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Abstract

Programming-by-Example, and code synthesis in general, is a �eld with
many di�erent sub-�elds, involving many forms of machine learning and
computational logic. With advantages and disadvantages to each, attempts
to build e�ective hybrid solutions would seem to be a promising direction.
Transfer Learning (TL) provides a good framework for this, as it allows
one of the classic code synthesis techniques, Genetic Programming, to be
augmented by past success, to target a particular code synthesis system to
the problem domain it is facing. TL allows one type of machine learning
algorithm, in this thesis a neural network, to support the core GP process,
and combine the strengths of both. This thesis explores the concept of
hybrid code synthesis approaches, and then brings the identi�ed strongest
elements of each approach together into a single neural network driven
Transfer Learning system for Genetic Programming. The TL system
operates autonomously, without any human intervention required after
the problem set (in example only format) is presented to the system. The
thesis �rst studies how to structure a training corpus for a neural network,
across two di�erent experiments, exploring how the constraints placed on
a corpus can result in superior training. After this, it studies how GP
processes can be guided, to ensure that a hypothetical NN guide would be
useful if it could be created and how it can best assist the GP. Finally, it
combines the previous studies together into the full end-to-end TL system
and tests its performance across two separate problem domains.
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Chapter 1

Introduction

1.1 Problem Statement

This thesis targets the problem of `Programming by Example' Gulwani and Jain
(2017) (PbE). Speci�cally, this entails viewing the desired input and output of a
program, and attempting to generate source code which produces that behaviour. For
example, if a hypothetical user were to want a program to reverse a list, they could
provide a set of examples in which a list is supplied as the input and its reversed
form as the output. With a limited number of examples, the PbE system would be
required to return a program which could reverse a list, by deducing the user's intent
and implementing it.

More broadly, the system could have applications for all manner of creative tasks.
It could be possible for a game designer to implement mechanics by simply giving
a few examples to an automated code synthesis system, then validating the code
(possibly simply by reviewing some example of behaviour, to avoid the designer
needing any programming experience). Alternatively, it could design entirely novel
re-implementations of existing programs, by being given examples of that program's
behaviour. Such alternative implementations could have useful properties, such as
potentially being more e�cient under certain constraints or avoiding certain bugs.
This approach would be an alternative approach to Genetic Improvement, which
would not re-use the original system's code.

PbE is broader than these particular examples, and does not inherently depend
on a user giving the system a precise programmatic task. It simply requires a set of
examples of behaviour, and attempts to build a program to exhibit that behaviour.
The development of approaches towards PbE may also be applicable in the �eld of
Inverse Reinforcement Learning, where an agent attempts to build a model of another
agent's behaviour; or it could form the core of approaches which build models of more
abstract systems such as economic behaviours. Both of these �elds would bene�t from
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approaches which build code models, as code is symbolic and highly abstract, giving
a clear idea of the behaviours of the system as opposed to its physical appearances.

This work, however, assumes the existence of a human `user' of the system, as this
is a typical deployment scenario of a PbE system, but attempts to maintain generality
of the system such that it is not constrained to operate only alongside a human user.

This hypothetical scenario assumes a human without programming experience has
a set of data processing tasks they wish to perform, perhaps in a spreadsheet type
application, as the PbE system FlashFill and BlinkFill were designed for Microsoft
Excel (initially Excel 2013) Singh (2016). They have a set of inputs they wish to
transform into outputs, and manually transform the �rst 10 inputs into the desired
output form. The system would then infer the desired behaviour and produce a
function to replicate it, to process all remaining inputs. This would allow a non-
programmer to rapidly process large quantities of data using a machine tool.

This particular problem speci�cation implies conceptually simple functions, which
may translate into shorter functions in terms of lines of code, if the language
provides a compact syntax and potentially includes useful libraries. Despite years
of study, the programs able to be synthesised by current PbE systems in both
industrial applications and the literature remain short. While a physicist programmer
attempting to replicate a physical system's behaviour may require hundreds of lines
of code, PbE currently operates in spaces of programs of tens of lines at most.

This suggests that one possible direction for the �eld is that by resolving
problems of tractably short length, but allowing high-level abstractions and functional
encapsulation, it may allow progress along the path towards full human-level
programming-by-example. This thesis aims to add to the literature in a way which
advances the �eld along these lines.

1.2 Key Issues and Challenges

A number of factors make this problem a di�cult one. The level of problems for
which any synthesis technique can succeed rarely matches that able to be solved by
a beginner programmer.

� Problem space size. In almost all works which will be touched on by the
Literature section of this work, extreme constraints on the languages used are
imposed. Restrictions such as very low number of variables permitted, low
line counts, or limited operators present in the language reduce the number
of programs which can be considered by the synthesis systems. This work
similarly limits itself, roughly matching the sizes possible for the majority of
the genetic programming literature, but exceeding certain exhaustive neural
network searchers such as Balog et al. (2017) and Zohar and Wolf (2018a).
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Despite the restrictions, the number of programs remains large. This particular
work deals in program space sizes of up to 5∗10119. As will be discussed, search
spaces of this size render many techniques intractable.

� Poor navigability of program space as classically represented. A
conventional programming language is formed of a sequence of tokens, and
even a single changed token can alter the behaviour of the program radically.
Altering an addition operator to a subtraction operator may retain a degree of
high-level similarity between the outputs of two programs, but altering a loop
to a conditional operator can cause the program's output to change completely.
As such, programs which are adjacent to one another in program space do not
necessarily share functional properties in a way which can be usefully exploited.

This renders many search techniques far more di�cult. Genetic methods rely
on following changes in the �tness landscape, which requires to some degree
an average slope to exist and to be su�ciently strong relative to this `noise' to
drive the population in the correct direction. Neural methods, such as Williams
(1992), depend on a neural network to be able to embed a �tness landscape,
which depends on it being su�ciently predictable for the network to learn, as
well as low-information enough to �t within the network's capacity.

� Patterns in the input-output which are useful to �nding a solution can
be symbolic and high-level. When observing a program's behaviour in input-
output form, a human is able to pick out certain very high level characteristics.
Simpler ones might be `all output values are even', or `all outputs are prime', but
may become as complex as requiring knowledge of the di�erences between UK
and US date format. A human may �nd it easy to recognise these characteristics,
but for a machine learning algorithm to recognise these characteristic it could
require large degrees of training, and some may be nearly impossible, as they
lack the human perspective which the data-manipulation problem may require.

1.3 Research Questions

This thesis attempts to study and answer a number of dimensions relating to
programming by example, focusing on Genetic Programming supported by Neural
Networks.

� What is the best way to generate arti�cial training data for a neural network
for this particular �eld?

� Which speci�c form of hints, suggestions or assistance could a GP process be
provided with to improve its performance?
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� What performance gains could be achieved by an end-to-end system, which
automatically trains NNs and uses them to guide a GP without need for human
guidance?

1.4 Objectives

The objective is to provide an advance in the �eld of code synthesis, improving the
performance compared to existing approaches. The aim is that by �nding a way to
integrate the advances from multiple sub-�elds a successful hybrid could be produced.
It will attempt to combine genetic programming with neural network algorithms,
using the network to recognise high-level features of the problem and guide the GP
appropriately.

1.5 Thesis Contributions

� A review of the literature of the sub-�elds of program synthesis which focuses
on their commonalities and potential overlaps

� An evaluation of how neural network training can be best structured to maximise
its ability to predict programmatic structures. This lead to an understanding
of which types of features need to be present in a training corpus for optimal
results. This then lead to to the introduction of a novel system able to guide
creation of a corpus which exceeds a uniformly generated one

� An evaluation of how Genetic Programming performance changes as the
program space is constrained. This lead to an understanding into which parts
of the solution, if given to a Genetic Programming algorithm, would best guide
its search and by how much they could increase performance.

� An end-to-end Transfer Learning system which combines neural networks and
Genetic Programming to exceed the baseline implementation of both.

1.6 Thesis Structure

The remainder of this thesis is structured as follows: Chapter 2 provides an overview
of the �eld of program synthesis, and a motivation for the direction taken by this
research. It covers three broad topics, logical based solvers, neural code synthesis and
genetic programming, along with others falling outside of these three sub-�elds. It
also touches on how Transfer Learning has been approached in the �eld of Genetic
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Programming. It provides an overview of the rough common architectures these
approaches share, and also a set of milestone and key papers in the literature.

Chapter 3 discusses and explains the proposed architecture. Based on the areas
identi�ed as promising in the background section, a transfer learning system was
developed to improve the performance of a Genetic Programming (GP) algorithm. It
employs a set of neural networks to deploy code fragments which have been extracted
from prior successes to boost the performance of this GP algorithm. This is intended
to leverage the high-level behaviour recognition capabilities of neural networks without
losing the high performance of GP, which has shown good success on general purpose
Turing Complete languages.

Chapters 4, 5 and 6 then covers the experiments which demonstrate the sub-
systems involved, and answer the research questions posed in this introductory
chapter. The experiments follow a logical progression from the start of the algorithmic
process to the end. The �rst aspect investigated regards the data to provide to a
neural network to optimise its training and e�ectiveness of similar programs to the
ones it has been trained on, based on a set of human-useful programs de�ned by the
user. This investigation takes place over two experiments. The �rst demonstrating
how constraints on how the training corpus for a neural network bene�t its eventual
performance on human-useful programs in a general Turing-Complete programming
language. The second then investigates how using the output of GP processes to
form corpora can boost the performance of neural networks. Once the mechanism
by which the neural network should be trained has been established, mechanisms
by which the GP can be guided are investigated, to identify candidate targets for
neural network guidance. This is done in both a systematic and human-guided way,
across two separate experiments, to determine which forms of assistance best improve
performance. After that, an experiment is run to evaluate if a neural network is
able to deploy this assistance correctly, and evaluating its performance while doing
so. After this is done, an end-to-end system is tested, extracting fragments from
solved programs to deploy into newly faced problems. Finally, after the single-
guidance-point architecture has been demonstrated to be functional, a full end-to-end
Transfer Learning system for Genetic Programming is deployed and evaluated, able
to draw from arbitrary numbers of previously solved programs, and demonstrates a
high degree of improvement o� the same Genetic Programming algorithm without
Transfer Learning assistance.

Chapter 7 then ties the work together by evaluating how the research questions
were answered, and discussing the work as a whole, and future directions which could
be taken by later works which build on this.
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Chapter 2

Background Literature

2.1 Introduction to Background

This section attempts to cover the broad �eld of programming-by-example (Gulwani
and Jain (2017)). This is a �eld of computer science (not always necessarily Machine
Learning), which attempts to generate source code to match the behaviour of a
function described by a set of observed input-output mappings. This goal has
been described as `The Holy Grail of Computer Science' (Gulwani et al. (2017))
and has been studied since 1950 (Turing (1950)) yet remains elusive. This long
history has, however, provided a wide range of approaches, each with their own
advantages and failings. This work considers them to roughly fall into the groupings
of Genetic Algorithms, the oldest yet currently most successful in terms of complexity
of generated programs; the work leveraging Deep Neural Networks which have seen
wide-ranging success in the �elds of Machine Learning and Arti�cial Intelligence in
recent years; and the somewhat restricted yet sometimes extremely e�ective deductive
reasoning systems. This work then attempts to bring these together into a single
direction which is felt to be promising and understudied.

2.2 Genetic Programming

Genetic programming (GP), as well as being the oldest �eld in code synthesis, is also,
as will be discussed below, one of the most successful in terms of general performance.
While it may be exceeded in certain domains by other techniques, it shows good
success across a wide range of problem categories. This section discusses GP �rstly
in terms of its current state of the art, then in terms of architectures of interest to
this thesis, then ends with a section of works which closely resemble GP but do not
technically ful�l the criteria to be classi�ed as a GP process. These are included
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into due to the similarities between GP and them, in terms of how program space is
navigated on a high level.

2.2.1 Overview of Genetic Algorithms

Genetic Algorithms are one of the oldest concepts in computer science, �rst proposed
by Alan Turing in 1950 in his paper �Computing Machinery and Intelligence", which
discusses the `Imitation Game', the famous Turing-test for intelligence, and proposes
a form of genetic programming to create an agent able to pass this test. This genetic
process was human-guided, using a human designer to select between candidate
programs, and was rather optimistic (Turing discusses whether a machine would be
able to integrate socially into a school setting), but an interesting �rst look into the
concept of evolving machine instruction sets towards a desired goal.

GP has an inherent advantage, compared to neural approaches, in that it can
evolve both the discrete tokens (the operators, variable references, etc) and literal
values such as �oating-point constants or hard-coded character strings. While a
neurally powered architecture could in principle have a symbolic output, for operator
selection, and a continuous one, for literal value assignments, this has yet to see an
implementation in the literature.

Genetic Algorithms, of which Genetic Programming is a subclass, is what is termed
a `derivative free search' technique (Rios and Sahinidis (2009)). These are techniques
which search through a space (in this case program space), to optimise a given function
(in this case to reduce the distance between the sampled program's outputs and the
example program's outputs, termed the error or loss). These functions do not compute
a derivative of this space, which would allow a gradient at any point to be computed.
If this gradient were followed, by moving an in�nitesimally small distance within
the space, the new point is guaranteed to be more optimal (lower error) than the
previous one. The reason GP processes do not compute this derivative to determine
this gradient is simply that source code cannot be di�erentiated with respected to an
input-output example. Discrete spaces (such as source code, with its symbolic tokens)
do not allow continuous navigation with in�nitesimally small steps. Further to this,
the error of points within program space cannot be analytically determined without
source-code execution as this would violate the Halting Problem (Turing (1937)).

Instead, genetic algorithms operate by sampling a set of points, a `population',
evaluating these based on a metric known as a �tness function, and stochastically
generating a new population of points based on the di�erences in �tness of the
population. The algorithm is designed such that the new population members
(sampled points within the search space) have a higher probability to be closer to the
higher-�tness members of the previous population than to the lower-�tness ones. In
this way, the population as a whole migrates over time. It has been demonstrated that

7



Chapter 2. Background Literature 2.2. Genetic Programming

keeping the best-ever-found point (the elite) has very consistently high e�ectiveness
(Dinabandhubhandari et al. (2012); Chakraborty and Chaudhuri (2003)).

The weakness is that this relies on the �tness function leading the population to
a desired outcome. Since the population will travel based on the di�erences in �tness
it samples, towards higher �tness, there must �rstly exist such a di�erence, and the
di�erence must be useful. Flat areas, with no perceived di�erence in �tness will cause
the algorithm to either stagnate or wander blindly. Valleys with lower �tness which
come between the population and a desired solution can slow and delay search in the
direction of this solution, despite the eventually good outcome which would ensue. As
can be expected of a �eld with decades of study, this core concern has been studied
in depth (Renzullo et al. (2018); Folino et al. (2000)).

One approach to improving navigation around the space is to deliberately avoid
getting stuck by dynamically changing the landscape. Novelty Search (Lehman and
Stanley (2010); Doncieux et al. (2019)) is a range of approaches which aim to drive the
GP towards exploring regions of program space which have not been yet visited. In its
simplest form it is a �tness function which does not have a given aim, only a repulsive
e�ect away from already-visited areas of the landscape. This allows, in time, more
varied forms of programs to be generated. When combined with a standard GP �tness
function, which attempts to achieve a set goal, it can supplement this by breaking it
out of local minima and boosting exploration and population diversity.

2.2.2 State of the Art

The �eld of GP shows good current progress, with work on both regression tasks,
in which programs are assembled to approximate or replicate a target mathematical
function (Iba et al. (2018); Augusto and Barbosa (2000); Uy et al. (2011); Zhong
et al. (2018)), or on full Turing-Complete function synthesis operating on common
programming data-types and data-structures Helmuth and Spector (2015). This
thesis' particular area of interest falls under Turing-Complete programming-by-
example. GP work is able to handle a variety of data-structures and data-types,
and combine these seamlessly into an overall framework, allowing great �exibility and
diversity of generated programs.

A very good example of this is Pantridge and Spector (2020), which represents how
�exible state-of-the-art GP is with types, able to seamlessly blend together functions
which take and return a very wide range of data types. It demonstrates how types
which would be considered objects, in an object-orientated language (such as lists and
time-date representations) and primitives can be handled by a GP process.

In terms of e�ectiveness within a narrower, more studied GP domain, Helmuth
et al. (2018)'s work evaluates its performance on the General Program Synthesis
Benchmark Suite, and show high performance on this set of problems which cover
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numeric and string-based programs. We see 3 problems of the 29 remain unsolved (no
solutions ever produced), two which require numeric processing followed by conversion
into a string output and one which is purely string-based. These problems cover
a range of primitive data-types, speci�cally �oating point values, integers, Boolean
values and character strings. In terms of complexity, the most complex of these
problems may require approximately 20 lines of code for a human programmer to
solve (depending of course on the programmer's implementation choices), with in the
case of the never-found problem `grade' (which requires assigning letter grades based
on numerical test scores) 5 �ow-control operators. Its primary contribution is in its
improved mutation style, which allows the programs to evolve by addition and deletion
independently. Rather than a new gene replacing an old one in-situ, the newly added
one and the removed one can be from di�erent parts of the program. This appears to
be highly successful, and highly applicable to any future genetic programming work.

G3P (Forstenlechner et al. (2017)) is major work in the �eld of Genetic
Programming, studied on the General Benchmark Suite, including further published
analysis to assess its performance in greater depth Forstenlechner et al. (2018).
While powerful, G3P, even with the improvements to its data-type handling abilities
(including bug�xes) brought by the subsequent work, was unable to solve 11 of the 29
problems in the test suite, 8 fewer than Helmuth et al's. G3P is a grammatical style
of program synthesis Ryan et al. (1998), which is able to transform a linear string of
characters into an Abstract Syntax Tree able to be executed as a source-code function.

In terms of direct application, the work of Smith and Heywood (2019) evolves a
game-playing agent, able to tackle the problem of controlling a character in the video
game `Defence of the Ancients 2 (DOTA2)', a problem also tackled by high-pro�le
research in the �eld of Deep Neural Networks (Berner et al. (2019)).

2.2.3 Transfer Learning for Genetic Programming

Transfer Learning has been studied for GP before, with ongoing work showing good
progress (O'Neill et al. (2017); Muller et al. (2019); Chen et al. (2020)). A core theme
is the concept of transferring parts of existing generated programs into the population
of programs being generated by the GP process which is attempting to solve the
currently presented problem. This is done by extracting sub-trees from the Abstract
Syntax Trees of population members of the previous GP run's last generation. It
has primarily been investigated in the context of regression, in which a function is
being evolved to approximate a scalar-returning mathematical function. The use of
�oating point values allows greater granularity in �tness, and the design does not seek
a `correct' implementation, but merely a high-�delity approximation. This allows the
last generation to have subsamples taken based on ranked �tnesses, in a way which
a more granular �tness landscape might not allow. From these, commonly occurring
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sub-trees can be extracted, and used as primitives in future GP processes. They can
be placed as atomic functions, with sub-trees which would previously require multiple
mutations being added as single blocks of code.

Another approach which has been demonstrated to improve GP performance is
re-use of previous solutions. Wick et al. (2021) demonstrate how switching tasks
during a GP process, or re-using one problem's last generation as the current task's
�rst generation, can improve GP performance. This approach can allow very large
amounts of genetic material to be transferred, as the entire source code of the solution
is re-used.

This is approached in an alternate fashion by Kelly and Heywood (2015), further
developed in later work (Kelly and Heywood (2018)), which approaches the problem
by allowing later programs to call earlier ones as sub-functions. Their approach
di�ers to a degree from previously discussed Transfer Learning in that it treats
previously generated programs as immutable functions, no longer subject to genetic
processes. Their work focuses on a Reinforcement Learning domain, where the genetic
algorithm is attempting to evolve a policy to transform sensory inputs into motor
outputs in a game-playing robot or game character. Their approach allows later
functions to delegate the action selection task to already-learnt policies, as opposed
to selecting an output in a low-level fashion. This allows complex behaviours to be
abstracted into simple elements, reducing the complexity of the programs generated,
and demonstrating good results. Its inability to alter these programs themselves
represents a major di�erence, however, and the authors themselves do not use the term
�Transfer Learning" to describe their process, but rather �Knowledge Transfer". This
inability to alter the re-used functions prevents certain interesting transfer learning
capabilities, such as retaining code �ow structures (loops and conditionals) while
altering the blocks of code within the program.

This re-use of generated code is shared with the work of Keijzer et al. (2004),
which similarly allows previously generated code to be re-used, this time as a library
of functions which can be deployed by the newly generated programs. Again, this
precludes the ability to mutate these libraries, which has the advantage of reducing
the size of the program space which the GP must navigate, but reduces its ability
to transfer learn in some domains, as code cannot be inserted between transferred
lines. Similar work includes Jaskowski et al. (2007), which employs a GP to solve
visual character recognition tasks, and allows transferral of geometric splines to allow
shared properties of the glyphs to be exploited for faster learning.

Helmuth et al. (2020) similarly studies the use of code fragments from previous
problems, and speci�cally studies the re-use of constants, which are critical to certain
problems featured in The General Program Synthesis Benchmark Suite (Helmuth
and Spector (2015)). That work clearly demonstrates that the selection of donor
programs is critical to TL's success, suggesting that targetting speci�c sources rather
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than simply drawing from all pre-existing solved programs is valuable. This targetting
could be done, but it would be optimal for autonomy's sake if a machine learner could
perform the task on its own.

That work is supported by Muñoz et al. (2020), which examines how donor-
recipient pairings of programs may bene�t from TL across di�erent problems, and
studies the properties of these donations, which gives some insight into the forms of
TL program donors which may be bene�cial.

Transfer Learning also has interesting similarities to the Plastic Surgery Hypoth-
esis (Barr et al. (2014a)). The Plastic Hypothesis demonstrates the e�ectiveness
of transferring code elements from parts of the same program, in order to improve
performance of a genetic algorithm. This shares the concept of employing existing
code as a source of complex genetic material to use in mutations, allowing larger and
more e�ective jumps through program space between generations. The tasks di�er
slightly, especially in that the plastic surgery hypothesis transfers human-written code,
but it is promising evidence that the overall approach is broadly applicable.

Somewhat related to TL is augmenting GP search with additional input, which
has been explored by Hemberg et al. (2019), using domain-speci�c knowledge and
natural language guidance. Hemberg's work analyses the program speci�cation, which
in this case is provided in terms of both the IO examples and an accompanying
natural language description, and specialises the GP process towards a particular
problem � for example by augmenting the literals available or by biasing the mutations.
This expands somewhat from programming-by-example, which usually relies on only
the given examples, but could serve as a useful additional source of data for a GP
algorithm in some cases.

2.2.4 Neural Network boosted Genetic Programming

Work exists on combining the capabilities of neural networks and genetic algorithms.
Neural approaches have certain desirable properties which they can bring to GP.
A core one is in automatic creation of high-level abstractions in representations of
program behaviour. Neural networks can recognise properties within the IO examples
which would require human designer knowledge to embed into the �tness function.
If the GP is simply trying to reduce the euclidean distance between its generated
programs' outputs and the target outputs speci�ed by the IO examples, it may miss,
for example, that all the values in the target output are in ascending order. This
could inform the system that programs it is generating which also have outputs in
ascending order are on the path to success, and valid intermediary steps between the
empty program and a program which replicates the desired behaviour.

Even higher level behaviours could be spotted, such as extremely di�erent outputs
in terms of numerical values which are highly similar in terms of high-level behaviour.
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For example a program which sorts a list into ascending order is only one operator
away from a program which sorts programs into descending order. If the GP's �tness
function computes Euclidean distance between sampled program's output and target
output, or computes number of elements in their correct position, this near-perfect
program would be assigned a near-minimum �tness, and discarded. A neural network,
however, could learn to recognise this similarity and keep the program as a desirable
candidate.

This high-level abstraction is possible for a human designer to implement into
the �tness function, but to do so requires the designer to have foresight of which
elements may be required, and how to balance these factors against other factors
involved in navigating program space. Without machine learning it may be very
di�cult for a human designer to decide what weight to assign to each high-level
feature compared to simpler ones such as distance between target output and sampled
program output. A neural network could potentially learn this based on sampling
program space, thus producing a �tness function tailored to the statistical properties
of the program domain the GP process is tasked with operating on.

Neural networks can also be deployed in other areas of the genetic process, such as
mutation guidance, or in implementing a dynamic component to the �tness function
which learns in an online fashion as the GP samples the space.

Work exists in this domain. Bunel et al. (2017) employ neural networks to guide a
GP process, but focuses on the domain of program optimisation. This is to say they
start with an already completed program which possesses the desired IO behaviour,
and wish to optimise its internal behaviour by seeking new programs which match its
behaviour. As such it is somewhat outside of our domain of programming-by-example.

Nigam et al. (2020) employ neural networks to guide the process in a way which
avoids stagnation. This is similar to Novelty Search (Lehman and Stanley (2010);
Doncieux et al. (2019)), and attempts to avoid the issue of GP populations stagnating
in a local maximum in the �tness landscape.

Work continues on this novel program domain, with unpublished work available in
preprint (Mandal et al. (2019)) indicating that this direction is being actively pursued
and may lead to interesting developments in the literature in the near future. This
work brings a new direction to the task, by combining the domain of Transfer Learning
with neural network guidance.

2.2.5 Other Gradient-Free Search Techniques for Source Syn-

thesis

Certain other examples exist of search strategies which are not fully genetic, but
do not use gradient-navigation methods employed by neural networks. One such
example is FrAngel (Shi et al. (2019)), which is a search strategy for source code
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similar to genetic programming, with certain alterations. In terms of similarities,
it employs a �tness function similar to multi-objective genetic algorithms (Konak
et al. (2006); Erfani and Utyuzhnikov (2011)), which seek to maintain diversity in the
population by retaining individuals which are specialised in di�erent aspects of the
problem being faced. In this case, the algorithm retains the best individual at each
example within the programming-by-example IO input set. The second change is that
it allows arbitrary crossover, as opposed to two-parent crossover. Any collections of
parents may be selected as donors for genetic material. This may have an a�ect on
its performance, but does not change the underlying functionality of the algorithm
to a major extent, as all genetic transfer could occur in a genetic algorithm over
multiple generations. Its core novelty is its lenient �tness function, which allows �ow
control operators to be evaluated as if their best-case were their current, and receive
`partial credit'. In this fashion, if there exists a way in which a conditional at a
given point could branch the code to improve the programs accuracy, any conditional
receives a degree of credit for being placed at that position. Subsequent mutations
can then alter how the conditional processes the variables to cause it to behave as the
hypothetical one does, and thus achieved the known-possible but as-of-yet unrealised
behaviour. Verma et al. (2018) uses an interesting technique of generating a training
landscape using a neural network, then de�ning the examples the source code must
replicate based on the neural network's behaviour. Their domain is reinforcement
learning, so their examples for programming-by-example are behaviours to replicate,
and they generate these behaviours �rst by training a neural network to perform
them, then by using its behaviour as the example of "what to do" given to the source
code synthesiser. Liskowski et al. (2020) adapt the classic GP strategy by training
a neural network to represent code as a �xed-length �oating point vector, a latent
representation which the network can decode into source code. This changes the
nature of mutations, as they can take the form of movement within this latent space of
arbitrary scale, with every point in this space able to be converted into symbolic source
code. The ideal is for this continuous domain to improve mutation and thus search,
and initial empirical results indicate this direction has promise. Currently, however,
the mapping between latent space and source code is generated simply to maximise the
expressivity of the latent space, not necessarily to reduce distance between functionally
similar problems or to reduce local minima in the resultant �tness landscape.

2.2.6 Genetic Improvement

Genetic Improvement is related to, and may fall into, the �eld of Genetic Program-
ming. It employs evolutionary algorithms to search program space, but starts with an
existing program, and attempts to improve a given metric. Often, this improvement is
the reduction or removal of bugs, as identi�ed by unit tests, but it can also be employed
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to reduce computational costs or other useful characteristics of a program. The genetic
approach to code modi�cation is one of the most popular approaches to automated
software improvement Petke et al. (2017) with recent progress in automated bug-
�xing Forrest et al. (2009); Arcuri and Yao (2008); Sidiroglou-Douskos et al. (2015),
optimising non-functional properties Mrazek et al. (2015); Langdon and Harman
(2015); Landsborough et al. (2015), and automatic test-case generation Arcuri and
Yao (2008).

Genetic improvement has been applied to source code Langdon and Harman
(2015); Cody-kenny et al. (2015), abstract syntax trees Forrest et al. (2009);
Haraldsson and Woodward (2014); Barr et al. (2014b), intermediate compiled code
forms such as Java bytecode Orlov (2017), and compiled machine code Schulte et al.
(2013). It is unclear whether any particular level of operation across this spectrum
has quantitative bene�ts (in terms of the resulting program) over any other level,
though in qualitative terms the modi�cation of source code may have bene�ts in
human legibility (and veri�cation) of genetic modi�cations.

One of the most compelling results in genetic improvement is that of Forrest et al.
(2009), which demonstrates e�ective automated repair of bugs. The approach uses
a negative test case which activates the bug, together with positive test cases which
verify correct behaviour. During the improvement process, mutation operations are
preferentially applied to the execution path that is activated by the negative test
case, which reduces the search space to a size tractable for genetic improvement to
navigate in reasonable time. The speci�c genetic operators used are delete, swap,
and insert; delete and swap only take place within the negative execution path, while
insert may take a statement from anywhere in the program and insert it into the
negative execution path.

This sub-�eld is not entirely related to this thesis, but worth noting, as it is touched
on for some parts of this work.

2.3 Neural Code Synthesis

2.3.1 Deep Coder

DeepCoder (Balog et al. (2017)) represented a new direction for code synthesis, in
which a deep neural network acted as the primary driver for source code synthesis. Its
mechanism of operation is to take a collection of input-output examples and return
a collection of operators it expects to be present in the program which generated
this sequence. This allows ranking of all programs within program space, starting
with those which have the highest-estimated presence operators, and ending with
those which require the operators the NN had the least con�dence in. In the �rst
implementation, the language de�nes only 34 operators, and has a �xed problem
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length su�ciently low (highest tested was 5 lines) to allow for exhaustive searching
over every possible program implementation. As such, its returned probability for
each operator can be used to rank every program in the space of programs possible
within its Domain Speci�c Language (DSL) and evaluate each in turn.

If the limitations on the language grow beyond the scope of possible exhaustive
enumeration, we can consider generalised form of DeepCoder which takes the IO
example inputs and returns a ranked subset of programs within program space (As
opposed to ranking ALL programs within program space). This subset would be
searched over, but the algorithm would return a failure signal if no program matching
the desired behaviour was found therein. This concession allows DeepCoder to operate
on arbitrarily high program space sizes. The mechanism by which it selects this
subspace and provides the ranking can also be abstracted away as implementation
details. The original DeepCoder is an implementation of this generalised architecture,
just one in which the subset returned is the size of the program space.

2.3.2 Work Building on DeepCoder

A wide range of neural code synthesis techniques exist, with many techniques
attempted after the DeepCoder approach, covering a very broad range of problem
domains and architectures. Even with our singular focus on programming-by-example,
a very broad range of approaches are employed by the community. This section
groups some key works based on mutual similarity of architecture, then discusses two
interesting directions in the �eld. These two directions are towards using partially-
completed programs' current behaviour as guidance as to how to write the remaining
lines and how to select programs for training the networks to make best use of the
�nite capacity of the network and �nite training time available to the developer.

In terms of architecture, Devlin et al. (2017a) shares a strong degree of similarity
with DeepCoder, in that it takes IO examples, processes them neurally and returns a
searchable volume of program space (using beam search). Parisotto et al. (2017) also
employ a similar overall structure, although use a complex method of representing
programs using a Recurrent Neural Network architecture (Rumelhart et al. (1986)) to
allow the network to model programs as Abstract Syntax Trees. These methods show
good results on string-manipulation programs, although lack �ow control. They can
be seen to match to the DeepCoder's general model of mapping IO example inputs
to searchable volumes of program space.

The same can be said for Shin et al. (2018) which uses a beam search, with
the volume of program space to search being provided by an LSTM Hochreiter and
Schmidhuber (1997) RNN. Bunel et al. (2018) improves upon the search process
by using logical analysis of programs within the space returned by the NN to
automatically discard syntactically invalid ones, reducing the cost per program. Sun
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et al. (2018a) demonstrates an architecture which returns a single program, equivalent
to a search space of one, which places high demands on the neural network to
accurately infer programs. Polosukhin and Skidanov (2018) shares a similarity to
Parisotto et al.'s work in that it de�nes programs in a tree-like structure, to process
them as Abstract Syntax Trees, and also operates as a neural network returning
a search volume. It di�ers from other works in this section as it is not a pure
programming-by-example algorithm, but also uses natural language as an input form.

2.3.2.1 Intermediary Values as Additional Data

Zohar and Wolf (2018a) shares a core similarity with DeepCoder, in that it operates
within the same Domain Speci�c Language (DSL), and so is directly comparable,
but di�ers strongly in that it is able to leverage partial completion of programs.
For each token it places, it is able to execute the partially-written source code, and
generate the intermediary inputs, the values the variables would be at if the program
ceased termination at this point. In this way, it can potentially reduce the task
di�culty, as its information is supplemented. It also reduces the complexity of the
information generated by this process using a learnt garbage collection, which is able
to mark certain variables as `no longer necessary' and discard them from consideration.
Further work, similar to this, exists in the form of (Ellis et al. (2019)), which also
shares the same goal of using partial programs as guidance for the neural network.
These particular frameworks, along with DeepCoder, lack �ow-control operators, such
as conditionals and loops. These are harder to integrate with the concept of partial
values, as there is not a singular `next step'. The lines of code produced by the neural
network are not necessarily executed in the order they are generated by the network in
a language with �ow-control, and so the partially completed values are not necessarily
truly representative. It is possible this partial execution and intermediate-variable-as-
inputs system could allow some protection against the vast size of the program space.
Rather than require the system to infer the full system, it can operate piecewise,
inferring the �rst half of the problem, then using this code's output as if it were
inputs to the second half of the program and inferring the remaining half of the code.

To succeed this requires programs to be generally amenable to this strategy. If the
program is entirely contained within a loop, there does not exist an easy way to provide
the values at the `halfway' point, as in terms of execution, the �rst line of the code
may be the operation executed halfway through the whole program's execution. It
also requires that the �rst half of the program should be inferable from the program's
output despite relative ignorance of how the second half might function. It is not
necessarily true that this is the case for the majority of longer programs. Work exists
Chen et al. (2019) to address this problem in the neural community, and the problem
of conditional paths seems to be well addressed. This later work allowed the concept
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of intermediary variable states to be expanded to a full Turing-Complete framework,
and empirically showed the worth of the idea.

2.3.2.2 Data Sets for Training

Another problem is in selection of inputs for the use in the input-output examples.
Poor choices of input examples might fail to adequately demonstrate the desired
behaviour. For example if the inputs are already sorted, a sorting algorithm would
appear identical to an identity function. If the inputs were numeric and the desired
function featured a division operator, the inputs should contain a 0 to demonstrate
how this special-case needs to be handled.

If the neural network is to tackle full Turing-Complete spaces it must have an
adequate training regime. While DeepCoder uses a uniform selection strategy, simply
randomly sampling the program and input space, work on Turing-Complete neural
synthesis has demonstrated the worth of guiding the process to maximise training
coverage. Shin et al Shin et al. (2019b) demonstrates that selecting input examples
to increase coverage of the range of behaviours a program can adopt can improve
the e�ectiveness of neural synthesis techniques. This work speci�cally targets a full
Turing-Complete language, and so also serves as a good example of synthesis which
does not run too great a risk of being only applicable to a restricted domain. Despite
this work's contribution, the issue of generating data sets to provide as training to a
neural network remains an issue. If a training set has a billion examples (109) that
only represents 1/(1031) of the program space for our scope. Even with Shin et al's
work on maximising the informativeness of these examples, it is a demanding task
for the neural network to infer from such a small subset of the space to adequately
represent it.

Shin et al. (2019a) demonstrate a work in which neural networks are used to learn
from distributions of programs in a library of already-solved problems. This is similar
to Transfer Learning, which has been studied in the context of program generation
in the Genetic Programming literature. In particular, this work extracts commonly
used code structures using a neural network and redeploys them as primitives within
the language for use by the searcher. This represents an approach which uses data
taken from third-party sources (not the IO speci�cation or the algorithm itself) as
training data to accelerate problem resolution. Use of human-generated source code
as training data for neural networks is an interesting direction, if su�cient source
code relevant to the problem at hand can be collected. This strategy is perhaps most
prominently featured in the GPT-3 algorithm discussed below.

Policy Gradient Descent Policy Gradient Descent is a navigation technique
which attempts to navigate a policy space (that is to say a Reinforcement Learning
(RL) agent's behaviour) by following an estimated gradient. This gradient is created
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by training a neural network to serve as a function estimate, which takes a given policy
and returns an expected reward for that policy. The network can then also provide
a gradient of �tness, estimating how a given policy could be changed to improve its
expected reward. The network is trained online, updating as the agent takes action,
to try to form an accurate �tness landscape. A key implementation of this is the
REINFORCE algorithm by Williams (1992).

This has been applied to code synthesis by Bunel et al. (2018), who examined its
e�ectiveness on the Karel dataset. In this implementation, the policy of the RL agent
is instead taken to be the program being output. The RL agent in this case can be
seen as a code-producing agent, whose actions are each token in the language, which
iteratively selects tokens until an END-PROGRAM token-action is chosen.

As opposed to approaches which take a given `target program' which they are
attempting to match, in a supervised learning framework, this approach can �nd
functionally equivalent programs which di�er in their implementations. This is a
considerable advantage, as there is not inherently a `correct' way to write a program.
Any program which meets the user's speci�cations (matches the desired behaviour)
is satisfactory.

This approach, however, still relies on the ability of a neural network to accurately
estimate the �tness landscape. Fitness landscapes in program space can be highly
unpredictable, with extreme changes in behaviour from single token changes, such
as the introduction or removal of a `while' loop, or changing which variable is
written to. There is a possibility this approach may �nd the network less e�ective
when compared to tasks with smoother RL �tness landscapes, such as navigating a
geometric/geographic space, which may be more forgiving to partially correct policies.
This said, their approach when compared to previous neural code synthesis baselines
shows good performance, and may be a good direction for neural code synthesis to
take in the future.

2.3.3 GPT-3

GPT-3 Brown et al. (2020) is a neural network architecture released by OpenAI.
It is a Transformer architecture Vaswani et al. (2017), which is a type of neural
network based on neural attentionBahdanau et al. (2015). Neural Attention allows
for a network to select which information to transfer to which parts of its internal
structure. For example, it can have a neural structure which handles the verb in the
sentence, and can use neural attention to select between words in a sentence it is
trying to translate to extract the verb. The entire process of selecting which pieces of
information to attend to, how the information will be processed once it is attended to,
and how to encode it for better use by the attention heads and subsequent processing
is all handled by the gradient descent training. This structure has shown itself very
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powerful in machine translation, and broadly in language processing Belinkov and
Glass (2019).

2.4 Neural Algorithmic Imitation

Rather than program directly to source code, either as human-readable text or a
lower level but still symbolic and discrete form, algorithms can be represented by a
particular set of weightings in a neural network. The network would then `imitate'
the algorithm it has been provided with in its training set. This network would then
execute the algorithm in question, as it itself is the function.

Two core advantages exist as design goals within this sub-�eld, ability to be
integrated into an end-to-end di�erentiable system and learnability.

The �rst advantage is that this algorithm can now readily be included into a
stacked super-algorithm which can be trained by popular stochastic gradient descent
mechanisms. An example might be a sorting algorithm which takes its inputs from
a convolutional neural network LeCun et al. (1989) (CNN) which reads raw sensory
images of text. If trained as a joint function, a singular large neural network, the
CNN could learn to recognised hand-written values, and the neurally implemented
algorithm could then sort them and return them. This would be a strong advantage
if made possible, as it would allow high-level algorithms to be employed without
sacri�cing any other capability delivered by modern Deep Learning networks. An
example of a neural algorithmic processor of this nature is the HOUDINI framework
Valkov et al. (2018) which allows for both processing of hand-written digits and
photographs of street signs. This advantage could well allow the best of both worlds,
maintaining the achievements of the �eld of Deep Neural Networks while also gaining
the symbolic reasoning and generalisation capabilities of algorithmic synthesis.

The second advantage, learnability, hopes to circumvent the di�culties faced by
more classical code generation techniques, such as genetic programming or deductive
solvers, by changing the representation of the algorithm. Genetic Programming works
by stochastically sampling program space, and employing stochastic techniques to
navigate towards desired solutions based on the landscape's properties as sampled
by the current genetic population. The neural network training technique known as
gradient descentBottou et al. (2018) is able to produce an exact direction of travel
for each data-point within the training sample, guaranteeing that if the weights of
the network are changed in a given way the network's ability to replicate the desired
function (also termed decreasing the loss, or decreasing the error) will improve. As
long as the neural network does not over-specialise to the training error, termed
over�tting, which would cause it to fail to generalise to unseen cases, this training
regime may out-perform the genetic algorithm.

Two main disadvantages exist. Firstly, the black-box nature of neural networks,
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in which it is very di�cult for a human to understand their underlying internal
behaviour renders the algorithm inherently hard to inspect. Barring particular use-
cases of intentionally di�cult-to-understand algorithm implementations, such as code
obfuscation, human-readability in code is considered desirable. Text-based source
code is designed to be comprehensible to programmers other than the author, and to
a reasonable degree is so. Algorithms embedded as neural weightings are unlikely to
be so.

The second disadvantage is the entire network itself must be computed to execute
the algorithm, or (in most cases), a single step of the algorithm. Since current
computers are designed based on classical instructions sets, it would appear probable
that it is nearly guaranteed to be slower to execute the �oating point operations
required to determine the output of a neural network than to perform the machine
instructions produced by compiled conventional source code. It is outside the scope
of this work to determine how far this ine�ciency is obligated by the mathematical
properties of computation, but holds true for all papers discussed in this section.

2.4.1 Neural Turing Machine & Di�erentiable Neural Com-

puter

The Neural Turing Machine (NTM)Graves et al. (2014) and its extension, the
Di�erentiable Neural Computer (DNC) Graves et al. (2016) are roughly modelled
on the Von Neumann architecture (the broad design of modern general-purpose
computers), with both possessing a central controller which performs operations on
data, which then has access to a memory structure into which it can read and write
information. The DNC builds upon the NTM with additional information provided to
the controller, in the form of meta-data embedded into the memory store, but retains
the same rough high-level functionality and broad design goal. This goal, as stated by
the authors, is to mimic the Von Neumann architecture to enable e�ective training of
algorithms within a framework which is Turing-Complete. As it is Turing-Complete,
an NTM weighting exists which would allow it to perform any classically computable
mathematical function.

The initial papers show promising and strong results within the �eld of neural
algorithmic imitation. The DNC is able to learn to repeat back a sequence of images,
indicating an ability to handle data symbolically (as it had trained on di�erent images
than those shown in the testing sequences), an ability to learn to sort these images
(without requiring any additional training to give it help in assigning a numeric value
to each image) and the ability to �nd a shortest-path between observed nodes in a
graph. The NTM was able to generalise to sequence lengths of twice those it was
trained on (6 in training, 12 in testing) with negligible error, and to lengths above
that with progressive degradation in signal quality.

20



Chapter 2. Background Literature 2.4. Neural Algorithmic Imitation

Both architectures operate by reading and writing to a memory structure, using
Neural Attention Bahdanau et al. (2015). This memory structure takes the form of
a matrix of �oating point values, each row being a data element the neural attention
can attend to, which then consists of a set of values. The NTM and DNC can read
a symbol in from their input arrays, process it using an arbitrary number of neural
layers, then determine how it should be stored. It can then be read for use at a later
time by reading it using a second neural attention mechanism.

This writing process can jointly encode data and meta-data. For example it could
write symbolically, simply transferring the inputs without transforming them to the
�rst half of a row within the memory structure, and annotating them with a timestamp
in the second half of the row. When reading out values it can learn to seek across
this second portion of the data only, agnostic to the contents of the �rst half of the
memory rows. Once it has selected the row to read it can access the full data stored
therein and process it, say by returning it directly into its output arrays. As such,
the actual data itself remains unchanged, and the network was agnostic to its values
throughout the entire process, allowing it to operate the same regardless of the precise
values it had been presented with, a core requirement for being considered a symbolic
algorithm.

The NTM and DNC are example of what are termed Recurrent Neural Networks.
Recurrent Neural Networks (RNN) are networks which retain an internal state
between data-point input presentations (such as viewing an image, receiving a word
from a sentence, receiving data from an agent's sensors...)Rumelhart et al. (1986).
Even RNN architectures far simpler to the NTM have been demonstrated to be
Turing-complete Siegelmann and Sontag (1995), and as such could assume a set of
weights which could perform any classical computation. To compute this function, the
RNN would need to be embedded inside an unbounded loop, and have a `terminate
loop' signal to use.

From a mathematical sense, therefore, the NTM and DNC do not expand upon
the capabilities of the RNN, as the RNN is Turing-Complete already. What they do
is allow new behaviours internally to the NN. Speci�cally the aforementioned ability
to handle data in a far more symbolic fashion than a simpler RNN such as the LSTM
Hochreiter and Schmidhuber (1997) can do, as it can read and write to its memory
structure in a fashion which encodes additional data alongside the inputs, and read
memory cells based on this data speci�cally.

Di�erentiating the NN's underlying mathematical function allows the training
process to reduce the di�erence between its outputs and the outputs de�ned by a
training set of input-output exemplars, but makes no guarantees for points which are
not present within this training set. Successfully producing an NN which matches
the desired behaviour on the training data points but fails to produce generality and
thus does not match the desired behaviour on new data points is known as over�tting.
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It is an ongoing area of research in the �eld of neural networks, and to the author's
knowledge at this time remains unresolved.

The NTM paper demonstrates that this architecture is able to out-perform an
RNN based system on the algorithms it is presented with, in that it over�ts to a lower
degree, but does not achieve generality.

We see from the paper that the architectures are able to achieve a degree of
generality on certain algorithms of note (i.e. sorting, repeating a signal with delay...)
which more commonly seen RNN architectures are not. We also see, however, that
this generality only extends so far. While a sorting algorithm written in C may sort
lists of 2, 4 or 1,000,000 elements, these networks' performances drop signi�cantly as
they encounter problem sizes orders of magnitude beyond those they were trained on.

It is possible, especially on the sorting and sequence-repetition tasks, that the
issue is simply noise introduced into the network by its initial con�guration, which
the training regime failed to remove. It could be argued by proponents of the NTM
that a superior form of gradient descent could be developed which would allow it to
remove this noise (in the same way a weight regulariser Ng (2004) adjusts weightings
in desirable ways, so too could this hypothetical system reduce this noise).

If so, it is entirely possible for the NTM and its successor to be highly successful
tools to perform algorithmic imitation, and to have embedded within their weights
a general sorting algorithm (or copying algorithm, signal repeater...). It would be
a far greater claim, however, to claim that they are able to therefore learn ANY
Turing-Complete function.

Their architecture may well be uniquely tailored to processing data in this fashion.
Rather than being an example taken arbitrarily from the set of all possible algorithms,
sorting may well be an algorithm which their architecture is suited for and naturally
learns, especially if the need for a `function terminate' signal is omitted, replaced with
designed-knowledge of the number of time-steps required.

The ability to embed a Turing-Complete function is interesting, and their empirical
results on some classes of algorithm make them well suited for certain applications.
The ability to embed such a function, however, in no way proves ability to learn it, and
no empirical evidence exists that the author is aware of that they are broadly capable
algorithmic learners, nor that a training regime exists to allow perfect generality.

2.4.2 Neural Program Interpreters

Neural Program Interpreters Reed and Freitas (2016) (NPI) are a class of architectures
which use a neural network to select discrete programmatic steps to perform on the
data. Rather than require the data to �ow through the network's activations, it is
stored in a data-structure external to the network itself, which the network can act on.
The network learns to select actions to perform an algorithm, sequentially calling sub-
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functions to perform transformations on the data it has received, until a termination
condition is reached.

These algorithms do not currently fall under the umbrella of programming-by-
example as the training regime consists of demonstrations of the desired algorithm in
action, rather than requiring it to be synthesised during training or deduced by a GP
process. They are brie�y included in this discussion due to the potential for them to
gain the ability to learn via programming-by-example in the future.

The �rst argument for these approaches is generality. These approaches are
empirically shown to have a strong degree of generality. By training on shorter data
sets, they are able to perform the actions required to solve the larger ones. For example
by training on a sorting algorithm with sequence lengths of 20, an NPI has been shown
to generalise to lengths of 55 without degradation, while an LSTM baseline showed
degraded performance on even lengths of 25.

It also plausibly opens the path to broader ranges of applications. The interpreter
itself uses only �oating point values, as it is a neural system, but can operate on
anything its designer-provided actions can operate on. For example it can perform
precise integer operations, without risk of �oating-point imprecisions. It could also
go further and operate on data types which aren't possible for neural networks at
all, such as natively handling character string operations or data-structures far larger
than could be contained within a network of this size, such as image or sound �les.

The programs themselves are essentially calls to sub-functions or atomic operators,
as can be performed by executing standard source code. The programs are in the form
of the weightings of a controller/interpreter network, however, not in the form of an
arti�cial language program written by a human programmer. In principle this could
allow new forms of learning, as the weightings are in a non-discrete form. Any program
can be represented as a vector, and a continuous range of programs exist between any
two points in program space. As of yet, to the author's knowledge, however, there is
no major improvement in the discovery of novel algorithms by NPIs made possible by
this continuous program nature, however. The NPI training regime requires program
traces, precise demonstrations of which operators to call at which times. They can
generalise a program's operator sequences to longer than the sequences they were
trained on, but require that these sequences be demonstrated in the �rst place. As
such, they do not synthesise algorithms from IO examples, as is the focus of this work.
They may potentially lead to developments on this front, but for now are not directly
applicable to the task of source-code synthesis from examples.

2.5 Logic-Based Deductive Solvers

In certain problem domains, certain properties of the solutions to a given IO
speci�cation can be deduced. For example, in a string manipulation Domain Speci�c
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Language (DSL), if the string returned by the examples is longer than the string
received as input, at least one operation which is able to produce longer strings must
exist within a program producing the desired behaviour. If capital letters appear
where none were present in the input, a function which capitalises letters must be
employed. Following logical rules to assess the IO example and using this to remove
portions of program space can allow the remaining space to be small enough for
exhaustive searching. This form of code synthesis can produce extremely powerful
results at extreme speeds Srivastava et al. (2010a,b), and has industrial applications
which can be employed by non-expert users.

The best example of industrial application is FlashFill Gulwani (2011), which was
included into Microsoft Excel, and as such available to millions of users worldwide. It
is able to synthesise string-manipulation functions, for example recognising that the
user wishes the initials of a set of �rst names followed by last names. The user would
enter the full names in one column, the initials in the second, and the synthesis would
produce the desired function from only three or four examples, in under a second,
on limited hardware. It is succeeded by BlinkFill Singh (2016), which improves its
search time by a factor of 41 and reduces the number of required examples (it requires
a mere 1.27 examples to correctly recognise problems within its testing set, orders of
magnitude fewer than deep neural approaches employ).

String operations are a common problem studied by solvers, with the programming-
by-example track of benchmarking competition `Syntax Guided Synthesis'Alur et al.
(2016) (SyGus) being divided between 108 string manipulation and 450 bit vector
manipulation tasks.

The solver-based approach depends on this deductive process being able to reduce
the problem space down to a tractable size for an exhaustive searcher to operate
across. This causes it to fail in cases where presence/absence of a given operator is
ambiguous, or cannot be ruled out, most problematically in the case of a language
which features loops. As demonstrated in So and Oh (2018), the deductive solver
approach can be used to generate programs which feature loops, but must do so in a
constrained fashion. While their returned programs did feature loops, the solver was
presented only with the task of completing the body of the two nested loops, and did
so by treating it as a linear program which took the loops' iterators as arguments.
This renders the process ine�ective for Turing-Complete languages, but it remains an
exceedingly powerful tool in the domains it can function on, as demonstrated by So
and Oh's sub-one-second search times as opposed to, for example, DeepCoder's hour
long search.

Solver based solutions also face problems tackling larger program sizes. The work
of Alur et al. (2017) seeks to address this issue, increasing the number of programming-
by-example problems from the SyGus competitions by a factor of 18, by producing
solutions to individual examples from within the IO mappings. These individual
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solutions can then be combined into a uni�ed single program which resolves all cases.

2.6 Direction Suggested by Literature

This chapter has discussed four major approaches, Genetic Programming, Deep
Neural code synthesis, Neural Algorithm Imitation and Deductive Solvers. Genetic
Programming currently has the advantage in complexity of programs synthesised, but
lacks many of the capabilities which the other two possess, indicating that the state
of the art could still be improved substantially.

Of the major categories of approach discussed, it would seem that the primary
area which is missing from the literature is in the combination of Neural Networks and
Genetic Programming. Both approaches have distinct advantages. Neural networks
are able to provide higher-level abstraction than a GP process can readily achieve
without considerable human designer foresight as to which features would need to
be present in the GP's �tness function. GP, on the other hand, has the ability to
navigate the extreme (> 10100) sizes of program space which appear to be necessary
for complex Turing-Complete programs to be synthesised. Fortunately, the literature
appears to provide a readily evidence direction for this hybrid algorithm to take.
As seen in the discussion relating to neural approaches, many follow the DeepCoder
model of presenting the input-output examples to the network which then produces
guidance for a searcher. A promising direction would appear to be to replace the
commonly-used exhaustive searcher with a genetic programming search process.

This requires analysis as to which forms of advice work well with a GP, how
the search can be guided in a way which improves this. This improvement would
consist of increasing the probability of a valid solution being found within a given
number of generations or using a given amount of computational time, leading to
either previously unsolvable problems to be solved or for existing problems to be
solved with higher reliability or lower computational cost.

Careful selection of the �tness function used is important to success in genetic
programming. The landscape must guide the population's migration from its starting
point towards the solution (or a solution, if there are multiple).

Two questions are raised. The �rst is the very large question of how two programs'
input-output mappings can be used to determine how related their underlying source
code is, the second is the question of whether this is even possible. We ignore for
now the Halting Problem Turing (1937) as the author is unaware of any empirical
work on its connection to the problem of code synthesis. The proof merely guarantees
the existence of undecidable problems, it does not indicate the proportion of program
space which they occupy, and as such it does not in any way preclude extremely
e�ective solutions from being generated with a high degree of reliability. It has been
empirically demonstrated within the context of genetic programming, speci�cally the
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sub-�eld of genetic improvement, that partial solutions exist which lead to discovery of
desired behaviours often do not alter the behaviour of the problem in and of themselves
Renzullo et al. (2018). Intermediate variable state analysis, as discussed in subsection
2.3, could be a remedy for this issue, as long as the mutation produces changes in
the variable states, but this has never to the author's knowledge been deployed on a
genetic system so no empirical data exists.

Based on work from the neural synthesis community, intermediate variable state
analysis could be a remedy for this issue, as long as the mutation produces changes
in the variable states. Programs generated by these algorithms are sequences of
instructions, many of which permute the variables the program has access to. The
last step returns a set of data, the output, which can be compared against the desired
output for the given input, but the intermediary values adopted by the variables
could also be exploited. Work exists Zohar and Wolf (2018a) which uses the states of
partially executed code to guide synthesis. In principle this could be used to form a
richer �tness function than can produced by simply comparing function outputs. The
author is unaware of any published work in this direction in the GP community, and
this approach may well fail due to the need to create a mapping which maps from a
space of extreme size (not only all of program space but also all possible inputs into
all possible programs) to a single scalar value. While potentially of extreme value,
the research question into neural use of intermediary values is therefore outside the
scope of this work.

Alongside this is another direction explored in the literature which may work
very well with our goals of improving the performance of code synthesis algorithms.
Transfer Learning appears to the author to be a very natural choice of direction to
pursue. No human learns to program commercially relevant programs in their �rst
programming lesson. They build upon knowledge gained solving easier problems to
solve harder ones. In this age of cloud-based services, it seems unreasonable to discard
useful past work. If many users face many problems, an aggregated pool of solutions
could be readily obtained which could improve the user experience of many future
users. This work therefore will strongly focus on the concept of learning from past
experience to guide future work, transferring learning between tasks as far as possible.

Transfer Learning has shown good success with the approaches studied, but, to the
author's knowledge, has never been shown to operate without designer guidance as to
which programs to use as donors of these trees. This would appear to be a critical next
step, as by automating the process of donor selection, a full end-to-end system can
be created to greatly augment the power of modern GP processes. Machine Learning
algorithms have shown ability to deal with source code, and this work studies how
neural networks' high level featurisation of IO examples can be used to guide Transfer
Learning in an e�ective fashion, using all previously solved problems as potential
donors for code fragments for Transfer Learning.
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Large Language Models, such as GPT-3 represent a neural code synthesis approach
this work does not use. GPT-3 has shown an ability to synthesise code from
natural language descriptors. This does not strictly fall under our target domain
of programming-by-example, but is su�ciently interesting to be worth discussing and
considering its performance were it presented with programming-by-example tasks.

Programming from natural language speci�cations is a subtly di�erent task from
programming-by-example. The one �rst is primarily a translation task, translating
a natural language into an arti�cial one (the source code). Speci�c words in the
speci�cation map to speci�c features in the source code, for example �it should have
a red button" maps the word `button' to a call to instantiate a UI element, and
`red' then to a method attached to the UI element which changes its colour. This
is di�erent from programming-by-example, in which the features in aggregate de�ne
the program, and there is no guarantee of a decomposition of the input features into
individual elements which match to individual programmatic features or lines of source
code. For example when attempting to determine if a given algorithm is a sorting
algorithm, all elements in the input and output examples must be compared, to ensure
they share symbols exactly and are sorted in all cases. Any individual token in the
IO speci�cation given to the system is insu�cient by itself, all must be considered.

GPT-3 operates very well as a translator between natural language descriptors
and source code and it does so by leveraging its ability to re-arrange and then re-map
strings of tokens, by using neural attention to extract the necessary information at
each step of the program generation process. It is helped in this by the similarities
between the two languages, with natural language descriptors often resembling a form
of source code in and of themselves. The instructions the user gives are imperative
statements as to which UI elements to add, and the source code is an imperative
sequence given to the underlying javascript libraries. As such, discrete clauses in the
speci�cation sentences readily translate to discrete code blocks.

If it must aggregate all tokens together into a singular representation, its neural
attention does not grant it any advantage, as it cannot subdivide the data usefully, so
must attend to all points equally. Without this, it becomes a classic neural synthesis
architecture, which has taken a singular feature vector and is attempting to map it
to a point or searchable volume of program space.

In conclusion, the literature suggests that building on Transfer Learning is a
promising direction which has yet to be explored su�ciently. If combined with Neural
Network capabilities, it could allow Genetic Programming Algorithms to achieve
strong performance increases in Turing complete programming languages.
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Chapter 3

Overview

This chapter introduces in a high-level fashion the proposed concept for how Genetic
Programming and Neural Network based Machine Learning can be combined to
produce a code synthesis system. This system would exhibit life-long learning,
constantly improving itself by sampling code from successes in individual problems
and learning how to deploy these code fragments to boost future success.

The Genetic Programming algorithm is boosted by a diversity measure, to boost
performance by reducing the impact of local minima, and provide the core synthesis
capabilities of the system, and forms the entirety of the system's functionality in
initial conditions before any learning has taken place.

The Deep Learning Neural Network component provides an ability to improve
the system over time, as it tackles problems given to it by the user. Using only
Input-Output examples, it can learn to improve itself by code re-use. The networks
can recognise high-level features of the IO examples which suggest that given code
fragments would be viable for newly encountered problems, and thus guide the GP
process in ways its general-purpose �tness function cannot.

3.1 Overview

The central component of the architecture is a Genetic Programming Algorithm.
This work employs a custom language, described in Section 5.1, and is a linear
GP process. This form of GP takes the form of direct modi�cation of sequence-
of-operators source code. This contrasts with Abstract Syntax Tree representations,
which represent programs within the GP's populations as tree structures, or grammar-
based GP processes, which map an integer sequence to a source-code form, and
perform mutations on this integer sequence.

This linear code format has a high probability of including introns, non-
contributing lines of code, into the population members. Tree-based approaches,
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which de�ne a tree leading back to a single function exit point, can have non-
contributing elements but these take di�erent forms as they cannot have `disconnected'
nodes which are not part of the main tree. Conversely linear programming allows lines
to both read from and write to variables which are not written to or read by any line
contributing to the �nal outcome. Far from being useless, these lines serve as potential
feedstock for future mutations Sotto and Rothlauf (2019), and this work exploits their
�exibility for code-insertion purposes.

A simple �tness function is employed, attempting to serve as a broadly applicable
one. For task-speci�c implementations a human designer may wish to replace it
with a tailored one to improve performance, but this work seeks to explore the
idea in a general sense. The �tness function is however augmented by a novelty
search component, which turns it into a dynamic evaluation, relying both on program
functionality and GP search process history.

This GP process is supplied with problem de�nitions in the form of Input-Output
Examples by a user, in this case the testing and evaluation framework. The GP
algorithm then seeks to produce programs which maximise the �tness function, until
a solution is reached or the maximum number of generations is reached. Accepted
solutions are de�ned as those which produce programs matching the provided Input-
Output example mapping, that is to say if provided with each input example produce
the same output as the exemplar. This is domain speci�c to our chosen tasks, as
symbolic regression GP Augusto and Barbosa (2000); Uy et al. (2011) may elect to
have a `success' condition in which a small degree of error (mismatch between desired
output and synthesised program output) is tolerated.

If a program is accepted as valid (that is to say if its outputs match those in the
input-output pairs given as problem speci�cation), a subsequent number of Genetic
Improvement steps is performed. The �tness function includes an extremely small
penalty for each non-intron line. This penalty is orders of magnitude smaller than
a single mismatched value in the output, and so serves only to di�erentiate between
programs with identical outputs. Since the accepted program is one with identical
outputs to the desired one, it has zero error with regards to IO mapping �tness,
and the GP process now acts purely on this line-penalty �tness. For a �xed number
of generations, the GP process continues, generating programs which minimise the
number of non-intron lines. This serves to ablate the program, removing unnecessary
code elements. The process returns the program which scores best (lowest number
of lines) after this improvement cycle terminates. The program is post processed to
remove intron lines, based on a static code analysis function (the same which was
used to determine which lines were introns for the purpose of �tness penalty).

Once an accepted solution is produced, it can serve as a candidate to learn from.
Code fragments are extracted, attempting to keep a degree of semantic consistency.
This consistency is produced by selecting fragments whose variable read operations

29



Chapter 3. Overview 3.1. Overview

do not depend on any earlier operations not included in the fragment. If a line's
operation included in the fragment takes a set of variables, these variables must either
have never been written to by another operation or the lines writing to them must
be also included in the fragment. This includes write operations by loops, and treats
both branches of a conditional as being executed.

Code fragments are ordered based on a novelty heuristic, to �nd those most novel,
compared to existing fragments, and a subset selected. These fragments are used to
create two synthetic training corpora. The �rst corpus is a set of programs which
contain the given code fragment. The second corpus is a set of programs which
do not contain this fragment. The evaluation for fragment presence is generalised,
and abstracts the variables' naming. If the fragment had two lines, one writing to
variable_5 and the second reading from variable_5, the requirement would simply be
that the �rst writes to the same variable the second one reads from. The logical links
between variables are preserved, their precise implementation details, the positions
they would occupy in the interpreter's memory, are abstracted away.

Corpus creation occurs by taking all accepted program solutions which match the
condition (either fragment presence or fragment absence) and genetically mutating
them to produce new programs. Newly generated programs also become targets for
potential mutation, allowing the corpus to include programs highly dissimilar to the
`seed' programs. In the event of newly discovered fragments, it is common for there
only to be a single exemplar of it in use.

These two training corpora can be used to train a probabilistic estimator neural
network. The programs are fed randomised inputs, and their resultant IO mappings
fed into the neural network as its training features. The training labels are either 0 or
1, for absence or presence of code fragment, respectively. The network has a sigmoidal
output, and is trained to minimise the mean squared error on its training data set,
and so is able to produce a probability for any given IO example as to whether the
program which generated the IO mapping contained the code fragment or not.

This, of course, has the issue that multiple implementations of the same
functionality exist, and it is quite possible that an alternative implementation either
has or lacks the fragment, and thus the training data could be considered `misleading'.
This remains an open problem.

Once new problems are encountered, the process repeats, but the GP process
can employ fragments which have a high estimated probability of presence in a GP-
produced solution. The GP has access to a mutator operator which inserts entire
code fragments into the source code, selecting only those which have an estimated
probability of > 0.5 and biasing towards those with higher probabilities.

After a solution is accepted, it can be evaluated to determine if any proposed
fragments exist within it. If they do, new training corpora are generated, as new
seed programs exist to demonstrate how this fragment can a�ect program IO. The
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Algorithm 1 An overview of the process for transferring learning between GP
synthesised code, allowing online learning from IO examples only
1: while unsolved_problems_exist do
2: for all stored_fragments do
3: present problem's IO to fragment's associated NN
4: if NN estimate of probability < 0.5 then
5: continue
6: end if
7: S = arbitary_ranking_heuristic
8: end for
9: run GP on problem with fragment with highest S
10: if GP returns valid solution then
11: extract all code fragments from solution
12: for all extracted_fragments do
13: generate training set P from all found solutions featuring fragment
14: generate training set N from all found solutions without fragment
15: train an NN to discriminate between P and N
16: evaluated trained NN on existing found solutions
17: if NN accuracy on found solutions > 0.5 then
18: store NN + fragment for future deployment
19: end if
20: end for
21: end if
22: end while

fragment's estimator neural networks can then be retrained, with a broader coverage
of program space than would have been created by their single positive case (which
would have been their �rst training set).

These two training processes allow the system to learn from past success, by
training networks to recognise the presence of code fragments. A single network
is used for each fragment (overwriting the previous one each time a new training
corpus is produced), in an attempt to avoid scaling issues. The minimum required
VC dimension for this is simply 2, as it only seeks to separate two classes, the IO
examples which appear to have the assigned fragment, and those which do not.

Training never need end, with each success re�ning the networks' abilities to
recognise code fragments and occasionally adding novel code structures to the
repository.

The end to end approach is described in pseudo-code in Algorithm 1, and
illustrated in Diagram 3.1.

The subsequent chapters discuss the experiments undertaken to determine how
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Figure 3.1: Diagram of the end-to-end code synthesis system
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to best tackle the problem of code synthesis. They evaluate the various components
of the system in the order they will be required by the architecture, starting with
the data sources and ending with the full end-to-end system's design. The concept
discussed in the preceding section is implemented in Experiment 6, after a set of
experiments which con�rm the e�ectiveness of its underlying systems.

It builds upon the direction suggested by the background section, of attempting to
combine the abilities of neural networks to recognise high-level properties of the input-
output examples provided with the powerful program space navigational capabilities
of genetic programming. It also continues with the concept of Transfer Learning, as
seen in the background section, which is anticipated to allow new progress to be made
in the �eld of code synthesis by allowing previous success to be built on, in a fashion
similar to how a human might learn to code, from easier problems to harder ones.

3.2 Argument for combined GP and NN From Scal-

ing

If a neural network can successfully reproduce code simply by increasing its number of
weights and available training data, the entire idea above becomes irrelevant. Certain
mathematical concepts seem to suggest that its capabilities would not grow linearly.
According to one mathematical analysis of the properties of neural networks, if neural
network architectures scale in a similar fashion to simple feed forward networks, they
may lack the ability to generalise to the sizes of programs required to be useful
industrially. This section assess this, to support the argument for using a combination
of genetic programming and neural networks, as opposed to attempting to expand
neural networks alone.

Machine Learning algorithms can be studied in terms of their Vapnik�Chervonenkis
(VC) dimension (Vapnik and Chervonenkis (2015)). A machine learning algorithm can
be considered to take an arbitrary input and select a `class' from its output domain.
In many cases these classes are simple enumerable categories. For example in a binary
Boolean domain, the output domain is {True,False}, and the two categories are `True'
and `False'. The number of classes a machine learner can distinguish between is its
VC dimension. In that case, the machine learning algorithm has a VC dimensionality
of 2. This limit may not be due to its output domain being restricted, but due to
the properties of the classi�er itself. A linear classi�er, which operates based on the
Boolean function f(x) = if((x0 ∗ k0+x1 ∗ k1...xn ∗ kx) > k then 1 else 0) structurally
cannot separate more than two cases, as it depends on a binary conditional. It de�nes
a plane within its input space, and returns based on the side of the plane the given
input point exists. Adding an additional decision boundary plane allows for 4 cases
of how input points may exist relative to these planes, therefore a VC dimensionality
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of 4.
This generalised DeepCoder approach discussed in the background section can be

considered to be a machine learning algorithm selecting between classes, where those
classes are subsets of program space to search within. Work exists in the literature
with regards to the VC dimension of neural network, with Bartlett et al. (2019)
demonstrating that a fully connected architecture using the reLu activation function
has an upper bound on its VC dimension of V C = C ∗ L ∗ log(w) ∗ w, where L is
the number of layers in the network, w is the total weight count and C a constant
whose value remains to the author's knowledge unproven. While this constant is
not known, the function without it can be seen as the `Big O' complexity function
for a feed forward neural network, an assessment of how it scales with required VC
dimensionality, and thus its theoretical computational tractability. While other neural
network architectures exist, we will discuss this case initially.

When presented with the data representing an IO example to match, the network
processes the data, then presents the searcher with a set of programs to search
over (and a ranking/ordering, which is irrelevant to this part of the discussion).
The maximum number of di�erent sets it can direct the searcher towards is its VC
dimension, with a proven upper bound of V C = C ∗ L ∗ log(w) ∗ w.

We assume the searcher has an upper bound of T programs it can search with
its �nite computational resources. While program evaluation may vary in time, we
de�ne T as the best possible case, the maximum number of programs which can be
evaluated on the hardware, and allow the bene�t of the doubt that all evaluations
will equal this performance.

The total number of programs able to be generated is equal to T ∗ V C, if the
subsets of program space do not overlap (the most e�cient output con�guration the
network could theoretically reach). As program space size increases, we see that to
maintain constant proportion coverage (including the option for full coverage, where
T ∗V C = program_space_size), V C must scale linearly with the size of the program
space.

V C itself scales as w ∗ log(w), as C is a constant and L is a fundamental part of
the architecture of the network, and cannot be extended arbitrarily without altering
training outcomes (He et al. (2016)). There exists a �xed computational cost for w,
as each weight represents a �oating point operation to perform.

program_space_size varies exponentially with line count, however. If all line
con�gurations are legally possible for every line of a program the space of all possible
programs increases as options_per_linenumber_of_lines. Obviously in most languages
this is not a valid assumption, as certain options are not possible without preceding
others, such as variables requiring declaring before they can be read from, but it serves
as a rough guide to how program space grows.

The DeepCoder architecture therefore has two mechanisms to scale in response
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to being faced with longer problems. It can increase its T , which linearly increases
the associated computational cost, speci�cally the time taken to search the problem
subset returned by the NN. Alternatively it can increase its V C by increasing its
weight count w, which increases its V C as O(w ∗ log(w)). This second way linearly
increases the computational cost associated with the �oating point operations required
to compute the weightings' outcomes. Each line of problem length, however, could
be increasing the problem search space size exponentially. In the language we used in
published work and through this thesis, each line added to the maximum permitted
program size involves an increased program space size greater than three orders of
magnitude. This does not preclude the DeepCoder architecture from success, but
casts doubt on its ability to generalise from smaller program spaces to larger ones.

To put numbers to it, if the language is at a point where each line permitted
increases the problem space size by three orders of magnitude, to maintain the same
degree of performance (either the same marginal probability of an out-of-time outcome
or to maintain full coverage of problem space) the computational cost would need to
increase by a factor of 54. This assumes we increase both T and w by the same factor
of 27 to optimise the growth in performance which follows O(T ∗w ∗ log(w)) (we split
our new resources equally between the two components, as the gains achieved are
multiplicative). To go from a machine capable of synthesising a ten line program
to one capable of synthesising a twenty line one therefore requires a computational
increase of 1017. If a program has 5 variables de�ned and able to be written to, and
only 8 operators, each able to write to a variable and read from two others (such
as addition or multiplication would do), it already allows 1000 new permutations for
each line.

DeepCoder already reports a time taken of 2654 seconds to resolve 60% of its
testing problem corpus of 500 problems of length 5. They report a problem space of
size 1010 for this con�guration, and the paper's experiments indicate that it may well
scale in time approximately linearly with problem space size, as they reported a time
of 0.11 seconds for the same proportion solved on the smaller test with a problem space
size 2 ∗ 106. If the problem space rises to a size of 1030, as could readily caused by a
10 line program space with the combinatorial explosion caused by the options allowed
by multiple-input functions (DeepCoder's DSL only includes single-input functions),
it is possible search times could rise to just under one million years.

As stated above, this does not mathematically prove the architecture is not capable
of synthesising useful programs, and does not place any upper bound on the nature
or complexity of a program which can be synthesised by a neural network which
returns a subset of program space over which an exhaustive searcher will search. It
does however, suggest that any architecture which relies on a neural network able
to perform mappings between large domains of IO example inputs and usefully large
program spaces should not be assumed to generalise to larger problem spaces with
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plausible increases in computational hardware. There is a strong possibility that its
architecture is at its limit, and even large increases in computational resources would
only yield modest gains in maximum problem complexity.
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Chapter 4

Training Corpus Generation

4.1 Experiment 1: Designer-Guided Training Cor-

pus Generation

In terms of architecture �ow, the �rst part of a machine learning system for use in the
context of code synthesis (or indeed in any context) is the acquisition of data from
which it can learn. If we are to train a machine learner we must produce a training
set. This section discusses this PhD's research regarding this problem, and outlines
the experiments undertaken with regards to this aspect of the work.

For all tasks for which a machine learning algorithm was employed in this work,
it was necessary to sample program space, to produce a set of programs to use as
examples for the machine learner. How to select programs from program space in
a way which maximises learner e�ectiveness may prove highly in�uential on overall
success of our approaches. As identi�ed in Shin et al's work Shin et al. (2019b),
the inputs fed into the problems, to generated input-output mappings, is also highly
relevant.

This �rst experiment of this work was designed to assess how neural network
machine learners can best be provided with training examples. The area of focus
was in program selection, determining which subset of the vast program space would
be selected to generate Input-Output (I/O) mappings to serve as training examples.
This is a preliminary experiment, so the language is a constrained version of the full
one, and does not employ any 2D arrays.

The experiment focuses on studying how the performance of a neural synthesis
system can be maximised on a `Human-Useful' problem corpus. These are a collection
of short functions which could be seen in a human-written program and serve a
recognisable purpose.

As a preliminary study, this featured a large degree of designer involvement, to
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Figure 4.1: The operators available in our simpli�ed language.

study it in an initial fashion. This would establish what the later fully-automated
systems should be working towards.

This work was published in the literature under the title �General Program
Synthesis using Guided Corpus Generation and Automatic Refactoring" Wild and
Porter (2019).

4.1.1 Simpli�ed Language

In this test a reduced form of the language was employed, to simplify the problem, in
order to rapidly study the underlying techniques.

To simplify the design of the neural network, the language is mapped onto the
output neurons using a uniform set of possibilities per line. Each line of a program can
have the same 1, 332 di�erent options, derived from 15 operators (see Table 4.1), from
variable declaration to addition or a loop header. Once a program has been chosen,
it is checked to see if it is syntactically coherent and the system then automatically
corrects programs which are not. In C-like programs this creates two main corrections:
cases in which there are too many `closing braces', and cases in which there are too few
(an unterminated loop). For the former case hanging braces are simply replaced with
a no-op. In the latter case a closing brace is inserted at the very end of a program
for any un-closed control blocks; in addition, any un-closed loops are converted to
conditional blocks rather than loops. By taking this approach to neuron behaviour
uniformity, the neural network does not itself have to learn special cases which limit
what each line can be based on prior lines, which would create a much more complex
network structure (which potentially might create a more di�cult learning problem).
Uniformity here simply means that the behaviour of any output neuron codes for the
exact same way of writing a line when translated to code regardless of content of
previous lines.

As further restrictions for this experiment, in all of the tests use programs 9 lines
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long, padded with the NO_OP operator. 6 integer variables are allowed to be accessed
by the programs, of which two are �xed and unable to be written to. All of the tests
involve passing a single array and a single standalone integer into the program. The
two �xed integer variables are the input integer and the length of the input array.
The program then has read and write access to both the input array and a second
array used as output. These limits allow a wide range of functionalities, while still
imposing limits to maintain the problem within computationally tractable sizes.

4.1.2 Neural Network and Search Architecture

The code synthesis architecture combines a neural network, used to derive an ordered
ranking of possible options, with a search process which iteratively tries these ranked
programs up to a con�gurable search depth.

For this particular study it is assumed every program can take two parameters:
an integer array of length 8 as the �rst parameter, and an integer as the second. It is
also assumed that every program returns an integer array of length 8. Every cell in
an array can hold a value between -8 and 8, while the integer parameter can hold a
value between 1 and 4. Reducing the range of the integer parameter to only positive
non-zero values simpli�es the search space, as they can always meaningfully use the
parameter to refer to an array index.

While the language is capable of representing much more diverse function
speci�cations and numerical ranges (equivalent to C), these restrictions are a �rst step
to simplify the search space and neural network complexity. The crucial extension
targetted is the ability to use LOOP and IF statements, allowing more complex
programs in terms of �ow than are possible in other code synthesis approaches. A
trade o� is accepted in terms of program length in return for being able to handle a
new class of program.

The neural network is then designed as a standard feed-forward architecture
as follows. The input layer uses 1,700 input neurons to take 10 I/O examples
concatenated together. The output structure uses 9 layers, one for each potential line
of a program; each such layer consists of 1,332 neurons, one for every possible way
the respective line could be written (including the possibility of a no-op). Internally
we use 8 residual layers, each consisting of two dense layers with a width of 512 and
an additive layer skip (shown to improve deep networks Wu et al. (2017); Kawaguchi
and Bengio (2018)), and using the ReLu activation function. Dropout was used on
all layers, with a probability to keep of 0.75. A softmax activation is used for the
output layers, and a crossentropy loss function. The optimizer was the Tensor�ow
implementation `RMSPropOptimizer', with learning rate 10−5 and momentum 0.9.

The neural network is trained by automatically generating a corpus of example
programs; the mechanics of this generation are described in detail in the next
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subsection. For each generated program in this corpus 10 input/output examples
are randomly generated for that program. During training, randomly generated I/O
examples are fed into the neural network's input layer as 170 integer values (each I/O
is being composed of 8 values for the input array, one value for the input integer, and
8 values for the output array, this creates 17 values for one I/O example and thus 170
values in total for 10 I/O examples). Encoding integers as 10-bit binary numbers for
input to the neural network was experimentally shown to perform better than using
scalar inputs, and so the network has a total of 1,700 input neurons. The network is
trained by back-propagating the corresponding output layer neuron values from the
actual source code of the corpus program associated with these I/O examples.

Once training is complete, in the testing phase only the 10 I/O examples for a
desired program are supplied and the neural network's probability distribution over its
output layer neurons is used to create a ranked list of programs to search across, from
most to least likely. The highest-con�dence program would therefore be generated by
selecting the highest activity neuron from each output layer. Each layer mapped to
a line in the program being generated, and each neuron mapped to one of the 1,332
valid statements which could appear on that line. The 9 highest-activity neurons, one
from each of the 9 output layers, therefore map to 9 statements which then make up
the highest-con�dence program.

To generate a volume of program space, the N highest ranked neurons are chosen
per line, giving N ways that particular line could be written in the sampled program.
The search volume would therefore consist of every combination of these options,
i.e., number_of_options_per_linenumber_of_lines. For this experiment, when not
otherwise noted, 4 options are used per line for standard programs, and 6 when
searching within the human-useful program set (Programs in this set are listed in
Figure 4.1).

This system is illustrated in Figure 4.2.
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Figure 4.2: Diagram of the neural network, with three lines of outputs, and a single
line's output neurons described.

41



Chapter 4. Training Corpus Generation 4.1.

4.1.3 Corpus Generation

In a simple Domain Speci�c Language, a training corpus for a neural network
could be generated by sampling uniformly at random from the space of all possible
programs (Chen (2017)). For these purposes, however, the search space of the more
general-purpose language is far too large for uniform random sampling to be e�ective.
When sampled in this way, the resulting corpus of programs is highly repetitive, each
program has a high probability of being made up of only (or mostly) lines of code
that have no e�ect, and very few programs contain condition or loop elements (which
feature heavily in human-useful programs).

As an alternative to uniform random sampling this experiment designed an
approach which combines genetic programming with a set of abstract search biases
and a dissimilarity measure. The generator starts with a seed program, which is an
abstract problem re�ecting the kinds of search biases that are needed; for example a
program that uses a loop and a conditional branch, and which reads all of the input
array values once and writes each cell of the output array. Starting from this seed
program, the genetic algorithm creates iterative populations of mutations. Within
a population, it promotes code length and an even distributions of all operators,
and it penalises writing to loop iterator variables. Finally, mutated programs are
only accepted into a population if they are behaviourally dissimilar to the rest
of the population. This similarity is measured by feeding 25 randomly generated
inputs to each program, and marking the programs dissimilar if any of their output
arrays contain a single di�erent value as a result of the inputs. Programs are also
rejected if any program reads from or writes to the same memory address in an array
twice, further reducing the search space. To gain good learning coverage of �ow
control, this experiment seeds �ve separate sub-corpuses to form the overall corpus.
The �rst had 0 �ow control operators. The second had 1 loop only. The third
had 1 loop and 1 CONDITIONAL_GREATER_THAN_0 operator. The fourth
had 1 loop and 1 CONDITIONAL_EQUALITY operator. The �fth had 1 loop, 1
CONDITIONAL_EQUALITY and 1 ELSE operator.

The result of this generation process was a diverse set of 10, 000 functionally
distinct programs, split between the 5 sub-corpuses of 2, 000 each. This experiment
determines functional similarity by feeding both programs a set of 25 randomly
generated inputs and checking for any di�erence. It then splits these programs
amongst training, testing and validation for the neural network. Training received
8, 000 programs, the other two corpuses received 1, 000 programs each. As a result,
each corpus' programs were functionally dissimilar, with no program's functionality
replicated between corpuses. Note that none of the set of human-useful programs is
involved in training the neural network; all such programs are therefore unseen by the
system.
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4.1.4 Automatic Corpus Refactoring

The corpus generation approach tries to train the neural network with a diverse set
of programs that facilitate its ability to synthesise human-useful programs. However,
corpus generation itself does not necessarily maximise the neural network's internal
generality or its use of available model representation space.

A novel approach to enhancing the generality and model e�ciency of the neural
network was tested, by altering the corpus based on the network's own success rate �
an approach termed in this work automatic corpus refactoring.

The neural network is �rst trained using the corpus generated as above. It is
then asked to locate every program in the training corpus by being given the set of
I/O pairs which should result in the given program being found. Because the neural
network outputs a ranked list of potential programs, the actual program match may
be 10's or 100's of programs down this ranked list. However, during experiments it
was observed that a functionally equivalent program would often exist earlier in the
ranking than the exact-match program in the training corpus.

In corpus refactoring, a test was run to see if such a functionally equivalent program
exists earlier in the ranking, and if so it replaces the training program with this
equivalent version. The system then retrains the neural network again (with weights
re-initialised) based on this new corpus. It can perform this refactoring iteratively,
using a new corpus to again replace programs with earlier-found equivalents, until the
performance converges to a maximum. As the results demonstrate, refactoring in this
form increases performance not just on the training corpus, but also on the testing
corpus and on the number of human-useful programs that were correctly constructed
� in other words, by adjusting its own training corpus without actually adding any
new information, the system is able to �nd more programs in total than it previously
could.

Empirical testing described below indicates that as many as 0.8 of the found
programs could be replaced in this fashion, replacing the generated corpus' imple-
mentation of the function with the neural network's preferred implementation.

4.1.5 Results

This subsection �rstly examines the system's overall code synthesis performance in
its intended normal con�guration. This allows examination of its performance, when
attempting to solve a human-de�ned testing corpus of unseen programs. We examine
the e�ects of our automatic refactoring (AR) technique over a set of iterations, to
isolate its performance from the initial success of the corpus generation and neural
network training steps. AR allows us to improve the performance of a system by
adapting its training corpus in response to its current behaviour.
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This experiment then investigates the genetic corpus generation approach in
further depth, by performing ablation studies on its `requirements' and �tness
function. Following these two studies, it attempts to shed light on the performance
gains produced by the AR technique, by examining the changes it makes on the
corpus.

The approach is evaluated with a set of `human-useful' programs that the synthesis
system is required to �nd � which are distinct from the set of programs that the
synthesis system �nds during its own automated corpus generation phase. These were
chosen by the author to be similar to programs which a novice �rst year programmer
might encounter and be tested on and are described in Table 4.1.

4.1.5.1 Program Synthesis

To test general program synthesis capability the experiment runs the end-to-end
approach 10 times to gain average results. There are two sources of stochasticity
in our approach: the way in which the corpus generation phase works, which is
based on randomised mutations; and the way in which the neural network is initially
con�gured, which uses randomised starting weights prior to training. The experiment
runs corpus generation, �ve rounds of automated corpus refactoring, and then presents
the input/output examples for the set of (previously unseen) human-useful programs
to see how many the system can �nd.

Two encoding schemes were tested, one with every integer encoded simply as a real
value, giving an input length of 170 (8 in the input array, 1 integer, 8 in the output
array, for each of the 10 examples), and a binary encoding in which each of these
values was represented by a 10-length binary vector (1 bit for sign, 9 for magnitude),
for 1700 input values. Without automatic refactoring, on two sets of 5 corpora, this
experiment found that binary encoding produces a success rate of 0.262 (σ = 0.0241),
while real-value encoding produces a success of 0.185 (σ = 0.0174). This shows that
the binary encoding scheme is highly preferable. All later tasks involving feeding
integer-based input-output examples in a neural network in this thesis therefore use
the binary encoding scheme.

The results are shown in Table 4.1, detailing both the �nd rate before any corpus
refactoring and also the �nd rate after the �nal round of refactoring. For each
successfully found program, the neural network has output source code which correctly
derives the output from each corresponding input. As an example, for the program
�max(value,param)�, the array could be [-5,3,-2,3,-4,1,5,8], the parameter `1', and
the output [1,3,1,3,1,1,5,8]. From these results it is seen that the system locates an
average of 38% of the human-useful programs as a result of its initial corpus generation
process; this rises to an average of 44% (and a maximum of 60%) after �ve rounds
of corpus refactoring. Examining individual programs in this target set, it is seen
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Table 4.1: Percentage success rates for two experiment sets, with and without
the automated corpus refactoring stage (the �rst set averaged over 11, and the
second over 17 runs). A simple genetic programming algorithm, using the same
linguistic constraints, is used as baseline. It can be seen that GP (as described in
Subsection 4.2.1) succeeds on simpler problems, but has lower performance when a
conditional statement is required. Highest success rate bolded. Programs requiring
conditionals marked with `*'
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Table 4.2: Success rate on training (left) and test (right) corpus, over each iteration of
automatic refactoring, starting from the unmodi�ed corpus, with Standard Deviation

that the majority of �nd rates tend to increase, while a couple of �nd rates (for
example the o�set-by-one program) notably decrease. It can be speculated that the
decreases in some program �nd rates may be caused by those programs lying outside
the generalised space into which the neural network moves during corpus refactoring.

The experiment next examines the �nd-rate of the training, test and human-useful
program set over each iteration of automatic corpus refactoring. These results are
shown in Fig. 4.2 for the training and testing sets, and in Fig. 4.3 for the human-
useful set.

Both the training and test data set show a steady increase in the �nd-rate of
programs from the respective set. For the training set, which shows a �nd-rate increase
from 0.4 to 0.65 (where a value of 1.0 would be all programs found), the process of
self-adjusting the training corpus in automatic refactoring clearly shows an enhanced
ability to correctly locate more entries in the training corpus. The e�ect in the test
corpus is similar, in this case showing an increase from 0.27 up to 0.36. However,
in the case of the test data set the result is much more signi�cant. The increase in
�nd-rate here (i.e., for programs which the system has never seen before) indicates
an unexpected phenomena: having the neural network's training corpus refactored,
without adding any data, allows the neural network to locate more unseen programs
than it previously could. It is worth noting that performance decreased in some
cases. This is potentially due to the neural network specialising to a particular form
of program (the most common) at the expense of others. While this specialisation is
overall bene�cial, some degradation occurs in certain types of program.

A similar e�ect is seen in the human-useful programs over successive refactoring
iterations, as shown in Fig. 4.3. Again, all of these programs are unseen by the
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Figure 4.3: Success rate on the human-useful corpus, over each iteration of the
automatic refactoring process, with unchanged corpus as �rst data point. Corpus
size is 20, so each increment of 0.05 corresponds to an average of one program found.
1st Standard Deviation displayed

system during training, but reshaping the training data enables more of them to be
successfully synthesised. This suggests that the use of automated refactoring approach
perhaps causes the neural network to become more generalised in its capabilities.
However, the data in Fig. 4.1 provides a more mixed picture: here we see that
�nd-rates for most programs increase after refactoring, but some �nd rates actually
decrease.

4.1.6 Requirements in corpus generation

The e�ects of the initial requirements on corpus generation can now be examined.
These requirements are used as input to the genetic algorithm to guide its generation
of a set of programs on which the neural network is trained. As a consequence of
this training, the neural network is then able to �nd (or not �nd) a set of previously
unseen human-useful programs. The precise nature of these requirements for corpus
generation are therefore an important, if indirect, element of how successful our
synthesis approach is at �nding programs after training.

This subsection examples how the use of di�erent requirements a�ects synthesis
success. The complete set of requirements, used across all of the experiments reported
so far, includes three major categories as follows.

4.1.6.1 Array Access

This requirement is that all programs containing a loop operator must access every
element of the input array. This requirement was included to overcome a perceived

47



Chapter 4. Training Corpus Generation 4.1.

problem in the input-access of generated programs. These would often access their
inputs in ways which human-written programs rarely would, such as only reading a
single element of the input array, or altering their loop iterator and as such skipping
elements.

4.1.6.2 Program Flow

This requirement involved subdividing the corpus into 5 sub-corpuses, each with its
own requirement as to how the �ow-control operators should be used. The �rst corpus
required all its programs to have no �ow-control operators at all. The second corpus
required only a single loop operator. The third required a single loop operator and
the �rst type of conditional operator. The fourth required a single loop operator and
the second type of conditional operator. The �fth type required a single loop, the
�rst type of conditional operator and an else block. These particular requirements
were chosen to demonstrate interplay between �ow operators, which weren't featured
together frequently in a randomly generated corpus. For each of these corpuses, a
single �seed" program was supplied. This program was what was considered to be the
�maximally simple" implementation of the requirements; as an example of this the
loop-only requirement, from the second corpus, would read in all input values, then
write them out unchanged to the output array. The seed programs were implemented
due to the genetic search's inability to start generation without them.

4.1.6.3 Genetic Fitness Function

Lastly, the genetic algorithm �tness function rewards particular operator ratios: all
operators are expected to be used at least once, with �ow control operators in
particular weighted twice as highly as others. This was done to promote the use
of �ow-control, while penalising operators repetition. This was necessary to move
away from the �maximally simple� seed programs to those with more commonly useful
features. This is termed the `complexity maximisation' heuristic. It occurs by taking
an `ideal' distribution, which is for a program to have one of every operator (including
�ow) control. A vector of length equal to the number of operators can be computed for
each function, where each value is the number of times that operate exists. This vector
can then have its Euclidean distance compared against a vector of all 1s (representing
a program with one of every operator). This `perfect' program is impossible due to
there being more operators than lines available. The program �tness is then divided
by the Euclidean distance produced, the distance being the complexity heuristic.

The e�ects of the above requirements are examined by selectively switching them
o� during corpus generation and comparing how many of the human-useful program
set is found as a result. The results are shown in Fig. 4.4, in which each experiment
was run 5 times and the data averaged.
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Figure 4.4: Average performance for sets of corpora with varying requirements for
constituent generated programs.

The �rst test shows the full set of requirements, as used in the earlier experiments
reported in this section. This achieves the highest performance of any experiment,
�nding an average of 8.4 programs (σ = 1.5) from the human-useful target set. The
second experiment removes the array access requirement, but keeps the program �ow
and �tness function heuristics. This performs slightly worse, achieving an average of
7 human-useful programs (σ = 1.4), indicating that most of the programs are in an
area of the total search space in which the input array is uniformly accessed. The
third experiment removed both the array access requirement and the program �ow
corpus generation technique, leaving only the �tness function heuristics. This resulted
in the worst overall success, with only an average of 4 programs found from the set
(σ = 0.71).

All requirements were then removed as well as the �tness function heuristics, which
actually shows a slight increase in performance with an average of 4.4 (σ = 0.98)
programs found. Finally, an experiment was run with only using the array access
and program �ow requirements and not the �tness function heuristics, which results
in the second-best performance overall � indicating that these requirements are more
important to success than the �tness function heuristics.

Altogether, these results support the hypothesis that achieving good performance
on the human-useful corpus requires a set of corpus generation biases that are
re�ective, at a very abstract level, of the typical form of useful programs. A corpus
generation function for producing training sets for neural networks should therefore
attempt to replicate the success of these restrictions, to maximise a neural network's
ability to learn the useful regions of program space.
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4.1.6.4 E�ects of Corpus Refactoring

This subsection examines the e�ects of automated corpus refactoring in more detail,
to better understand why it enables more programs to be found without adding any
new data to the system. This work characterises this as not adding new data because,
even though the training corpus is modi�ed, it is modi�ed only as a result of the neural
network's own output from the initial training corpus; the only thing being `added'
is therefore the neural network's apparent preference for which precise form of a
target training program to use, but this preference is itself entirely derived from the
original training corpus and the neural network's inherent behaviour. This subsection
therefore attempts to better understand why this e�ect occurs, in so far as is possible
with the black-box nature of neural networks.

In broad terms, the use of feeding output of one neural network as training labels
to another has been demonstrated previously in teacher-student distillation network
training Hinton et al. (2015); in this case however it is believed the success is in fact due
to an interplay between the network and the search process. This subsection analyses
this e�ect using the entropy shown by output layers before and after automatic
refactoring. These experiments help to verify whether or not the neural network
is `self-generalising' as a result of its search process, or if in fact it is specialising to
certain kinds of program in which it tends to become an expert.

These experiments measure the entropy of each output layer of the neural network,
where each layer corresponds to one line of code. As discussed in subsection 4.1.2, each
output layer of the network can select from one of a �xed set of possible operations
for that line of code � where each option is represented by one neuron. The highest-
activated neuron in an output layer is taken as the network's best guess for this line
of code. It is hypothesised that one of the reasons for corpus refactoring �nding
extra programs is that the network becomes better generalised in its representation
of algorithms. This experiment tests this theory by examining the entropy of each
output layer � in other words, across all programs, how `specialised' is each output
layer to always choosing the same operation for their line of code, versus their ability
to represent a balanced spread of output options. The more balanced the spread is
for each output layer, without losing the ability to synthesise programs, the more
generalised the neural network may be.

Theil inequality metric is used to measure the `inequality' of each line. Maximum
inequality (only one option ever used) would be minimum entropy (perfectly
predictable). To compute this it �nds the probability of every option for every line
being chosen, across all the programs in the training corpus. If every option were
chosen with equal probability, they would each be the average, µ, which is equivalent
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Figure 4.5: Reverse entropy of operator distributions by line, as measured by the Theil
index. Lower values imply a more even distribution of operator use for a particular
line, therefore higher entropy.

to 1/N , where N is the number of options per line. The Theil index is computed by:

T =
1

N

N∑
i=1

xi

µ
ln(

xi

µ
)

Where xi is the use probability of option i.
Fig. 4.5 shows the results of this experiment. On the left can be seen the entropy

of each output layer before any refactoring has taken place, and on the right can be
seen entropy after �ve refactoring iterations. A clear trend can be seen towards a more
balanced ability for each output layer to select a broader range of options, supporting
the hypothesis that the refactoring process may aid in generalising the capacity of the
neural network.

It can also be inferred from these experiments that program length becomes more
consistent after refactoring. This is to say, the number of non-empty lines are counted
(which can appear on any line post-refactoring), it tends towards a closer average
across all programs (the length goes from 7.11 lines with a standard deviation of 1.82,
to a line average of 7.78 with a standard deviation of 1.41). This suggests that the
refactoring process tends to choose longer forms of programs to e�ectively specialise
the network towards programs of a certain length. This is an unexpected duality:
as a result of corpus refactoring our network seems to train towards specialising to a
certain length of program, while simultaneously generalising itself within that program
length by increasing the ability for di�erent lines to take more diverse operations.
This said, this remains only a hypothesis, and the changes in Thiel inequality have
not conclusively been shown to be the cause of the performance increases.
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4.1.7 Conclusion

This experiment set gave a preliminary overview of the needs for a neural code
synthesis system. The approach employed depends heavily on human involvement,
both to provide a seed program and to de�ne the requires for each corpus generated,
which will need to be replaced with an automated system if the lessons learnt are to
be deployed into a fully autonomous synthesis system.

The lessons learnt can be generalised to more than simply neural code synthesis
systems, as they can inform the training of any code synthesis approach which relies
on neural networks, including GP and solver-based approaches which employ neural
components.

The following conclusions can be drawn and applied to future experiments:
Guided training corpus generation, based around requirements, is

critical. It can be seen that neural networks have superior performance if given
a targetted training set, as opposed to a much broader one generated by uniformly
sampling program space. Due to the vast sizes involved, only attempting to encode a
subset of the program space may be more computationally tractable than attempting
to embed the entire space into a network's weights. If portions of program space are
never relevant for problems the system will encounter, it could well be very useful to
exclude these.

Heuristically pushing towards more complex programs has a small
empirically demonstrated utility, but only to a minor degree. This �tness
function in the training corpus generation was shown to have use, but its e�ects were
minor enough that it may be ignored without compromising performance excessively.
This would both simplify the system and perhaps allow it a greater degree of
generality, as it would not be targetting any particular program size.

Seed programs are necessary for creating training corpora. In this
experiment's setup, it was shown to be necessary to include human-designed exemplars
of the requirements in a working program, to allow the genetic process to generate
variants. While seed programs are necessary, automating their generation would be
ideal.

Binary encoding schemes for numeric values are superior to real-valued
scalars in terms of neural network performance. This may be due to the
changes in which pieces of information are readily available within the encoding, with
a core piece of information being �is this number even?�. This encoding format can
be used for all future experiments as it is broadly applicable.
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4.2 Experiment 2: Discriminator-Based Corpus Gen-

eration

This second experiment attempts to remove the human element, replacing it with a
mechanism to automatically identify which types of programs should be included in
a neural network's training corpus.

This is accomplished by training a `discriminator' neural network which attempts
to recognise key characteristics which separate human useful program behaviours from
less useful ones. It seeks to classify I/O examples into two classes, one which is useful
to learn from, and one which is not, without ever seeing the source code. Features
which could be selected for are `interesting' patterns such as alternating values or
consistent arithmetic transformations of the input values. Features which could be
selected against are extreme values, far beyond the magnitudes of the values being
input into the functions, or functions which ignore any inputs and simply consistently
return a patternless collection of values.

This is based on the concept of Generative Adversarial Networks (Goodfellow
et al. (2014)), although those classically are two neural networks, while this employs
a Genetic Algorithm instead.

4.2.1 The Genetic Programming Implementation

The Genetic Programming Algorithm employed is a conventional linear GP imple-
mentation. It operates by producing an initial generation of programs by mutating
an empty program. It then iterates through generations by evaluating each program's
output compared to the desired one, then using tournament selection to select
programs to use as parents for the next generation. Mutation of children occurs
by either altering, deleting, inserting lines, or by inserting entire blocks from previous
successes.

4.2.2 Initial Setup

The problem faced by each particular run of the GP is presented in the form of a
set of input-output examples. Speci�c number of examples is up to the user, with a
higher quantity of examples reducing the risk that the produced solution would not
generalise in the way the user desires. An example number, to give a sense of scale,
is 10 inputs followed by 10 outputs. The initial population is produced by mutating
the empty program (as described below). The empty program is �rst added, then
mutants produced until the generation reaches the desired generation size. There is
no requirement that any of these programs be mutually dissimilar in any way, so new
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instances of the empty program may be added, e.g. if the only mutations applied
were the delete-line mutation.

4.2.3 Fitness Function

The Fitness Function used to evaluate each member of the population is the evaluation
of the program's performance in terms of output similarity to the target behaviour.
Each program in the current generation is executed with each input provided by the
user. It generates an output, and this can be compared to the example output. The
�rst case is that the dimensions of the arrays do not match. This applies to both the
1D and 2D arrays. In the event that any of the returned outputs do not match the
desired output dimensions the �tness is set to a very negative PENALTY value. This
PENALTY value is �xed at -10,000.

If the arrays can be compared element-wise, due to matching dimensions, the
�tness value is the negative of the number of mismatches. For every element in the
programs' output which is not the same value as the corresponding element in the
example the �tness decreases by 1. As a result, 0 is considered a perfect score, and
all other scores are negative.

This means that the di�erence between them is binary, either they match or do
not. While the function could be changed to a Euclidean distance metric, whereby
values which were closer to the target output were penalised to a lesser degree, this was
deemed undesirable. Initial small scale testing indicated this produced a lower rate of
success. It is possible that the landscape it generated a�ected the GP behaviour during
symbolic operations, such as re-ordering functions (sorting, reversing...). Speci�cally,
it could lead it to `approximating' a re-ordering operation by applying an arithmetic
function to each element in the input array, moving the values closer numerically to
the target output, but in a way which prevented it from discovering the true solution.

4.2.4 Parent Selection and Crossover

4.2.4.1 Elitism

Elitism is the genetic algorithm technique of retaining a number of the highest-�tness
population members from the previous generation Baluja and Caruana (1995). They
are added unchanged to the newly forming generation. This work retains the single
highest-�tness population member.

4.2.4.2 Parent Selection

Parent selection is performed by tournament selection Miller and Goldberg (1995).
This process occurs by selecting a single member of the previous generation at random
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(with no biasing) and stored as the chosen_parent. For 20 subsequent iterations, a
random other is chosen, and if its �tness is higher than the current chosen_parent it
takes its place and becomes the chosen_parent.

This parent selection strategy is scale-invariant. Only comparators are employed,
so a minor di�erence in �tness is equal to a large one. This allows minor di�erences in
�tness, despite being much smaller in absolute size than the �tness values themselves,
to drive major change. Small improvements are still able to propagate themselves
well throughout the population, while retaining a stochastic component which can
preserve lower-�tness members to maintain population diversity.

Two parents are selected for each child program to be added to the new generation.
These two parents are selected independently by tournament selection, and can be
the same program.

4.2.4.3 Crossover

Each program is of �xed length, and crossover initially occurs using the fairly
simple process of taking the �rst half of the �rst parent program's source code and
concatenating the second half of the second program's source code.

The child program is evaluated for ENDBLOCK consistency, by counting the
number of operators requiring an ENDBLOCK and the number of ENDBLOCKs
present. While there are too few, the lowest non-ENDBLOCK line is overwritten to
become an ENDBLOCK operator. While more are present than are required, the
lowest ENDBLOCK by line-number is set to NO-OPERATION. This forces �ow-
control operators to match correctly with an ENDBLOCK, even if the crossover
process caused a mismatch, but runs the risk of overwriting relevant code.

This process is in addition to previously described ENDBLOCK problem tolerance,
and may render it inapplicable in practice. The ENDBLOCK tolerance was primarily
introduced for Experiment 1, and maintained for consistency's sake.

4.2.5 Mutation

When a child program is produced for the new generation, there is a probability it
will undergo mutation. This probability can be set by the GP designer as they deem
appropriate for the problem they are facing, but defaults to 0.3.

If a mutation occurs, the mutator function selects how many changes to make.
Multiple changes are permitted to allow the possibility of complex new additions to
the program taking part, allowing mutations which require two or more lines to be
added to succeed (e.g. if either line individually would decrease �tness).

The mutator is guaranteed to make a single change, and then iteratively either
makes another change or terminates the mutation process with an 0.5 probability for
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either option. A maximum of 9 mutations are permitted. The mutations permitted
are detailed below.

The program is considered for the purposes of mutation to be only the lines with
an operator on them, that is to say removing all NO-OPERATION lines. To bring the
program back up to requisite length the program is appended with NO-OPERATION
lines after mutation is completed.

4.2.5.1 Insert

Inserts a line of code into a randomly chosen position in the program. This line
is formed by uniformly randomly selecting from a list of all functionally distinct
lines permitted in the language (regardless of current context). That is to say every
operator is iterated through, and every permutation of every variable it can take (since
all variables are e�ectively always declared, every potential variable is always present)
is added to the option set. For example if 12 variables are permitted, and the operator
takes 1 variable input and writes to 1 other, 144 options are available based on that
operator.

If this new line requires a closing ENDBLOCK, an ENDBLOCK is inserted into the
code at a randomly chosen point anywhere later in the program than the previously
inserted line.

4.2.5.2 Delete

The delete mutator simply removes a line, chosen at random.
If this caused the program to have more ENDBLOCK operators than �ow-control

operators requiring one, the last one in the program is deleted.

4.2.5.3 Single-Point

This mutation operation allows single values to be changed in lines. Each line takes
the form of an operator and 4 parameter integers, indicating which variables to read
and/or write to (some of which may be irrelevant to the operator at hand, if it takes
fewer than 4 arguments).

The mutator �rst decides a maximum mutation count, the maximum number of
these to alter. It always allows 1 alteration, then iteratively either adds 1 to this or
terminates, with 0.5 probability for either outcome. As such it has a probability of 1
of altering at least one point in the line, 0.5 to alter at least two, 0.25 to alter at least
three, and so on until the maximum of 5 alterations.

It then selects uniformly from the set of all line options (as detailed in the insert
mutator). Any change to the operator or to a parameter counts as a single change,
so a full line replacement would be 5 changes, while simply swapping one variable
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reference to another would be 1. The new line must have at most the maximum
mutation count as decided above.

This means that a line can be altered in functionality in a precise way, keeping
large amounts intact. An addition operation can be replaced by a subtraction one,
with the variables written to and read from being maintained.

4.2.5.4 Selection of mutation

The mutations are selected in a weighted fashion, with the mutation types insert,
point-mutate and fragment-insertion having a weighting of 1, and delete having a
weighting of 2. They are selected based on this weighting, then applied as described
above.

Multiple mutations can occur during the same child creation process, and the type
of mutation is chosen independently each time, so any mixture of mutation operations
may occur.

4.2.6 Methodology

The overall approach to code synthesis is to feed in a set of ten input/output (I/O)
examples to a neural network, and have the output layers of that neural network select
the most likely operation for each line of code for a function of a given upper length
limit (where the number of output layers is equivalent to the maximum number of
lines of code in the function, each neuron in an output layer is equivalent to selecting
one particular operator for that line, and each line of code can be set to `no-op'). The
probabilistic nature of a neural network's output allows us to gain a set of possible
programs to search through up to a given search depth; this basic approach is similar in
spirit to DeepCoder Balog et al. (2017) in that it is attempting to guess the probability
of each `feature' of a program � except in this case these features are relatively low-
level instructions.

Neural networks for code synthesis are usually trained on a uniformly sampled
set of programs from the total space of all possible programs; while this is viable
for simple domain-speci�c languages, it becomes intractable for more general purpose
languages. With the aim of achieving code synthesis using a much more general
programming language, this experiment's methodology focuses on how training data
can be e�ectively drawn from a much larger search space without human input.

The approach to this uses a novel hybrid solution inspired by genetic programming
but using a neural network as a �tness function. This work terms this neural network
a discriminator, as it attempts to discriminate between the algorithms the genetic
programming element is currently generating, and the likely features needed by
requested I/O examples for human-useful functions.
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4.2.6.1 Language Used

The language is expanded, thus increasing problem complexity considered by
implementing an operation which instantiates empty arrays of given length. It also
implements operations to allow array length to be determined, and the ability for a
function to call itself, to allow recursive functions. This experiment's methodology
also avoids using any human-provided hints about the likely features of source code
for problem solutions, instead relying only on a set of I/O examples for unsolved
problems.

The full set of language operators available and restrictions used is seen in table
4.3.

Table 4.3: The 16 operators available in implementation of language, with the inputs
to the functions and their purpose

Operator Input

Assign from Variable to Array
Array: Write Target; Int: Array Index; Int:
Read Target

Assign from Variable to Array
Array: Read Target; Int: Array Index; Int:
Write Target

Create Array
Array: Array to initialise/overwrite; Int:
Length of Array

Get Array Length Array: Array to read; Int: Write Target
Variable to Literal Int: Write Target; Literal: Can be -1, 0 or 1
Arithmetic Add Int: Write Target; Int: Read 1; Int: Read 2
Arithmetic Subtract Int: Write Target; Int: Read 1; Int: Read 2
Arithmetic Multiply Int: Write Target; Int: Read 1; Int: Read 2
Arithmetic Divide Int: Write Target; Int: Read 1; Int: Read 2
Arithmetic Modulo Int: Write Target; Int: Read 1; Int: Read 2
Assign Variable to other Variable Int: Write Target; Int: Read 1
Flow: Loop Int: Iterator; Int: Loop to
Flow: Condition: Greater than 0 Int: Variable to test
Flow: Condition: Int equality Int: Variable to test 1; Int: Variable to test 2

Recursive Function Call
Array: Array to set to function return; Array:
Input 1; Int: Input 2

No-Operation No Inputs
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4.2.6.2 Human useful corpus

This experiment's human useful corpus is a set of I/O mappings for 40 unique
functions, each of which takes one array input parameter (of any length) and one
variable, and returns an array of any length. The set of problems includes reversing
arrays, appending arrays with new values, and summing the values in an array (a
full list is given in appendix A.1). It is assumed that these I/O mappings have been
requested by human users, but that none have yet been solved. It is also assumed that
each function has been requested at least �ve times, with di�erent I/O mappings for
each. This gives a total corpus of 200 I/O examples as a guide to the kinds of input-
to-output transformations that are considered `useful'. As opposed to the previous
experiment, a key di�erence is that at no point is the system ever provided with any
source code for these examples.

During early experimentation it was found to be bene�cial to apply some
conventions around these I/O examples, speci�cally for the �rst three examples in
the set of ten for a given problem. The �rst I/O example for any problem is such that
the content of each input array cell is the index of that cell, starting from 0, and the
input variable has a random value. The second I/O example has the same properties
but the second array cell is randomised to a new value between -8 and 8, inclusive.
The third I/O example for every problem is the same as the �rst example except that
the input variable (only the stand alone integer, not the array) is re-randomised to the
same range. The remaining seven I/O examples can be anything, and are randomly
generated in the corpus. The logic behind this, was that it would allow the system to
see how changing part of the input, but not other elements, a�ected the output.

The synthesis pipeline has the challenge of starting from this corpus of unsolved
problems, speci�ed by I/O examples, and solving as many of them as possible by
synthesising the correct source code which correctly maps the given input to the
given output for each problem.

4.2.6.3 Neural network architecture and search process

Two neural network architectures are used in the synthesis pipeline, a synthesiser
and a discriminator. The discriminator is discussed later, and is used in generating
corpora on which the synthesiser is trained. The synthesiser network is that which
receives I/O examples and attempts to build a source code program to match the
required functionality.

This neural network has an input layer which accepts both the input and output
values of each pair of 10 examples for a given problem, such that each input neuron
takes a single bit of each integer. Internally a set of 8 layers of 256 neurons were
used, each connected to all previous layers, with selu activation, a simpli�ed version
of the net used in Zohar and Wolf (2018b). For output, the network has one output
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layer per line of the program to synthesise. Each output layer has one neuron for each
way in which a line can be written (all valid operations), including no-op. A labelled
program would be represented as an array of one-hot vectors, with the non-zero value
mapping to the way that particular line should be written. Crossentropy training loss
is used on each line.

When reading a program out, the activities of all output layers' neurons are
taken and ranked, giving a con�dence for each option for each line. A search can be
performed over the top 1,000,000 programs the network returns as `most con�dent',
using a beam search technique.

To perform the beam search, each line is given a �depth� to search, ranging from
a single option to up to a maximum of 10 options. The combination of all programs
within this space are initially added to a set, which therefore has a size equal to the
product of all the depths. The beam search constructs the initial search volume by
iteratively increasing the search depth of a single line to maximise the exploration
value function. This function is as follows:

[a0, a1, a2...an] represents the ranked option con�dences from the neural network,
now sorted such that a0 is the highest-con�dence option. These are normalised by
dividing by a0.

S is the search volume size, and S ′
i is the search volume size if line i had its depth

increased by one.
Di is the current depth of search of a given line minus one (for example if Di is 0,

only the �rst option will be added to the search volume, if it is 1, the top two ranked
options will be added to the combinational set of programs (thus doubling the search
space size)).

The exploration value for adding increasing the depth of any given line i is
(aDi+1

)∗0.75i

S′
i−S

This process attempts to drive the neural network towards exploring lines in which
multiple options are highly con�dent, and away from lines where a single option has
been given a high con�dence and all others given a low or negative con�dence.

Once the iterative addition has produced a set of >= 1, 000, 000, the 1,000,000
options with the highest sum con�dence are selected and searched exhaustively.

4.2.6.4 Initial Sub-Corpus Generation

The synthesiser neural network requires a training corpus comprised of the source
code of example programs together with the I/O pairs for each program. Based on
this training it is then able to solve some of the problems in the set of human useful
I/O examples.

To generate this training corpus an iterative process was used, alternating between
genetic programming and discriminator training to create a series of increasingly
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relevant corpora. At the start of this process, an initial corpus of 1,000 functionally
unique programs were sampled at random from the total space of all possible programs
(where a program is considered unique if at least one output value is di�erent from
any other program when given the same �ve randomly-generated input parameters).

Corpora other than this starting corpus are created by using a parent corpus
from the set of accepted corpora (creation process detailed below). A child corpus is
accepted if it �nds an implementation for a human-useful I/O mapping which was not
found by an existing accepted corpus, otherwise it is discarded and cannot be used as
a parent.

When creating a new child corpus, a parent corpus is selected by roulette selection
from all currently accepted potential parents, with each potential parent's weighting
being (0.1 + number_of_successful_children)/(0.1 + number_of_children).

4.2.6.5 Discriminator training and usage in sub-corpus inheritance

After the �rst corpus, further corpora are generated based on the use of the
discriminator. This is a neural network designed to classify input/output pairs
generated by programs in the generated corpus as being closer to / further away
from, those of I/O pairs in the human-useful set from users.

A new corpus is created by selecting programs from a parent corpus which
are measured to be most similar to human-useful programs in their input/output
mappings (speci�cally the form of their outputs, and how these outputs seem to
relate to corresponding inputs). By doing this, it can be hypothesised that the kinds
of source code features found in these programs will similarly move closer to those
needed to synthesise programs solving the human-useful I/O examples.

The discriminator neural network then works as follows. Architecturally, it consists
of 2 dense layers of 16 nodes, with a single output. The featurisation of programs is
identical to the synthesis neural network (as described above). This network is trained
by providing all of the I/O examples for all unfound human-useful target programs,
and generate I/O examples for each of the 1,000 programs in the parent corpus. The
discriminator network is trained as a classi�er to determine which of the I/O examples
are from the human-useful set, and which are from the generated set. This training
continues until a threshold Tk is reached. Tk is the proportion of programs which
would be retained by the discriminator (as described below), if run on the parent
corpus. Tk is a randomly set value between 0.1 and 1, set as max(0.1, r2) where r
is a random real value uniformly distributed between 0 and 1. A random value is
used here to increase the diversity in corpora formed, some being highly similar to
the parent and some being fairly di�erent, in a bid to maximise coverage.

This trained discriminator therefore returns an estimate Fd for how human-like a
program is, ranging between 0 and 1. A program is said to pass the discriminator if it
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has an estimate of Fd > 0.1. This second threshold was chosen based on preliminary
experiments, particularly based on analysis of the distribution of estimates, which was
found to be highly biased towards either end of the spectrum.

These selected programs form the basis of a new child corpus. This child corpus
is then expanded to have 1,000 functionally unique programs of its own, by selecting
one of the existing programs in the corpus (using roulette wheel selection) and mutate
it, then accepting or rejecting that mutated program as an additional member of the
corpus based on a �tness function Fq. This value Fq is simply how much it exceeded
the discrimination threshold (Fd − 0.1). During development, roulette selection was
found to produce far superior results than tournament selection if the discriminator
values are o�set by 0.1, due to bias away from programs which only just passed the
threshold.

This process is iterated to create new child corpora with a desired total number of
programs. Unlike the previous experiment, which involved seed programs, the system
in this experiment employs only the I/O examples that users have requested to be
generated. After multiple rounds of generating self-training data in the above fashion,
to reach source code features that are increasingly likely to be involved in solving
the requested I/O examples, it can then begin to be able to successfully synthesise
solutions to the I/O examples of programs requested by users.

4.2.6.6 Evaluation of overall system

The synthesis pipeline returns a collection of solutions to I/O problems in the human
useful set, and also returns a set of generated training corpora which were used
in �nding these solutions. All generated corpora are kept, and their corresponding
trained synthesiser networks, which are `kept' in the above iterative process as either
a parent or �nal child. Note that the intermediate parents are kept along the way
because a child corpus is sometimes unable to solve some of the problems of its parent,
even though it can solve new problems that its parent could not.

These trained neural networks can then be re-used when given new I/O problems
not present in the initial human useful set; each individual trained synthesiser network
processes an I/O problem in ∼ 0.25 seconds. An alternate approach, also evaluated,
is to collate all corpora into a single one to serve as a training corpus for a network.

4.2.7 Results

This evaluation compares the approach to training corpus generation against compet-
itive baselines. For all experiments a total of 200 sub-corpora were generated, using
this experiment's approach, with each part of the experiment repeated 20 times. The
HU corpus was �xed for all experiments, and the I/O examples did not vary, including
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Approach I/O examples solved Unique functionalities

Discriminated sub-corpora 81.5(σ = 8.28) 20.3(σ = 2.08)
Random sub-corpora 43.5(σ = 4.29) 11.8(σ = 1.20)
Genetic Programming 64.6(σ = 3.37) 22.5(σ = 1.86)

Table 4.4: Success rates for the human-useful problem set by approach type. The set
consists of 200 I/O examples, derived from 40 ground-truth programs

in baselines, to allow consistent testing and repeatability. Noise between repeated
experiments therefore derives only from the di�erent systems' internal stochasticity.

To evaluate the system it was compared against two baselines: one without using
the discriminator, instead using randomly-generated corpora, and one using genetic
programming on the same problem set. It was then compared against one using
uniformly-sampled training data, as is used in related research for simpler domain-
speci�c languages, and lastly this section explores the the e�ects of decisions made
by the discriminator in more detail.

4.2.7.1 Performance compared to baselines

This part of the experiment compares the �nd rates of programs against two baselines.
For the �rst baseline the system was identical other than that the discriminator
removed as a �tness function, such that successive training corpora are generated
only using randomly selected parents and mutations. The remainder of the pipeline
is kept the same for this baseline.

For the second baseline, a genetic programming is used due to the inability
to re-use baselines from other work in the literature, as for example seen in the
DeepCoder framework, caused by the relative generality of our programming language
for synthesis. The genetic programming technique was designed to require roughly
the same total computational time as the full sub-corpus generation pass, to fairly
compare the options for user I/O mapping resolution. It therefore uses a population
size of 1,000, and a maximum generation count of 10,000, which approximately leads
to the same time cost. It uses tournament selection, with a tournament size of 6 and a
probability of mutation of 0.15, which were found to be optimal in preliminary testing.
The �tness function is a function of the Euclidean distance between the desired output
and the target output, unless the outputs di�er in length, in which case it is set to
an extremely negative penalty value. It is noted that this is a common theme across
synthesis research (including solvers) which use various specialist baselines (Balog
et al. (2017), Sun et al. (2018b), and Devlin et al. (2017b)).

The results are shown in Table 4.4, demonstrating that the set of networks
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Approach I/O examples solved Unique functionalities

Collated discriminated corpus 44.5(σ = 7.5) 11.3(σ = 2)
Random corpus 16.1(σ = 2.5) 3.85(σ = 0.59)

Table 4.5: Success rates for the human-useful problem set by approach type. The set
consists of 200 I/O examples, derived from 40 ground-truth programs

produced by discriminated sub-corpus generation between them produced the highest
resolution rate for the 200 human-useful I/O mappings, returning an average of
81.5(σ = 8.3).

Interestingly, the genetic programming technique found more unique functionali-
ties. Of the 40 unique ground truth programs, the GP baseline found 22.7, while the
sub-corpora found 20.3. This means that while the sub-corpus technique had a higher
probability of �nding a program to match a user-supplied I/O mapping, there existed
a stronger inequality between the �nd rates than the GP algorithm, which was more
consistent in its probability of �nding any given program.

It is highly likely that this is a phenomenon produced by the nature of the
discriminator itself, driving the system towards producing certain types of algorithms
predominantly. It seems likely that certain properties of certain programs would be
more recognisable by a neural network, and so emphasised by the discriminator's
�tness function; this is a key avenue of future work.

4.2.7.2 Comparison with uniformly generated training data

This set of experiments evaluates the performance of our iteratively-produced training
corpus against a baseline randomly-generated training corpus. To do this we take
a subset of 5 of the sub-corpora produced, attempting to maximise the number
of separate I/O examples found by the set of networks. The collated corpus then
discards any duplicated functionalities, giving a training corpus of approximately
4,200 examples. For each of these, we write out a set of training examples, with 5
randomly generated inputs into each function being used to generate the feature I/O
examples. We then train the same synthesis neural network on these as before.

For the comparative baseline training data we simply sample 5,000 programs
uniformly at random from the space of all possible programs, and again generate
5 training I/O examples using each of these programs. In both cases the corpora
are then divided between training and validation in a 0.9:0.1 split, with validation
programs being functionally distinct from those in the training set; the training data
is then fed into our synthesis neural network and tested.

As can be seen in Table 4.2.7.2, the collated corpus produced by the discriminated
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sub-corpus generation process more than doubles the performance of the randomly
generated training corpus. The discriminator has driven program generation towards
a set of programs which is far more representative of the types of behaviour present
within the human-useful programs.

Inspection of the programs within the corpora matches this expectation: there is
no drive for a randomly generated program to, say, contain a loop, and if they do
there is no drive towards writing to all/most cells in the output array. While the
behaviour of each training program is thus distinct, this is not necessarily in a `useful'
way, relative to the types of problems the user wishes to solve.

The discriminator, however, can drive towards useful training programs, by
emphasising programs which write relatively uniformly to output arrays, using loops
and with values remaining within sensible ranges; as well as generating programs
with outputs dependent on the inputs, rather than �xed-output programs. Without
ever receiving training labels or information about the nature of useful features, the
discriminator learns to maximise their presence in the sampled programs.

4.2.7.3 Analysis of e�ects of iterated discriminator use

This section explores in more detail the e�ect of the discriminator design. We �rst
demonstrate the di�erence-over-time from our �rst baseline in Sec. 4.2.7.1, in which
we generate successive corpora using either our discriminator or using simple random
selection of parent. The results of this are shown in Figure 4.6, in which we see how
many programs from our target human useful set are solved over time as successive
corpora are generated. As expected, both the discriminator setup and the random
setup start at the same point, as the initial corpus does not use a discriminator. The
�rst discriminated sub-corpus trains a network which �nds an additional 6.7 solutions
to I/O examples on average, compared to the non-discriminated corpus' increase of
only 2.8. This progress continues as new sub-corpora are added, and is also seen on
the graph of unique functionalities found. This clearly demonstrates the value of the
discriminator in corpus generation.

This experiment next examine the �nd rates over the `ancestry' of sub-corpora
in detail, to give indications as to the behaviour of the system in response to the
discriminator's iterated use. Each sub-corpus past the �rst uses another as a parent;
the ancestry of a sub-corpus is therefore the number of parents since the starting
corpus. This varied by experiment, with all accepting a corpus with ancestry of at
least 5, and the maximum being a single run which had a sub-corpus of ancestry 12.

Figure 4.7 plots the �nd rates of each program over ancestry progression. It is
discovered that certain programs are trivial to �nd, and do not require discriminator
use (Array Length; Array to Zero...). These have a �nd rate of nearly 1.0 before the
discriminator is used (black in �rst cell).
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Figure 4.6: Success rates of programs satisfying I/O speci�cations, over sub-corpus
count, for both this experiment's approach (blue, higher) and random baseline (red,
lower). Success rates for all 200 I/O speci�cations on left, �nd rates for unique
functionalities on right. First standard deviation shown.

Certain programs are found with high reliability past ancestry of 1, for example
the identity program. This program was almost never found without use of the
discriminator, but a single use lead to it having a nearly 1.0 �nd rate. This indicates
that the discriminator lead to a set of sub-corpora which represented the identity
function's programmatic behaviour far better. It is found that these sub-corpora's
programs nearly universally featured loops and sequential array write operations,
functionalities required to produce the identity function.

The second use of the discriminator showed similar programs, such as Identity
Parity and `Iterate from Start'. These were rarely found in both a non-discriminated
sub-corpus, or an ancestry = 1 sub-corpus, but featured regularly at later depths.
This re�ects the discriminator iterating on its previous selections, attempting to
discriminate between programs produced by a �rst-generation discriminator and the
human useful corpus. These programs now found feature more complex loop-using
behaviours than simple reproduction of the input array, such as using conditionals
and literals.

Past ancestry = 2, however, no further sudden �nd-rate jumps are seen. This
indicates that the discriminator loses its e�ectiveness and can no longer guide as
reliably towards the functionalities of the human-useful corpus. It could be speculated
that the discriminator is unable to force the presence of the required functionalities in
the produced training corpus either because (i) the genetic algorithm doesn't produce
any for it to select; (ii) it does not have the capacity to represent the behaviours (due
to low layer width or depth); (iii) these functionalities are simply not identi�able from
I/O mappings alone.
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Figure 4.7: Program �nd rates over sub-corpus ancestry, with each cell representing
the success rate of an attempt by 20 NN to solve all 200 IO examples. From white
at 0 success rate, to fully black indicating 1.0 success rate. Border used to indicate a
non-zero value. Plot cut o� at ancestry = 8 due to low sample size past this point.
The way actual program outputs evolve is detailed in subsection 4.2.7.4.

4.2.7.4 Generated program examples

Table 4.6 shows outputs from 15 randomly generated programs, from 3 randomly
chosen sub-corpora. The �rst is the starting corpus of the run, which had no
discriminator. The second has a discriminator trained between the human-useful I/O
examples and its parent corpus. The third sub-corpus then has a second generation
discriminator, which was trained based on a discriminated corpus and the HU I/O
corpus.

All outputs are responses to the function being run with an input of input_array
= [0,1,2,3,4,5,6,7] and input_integer = 2.

It is seen that the programs in the starting corpus, ancestry=0, which were
randomly sampled from program space, di�er greatly from the style of program this
experiment is attempting to train the network to synthesise. The majority of all
returned values are 0, and the array length varies considerably. There is little evidence
that the input array is being read in, or indeed any use of loops at all.

The second generation corpus, ancestry=1, shows little use of the input values,
but has outputs in more consistent ranges. The output lengths now appear to always
be the length of the input array, and the programs clearly use loops to write to the
output array. Despite this, the output patterns are highly uniform, often being the
same value repeated for most of the output array.

The third generation corpus, ancestry=2, shows more complex program still.
Negative values, which would require arithmetic operations to produce, are present.
The values vary across larger ranges, and they show elements of the input array (the
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Table 4.6: Examples of outputs of generated programs, randomly chosen from 3 sub-
corpora. These sub-corpora are organised based on ancestry, how many parent-child
relationships exist between the �rst sub-corpus (ancestry=0).

Sub-corpus ancestry Program Output

Ancestry=0 [0]
Ancestry=0 [0,0,0,0,0,0,0,0]
Ancestry=0 [0,0,0,0,0,8,0,0]
Ancestry=0 [2]
Ancestry=0 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

Ancestry=1 [7,7,7,8,7,7,7,7]
Ancestry=1 [0,2,2,2,2,2,2,0]
Ancestry=1 [7,8,8,8,8,8,8,8]
Ancestry=1 [8,8,8,2,8,8,8,8]
Ancestry=1 [2,2,2,2,2,2,0,0]

Ancestry=2 [0,8,16,24,32,40,48,56]
Ancestry=2 [-1,-7,-6,-5,-4,-3,-2,-1]
Ancestry=2 [0,8,16,24,32,40,48,56]
Ancestry=2 [0,-7,-7,-7,-7,-7,-7,-7]
Ancestry=2 [-2,1,2,3,4,5,6,7]

last example being the input array changed by a single element).
This is believed to be fairly illustrative of the behaviour of the discriminator,

although more in-depth analysis of the programs produced could form a good direction
for future work.

4.2.8 Conclusion from Experiment 2

This experiment has shown a number of things, some surprising, which will be built
on in future experiments.
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4.2.8.1 Performance of Genetic Programming

One major discovery was that despite its success against a more classic neural baseline,
this approach did not strictly out-perform a genetic programming (GP) approach.
While its �nd rate was higher, certain programs were not found by the neural approach
but were found by the GP.

This suggests that the search approach, beam search guided by the neural network,
lacked certain key advantages which GP possessed. This lead to future experiments
being run with a neural network guiding a GP process, to leverage the power of the
GP.

4.2.8.2 Success of guided corpus

It is clearly seen that a neural network is better trained on programs which are
representative of the target domain, as opposed to a uniformly selected subset of
programs within the space of all possible programs.

Certainly a targetted training corpus is bene�cial for neural network training
success, but the process employed in this experiment is time-consuming. It is possible
a faster approach could be designed, especially one based on use of found solutions to
human-useful programs as seeds to corpus generation.

4.2.8.3 High I/O example count required to avoid neural network over-
�tting

During preliminary testing, it was shown that more I/O examples were needed to
successfully train the discriminator than can reliably be expected to be produced.
The I/O examples were also structured in terms of which input values were employed
in a portion of the example set, which may be possible for a human-user to provide
but limits the system's �exibility. Ideally, the system would not have these limitations
on its I/O examples, and a more general-purpose approach should attempt to operate
on a more �exible and smaller I/O example set.

4.2.8.4 Automatic Refactoring

While successful in this experiment, attempts in future experiments to recreate the
success of automatic refactoring were found to be unsuccessful. Initial experiments
with the full language and increase line counts employed in future experiments failed
to replicate the automatic refactoring performance gains. This, coupled with the
awkwardness of using the system in future experiments, as it would require a full
neural code synthesis system to be employed each time, lead to this discovery not
contributing to future work.
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Experiment 3: Guiding Genetic

Programming

This section addresses the question of how a genetic programming algorithm can be
guided, and whether a deep neural network can then recognise when to deploy this
guidance. First it introduces the genetic programming algorithm (GP) which will be
used for the rest of this work, then discusses the �rst experimental direction taken,
that of guiding a GP process.

5.0.1 The Genetic Programming Implementation

The Genetic Programming algorithm employed is altered for this and for the later
experiments, to improve its performance and to allow it to handle a new data type.

The Fitness Function used to evaluate each member of the population is the
product of two components. The �rst is the evaluation of the program's performance
in terms of output similarity to the target behaviour with an additional very small
(orders of magnitude lower than the values relevant for the other two factors) penalty
for each line used, to drive search for shorter programs if all other factors are equal.
The second is a repetition factor, used to penalise programs which resemble already-
seen programs, to drive the population away from stagnant areas of the �tness
landscape.

Speci�cally, the �tness is (error+ per_line_penalty) ∗ repetition_penalty. Note
here that both `error' and `per_line_penalty' are either negative or zero, so �tness is
negative. The algorithm is still attempting to maximise �tness, and has 0 �tness as
its maximum possible outcome. A multiplicative function was used, rather than an
additive penalty to maintain the behaviour and impact of the penalty regardless of the
absolute magnitude of the �tness produced by the classic �tness function. This was
needed due to the changes the �tness saw, with high errors initially as the programs
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generated were far from the target solution to far lower ones towards the end of the
GP's successful runs.

5.0.1.1 Behaviour-Based Error

Two types of output can be synthesised by this framework, 1D integer arrays and
2D boolean (implemented as integers but limited to only 0 and 1). For the �rst, the
system works the same as in Subsection4.2.1, for the second, no major di�erence is
required conceptually, only changing the implementation to handle 2D arrays. As
before, each program in the current generation is executed with each input provided
by the user. It generates an output, and this can be compared to the example output.
The �rst case is that the dimensions of the arrays do not match. This applies to both
the 1D and 2D arrays. In the event that any of the returned outputs do not match
the desired output dimensions the �tness is set to a very negative PENALTY value.
This PENALTY value is �xed at -10,000.

If the arrays can be compared element-wise, due to matching dimensions, the
�tness value is the negative of the number of mismatches. For every element in the
programs' output which is not the same value as the corresponding element in the
example the �tness decreases by 1. As a result, 0 is considered a perfect score, and
all other scores are negative.

For integers in the 1D arrays, this means that the di�erence between them is
binary, either they match or do not, and this matches well to the boolean data types
used by the 2D arrays (which can also be seen as 2D arrays of integers bounded to
only contain values of 0 or 1).

5.0.1.2 Per-Line Penalty

A function was implemented to statically analyse a program in the language to
determine which lines were able to contribute to the output. Speci�cally, the variable
interdependencies were evaluated. An operation which writes to the returned values
(either calling a write operation on the 2D array, or writing to the output array in
the 1D domain) causes all its input variables to be �agged as `contributing'. Any
operation which could have been performed previously (not simply above it in the
source code, if loops are present) which writes to a contributing variable can then
have its input variables similarly �agged. This iterates until no further operations
can be found which write to contributing variables. Any operation which does not
can then be determined to be irrelevant to the program's outcome.

One edge case exists, in which operations, while non-contributing, caused the
program to timeout, simply due to being performed and counting towards the
termination counter. While technically these are contributing, as they alter the output
of the function, they are still considered non-contributing.

71



Chapter 5. Guiding Genetic Programming

The per-line penalty depends on this static code analysis. Each line which is
�agged as contributing causes the �tness function to apply a −(10−11) penalty to the
program. This penalty is added onto the behaviour based �tness value, computed as
described above.

This penalty is irrelevant when the programs di�er in output error, as described
above, due to multiple orders of magnitude di�erence. However, if the GP produces
a zero-error program, it can continue to iterate, to reduce the lines used, attempting
to minimise this value. It also serves as a tie-breaker for programs with equivalent or
identical outputs.

5.0.1.3 Diversity Boosting Repetition Penalty

Diversity Boosting is implemented by using a diversity boosting repetition penalty
multiplier, implemented as a `repulsion' from previously attempted programs. Each
generation the highest-�tness population member is determined, termed the elite.

Each elite has their code stored, after using the static code analysis to ablate any
non-contributing lines. Each subsequent program has a penalty added based on how
close they are to any previous elite, also after applying static code ablation. This
ablation serves to ignore irrelevant code changes. The goal is to cause the programs'
functionality to alter, mutations which only a�ect introns (the non-contributing lines
of code) are irrelevant to this. The elite then serves as a `repulsor', exerting a repulsive
force on the GP population by decreasing the �tness of programs in the local region
of program space (previous generations' repulsors are kept, and also used for the
remainder of this GP search).

This repulsion penalty's calculation requires a code distance metric, to determine
how similar two programs are to one another, termed D. D is calculated by examining
each line in the stored elite program and calculating how far away (in lines of code)
the same line is in the generation's program. Each repulsor adds max(0, 1 − D/15)
to the repetition_penalty, such that multiple repulsors can exist in the same area of
program space, leading to stronger avoidance of those areas.

To compute D we create a one-to-one mapping between the two functions' code
lines, selecting the mapping which minimises the sum of per-line costs. The per-line
cost is offset∗0.35 plus 1 if the operators do not match, plus 0.2 per parameter which
di�ers. Lines `inherit' the o�set of the previous line, so an inserted line only causes
one line to gain the 0.35 o�set penalty. Since all programs are padded with NO-OPS,
this new line will be matched against one of these, and so will incur a penalty due to
new operators and parameters.

This repetition_penalty is increased by 1, to bring its value to >= 1, being at
1 if there is no repulsion (no repulsors generated or none near enough to a�ect the
sampled program), and growing as additional repulsors are created nearby.
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This allows it to be multiplied to the previously computed sum of error and
per_line_penalty. Since these are both always-negative, with 0 being the perfect
score, multiplying it by a larger value will correspond to a larger �tness penalty.
Note it is impossible for �tness to reach 0 as it would require a 0-line program which
matches the target functionality perfectly.

For example, a program A, with lines:

MULTIPLY VAR_2 VAR_1 VAR_0
ADD VAR_2 VAR_1 VAR_0

Would have a repulsion D of 1.0 to program B (seen below), as the operators on
the �rst line has changed, despite the parameters having changed. If instead the �rst
parameter were di�erent, it would only have a repulsion of 0.2

DIVIDE VAR_2 VAR_1 VAR_0
ADD VAR_2 VAR_1 VAR_0

Program A would have a repulsion penalty D of 0.35 + 1 + 0.2 compared to C
(seen below), as the new line incurs an o�set penalty of 0.35, and the new line would
be compared against a NO-OP line and receive a penalty of 1.0 for the operators not
matching and a new parameter being used, for another penalty of 0.2.

CONDITIONAL VAR_2
DIVIDE VAR_2 VAR_1 VAR_0
ADD VAR_2 VAR_1 VAR_0

5.0.2 Parent Selection, Crossover and Mutation

These all operate the same as in Section 4.2.1, without any need for changes.

5.0.3 Genetic Improvement

If during the search GP �nds a program which matches the desired functionality, that
is to say if the program produces the same outputs as the example when fed the
example's inputs, it immediately begins Genetic Improvement.

This is done to improve the quality of the transferred material, as only a �nite
number of lines can be transferred between programs (quality here being the resultant
gain in GP success rate). If too many are selected, they may simply exceed the space
remaining in the recipient program, and be forced to overwrite functionality it was
depending on. Longer fragments may also be less generalisable, and far more task
speci�c, if the lessons learnt from full programs are applicable to program elements
David and Kroening (2017).
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The process simply requires adding additional permitted generations to the GP,
thanks to the per-line penalty element of the �tness function. In the event of success
by the GP, the �tness penalty from behavioural error drops to 0 for the population's
highest �tness members, and as a result the �tness function is now equivalent
to −(contributing_line_count) ∗ repetition_penality. Any program within the
population which has behaviour not matching the desired behaviour will contribute
its genetic diversity to o�spring to a degree and rapidly be selected against in the
tournament parent selection.

The GP is therefore now operating as a diversity boosting genetic improvement
system. It continues to search for novel implementations without causing behavioural
changes. The non-contributing lines, the introns, are preserved as the �tness function
does not penalise them, allowing diversity to be maintained.

After the set number of additional generations has been iterated through, the
highest-�tness program is returned. This program will have zero behavioural
di�erence to the example behaviour, and the lowest line count the GP was able to
produce.

If the GP did not �nd a matching behaviour, it does not perform this genetic
improvement pass, and terminates immediately after the �rst GP generation count is
reached.

5.1 Language Employed

To allow the remaining experiments run in this work to have a common footing the
language used will remain the same from here on out, designed to have its source
code synthesised by both a Genetic Programming algorithm and by a neural synthesis
system. As before, features of the language are designed speci�cally to enable such
processes to operate e�ciently and without need for extensive pre or post-processing
at any stage. It is full described in this section, but is based on the language used in
the previous experiments.

5.1.1 Overview

The language takes the form of a matrix of integers, representing a program's
instructions, and an interpreter able to take this matrix along with a set of input
values and return the output of the program the matrix represents. Each line in the
program, or row in the matrix, is 5 integers, the �rst representing the operation to
perform, the subsequent 4 are parameters to pass into that operator.

When executing the program the interpreter sets the program's variables, which
consist of a con�gurable number of integer variables, 1D integer arrays and 2D boolean
arrays, to their default values. 2D boolean arrays are used to represent black and white
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pixel images. The input variables are then input by overwriting the variables, starting
with the �rst. As such, if there are 3 integers fed into the program and it is con�gured
to have access to 12 variables, the �rst 3 will be set to the values of the inputs, and
the remaining 9 will be 0. Array inputs will also set integer variables to the length of
the array being read in, as well as setting an array variable.

When executing operations, the interpreter starts at the �rst instruction, performs
it and steps downward. Flow control operators exist in the form of conditionals
and �ow (employing ENDBLOCK operators to terminate their code blocks). These
allow the interpreter's read position to be altered. The program terminates when
either a set number of operations have been performed (which includes all actions the
interpreter takes, therefore �ow control including ENDBLOCK are counted), or when
it performs the last operation and attempts to step outside the program matrix's row
count (equivalent to having a forced END_PROGRAM operation at the end of all
programs).

Values are then returned as speci�ed by the program's con�guration. The values
returned are those of the last variable in the program, in the state they were when
execution terminates. The type of variable returned can be con�gured, such that the
program can be made to return its last variable, its last 1D integer array or its last
2D boolean array.

5.1.2 Operators available in the language

The list of all operators implemented in this language is detailed in Table 5.1. During
certain tests, certain operators are disabled, as detailed during the discussion for that
experiment. The 2D array operators are only available to the language if the function
takes or returns a 2D array, otherwise they are disabled. Despite the 2D array in
principle being an array of Boolean values, it is implemented as integers, taking the
values of either 0 or 1, to allow easy conversion between integer variables and 2D
array values.

5.1.3 Tolerance to anomalies and consistency of behaviour

A core goal of this language's design was that of consistency of behaviour. Ideally
every integer matrix of width 5 should be mapped to a programmatic output. We relax
this requirement slightly, by guaranteeing that every sequence of correctly formulated
line options can be executed and a value returned. Correctly formulated in this case is
simply de�ned as having valid operators, then assigning its parameters values within
their legal ranges (e.g. not referring to variables which do not exist, noting that
variables are automatically declared and initialised).

As a result of the design decisions taken, any line which is valid at any point in any
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Operator Input Output Types

Assign Variable To Array Array, Int : Void
Assign Variable From Array Array, Int : Int
Make Array Int : Array
Variable To Literal Int, Int between {-1,0,1,2} : Int
Add Int, Int : Int
Subtract Int, Int : Int
Multiply Int, Int : Int
Divide Int, Int : Int
Modulo Int, Int : Int
Assign Var from Var Int, Int : Int
Loop Int, Int
Conditional (var > 0) Int
Conditional (var1 == var2) Int, Int
Conditional (var1 > var2) Int, Int
Create 2D Array Int : Void
Get 2D Array Size 2D Array : Void
Var to XY Point from 2D Array 2D Array, Int, Int : Int
Set 2D Array to 0 at XY Point 2D Array, Int, Int : Void
Set 2D Array to 1 at XY Point 2D Array, Int, Int : Void
ELSE
ENDBLOCK
NO-OPERATION

Table 5.1: Operators available in the custom language used in this work, along the
the parameters they take (format is input types, followed by colon, followed by output
type). Each line de�ne which variable to read or write from by the integers following
the operator symbol. As such if `Add' operator requires an integer, the line must set
the parameter to a value in the range [0..number_of_integer_variables]. The Loop
operator will set the value of its iterator variable to 0 at the start of its loop, erasing
any previous value it may have held.
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program is valid at any other point in any other program. There is no dependency on
previous or later lines to ensure syntactic correctness. As such, the set of valid lines
is always the same, and can be determined simply by examining the set of operators
and their associated input requirements (which data type variable can be fed into the
operation, as de�ned by the integers coding for parameters following the operator in
the matrix).

Special casing the language avoids requiring the neural network to avoid creating
syntactically incorrect programs. They can simply have a set of output neurons, one
coding for each line option, and select from that pool. This removes the requirement
for the network to encode for the syntactic considerations we have already dealt with
as language designers.

5.1.3.1 Flow control operator inconsistency

Flow control requires a set of special-case handling. Flow control operators may not
match with ENDBLOCK operators, therefore there could be no indication of when
a loop should �ow back to the top of the loop's code block. ENDBLOCKs may also
exist where no �ow control operator does, leading to a block being closed without ever
having been opened. In the event that too few ENDBLOCKs exist, the outermost
�ow control operators are considered to have their ENDBLOCKs missing, and each
ENDBLOCK assigned in a one-to-one fashion with the �ow-control operators, starting
with the innermost. Once done, this produces certain failure cases. The handling for
these cases is as follows:

� Conditional with no ENDBLOCK This case is simply handled by termi-
nating the problem if the condition evaluates to false. This is equivalent to
having the entire problem contained with the conditional's code block. If the
conditional returns true, code execution can proceed as normal

� ELSE with preceding conditional but no ENDBLOCK This is similar
to a conditional with no ENDBLOCK. If the conditional evaluated to false, the
interpreter skips until it reaches the ELSE block, then the code following it is
executed as normal. If the conditional is treated as true, the entire remaining
program past the ELSE-�ow-control-operator is considered to be part of the
ELSE-block's code, and skipped

� ELSE without preceding conditional An ELSE operator without a condi-
tional is treated the same as a NO-OPERATION operator, and skipped

� Loop with no ENDBLOCK This is equivalent to the loop being a conditional
with the ENDBLOCK. The loop itself can be considered to be a conditional,
passing if the loop's bounding variable is greater than zero. If so, the code
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contained within the loop executes once, and the program terminates. If not,
the program terminates immediately. This was considered a simpler and more
predictable outcome than having the end of the program sometimes act as an
ENDBLOCK.

� ENDBLOCK with no associated �ow-control This case is handled as if
the line were blank, and the NO-OPERATION operator had been called. The
ENDBLOCK is ignored other than counting as a step performed for program
timeout purposes

5.1.3.2 Divide by zero

Two of our arithmetic operators, the division and the modulo operators, must have
a special case handled, the divide/mod zero case. In this case, we simply set their
returned value to 0. This is obviously not mathematically valid, but is tolerated in
order to improve the reliability of the programs generated. Syntactically, and indeed
internally, it is equivalent to having an automatic conditional block surrounding these
two operators, which either calls them if the divisor is non-zero or sets the value to
their return-target variable to 0 if it is.

5.1.3.3 Array index out of range

If an operator requests to either read or write from an array variable it must specify a
variable to use as the index. That variable's value is then the index of the cell within
the array to read from or write to. Naturally, this has a high chance of producing
incidents where an out-of-range value is requested, such as referring to a negative
index or one beyond the range of the array. In this circumstance, the interpreter
simply ignores the instruction, and performs no action. This is equivalent to post-
processing any generated program in order to surround all array access operations
with conditions checking the index variable is in range.

This choice may cause the synthesis system to produce code which a human
designer would not necessarily consider elegant, and may introduce a number of
irrelevant instruction calls which are discarded. Despite this, it increases the number
of implementations which successfully produce the same functional characteristics,
and as such may simplify the task of code synthesis, boosting success rates. Code
elegance and code e�ciency, while desirable, are not immediately within the scope of
this work, and work in other related �elds, such as Genetic Improvement Petke et al.
(2018) could allow found solutions to be improved after synthesis.
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5.1.4 Experiment 3: Methodology

To evaluate how a GP process can be guided a set of programs were examined, drawn
from two domains of program (to boost con�dence in the generality of the approach).
These domains are array-to-array integer manipulation tasks, as studied before, and a
new domain of 2D image drawing programs, derived from the corpus used by So and
Oh (2018), which take only an integer size and return a 2D canvas of required size
of boolean values. For each program examined, a set of subsets of the lines of code
of a human implementation of the given program were selected, and used to guide
a GP process. This GP process then operated on a subset of program space, the
subset of programs which contain the required lines of code. This was done to assess
whether knowing a portion of the program could be productive, and could improve
the performance of a GP process, despite the remaining lines being unknown.

Once the performance of this approach was studied, a second analysis was
performed, to determine if a neural network could recognise the presence of these lines
of code in a target program, based purely on examples of that program's behaviour.

Next a study was run in which human-selected code fragments are deployed into a
GP based on the neural network predictions as to their usefulness. This test employed
a common set of fragments across all problems, as opposed to the �rst stand-alone GP
test which studied fragments extracted from the programs they were being deployed
into.

Finally, an initial end-to-end system was studied, which combined these two
elements into a single system. This architecture takes only problems, de�ned by
input-output pair sets, and learns from its successes, extracting code fragments and
redeploying them.

5.1.5 Operators of the Language Used

Tables 5.2 and 5.3 provide lists of all the operators used for the two corpora used in
the language employed in this section's experiments. Language variants are improved
when compared to the language used in the previous sections' experiments, in order
to allow e�ective processing of the two corpora's speci�c problem domains.
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Operator

Assign Variable To Array
Assign Variable From Array
Make Array
Variable To Literal
Add
Subtract
Multiply
Divide
Modulo
Assign Var from Var
Loop
Conditional (var > 0)
Conditional (var1 == var2)
Conditional (var1 > var2)

Table 5.2: Operators available for GP, when using the 1st (array-to-array) corpus
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Operator

Assign Variable To Array
Assign Variable From Array
Make Array
Variable To Literal
Add
Subtract
Multiply
Divide
Modulo
Assign Var from Var
Loop
Conditional (var > 0)
Conditional (var1 == var2)
Create 2D Array
Get 2D Array Size
Var to XY Point from 2D Array
Set 2D Array to 0 at XY Point
Set 2D Array to 1 at XY Point

Table 5.3: Operators available for GP, when using the 2nd (2D pattern) corpus

5.1.6 Human-Useful Corpus

As stated above, two di�erent problem sets are used which represent human-useful
programs of the kind that may be input into the system. The �rst problem set is array-
to-array programs such as extract even numbers, append arrays, or sort. The second
problem set is provided with an image to draw on a canvas and must synthesise the
program which draws that image (this problem set is taken from So and Oh (2018)).

Each problem within each problem set is presented to the system as a set of 10
I/O examples. These are generated for each problem by feeding in 10 inputs and
corresponding outputs of the form the problem requires (either a randomly generated
input array and integer, or a canvas size). These 10 inputs are randomly generated
from a �xed seed, to reduce internal variability between tests, allowing more accurate
evaluation of the changes made by alterations to parameters or by guidance to the
GP. This is designed to represent an unbiased input set.

Tables 5.4 and 5.5 provide a list of all human-provided problems used to test the
system across the experiments. These are de�ned by a source-code implementation
in both the custom language used in this work. An example of the behaviour of the
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array-to-array problems (First corpus), has been given, using a �xed sample input, to
illustrate the behaviour.

82



Chapter 5. Guiding Genetic Programming 5.1. Language Employed

Problem Example

Abs [4, -2, 1, 0, 3, -5] − > [4, 2, 1, 0, 3, 5]
ArrayLength [4, -2, 1, 0, 3, -5] − > [6, 0, 0, 0, 0, 0]
ArrayToZero [4, -2, 1, 0, 3, -5] − > [0, 0, 0, 0, 0, 0]
CumulativeAbsoluteSum [4, -2, 1, 0, 3, -5] − > [4, 6, 7, 7, 10, 15]
CumulativeSum [4, -2, 1, 0, 3, -5] − > [4, 2, 3, 3, 6, 1]
DivergentSequence [4, -2, 1, 0, 3, -5] − > [0, 0, 1, -1, 2, -2]
FirstElementOnly [4, -2, 1, 0, 3, -5] − > [4]
Identity [4, -2, 1, 0, 3, -5] − > [4, -2, 1, 0, 3, -5]
IndexParity [4, -2, 1, 0, 3, -5] − > [1, 0, 1, 0, 1, 0]
IterativeDi�erence [4, -2, 1, 0, 3, -5] − > [4, -6, 3, -1, 3, -8]
KeepEvens [4, -2, 1, 0, 3, -5] − > [4, -2, 0, 0, 0, 0]
KeepNegatives [4, -2, 1, 0, 3, -5] − > [0, -2, 0, 0, 0, -5]
KeepOdds [4, -2, 1, 0, 3, -5] − > [0, 0, 1, 0, 3, -5]
KeepPositives [4, -2, 1, 0, 3, -5] − > [4, 0, 1, 0, 3, 0]
Negative [4, -2, 1, 0, 3, -5] − > [-4, 2, -1, 0, -3, 5]
Pop [4, -2, 1, 0, 3, -5] − > [4, -2, 1, 0, 3]
RemoveFirstElement [4, -2, 1, 0, 3, -5] − > [-2, 1, 0, 3, -5]
RetainFirstHalf [4, -2, 1, 0, 3, -5] − > [4, -2, 1]
Reverse [4, -2, 1, 0, 3, -5] − > [-5, 3, 0, 1, -2, 4]
ShiftLeft [4, -2, 1, 0, 3, -5] − > [-2, 1, 0, 3, -5]
ShiftLeftZeroPadded [4, -2, 1, 0, 3, -5] − > [-2, 1, 0, 3, -5, 0]
ShiftRight [4, -2, 1, 0, 3, -5] − > [0, 4, -2, 1, 0, 3, -5]
ShiftRightLossy [4, -2, 1, 0, 3, -5] − > [0, 4, -2, 1, 0, 3]
Shu�eZerosToBack [4, -2, 1, 0, 3, -5] − > [4, -2, 1, 3, -5, 0]
Signum [4, -2, 1, 0, 3, -5] − > [1, -1, 1, 0, 1, -1]
Sort [4, -2, 1, 0, 3, -5] − > [-5, -2, 0, 1, 3, 4]
SquareValues [4, -2, 1, 0, 3, -5] − > [16, 4, 1, 0, 9, 25]
ToIterator [4, -2, 1, 0, 3, -5] − > [0, 1, 2, 3, 4, 5]
Add [4, -2, 1, 0, 3, -5] , 4 − > [8, 2, 5, 4, 7, -1]
Append [4, -2, 1, 0, 3, -5] , 4 − > [4, -2, 1, 0, 3, -5, 4]
ClipToMax [4, -2, 1, 0, 3, -5] , 4 − > [4, -2, 1, 0, 3, -5]
ClipToMin [4, -2, 1, 0, 3, -5] , 4 − > [4, 4, 4, 4, 4, 4]
ConstantAddition [4, -2, 1, 0, 3, -5] , 4 − > [4, 2, 9, 12, 19, 15]
FillArray [4, -2, 1, 0, 3, -5] , 4 − > [4, 4, 4, 4, 4, 4]
GreaterThan [4, -2, 1, 0, 3, -5] , 4 − > [-1, -1, -1, -1, -1, -1]
IterateFromStart [4, -2, 1, 0, 3, -5] , 4 − > [4, 5, 6, 7, 8, 9]
LessThan [4, -2, 1, 0, 3, -5] , 4 − > [1, 1, 1, 1, 1, 1]
MultiplesOf [4, -2, 1, 0, 3, -5] , 4 − > [0, 4, 8, 12, 16, 20]
Multiply [4, -2, 1, 0, 3, -5] , 4 − > [16, -8, 4, 0, 12, -20]
Subtract [4, -2, 1, 0, 3, -5] , 4 − > [0, -6, -3, -4, -1, -9]

Table 5.4: The �rst corpus of problems, taking either a single array, or an array and
an integer. Example provided of the behaviour of each problem, given a standard
example input. 83
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Problem

Square
HollowSquare
Parallelogram
HollowParallelogram
MirroredParallelogram
MirroredHollowParallelogram
RightTriangle
HollowRightTriangle
MirroredRightTriangle
HollowMirroredRightTriangle
InvertedRightTriangle
HollowInvertedRightTriangle
InvertedMirroredRightTriangle
InvertedHollowMirroredRightTriangle
IsoceleseTriangle
HollowIsoceleseTriangle
InvertedIsoceleseTriangle
HollowInvertedIsoceleseTriangle
RectangleWithEmptyTrapezoid
InvertedRectangle
obtuseTriangle
hollowObtuseTriangle
mirroredObtuseTriangle
mirroredHollowObtuseTriangle
invertedObtuseTriangle
hollowInvertedObtuseTriangle
invertedMirroredObtuseTriangle
hollowMirroredInvertedObtuseTriangle
VShape
Trapezoid

Table 5.5: The second corpus, a set of 2D image generation tasks, drawing simple
geometric shapes. Examples illustrated in Figure A.1

5.1.7 Neural network design

The goal of the end-to-end system discussed in this experiment set is to extract a code
fragment from a successfully-found program, then train a neural network to estimate
which unsolved programs (as described to the NN by I/O examples) will contain
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this fragment. The network's probability estimate can then be used to guide which
fragments to deploy in future problems by presenting their I/O to the NN.

The neural network is provided with the I/O examples in the form of a
concatenated string (shorter-than-maximum arrays padded to maintain constant
length). Values are presented in binary, 10-bit signed integers, with an additional
bit for `padding character' such that an empty array and a zero-length array do not
appear identical.

The NN is trained on a synthesised training set of programs; the programs in this
training set are generated at random but must exhibit some of the program features
present in programs in SF . The intuition here is that the neural network will thus
learn to recognise which program features are likely to be present for unseen I/O
examples, based on program features known to be useful in other programs requested
by users, which are then useful to guide the GP search.

Each synthesised training corpus based on SF has 20,000 programs for training
and 2,000 for testing. The 20,000 programs are divided into 10,000 which do have a
particular program fragment of interest, and 10,000 which do not have that fragment,
with the NN trained to determine whether or not a given I/O example is likely to
have that fragment in the corresponding implementation program. Each program in
each set of 10,000 is assured to be distinct in functionality from every other program
in the set, tested on its behaviour with respect to a �xed 10 I/O examples. Each new
program in a training set is generated by selecting uniformly at random two programs
already accepted, applying a crossover, then applying between 1 and 8 mutations (as
described above in the GP section) while assuring that the fragment of interest still
exists.

These experiments use a Feed Forward Network Network (FFNN) architecture
for our array-to-array tasks, and a Convolutional Neural Network (CNN) for the 2D
canvas tasks. The FFNN architecture takes the form of 4 layers of 128 neurons,
seLu activation, interspaced with dropout layers set to 0.75 keep rate. Each layer
was connected to all previous layers (dense block architecture). The single output
node was a sigmoidal node (values constrained to between 0 and 1.0), representing
the probability of a given fragment being present in the program assumed to have
implemented the presented I/O example. The CNN architecture was two sets of: one
convolutional layer of stride 2, kernel width 3, 32 channels, reLu activation followed
by one max-pooling layer with a pool width of 2.

5.1.8 Experiment 3.1: Guiding GP based on fragments of

human-written solutions

In this experiment the thesis �rstly evaluates the performance of the Novelty
Search �tness function, which is used by default in the remainder of all this work's
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experiments. To do this a core GP process was run both with and without novelty
search on both of the test corpora, repeating each experiment 20 times (Full results in
Appendix A.5). For the �rst corpus of 35 array-to-array programs, it was found that
the GP without Diversity Boosting Repulsion Penalty (RP) achieves a �nd rate of
33% (n=20), with 27 programs having a �nd rate of > 0. With RP enabled, the �nd
rates rises to 36%, a moderate boost equivalent to solving one additional problem.
No problems which were at 0% �nd rate were boosted to > 0, however. For the 2D
pattern corpus of 30 problems, the non-RP GP process had a success rate of 28%,
with 15 problems having > 0 �nd rates. The addition of RP boosted this to 30%,
with 18 problems with > 0 �nd rates. This indicates that the RP component of the
�tness function had a measurable bene�t, but further examination would be required
to determine if the additional computational cost was worth the moderate gains. As
it produced a positive e�ect, it was retained for all subsequent experiments.

With this baseline established, this experiment now evaluates the e�ects of
guidance in the forms of provided `hints' on a GP process. To do this the experiment
examines the set of 1 or 2-line code fragments which can be cleanly isolated (with
no dependencies) in the ground truth solution to each problem. This work de�nes
this `clean isolation' such that no variables used in the fragment have an assignment
before the fragment (so their values are default by obligation). A GP pass is then
run with the code fragment as a forced requirement, such that any program produced
by the GP which does not include them automatically receives a penalty �tness of
-10,000. Each experiment in this series is repeated 30 times to account for the inherent
stochasticity in the GP process.

The experiment tests these fragments by deploying them into a GP search on
8 problems from the array-to-array corpus and 6 problems from the canvas corpus.
From the �rst corpus the experiment selects mostly low-�nd-rate problems, to study
which form of fragments would be useful to provide to achieve success in the GP, while
in the second corpus it selects a more representative sample, to study how constraint-
forcing behaves in general. Two problems of the same class are selected from the 2nd
corpus (right triangles), to ensure that similar fragments provide similar results in
similar circumstances (to give con�dence in generality of these results). The baseline
success, best �nd rate increase, and best fragment's operators for selected problems
are presented in Table 5.6.

Here it can clearly be seen that forcing the inclusion of even the simplest code
elements (one or two lines of the ground truth) into the GP's population allows the GP
to �nd previously unsolvable problems. It can also be seen that fragments containing
arithmetic operators (especially literal assignment) appear to have a stronger in�uence
on success, possibly as they are harder to �nd, as their e�ects are far more subtle and
complex than, say, presence of a loop operator. These should therefore be studied as
high-utility candidates for deployment into GP processes in the future.
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It can also be noted that some examples show a decrease in success rate (e.g. �Shift
Right Lossy"). While no fragment reduced �nd rates to zero, it can be speculated
that in some cases the provision of a fragment places the GP into an area of program
space from which it is harder to reach the solution using our general-purpose �tness
function (for example, meaning that this point in program space has larger regions of
neutral landscape around it which are harder to traverse over), although this could
be simply due to variance.

For full reports of results of every fragment for every program, see Appendix A.3

Problem Baseline Max Best Operators

Append 0% 27% Var=Literal 1; Addition
Cumulative Abs Sum 0% 3% Loop; Read
Keep Evens 0% 7% Var=Literal 2; Make Array
Retain First Half 0% 13% Var=Literal 2; Divide
Reverse 58% 80% Var=Literal 1; Make Array
Shift Right 0% 13% Var=Literal 1; Loop
Shift Right Lossy 84% 80% Var=Literal 1
Sort (Bubblesort) 0% 0% (None)

Parallelogram 7% 30% Var=Literal 2; Divide
Mirrored Hollow Parallelogram 13% 60% Var=Literal 2; Divide
Hollow Right Triangle 87% 90% Var=Literal 1; Subtract
Hollow Mirrored Right Triangle 63% 93% Var=Literal 1; Subtract
Inverted Isosceles Triangle 46% 23% Var=Literal 2
Trapezoid 7% 10% Var=Literal 1

Table 5.6: Success rates for guided Genetic Programming Algorithm with forced
inclusion of code fragments from ground truth. Baseline is unguided GP. Maximum
is single best performing fragments. Best operators are those used in the highest-
scoring fragment (�rst if tied) (n=30 per fragment, percentage success)

5.1.9 Experiment 3.2: Fragment Recognisability

This experiment starts with selected high-success seed programs from this section's
�rst experiment. Both corpora are divided into logical categories (in the canvas
corpus for example there are `triangles' and `parallelograms', in the array to array
there are `conditional-using' or `no loop'), and from these the experiment selects the
problem with the highest baseline �nd rate to use as seeds (Baseline the same as in
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5.1.8, Appendix A.5). It then takes 10 source code fragments present in these seed
programs which exhibit a positive e�ect of �nd rates, and uses these fragments to
generate completely synthetic training corpora for neural networks trained to predict
whether or not an I/O example will include a particular fragment in its source code
solution. From the array to array problems it tries to select fragments which allow
the behaviours demonstrated by the logical category of program they are drawn from.
The source codes of the canvas programs were less able to be readily decomposed into
these logical blocks, so in the canvas set we include a set of 3 fragments with two being
subsets of another, to assess the e�ects of fragment complexity on recognisability.

Table 5.7 shows how e�ective the trained neural networks are at then correctly
predicting the presence of these fragments in the I/O examples from the two problem
sets (which are not part of the synthetic training sets). The array-to-array corpus uses
a Feed Forward NN, the 2D pattern corpus uses a Convolutional Network architecture.
More detail on fragments used in Appendix A.6.
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Fragment Accuracy

Nonstandard Array 73 %
Loop + Iterator Minus One N/A
Loop + Read 65 %
Literal 2 76 %
Read 67 %
Add 48 %
Loop 67 %
Loop + Iterator Plus One N/A
Conditional 63 %
Loop + Iterator Mod 2 73 %

Two Draw Operators 67 %
Add 77 %
Loop + Draw On Iterator X 62 %
Half 84 %
Half + Loop to Half 80 %
Half+Loop+Draw Depends on Iterator 85 %
Conditional 62 %
Loop + Conditional 59 %
Loop + Loop, Add Iterators 53 %
Loop + Loop, Subtract 45 %

Fragment FFNN

Table 5.7: Percentage accuracy on neural network estimates of fragment presence in
non-seed programs, after training on synthetic datasets derived from seed programs
(one corpus from seeds with fragment, one for those without). Results are averages
of networks which passed validation (> 0.5 accuracy on seed programs). N/A results
are those where non passed validation. (n=20)

This data shows signi�cant variance of prediction success (from 45% up to 85%)
but overall shows that the neural networks do exhibit the ability to accurately predict
that a particular source code fragment will exist in the solution to a given I/O problem
� even though these neural networks are trained on entirely synthetic data.

In practice a system can use these trained networks when determining which
fragments to recommend for inclusion in a GP search; this is presented in the following
experiments, culminating in a full end-to-end system which uses any programs found
by GP processes as seeds, and automates fragment extraction, then deploys them
using this approach to neurally guided fragment presence estimation.
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5.1.10 Experiment 3.3: Chosen Fragment Deployment

In this experiment, the fragments from the above NN experiments were employed
to guide the GP process, based on the average estimates of fragment presence by
the trained neural networks. This demonstrates the e�cacy of the system in taking
successfully-found solutions to easy (high success rate for an unguided GP) problems
and transferring their characteristics, via trained NN predictors, to �nd solutions to
more di�cult problems (low base success rate).

From all fragments predicted to be present in the source code solution of an
unseen I/O problem, the system ranks the fragments to actually deploy based on
how `di�cult' they were to �nd. The hypothesis is that certain fragments will have
greater e�ect on GP performance. NN recognition of properties such as �contains
a loop" is of low utility, as the GP would �nd this element of the solution rapidly.
What is of greater interest is recognition of fragments which are speci�c to the target
problem and with a lower probability of being generated by random mutation. As
such, for each problem to solve, select the fragment taken from the seed program with
the highest expected number of generations to �nd a solution (if a problem is found
10% of the time, it has an expected generation count of 30, 000, while if a problem is
found 100% of the time, its di�culty is the average the generations taken to produce
a solution).

Corpus Success Rate (vs Baseline) Gained Lost

1st (1D Arrays) 46 % (38%) 5 1
2nd (2D Array) 39 % (36%) 4 1

Table 5.8: Success of the GP when guided by the fragments selected by the neural
network. `Gained' are problems which have a > 0% success rate which have a baseline
of 0%, `Lost' are those which previously had > 0% but now have 0%. (n=20)

As can be seen in Table 5.8, guiding the GP using this process produces notable
improvements to the overall program synthesis success rates. Average �nd rates were
boosted, and crucially a number of problems became solvable which were not before,
with only a single problem in each problem set failing to be solved. This set of newly-
solved problems here includes instance in which the bubblesort algorithm, a problem
which throughout this work has rarely found by any approach, was successfully found.

This improvement was strongest on the approach which selected the estimated-
rarest fragment for use, clearly indicating that the fragments are not equivalent in
their usefulness. The ideal way in which to extract the most useful fragments for the
GP to use, based on those available from NN predictions, therefore remains a topic
of future work.

The full set of guided GP results is available in detail in Appendix A.4.
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5.1.11 Conclusion to Experiment 3

A number of lessons were learnt from this experiment, which can be used to design
the desired end-to-end transfer learning genetic programming algorithm.

Neural Networks can recognise code fragments is a core discovery. This
con�rms that the capabilities displayed by feed forward networks in DeepCoder Balog
et al. (2017) are transferable to this thesis' target domain of code synthesis in a Turing-
Complete language. Speci�cally both this thesis and the literature show that parts
of a program can be recognised by a neural network based on how they impacted a
program's behaviour.

Genetic Programming can be guided successfully by partial programs.
This experiment demonstrated a mechanism by which a GP can have its performance
enhanced by a neural network's suggestions. This was achieved by essentially reducing
the program-space which the GP operates in, to restrict it to only the programs which
contain the supplied code fragment. This space is empirically shown to be superior to
navigate, although work would be needed to disentangle the e�ects of reduced space
size and the e�ects of supplying a starting point other than the empty program. This
is not necessarily the only mechanism of GP guidance, with a core element currently
missing being the ability to accept multiple code fragments as guidance. This would
allow for even higher specialisation of the search space, which may allow far higher
performance.

These two properties of neural networks and Genetic Programming can now serve
as the basis for the remaining work in this thesis. The aim is to maximise the
advantage provided to the GP by the NN. To do so optimally requires as much as
possible to be drawn from as many donor programs as possible, but must be balanced
against the risk of poorly targetted guidances reducing the GP's performance by
constraining it to subspaces of program space which: do not contain a valid solution;
have poor navigability; start the GP at a harmful point in space (one which does not
have a clear path towards a desired solution); and/or feature valid solutions far less
frequently than the entirety of program space does.
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Experiment 4: End-to-End System

This experiment uses fully automated fragment extraction, sourcing the fragments
from solved problems and redeploying those fragments to new problems based on NN
guidance. It builds on the the lessons learnt in the previous experiments, to create an
end-to-end Transfer Learning System. It represents the full system proposed by the
thesis.

This work was published twice in the literature. Firstly under the title
�Neurally guided transfer learning for genetic programming" Wild and Porter (2021)
and secondly under the title �Multi-Donor Neural Transfer Learning for Genetic
Programming� Wild and Porter (2022).

6.1 Fragment Extraction and Evaluation

Once a successful GP run has completed, having synthesised source code which
replicates the desired behaviour, as de�ned by a set of I/O examples, it can be used
as source material for later successes.

Various subsets of the source code can be extracted, programs generated to either
include or exclude them, and a network trained to recognise their presence or absence.
This allows the network to learn information about the functionality of the code
fragment, how it a�ects the output of programs it features in.

When later problems are encountered, all neural networks trained so far can be
presented with the I/O example set, to determine which fragments might be present
in the program which generated the example behaviour.

6.1.1 Selecting Fragments for Extraction

The number of possible subsets of program lines is 2number_of_lines, which may rapidly
becomes prohibitively expensive as the number of lines in the solution grows.
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This work employs a mechanism to select fragments in a way which attempts
to extract the most unique aspects of the program and preserve as much of their
functionality as possible.

A subset of the lines of a program is considered valid for use if no variable read
by a line in the subset has been written to earlier in the program by a line not in
the subset. This ignores the e�ects loops would have on the order of operations, to
allow loop contents to be extracted despite possible variable writing earlier in program
execution order. Loop operators themselves, however, are included, as they write to
their iterator variable.

This avoids lines depending on lines which do not exist in the fragment, and
therefore would not be transferred to a new context, and provides a way to keep
functional blocks of code together.

A maximum number of lines is also imposed, to further cut down on the number of
potential fragments requiring evaluation. For this work, a maximum of 4 lines and a
minimum of 1 is employed. ENDBLOCKs are also excluded, as the fragment injection
mutation process allows them to be inserted automatically. NO-OPERATION lines
are not considered a part of the program for these purposes.

Once a set of fragments matching these requirements has been produced, they are
compared against existing fragments. The aim is to determine which element is most
`novel' within this synthesised program.

The purpose of fragment transfer is to reduce GP search times as far as possible
(including from the timeout case where the GP process terminated unsuccessfully),
therefore fragments found in fewer GP generations are not preferred. These fragments
were rapidly synthesised by the GP algorithm, and therefore poor candidates for
transfer, as they provide lesser bene�t while preventing other, more computationally
expensive to synthesise fragments, from being deployed. As a result, fragments similar
to those from faster-to-solve problems are to be avoided.

In order to achieve this, each fragment is compared against all other fragments
extracted from problems which were solved in fewer GP generations than the current
problem was. The distance metric from the GP diversity boosting repulsion penalty
search component, described in subsection 4.2.3, is re-used. This provides a metric
to determine the relatedness of all fragments to all previously seen fragments. Note
that the fragments are normalised prior to the point, refactoring variable naming as
described in subsection 4.2.5, removing any code distance due to variable naming
alterations.

For each fragment, the distance to the closest already-seen fragment is found.
Note this represents all fragments passing the requirements described above from
all programs synthesised by the GP which took fewer generations than the currently
solved program, not merely those selected via the process described below. Fragments
which are identical are rejected entirely. If no fragments are viable as a result of this
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exclusion, the process terminates here.
The fragments are then sorted, ordered such that the most `novel', the one which

has the highest distance to any existing more rapidly found fragment, is �rst. The
measure of this `rapidity of �nding' is how many generations it has taken to �nd the
solution from which this fragment was taken. This includes previous runs of the GP
on the same problem.

6.1.2 Fragment Evaluation: Synthetic Training Corpora

The process then iterates through this ordered list of fragments. For each fragment
under consideration, a fragment evaluation pass is performed.

Two corpora of programs are generated, one which features the fragment in all
its programs, one in which it is never present. These are 2500 programs in size,
and are created via a genetic mutation process. This number was chosen based on
preliminary experiments, which showed that corpora of sizes up to 25,000 did not
lead to any further performance gains. The populations are initially seeded from
the programs which have been synthesised by the GP process on user-supplied I/O
examples. The corpus requiring the fragment's presence will only have a single seed
program, the recently solved problem from which the fragment was extracted. All
other programs will form the seeds of the second corpus, where the fragment is not
present. This process was designed to best apply the lessons learnt from Experiment
1, in the most automated fashion possible. Preliminary experiments in which the last
generation from the GP, or sub-populations from GP runs, were found to lead to far
lower accuracy neural networks.

For each corpus, once the seeds have been added, the population is grown
genetically. Two parents are selected, uniformly randomly from all programs currently
in the population, and crossover applied, as in the GP. The child is then mutated,
again as described above, including randomised number of mutation steps.

The code is assessed, to determine if it has retained the desired fragment or to
ensure it has not generated it (as required by the respective corpora). If it passes
the fragment presence test, all introns are removed via static code analysis, and it is
executed on a �xed input. This input sequence is randomly generated at the start of
the corpus-generation process, and is identical for all programs tested. To be added to
the corpus, its outputs on these inputs must di�er from all programs already present
therein, to ensure that it has a unique functionality. This continues until both corpora
reach 2500 programs.

In certain conditions, no new programs can be added, as the requirements fail
to be met. A primary cause of this is inability to generate su�ciently functionally
dissimilar programs. If this occurs, a timeout exists, terminating fragment evaluation.
This timeout is set to 210 seconds, for this work.
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If the fragment fails to produce these training corpora, it is skipped, and the next
fragment evaluated, to a maximum of 8 attempts total. The process also ends if 4
fragments succeed in being evaluated.

6.1.3 Encoding Values for use in Neural Networks

Once two sets of 2500 programs have been generated, one containing the fragment
under examination and one excluding it, the neural network can be trained to recognise
its presence in I/O mapping examples.

First these examples need to be generated. Random inputs are selected, to more
closely resemble the expected inputs, or at least to cover a broader range of cases.
While more complex input generation strategies exist, as discussed previously, these
may bias the network's recognition abilities, as they do not re�ect a uniform input
distribution. Therefore a simpler strategy is employed, to ensure the underlying
framework is e�ective, and improvements such as coverage-boosting input selection is
left as future work.

10 examples are used, to match those supplied by the simulated user of the system.
These are passed into the programs in the corpora, to produce sets of 10 I/O examples.

These can be converted into �xed-length binary strings, based on the input-output
types. Two type structures are studied, programs taking both a 1D array of integers
and a single integer inputs and returning a 1D array of integers, and programs taking
a positive integer and returning a 2D array of boolean values (implemented as a 2D
array of integers forced to adopt only either 0 or 1).

Two separate encodings are used for the two types of problem faced, along with
two separate network architectures.

6.1.4 1D Arrays of Integers

In the �rst case, the encoding strategy must describe both integers and arrays of
integers. Integers are represented as binary encodings, each input into the neural
network corresponding to an input neuron, and taking a value of either 0 or 1, with a
�xed length of 10. The �rst binary value represents the sign of the integer, and is 0 if
the integer to represent is positive, 1 if it is negative. The further 9 represent powers
of 2, their sum representing the value of the integer. The �rst of these, the second
value in the representation, is equal to encoding[1] = integer%2, the second equal to
encoding[2] = integer%4 and so on. If the integer exceeds the maximum which can
be represented the encoding will be incorrect, but this is a necessary concession to
make in order to keep the encoding of �xed length. To maintain input integers below
sizes which have a high probability to cause an over�ow, all input integers are chosen
to remain in the range [−256, 256].
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The arrays can then be encoded as sequences of integers. The arrays must be
assigned a maximum length for the same reason as integers must adopt a �xed
length encoding, because the network input will be �xed length and cannot expand
at runtime. The maximum array length is set as 16 for this work. This imposes a
limit of 8 on the randomly generated input arrays, as the problems studied include
functions with concatenate the input array to itself, therefore requiring double the
length of output as input.

Each array is encoded as a �xed length sequence of annotated integer encodings.
For each index in the maximum array length, a value of 0 or 1 is appended to an
integer encoding, to indicate if the index falls within the array's current length or not.
A value of 1 indicates that the array extends this far, and that the following integer
encoding is a true value. If the array does not, the integer encoding is set to 10 values
of zero and the preceding value of 0 indicates that the array is shorter than this index.

Each I/O example can then be assembled, by encoding �rst the input array, then
the input integer, then the output array. This forms a �xed length sequence with
consistent ordering, allowing e�ective processing by the neural network.

6.1.5 2D Array

For the 2D data type problems, the only input required is the desired size of the
output array, as this encapsulates all necessary information for the problems which
are studied in this work.

Similarly to 1D arrays, a �xed maximum is necessary, and a representation of the
current array size in comparison to this maximum.

The encoding form is simpler, due to the binary nature of the values involved. A
single encoding vector is produced, representing a 2D array of maximum size (a 12 by
12 square). It is transformed from 2D to 1D by concatenating each of its rows into a
single vector.

Each element in this vector is formed of two binary values. The �rst indicates
whether this given point falls within the current output 2D, with 1 indicating the
output is large enough to encompass this point, 0 that it is not. If the 2D array does
encompass it, the second binary symbol is set to 1 if the output 2D array is 1 at the
mapped index, 0 if not (and defaults to 0 if the 2D array does not extend to this
point).

6.1.6 Neural Network Architectures Employed

With all I/O example sets expressed as sets of �xed length binary values, they can
be fed into the networks for training. Again, for the two cases, two separate network
architectures are employed, as was shown to be most e�ective.
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6.1.7 1D Arrays of Integers

For this data-type problem set, a feed forward neural network (FFNN) is employed.
The architecture is relatively simple, employing a single type of network layer, and a
single type of activation function (other than for the output neuron).

The architecture consists of 5 dense layers of 128 neurons, the �rst connected only
to the input layer, the subsequent 4 connected to every previous dense layers, in what is
termed a densely connected architecture Huang et al. (2018). The activation function
on every layer is SELU, or `Scaled Exponential Linear Unit' Klambauer et al. (2017),
which has been shown to have superior performance on deeper Feed Forward networks
than commonly used other functions. Preliminary experiments into neural network
performance indicated this structure had higher performance than any combination
of standard FFNN architecture, in which layers were connected simply to the previous
layer or industry-standard ReLu activation functions.

Dropout (Srivastava et al. (2014)) is used on every dense layer, with a retention
probability of 0.75.

The output layer, reading only from the last of the dense layers, is a single neuron
with sigmoid activation, asymptotically limiting its output range to between 0 and
1. This allows it to represent probability estimates and guarantee a valid (within
acceptable range) output.

The input to this network is therefore a �xed length vector of values (which are
set to either 0 or 1), and the output value is either 0 or 1. All 10 I/O example pairs
are concatenated together into a single vector for this purpose. For labels, 0 indicates
that the I/O example set encoded into the input vector does not contain the target
fragment, 1 indicates that it does.

6.1.8 2D Array Inputs

For this data-type, a Convolutional Neural Network (CNN) is employed.
The CNN architecture is formed of 10 separate processing elements, each of which

handles a single 2D canvas example. Each example in the problems studied takes
the form of a single 2D array, and is processed by a set of convolutional layers. The
results of these sub-elements is concatenated after processing, to combine the results
into a single output.

Each sub-processor takes a 2D array of maximum size (which defaults to 12),
initially �lled with 0s. For every element(i, j) in the example, if the value in the
example is 1, the input array at (i, j) is set to 1. This transfers the pattern from the
example into the input array, discarding any array size information.

Each of network's sub-processors consists of a Convolution layer, reading in the
initial image, followed by a Max Pooling layer, followed by another Convolution layer,
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followed by another Max Pooling Layer, followed by a dense layer to return the data
in a 1D format (The previous two process data in a 2D fashion).

The Convolution layers are 32 channel, with a kernel size of 3, a stride of two and
ReLu activation. The Max Pooling employs a 2 by 2 window. The �nal dense layer
is 96 neurons, ReLu activation.

The �nal dense layers of each sub-processor has its outputs concatenated and fed
into another dense layer, of 96 neurons with ReLu activation. This layer processes all
seen data, and feeds it into the output node.

As above, the output node is a single sigmoid activation neuron, representing
probability estimates.

6.1.9 Training the network

The network is trained to minimise the mean squared errors between its estimates and
the training data set's values. The ADAM optimiser is used Kingma and Ba (2015),
with a training speed of 6 ∗ 10−4. Minibatches of size 32 are used.

Three sub-corpora are formed from each of the two main ones, by subdividing the
corpora after shu�ing them. The �rst, the training set, is 80% of the data, the next
10% are used as validation set, and the remaining 10% as a held-out testing set, to
evaluate the performance of the networks.

6.1.10 Fragment Injection

For the later experiments, the GP is expanded to grant it a new mutation, which
employs the extracted fragments. This mutation allows fragments to be transferred
from previously solved problems, based on neural network estimations of presence.

For every fragment which has been extracted and evaluated, in the mechanism
described in subsection 6.1, a weighting is determined.

This weighting is computed by the product of two factors. Firstly how strongly
the neural network estimates it to be present in the program which produced the I/O
example, secondly how rare it is, as a fragment.

The �rst value is simply computed as neural_network_output−0.5. If the neural
network estimated the fragment as having less than 0.5 probability of presence in this
program it is automatically discarded. As such this value ranges between 0 and 0.5,
with fragments barely above threshold having very low probability of being selected.

The second value is 1/(0.1+ presence_estimate). This value presence_estimate
is the number of I/O example sets which the neural network estimates the problem
to be in divided by the total number of I/O example sets, so a value between 0
and 1 inclusive. The fewer I/O examples the network estimated the fragment to be
present in, the higher this value, up to 10, if no IO examples are believed to contain
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this fragment (although that would imply it would never be selected due to previous
factor). Presence in this case is simply taken as IO example sets in which the neural
network's presence estimate > 0.5. It is assumed the system is presented with a batch
of I/O examples by the user, and can view upcoming problems in the corpus, but this
functionality would remain unchanged if it were operating purely on IO examples it
had previously solved as well as the currently faced problem.

This rarity factor aims to select for `specialist' fragments, which are unique to this
particular problem class, as they are hypothesised to have a higher utility to the GP.

Fragments are selected based on this weighting using roulette selection producing
a single candidate for insertion. Insertion takes place by selecting a random point in
the existing program. The �rst line of the fragment is inserted there (displacing later
lines downward in the program). For each further line of the fragment to be inserted,
if there are later lines in the program, n of these may be skipped, causing them to
become interlaced into the fragment. n is chosen by iteratively selecting either to
increase n by 1, or to terminate, with 0.5 probability of either option, so skipping 0
lines has a 0.5 probability, skipping 1 has an 0.5 probability, 2 has 0.25 and so on.
This injection process allows complex mutations which retain existing functionality
while adapting it, such as by wrapping code elements in a loop or conditional.

Fragments are also adapted before injection by refactoring their variables. First
they are normalised, such that the �rst variable references is set to the �rst variable
which won't be used as inputs into the program. The second is then the next
variable sequentially, and so on. When injecting the fragment, these variables are
randomly o�set, by adding to the variable index referenced. A random integer value
is uniformly selected between 0 and the maximum which would not cause the largest
variable index to exceed the permitted number of variables. As such, if a fragment
initial was variable_6 = variable_4 + variable_8 it would initially be normalised
to variable_2 = variable_3 + variable_4 if there were two input variables. It could
then subsequently be o�set to become variable_6 = variable_7 + variable_8, as
long as variable_8 was in the permitted number of variables.

This allows fragments to retain elements of their logical inter-dependencies, while
potentially injecting them into existing code in a way which allows both code
structures to be merged into a single whole. Capability exists both variable re-use,
such that variables will be written to and read from by the fragment and the existing
code, or for the fragment to be inserted in a way which avoids use of already-used
variables. Due to the generations sizes involved and mutation probabilities, both
mutation approaches are likely to be attempted during the same GP process, with
the most successful approaches retained in the population.

In the same mechanism as before, if insu�cient ENDBLOCK operators exist,
additional ones are appended to the end of the program, and while excess ones exist
the last one is removed.
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6.1.11 Re-Evaluation of Fragments

Once a program is successfully synthesised by the GP, it can be used not just to extract
new code fragments but also to re-train networks assigned to existing fragments.

Each program synthesised is assessed to determine which already-accepted frag-
ments are present in it. For all that are, new training corpora can be generated, now
with a larger number of positive-case seed programs. This is desirable as the initial
training positive corpus (the corpus featuring the fragment) for each fragment will
often have only a single seed program to generate from, the program from which it
was extracted. This could lead to considerable bias in terms of programs generated,
and misrepresent the region of program space occupied by programs containing this
fragment. By allowing retraining from a larger collection of seed programs, a more
representative distribution of I/O examples can be generated.

The process is identical to the �rst training pass. Two corpora of 2500 programs
are generated, using all synthesised programs as seeds, dividing them between the
two corpora's requirements. A newly generated network is employed (rather than
re-training the existing one), and assigned to the fragment, replacing the existing
one.

6.1.12 Summary

This subsection has covered the design of a Transfer Learning system for Genetic
Programming, which is able to operate without human assistance. The system
takes only problems, in the form of input-output example sets which demonstrate
desired program behaviour, and synthesises solutions using a Genetic Programming
algorithm. If successful, the newly generated programs' code are decomposed into
code fragments, which a network learns to recognise based on its in�uence on I/O
examples.

These extracted fragments can then be redeployed using mutations to solve future
problems, aiming to remove the need to re-evolve complex structures which have
already been generated for an earlier problem. This allows easier problems, those
solvable without Transfer Learning, to be used to provide genetic material to allow
solving harder problems, which the GP would be unable to solve in isolation.

The system is able to operate in a continuous fashion, constantly receiving I/O
examples as problems and maintaining an ever-growing list of useful mutations. It is
also able to re�ne its ability to estimate the presence of fragments as it successfully
deploys them, to better generalise the neural networks' training.
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6.2 Results

For both the array- and canvas-based corpora, the experiment runs through the entire
problem set twice, in the same order both times. This allows the system to successfully
�nd any problems that are possible in its �rst pass, then use extracted fragments on
unsolved problems in a second pass. In order to provide a fair comparison against a
baseline GP-only system, the experiment allows that baseline system to also have two
full attempts at both problem sets, yeilding a roughly equivalent number of total GP
generations available.

Corpus Success Rate (vs baseline) Problems Solved

1D Arrays 76% (37%) 33 (28)
2D Arrays 49% (37%) 29 (22)

Table 6.1: Success of the transfer learning system in a fully automated pass through
both the 1st corpus (1D array to array problems) and 2nd corpus (2D array/canvas
pattern generation problems).

High-level results are shown in Table 6.1 against the GP-only baseline, measured
in both success rate and total problems solved. The problems solved column indicates,
as a total across 30 repeated runs, how many of problems from each corpus were solved
under each approach. The success rate column is calculated by determining, for each
problem individually, how many of the 30 repeated runs found a solution to that
problem; then averages this percentage across all problems in the corpus to determine
the above average success rate.

Detailed per-problem results for the array-based corpus are shown in Table 6.2.
Out of a total of 30 experiment repeats, this table shows the number repeats for
which the baseline (B') succeeded at each problem, and the number of repeats
for which the synthesis framework succeeded. It also shows the number of those
successes which were found to generalise (g) to an additional 1,000 I/O examples
beyond the 10 examples used to synthesis the code. Fisher's Exact Test was used to
establish a statistical signi�cance for each separate problem. This was chosen as each
problem should be considered independently, as the TL system could have di�erent
e�ects on di�erent problems, especially as di�erent problems have di�erent baseline
starting values. As a result, each problem can be considered to have two probabilities
(probability of baseline GP succeeding, and probability of TL GP succeeding).
Fisher's Exact Test is designed to handle speci�cally this form of signi�cance test.
This work considers a statistical signi�cance of 0.01 to be su�cient to report as a
result. This lets us see which problems the TL system can be considered to have
improved the performance, and which it showed limited success on.
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Problem Baseline (g) TL (g) Fisher Signi�cance

Add 14 (7) 25 (17) 0.002
Append 0 (0) 28(15) 4.193 ∗ 10−15

CumulativeAbsoluteSum 2 (1) 12 (5) 0.002
CumulativeSum 5 (4) 21 (14) 2.917 ∗ 10−5

KeepEvenIndices 7 (2) 30 (23) 8.705 ∗ 10−11

ClipToMin 16 (2) 27 (17) 0.001
RetainSecondHalf 0 (9) 10 (3) 3.985 ∗ 10−4

Sort 0 (0) 0 (0) 1.0
Subtract 10 (5) 25 (23) 8.247 ∗ 10−5

Abs 11 (5) 22 (19) 0.003
GreaterThan 3 (2) 5 (5) 0.25
IndexParity 29 (22) 30 (29) 0.5
FirstElementOnly 10 (3) 30 (23) 7.167 ∗ 10−9

Identity 29 (25) 30 (30) 0.5
DivergentSequence 12 (0) 28 (19) 8.975 ∗ 10−6

Double 14 (4) 30 (28) 9.720 ∗ 10−7

ShiftRight 0 (0) 26 (16) 3.921 ∗ 10−13

ShiftRightLossy 18 (8) 30 (28) 6.181 ∗ 10−5

ShiftLeft 5 (2) 30 (24) 2.744 ∗ 10−12

ShiftLeftZeroPadded 20 (8) 28 (24) 0.009
RetainFirstHalf 0 (0) 17 (9) 3.092 ∗ 10−7

LessThan 4 (0) 9 (5) 0.076
Multiply 16 (8) 24 (22) 0.020
Negative 23 (15) 30 (27) 0.005
Pop 6 (1) 30 (26) 1.646 ∗ 10−11

KeepPositives 18 (3) 30 (27) 6.181 ∗ 10−5

KeepEvens 0 (0) 0 (0) 1.0
ArrayLength 29 (25) 30 (30) 0.5
ArrayToZero 29 (25) 30 (30) 0.5
KeepNegatives 18 (9) 29 (22) 5.022 ∗ 10−4

KeepOdds 0 (0) 1 (1) 0.5
Reverse 13 (8) 24 (21) 0.003
CatToSelf 3 (0) 21 (21) 1.611 ∗ 10−6

CatZerosToSelf 7 (2) 30 (24) 8.705 ∗ 10−11

ClipToMax 13 (10) 27 (18) 1.159 ∗ 10−4

Table 6.2: Full breakdown of all problems in the �rst corpus, 1D arrays, with success
rates for 30 runs of both baseline (GP without TL enabled) and the Transfer Learning
system. Two attempts were permitted for both approaches, and success counted if
either attempt succeeded. Programs which were found to generalise to 1,000 additional
random inputs are shown in brackets. Statistical signi�cance established per problem
by Fisher's Exact Test.
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For the unsolved problems, such as `Sort' and `Keep Evens', the system clearly
did not improve upon the baseline at all, and the results were unchanged. Similarly
for those which the baseline GP process solved with near 100% accuracy, such as
the Identity function, there is not su�cient data to indicate that the system had an
in�uence, and that the results aren't due to pure chance. On many tasks the results
are clear, however, that the approach has improved signi�cantly on the performance
of the baseline. It is seen that there are multiple tasks, such as `Shift Right' and `Pop'
which have probabilities of both results being drawn from the same distribution (that
is to say the probability that the null hypothesis is wrong) of far less than the chosen
limit of 0.01.

One core set of problems on which the approach was more successful was those
which required the output array length to di�er from that of the input array. Various
problems of this class existed in the corpus, speci�cally �append" and �pop", which
changed the length by 1, �retain �rst half" and �retain second half" which halve the
length of the output array compared to the input's length, and �cat to self" and �cat
zeros to self" which concatenate an array onto the end of the input array, and ��rst
element only" which requires an output array of length 1. This suggests particular
success of transferring useful material between problems which have similar traits.

In terms of generalisability of the synthesised code, similar increases in good
solutions using the approach across each problem are seen compared to the baseline.
Both the baseline and this work's approach have fewer generalisable solutions than
total solutions (total solutions here being those which simply ful�ll the 10 IO examples,
but fail on new unseen examples), indicating neither solution leads to perfectly
generalised solutions each time.
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Problem Baseline (g) TL (g) Fisher Sig.
Square 30 (24) 30 (26) 1.0
HollowSquare 30 (21) 30 (25) 1.0
Parallelogram 0 (0) 2 (1) 0.25
HollowParallelogram 1 (0) 2 (1) 0.5
MirroredParallelogram 11 (2) 13 (7) 0.2
MirroredHollowParallelogram 9 (2) 6 (6) 0.166
RightTriangle 30 (23) 30 (25) 1.0
HollowRightTriangle 30 (15) 30 (25) 1.0
MirroredRightTriangle 15 (8) 30 (21) 2.916 ∗ 10−6

HollowMirroredRightTriangle 12 (4) 27 (19) 4.398 ∗ 10−5

InvertedRightTriangle 29 (18) 30 (23) 0.5
HollowInvertedRightTriangle 15 (3) 24 (16) 0.011
InvertedMirroredRightTriangle 30 (24) 30 (25) 1.0
Inv'HollowMirr'RightTriangle 30 (14) 30 (25) 1.0
IsoceleseTriangle 0 (0) 2 (1) 0.25
HollowIsoceleseTriangle 1 (0) 7 (4) 0.024
InvertedIsoceleseTriangle 15 (6) 24 (18) 0.011
HollowInv'IsoceleseTriangle 9 (1) 15 (12) 0.062
RectangleWithEmptyTrapezoid 2 (2) 2 (0) 0.5
Inv'dRect'WithEmptyTrapezoid 0 (0) 7 (2) 0.005
ObtuseTriangle 4 (0) 9 (5) 0.076
HollowObtuseTriangle 10 (2) 16 (11) 0.066
MirroredObtuseTriangle 0 (0) 0 (0) 1.0
MirroredHollowObtuseTriangle 2 (0) 2 (0) 0.5
InvertedObtuseTriangle 0 (0) 1 (0) 0.5
HollowInvertedObtuseTriangle 1 (0) 4 (2) 0.166
InvertedMir'ObtuseTriangle 0 (0) 3 (0) 0.125
HollowMir'Inv'ObtuseTriangle 0 (0) 2 (1) 0.25
VShape 18 (2) 27 (18) 0.006
Trapezoid 0 (0) 2 (1) 0.25

Table 6.3: Full breakdown of all problems in the second corpus, 2D arrays representing
images, with success rates for 30 runs of both baseline (GP without TL enabled) and
transfer learning system. Two attempts were permitted for both approaches, and
success counted if either attempt succeeded. Statistical signi�cance established per
problem by Fisher's Exact Test. (n=30)

A similar detailed breakdown of problems from the canvas-based problem set
is shown in Table 6.3. These results again demonstrate that this work's approach
generally performs better than the baseline, indicating successful inference of which
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code fragments from solved problems are useful in unsolved ones. The overall success
rates are more similar here than the previous problem set (i.e., across the total 30
runs, the number of programs found at least once by each approach), with the more
signi�cant di�erence being the frequency with which the approach �nds a solution to
a given problem. This suggests the most signi�cant result on this corpus was in its
ability to improve the baseline GP on already-�ndable problems, rather than allowing
new problems to be found.

Again, in these results, it can be seen that a signi�cant number of solutions
generalise to 1,000 additional input examples, and again this number of generalisable
solutions is often signi�cantly higher using this approach. In both problem sets, in
fact, both approaches appear to be roughly equivalent in terms of their generalisability
as a proportion of their solutions; the fact that the approach generates more solutions
overall thereby increases its total number of solutions which generalise.

6.2.1 Computational Cost

Additional, in this section this work considers the overall computation cost of the
baseline and the transfer-learning-based approach; although both experiments had the
same number of primary GP generations available to solve each problem, this work's
approach uses additional steps such as NN training. Measured in compute time, the
�rst problem corpus took 15 hours for the baseline on the hardware employed, while
the full transfer learning system took 24 hours. On the second corpus, the baseline
took on average approximately 49 hours, while the TL system took 80 hours. The
training time of the neural networks was not recorded speci�cally, but can be assumed
to represent a non-negligible proportion of this additional time, as approximately
350 networks were trained each time, one per fragment. It can be also noted that
the hardware setup entailed NNs being trained using CPU resources, rather than
dedicated high-performance GPU hardware; using GPUs for NN training may o�er a
signi�cant time saving.

6.2.2 Summary

The results in this section clearly demonstrate the advantages of the transfer learning
approach in this context, and the success on two distinct program domains suggests
the approach has a degree of generality to it. The kind of program generated by the
system is illustrated in Algorithm 2, demonstrating a solution to the `abs' problem
converted to Java code; while some of the program is certainly unusual, it does
represent a generalised solution to the problem in question.

In the following two subsections the work examines two speci�c elements of the
approach in more detail, to provide further context to the main results. Firstly this
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subsection examines how �tness curves over time appear for both the baseline and
the system, to help understand how transfer learning has a�ected GP population
�tness behaviour. Then it examines the e�ect of injecting random large fragments
of code into a GP process, to con�rm that NN-selected fragments are the source of
improvements seen in this section, rather than those improvements coming simply
from the injection of larger fragments of code in general.

6.2.3 Fitness curves

This section examines how �tness-over-time plays out in both the baseline and the
transfer-learning-based system, providing further insight into the particular a�ect of
transferred material. Figure 6.1 shows the average and median �tness for all problems
over time for the array-based problem set. Here can be seen a very similar overall
shape between the two systems, but with notably higher �tness throughout for the
approach (particularly clear in the median).

Figure 6.1: Fitness curves for GP and TL systems on the �rst corpus, with mean on
the left and median on the right. TL system in blue (higher curve both times). Y is
the �tness, which reaches 0 when the problem is solved, and is normalised to a �tness
of -1 if the sampled program is returning an all-zero array. Penalty value of -10,000
changed to -1 to allow mean to be viewed usefully. X is generation count. (n=900)

Figure 6.2 shows �tness over time for a speci�c problem (`Keep Positives') in the
array-based problem set. In this particular one, this work's approach on the right
shows interesting behaviour in the median graph. The TL approach had a success
rate of 100% on this problem, and the median graph shows a dramatic jump around
generation 500. This implies that certain programmatic elements were found which
allowed �tness to be increased very rapidly. The baseline system, by comparison,
does not have this characteristic. The TL system, working on this problem, also
has a much stronger early increase than the baseline GP alone, with a high slope
from generation 0. This, too, is likely due to genetic material being transferred from
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Algorithm 2 A translated example of solution produced to the `abs' problem,
generated by the GP process, a problem which gained a large performance increase by
code fragment guidance (from 36% to 85%). (Translated from the internal language
into Java) In this solution, the GP uses a loop as a conditional (since a loop will
only execute its instruction block if the bounding variable is positive). It must iterate
through each value, and write the negative of the value to the output array if the
input array's value at that index is negative (thus rendering it positive). The GP
accomplishes this by generating a negative, writing it to the output, then erasing it
if the value read in was already positive, using a loop as a conditional. Ine�cient but
an e�ective solution to the problem as presented to it.
static int nArrays = 2;

static int nVars = 12;

public static int[] generatedProgram(

int[] inputArray,int param){

int[][] arrays = new int[nArrays][];

arrays[0] = inputArray;

int[] variables = new int[nVars];

variables[0] = inputArray.length;

variables[1] = param;

arrays[1] = new int[variables[0]]

for (variables[2]=0;variables[2]<variables[0];variables[2]++){

variables[3] = arrays[0][2]

variables[4] = arrays[0][2]

variables[5] = variables[6] - variables[3]

arrays[1][i] = variables[5]

for (variables[7]=0;variables[7]<variables[4];

variables[7]++){

arrays[1][i] = variables[4]

}

}

}

return arrays[1];
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previous problems, such as read and writing to and from the input and output arrays.
Further work would need to be done to analyse exactly how code changes over time,
and fragment usage correlates and corresponds to these �tness changes, but this data
is a useful con�rmation of the expected overall behaviour.

Figure 6.2: Fitness curves on the 21st problem of the 1D Array corpus, `Keep
Positives'. The left graph represents the median and mean from non-TL GP runs,
with the right from the TL runs (median in blue, ends lower on the non-TL runs,
higher on TL). Y is the �tness, which reaches 0 when the problem is solved, and is
normalised to a �tness of -1 if the sampled program is returning an all-zero array.
Penalty value of -10,000 changed to -1 to allow mean to be viewed usefully. X is
generation count. (n=30)

Figure 6.3 shows a problem from the second corpus, the 2D arrays/canvas set
representing geometric images. This one also shows a stronger early trend, especially
on the median graph, where the GP system spends time with fewer than 50% of the
population elite individuals able to write anything usefully to the output array (�tness
is at -1, indicating it has not achieved anything better than a program returning an all-
zero 2D array would achieve). The TL approach by comparison has clearly provided
the GP system with a good starting point. This problem is interesting, however, in
that it had lower overall performance with the approach than the baseline GP, and
this appears to be visible in the graphs, with the approach achieving a lower �tness
towards the end of the run. It could be hypothesised that the approach transferred
data which may initially have boosted �tness, but lead to the GP process becoming
trapped in a local minimum which did not lead to useful progress towards a 0-�tness
solution.
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Figure 6.3: Fitness curves on the 6th problem of the 2D Array corpus, `Mirrored
Hollowed Parallelogram'. The left graph represents the median and mean from non-
TL GP runs, with the right from the TL runs (median in blue, ends higher on the
non-TL runs, TL median has more step-function-like jumps in the curve). Y is the
�tness, which reaches 0 when the problem is solved, and is normalised to a �tness
of -1 if the sampled program is returning an all-zero array. Penalty value of -10,000
changed to -1 to allow mean to be viewed usefully. X is generation count. (n=30)

Problem Set Mean gens. to threshold Mean transfer Ratio
1D-array 1439.76 (848.74) 0.75 (0.25)
2D-array / canvas 1414.12 (878.64) 0.62 (0.31)

Table 6.4: Average transfer learning metrics of generations-to-threshold and transfer
ratio, for each of the two problem sets. Standard Deviation shown in parentheses

Beyond the evidence of learning enhancements shown by �tness curves, existing
research into transfer learning has also suggested a set of speci�c metrics to
help understand the e�ects of transferred information Taylor and Stone (2011).
Considering the speci�c way in which transfer works in this work's approach, the
most suitable metric from this set is the `time to threshold', which reports how many
generations it takes for the average �tness of the TL system to exceed the average
�tness the baseline reaches after the full 3000 generations. As part of this measure we
also report the `transfer ratio', which computes the average �tness of the TL system
divided by the average �tness of the baseline. We show the average values for this
metrics across all problems in each problem set in Tables 6.4 (with a full per-problem
breakdown provided in Appendix A.7). On both measures we see clear evidence of
the bene�ts of transfer learning; the approach reaches the best �tness of the baseline
in less than half the number of generations on average, and shows a clear relative
improvement in �tness over the baseline. While the standard deviation is high, the
results are replicated su�ciently consistently to form a clear pattern to support the
statistically signi�cant results seen previously.
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6.2.4 Analysis of Large Mutations

Finally, this section examines whether NN-suggested speci�c fragments are likely to
be the real source of improvements, or whether this may be simply a factor of inserting
larger fragments of code (up to 4 lines at a time) in general. To do this, a follow-up
experiment was run which simulates random large fragments of code being added as
insert mutations. These fragments are not recommended by an NN, but instead are
generated at random each time the `fragment injection' mutation is called. They are
all of maximum length (to avoid one-line fragments being generated which would be
no di�erent than the pre-existing `inject' mutation which injects as single line of code).
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Problem Rand Success B' Success Success Fisher Sig.
Add 46% 47% 83% 0.003
Append 33% 0% 93% 3.300 ∗ 10−6

CumulativeAbsoluteSum 0% 7% 40% 2.522 ∗ 10−4

CumulativeSum 8% 17% 70% 3.636 ∗ 10−6

KeepEvenIndices 8% 23% 100% 3.536 ∗ 10−13

ClipToMin 46% 53% 90% 4.805 ∗ 10−4

RetainSecondHalf 0% 80% 33% 0.001
Sort 0% 0% 0% 1.0
Subtract 71% 33% 83% 0.166
Abs 46% 37% 73% 0.028
GreaterThan 4% 10% 17% 0.142
IndexParity 100% 97% 100% 1.0
FirstElementOnly 100% 33% 100% 1.0
Identity 100% 97% 100% 1.0
DivergentSequence 4% 40% 93% 6.202 ∗ 10−12

Double 79% 47% 100% 0.013
ShiftRight 17% 0% 87% 2.076 ∗ 10−7

ShiftRightLossy 21% 60% 100% 2.314 ∗ 10−10

ShiftLeft 21% 17% 100% 2.314 ∗ 10−10

ShiftLeftZeroPadded 88% 67% 93% 0.333
RetainFirstHalf 13% 0% 57% 7.547 ∗ 10−4

LessThan 4% 13% 30% 0.014
Multiply 58% 53% 80% 0.055
Negative 75% 77% 100% 0.005
Pop 46% 20% 100% 2.252 ∗ 10−6

KeepPositives 38% 60% 100% 1.510 ∗ 10−7

KeepEvens 0% 0% 0% 1.0
ArrayLength 100% 97% 100% 1.0
ArrayToZero 100% 97% 100% 1.0
KeepNegatives 75% 60% 97% 0.023
KeepOdds 0% 0% 3% 1.0
Reverse 54% 43% 80% 0.032
CatToSelf 92% 10% 70% 0.041
CatZerosToSelf 100% 23% 100% 1.0
ClipToMax 42% 43% 90% 1.688 ∗ 10−4

Table 6.5: Comparison of random fragments (Rand) generated when the `inject
fragment' mutation is called and with the full TL results. As this is a secondary
experiment, note the random fragments only were run for 24 runs. Statistical
signi�cance established per problem by Fisher's Exact Test. (n=24, n=30)
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As can be seen in Table 6.5, there is a clear statistical di�erence between the
use of randomly generated fragments and deployment of fragments by the NN, which
were sourced from previous successes. The random-fragment approach used here
achieved an average success rate of 46%, compared to the TL system's 76%; the use
of random fragments is, however, slightly better than the performance of the baseline
GP. Comparison to the baseline GP indicates that certain problems were bene�ted
by this new mutation strategy. Speci�cally, a number of those which required the
array length to be changed saw large improvements to their performance. This could
be hypothesised to be a result of the �tness function, which does not have a shaped
landscape towards the correct array length, but rather simply awards a penalty if the
output array is of the wrong length. In this case, the �tness function would be unable
to guide navigation through problem space, and the much larger jumps performed by
this mutation operation appear to lead to success.

Statistical di�erences between the two were even larger in the second corpus, the
2D arrays representing geometric images, with the new baseline achieving a success
rate of 31%, which is lower than those seen in the GP baseline, and far lower than those
seen in the TL approach. This suggests that for this corpus the larger mutations were
harmful, and that this approach strongly bene�ted from more targetted fragments
being injected. Full results are seen in Tables 6.6, with eight problems demonstrating
statistically signi�cant improvements over this secondary baseline by the TL system.

It can be concluded from this that the larger mutations assisted on some problems
(and harmed on others), but were not solely contributory towards the success seen on
the full end-to-end transfer learning system.
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Problem Rand Baseline TL Fisher Sig.
Square 100% 100% 100% 1.0
HollowSquare 100% 100% 100% 1.0
Parallelogram 4% 0% 7% 0.5
HollowParallelogram 0% 3% 7% 0.333
MirroredParallelogram 20% 37% 43% 0.045
MirroredHollowParallelogram 0% 30% 20% 0.020
RightTriangle 100% 100% 100% 1.0
HollowRightTriangle 96% 100% 100% 0.5
MirroredRightTriangle 48% 50% 100% 3.583 ∗ 10−6

HollowMirroredRightTriangle 28% 40% 90% 2.318 ∗ 10−6

InvertedRightTriangle 96% 97% 100% 0.5
HollowInvertedRightTriangle 28% 50% 80% 1.147 ∗ 10−4

InvertedMirroredRightTriangle 100% 100% 100% 1.0
Inv'HollowMirr'RightTriangle 100% 100% 100% 1.0
IsoceleseTriangle 0% 0% 7% 0.333
HollowIsoceleseTriangle 0% 3% 23% 0.010
InvertedIsoceleseTriangle 32% 50% 80% 3.441 ∗ 10−4

HollowInv'IsoceleseTriangle 24% 30% 50% 0.033
RectangleWithEmptyTrapezoid 0% 7% 7% 0.333
Inv'dRect'WithEmptyTrapezoid 0% 0% 23% 0.010
ObtuseTriangle 8% 13% 30% 0.037
HollowObtuseTriangle 8% 33% 53% 3.028 ∗ 10−4

MirroredObtuseTriangle 4% 0% 0% 0.5
MirroredHollowObtuseTriangle 0% 7% 7% 0.333
InvertedObtuseTriangle 0% 0% 3% 1.0
HollowInvertedObtuseTriangle 0% 3% 13% 0.083
InvertedMir'ObtuseTriangle 0% 0% 10% 0.166
HollowMir'Inv'ObtuseTriangle 0% 0% 7% 0.333
VShape 24% 60% 90% 5.527 ∗ 10−7

Trapezoid 0% 0% 7% 0.333

Table 6.6: Comparison of success rate for random fragments (Rand) generated when
the `inject fragment' mutation is called and with the full TL results. As this is
a secondary experiment, note the random fragments only were run for 25 runs.
Statistical signi�cance established per problem by Fisher's Exact Test. (n=25, n=30)
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6.3 Conclusion to Experiments

This chapter has covered the range of experiments which went into the development
of a Transfer Learning system for Genetic Programming.

In Experiment 1 it initially assessed the problem of which programs to use to
train neural networks. It demonstrated that training corpora for neural networks
bene�t from being structured. The combined system exploits this by having multiple
networks trained on multiple corpora, focused around certain programmatic elements.
While experiment 1 uses human-selected requirements, these training corpora derive
from automatically extracted code fragments.

In Experiment 2 it then demonstrated genetic programming was an e�ective tool
for producing human useful programs, with a strong baseline performance. This
suggested that rather than attempt a pure neural solution, a hybrid approach may be
the superior option. As a result, focus shifted towards how to combine the two, with
a good candidate being the use of neural networks to guide Genetic Programming.
This appeared to be a good direction as it leveraged the power of neural networks to
estimate very high level features of the program (equivalent to the function calls seen
in DeepCoder) and the navigational properties of GP which allowed large program
spaces to be traversed. It also demonstrated that using evolved programs to train
neural networks was superior than random sampling of program space, and as such
the later work employed the GP's successful outputs as starting points for corpus
generation, building around them by mutation and crossover to create the training
corpora used for the neural networks.

In Experiment 3 a preliminary investigation was undertaken into how transfer
learning could be accomplished. This started with the fundamentals, evaluating on
a number of programs how a Genetic Programming algorithm could be provided
with guidance, and assessing the degree of performance gain which could be obtained
by the particular approach used in that experiment in as systematic a fashion as
computational resources allowed. The capabilities of neural networks were then
assessed, to gauge their reliability and abilities, and they were found to have use
as estimators in many but not all cases. After that, the GP guidance and neural
network predictive capabilities were tested in conjunction, and once shown successful
and end-to-end system designed. This system showed positive results, but had a core
limitation of only deploying a single code fragment, reducing the transfer learning
abilities.

Finally, Experiment 4 allowed an analysis of a full multi-donor transfer-learning
system. This combined the most successful elements of all previous experiments, and
di�ered from the previous in that it allowed arbitrary numbers of code fragments to be
employed by the Genetic Programming Algorithm. It demonstrated to a high degree
of statistical signi�cance that this TL-based approach out-performed a GP baseline,
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and that this was due to the TL component, not simply due to a more complex
mutation structure.

Taken together, these experiments seem to provide convincing evidence that
neither Neural Code Synthesis nor pure Genetic Programming should be pursued in
isolation, but rather that a combined approach might be the more promising direction
in the immediate future for general Turing-complete code synthesis.
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Chapter 7

Conclusion

7.1 Introduction to Conclusion

This chapter aims to recapitulate the above work, and evaluate it in terms of its
objectives, its successes and its limitations. Firstly, the research questions will be
revisited, to answer the questions they posed in the introduction. After this, the
future directions this work can be taken are assessed. The work's successes point
towards many promising directions which could improve performance still further,
and the architecture forms a foundation on which future architectures can be built to
explore how hybrid neural-genetic systems can tackle the challenging problem of code
synthesis. Finally, the work has some concluding remarks, to summarise the lessons
learnt through this project.

7.2 Research Questions

Four research questions were posed at the start of this work. They are re-iterated
below.

� What is the best way to generate arti�cial training data for a neural network
for this particular �eld?

� Which speci�c form of hints, suggestions or assistance could a GP process be
provided with to improve its performance?

� What performance gains could be achieved by an end-to-end system, which
automatically trains NNs and uses them to guide a GP without need for human
guidance?
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7.2.1 What is the best way to generate arti�cial training data

for a neural network for this particular �eld?

This work studied the question of how to best train a neural network using a synthetic
dataset. Uniform sampling of program space is shown to be inferior to a more
structured approach.

It was seen in Experiment 1 that adding structure to a synthetic dataset, by
forcing it to contain certain proportions of desirable features (in that Experiment's
case �ow control operators), was a major advantage to neural network performance.
It was seen, however, that guidance decisions were not equal, and certain choices,
such as attempting to boost the proportion of longer programs in the training corpus,
were not as e�ective as other approaches. This is in contrast to the simpler approach
initially used in earlier papers of the literature which would draw from all of program
space with equal likelihood, which could be hypothesised to not give su�cient focus
to the more di�cult to learn sections while wasting training time on the parts the
network can easily learn.

In Experiment 2, the need for human guidance was removed as much as possible.
This indicated that it is possible to automatically identify programs which would be
useful to neural network training (with enough accuracy to be e�cient). A neural
discriminator was employed and trained in an adversarial fashion similar to that
used in Generative Adversarial Networks (Goodfellow et al. (2014)), and lead to the
creation of programs which produced complex structured outputs. The source code
of these programs were seen to have a strong degree of similarity to those chosen by
human designers in the previous example, leading con�dence to the hypothesis that
these features are representative to the `human useful' programs targetted by this
work.

7.2.2 Which speci�c form of hints, suggestions or assistance

could a GP process be provided with to improve its

performance?

This work attempted to answer this question in as great a depth as possible. The range
of possible hints and assistance which could be given to a Genetic Process is vast, and
exhaustive evaluation to systematically evaluate even one particular approach took
months of computational time. Nevertheless, within the scope of these limitations,
this work evaluate how providing certain fragments of the correct solution could guide
a Genetic Programming algorithm, and what degree of success could be achieved.
Certain patterns were seen, indicating that fragments containing literals for example
were more e�ective at guiding the GP process than fragments containing loops.

To be useful, these fragments would need to be deployed automatically. It was
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shown that a neural network was able to estimate to some degree the types of programs
which contain these potentially useful fragments, based purely on their input-output
behaviour. The NN's alternate approach to solving the problem of program synthesis
can allow two `perspectives' on any problem to be employed. The fragment system
chosen would therefore seem to be a strong addition to existing GP processes, and
can serve to boost the GP's success rates reliably, with low probabilities of reduction
in performance.

7.2.3 What performance gains could be achieved by an end-

to-end system, which automatically trains NNs and uses

them to guide a GP without need for human guidance?

The results achieved by the approach studied in this thesis suggest that strong
performance gains, up to doubling the success rate, can be achieved. These
experiments employed were intended to represent two distinct problem sets with as
few assumptions made as possible. One core assumption is that the system will be
exposed to multiple problems in a sequential fashion, and that these problems will have
a degree of commonality between them (speci�cally it must be able to re-use lines of
code directly). This assumption is not true for all use-cases of a code synthesis system,
but would appear to be one which holds true for a good proportion of conceivable
industrial uses. In cases in which individual users of the system may not require more
than one or two programs synthesised per year, such as non-expert users employing
the capability in a spreadsheet software package, these users could leverage cloud
processing and data-sharing. In that situation, each user's successfully completed
program could be anonymised and sent back to a centralised server, which would
generate training corpora and train the network, which could then be distributed to
all users during periodic updates. Since the program can be used to extract code-
fragments the user's personal data need never be shared with the central server,
protecting anonymity and data-privacy.

If these assumptions are met, the advantage granted by this approach is increased
�nd rates. This took two forms, �rstly the increase performance on problems which
the GP had a non-zero but not perfect �nd rate; and secondly on problems the GP
never produced a functional solution to. Not only were the problems found faster and
more reliably, but certain problems which were `unsolvable' as far as experimental
precision was able to determine became solvable.

The use of two corpora with di�erent input-output styles and di�erent data-
type usages was intended to verify the system's generality, and its performance was
similar on the two domains. This suggests the approach is indeed broadly applicable,
and could perform well in yet further domains with di�ering data types. Naturally,
these might require changes to the neural network's featurisation of the input-output
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examples, but the overall architecture would remain unchanged.

7.3 Limitations

While the work was as exhaustive as possible, limits of computation resources,
especially relative to the large bodies of work needed for a clear picture, leave
room for future work. Many tasks were computationally extremely expensive, for
instance the need for combinatorial breakdowns of every way to present fragments to
a GP. Further work on di�erent types of guidance for the GP, and a more in-depth
analysis of how each type of fragment a�ected the GP's performance would have been
bene�cial. However, the existing work consumed months of computational resources,
and additional time was not available.

More work should also have been done to establish a solid statistical footing for
the results. Statistical signi�cance testing was only done in the �nal experiment,
and loss of data means that previous chapters could not be re-done. This limits the
usefulness of these �ndings, and their reliability. However, as they did not lead to
demonstrably statistically signi�cant results, and were not the End-to-End system
in and of themselves, they could be considered extended preliminary testing. They
were of su�cient quality to meet peer review standards, despite this lack of statistical
analysis.

The work also would bene�t from being compared against the programs in
the General Program Synthesis Benchmark Suite, to allow better evaluation of its
performance in context. This is discussed further below.

7.4 Future Work

A range of directions suggest themselves based on the work presented in this thesis.
The architecture proposed is not intended to be a completed system which cannot
be improved upon, but rather to be an exploration of what is possible by combining
multiple code synthesis techniques into a single algorithm. As such, it welcomes future
expansion.

7.4.1 Alternate Guidance

Currently the neural networks are able to provide guidance to the genetic program-
ming algorithm by means of a library of mutations, derived from previously generated
programs. Each of these mutations has a weighting associated to it, based on the
neural network's estimate of the probability the associated code fragment is present
in a solution to the problem it is faced with. It would seem logical, therefore, to
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expand the system to include neural-network generated weighting for all mutations,
not simply the code-fragment-injection mutations. Of speci�c interest would be the
code insertion operations, and the single-element mutation operations. These could be
supplied a non-uniform probability mapping across the various operators which could
be inserted, for example to bias away from multiplication and division and towards
addition if the neural networks consider this an advantageous bias.

This would seem a logical expansion, as it would simply be applying a technique
which has been shown to be e�ective, speci�cally biasing which code elements are
inserted by the code-fragment-insertion mutation function, to all insertion mutations,
not simply those associated with the Transfer Learning element.

7.4.2 Expansion of Language

A very core element missing from the language as it was implemented is the ability
to generate new constants for the programs to use as literal values. The literal values
which were able to be accessed were the integers -1,0,1,2. Every other numeric value
which the system required had to be generated by arithmetic functions on these values.

To expand on this, the system would need the ability to store literal values into the
program's source code, to mutate these values, and possibly to extract them from the
input-output examples. Literal values would potentially need to be able to cover not
just integers, but a much wider range of data-types, with two immediately obvious
inclusions being �oating point values and character strings.

Other than literal values, the ability to deal with �oating points and string
operations would appear to be a major missing feature, whose inclusion could allow
far greater comparison of the system against existing works, as it would allow it to
face the exact same problems they did, to evaluate comparative performance.

7.4.3 Functional Encapsulation

Programs these days are far more complex than those of previous decades, but this is
not due to human programmers having greater productivity in terms of lines of code
manually written, but rather due to leveraging libraries of functions and exploiting
higher-level languages. In transferring learnt capabilities from one problem to another,
it may be bene�cial to allow machines to do the same. To accomplish this goal
the system would need the ability to isolate code fragments which are entirely self
contained, which it already attempts to, which are usefully re-usable as immutable
functions, which they currently may not be.

In individuality, encapsulated functions are less powerful than full code fragment
injection, as they cannot be mutated by future genetic programming operators and
cannot have their local variables read by lines of code to adapt their functionality in
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ways which a human designer might not consider them `intended for'. This lead to this
particular work avoiding that line of approach, and preferring the greater �exibility of
simply injecting full code fragments into existing programs in a fashion which allows
them to be later edited and mutated and all intermediary variables available for use
by later additions. Taken together, however, a library of functions could reduce the
number of mutations required to reach the target program, and greatly increase the
power of the language.

7.4.4 Data Preprocessing

Neural networks have powerful high-level processing capabilities, but they are only
capable of imitating Turing-Completeness, to a limit de�ned by their capacity and
quantity and coverage of training data. Certain functions are trivial in general purpose
programming languages which would prove di�cult to replicate reliably in neural
networks. For example, normalising an array such that its highest value is 1.0 and
its lowest 0. This function can readily be written and relied upon to work up to
extremely high values, or values extremely close to 0. Conversely, neural networks
degrade as the values they encounter exceed those seen in training data, and the ranges
of values possible in double-precision �oating point may require a large proportion of
the network's capacity to e�ectively handle.

Such a function may reveal useful properties about the input-output examples,
but a neural network may �nd it di�cult to allocate portions of its capacity to
replicating the functionality then exploiting the information revealed. Instead, it may
be bene�cial to attempt re-training of neural networks in a fashion which concatenates
additional information to the representation the neural network receives. This would
be done by pre-processing the values in both the input and output examples, passing
them through genetic-programming generated functions, and providing their outputs
to the neural networks as additional information.

This was attempted and seen to be of moderate e�ectiveness during preliminary
experiments surrounding this work's Experiment 1, but was not included due to the
risk that the perception would be that the human-useful corpus had been chosen
speci�cally for this outcome to be possible, reducing con�dence in the neural network's
general synthesis capabilities. Further work would need a better human-useful corpus
to be selected, ideally one which was already accepted by the community, such as the
General Program Synthesis Benchmark Suite Helmuth and Spector (2015).
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7.4.5 Applications of Code Synthesis to the �eld of machine

learning

One interesting avenue of investigation is how code synthesis can support machine
learning. Code synthesis is, from one perspective, a way to generate a symbolic
model of a system's behaviour. That system is the problem, and its behaviour is the
transformation of input to output. While in this case the system the code synthesis
system is attempting to model is another program, it does not necessarily need to be
that way.

If code synthesis were deployed on data from other sources, such as economic or
environmental data, the system would attempt to build a symbolic representation of
the behaviour it sees. Representing behaviour in a symbolic fashion, as opposed to a
connectionistic fashion as neural networks do, has the key advantage that the model
can be easily examined, humanly interpreted, and compared easily to other generated
programs.

It is in this comparison to other generated programs that the advantage comes
to light. Systems which may appear extremely di�erent, in terms of their nature,
in terms of the scales they exist on or in terms of their physical appearance, may
have behaviours which appear very similar once described in code. For example,
the phases of the moon, a pendulum and a vibrating crystal all can be modelled
by a simple periodic sine wave. Despite being physically extremely di�erent, and
existing on vastly di�erent time scales (di�ering by many orders of magnitude), if
a code synthesis system were deployed to model them, and their respective models
examined, a commonality could easily be seen in the structure of the program used
to model them. The programs would di�er in terms of constants used, not in terms
of operators or program �ow.

As such, second-order evaluation of systems, by �rstly modelling them and
then evaluating them based on this generated model, could allow far higher order
behaviours to be made possible in the realm of machine learning. The example above
is one of extreme invariance to scale, as a classi�er could be trained on the programs
used to model smaller time-scale systems and readily recognise the code for a lunar
calendar as being extremely similar, but it also represents a form of reasoning by
analogy. No physical descriptions need to be considered, only how their behaviour is
best represented.

This is an intriguing area for potential future investigation.

7.5 Concluding Comments

This thesis has been an exploration of the �eld of code synthesis. Its goal was to
evaluate the separate sub-�elds, and attempt to bring them together into a single
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whole which takes the best from all. It succeeded in producing a hybrid system,
which drew from two of the most e�ective sub-�elds, those of genetic programming
and of neural code synthesis, but failed to incorporate elements of deductive solver
systems. In its approach to hybridisation, while it proved e�ective, it is by no means
the only way in which these two tools could be combined, and the work concludes
with the hope of being the �rst of many such approaches, some of which may di�er
quite majorly from the approach outlined above. Code synthesis is an important yet
exceedingly di�cult problem, and it would be unwise for any approaching it to ignore
potential assistance from other works in the literature, even if those works appear to
be employing entirely di�erent technologies.
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A.1 Problems from Experiment 2

These are the problems employed in Experiment 2

Table A.1: Human useful programs, speci�ed by user and presented to the system as
a set of I/O mappings only.

Program Function

Absolute Values
Returns an array of equal size to the input
array, where all values are the absolute values
in the input array

Array Length
Returns a 1-length array, whose value is the
length of the input array

Array to Zero
Returns an array of equal length to the input
array, �lled with zeroes

Cumulative Absolute Sum

Returns an array of equal length to the input
array, �lled with the cumulative absolute
values. That is to say cell outputi =∑i

n=0 |inputn|

Cumulative Sum
Returns an array of equal length to the input
array, �lled with the cumulative values. That
is to say cell outputi =

∑i
n=0 inputn

Divergent Sequence

Returns an array of equal length to the input
array, �lled with values such that if i is even
outputi = i/2, otherwise outputi = −(i/2),
e.g. [0,0,1,-1,2,-2...]

First Element Only
Returns an array of length 1, whose content is
input0
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Table A.2: Continuation of table A.1

Identity
Returns a new array with length and contents
matching the input array

Index Parity
Returns a new array with length equal to that
of the input array, �lled with alternating 0s
and 1s, e.g. [0,1,0,1...]

Iterative Di�erence

Returns a new array with length equal to that
of the input array, �lled with the di�erence
between the mapped input array cell and the
next, such that outputi = inputi − inputi−1,
with output0 = input0

Keep Evens
Returns an array of equal length to that of the
input array. If inputi is even, outputi = inputi
else outputi = 0

Keep Negatives
Returns an array of equal length to that of the
input array. If inputi < 0, outputi = inputi
else outputi = 0

Keep Odds
Returns an array of equal length to that of the
input array. If inputi is odd, outputi = inputi
else outputi = 0

Keep Positives
Returns an array of equal length to that of the
input array. If inputi > 0, outputi = inputi
else outputi = 0

Negative
Returns the input array multiplied by -1.
outputi = −inputi

Pop from Array
Returns an array one element shorter than
the input. Values are the input array's values
without the last.

Reduce Length by Half
Returns an array half the length of the input
array. Values in it are the �rst values of the
input array.
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Table A.3: Continuation of table A.1

Program Function

Reverse
Returns a copy of the input array, but with
the elements in reverse order

Shift Left

Returns an array of length one less than the
input array. Values are shifted, such that
outputi = input(i+1). The �rst input value is
therefore not replicated in the output.

Shift Left Zero Padded

Returns an array of length equal to the input
array. Values are shifted, such that outputi =
input(i+1). The last value of the output array
is set to zero.

Shift Right
Returns an array of length one greater than
that of the input array. Values are the values
in the input array preceded by a zero.

Shift Right Lossy

Returns an array of length equal to that of the
input array. Values are such that outputi =
input(i−1), with the �rst output value being
zero.

Shu�e Zeros to Back

Returns an array of length equal to that of the
input array. Values are the the same elements
as in the input array, with the exception that
all zero-values are moved to the end of the
sequence.

Sign of

Returns an array of length equal to that of
the input array. Values in output -1, 0 or 1.
If inputi > 0 then outputi = 1, if inputi < 0
then outputi = −1, else outputi = 0

Sort
Returns a copy of the input array, sorted in
ascending order.

Square Values
Returns an array of length equal to that of the
input array. Values are such that outputi =
(inputi)

2

To Iterator
Returns an array of length equal to that of the
input array. Values are such that outputi = i
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Table A.4: Continuation of table A.1. The programs in this table are those which use
both the input array and the input integer.

Program Function

Add
Returns an array of length equal to that of the
input array. Values are such that outputi =
inputi + inputInteger

Append
Returns an array of length one greater than
that of the input array. Values are those of
the input array, followed by the input integer.

Clip to Max

Returns an array of length equal to that of
the input array. Values are such that if
inputi > inputInteger then outputi = inputi
else outputi = inputInteger

Clip to Min

Returns an array of length equal to that of
the input array. Values are such that if
inputi < inputInteger then outputi = inputi
else outputi = inputInteger

Constant Addition
Returns an array of length equal to that of the
input array. Values are such that outputi =
inputi + (i ∗ inputInteger)
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Table A.5: Continuation of table A.1. The programs in this table are those which use
both the input array and the input integer.

Fill Array
Returns an array of length equal to that of the
input array. Values are such that outputi =
inputInteger

Greater Than

Returns an array of length equal to that of the
input array. Values are such that if inputi >
inputInteger then outputi = 1 else outputi =
−1

Iterate from Start
Returns an array of length equal to that of the
input array. Values are such that outputi =
i+ inputInteger

Less Than

Returns an array of length equal to that of the
input array. Values are such that if inputi <
inputInteger then outputi = 1 else outputi =
−1

Multiples of
Returns an array of length equal to that of the
input array. Values are such that outputi =
i ∗ inputInteger

Subtract
Returns an array of length equal to that of the
input array. Values are such that outputi =
inputi − inputInteger
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A.2 Examples of 2nd Corpus Programs

Figure A.1: Examples from the second, 2D boolean, corpus. Each program is �rst
illustrated as the numeric outputs in the array, and then in an ASCII art rendering
to better illustrate the shape being generated.
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A.3 Experiment 3: Full Fragment Guidance Break-

down

This section presents the results of every fragment presented to every problem tested
in Experiment 3.1

Line Operator As Code

1 Literal variables[6] = 1;
2 Add variables[7] = variables[0] + variables[6];
3 Make Array arrays[1] = new int[vars[7]]
4 Loop for (variables[2]=0;variables[2]<variables[0];variables[2]++)
5 Read variables[5] = arrays[0][variables[2]];
6 Write arrays[1][variables[2]] = variables[5];
7 Endloop
8 Write arrays[1][variables[2]] = variables[1];

Fragment Success Rate

1 3%
1, 2 27%
1, 4 10%
4 0%
4, 5 0%
4, 6 0%
4, 8 0%

Table A.6: Fragments assessed from program �Append". Program's code listed, in C-
like format, with operators listed ahead of each line for ease of readability. Fragments
then described, in reference to lines used followed by success rate using fragment as
GP guidance (n=30)
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Line Operator As Code

1 Make Array arrays[1] = new int[vars[0]]
2 Loop for (variables[2]=0;variables[2]<variables[0];variables[2]++)
3 Literal variables[5] = -1;
4 Read variables[3] = arrays[0][variables[2]];
5 Condition if (variables[3]>0)
6 Else else
7 Multiply variables[3] = variables[3] * variables[5];
8 Endloop
9 Add variables[4] = variables[4] + variables[3];
10 Write arrays[1][variables[2]] = variables[4];
11 Endloop

Fragment Success Rate

1 0%
1, 2 0%
1, 3 0%
1, 5 0%
1, 6 0%
2 0%
2, 3 0%
2, 4 3%
2, 5 3%
2, 6 0%
3 0%
3, 5 0%
3, 6 0%
3, 7 0%
5 0%
5, 6 3%
6 0%

Table A.7: Fragments assessed from program �Cumulative Absolute Sum". Program's
code listed, in C-like format, with operators listed ahead of each line for each of
readability. Fragments then described, in reference to lines used followed by success
rate using fragment as GP guidance (n=30)
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Line Operator As Code

1 Literal variables[4] = 2;
2 Make Array arrays[1] = new int[vars[0]]
3 Loop for (variables[2]=0;variables[2]<variables[0];variables[2]++)
4 Read variables[3] = arrays[0][variables[2]];
5 Modulo variables[5] = variables[3] % variables[4];
6 Condition if (variables[5]==variables[6])
7 Write arrays[1][variables[2]] = variables[3];
8 Endloop
9 Endloop

Fragment Success Rate

1 0%
1, 2 6%
1, 3 3%
1, 5 3%
2 3%
2, 3 0%
3 0%
3, 4 0%
3, 7 0%

Table A.8: Fragments assessed from program �Keep Evens". Program's code listed,
in C-like format, with operators listed ahead of each line for each of readability.
Fragments then described, in reference to lines used followed by success rate using
fragment as GP guidance (n=30)
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Line Operator As Code

1 Literal variables[6] = 2;
2 Divide variables[3] = variables[0] / variables[6];
3 Make Array arrays[1] = new int[vars[3]]
4 Loop for (variables[2]=0;variables[2]<variables[3];variables[2]++)
5 Read variables[5] = arrays[0][variables[2]];
6 Write arrays[1][variables[2]] = variables[5];
7 Endloop

Fragment Success Rate

1 0%
1, 2 13%

Table A.9: Fragments assessed from program �Retain First Half". Program's code
listed, in C-like format, with operators listed ahead of each line for each of readability.
Fragments then described, in reference to lines used followed by success rate using
fragment as GP guidance (n=30)
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Line Operator As Code

1 Literal variables[7] = 2;
2 Make Array arrays[1] = new int[vars[0]]
3 Loop for (variables[2]=0;variables[2]<variables[0];variables[2]++)
4 Subtract variables[6] = variables[0] - variables[2];
5 Subtract variables[6] = variables[6] - variables[7];
6 Read variables[5] = arrays[0][variables[6]];
7 Write arrays[1][variables[2]] = variables[5];
8 Endloop

Fragment Success Rate
1 63%
1, 2 80%
1, 3 77%
2 73%
2, 3 60%
3 63%
3, 4 80%
3, 7 77%

Table A.10: Fragments assessed from program �Reverse". Program's code listed, in C-
like format, with operators listed ahead of each line for each of readability. Fragments
then described, in reference to lines used followed by success rate using fragment as
GP guidance (n=30)
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Line Operator As Code

1 Literal variables[6] = 1;
2 Add variables[8] = variables[0] + variables[6];
3 Make Array arrays[1] = new int[vars[8]]
4 Loop for (variables[2]=0;variables[2]<variables[0];variables[2]++)
5 Add variables[7] = variables[2] + variables[6];
6 Read variables[5] = arrays[0][variables[2]];
7 Write arrays[1][variables[7]] = variables[5];
8 Endloop

Fragment Success Rate

1 3%
1, 2 13%
1, 4 20%
4 0%
4, 6 0%

Table A.11: Fragments assessed from program �Shift Right". Program's code listed,
in C-like format, with operators listed ahead of each line for each of readability.
Fragments then described, in reference to lines used followed by success rate using
fragment as GP guidance (n=30)
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Line Operator As Code

1 Literal variables[6] = 2;
2 Add variables[8] = variables[0] + variables[6];
3 Make Array arrays[1] = new int[vars[0]]
4 Subtract variables[9] = variables[0] - variables[6];
5 Loop for (variables[2]=0;variables[2]<variables[9];variables[2]++)
6 Add variables[7] = variables[2] + variables[6];
7 Read variables[5] = arrays[0][variables[2]];
8 Write arrays[1][variables[7]] = variables[5];
9 Endloop

Fragment Success Rate

1 80%
1, 2 73%
1, 3 63%
1, 4 63%
3 67%

Table A.12: Fragments assessed from program �Shift Right Lossy". Program's code
listed, in C-like format, with operators listed ahead of each line for each of readability.
Fragments then described, in reference to lines used followed by success rate using
fragment as GP guidance (n=30)
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Line Operator As Code

1 Literal variables[5] = 1;
2 Subtract variables[1] = variables[0] - variables[5];
3 Loop for (variables[2]=0;variables[2]<variables[0];variables[2]++)
4 Loop for (variables[3]=0;variables[3]<variables[1];variables[3]++)
5 Add variables[6] = variables[3] + variables[5];
6 Read variables[4] = arrays[0][variables[3]];
7 Read variables[7] = arrays[0][variables[6]];
8 Subtract variables[8] = variables[4] - variables[7];
9 Condition if (variables[8]>0)
10 Write arrays[0][variables[6]] = variables[4];
11 Write arrays[0][variables[3]] = variables[7];
12 Endloop
13 Endloop
14 Endloop
15 Make Array arrays[1] = new int[vars[0]]
16 Loop for (variables[2]=0;variables[2]<variables[0];variables[2]++)
17 Read variables[5] = arrays[0][variables[2]];
18 Write arrays[1][variables[2]] = variables[5];
19 Endloop

Fragment Success Rate

1 0%
1, 2 0%
1, 3 0%
1, 8 0%
1, 15 0%
1, 16 0%
3 0%
3, 8 0%
3, 15 0%
3, 16 0%
3, 17 0%
4 0%
4, 6 0%
8 0%
8, 9 0%
8, 15 0%
8, 16 0%
15 0%
15, 16 0%
16 0%

Table A.13: Fragments assessed from program �Sort". Program's code listed, in C-
like format, with operators listed ahead of each line for each of readability. Fragments
then described, in reference to lines used followed by success rate using fragment as
GP guidance (n=30)
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Line Operator As Code

1 Make 2D Array new 2DArray(size=variables[0]);
2 Literal variables[6] = 2;
3 Divide variables[4] = variables[0] / variables[6];
4 Loop for (variables[2]=0;variables[2]<variables[4];variables[2]++)
5 Loop for (variables[3]=0;variables[3]<variables[4];variables[3]++)
6 Add variables[7] = variables[2] + variables[3];
7 Write to 2D array[variables[7][variables[3]]=1;
8 Endloop
9 Endloop

Fragment Success Rate

2 23%
2, 3 30%

Table A.14: Fragments assessed from program �Mirrored Parallelogram". Program's
code listed, in C-like format, with operators listed ahead of each line for each of
readability. Fragments then described, in reference to lines used followed by success
rate using fragment as GP guidance (n=30)
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Line Operator As Code

1 Make 2D Array new 2DArray(size=variables[0]);
2 Literal variables[6] = 2;
3 Divide variables[4] = variables[0] / variables[6];
4 Loop for (variables[2]=0;variables[2]<variables[4];variables[2]++)
5 Add variables[5] = variables[2] + variables[4];
6 Write to 2D array[variables[5][variables[10]]=1;
7 Write to 2D array[variables[2][variables[4]]=1;
8 Subtract variables[6] = variables[4] - variables[2];
9 Write to 2D array[variables[2][variables[6]]=1;
10 Write to 2D array[variables[5][variables[6]]=1;
11 Endloop
12 Literal variables[8] = 1;
13 Subtract variables[7] = variables[0] - variables[8];
14 Write to 2D array[variables[7][variables[10]]=1;

Fragment Success Rate

2 13%
2, 3 60%
2, 12 10%
12 13%
12, 13 40%

Table A.15: Fragments assessed from program �Mirrored Hollow Parallelogram".
Program's code listed, in C-like format, with operators listed ahead of each line for
each of readability. Fragments then described, in reference to lines used followed by
success rate using fragment as GP guidance (n=30)

140



Appendix A. A.3. Experiment 3: Full Fragment Guidance Breakdown

Line Operator As Code

1 Make 2D Array new 2DArray(size=variables[0]);
2 Literal variables[1] = 1;
3 Subtract variables[4] = variables[0] - variables[1];
4 Loop for (variables[2]=0;variables[2]<variables[0];variables[2]++)
5 Write to 2D array[variables[2][variables[4]]=1;
6 Write to 2D array[variables[5][variables[2]]=1;
7 Write to 2D array[variables[2][variables[2]]=1;
8 Endloop

Fragment Success Rate

2 80%
2, 3 90%
2, 4 80%
4 90%
4, 6 63%
4, 7 87%

Table A.16: Fragments assessed from program �Hollow Right Triangle". Program's
code listed, in C-like format, with operators listed ahead of each line for each of
readability. Fragments then described, in reference to lines used followed by success
rate using fragment as GP guidance (n=30)
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Line Operator As Code

1 Make 2D Array new 2DArray(size=variables[0]);
2 Literal variables[3] = 1;
3 Subtract variables[4] = variables[0] - variables[3];
4 Loop for (variables[2]=0;variables[2]<variables[0];variables[2]++)
5 Write to 2D array[variables[2][variables[4]]=1;
6 Write to 2D array[variables[4][variables[2]]=1;
7 Subtract variables[5] = variables[0] - variables[2];
8 Subtract variables[5] = variables[5] - variables[3];
9 Write to 2D array[variables[2][variables[5]]=1;
10 Endloop

Fragment Success Rate

2 67%
2, 3 93%
2, 4 80%
4 67%
4, 7 80%

Table A.17: Fragments assessed from program �Hollow Mirrored Right Triangle".
Program's code listed, in C-like format, with operators listed ahead of each line for
each of readability. Fragments then described, in reference to lines used followed by
success rate using fragment as GP guidance (n=30)

142



Appendix A. A.3. Experiment 3: Full Fragment Guidance Breakdown

Line Operator As Code

1 Make 2D Array new 2DArray(size=variables[0]);
2 Literal variables[4] = 2;
3 Loop for (variables[2]=0;variables[2]<variables[0];variables[2]++)
4 Multiply variables[6] = variables[2] * variables[4];
5 Subtract variables[5] = variables[0] - variables[6];
6 Loop for (variables[3]=0;variables[3]<variables[5];variables[3]++)
7 Add variables[7] = variables[3] + variables[2];
8 Write to 2D array[variables[7][variables[2]]=1;
9 Endloop
10 Endloop

Fragment Success Rate

2 23%
2, 3 20%
3 20%

Table A.18: Fragments assessed from program �Inverted Isoceles Triangle". Program's
code listed, in C-like format, with operators listed ahead of each line for each of
readability. Fragments then described, in reference to lines used followed by success
rate using fragment as GP guidance (n=30)
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Line Operator As Code

1 Make 2D Array new 2DArray(size=variables[0]);
2 Literal variables[7] = 1;
3 Literal variables[4] = 2;
4 Divide variables[5] = variables[0] / variables[4];
5 Loop for (variables[2]=0;variables[2]<variables[0];variables[2]++)
6 Loop for (variables[3]=0;variables[3]<variables[5];variables[3]++)
7 Subtract variables[8] = variables[0] - variables[5];
8 Divide variables[8] = variables[8] / variables[4];
9 Subtract variables[8] = variables[8] - variables[3];
10 Add variables[9] = variables[8] + variables[7];
11 Condition if (variables[9]>0)
12 Subtract variables[9] = variables[2] - variables[8];
13 Condition if (variables[9]>0)
14 Subtract variables[9] = variables[0] - variables[8];
15 Subtract variables[9] = variables[9] - variables[2];
16 Condition if (variables[9]>0)
17 Write to 2D array[variables[2][variables[3]]=1;
18 Endloop
19 Endloop
20 Endloop
21 Endloop
22 Endloop

Fragment Success Rate

2 10%
2, 3 10%
2, 5 10%
3 3%
3, 4 0%
3, 5 10%
5 3%

Table A.19: Fragments assessed from program �Trapezoid". Program's code listed,
in C-like format, with operators listed ahead of each line for each of readability.
Fragments then described, in reference to lines used followed by success rate using
fragment as GP guidance (n=30)
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A.4 Full results of NN-selected guidance for GP from

Experiment 3

Tables A.20,A.21,A.22 shows the success rate of the GP, if provided with hints by the
neural network sets. Two sets of experiments are done on the array to array corpus,
one on the canvas corpus. Most problems showed a success increase, including a
number from both corpora which increased in success chance from 0% to a non-zero
value. Two problems were made un�ndable by the less-e�ective uniform fragment
selection process, Iterative Di�erence and Trapezoid. As the baseline �nd rate was
low, this does not represent a major drop in success, and may potentially simply
be due to insu�cient samples to determine the true success probability. We do not
however reject the possibility that our approach has a negative e�ect on �nd-rates
for certain problems. It was seen in Experiment 1 that some fragments, known to be
present in the ground-truth implementation, decreased �nd-rates. It is possible that
the neural networks correctly identi�ed fragment presence, but that these degraded
the GP's performance. It is, of course, also possible that the NN incorrectly estimated
that a fragment was present when it was not, and that this erroneous hint harmed
the GP.
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Problem Success Rate Baseline

Abs 73% 7%
ArrayLength 100% 100%
ArrayToZero 100% 100%
CumulativeAbsoluteSum 0% 0%
CumulativeSum 33% 3%
DivergentSequence 63% 57%
FirstElementOnly 100% 27%
Identity 100% 100%
IndexParity 100% 100%
IterativeDi�erence 3% 3%
KeepEvens 0% 0%
KeepNegatives 27% 0%
KeepOdds 10% 0%
KeepPositives 47% 60%
Negative 67% 67%
Pop 100% 30%
RemoveFirstElement 83% 10%
RetainFirstHalf 0% 0%
Reverse 77% 57%
ShiftLeft 80% 10%
ShiftLeftZeroPadded 83% 40%
ShiftRight 17% 0%
ShiftRightLossy 77% 83%
Shu�eZerosToBack 80% 100%
Signum 10% 0%
Sort 3% 0%
SquareValues 77% 70%
ToIterator 100% 100%
Add 37% 23%
Append 47% 0%
ClipToMax 43% 17%
ClipToMin 70% 3%
ConstantAddition 7% 0%
FillArray 100% 100%
GreaterThan 23% 10%
IterateFromStart 100% 97%
LessThan 17% 7%
MultiplesOf 87% 90%
Multiply 30% 20%
Subtract 43% 17%

Table A.20: Success rates for problems of the 1st corpus, using the rarest-�rst guidance
strategy, with the aggregate estimates from the feed-forward architecture network
(n=30)
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Problem Success Rate Baseline

Abs 27% 7%
ArrayLength 100% 100%
ArrayToZero 100% 100%
CumulativeAbsoluteSum 0% 0%
CumulativeSum 20% 3%
DivergentSequence 83% 57%
FirstElementOnly 83% 27%
Identity 100% 100%
IndexParity 100% 100%
IterativeDi�erence 0% 3%
KeepEvens 0% 0%
KeepNegatives 53% 0%
KeepOdds 10% 0%
KeepPositives 40% 60%
Negative 63% 67%
Pop 73% 30%
RemoveFirstElement 57% 10%
RetainFirstHalf 0% 0%
Reverse 53% 57%
ShiftLeft 43% 10%
ShiftLeftZeroPadded 63% 40%
ShiftRight 0% 0%
ShiftRightLossy 53% 83%
Shu�eZerosToBack 77% 100%
Signum 10% 0%
Sort 0% 0%
SquareValues 77% 70%
ToIterator 100% 100%
Add 23% 23%
Append 7% 0%
ClipToMax 33% 17%
ClipToMin 20% 3%
ConstantAddition 3% 0%
FillArray 100% 100%
GreaterThan 13% 10%
IterateFromStart 97% 97%
LessThan 30% 7%
MultiplesOf 93% 90%
Multiply 30% 20%
Subtract 17% 17%

Table A.21: Success rates for problems of the 1st corpus, using the uniform guidance
strategy, with the aggregate estimates from the feed-forward architecture network
(n=30)
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Square 90% 97%
HollowSquare 100% 100%
Parallelogram 23% 0%
HollowParallelogram 7% 0%
MirroredParallelogram 43% 7%
MirroredHollowParallelogram 17% 13%
RightTriangle 93% 97%
HollowRightTriangle 97% 87%
MirroredRightTriangle 50% 60%
HollowMirroredRightTriangle 60% 63%
InvertedRightTriangle 67% 60%
HollowInvertedRightTriangle 57% 83%
InvertedMirroredRightTriangle 97% 100%
InvertedHollowMirroredRightTriangle 100% 100%
IsoceleseTriangle 10% 0%
HollowIsoceleseTriangle 43% 13%
InvertedIsoceleseTriangle 37% 47%
HollowInvertedIsoceleseTriangle 33% 50%
RectangleWithEmptyTrapezoid 3% 3%
InvertedRectangle 10% 3%
obtuseTriangle 23% 3%
hollowObtuseTriangle 53% 27%
mirroredObtuseTriangle 0% 0%
mirroredHollowObtuseTriangle 0% 0%
invertedObtuseTriangle 0% 0%
hollowInvertedObtuseTriangle 17% 10%
invertedMirroredObtuseTriangle 7% 0%
hollowMirroredInvertedObtuseTriangle 7% 3%
VShape 40% 47%
Trapezoid 0% 7%

Table A.22: Success rates for problems of the 2nd corpus, using the uniform guidance
strategy, with the aggregate estimates from the convolutional architecture network
(n=30)
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A.5 Experiment 3 Baseline Success Rates

This section details the �nd rates of programs using the GP process, and the same
process with its Diversity Boosting Repetition Penalty component disabled. These
results are used to guide the Experiment in section 5.1.9

Note that these baselines are used for Sections 5.1.8,5.1.9,5.1.10 only, 6 employs a
newly computed baseline.
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Problem Baseline Success Rate GP without NS

Array Length 100 % 100 %
Array to Zero 100 % 100 %
First Element Only 40 % 50 %
Identity 95 % 100 %
Negative 55 % 45 %
Double 55 % 45 %
Add 15 % 35 %
Multiply 50 % 30 %
Subtract 20 % 20 %
Absolute 35 % 20 %
Keep Negatives 35 % 55 %
Keep Positives 30 % 40 %
Keep Evens 0 % 0 %
Keep Odds 0 % 0 %
Index Parity 95 % 95 %
Keep Even Indices 30 % 10 %
Greater Than 15 % 10 %
Less Than 5 % 10 %
Clip to Max 25 % 35 %
Clip to Min 40 % 15 %
Sort 0 % 0 %
Shift Left 5 % 10 %
Shift Left Zero Padded 30 % 45 %
Shift Right 0 % 0 %
Shift Right Lossy 60 % 15 %
Reverse 25 % 40 %
Pop 10 % 15 %
Concatenate To Self 15 % 30 %
Concatenate Equal Length Zeros 10 % 25 %
Retain First Half 0 % 0 %
Retain Second Half 0 % 0 %
Append 0 % 0 %
Cumulative Absolute Sum 0 % 0 %
Cumulative Sum 5 % 15 %
Divergent Sequence 50 % 10 %

Table A.23: Success rates for a Genetic Algorithm on the problems of the �rst corpus,
a set of functions which take an array of integers and an integer variable and return
an array of integers. The �rst pass is the standard con�guration used throughout the
paper, using a diversity boosting implementation, the second is the same GP without
the diversity boosting component to test the e�ects of NS on success rates. n=20
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Problem Baseline Success Rate GP without NS

Square 100 % 100 %
Hollow Square 100 % 100 %
Parallelogram 0 % 0 %
Hollow Parallelogram 0 % 0 %
Mirrored Parallelogram 0 % 11 %
Mirrored Hollow Parallelogram 30 % 11 %
Right Triangle 100 % 89 %
Hollow Right Triangle 90 % 100 %
Mirrored Right Triangle 30 % 33 %
Hollow Mirrored Right Triangle 25 % 25 %
Inverted Right Triangle 60 % 88 %
Hollow Inverted Right Triangle 35 % 13 %
Inverted Mirrored Right Triangle 95 % 100 %
Inverted Hollow Mirrored Right Triangle 100 % 88 %
Isocelese Triangle 0 % 0 %
Hollow Isocelese Triangle 5 % 0 %
Inverted Isocelese Triangle 40 % 13 %
Hollow Inverted Isocelese Triangle 15 % 0 %
Rectangle With Empty Trapezoid 0 % 0 %
Inverted Rectangle With Empty Trapezoid 10 % 0 %
Obtuse Triangle 10 % 0 %
Hollow Obtuse Triangle 15 % 0 %
Mirrored Obtuse Triangle 0 % 0 %
Mirrored Hollow Obtuse Triangle 0 % 0 %
Inverted Obtuse Triangle 0 % 0 %
Hollow Inverted Obtuse Triangle 10 % 0 %
Inverted Mirrored Obtuse Triangle 0 % 14 %
Hollow Mirrored Inverted Obtuse Triangle 0 % 0 %
V Shape 45 % 67 %
Trapezoid 0 % 0 %

Table A.24: Success rates for a Genetic Algorithm on the problems of the second
corpus, the set of functions which take an integer size for the returned canvas, and
must return the shape speci�ed. The �rst pass is the standard con�guration used
throughout the thesis, using a diversity boosting implementation, the second is the
same GP without the diversity boosting component to test the e�ects of NS on �nd
rates. n=20
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A.6 Fragments evaluated for NN recognisability in

Experiment 2

The tablesA.25A.26 describe the fragments (some of which contain requirements about
variable dependencies) used in experiment 2.

Fragment Description

Add Simple addition. Requires the program to at some point
contain an addition operation

+1 O�set Loop Three Line Fragment
The �rst sets V ar1 to 1
The second is a loop operator
The third requires an addition operator such that
V ar2 = loop_iterator + V ar1

Length -1 Loop Three Line Fragment
The �rst sets V ar1 to 1
The second requires an addition operator such that
V ar2 = input_array_size+ V ar1
The third is a loop operator bounded to V ar2

Literal (2) Requires a variable to be set to 2
Loop Requires the program to contain a loop
Loop Conditional Two line fragment. The �rst line requires a loop

The second line requires a conditional (var > 0)
Loop Read Two line fragment. The �rst line requires a loop

The second line requires a read operation
such that the index read is the loop's iterator

Nonstandard Array One line fragment. Requires the output array to be created,
with a size V ar1 such that
V ar1 is not the variable defaulting to input array size

Read Requires the program to read from the input array
Add Simple subtraction. Requires the program to at some point

contain a subtract operation

Table A.25: Fragments used in experiment 2, corpus 1, to determine whether the
NN can recognise their presence in a program's source code based on its behaviour.
If multiple lines are required they are required to exist in order, but not necessarily
consecutively. Variable numbering is not re�ective of source-code implementation and
for descriptive purposes only.
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Fragment Description

Add Simple addition. Requires the program to at some point contain
an addition operation

Conditional Greater than 0 operator. The program must contain an operator which
executes a non-empty code block if a variable is greater than zero

Half Two line fragment. The �rst sets a variable V ar1 to the literal 2,
The second assigns a variable to desired_output_size/V ar1

Half Loop Three line fragment. The �rst sets a variable V ar1 to the literal 2,
The second assigns a variable V ar2 to desired_output_size/V ar1
The third de�nes a loop operator which runs from 0 to V ar2

Half Loop Depends Four line fragment. The �rst sets a variable V ar1 to the literal 2,
The second assigns a variable V ar2 to desired_output_size/V ar1
The third de�nes a loop operator which runs from 0 to V ar2
The fourth de�nes an operation setting a value on the 2D canvas, with
the requirement that the X position of the point be logically
dependent on the loop iterator

Loop Conditional Two line fragment. The �rst requires a loop operator
The second requires a conditional (var > 0) operator

Loop Draw Two line fragment. The �rst requires a loop operator
The second requires a 2D array write operation in which
the X position drawn to depends logically on the loop's iterator

Loop Loop Two line fragment. The program must have two loops
(not necessarily nested)

Loop Loop Subtract Three line fragment. The program must have two loops
(not necessarily nested)
It must then have a subtract operator

Draw Draw Two line fragment. The program must have two
draw-to-2D-array operators

Table A.26: Fragments used in experiment 2, corpus 2, to determine whether the
NN can recognise their presence in a program's source code based on its behaviour.
If multiple lines are required they are required to exist in order, but not necessarily
consecutively. Variable numbering is not re�ective of source-code implementation and
for descriptive purposes only.
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A.7 Transfer learning metrics in detail

In Section 6.2.3 we reported averaged metrics for transfer learning; here we report the
per-problem metrics for time-to-threshold and transfer ratio, in Tables A.27 and A.28.
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Problem Generations to threshold Transfer Ratio
Add 2388.8 0.89
Append 0.0 0.95
CumulativeAbsoluteSum 2346.4 1.00
CumulativeSum 2205.2 0.89
KeepEvenIndices 1888.8 0.66
ClipToMin 1932.4 0.70
RetainSecondHalf 0.0 0.93
Sort 2277.6 0.98
Subtract 1996.8 0.71
Abs 1855.2 0.76
GreaterThan 2362.4 1.39
IndexParity 774.8 0.46
FirstElementOnly 0.0 0.79
Identity 604.4 0.42
DivergentSequence 1846.8 0.72
Double 1322.8 0.55
ShiftRight 0.0 0.92
ShiftRightLossy 1404.0 0.55
ShiftLeft 948.8 0.52
ShiftLeftZeroPadded 1825.2 0.76
RetainFirstHalf 0.0 0.92
LessThan 2718.8 1.35
Multiply 1818.8 0.69
Negative 1386.8 0.49
Pop 1257.6 0.49
KeepPositives 1499.2 0.63
KeepEvens 2314.4 0.92
ArrayLength 0.0 0.24
ArrayToZero 0.0 0.22
KeepNegatives 1856.4 0.74
KeepOdds 1783.6 0.94
Reverse 1504.8 0.58
CatToSelf 2111.2 0.81
CatZerosToSelf 2242.4 0.80
ClipToMax 1917.2 0.86

Table A.27: Transfer Learning metrics for 25 runs of the TL system compared to
the baseline for the �rst corpus. Generations to Threshold represents the average
number of generations take for the TL system to outperform the baseline's asymptotic
performance (TL will gain performance after this point). Transfer Ratio is the average
�tness of the TL system divided by the average �tness of the baseline (�tnesses less
than -1 set to -1).(n=25) 155
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Problem Generations to threshold Transfer Ratio
Square 211.0 0.12
HollowSquare 1060.9 0.27
Parallelogram 1158.3 0.57
HollowParallelogram 2129.4 0.87
MirroredParallelogram 1830.6 0.75
MirroredHollowParallelogram 1968.1 0.72
RightTriangle 152.0 0.07
HollowRightTriangle 1003.0 0.18
MirroredRightTriangle 787.5 0.40
HollowMirroredRightTriangle 1605.4 0.59
InvertedRightTriangle 271.0 0.14
HollowInvertedRightTriangle 2458.2 0.80
InvertedMirroredRightTriangle 149.0 0.06
Inv'HollowMirr'RightTriangle 792.7 0.24
IsoceleseTriangle 0.0 0.89
HollowIsoceleseTriangle 2662.2 0.91
InvertedIsoceleseTriangle 1338.5 0.52
HollowInv'IsoceleseTriangle 1851.3 0.64
RectangleWithEmptyTrapezoid 2693.9 1.20
Inv'dRect'WithEmptyTrapezoid 1952.4 0.95
ObtuseTriangle 1832.9 0.74
HollowObtuseTriangle 2556.0 0.96
MirroredObtuseTriangle 465.3 0.48
MirroredHollowObtuseTriangle 2140.6 0.78
InvertedObtuseTriangle 0.0 0.95
HollowInvertedObtuseTriangle 2513.9 0.93
InvertedMir'ObtuseTriangle 1981.7 0.95
HollowMir'Inv'ObtuseTriangle 2273.9 0.95
VShape 2022.1 0.63
Trapezoid 561.8 0.45

Table A.28: Transfer Learning metrics for 25 runs of the TL system compared to
the baseline for the second corpus. Generations to Threshold represents the average
number of generations take for the TL system to outperform the baseline's asymptotic
performance (TL will gain performance after this point). Transfer Ratio is the average
�tness of the TL system divided by the average �tness of the baseline (�tnesses less
than -1 set to -1).(n=25)
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