stationary by taking differences where appropriate and stan-

dardising the indicator series prior to modelling. The induced sparsity in Λ hopes to

better explain the role indicator groups play in the dynamics of latent factors, possibly

allowing us to make useful statements like: ‘this factor estimate is largely associated

with data coming from trade in goods’ or ‘this factor consists of variables that were

strongly impacted by Brexit’.

The trade in services data series exhibits stationarity after applying first-differences

through an Augmented Dickey-Fuller test (Cheung and Lai, 1995). As a result, we

define yt = ∆Yt and ȳτ = ∆Ȳ τ as the stationary series utilized for the DFM. Here, ∆

represents the first-difference operator, and Yt and Ȳ τ encompass all targets i = 1, . . . , py.

It is worth noting that the model can be expanded to accommodate various stationary

transformations, such as the log-difference transformation within a non-linear aggregation

framework, as discussed in Proietti (2011a). To incorporate the latent trade in services

monthly target series, Yt, into a joint state-space framework it is assumed their stationary

counterpart, yt, when standardised, y∗
t = (yt − µ)/D, admits the same factor model

representation as (5.3.1)-(5.3.2):

y∗
t = ΛyFt + ϵ

(y)
t , ϵ

(y)
t ∼ N(0,Σϵ(y)) , (5.3.3)

where µ is the py × 1 vector of means and D is the py × py diagonal matrix of standard
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deviations of yt. The parameter Λy explains how the targets are loaded onto the

factors and ϵ
(y)
t is the idiosyncratic noise with covariance Σϵ(y) . The idiosyncratic error

processes {ϵt} and {ϵ(y)t } are both assumed to be IID white noise, i.e. Σϵ and Σϵ(y)

are both diagonal matrices. A straightforward extension to model these error processes

as AR(1) can be conducted following methodology laid out in Appendix D.1, however,

this approach will increase the number of states in the model by a considerable amount.

Alternative approaches possibly following methodology laid out in Jungbacker et al.

(2009) are left as future work and discussed in Chapter 7.

For temporal disaggregation purposes we require the latent monthly estimates, Yit,

in each quarter to be temporally consistent with the observed quarterly values, Ȳ iτ .

Define Ỹ it for t = 1, . . . , n, to be the partially observed monthly series which has the

quarterly observations of Ȳ iτ assigned to every 3rd month and is missing everywhere

else, i.e. Ỹ it = Ȳ iτ for t = 3τ , τ = 1, . . . , nl, otherwise unobserved. The aggregation

constraint that must be satisfied is:

Ỹ i,t =


Yi,t + Yi,t−1 + Yi,t−2 ; for t = 3, 6, . . . , ⌊(n− 3)/3⌋ ,

unobserved ; otherwise .

Following Harvey (1990), a temporal aggregation constraint of this form can be incorpo-

rated into a state-space framework by constructing a cumulator:

Ỹ
c

i,t = ρtỸ
c

i,t−1 + Yi,t (5.3.4)

which cumulates the additive aggregation at each quarter by using the cumulator

coefficient:

ρt =


0 t = 3τ − 2 , τ = 1, . . . , nl ,

1 otherwise ,

which is equal to 0 in the first month of a quarter and 1 otherwise. This leads to a
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cumulative sum following:

Ỹ
c

i,1 = Yi,1 ,

Ỹ
c

i,2 = Yi,1 + Yi,2 ,

Ỹ
c

i,3 = Yi,1 + Yi,2 + Yi,3 ,

Ỹ
c

i,4 = Yi,4 ,

Ỹ
c

i,5 = Yi,4 + Yi,5 ,

...

where the measurement Ỹ i,t is equal to the cumulator Ỹ
c

i,t at every t = 3τ for τ =

1, . . . , nl.

With the equations (5.3.1), (5.3.2), (5.3.3) and (5.3.4) fully defined, it is possible to

bring them together in a single state-space framework. The state-space measurements

will be Zt = (Xt Ỹ t)
⊤ ∈ Rp×1 where p = px+py. The state-space state vector is defined

as αt = (Ft Yt Ỹ
c

t)
⊤ ∈ R(p+py)×1 where the target is to estimate Yt for t = 1, . . . , n. To

write the state-space model in traditional form, (5.3.3) is re-written as:

Yt = Yt−1 + µ+Dy∗
t

= Yt−1 + µ+D(ΛyFt + ϵ
(y)
t )

= Yt−1 + µ+DΛy(AFt−1 + ut) +Dϵ
(y)
t

= Yt−1 + µ+DΛyAFt−1 +DΛyut +Dϵ
(y)
t ,

since y∗
t =

(
(Yt − Yt−1)− µ

)
/D. This is then used to re-write (5.3.4) as:

Ỹ
c

t = ρtỸ
c

t−1 + Yt−1 + µ+DΛyAFt−1 +DΛyut +Dϵ
(y)
t .
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This allows the following state-space model to be written:

Xt

Ỹ t

 =

Λ 0 0

0 0 Ipy



Ft

Yt

Y c
t

+

ϵt
0



Ft

Yt

Y c
t

 =


A 0 0

DΛyA Ipy 0

DΛyA Ipy ρtIpy



Ft−1

Yt−1

Y c
t−1

+


0

µ

µ

+


Ir 0

DΛy D

DΛy D


 ut

ϵ
(y)
t

 ,

which is defined by the notation:

Zt = Gαt + et (5.3.5)

αt = Htαt−1 + c+Rηt . (5.3.6)

Note that the state transition matrix, Ht, is time dependent as it depends on the

cumulator coefficient ρt. The measurement error, et, is assumed to be mean-zero with

covariance Σe ∈ Rp×p that is a block-diagonal matrix with Σϵ in the first block and 0py

in the second. The state noise, ηt, is again mean-zero with block-diagonal covariance

Σu ∈ R(r+py)×(r+py) with Σu and Σϵ(y) in each block.

5.3.1 Initialisation

Before the mixed-frequency state-space model from equations (5.3.5)-(5.3.6) is estimated

using a regularised expectation maximisation (EM) algorithm, the model parameters

θ = (Λ,Λy,A,Σϵ,Σu,Σϵ(y)) and the distribution of the initial state vector given by

α0 = (F0, Y0, Y
c
0 )

⊤ have to be estimated. The number of factors to use is chosen a

priori by minimising Bai and Ng (2002) information criteria:

IC(r) = log Vr(F̄ , Λ̄) + r

(
n+ px
npx

)
logmin(n, px) , (5.3.7)
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where

Vr(F̄ , Λ̄) =
1

npx

px∑
i=1

n∑
t=1

E
[
ϵ̄2i,t
]

and ϵ̄i,t = Xt,i − Λ̄i,·F̄ t is found using PCA when applied to the balanced standardised

indicator data set X, with preliminary factors F̄ corresponding to the principal compo-

nents, and the estimated loadings Λ̄ corresponding to the eigenvectors. The indicator

matrix is balanced by interpolating missing data with cubic splines and a simple moving

average.

An initial estimation of each latent series, Yit, for i = 1, . . . , py, is computed by

using the sparse temporal disaggregation (spTD) method of Chapter 3 applied to each

quarterly series, Ȳ i,τ and monthly indicators Xt separately. Missing data within Xt is

balanced in the same way as above and the raw, undifferenced data is used assuming a co-

integrating relationship between Yt and Xt as discussed in Chapter 3. These preliminary

estimates of Yt are then first-differenced and standardised to obtain preliminary y∗
t

series which are then used to construct Zt with which a sparse DFM model is fit with

r factors following Algorithm 2 in Chapter 4. This initialisation approach allows all

model parameters in (5.3.5)-(5.3.6) to be found, including the ℓ1-norm regularisation

parameter for sparse factor loadings. Note, sparsity is not induced on the target series

y∗
t in Zt. To prioritise a comprehensive understanding of the problem at hand, we

deliberately kept the tuned ℓ1-norm regularisation parameter fixed for the regularised

EM algorithm discussed in the subsequent section.

The initial factor mean E [F0|Ωn] is set to zero and the covariance Cov(F0|Ωn) is

set to the r × r matrix of the stacked vector (Irp −A⊗A)−1Vec(Σu). As the state

variables Yt and Y c
t are non-stationary, their conditional mean and covariance are

initialised using an approximate diffuse initialisation (Brave et al., 2022), i.e. zero-mean

and a very large covariance matrix set to 107 on the diagonal. Although this is not as

statistically sound as using a more complex exact treatment of diffuse states (De Jong,

1991), experiments show the approximation performs well. A future work direction is to
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better explore the importance of an exact diffuse initialisation.

5.3.2 Estimation and Convergence

The measurement equation (5.3.5) along with state equation (5.3.6) can be estimated

using a regularised EM algorithm as in Chapter 4. The E-step, which involves computing

the conditional expectation and covariance of the state vector, can be done using the

univariate Kalman filter and smoother equations (Koopman and Durbin, 2000) given in

Appendix A.2. When variables in Zt are missing, as will be the case in the ragged edge

for the indicators Xt (or just general patterns of missing data) and in Ỹ t when t ̸= 3τ ,

the Kalman gain term for these variables are omitted from the update calculations.

Similarly, the value of ρt in the matrix Ht is adjusted depending on t in the filter and

smoother equations, equal to 0 when t is the first month of a quarter and 1 otherwise.

The M-step calculations for the sparse DFM assumed for Xt are the same as those

derived in Chapter 4 with the Λ parameter being updated using an ADMM algorithm

for regularisation using the optimal ℓ1-norm penalty parameter found in the initial

sparse DFM fit. The parameters Λy and Σϵ(y) can be obtained similarly within the EM

framework, corresponding to the least-squares estimators of the conditional expectation

of Yt from the Kalman filter and smoother equations. The E and M steps are repeated

until convergence which is determined when the maximum absolute difference between

the current and previous iteration of each target series becomes smaller than 104.

5.4 Simulation Study

To investigate the estimation ability of the proposed joint state-space model, a simple

simulation study is conducted comparing this model to classic Chow-Lin temporal

disaggregation (Chow and Lin, 1971) and sparse temporal disaggregation (Chapter 3).

A matrix of px = 30 indicators with n = 120 observations are simulated according to a
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Figure 5.4.1: (Top) Average RMSE scores over 100 iterations for recovery of true
disaggregate series Y1, Y2 and Y3, with 25% and 75% confidence bands. (Bottom)
Average loadings matrix estimate over 100 iterations for the state-space sparse DFM
approach.

sparse DFM (5.3.1)-(5.3.2) with r = 3 factors, sparse loading matrix Λ = Ir⊗110, factor

transition matrixA = 0.8×Ir, and covariance matricesΣϵ = Ipx andΣu = (1−0.82)×Ir.

Next, py = 3 target disaggregate series are simulated using the 3 factors with coefficient

Λy set to be the py × r matrix of ones in the regression (5.3.3) with Σϵ(y) = Ipy . The

disaggregate target series are thought of as monthly series and are temporally aggregated

to a quarterly frequency to obtain the observed low-frequency series Ȳ τ , τ = 1, . . . , nl

with nl = 40. A ragged edge structure is then created in the indicator matrix such that

the first 10 variables have the last 2 data points missing, the next 10 have 1 missing

and the final 10 have none missing. The last data point in Ȳ is also treated as missing.

This simulation set up is similar to the one we face in the trade in services application

and other general econometric problems. While it is expected that the benchmark
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temporal disaggregation methods will perform well in this small simplistic set up, they

are not as practical as the joint state-space framework for this task as any missing data

has to be first forecasted before fitting the models and as they are univariate methods,

estimation of each disaggregate target has to be computed separately. The 3 models,

Chow-Lin, spTD and state-space, are applied to 100 versions of the simulated data

and the root mean squared error (RMSE) metric3 between the true disaggregate series,

Yt, and the estimates, Ŷt, are calculated. The top image of Figure 5.4.1 displays the

average RMSE scores of all 3 models on all 3 target series (along the x-axis) along with

the 25% and 75% confidence bands. The results reveal that the joint state-space model

is performing the best, obtaining the most accurate temporal disaggregation estimates

and having the narrowest confidence intervals. Chow-Lin is performing the worst as

expected since px = 30. Sparse temporal disaggregation also performs well and uses

the adaptive LASSO penalty to deal with correlated indicators induced by the VAR(1)

factor structure. To test whether the true (sparse) loadings parameter is recovered

accurately in the joint state-space framework, the average loading matrix estimate over

100 iterations is plotted in the bottom image of Figure 5.4.1. The true sparse structure

of Λ = Ir ⊗ 110 appears to be recovered well, with the largest average loading that

should be sparse being 0.0065. In summary, the joint state-space model appears to

perform temporal disaggregation accurately while at the same time exhibit the desirable

features the sparse DFM possessed.

5.5 Monthly Estimation of the Subdivisions of the

Service Sector

We now apply the state-space model (5.3.5)-(5.3.6) with regularised EM estimation

discussed in Section 5.4 to the entire dataset (Table 5.1.1) to estimate monthly disag-

3Both the MAE and RMSE metric were calculated and led to the same conclusions.
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gregate series for the 24 target series of interest representing imports and exports of

total trade in services and the 11 subdivisions of the service sector. All data, except

Google trends, is obtained from the ONS website using the December 2022 vintage

and we take data going back to January 2004. This leads to observed quarterly trade

in services data from Q1 2004 to Q3 2022 (a total of 75 quarters) and fully observed

monthly indicator series from January 2004 to September 2022 (a total of 225 months).

Following the initialisation outlined in 5.3.1, the number of factors chosen by the Bai

and Ng (2002) information criteria (5.3.7) is chosen to be r = 4 factors. Using 4 factors,

an initial sparse DFM is fitted to the first-differenced and balanced dataset to obtain

preliminary parameter estimates and tuned over a large log-spaced grid of ℓ1-norm

penalty parameters from 10−3 to 104 using BIC (4.3.14). This results in an optimal

tuning parameter α∗ ≈ 2 which is very similar to the optimal parameter found in the

trade in goods case study of Chapter 4. This is expected since a large majority of

the data used is the same in this study and hence we may also expect a similar factor

structure capturing the overall variance in the data.

Using the preliminary parameter estimates and a fixed ℓ1-norm penalty parameter

α∗ ≈ 2, the regularised EM algorithm of Section 5.3.2 is applied to the data to obtain

monthly estimates of trade in services from January 2004 to September 2022. These

estimates are temporally consistent with the observed quarterly data in that 3 monthly

estimates in a quarter sum exactly to that corresponding observed quarter. Figure 5.5.1

(a)-(l) displays these estimated series with exports on top in red and imports in blue

on the bottom4. The series are ordered in terms of value with the y-axis representing

£billion. Figure 5.5.2 compares our monthly estimates of total trade in services with

those published by the ONS. We appear to be obtaining very similar smooth-looking

results to the ONS monthly estimates with the only real difference due to the coronavirus

shock in 2020-2021 as shown in the right plot displaying percentage difference between

4All code and data results are available upon request.
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our estimates yest and the published figures ypub, i.e. (ypub − yest)/yest × 100%. The

smoothness of our series estimates is due to the estimated factor loadings for the first-

differenced targets, i.e. Λy, being small and thus not being influenced by the factors by

a great deal. The results appear to look similar to that of a Denton smoothed estimate

(Denton, 1971) that minimises first-difference change over time as described in Section

2.1.3 of Chapter 2. This is usually a favoured approach by National Statistical institutes

when the consistency of smoothed estimates is a preference. For less-smooth estimates,

extensions into alternative error processes for (5.3.3) can be conducted.

Figures 5.5.3 and 5.5.4 respectively display the factor loadings and factor series

estimated in the joint state-space model (5.3.5)-(5.3.6). The factor structure and

dynamics look very similar to the results obtained in the trade in goods case study (Sect.

4.5) with Factor 1 only weighted with inflation measures (both producer and consumer)

and Factor 2 heavily weighted with the IoP, IoS and also TIG, capturing the overall

state of the economy and the coronavirus shock in 2020. Factors 3 and 4 seem to be a

mixture of inflation data and Google trends. On each figure we display the estimated

coefficients for the monthly target series, i.e. Λy, to show how the targets are loaded

onto each factor.

We now conduct a pseudo-real time nowcasting exercise to assess how accurately the

joint state-space model is able to nowcast the current quarter using available information

in the ragged edge. The nowcasting exercise is described as pseudo-real time as we use a

fixed vintage of data (December 2020) and manually construct the ragged edge described

by the indicator lags found in Table 5.1.1 at each nowcasting window. This nowcasting

window is expanding every month from September 2018 to August 2022 (48 periods)

and in each month a nowcast of the current unpublished quarter in calculated. That is,

the first nowcasting window uses data from January 2004 to September 2018, where

we wish to nowcast Q3 2018 using the sum of disaggregate estimates: July, August

and September 2018. The window is then expanded to October 2018 where the Q3
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Figure 5.5.1: Estimated monthly disaggregate trade series of the subdivisions of the
service sector (£billion). Exports trade in red on top and imports trade in blue at the
bottom.



CHAPTER 5. TIMELY ESTIMATES OF UK TRADE IN SERVICES 153

0.5

1.0

1.5

2.0

0.4

0.6

0.8

1.0

1.2

2005 2010 2015 2020

(g) Intellectual Property Services

1

2

3

4

0
1
2
3
4
5

2005 2010 2015 2020

(h) Travel Services

0.2

0.3

0.4

0.5

0.2

0.4

0.6

2005 2010 2015 2020

(i) Personal, Cultural and Rec. Services

0.1

0.2

0.3

0.1

0.2

0.3

0.4

2005 2010 2015 2020

(j) Construction Services

0.1

0.3

0.5

0

0.1

0.2

2005 2010 2015 2020

(k) Manufacturing and Maintenance Services

0.14

0.18

0.22

0.26

0.2

0.3

0.4

2005 2010 2015 2020

(l) Government Services

Figure 5.5.1: Estimated monthly disaggregate trade series of the subdivisions of the
service sector (£billion). Exports trade in red on top and imports trade in blue at the
bottom (cont.)
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Figure 5.5.3: Estimated factor loadings for all 4 factors in the joint state-space framework
trade in services application. Loadings colour coded by indicator group.
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Figure 5.5.4: Estimated factors (black) with original data (grey) as a function of time
from the joint state-space framework trade in services application.

2018 nowcast is re-calculated as the ragged edge moves along a month. This procedure

continues with a new nowcasting quarter of interest every 3 months.

To compare the joint state-space framework to an alternative high-dimensional

temporal disaggregation method we fit the sparse temporal disaggregation (spTD)

procedure of Chapter 3 to the data and similarly aggregate months estimates in the

latent current quarter to obtain a current quarter nowcast. As the spTD method is

univariate and cannot handle missing data the procedure is applied to each target

separately and any missing data is first forecasted using ARMA models with a possible

order of up to 3. Figure 5.5.5 displays the results of the nowcasting exercise in terms

of mean absolute error (MAE) over the 48 month expanding window between the

observed quarterly figure and aggregated monthly estimates in that quarter with the

proposed joint state-space model on the left and spTD on the right. Each bar represents

the MAE for one of the 24 target series ordered from left to right by the service

subdivisions: total; insurance & pension; construction; financial; telecomms; intellectual

property; transport; manufacturing & maintenance; other business; personal, cultural &
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Figure 5.5.5: Pseudo-real time nowcasting errors (MAE) for each trade in services
target series with bars ordered by the service subdivisions: total; insurance & pension;
construction; financial; telecomms; intellectual property; transport; manufacturing
& maintenance; other business; personal, cultural & recreational; government; and
travel. Grouped by exports and imports. Performance evaluated by estimating observed
quarters over the period September 2018 to August 2022. Left plot displays the joint
state-space MAE results and the right plot displays spTD. Each bar is coloured according
to which method performs best for that target series. Blue: Joint state-space, red:
spTD.

recreational; government; and travel, which are grouped by exports and imports. To

easily visualise which method performs best for each target series the winning method

is coloured blue for the proposed state-space model and red for spTD. As we see, the

proposed model beats spTD on 17 out of 24 target series.
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5.6 Examining UK Trade Throughout the Brexit

Transition Period5

5.6.1 Introduction

Producing information on UK trade at a monthly frequency, as opposed to quarterly,

provides us with greater levels of interpretation into the short-term dynamics of the

process, allowing us to study short-term fluctuations and trends that could be significant

for policy makers when making informed decisions. In this experimental study, we

explore these dynamics throughout the Brexit transition period and in particular, explore

the effects (if any) the signing of the Trade and Cooperation Agreement (TCA) and

officially transitioning out of the EU at the end of 2020 had on UK trade in goods

and services. The 4 target series of interest that we wish to draw conclusions on are:

monthly exports and imports of UK trade in goods (all commodities) to EU countries

and monthly exports and imports of UK trade in services (all services) to EU countries

over the period of January 2015 to September 2022. The monthly trade in goods data

are published by the ONS at current market prices (£billion) and are seasonally adjusted.

The monthly trade in services data are estimated using the joint state-space model

described in Section 5.3 with the same monthly indicator series found in Table 5.1.1.

Note, these estimates for services are themselves uncertain and so one must treat the

overall estimated effects of the TCA with caution.

To visualise the monthly fluctuations of the 4 target series throughout the Brexit

transition period, we plot each series between January 2015 and September 2022 in

Figure 5.6.1 (blue line). The plots also display (dashed red line) the corresponding series’

trade with non-EU member countries (i.e. the rest of the world [ROW]) to allow us to

5This section could potentially constitute a distinct chapter on its own, thereby possibly introducing
a degree of inconsistency with the remainder of Chapter 5. However, it has been incorporated within
this chapter for the sake of conciseness, considering that it relies on the findings and outcomes presented
in Section 5.5.
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compare how trade dynamics changed throughout this time6. The shaded grey region

in each plot starts in January 2021 after the TCA was signed and the UK officially

transitioned out of the EU. Firstly, looking at trade in goods (top panel) it appears with

both exports and imports, the UK’s trade with the EU and ROW followed similar trends

and fluctuations before the TCA, both with a sharp drop in the first half of 2020 due to

the start of the coronavirus pandemic and both with quick recoveries later in the year.

It appears when the TCA came into force in January 2021 both exports and imports

trade with the EU quickly fell in this month, a 46% decrease from December 2020 for

exports and a 34% decrease for imports, but then after this month both series recovered.

Goods exports to EU countries appears to recover very sharply and actually overtakes

goods trade to non-EU countries, whereas goods imports from EU countries appears

to recover slower and trade with non-EU countries becomes greater; possibly changing

trend compared to pre-intervention. For trade in services (bottom panel) the immediate

impact of the TCA seems less obvious than for trade in goods. While 2021 levels of

service trade are less than the 2019 level, much of this decline is likely to be an effect of

the coronavirus pandemic. In both exports and imports of services it appears the gap

between trade with EU countries and the ROW has increased since the pandemic and

has not yet (before September 2022) gone back to its previous difference – possibly an

effect of Brexit.

To quantify the significance Brexit had on UK trade with EU countries we set up

an interrupted time series analysis (Linden, 2015) with January 2021 as the so-called

“intervention date”. Here we test the significance of this intervention by comparing

trends before and after to what might have occurred if Brexit did not happen; known as

the counterfactual trend. This research contributes to recent studies trying to analyse

impacts Brexit has had on UK trade activity. Freeman et al. (2022) conduct a difference-

in-difference (DID) event study comparing the evolution of UK-EU trade with UK-ROW

6The monthly series for trade in services with non-EU countries was also estimated using the joint
state-space framework.
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Figure 5.6.1: Monthly UK trade with EU countries (blue) and with non-EU countries
(red). Top left: published trade in goods exports. Top right: published trade in goods
imports. Bottom left: estimated trade in services exports from joint state-space model.
Bottom right: estimated trade in services imports from joint state-space model. Grey
shaded region starts in January 2021 when the UK officially transitioned out of the EU.
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trade from the start of the referendum to the TCA. Their results find no statistically

significant evidence that uncertainty and anticipation effects about Brexit led to a

decline in the UK’s trade with the EU trade before the TCA but do find the TCA led to

an immediate decline in UK-EU trade relative to UK-ROW trade. Du et al. (2023) also

perform a DID study and also find an immediate negative impact of the TCA on UK-EU

trade, however, they find this decline to have largely disappeared by the beginning

of 2022, with actual and counterfactual outcomes becoming approximately the same.

Buigut and Kapar (2023) make use of a gravity model over three phases of the Brexit

period and conclude the Brexit referendum phase led to a decline in UK-EU trade by

around 10.5% and the transition phase by around 15% but do not find a significant

effect due to the post transition (TCA) phase. Other literature (Dhingra et al., 2017;

Fusacchia et al., 2022) simulate a range of Brexit outcomes using a general equilibrium

approach and test the significance of each possible counterfactual outcome.

5.6.2 Interrupted Time Series Analysis

An interrupted time series model (ITSM) (Linden, 2015) is appropriate for the task at

hand for two reasons, firstly, we want to understand how an outcome (UK trade with

the EU) has changed after an intervention at a specific point in time (January 2021

- representing the end of the Brexit transition period), and secondly, we have a good

amount of data before and after this intervention date as we are working with monthly

time series up to September 2022. The general ITSM for a single-group under study is

a linear model of the form7:

Yt = β0 + β1Tt + β2Dt + β3DtTt + ϵt ,

7Notation used is similar to that found in Linden (2015).
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Figure 5.6.2: Visual interpretation of a multi-group ITSM with a treatment group (top
line) and a control group (bottom line) using simulated data with a policy intervention
at time t = 20. Coefficients β0 – β7 correspond to those in equation 5.6.1. A similar
figure can be found in Linden (2015).

where Yt is the outcome variable measured at each equally spaced time point t, Tt is

the time since the start of the study, Dt is a dummy variable equal to 0 before the

intervention and 1 after the intervention, DtTt is an interaction term indicating time

passed since the intervention, and ϵt is random error. These coefficients can be visualised

by the bottom line of Figure 5.6.2. Assuming just a single-group ITSM where the

bottom line is the outcome variable of interest, β0 corresponds to the intercept of this

outcome variable, β1 tells us the general trend of the outcome before the intervention,

β2 represents how the outcome level has changed from the last observation before

the intervention to the first observation after the intervention (immediate intervention

impact), and β3 is the difference between the slope of the outcome before and after

the intervention, informing us on the long-term effects the intervention has had on the

outcome variable of interest. We can study the statistical significance of these coefficients

(i.e. find p-values) to get a sense of what might have happened if the intervention was

not put in place – known as the counterfactual.
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A problem with single-group ITSMs is the possibility that external variables not

accounted for in the model have strong explanatory effects on the change in the outcome

variable. The non-inclusion of these variables may lead to biased estimated coefficients

in the model, leading to an over or under estimation of intervention impact. For example,

it is very likely the coronavirus pandemic starting early 2020 is a confounding variable

that has effected UK trade with the EU. To tackle this issue, a multi-group ITSM can be

assumed with the introduction of a control group that is not subject to the intervention

but share the same confounders as the treatment group (the outcome variable of interest

that is impacted by the intervention). In this study we use UK trade with non-EU

countries as a control group. The general ITSM for a multi-group study with a control

group is a linear model of the form:

Yt = β0 + β1Tt + β2Dt + β3DtTt + β4Z + β5ZTt + β6ZDt + β7ZDtTt + ϵt , (5.6.1)

where Yt is now a bivariate outcome variable with a treatment group (trade with EU

countries) and a control group (trade with non-EU countries) and Z is a dummy variable

which is equal to 0 for the control group and 1 for the treatment group. Figure 5.6.2

depicts a multi-group ITSM with the control group as the bottom line and the treatment

group as the top line. The assumption is that the trend before and after the intervention

in the control group remains unchanged, just as it would in the treatment group if the

intervention did not happen (counterfactual). Coefficients β1 to β3 are as previously

described and correspond to the control group. Coefficients β4 to β7 reflect the treatment

group in the presence of the control group such that β4 is the difference in the intercepts

between control and treatments groups, β5 is the difference in trend between the control

and treatment before the intervention, β6 represents the difference in level between the

two groups immediately following the intervention, and β7 is the difference between the

difference of the trend between the control and treatment before the intervention and

the difference of the trend between the control and treatment after the intervention,
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i.e. a difference-in-difference informing us on the difference between the sustained effect

of the control and treatment group after the intervention. Control groups are usually

selected if they are comparable to the treatment group before the intervention, meaning

we look for controls such that the coefficients β4 and β5 in (5.6.1) are not statistically

significant (i.e. p-value > 0.05).

5.6.3 Results

We now apply the multi-group ITSA to each of the 4 target series, monthly imports and

exports of trade in goods and services to EU countries, over the period of January 2015

to September 2022 with January 2021 as the intervention date and use control groups

corresponding to the respective trade with non-EU countries. The analysis is repeated

using the published quarterly version of the above trade in goods and services data to

explore if using disaggregate data helps when determining the significance of Brexit

effects. When fitting the ITSM we must deal with auto-correlation present in the residual

process ϵt as not accounting for this can lead to an under-estimation of standard errors

and an over-estimation of statistical significance. The approach we take is to first fit an

ordinary least-squares (OLS) regression to (5.6.1) and then fit an ARMA(p, q) model to

the estimated residuals ϵ̂t. With estimated ARMA parameters from this fit we perform

a generalised least-squares (GLS) rotation of the data and re-estimate coefficients. We

do find this to somewhat change the p-values of the estimated coefficients.

Table 5.6.1 and 5.6.2 presents the estimated coefficients for the goods trade targets

and service trade targets respectively, with their respective standard errors in parentheses

and p-values in square brackets. Coefficients that are statistically significant (i.e. p-value

< 0.05) are highlighted in bold. These results mostly agree with the interpretation of

the plots presented in Figure 5.6.1 and conclusions drawn by authors Freeman et al.

(2022) and Du et al. (2023) in their DID analysis. The control group of trade with

non-EU countries (of both goods and services) does appear to follow the same level
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and trend as the treatment group in the pre-intervention period given the coefficients

β4 and β5 are not statistically significant in any table; the interest lies in studying the

significance of coefficients post-intervention. Firstly, the TCA intervention does appear

to have a significant impact on trade in goods of exports. The immediate impact in

January 2021 leads to a decline in goods exports to EU countries by around £6.9b with

a p-value very close to 0. The DID of trend pre and post intervention between goods

exports to EU and non-EU countries is significant as well, with the difference increasing

towards EU trade. This reveals that trade in goods of exports has been steadily growing

since the intervention, thus recovering from the initial immediate losses. Interestingly,

when conducting analysis on the quarterly data, the coefficient β7 was not deemed

significant with a p-value of 0.167 and the p-value for β6 increased to 0.023. This could

highlight the benefits of working with disaggregate data to capture the significance of

these trends. In addition, it appears the standard errors for all the quarterly outputs

are larger than those for monthly outputs, further substantiating the benefits derived

from data disaggregation.

Trade in goods of imports from EU countries also has a significant immediate decline

following the TCA of around £5.9b. It’s DID, β7, suggests there has been a long-term

decline post the TCA, however, this result is not deemed statistically significant. What

is interesting is that trade in goods of imports from non-EU countries (i.e. the control

group) appears to have a significant immediate decline of around £2.4b following the

TCA and a significant long-term increase in trend in the post-TCA period. The results

from the trade in services data seems to suggest the TCA intervention did not lead

to any real significant impact on trade in services to EU countries for both exports

and imports. Service exports to non-EU countries does appear to have a significant

long-term incline in the post-TCA period given the β3 estimate. Comparing these results

to the aggregate quarterly data analysis we find the p-values for β6 and β7 to increase

further with the quarterly data.
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Goods: Exports (Monthly) Goods: Exports (Quarterly) Goods: Imports (Monthly) Goods: Exports (Quarterly)
β1 0.008 (0.025) [0.751] 0.154 (0.299) [0.610] 0.028 (0.031) [0.368] 0.333 (0.325) [0.311]
β2 0.316 (0.881) [0.720] -0.879 (3.294) [0.791] -2.351 (1.148) [0.042] -7.362 (4.807) [0.132]
β3 0.077 (0.112) [0.491] 1.036 (1.102) [0.352] 0.601 (0.140) [0.000] 5.047 (1.376) [0.001]
β4 -1.885 (1.589) [0.237] -3.506 (6.817) [0.609] 2.435 (1.944) [0.212] 9.469 (7.027) [0.183]
β5 0.041 (0.036) [0.253] 0.171 (0.444) [0.703] 0.029 (0.044) [0.509] 0.097 (0.467) [0.837]
β6 -6.913 (1.248) [0.000] -10.900 (4.660) [0.023] -5.926 (1.625) [0.000] -15.189 (6.807) [0.030]
β7 0.336 (0.139) [0.017] 2.048 (1.462) [0.167] -0.151 (0.174) [0.387] -0.746 (1.800) [0.680]

Table 5.6.1: Interrupted time series model coefficients (standard errors) [p-value] for
the UK-EU trade in goods monthly and quarterly series. Significant coefficients (i.e.
p-value < 0.05) in bold.

Services: Exports (Monthly) Services: Exports (Quarterly) Services: Imports (Monthly) Services: Imports (Quarterly)
β1 0.049 (0.038) [0.204] 0.432 (0.257) [0.099] 0.019 (0.040) [0.639] 0.164 (0.469) [0.727]
β2 -0.526 (0.369) [0.156] -2.247 (2.548) [0.382] -0.481 (0.349) [0.171] -2.005 (2.430) [0.413]
β3 0.255 (0.091) [0.005] 2.144 (0.898) [0.021] 0.140 (0.0863) [0.107] 1.369 (1.031) [0.190]
β4 -5.248 (3.092) [0.092] -15.808 (6.010) [0.111] -0.312 (3.322) [0.925] -0.938 (12.941) [0.943]
β5 -0.022 (0.059) [0.713] -0.204 (0.389) [0.601] -0.022 (0.057) [0.700] -0.251 (0.666) [-0.707]
β6 0.541 (0.522) [0.302] 2.133 (3.603) [0.556] 0.339 (0.494) [0.494] 1.703 (3.437) [0.622]
β7 -0.136 (0.128) [0.289] -1.047 (1.204) [0.388] 0.071 (0.122) [0.563] 0.732 (1.459) [0.618]

Table 5.6.2: Interrupted time series model coefficients (standard errors) [p-value] for
the UK-EU trade in services monthly and quarterly series. Significant coefficients (i.e.
p-value < 0.05) in bold.

5.7 Conclusion

The first half of this chapter motivated the need for monthly estimates of UK trade

in services and proposed a joint state-space framework that performs multivariate

temporal disaggregation while incorporating the benefits of the sparse DFM (Chapter

4). Essentially, the joint model fuses a sparse DFM assumed for the high-dimensional

indicator set with latent disaggregate target series treated as latent states assumed to

have the same factor model representation as the sparse DFM, and these disaggregate

targets are systematically sampled over each quarter using a cumulator variable to

ensure temporal consistency with the observed quarterly data. Model parameters and

the disaggregate series are estimated using a regularised EM algorithm that converges

when disaggregate estimates do not change by much from one iteration to the next.

The model appears to perform well in disaggregation ability in simulation studies and

pseudo-real time data analysis with alternative temporal disaggregation methods. The

model produced monthly estimates for total imports and exports trade in services that
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are very similar to those published by the ONS.

The general structure of the joint state-space framework (5.3.5)-(5.3.6) can be

adapted in several ways to model more complex data features and these open the door

to future work ideas. It is possible to incorporate cross-sectional constraints to the

disaggregate target matrix Yt by including another cumulator variable that aggregates

subdivisions of the service sector contemporaneously such that in a month, t, the

subdivisions total matches the published total imports or exports monthly series value

for month t. Proietti (2011a) work with disaggregate data transformed by logarithms

and propose a non-linear smoothing algorithm using a Taylor’s series approximation

to ensure exact aggregation in levels. A similar approach can be considered here if a

log-transform is required.

The second half of the chapter conducted a study to assess how Brexit has affected

the UK’s trade with the EU relative to the rest of the world. For this task, an interrupted

time series model (ITSM) was used to quantify how the level and trend of UK-EU trade

changed following the signing of the TCA in January 2021. Analysis was conducted

for all output variables of interest at the monthly frequency using published monthly

trade in goods data by the ONS and estimated monthly trade in services using the

proposed joint state-space model in the first half of the chapter. We find that working

with disaggregate data does lead to a reduction in p-values in the ITSM fit and reveals

more informative conclusions about Brexit effects.

Using UK trade with non-EU countries (rest of the world) as a control group to

distinguish effects due to the coronavirus pandemic, we find evidence of a significant

decline in UK-EU trade in goods immediately following the TCA intervention but no

such evidence for UK-EU trade in services. Following this immediate decline of trade in

goods, goods exported to EU countries shows evidence of a recovery in the post-transition

period with a long-term increase in trend in goods trade with EU countries relative to

non-EU countries. In contrast, the recovery in imported goods trade did not exhibit



CHAPTER 5. TIMELY ESTIMATES OF UK TRADE IN SERVICES 167

the same pattern, as trade with non-EU countries witnessed an increase during this

post-transition period. Regarding trade in services, our analysis using the ITSM fit did

not yield conclusive evidence regarding the effects of the TCA. The simplistic ITSM

leads to interpretable measures on Brexit effects on UK-EU trade and can be refined in

several ways, which we explore in detail in Chapter 7.



Chapter 6

Temporal Disaggregation and

Nowcasting with Sparsity

Constraints in R

The focus of the thesis has been on creating new methodology for the important

tasks of temporal disaggregation and nowcasting that can handle high-dimensional

amounts of data in an interpretable way by exploiting sparsity constraints. Chapter 3

introduced Sparse Temporal Disaggregation (spTD), a new high-dimensional temporal

disaggregation method that extends the well-established Chow and Lin (1971) family of

methods to a regularised M-estimation framework allowing simultaneous selection of

relevant indicators and estimation of their impact. Chapter 4 introduced the Sparse

Dynamic Factor Model (sparse DFM), a new class of DFMs that impose sparsity

constraints on the loadings matrix to allow interpretability of factor structure using an

expectation maximisation (EM) algorithm with regularised quasi-maximum likelihood

estimation of parameters. For reproducibility purposes, both of these core methodologies

have been developed into R packages available on the Comprehensive R Archive Network

(CRAN) allowing practitioners to easily implement them.

168
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Section 6.1 introduces the first package called DisaggregateTS that implements the

spTD methodology proposed in Chapter 3 along with traditional standard-dimensional

temporal disaggregation methods introduced in Chapter 2.1. Section 6.2 then introduces

the second package called sparseDFM that implements the sparse DFM methodology of

Chapter 4 and alternative DFM estimation techniques discussed in Chapter 2.2. In both

sections the structure of the packages are outlined and details are given on the input

and outputs of core functions. The packages are applied to synthetic and real-data case

studies as a walk-through guide on how to use them. Note, the sparseDFM package is

more developed than the DisaggregateTS package providing several plotting features

for visualisation and producing an S3 class object with the main function fit. The

S3 class object allows generic R functions to be called such as plot(), predict(),

summary(), fitted() and residual().

6.1 DisaggregateTS: An R Package for High-Dimensional

Temporal Disaggregation

This package was developed in collaboration with Dr Kaveh Salehzadeh Nobari.

6.1.1 Introduction

The aim of the package DisaggregateTS is to offer the tools for the R user to implement

popular temporal disaggregation methods proposed in the literature, as well as their

extension to high-dimensional settings. In particular, the package offers the classic tempo-

ral disaggregation methods: Denton (Denton, 1971), Denton-Cholette (Cholette, 1984),

Chow-Lin (Chow and Lin, 1971), Fernandez (Fernandez, 1981), Litterman (Litterman,

1983), and the high-dimensional method(s) of Chapter 3: spTD and adaptive-spTD.

The spTD methods accept the input of a high-dimensional indicator matrix, X, and will

output a sparse coefficients vector, β, that can be used to identify relevant indicators in
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the temporal disaggregation task. All methods are suitable for disaggregation situations

where the high-frequency is an integer multiple of the low-frequency (e.g. quarters to

months) and the output of disaggregate estimates are constrained such that either there

sum, average, first or last value is consistent with the low-frequency input. The package

also allows the possibility for extrapolation (forecasting) of the disaggregate output series.

This will be performed if the number of observations of the high-frequency indicator

matrix, X, is greater than the product of the number of low-frequency observations in

Y and the aggregation ratio supplied by the user (e.g. aggRatio = 3 for quarter to

month disaggregation).

The main contribution of this package stems from the spTD and adaptive-spTD

options pertaining to sparse temporal disaggregation and adaptive sparse temporal

disaggregation. There are alternative software packages that exist that perform classical

(standard-dimensional) temporal disaggregation. The tempdisagg package by Sax and

Steiner (2013) is a popular temporal disaggregation package in R allowing each of the

classical methods discussed above. In MATLAB, the temporal disaggregation toolbox by

Quilis (2018) also implements these classic methods as well as the mixed-frequency state-

space modelling toolbox by Brave et al. (2022) for a stae-space approach. The JDemetra+

software developed by the National Bank of Belgium (NBB) in cooperation with the

Deutsche Bundesbank and Eurostat offers tools for seasonal adjustment, outlier detection,

nowcasting and temporal disaggregation. The main function of the DisaggregateTS

package is now presented before a simulation exercise is conducted using the package’s

data generator function TempDisaggDGP().

6.1.2 Package Structure

Installation

The DisaggregateTS package can be installed from CRAN as follows:
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install.packages("DisaggregateTS")

The development version can be installed from GitHub using the devtools package

(Wickham et al., 2022):

devtools::install_github("mosleyl/DisaggregateTS")

To load the package into the R environment, type:

library(DisaggregateTS)

Core Function

The main function of the package which performs each temporal disaggregation method

discussed is disaggregate(). This function is of the form:

disaggregate(Y, X, aggMat = "sum", aggRatio = 4, method = "Chow-Lin",

Denton = "first")

It takes the following arguments:

• Y: An nl × 1 data matrix representing the low-frequency series that we wish to

disaggregate.

• X: An n× p data matrix representing p high-frequency indicator series. It must

be the case that n ≥ nl × aggRatio. If n > (nl × aggRatio) then the last

n− (nl × aggRatio) values of the disaggregate series output, y, are extrapolated.

In the event that there is no input, the indicator matrix X is replaced with an

n× 1 vector of ones.

• aggMat: A character coinciding with with the aggregation matrix C defined in

Chapter 2.1.1. It has been set to "sum" by default, rendering it suitable for flow

data. Alternative options include "first", "last" and "average".
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• aggRatio: An integer corresponding to the aggregation ratio between high and

low frequency variables. The default value is 4, which for example represents the

ratio of annual to quarterly data.

• method: A character representing the disaggregation method to implement. This

argument has been set to "Chow-lin" method by default. Other classical low-

dimensional options include "Denton", "Denton-Cholette", "Fernandez", and

"Litterman", where these techniques have been extensively discussed in Chap-

ter 2.1. For high-dimensional temporal disaggregation use the option "spTD"

or "adaptive-spTD" extensively discussed in Chapter 3. "adaptive-spTD" im-

plements the adaptive LASSO version of spTD relevant when, for instance, the

columns of the design matrix X exhibit multicollinearity, and the irrepresentability

condition is violated.

• denton: A character representing the type of weighting matrix used in the Denton

disaggregation methods discussed in Chapter 2.1.3. This is only relevant when

method = "Denton" or method = "Denton-Cholette". The default option is

"first" representing first-difference changes. Other options include "absolute",

"second" and "proportional".

The output of the disaggregate() function includes:

• y Est: An n × 1 data matrix corresponding to the estimated high-frequency

disaggregate series.

• beta Est: A p× 1 data matrix corresponding to the estimated coefficient vector.

• rho Est: A value in (0, 1) corresponding to the estimated AR(1) residual parameter.

This is only relevant for methods assuming AR(1) residuals.

• ul Est: An nl × 1 data matrix corresponding to the estimated aggregate residual

series. I.e. equal to Y −CXβ̂.
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6.1.3 Synthetic Example

The second main function of the DisaggregateTS package is TempDisaggDGP(), which

generates synthetic data that can be used for conducting simulations using the disaggregate()

function. The main arguments of this function are as follows:

TempDisaggDGP(n_l, n, aggRatio = 4, p = 1, beta = 1, sparsity = 1,

method = "Chow-Lin", aggMat = "sum", rho = 0,

mean_X = 0, sd_X = 1, sd_e = 1)

The first argument nl corresponds to the size of low-frequency series and n to that of

the high-frequency series. Moreover, aggRatio and aggMat are defined as before, in

turn representing the ratio of the high-frequency to low-frequency series, as well as the

aggregation matrix. Argument p sets the dimensionality of high-frequency series (set

to 1 by default), beta which has been set to 1 by default is the positive and negative

elements of the coefficient vector, sparsity is the sparsity percentage of the coefficient

vector, and rho is the autocorrelation of the error terms, which has been set to 0 by

default. The method argument determines the data generating process of the error

terms, corresponding to methods discussed earlier. The mean and standard deviation of

indicators in X can be set with mean X (with default 0) and sd X (with default 1), and

the standard deviation of the residual process can be set with sd e (with default 1).

To demonstrate the utility of the disaggregate() function, we can simulate data

from TempDisaggDGP() using the inputs:

# Set seed for reproducibility

set.seed(1301)

SynthethicData <- TempDisaggDGP(n_l = 50, n = 200, aggRatio = 4,

p = 30, beta = 3, sparsity = 0.7,

method = ’Chow-Lin’, rho = 0.8)
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# Store synthetic data

X = SynthethicData$X_Gen

beta = SynthethicData$Beta_Gen

y = SynthethicData$y_Gen

Y = SynthethicData$Y_Gen

e = SynthethicData$e_Gen

This has simulated a synthetic annual-to-quarterly temporal disaggregation dataset

alongside 50 ‘years’ of observations, with 30 indicator series with a coefficient vector,

as.numeric(beta)

[1] 3 0 0 0 0 0 3 -3 0 0 3 0 -3 0 -3 0 0 0 0 0 0 0

3 3 0 0 0 0 -3 0

that is 70% sparse, and an AR(1) error process with ρ = 0.8. We can check this

AR(1) residual process by plotting the autocorrelation function (acf) and the partial

autocorrelation function (pacf):

acf(e, main = "")

pacf(e, main = "")
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clearly showing an AR(1) process with parameter 0.8.
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We can now fit the standard Chow-Lin temporal disaggregation method to the data,

as well as the spTD and adaptive-spTD methods to compare performance:

fit.CL <- disaggregate(Y, X, aggMat = "sum",

aggRatio = 4, method = "Chow-Lin")

fit.sptd <- disaggregate(Y, X, aggMat = "sum",

aggRatio = 4, method = "spTD")

fit.adasptd <- disaggregate(Y, X, aggMat = "sum",

aggRatio = 4, method = "adaptive-spTD")

Firstly, we can compare estimates of the sparse β:

# Print beta estimates

betaEstimate = cbind(beta, fit.CL$beta_Est, fit.sptd$beta_Est,

fit.adasptd$beta_Est)

colnames(betaEstimate) = c("True", "Chow-Lin", "spTD", "ada-spTD")

round(betaEstimate,3)

True Chow-Lin spTD ada-spTD

[1,] 3 2.794 3.383 3.545

[2,] 0 0.338 0.000 0.000

[3,] 0 0.462 0.000 0.000

[4,] 0 -0.392 0.000 0.000

[5,] 0 -0.356 0.514 0.000

[6,] 0 -0.081 0.000 0.000

[7,] 3 2.020 2.661 2.962

[8,] -3 -3.667 -2.990 -3.226

[9,] 0 0.580 0.000 0.000

[10,] 0 0.078 0.000 0.000
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[11,] 3 2.928 2.364 2.494

[12,] 0 -0.941 0.000 0.000

[13,] -3 -3.864 -2.752 -3.048

[14,] 0 -0.254 0.000 0.000

[15,] -3 -3.474 -2.780 -2.804

[16,] 0 0.231 0.000 0.000

[17,] 0 -0.090 0.423 0.000

[18,] 0 -0.038 0.000 0.000

[19,] 0 0.230 0.000 0.000

[20,] 0 1.440 0.000 0.000

[21,] 0 0.366 0.000 0.000

[22,] 0 0.615 0.000 0.000

[23,] 3 4.356 3.102 3.283

[24,] 3 2.581 3.136 3.120

[25,] 0 -1.784 -0.384 0.000

[26,] 0 -0.512 0.000 0.000

[27,] 0 -0.341 -0.385 0.000

[28,] 0 0.409 0.000 0.000

[29,] -3 -2.454 -3.211 -3.504

[30,] 0 0.692 0.000 0.000

As we see, spTD and adaptive-spTD both perform variable selection and induce sparsity.

The adaptive-spTD obtains the exact sparsity, while spTD possesses a few false positives.

We can also check the estimation of the AR(1) parameter which was set to be 0.8:

fit.CL$rho_Est

[1] 0.9351062

fit.sptd$rho_Est

[1] 0.8162954
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fit.adasptd$rho_Est

[1] 0.8162954

Both spTD and adaptive-spTD recover this parameter very well.

To compare the performance in recovering the true high-frequency series y we first

compute the root mean squared error (RMSE) between y and the estimates and then

plot the estimates on top of the truth for the final 50 quarters to make visualisation

easier.

# Compute RMSE values

sqrt(mean((y - as.numeric(fit.CL$y_Est))^2))

[1] 3.262439

sqrt(mean((y - fit.sptd$y_Est)^2))

[1] 1.131614

sqrt(mean((y - fit.adasptd$y_Est)^2))

[1] 1.015399

# Plot estimates on top of truth (last 50 quarters)

plot(y[151:200], type = "l", lwd = 2, ylab = "", xlab = "")

lines(fit.CL$y_Est[151:200], col = "red", lty = 2, lwd = 2)

lines(fit.sptd$y_Est[151:200], col = "blue", lty = 3, lwd = 2)

lines(fit.adasptd$y_Est[151:200], col = "green", lty = 4, lwd = 2)

legend("bottomleft", legend = c("True y", "Chow-Lin", "spTD",

"ada-spTD"), lty = c(1,2,3,4), lwd = 2,

col = c("black", "red", "blue", "green"), bty = "n")

The results of the simulation clearly show the spTD methods are able to recover the true

parameters and latent high-frequency series very accurately, with improved performance

over Chow-Lin.
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6.2 sparseDFM: An R Package to Estimate Dynamic

Factor Models with Sparse Loadings

This package was developed in collaboration with Dr Tak-Shing Chan.

6.2.1 Introduction

The aim of the package sparseDFM is to offer the tools for the R user to implement

dynamic factor models with the option to induce sparse loadings. In summary, the

package offers three different popular DFM estimation techniques as well as the new

sparse DFM estimation technique of Chapter 4. The estimation options are:

• PCA - principal components analysis (PCA) for static factors seen in Stock and

Watson (2002).

• 2Stage - the two-stage framework of PCA plus Kalman filter & smoother seen in

Giannone et al. (2008) and Doz et al. (2011).

• EM - the quasi-maximum likelihood approach using the EM algorithm to handle
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arbitrary patterns of missing data seen in Bańbura and Modugno (2014).

• EM-sparse - a regularised EM approach allowing for sparse factor loadings seen

in Chapter 4.

The package allows the user the option of two different idiosyncratic error processes:

• IID - errors are IID white noise: ϵi,t ∼ N(0, σ2
i ).

• AR1 - errors follow an AR(1) process: ϵi,t = ϕiϵi,t−1 + ei,t with ei,t ∼ N(0, σ2
i ).

Idiosyncratic errors following an AR(1) process are augmented into the DFM framework

by treating them as latent states as in Bańbura and Modugno (2014). This slows down

computation time of the DFM as more states have to be estimated. It is therefore

recommended to treat errors as IID and perform post-analysis of residuals where possible.

Details on the AR(1) error case are provided in Appendix D.1.

The package also allows the option of two different approaches for estimating the

Kalman filter and smoother equations:

• multivariate - classic Kalman filter and smoother equations seen in Shumway

and Stoffer (1982).

• univariate - univariate treatment (sequential processing) of the multivariate

equations for fast Kalman filter and smoother seen in Koopman and Durbin

(2000).

Huge speed ups are possible using the univariate treatment approach when the panel of

data used is large. Appendix D.1 shows the computational speed comparison between

the univariate and multivariate methods. It is recommended to use the univariate

approach when errors are IID and the multivariate approach when they are AR(1).

sparseDFM is the first R package able to implement sparse DFMs using an efficient

EM algorithm. In the package, most algorithms are coded in C++ for computational
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speed. Alternative software exists that can implement classic DFMs. For PCA estimation

techniques the princomp and prcomp functions from the stats package in R are popular,

as well as the FactoMineR package by Lê et al. (2008) offering more options for the

structure of variables and the elasticnet package by Zou, Hui and Hastie, Trevor

(2012) offering sparse PCA estimation. The MARSS R package of Holmes et al. (2012)

allows maximum likelihood estimation of general state space structures that can be used

for DFMs. The dfms R package of Krantz and Bagdziunas (2022) implements the three

classic DFM estimation methods assuming IID errors and utilises C++ code for speed.

The R packages nowcasting by De Valk et al. (2019) and nowcastDFM by Hopp (2021)

implement the mixed-frequency time series nowcasting DFM methods of Giannone et al.

(2008) and Bańbura et al. (2011)1. In MATLAB the MFSS toolbox (Brave et al., 2022)

provides a range of estimation methods for mixed-frequency state space models. In

Python the statsmodels package provides classic DFM estimation. The core structure

of the sparseDFM package is now presented.

6.2.2 Package Structure

Installation

The sparseDFM package can be installed from CRAN as follows:

install.packages("sparseDFM")

The development version can be installed from GitHub using the devtools package

(Wickham et al., 2022):

devtools::install_github("mosleyl/sparseDFM")

To load the package into the R environment, type:

library(sparseDFM)

1These nowcasting packages have now been removed from the CRAN repository. However, they are
still accessible via GitHub.
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Core Function

The core function of the package is sparseDFM() allowing the different DFM estimation

methods. The function can be implemented using:

sparseDFM(X, r, q = 0, alphas = logspace(-2,3,100), alg = "EM-sparse",

err = "IID", kalman = "univariate", store.parameters = FALSE,

standardize = TRUE, max_iter = 100, threshold = 1e-4)

It takes the following arguments:

• X: An n × p numeric data matrix or data frame representing p stationary time

series variables with n observations. Missing data should be represented by NA.

• r: The number of factors the model should estimate. This can be selected using

the function tuneFactors(). Usually less than 10 factors should be sufficient.

• q: The first q variables in X will not be regularised. This parameter is only relevant

when alg = "EM-sparse". It is useful when you want to ensure variables are

always loaded onto all factors and hence regularisation is not applied to these

variables. Set the first q series in X to be these variables. The default is q = 0

where all variables are regularised.

• alphas: Numeric vector of ℓ1-norm penalty parameters. This parameter is

only relevant when alg = "EM-sparse". The default grid is set to be alphas =

logspace(-2, 3, 100) to ensure a wide range of α values. Each iteration of the

EM algorithm uses the previous α’s parameter estimates as a warm-start to the

EM algorithm. The grid search will stop when all of the values in alphas are used

for estimation or when a column of the estimated loadings Λ̂ becomes entirely 0.

This will occur if α is too high. Single ℓ1-norm penalty parameters can be used as

well as vectors.

• alg: The choice of estimation algorithm. Options include:
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- "PCA": principal components analysis (PCA) for static factors (Stock and

Watson, 2002);

- "2Stage": the two-stage framework of PCA plus Kalman filter/smoother

(Giannone et al., 2008);

- "EM": The quasi-maximum likelihood approach using the EM algorithm to

handle arbitrary patterns of missing data (Bańbura and Modugno, 2014);

- "EM-sparse": The novel sparsified EM approach allowing LASSO regularisa-

tion on factor loadings (Chapter 4). This is the default.

• err: The choice of distribution for idiosyncratic residuals. Options include:

- "IID" for IID white noise residuals and this is the default.

- "AR1" for AR(1) residuals. It is recommended to use IID errors for computa-

tional efficiency. See Appendix D.1 for details.

• kalman: The choice of Kalman filter and smoother equations to use. Options

include:

- "multivariate": classic Kalman filter and smoother equations seen in

Shumway and Stoffer (1982).

- "univariate": univariate treatment (sequential processing) of the multi-

variate equations for fast Kalman filter and smoother seen in Koopman and

Durbin (2000). This is the default.

• store.parameters: A logical parameter indicating whether the estimation output

of parameters and factors should be stored for every value of α considered in

alphas. This parameter is only relevant when alg = "EM-sparse". This may be

useful when checking alternative outputs other than the one for the optimal α.

The default is store.parameters = FALSE.
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• standardize: A logical parameter indicating whether the data should be stan-

dardised or not before estimating the model. The default is standardized =

TRUE.

• max iter: An integer representing the maximum number of EM iterations. The

default is max iter = 100.

• threshold: Tolerance on EM iterates. See equation (4.3.12) in Chapter 4. Default

is threshold = 1e-4.

The function sparseDFM returns an S3 object of class ‘sparseDFM’. This allows

the user to pass the generic functions: print(), summary(), plot(), residuals(),

resids(), fitted(), and predict() to the returned sparseDFM object to display

generic outputs. The predict() function will itself return an S3 object of class

‘sparseDFM forecast’ to allow the user to print() forecast results. There are plenty

of helpful types of plot included in the package to allow the user to visualise estimation

results. For example, the coloured group line plots of Figure 4.5.3 are produced by using

type = "loading.grouplineplot" in plot(). More detail on other plot types will be

provided in the empirical application in the next section.

When called, the S3 object sparseDFM returns a list-of-lists containing the following:

• data: A list containing information on the data used for the model fit. Including

the original data matrix, the initial balanced data matrix from fillNA(), the

fitted values Λ̂F̂ and more.

• params: A list containing the estimated model parameters of Â, Λ̂, Σ̂u and Σ̂ϵ.

• state: A list containing the estimated states and state covariances for each time

point considered. I.e. the factors and factor covariances, along with AR(1) errors

and covariances if err = "AR1".
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• em: A list containing information about the convergence of the EM algorithm and

ℓ1-norm penalty parameter tuning.

• alpha.output: Parameter and state outputs for each ℓ1-norm penalty parameter

in alphas. Only stored if store.parameters = TRUE.

The package also includes eight other functions the user can employ. A brief description

of all functions are provided in Table D.2 of Appendix D.2.

6.2.3 Empirical Application: Exploring UK Inflation

This case study focuses on a small subset of quarterly CPI (consumer price inflation) index

data for the UK taken from the Office from National Statistics’ (ONS) website2. The data

contains 36 variables of different classes of the inflation index and 135 observations from

1989 Q1 to 2022 Q3. The purpose of this small, 36 variable example is to demonstrate

the core functionality and the ability to graphically display results with the sparseDFM

package. The data itself is provided with the package, as well as the Trade in Goods

dataset used in Case Study 1 of Chapter 4 as a larger dataset example.

The data can be loaded directly into the R environment using:

R> data <- inflation

Before we fit a model, it is worthwhile to first perform some exploratory data analysis.

Two main properties to look out for when working with dynamic factor models are

the amount of missing data present and if the data series look stationary or not. The

function missing data plot() allows the user to visualise where missing data is present:

R> missing_data_plot(data)

We can see that 6 of the 36 variables have missing data towards the start of the sample.

2We use the Q4 2022 release (benchmarked to 2015=100) from https://www.ons.gov.uk/economy/

inflationandpriceindices/datasets/consumerpriceindices

https://www.ons.gov.uk/economy/inflationandpriceindices/datasets/consumerpriceindices
https://www.ons.gov.uk/economy/inflationandpriceindices/datasets/consumerpriceindices
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In a DFM, we assume the latent factors to follow a stationary VAR(1) process

and hence we require the input data to be stationary. After exploration it appears

the inflation data is stationary in first-differences. Hence, we can apply the function

transformData() and set the stationary transform parameter to represent a first-

difference transform for all variables:

R> new_data <- transformData(data,

stationary_transform = rep(2, ncol(data))))

We store the stationary first-difference data as the variable new data. The stationary transform

parameter is a vector of length matching the number of variables in the data that con-

tains a stationary transform index for each variable with the options: 1 (no change), 2

(first-difference), 3 (second-difference), 4 (log-first-difference), 5 (log-second-difference),

6 (growth rate) or 7 (log growth rate). The returned transformed data set is of the

same dimension as the original data with NA where missing data is, for example, the

first row of new data will all be NA as we do not have an observed 1988 Q4 value to

difference with.
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Now we have a stationary data set, the next step would be to determine the number

of factors to use with our DFM. To do this we can apply the function tuneFactors()

that selects the best number of factors to use based on Bai and Ng (2002) information

criteria:

R> tuneFactors(new_data, type = 2, standardize = TRUE,

r.max = min(15,ncol(X)-1), plot = TRUE)
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This function plots the information criteria (IC) values (left) and the proportion of

variance explained based on PCA (right) with the best number of factors, r = 3,

highlighted in red. The IC used by default is type 2. See Bai and Ng (2002) for types 1

and 3.

Using 3 factors, it is now time to fit a sparse DFM to the (stationary) data using

the default grid of LASSO tuning parameters and the default (exact) idiosyncratic error

assumption (IID) and Kalman technique (univariate):

fit.sdfm <- sparseDFM(new_data, r = 3, alphas = logspace(-2,3,100),

alg = "EM-sparse", err = "IID", kalman = "univariate")

To get a summary of the model fit type summary(fit.sdfm). For information on the

tuning of the LASSO parameter using BIC it is possible to do:
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# The best alpha chosen

fit.sdfm$em$alpha_opt

#> [1] 0.4641589

# Plot the BIC values for each alpha

plot(fit.sdfm, type = "lasso.bic")
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40
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30

log10(α)

B
IC

For the purposes of nowcasting or interpolation of missing data, an estimated series,

Λ̂F̂t, can be extracted from the sparse DFM fit using:

# Estimated series 1 from sparse DFM

series <- 1

estimate <- fit.sdfm$data$fitted.unscaled[,series]

This estimate is re-scaled back to the original series 1 scale. To get a plot of the

estimated factors, use the following:

# Plot estimated factors

plot(fit.sdfm, type = "factor")

To visualise the estimated loadings it is possible to make line plots (as seen in Chapter

4) and also a heatmap using:
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# Make a heatmap of the estimated loadings

plot(fit.sdfm, type = "loading.heatmap")
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Figure 6.2.1: Heatmap of the estimated factor loadings in the inflation empirical example.

which shows the presence of sparse loadings with white squares (see Figure 6.2.1). It is

possible to set use.series.names = FALSE in the plots to use numbers instead of long

variable names.



Chapter 7

Conclusions and Further Work

Temporal disaggregation and nowcasting are both imperative techniques for the produc-

tion and understanding of official statistics. In today’s rapidly evolving economy, the

abundance of administrative and alternative high-frequency data sources necessitates

the extension of these techniques to handle high-dimensional data. This thesis has

introduced innovative methodologies with the endeavour to achieve exactly this. In

closing, a summary of the key findings from each chapter is provided, accompanied by a

thoughtful discussion on the remaining open challenges and potential avenues for future

research. While the work presented in this thesis is primarily empirical in nature, areas

for theoretical exploration are also identified.

Chapter 3 introduced a novel Sparse Temporal Disaggregation (spTD) framework

that extends the well-established Chow-Lin family (Chow and Lin, 1971) of temporal

disaggregation methods to operate in settings where the number of indicators used

can exceed the low-frequency sample size. A key aspect of the framework is the

incorporation of a regulariser penalty function on the regression parameters which

operates alongside the usual GLS cost function. Particular focus is put on the popular

ℓ1 (LASSO) penalty (Tibshirani, 1996) due to its benefits in terms of interpretability

and computational robustness. Additionally, the adaptive LASSO (Zou, 2006) weighting

189
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scheme is presented as an effective approach for handling correlated indicator series that

violate the irrepresentability condition (Bühlmann and Van De Geer, 2011). To find

estimates, the efficient LARS algorithm of Efron et al. (2004) is employed to provide an

initial screening of indicator series by constructing unique solution paths with varying

sparsity levels controlled by a BIC tuning routine (Schwarz, 1978; Reid et al., 2016).

An additional re-fitting procedure is then used to reduce the bias in the LARS solution

paths.

The benefits of the proposed method are explored through extensive simulation

studies and empirical applications to real-data. The simulation studies reveal the superior

performance of spTD compared to the traditional Chow-Lin method across multiple

aspects, including accuracy in estimating the true disaggregate series, recovery of sparse

regression coefficients, and recovery of AR(1) residual parameters. Additionally, the re-fit

procedure, employed to mitigate bias in LASSO parameter estimates, further enhances

the accuracy of spTD. Applying spTD to the quarterly-to-monthly disaggregation of

UK GDP data permitted the inclusion of alternative indicator sources, facilitating the

interpretation of their relevance in generating a monthly GDP series. Unlike previous

approaches, no restriction is placed on the number we can include. Furthermore, an

additional application involving the derivation of the quarterly service turnover index in

Italy demonstrates the improved performance of spTD over competing methods typically

used for this problem. This application highlights the potential stability and accuracy

gains associated with working with a fixed support of indicators.

The generality of the proposed GLS penalisation framework allows regularisation

functions that are able to take a variety of forms. Future work may look to extend the

analysis to include more informative structured priors. For instance, the exploration of

the group LASSO (Yuan and Lin, 2006) could allow for automatic selection of groups

of related indicators, instead of individual indicators, based on pre-identified economic

factors. Additionally, the fused LASSO (Tibshirani et al., 2005) could be leveraged to
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promote smoothness between estimates by penalising the ℓ1-norm of both the coefficients

and their successive differences. This regularisation approach may effectively preserve

crucial patterns and structures within the data. The latter may help encourage more

stable estimates, a property we found beneficial in the disaggregation of Italian turnover

data in Section 3.6. Similarly, incorporating the stability selection subsampling approach

by Meinshausen and Bühlmann (2010) could contribute to obtaining stable solutions for

the selected indicators within the spTD framework.

While the chapter provided empirical motivations for combining a GLS cost function

with the LASSO for the purpose of high-dimensional temporal disaggregation, future

work could also explore the theoretical motivations. To date, theoretical work for GLS

in the high-dimensional setting has received little attention. However, the recent paper

of Chronopoulos et al. (2022) is the first to establish asymptotic normality results

for their debiased GLS LASSO estimator. Additionally, Kock (2016) shows that the

adaptive LASSO is oracle efficient in stationary and non-stationary autoregressions

but uses more relaxed assumptions than Chronopoulos et al. (2022). This theoretical

analysis of post-selection inference could be used to establish confidence intervals on

the regression coefficients (under regularisation) and thus provide confidence intervals

for the estimated disaggregate series. Currently, confidence intervals for the spTD

methodology just consider variance of the AR(1) residual error and ignore the variance

in regression coefficients. Mapping these GLS LASSO consistency results into the

temporal disaggregation application is an interesting direction for future work.

Chapter 4 formally introduced a class of sparse dynamic factors models (DFMs)

whereby the loading matrices in a regular DFM are constrained to have few non-

zero entries. This parsimonious approach provides greater interpretability, unraveling

the underlying latent factor structure. Unlike previous research, the methodology

presented implements regularisation within an EM algorithm framework, enabling

robust handling of missing data patterns, modelling of temporal dependence in the
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processes, and imposition of weakly informative (sparse) prior knowledge on the factor

loadings. Synthetic experiments showed that in settings where autocorrelation between

factors is moderately persistent, the feedback mechanism inherent in the EM procedure

plays a vital role in accurately recovering the factor loadings and producing precise

forecasts.

To demonstrate the models versatility, the sparse DFM is applied to two large datasets

from different domains. The first an econometrics application nowcasting UK trade in

exported goods, offering a clear economic interpretation of the estimated factors that a

regular DFM struggled to achieve. The second an application into modelling energy

consumption around a University campus. Utilising the sparsity-inducing framework, it

became possible to identify distinctive building profiles, such as those predominantly

active during nighttime, aligning seamlessly with our qualitative intuition. Furthermore,

a forecasting exercise on out-of-sample data, whether 1 or 6 hours ahead, revealed the

superior accuracy of the sparse DFM over alternative methods.

One of the advantages of the ℓ1 regularised EM algorithm is that it can be easily

extended to impose alternative restrictions on parameters, or indeed to encode different

types of sparsity assumptions. Two potential extensions could be to relax the assumption

that the factor loadings remain constant over time, or adopt a group LASSO type

regularisation on the loadings. The former strategy would employ time-varying factor

loadings that have been shown to be more robust when the underlying latent structure

changes over time (Del Negro and Otrok, 2008; Breitung and Eickmeier, 2011). The

latter would enable users to associate factors with pre-defined sub-sets of the observed

series, but still in a somewhat data-driven manner. For instance, in the context of trade

in exported goods, grouping the series based on countries could provide a comprehensive

breakdown of countries to which the UK exports. Similarly, the energy application of

Case Study 2 could consider grouping the series via type of building and encouraging

sparsity at this grouped level, rather than at the building level. This could be particularly
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useful if we consider the application to smart meters at the sub-building, e.g. floor-by-

floor, or room-by-room level. One of the benefits of the ADMM optimisation routine

developed in this work is that it easily extended to these settings.

Ongoing research involves extending the proposed sparse DFM to incorporate weakly

informative group-sparse priors on factor loadings in a neuroscience application modeling

resting state fMRI (functional magnetic resonance imaging) activity across a set of

subjects. The interest lies in whether using sparse groupings associated with anatomical

labels from regions of interest around the brain improve the ability to predict and/or

identify common components in resting state blood flow around the brain activity, and

quantify how this evolves when changing tasks.

Theoretical analysis of the proposed estimation routine is challenging for several

reasons. First, one would need to decide whether to analyse the theoretical minimiser

(QMLE), or the feasible estimate provided by the EM algorithm. Second, we need to

consider the performance as a function of both n and p. For example, Proposition 2

from Barigozzi and Luciani (2022) gives theoretical results for the consistency of factor

loadings for the regular unregularised QMLE and for a dense DFM model. A further

line of work would be to generalise these results to the sparse DFM setting, for instance,

can we show a result analogous to Theorem 1 in Bai and Li (2016), that shows the

QMLE estimator of the loadings is equivalent to the OLS estimator applied to the true

factors? The recent paper of Despois and Doz (2023) investigates consistency results of

the sparse PCA. It is of interest to make a formal theoretical comparison between the

sparse PCA based approaches and the QMLE approach presented here.

Chapter 5 extends the regularised EM algorithm framework of the sparse DFM to

address the modelling of mixed-frequency time series data. This extended framework

enables exact temporal disaggregation of lower-frequency variables by incorporating a

cumulator variable (Harvey, 1990). The cumulator variable systematically samples latent

disaggregate targets over each low-frequency period to ensure temporal aggregation
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constraints are met. Disaggregate targets are treated as latent states in the joint state

space model and can be explicitly estimated by the univariate Kalman filter and smoother

equations (Koopman and Durbin, 2000). A synthetic study revealed the new framework

is able to compete in terms of temporal disaggregation with spTD while accurately

capturing the underlying factor structure when the data is assumed to follow a sparse

DFM. The model provided an efficient way for the monthly estimation of the 11 main

subdivisions of the service sector the UK imports and exports worldwide. Practitioners

can incorporate a wide range of indicators into the model to assess estimation robustness,

and the induced sparse loadings provide an easily interpretable measure of indicator

relevance. The model’s monthly estimates of total trade in service are compared against

the actual published figures from the ONS, revealing very similar dynamics.

The state-space framework proposed in Chapter 5 lays the foundations for a versatile

way to jointly perform temporal disaggregation and nowcasting of high-dimensional

mixed-frequency data. This flexible framework opens up numerous possibilities for

future extensions and advancements. The assumption of white noise errors for the latent

disaggregate series regression onto the factors (Equation 5.3.3) is fairly restrictive. This

naive assumption is likely to be a reason why our monthly estimates for the service

subdivisions are so smooth and align so well with the ONS published total figures

(as they use a smoothing-based benchmark method for estimation). Errors could be

modelled as AR(1) processes by adding them as latent states following methodology

laid out in Bańbura and Modugno (2014), however, this approach would slow down

computation of the Kalman filter and smoother equations significantly as highlighted

in Appendix D.1. An appealing alternative, proposed by Jungbacker et al. (2009), is

to employ a switching method that dynamically switches between the Bańbura and

Modugno (2014) approach and the Reis and Watson (2010) approach. The latter models

the autoregressive component by including lags of the variable in the measurement

equation, but only if the variable is available at time t. When the amount of missing
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data is small, this can lead to substantial computational gains.

As we are modelling a multivariate output of disaggregate targets, it is worth

considering potential interdependencies among targets and the necessary constraints

that the cross-section must satisfy. To address the interdependencies, one approach is to

assume a stationary VAR(1) model for the error process. This means that each target

residual may interact linearly with both its own past values as well as those of every

other included series; allowing more complex inter-temporal correlations among targets.

Given the number of parameters grows quadratically with the number of series included

in the model, it may be beneficial to induce sparsity into the VAR(1) matrix. An

insightful paper by Hecq et al. (2022) incorporates a regulariser that permits hierarchical

sparsity patterns in the VAR(1) matrix. This regulariser prioritises the inclusion of

coefficients based on the recency of the information they contain. Leveraging a similar

strategy in the joint model of Chapter 5 could yield significant advantages.

To address the cross-sectional additive constraints among the targets, we can augment

the state space framework by including an additional cumulator variable. This variable

would sum contemporaneously across targets to match an aggregate figure. For example,

in the context of subdivisions of services and commodities, we can constrain them

to equal the total trade figure. Moreover, given recent interest in producing more

disaggregate estimates for regional economies in the UK (Koop et al., 2020b), the

framework proposed in this chapter with an extension for contemporaneous constraints

offers an alternative approach to ensure that the regional GDP figures sum up to the

national GDP figure.

The chapter concluded with an intervention study using an ITSM that provided

interpretable measures on the Brexit effects on UK-EU trade. There is room for

refinement and enhancement of the ITSM approach. For example, multi-group analysis

(Linden, 2015) can be conducted on the different commodities the UK trades to see

if certain goods have been effected more. Similarly, the multi-group analysis can be
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conducted on the different subdivisions of the service sector. Also, multi-intervention

analysis (Bernal et al., 2017) may be conducted using multiple dates to test significance

of change at, e.g. the Brexit referendum in June 2016 or the start of the coronavirus

pandemic in March 2020. Analysis should be conducted again in the next few years to

get a more accurate assessment of long-run effects.

To conclude, worldwide events in the past few years has revealed the importance

of possessing a timely and comprehensive dataset that encompasses all facets of our

economy. The research into developing robust statistical models that can accurately

estimate the current state of the economy is ever growing, with a vast amount of

open problems still to consider. The methodologies and frameworks presented in this

thesis aim to make significant contributions to this pivotal field. By integrating high-

dimensional statistics into the domains of temporal disaggregation and nowcasting, with

a focus on interpretability, this research endeavors to facilitate transparency, accuracy,

and a better understanding of policy effects and shocks within the dynamic landscape

of today’s economy.



Appendix A

Appendix to Chapter 2

A.1 Quadratic Optimisation with a Linear Equality

Constraint for Temporal Disaggregation

Define a general quadratic minimisation problem with a linear equality constraint as

min
y

f(y) = (y − z)⊤B(y − z)

s.t. ȳ = Cy ,

where it is assumed that

• y ∈ Rn×1 is unknown,

• z ∈ Rn×1 and ȳ ∈ Rnl×1 are known,

• B ∈ Rn×n is a known symmetric, non-singular matrix to ensure the objective

function is convex and has a unique minimum,

• C ∈ Rnl×n is a known constraint matrix with full row rank to ensure the constraint

function is well-defined with a unique solution for y that satisfies the constraint.

197
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The solution of the constrained quadratic minimisation problem can be solved by

minimising the Lagrangian function defined by

L(y,λ) = f(y)− 2λ⊤(ȳ −Cy)

= y⊤By + z⊤Bz − 2y⊤Bz −−2λ⊤(ȳ −Cy) ,

with respect to y and the vector of Lagrange multipliers λ ∈ Rnl×1. Taking partial

derivatives of L := L(y,λ) with respect to y and λ and setting equal to zero, we obtain

the equations:

∂L
∂y

= 2By − 2Bz + 2C⊤λ = 0 ; (A.1.1)

∂L
∂λ

= 2Cȳ − 2y = 0 . (A.1.2)

Since B is invertible, equation (A.1.1) can be re-arranged to obtain

y = z −B−1C⊤λ . (A.1.3)

This can be substituted into equation (A.1.2) and re-arranged to obtain the solution for

λ:

λ =
(
CB−1C⊤)−1

(Cz − ȳ) ,

where it has been assumed that CB−1C⊤ is invertible. Substituting the solution for λ

into (A.1.3) we obtain the solution for y as

y = z +B−1C⊤ (CB−1C⊤)−1
(ȳ −Cz) .

This is the general solution for the estimate of the latent disaggregate series found in

the temporal disaggregation methods discussed in Chapter 2.1. Specifically, the methods

differ according to:
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• Boot et al. (1967) smoothing assume z = 0 (no indicators) and B = D⊤D, where

D is the matrix of the first-differences defined in equation (2.1.2);

• Stram andWei (1986) smoothing assume z = 0 (no indicators) andB = D⊤V −1
d D,

where Vd is the covariance matrix of first-difference process {yt − yt−1} that is

assumed to follow an ARIMA process;

• Denton (1971) smoothing assume z = x (a single indicator) and B = D⊤D for

the additive variant or B = Z̃−1D⊤DZ̃−1 for the proportional variant where

Z̃ = diag(z);

• Chow and Lin (1971) family of regression methods assume z = Xβ (multiple

indicators X ∈ Rm×p and generalised least-squares estimator β ∈ Rp×1) and

B = V −1, where V is the covariance matrix of the residual process {yt − β⊤Xt}

that is assumed to follow an AR(1) process in Chow and Lin (1971), a random

walk process in Fernandez (1981), and an ARIMA(1,1,0) process in Litterman

(1983).

A.2 Multivariate and Univariate Kalman Filter and

Smoother Equations

This appendix provides the classic multivariate Kalman filter and smoother (KFS)

equations of Shumway and Stoffer (1982) and the fast univariate treatment KFS equations

of Koopman and Durbin (2000) that can be used to estimate the mean and covariance

of the latent states in a state space framework based on observations of the system. The

state space framework of focus in this thesis is the dynamic factor model (DFM) given
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by equations

Xt = ΛFt + ϵt , ϵt ∼ N (0,Σϵ) , (A.2.1)

Ft = AFt + ut , ut ∼ N (0,Σu) , (A.2.2)

as introduced in Chapter 2.2.4, where the latent states are the factors, Ft. Define the

following notation for the conditional mean and covariances of the state:

at|s = E [Ft|Ωs] ,

Pt|s = Var (Ft|Ωs) ,

Pt,t−1|s = Cov(Ft,Ft−1|Ωs) ,

conditional on all information we have observed up to a time s, denoted by Ωs.

Filtering aims to make recursive predictions of the mean and covariance of the state

at t given information up to t − 1, i.e. finds at|t−1 and Pt|t−1 starting from t = 1 to

t = n. Smoothing then works backwards in time to find smoothed estimates of the mean

and covariance of the state given all information, i.e. finds at|n and Pt|n starting from

t = n to t = 1.

A.2.1 Multivariate KFS Equations - Shumway and Stoffer

(1982)

The classic approach to filtering and smoothing found in Shumway and Stoffer (1982)

and detailed in Harvey (1990) is based on considering the contribution of every variable

in the observational vector at each successive time point, therefore this is described as a

multivariate approach..

Assuming the set of all parameters θ = (Λ,A,Σϵ,Σu) in (A.2.1)-(A.2.2) and initial
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conditions a0|0 and P0|0 are known, the filtering equations for t = 1, . . . , n are

at|t−1 = Aat−1|t−1 (predicted factor estimate)

Pt|t−1 = APt−1|t−1A
⊤ +Σu (predicted factor covariance)

vt = Xt −Λat|t−1 (innovation error)

Ct = ΛPt|t−1Λ
⊤ +Σϵ (innovation covariance)

Kt = Pt|t−1Λ
⊤C−1

t (Kalman gain)

at|t = at|t−1 +Ktvt (updated factor estimate)

Pt|t = Pt|t−1 −KtΛPt|t−1 (updated factor covariance)

and the smoothing equations for t = n, . . . , 1 are

Jt−1 = Pt−1|t−1A
⊤(Pt|t−1)

−1 (smoother gain)

at−1|n = at−1|t−1 + Jt−1(Ft|n −Aat−1|t−1) (smoothed factor estimate)

Pt−1|n = Pt−1|t−1 + Jt−1(Pt|n − Pt|t−1)J
⊤
t−1 (smoothed factor covariance)

where an|n and Pn|n are initialised based on the last filter estimates. At any stage where

an observation Xt,i is missing at time t, this variable is omitted from the calculation of

the Kalman gain Kt. The lagged-covariance matrix Pt,t−1|n is found using backwards

recursions on:

Pt−1,t−2|n = Pt−1|t−1J
⊤
t−2 + Jt−1(Pt,t−1|n −APt−1|t−1)J

⊤
t−2 ,

for t = n, . . . , 2, where

Pn,n−1|n = (I −KnΛ)APn−1|n−1 .

The filtering equations require the covariance of innovation errors Ct to be inverted.
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This can be difficult when p is large. Harvey (1990) show this inversion can be made

easier by making use of the Woodbury identity and find:

C−1
t = Σ−1

ϵ −Σ−1
ϵ Λ(P−1

t|t−1 +Λ⊤Σ−1
ϵ Λ)−1Λ⊤Σ−1

ϵ , (A.2.3)

which is valid when Σϵ and Pt|t−1 are non-singular. This inversion is easy to evaluate if

Σϵ is diagonal (as assumed in exact factors models). In cases when p is much larger

than r, as is the case in the majority of DFM problems, the inversion of Pt|t−1 is a much

easier operation than the inversion of Ct directly.

Harvey (1990) further show that the determinant of Ct can be written as:

|Ct| = |Σϵ| × |Pt|t−1| × |P−1
t|t−1 +Λ⊤Σ−1

ϵ Λ| . (A.2.4)

Both (A.2.3) and (A.2.4) are used in the calculation of the log-likelihood of the innova-

tions:

logL(X;θ) = −1

2

n∑
t=1

(
pt log(2π) + log |Ct|+ vtC

−1
t vt

)
.

where pt is the number of variables observed (not-missing) at t. Note, this log-likelihood

is used to determine convergence of the EM algorithm approach of Bańbura and Modugno

(2014).

A.2.2 Univariate KFS Equations - Koopman and Durbin (2000)

The classic KFS equations can be slow when p is large. Since it is assumed Σϵ is diagonal,

we can equivalently filter the observations Xt one element at a time, as opposed to all

together as in the classic approach (Durbin and Koopman, 2012; Koopman and Durbin,

2000). As matrix inversion becomes scalar divisions, huge speedups are possible. This

approach can be described as a univariate treatment or sequential processing of the

classic multivariate equations.
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Define the individual elements Xt = (Xt,1, . . . , Xt,p)
⊤, Λ = (Λ⊤

1 , . . . ,Λ
⊤
p )

⊤, Σϵ =

diag(σ2
ϵ1, . . . , σ

2
ϵp) and define new notation similar to that found in Durbin and Koopman

(2012):

at,i = E[Ft,i|Ωt−1, Xt,1, . . . , Xt,i−1] ,

at,1 = E[Ft,1|Ωt−1] ,

Pt,i = Var[Ft,i|Ωt−1, Xt,1, . . . , Xt,i−1] ,

Pt,1 = Var[Ft,1|Ωt−1] ,

for i = 1, . . . , p and t = 1, . . . , n.

The univariate treatment (Koopman and Durbin, 2000) iterates the below equations.

These update equations are equivalent in form to the multivariate ones of the classic

Shumway and Stoffer (1982) approach except that the t subscript now becomes a t, i

subscript, and the t|t subscript now becomes t, i+ 1. This means that we are filtering

spatiotemporally, processing one i after another in a sequential manner, instead of

updating all p measurements at once:

vt,i = Xt,i −Λiat,i,

Ct,i = ΛiPt,iΛ
⊤
i + σ2

ϵ,i,

Kt,i = Pt,iΛ
⊤
i C

−1
t,i ,

at,i+1 = at,i +Kt,ivt,i,

Pt,i+1 = Pt,i −Kt,iCt,iK
⊤
t,i,

for i = 1, . . . , p and t = 1, . . . , n. If Xt,i is missing or Ct,i is zero, omit the term containing
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Kt,i. The transition to t+ 1 is given by the following prediction equations:

at+1,1 = Aat,p+1,

Pt+1,1 = APt,p+1A
⊤ +Σu.

These prediction equations are exactly the same as the multivariate ones (i.e., predictions

are not treated sequentially but all at once). Univariate treatment is perhaps better

called univariate updates plus multivariate predictions.

Unlike Shumway and Stoffer (1982), the measurement update comes before the

transition; however, is it possible to revert to doing the transition first if the initial state

means and covariances start from t = 0 instead of t = 1. Likewise, univariate smoothing

is defined by:

Lt,i = Im −Kt,iΛi,

rt,i−1 = Λ⊤
i C

−1
t,i vt,i +L⊤

t,irt,i,

Nt,i−1 = Λ⊤
i C

−1
t,i Λi +L⊤

t,iNt,iLt,i,

rt−1,p = A⊤rt,0,

Nt−1,p = A⊤Nt,0A,

for i = p, . . . , 1 and t = n, . . . , 1, with rn,p and Nn,p initialised to 0. Again, if Xt,i is

missing or Ct,i is zero, drop the terms containing Kt,i. Finally, the equations for at|n

and Pt|n are:

at|n = at,1 + Pt,1rt,0,

Pt|n = Pt,1 − Pt,1Nt,0Pt,1.

These results will be equivalent to at|n and Pt|n from the classic multivariate approach,
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yet obtained with substantial improvement in computational efficiency.

The log-likelihood for the above filter (Durbin and Koopman, 2012; Koopman and

Durbin, 2000) is given below:

logL(X;θ) = −1

2

n∑
t=1

p∑
i=1

ιt,i
(
log(2π) + log |Ct,i|+ v⊤t,iC

−1
t,i vt,i

)
= −1

2

n∑
t=1

p∑
i=1

ιt,i

(
log(2π) + logCt,i +

v2t,i
Ct,i

)
, (A.2.5)

as Ct,i and vt,i are scalars. Here, ιt,i is zero if Xt,i is missing or Ct,i is zero, or one

otherwise. This log-likelihood (A.2.5) is used to determine convergence of the EM

algorithm in the sparse DFM framework of Chapter 4.
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Appendix to Chapter 3

B.1 Indicator Data Description for Section 3.6

This appendix presents a detail of the 143 predictors adopted for Case Study 2 of

disaggregating the quarterly index of service turnover in Italy. The full data set is

divided into three sets representative of the three main sources: Monthly Business

Survey (BS), Asso-Aeroporti (AA), Industrial Turnover Indices (IT). These are found

in the subsequent tables: Table B.1.1, B.1.2 and B.1.3.

B.2 Indicators Selected in stable ℓ1-spTD for Section

3.6

This appendix shows the selection results for fixing the number of predictors equal to 8

and 24 in ℓ1-spTD. The two parameters are in line with the minimum and the maximum

number of indicators selected in one time and occurred respectively in 2016:Q4 and

2021:Q2. Tables B.2.1 and B.2.2 respectively show the selected indicators across the 21

disaggregation periods and include those selected at least 5 times. Figures B.2.1 and

B.2.2 then visualise this with red = BS, yellow = AA, orange = IT data sets.

206
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Table B.1.1: Monthly Business Survey - The Table reports 56 series downloaded related
to Business survey (BS) in transportation and storage (NACE H) and land transport
and transport via pipelines (NACE H49): balance (s) and frequency of reply marked as
improved/increased (a), remained unchanged (n) and deteriorated (b) on 7 questions.

sh a/ah a/nh a/ bh a business situation development over the past 3 months
sh49 a/ah49 a/nh49 a/bh49 a balance/ improved /remained unchanged/deteriorated

sh d/ah d/nh d/bh d evolution of the demand over the past 3 months
sh49 d/ah49 d/nh49 d/bh49 d balance/increased/remained unchanged/decreased

sh p/ah p/nh p/bh p expectations of the demand over the next 3 months
sh49 p/ah49 p/nh49 p/bh49 p balance/increased/remained unchanged/decreased

sh o/ah o/nh o/bh o expectations of the employment over the next 3 months
sh49 o/ah49 o/nh49 o/bh49 o balance/increased/remained unchanged/decreased

sh z/ah z/nh z/bh z expectations of the prices over the next 3 months
sh49 z/ah49 z/nh49 z/bh49 z balance/increased/remained unchanged/decreased

sh g/ah g/nh g/bh g evolution of the employment over the past 3 months
sh49 g/ah49 g/nh49 g/bh49 g balance/increased/remained unchanged/decreased

sh i/ah i/nh i/bh i expectations of the Italian economic situation
over the next 3 months

sh49 i/ah49 i/nh49 i/bh49 i balance/increased/remained unchanged/decreased

Table B.1.2: Asso-Aeroporti - The Table reports 18 monthly series downloaded from
Assaeroporti (AA).

air mcnz national commercial flight movements
air mcin international commercial flight movements
air mcue intra-EU (Switzerland and UK included) commercial flight movements
air mct total commercial flight movements (air mcnz+ air mcin)
air mcav general aviation and other movements
air mctt total commercial flight movements (air mcnz+air mcin+air mcav)
air pnz national passengers
air pin international passengers
air pue intra-EU (Switzerland and UK included) passengers
air ptr transit passengers
air pt total commercial passengers (air pnz+air pin+air pue)
air pav general aviation and other passengers
air ptt total passengers
air cma avio cargo goods
air cms surface cargo goods
air cmt total cargo goods
air cpt mail cargo
air ctt total cargo
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Table B.1.3: Turnover in Industry The Table reports all 69 monthly series representative
of the Industrial Turnover Indices (IT), The list includes the tern total/domestic/foreign
turnover

fit int/fid int/fie int intermediate goods
fit str/fid str/fie str instrumental goods
fit cdu/fid cdu/fie cdu durable goods
fit cnd/fid cnd/fie cnd non-durable goods
fit cto/fid cto/fie cto consumer goods
fit ene/fid ene/fie ene energy goods
fit ind/fid ind/fie ind total industry (NACE B to E)
fit man/fid man/fie man total industry less energy (NACE B to E less energy)
fit B/fid B/fie B mining and quarrying (NACE B)
fit C/fid C/fie C manufacturing (NACE C)
fit CA/fid CA/fie CA food, beverages and tobacco (NACE CA)
fit CB/fid CB/fie CB textiles, apparel and leather (NACE CB)
fit CC/fid CC/fie CC wood, paper and printing (NACE CC)
fit CD/fid CD/fie CD coke, and refined petroleum (NACE CD)
fit CE/fid CE/fie CE chemicals (NACE CE)
fit CF/fid CF/fie CF pharmaceuticals (NACE CF)
fit CG/fid CG/fie CG plastics non-metallic (NACE CG)
fit CH/fid CH/fie CH metals (NACE CH)
fit CI/fid CI/fie CI computers and electronic (NACE CI)
fit CJ/fid CJ/fie CJ electrical products (NACE CJ)
fit CK/fid CK/fie CK machinery and equipment (NACE CK)
fit CL/fid CL/fie CL transport equipment (NACE CL)
fit CM/fid CM/fie CM other manufacturing (NACE CM)

Indicator Dataset N. of times selected Indicator Dataset N. of times selected
fit CA (23) IT 21 fie CK (29) IT 8
fie str (14) IT 14 bh49 d (8) BS 7
air 13 (21) AA 14 air 35 (20) AA 6
air 27 (18) AA 12 sh a (1) BS 5
ah49 z (10) BS 9 nh a (2) BS 5
fid CB (25) IT 9 ah49 o (9) BS 5
fie CI (28) IT 9 nh49 i (11) BS 5
fie CA (24) IT 8

Table B.2.1: Selected indicators across the 21 sparse disaggregations. Number in brackets
refer to the indicator on the x-axis of Figure B.2.1.
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Figure B.2.1: Indicators selected when fixing the number of indicators selected to be 8.
Refer to Table B.2.1 for the indicator on the x-axis.

Indicator Dataset N. of times selected Indicator Dataset N. of times selected
fie CA (69) IT 21 bh o (13) BS 10
fit B (62) IT 20 air 15 (49) AA 10
fid ene (65) IT 20 air 19 (51) AA 10
ah49 z (37) BS 17 air 33 (55) AA 10
air 29 (54) AA 16 fie B (66) IT 9
fit CI (77) IT 16 nh p (9) BS 8
bh49 p (34) BS 15 bh g (20) BS 8
bh49 i (45) BS 15 ah a (2) BS 7
fit CH (74) IT 14 ah49 o (35) BS 7
nh49 z (38) BS 13 fid CB (70) IT 7
air 23 (53) AA 13 nh a (3) BS 6
fie CI (79) IT 13 sh z (14) BS 6
sh49 i (43) BS 12 ah i (21) BS 6
nh49 p (33) BS 11 air 13 (48) AA 6
nh49 g (41) BS 11 fie CK (81) IT 6
air 21 (52) AA 11 fie CM (83) IT 6
fit CA (68) IT 11 nh d (7) BS 5
fie CC (71) IT 11 bh d (8) BS 5
fie CH (76) IT 11 fie CL (82) IT 5

Table B.2.2: Selected indicators across the 21 sparse disaggregations. Number in brackets
refer to the indicator on the x-axis of Figure B.2.2.
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Figure B.2.2: Indicators selected when fixing the number of indicators selected to be 24.
Refer to Table B.2.2 for the indicator on the x-axis.
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Appendix to Chapter 4

C.1 Maximisation Step Derivations for Section 4.3.1

This appendix derives the parameter estimates found in the maximisation step of the

EM algorithm in Section 4.3.1 of Chapter 4. Similar derivations can be found in the

appendix of Bańbura and Modugno (2014). We wish to maximise the conditional

expected log-likelihood:

E [logL(X,F ;θ)|Ωn] =− 1

2
log |P0| − tr

{
P−1

0 E
[
(F0 −α0)(F0 −α0)

⊤|Ωn

]}
(C.1.1)

− n

2
log |Σu| −

1

2

n∑
t=1

tr
{
Σ−1

u E
[
utu

⊤
t |Ωn

]}
(C.1.2)

− n

2
log |Σϵ| −

1

2

n∑
t=1

tr
{
Σ−1

ϵ E
[
ϵtϵ

⊤
t |Ωn

]}
. (C.1.3)

We refer to E [logL(X,F ;θ)|Ωn] just asE to make notation easier. In each derivation we

use the linearity of conditional expectation: Cov(X, Y |A) = E(XY |A)−E(X|A)E(Y |A)

for two random variables X, Y and non-zero event A. We also use the derivative property

∂(log |Z|)/∂(Z−1) = −Z for a matrix Z. Recall, we define the conditional mean and

211
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covariances of the state as:

at|n = E[Ft|Ωn] ,

Pt|n = Var[Ft|Ωn] ,

Pt,t−1|n = Cov[Ft,Ft−1|Ωn] ,

conditional on all information we have observed up to n, denoted by Ωn, and let

St|n = at|na
⊤
t|n + Pt|n, and St,t−1|n = at|na

⊤
t−1|n + Pt,t−1|n.

Expanding out the conditional expectation in the initial state distribution part

(C.1.1) we obtain:

E[(F0 −α0)(F0 −α0)
⊤|Ωn] = E[F0F

⊤
0 − 2F0α

⊤
0 +α0α

⊤
0 |Ωn]

= E[F0F
⊤
0 |Ωn]− 2E[F0|Ωn]α

⊤
0 +α0α

⊤
0

= E[F0|Ωn]E[F⊤
0 |Ωn] + Var [F0|Ωn]− 2E[F0|Ωn]α

⊤
0 +α0α

⊤
0

= a0|na
⊤
0|n + P0|n − 2a0|nα

⊤
0 +α0α

⊤
0

= S0|n − 2a0|nα
⊤
0 +α0α

⊤
0 .

Differentiating E with respect to α0 and P−1
0 we obtain:

∂E

∂α0

= −1

2
P−1

0

∂

∂α0

E[(F0 −α0)(F0 −α0)
⊤|Ωn] = −1

2
P−1

0

(
−2a0|n + 2α0

)
∂E

∂P−1
0

=
1

2
P0 −

1

2
E[(F0 −α0)(F0 −α0)

⊤|Ωn]

=
1

2
P0 −

1

2

(
S0|n − 2a0|nα

⊤
0 +α0α

⊤
0

)
.

Setting both derivatives equal to 0, we first get the result

α̂0 = a0|n ,
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and use this to obtain

P̂0 = P0|n .

Expanding out the expectation in the state transition part (C.1.2) we obtain:

E
[
u⊤

t ut|Ωn

]
= E[(Ft −AFt−1)(Ft −AFt−1)

⊤|Ωn]

= E[FtF
⊤
t − 2FtF

⊤
t−1A

⊤ +AFt−1F
⊤
t−1A

⊤|Ωn]

= E[FtF
⊤
t |Ωn]− 2E[FtF

⊤
t−1|Ωn]A

⊤ +AE[Ft−1F
⊤
t−1|Ωn]A

⊤

= E[Ft|Ωn]E[F⊤
t |Ωn] + Var [Ft|Ωn]

− 2
(
E[Ft|Ωn]E[F⊤

t−1|Ωn]Cov[Ft,F
⊤
t−1|Ωn]

)
A⊤

+A
(
E[Ft−1|Ωn]E[F⊤

t−1|Ωn] + Var[Ft−1|Ωn]
)
A⊤

= St|n − 2St,t−1|nA
⊤ +ASt−1|nA

⊤ .

Differentiating E with respect to A and Σ−1
u we obtain:

∂E

∂A
= −1

2
Σ−1

u

∂

∂A

n∑
t=1

E
[
u⊤

t ut|Ωn

]
= −1

2
Σ−1

u

n∑
t=1

(
−2St,t−1|n + 2ASt−1|n

)
,

∂E

∂Σ−1
u

=
n

2
Σu − 1

2

n∑
t=1

E
[
u⊤

t ut|Ωn

]
=
n

2
Σu − 1

2

(
St|n − 2St,t−1|nA

⊤ +ASt−1|nA
⊤) .

Setting both derivatives equal to 0, we first get the result

Â =

(
n∑

t=1

St−1|n

)−1( n∑
t=1

St,t−1|n

)
,

and use this to obtain

Σ̂u =
1

n

n∑
t=1

[
St|n − Â

(
St−1,t|n

)]
.

Using the selection matrix Wt defined in Section 4.3.1, with the property Xt =
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WtXt + (I −Wt)Xt, we can expand out the expectation in the measurement equation

part (C.1.3) and obtain:

E
[
ϵtϵ

⊤
t |Ωn

]
= E

[
(Xt −ΛFt)(Xt −ΛFt)

⊤|Ωn

]
= E

[(
Wt(Xt −ΛFt) + (I −Wt)(Xt −ΛFt)

)
(
Wt(Xt −ΛFt) + (I −Wt)(Xt −ΛFt)

)⊤|Ωn

]
= E

[
Wt(Xt −ΛFt)(Xt −ΛFt)Wt + (I −Wt)(Xt −ΛFt)(Xt −ΛFt)

⊤Wt

+Wt(Xt −ΛFt)(Xt −ΛFt)
⊤(I −Wt)

+ (I −Wt)(Xt −ΛFt)(Xt −ΛFt)
⊤(I −Wt)|Ωn

]
.

Using the law of iterated expectations:

E[(Xt −ΛFt)(Xt −ΛFt)
⊤|Ωn] = E

[
E[(Xt −ΛFt)(Xt −ΛFt)

⊤|F ,Ωn]|Ωn

]
,

Bańbura and Modugno (2014) show

E[Wt(Xt −ΛFt)(Xt −ΛFt)
⊤(I −Wt)|F ,Ωn] = 0 ,

E[(I −Wt)(Xt −ΛFt)(Xt −ΛFt)
⊤(I −Wt)|F ,Ωn] = (I −Wt)Σϵ(I −Wt) ,

and

E[Wt(Xt −ΛFt)(Xt −ΛFt)
⊤Wt|Ωn] = WtXtX

⊤
t Wt −WtXtE[F⊤

t |Ωn]Λ
⊤Wt

−WtΛE[Ft|Ωn]X
⊤
t Wt

+WtΛE[FtF
⊤
t |Ωn]Λ

⊤Wt .
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Hence, we get the result

E
[
ϵtϵ

⊤
t |Ωn

]
= E[(Xt −ΛFt)(Xt −ΛFt)

⊤|Ωn]

= WtXtX
⊤
t Wt −WtXtE[F⊤

t |Ωn]Λ
⊤Wt −WtΛE[Ft|Ωn]X

⊤
t Wt

+WtΛ
(
E[Ft|Ωn]E[F⊤

t |Ωn] + Var[Ft|Ωn]
)
Λ⊤Wt + (I −Wt)Σ

∗
ϵ(I −Wt)

= WtXtX
⊤
t Wt − 2WtXtat|nΛ

⊤Wt +WtΛSt|nΛ
⊤Wt + (I −Wt)Σϵ(I −Wt)

= Wt

(
XtX

⊤
t − 2Xtat|nΛ

⊤ +ΛSt|nΛ
⊤)Wt + (I −Wt)Σ

∗
ϵ(I −Wt) ,

where Σ∗
ϵ is obtained from the previous EM iteration.

Differentiating E with respect to Λ we obtain:

∂E

∂Λ
= −1

2
Σ−1

ϵ

∂

∂Λ

n∑
t=1

E
[
ϵtϵ

⊤
t |Ωn

]
= −1

2
Σ−1

ϵ

n∑
t=1

Wt

(
−2Xtat|n + 2ΛSt|n

)
Wt .

(C.1.4)

Setting this equal to 0, dividing through by WtΣ
−1
ϵ , and using the identity vec(ABC) =

(C⊤ ⊗ A) vec(B), for matrices A,B and C, we obtain the result

vec(Λ̂) =

(
n∑

t=1

St|n ⊗Wt

)−1

vec

(
n∑

t=1

WtXta
⊤
t|n

)
.

This is the ordinary least-squares estimator for the loadings matrix as in a classic

DFM. The work proposed in Chapter 4 estimates a regularised version of this using an

ADMM algorithm. This ADMM algorithm along with the Λ estimator is fully derived

in Appendix C.2.

Differentiating E with respect to Σ−1
ϵ we obtain:

∂E

∂Σ−1
ϵ

=
n

2
Σϵ−

1

2

n∑
t=1

Wt

(
XtX

⊤
t − 2Xtat|nΛ

⊤ +ΛSt|nΛ
⊤)Wt+(I−Wt)Σ

∗
ϵ(I−Wt) .
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Setting this equal to 0 and subbing in Λ̂ we obtain the result

Σ̂ϵ =
1

n

n∑
t=1

diag

[
Wt

(
XtX

⊤
t − 2Xta

⊤
t|nΛ̂

⊤ + Λ̂St|nΛ̂
⊤
)
Wt + (I −Wt)Σ

∗
ϵ(I −Wt)

]
.

C.2 ADMM Algorithm Derivations for Section 4.3.1

For the ADMM algorithm of Section 4.3.1, used to incorporate ℓ1 regularisation into

the estimation of the loadings parameter Λ, we consider the penalised and augmented

Lagrangian

C(Λ,Z,U ) := −E [logL(X,F ;θ)|Ωn] + α∥Z∥1 +
ν

2
∥Λ−Z +U∥2F , (C.2.1)

where Z ∈ Rp×r is an auxiliary variable, U ∈ Rp×r are the (scaled) Lagrange multipliers

and ν is the scaling term. The derivation for minimising with respect to Z and U

are standard and can be found in Boyd et al. (2011). We now go into detail on the

minimisation with respect to Λ for iteration (k + 1) of the ADMM algorithm:

Λ(k+1) = argmin
Λ

C(Λ,Z(k),U (k)) .

We can re-write the Lagrangian (C.2.1) as

C(Λ,Z,U) ∝ −E [logL(X,F ;θ)|Ωn] +
ν

2
tr
(
ΛΛ⊤ − 2(Z(k) − u(k))Λ⊤) ,

by dropping terms not involving Λ and using the property tr(AB) = tr(BA) for matrices

A and B. Taking the derivative and using (C.1.4) we obtain

∂C(Λ,Z(k),U (k))

∂Λ
= − ∂

∂Λ
E [logL(X,F ;θ)|Ωn] +

ν

2
tr
(
2Λ− 2(Z(k) − u(k))

)
=

1

2
Σ−1

ϵ

n∑
t=1

Wt

(
−2Xtat|n + 2ΛSt|n

)
Wt +

ν

2
tr
(
2Λ− 2(Z(k) − u(k))

)
.
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Setting this equal to 0 and re-arranging for Λ we have

n∑
t=1

WtΣ
−1
ϵ WtΛSt|n + νΛ =

n∑
t=1

WtΣ
−1
ϵ WtXtat|n + ν(Z(k) −U (k)) .

Using the identity vec(ABC) = (C⊤ ⊗ A) vec(B), for matrices A,B and C, we obtain

the result

vec(Λ(k+1)) =

(
n∑

t=1

St|n ⊗WtΣ
−1
ϵ Wt + νIpr

)−1

vec

[ n∑
t=1

WtΣ
−1
ϵ WtXta

⊤
t|n+ν(Z

(k)−U (k))

]
.
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Appendix to Chapter 6

D.1 An Extension for AR(1) Idiosyncratic Errors

The package sparseDFM allows the extension for the state-space framework (2.2.2)-(2.2.3)

of a DFM introduced in Chapter 2.2.4 to have AR(1) idiosyncratic errors, as opposed to

IID white noise errors. Following the methodology laid out in Bańbura and Modugno

(2014), this is carried out by augmenting the state vector so it contains both the latent

factors and the latent AR(1) errors. Formally, the AR(1) process is set up like so:

ϵi,t = ϵ̃i,t + ηi,t , ηi,t ∼ N(0, κ) ,

ϵ̃i,t = ϕiϵ̃i,t−1 + ei,t , ei,t ∼ N(0, σ2
i ) ,

for i = 1, . . . , p and t = 1, . . . , n, where κ is a very small number allowing us to easily

set up the new state-space framework.

This new state-space framework is given by

Xt = Λ̃F̃t + ηt , ηt ∼ N(0,Ση) ,

F̃t = ÃF̃t−1 + ũt , ũt ∼ N(0,Σũ) ,
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where

F̃t =

 Ft

ϵ̃t

 , ũt =

 ut

et

 , Λ̃ =

[
Λ I

]
, Ã =

 A 0

0 ϕ

 ,

Σũ =

 Σu 0

0 Σe

 and Ση = κIr+p ,

for ϕ = diag(ϕ1, . . . , ϕp) and Σe = E[ete
⊤
t ] = diag(σ2

e) and σ2
e ∈ Rp

+ is a vector of error

variances. The parameter estimates of this new augmented state-space model can be

obtained very similarly to the derivations in Appendix C.1. See Bańbura and Modugno

(2014) for details of these estimates: θ̃ = (A,ϕ,Λ,Σu,Σe).

D.1.1 Effect on Kalman Filter and Smoother Computation

This way of incorporating AR(1) idiosyncratic errors by augmenting them into the

state vector leads to an increase in the dimension of this state vector. This of course

slows down the computation of Kalman filter and smoother (KFS) equations. Bańbura

and Modugno (2014) suggest the alternative approach by Jungbacker et al. (2009) is

perhaps a computationally more efficient way to incorporate AR(1) errors into the DFM

framework, however, is a lot more complex with time-varying parameters.

In the sparseDFM package it is recommended to use the univariate KFS for IID

errors and multivariate KFS for AR(1) errors for the fastest possible computation. In

Remark 3 of Chapter 4, we saw that the calculation of the cross-covariance matrix in

the expectation step involving the univariate KFS equations is given by

Pt,t−1|n = Pt|n(Pt|t−1)
−1APt−1|t−1.

The matrix needing to be inverted, Pt|t−1, is of dimension equal to the number of states.

For this reason, the univariate KFS becomes slow when the number of states is high.

To test the timing comparisons of the KFS methods in IID and AR(1) scenarios,
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we can simulate data from a DFM with Λ = N(0p, Ip), Σϵ = Ip, A = 0.8 × Ir and

Σu = (1 − 0.82) × Ir using 2 factors and fit a DFM in sparseDFM using alg = "EM"

(Bańbura and Modugno, 2014) with err = "IID" and err = "AR1". Figure D.1.1 shows

the average time from 10 experiments with a fixed number of observations, n = 100,

and varying dimension p, with the IID case on the left and the AR(1) case on the right.

The IID case shows the clear computational gain of the univariate KFS approach, and

this becomes even more prominent for larger p. The AR(1) setting clearly takes a longer

amount of time to run and the univariate filtering is slower than the classic multivariate

approach.
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Figure D.1.1: Average time from 10 experiments the EM algorithm (setting alg =

"EM") takes with the multivariate and univariate KFS methods with err = "IID" on
the left and err = "AR1" on the right.

D.2 Table of Functions of the sparseDFM Package

The inputs and outputs for the main function sparseDFM() were provided in Chapter

6.2.2. The table below presents a full list of functions the user of the package can employ.
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Function Brief Description

sparseDFM() The main function to implement DFM estimation. See Chapter

6.2.2.

kalmanMultivariate() Function to run the classic multivariate Kalman filter and

smoother equations of Shumway and Stoffer (1982).

kalmanUnivariate() Function to run the fast univariate Kalman filter and smoother

equations of Koopman and Durbin (2000).

fillNA() Function to interpolate missing data in X by using the median

of the series that are then smoothed with a simple moving

window. This is used to obtain a balanced dataset for the

PCA initialisation fit.

transformData() Function to transform a non-stationary data matrix to become

stationary by taking first/second (log) differences/growth rates.

See Chapter 6.2.3.

tuneFactors() Function to determine the number of factors to use based on

the Bai and Ng (2002) information criteria. A plot of IC values

and the variance explained from PCA are produced.

missing data plot() Visualise the amount of missing data in a data matrix or data

frame.

raggedEdge() Function to generate a ragged edge structure for the end of

sample of a data matrix/frame.

logspace() Function to produce a vector of log10 space values useful for

the LASSO tuning parameter α.
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van de Geer, S., Bühlmann, P., and Zhou, S. (2011). The adaptive and the thresholded

Lasso for potentially misspecified models (and a lower bound for the Lasso). Electronic

Journal of Statistics, 5:688 – 749.

Watson, M. W. and Engle, R. F. (1983). Alternative algorithms for the estimation

of dynamic factor, mimic and varying coefficient regression models. Journal of

Econometrics, 23(3):385–400.

Wickham, H., Hester, J., Chang, W., and Bryan, J. (2022). devtools: Tools to Make

Developing R Packages Easier. R Package Version 2.4.5.

https://commonslibrary.parliament.uk/research-briefings/cbp-7960/
https://commonslibrary.parliament.uk/research-briefings/cbp-7960/
https://commonslibrary.parliament.uk/research-briefings/sn02815/
https://commonslibrary.parliament.uk/research-briefings/sn02815/
https://www.census.gov/data/software/x13as.References.html


BIBLIOGRAPHY 241

Wu, H., Chan, S., Tsui, K., and Hou, Y. (2013). A new recursive dynamic factor

analysis for point and interval forecast of electricity price. IEEE Transactions on

Power Systems, 28(3):2352–2365.

Yu, G. and Bien, J. (2019). Estimating the error variance in a high-dimensional linear

model. Biometrika, 106(3):533–546.

Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped

variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

68(1):49–67.

Zheng, Z., Fan, Y., and Lv, J. (2014). High dimensional thresholded regression and

shrinkage effect. Journal of the Royal Statistical Society: Series B: Statistical Method-

ology, 76(3):627–649.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American

statistical association, 101(476):1418–1429.

Zou, H., Hastie, T., and Tibshirani, R. (2006). Sparse principal component analysis.

Journal of Computational and Graphical Statistics, 15(2):265–286.

Zou, Hui and Hastie, Trevor (2012). Elastic-Net for sparse estimation and sparse PCA.

https://CRAN.R-project.org/package=devtools[Accessed: (01/06/2023)].

https://CRAN.R-project.org/package=devtools

	Abstract
	Acknowledgements
	Declaration
	Contents
	List of Figures
	List of Tables
	Introduction
	Main Contribution and Thesis Structure

	Literature Review
	Temporal Disaggregation
	Introduction
	Temporal Aggregation Constraint
	Smoothing-based Methods
	Regression-based Methods with Indicator Series
	Multivariate Methods with Contemporaneous Constraints

	Nowcasting
	Introduction
	Bridge Equations
	Mixed Data Sampling
	Dynamic Factor Models
	Nowcasting with Dynamic Factor Models


	Sparse Temporal Disaggregation
	Introduction
	Shortcomings of the Classic Temporal Disaggregation Framework
	Sparse Temporal Disaggregation
	A General Regularised M-estimation Framework for Temporal Disaggregation
	The TEXT-spTD method
	Dealing with Correlated Indicator Series

	Simulation Study
	Estimating the True Quarterly Series
	Recovery of the True Regression Coefficient
	Distribution of AR(1) Parameter Estimate
	Correlated Design Setting

	Case Study 1 - Temporal Disaggregation of UK Gross Domestic Product
	Results

	Case Study 2 - Indirect Estimation of a Monthly Service Turnover Indicator in Italy
	Results

	Conclusion

	The Sparse Dynamic Factor Model: A Regularised Quasi-Maximum Likelihood Approach
	Introduction
	The Sparse DFM
	Consistency and Pervasiveness
	Identifiability

	Estimation
	A Regularised Expectation Maximisation Algorithm
	Parameter Tuning
	Implementation

	Simulation Study
	Recovery of Sparse Loadings
	Forecasting Performance
	Computational Efficiency

	Case Study 1 - Nowcasting UK Trade in Goods
	Data
	Interpreting Factor Structure
	Pseudo-Real Time Nowcasting Exercise

	Case Study 2 - The Dynamic Factors of Energy Consumption Around a University Campus
	Data and Preprocessing
	Factor Estimates and Interpretation
	Forecasting Performance

	Conclusion

	Timely Estimates of UK Trade in Services: A Sparse Dynamic Factor Model Approach
	Introduction
	Problem Set Up
	Joint state-space Framework
	Initialisation
	Estimation and Convergence

	Simulation Study
	Monthly Estimation of the Subdivisions of the Service Sector
	Examining UK Trade Throughout the Brexit Transition PeriodThis section could potentially constitute a distinct chapter on its own, thereby possibly introducing a degree of inconsistency with the remainder of Chapter 5. However, it has been incorporated within this chapter for the sake of conciseness, considering that it relies on the findings and outcomes presented in Section 5.5.
	Introduction
	Interrupted Time Series Analysis
	Results

	Conclusion

	Temporal Disaggregation and Nowcasting with Sparsity Constraints in R 
	DisaggregateTS: An R Package for High-Dimensional Temporal Disaggregation
	Introduction
	Package Structure
	Synthetic Example

	sparseDFM: An R Package to Estimate Dynamic Factor Models with Sparse Loadings
	Introduction
	Package Structure
	Empirical Application: Exploring UK Inflation


	Conclusions and Further Work
	Appendix to Chapter 2
	Quadratic Optimisation with a Linear Equality Constraint for Temporal Disaggregation
	Multivariate and Univariate Kalman Filter and Smoother Equations
	Multivariate KFS Equations - Shumway and Stoffer (1982)
	Univariate KFS Equations - Koopman and Durbin (2000)


	Appendix to Chapter 3
	Indicator Data Description for Section 3.6
	Indicators Selected in stable TEXT-spTD for Section 3.6

	Appendix to Chapter 4
	Maximisation Step Derivations for Section 4.3.1
	ADMM Algorithm Derivations for Section 4.3.1

	Appendix to Chapter 6
	An Extension for AR(1) Idiosyncratic Errors
	Effect on Kalman Filter and Smoother Computation

	Table of Functions of the sparseDFM Package

	Bibliography

