Deep Learning Methods for Extracting Metaphorical Names of Flowers and Plants

Métodos de aprendizaje profundo para la extracción de nombres metafóricos de flores y plantas

Anonymous Submission

Abstract: The domain of Botany is rich with metaphorical terms. Those terms play an important role in the description and identification of flowers and plants. However, the identification of such terms in discourse is an arduous task. This leads in some cases to committing errors during translation processes and lexicographic tasks. The process is even more challenging when it comes to machine translation, both in the cases of single-word terms and multi-word terms. One of the recent concerns of Natural Language Processing (NLP) applications and Machine Translation (MT) technologies is the automatic identification of metaphor-based words in discourse through Deep Learning (DL). In this study, we seek to fill this gap through the use of thirteen popular transformer based models, as well as ChatGPT, and we show that discriminative models perform better than GPT-3.5 model with our best performer reporting 92.2349% F1 score in metaphoric flower and plant names identification task.

Keywords: Deep Learning, Transformers, Automatic Extraction of Metaphor, Metaphor-based Terms

1 Introduction

Metaphor-based terms, or the so-called terminological metaphors, are common in specialised languages. Their use is abundant, as they help in the conceptualisation of phenomena and their description by establishing resemblance between images and domains. They also help in understanding abstract phenomena in terms of more concrete notions and in modelling scientific thought (Urena Gomez-Moreno and Faber, 2010). However, the identification of metaphor-based terms in discourse is an arduous task. This leads in some cases to committing errors during translation processes and lexicographic tasks. The process is even more challenging when it comes to machine translation, both in the cases of single-word terms and multi-word terms which are represented by Multiword Expressions (MWEs). The main common er-
ror while carrying out the translation processes is that the metaphorical lexical items forming part of a term would be transferred literally into other languages without taking into consideration its metaphoric and cultural dimension or without taking into account that they form part of an MWE.

Previous studies focused on the extraction of metaphorical terms from discourse, such as Mu, Yannakoudakis, and Shutova (2019) and Razali et al. (2022); however, to the best of our knowledge, there are no programs that could automatically retrieve those terms both as single-word terms and MWEs in specialised languages. This study seeks to fill in this gap and proposes a novel method based on transformer models (Premasiri et al., 2022); (Ranasinghe et al., 2021) for automatic extraction of metaphor-based terms from the specialised domain of Botany and concerning the names of flowers and plants in English and Spanish. The main contributions of this study are:

1. We empirically evaluate thirteen discriminative transformer models and one generative transformer model (ChatGPT) for the tasks of metaphoric flower and plant names identification on English and Spanish datasets.
2. We show that discriminative models perform better in the metaphoric flower and plant names identification task.
3. We release new annotated datasets for metaphoric names identification in English and Spanish.
4. We make our code freely available for further research.

This paper is organised as follows: in section 2 we present previous related work. In section 3 we describe the dataset used and its annotation process. In section 4 we detail the experimental set-up and methodology, while in sections 5 and 6 we report our experiment’s results and evaluation. Finally, we summarise the main conclusions and propose future work in section 7.

2 Related work

The study of metaphor-based terms in discourse has been a subject of study in the last few decades. One of the main concerns in this field is the detection of metaphor-based words in discourse. With this aim, the Pragglejaz Group suggested a method for the manual identification of metaphor, called Metaphor Identification Procedure (MIP) (Group, 2007). This method has been used extensively (Nacey et al., 2019). Studies like Turney et al. (2011), Jang et al. (2015) and Coll-Florit and Climent (2019) have a similar approach. Other projects such as the VU Amsterdam Metaphor Corpus (Leong et al., 2020) offer a manually annotated corpus for all metaphorical language use. Moreover, studies like Yaneva (2016), show how the use of metaphor and figurative language in discourse is of utmost difficulty for people with Autism Spectrum Disorder (ASD); hence, studies like Yaneva (2016) and Štajner et al. (2017) endeavour to identify and disambiguate complex sentences which contain metaphor and metonymy among other features through the application of Complex Word Identification modules. The above studies were partially inspired by the FIRST Project (Orăsan, Evans, and Mitkov, 2018) and the development of the Open Book tool which helps people with ASD.

Concurrently, one of the recent concerns of Natural Language Processing (NLP) applications and Machine Translation (MT) technologies is the automatic identification of metaphor-based words in discourse through Deep Learning Methods (DLM). For example, Mu, Yannakoudakis, and Shutova (2019) suggest working with large corpora and training simple gradient boosting classifiers on representations of an utterance and its surrounding discourse learned with a variety of document embedding methods”. Su et al. (2020) focus on token-level metaphor detection paradigm and propose using an end-to-end deep metaphor detection model. Authors like Razali et al. (2022) use machine learning to automatically detect metaphor instances in short texts by implementing Support Vector Machine algorithms, while other authors like Gutierrez et al. (2016) propose modelling metaphor explicitly within a compositional distributional semantic models to improve the resulting vector representations. Those authors classify the already used methods in the following categories: clustering;

1 The code and dataset will be made freely available upon acceptance of the paper.

2 http://www.iwebtech.co.uk/project-first/
topic modelling; topical structure and imageability analysis; semantic similarity graphs and feature-based classifiers (Gutierrez et al., 2016). Recent approaches are more centred on using dense embedding methods (Vitez et al., 2022).

On the other hand, the study of metaphor-based terms in specialised discourse has been subject to scientific and cognitive studies. The automatic identification of metaphor-based terms is considered a substantial challenge. Some studies highlight the importance of automatic extraction of terms in specialised discourse (Rodríguez Penagos and others, 2005) while other studies, such as Urena Gomez-Moreno and Faber (2010) propose a semi-automatic method for term retrieval in the domain of Marine Biology. However, to the best of our knowledge, there have been no previous studies or methodologies which cover the automatic extraction of those terms from scientific discourse in other domains and no previous studies were carried out in the domain of Botany.

3 Data

Specialised discourse is rich in metaphor-based terms; Botany is no exception. The semantic motivations for plant names are usually influenced by the appearance of the plant, the place of its occurrence, the properties of the plant, its usage, as well as other motivations typical of a specific genus of species (Dębowiak and Waniakowa, 2019). Many studies have shown that metaphor is one of the most frequent techniques to coin flowers and plants names (Rastall, 1996); (Nissan, 2014); (Dębowiak and Waniakowa, 2019). This metaphoric use may give clues to cultural references related to legends and beliefs associated with plants in general, like their healing properties, and supposed magical powers (Dębowiak and Waniakowa, 2019). At the same time, this shows that this metaphorical use may vary among languages and cultures. From another perspective, studies like Goodman (1963) highlight the importance of flower names based on metaphor for the study of colour and its comparison among languages. For this reason, we consider the study of metaphor-based terms in this domain relevant as a case-study.

The dataset we use to extract metaphor-based terms in English is the Encyclopædia of Flowers and Plants, published by the American Horticultural Society (Brickell, 2012). We selected this edition as it is available in a digitalised format in the online library of the Internet Archive. This Encyclopædia consists of 522,707 words. It contains a dictionary of names of flowers from around the world, with approximately 8000 terms referring to both scientific and common names and their origins, as well as 4000 images. It is divided into the following sections: firstly it has an introduction about how to use the book, plant names and origins and relevant information on how to create a garden and how to select plants. This introductory part shows that it is aimed at both professionals and laypersons. Secondly, it has a plant catalogue, subdivided into categories such as trees, shrubs, roses, climbers and wall shrubs, perennials, annuals, biennials and bedding, rock plants, bulbs, water and bog plants as well as tender and exotic plants. All those subsections contain rich contexts on each term, concerning the origin, uses, habitat, size, etc. Finally, the Encyclopædia offers a dictionary section with an index of common names and glossary of terms. We benefited from this last section to extract and annotate terms. The advantage of using this Encyclopædia is that it includes a wide range of varieties of flowers and plants from all around the world. For this reason, the obtained results may be useful to be applied in different contexts and in multidisciplinary studies.

The data was pre-processed by annotating the proper names and their metaphorical condition. The MIP criteria for metaphor identification (Group, 2007) was adapted to annotate the terms, considering a term as metaphor-based when one or more of the lexical units forming it or its etymology give evidence that they belong to different domains, based on its meaning in the dictionary. An example is the one-word name of the flower Edelweiss which is a combination between the two lexical units edel which means noble and weiss, which means white in German, or its scientific name Leontopodium Alpinum, considered as an MWE with Greek origin and etymology and is also metaphor-based, as the lexical unit Leontopodium means lion’s foot (Dweck, 2004). Another example is the name of the flower Sunburst which shows the resemblance between the colours of the flower and the colours of the sun, and the flower called
Moonlight, which alludes to the resemblance between the flower and the moon.

Apart from the Encyclopaedia of Plants and Flowers, we also compiled a corpus of other resources related to Botany in English. It consists of 437,663 words. Some of the texts are monographs, others are journal articles, and some texts are retrieved from other online resources. The full list of references used to compile the English corpus are listed in Appendix 1. With respect to the Spanish dataset, we have annotated a list of flowers and plants names provided in selected monographs and glossaries following the same criteria as in the case of the English terms. Above all, we used books and articles in the domain of Botany and botanical glossaries, such as the glossaries provided in Los Árboles en España (de Lorenzo Cáceres, 1999), Biología de la Conservación de Plantas en Sierra Nevada (Peñas and Lorite, 2019) and the glossary of scientific names of plants and their vernacular names provided by the Entomological Museum in Leon in the Bio-Nica webpage. The list obtained from this source consists of more than 5000 scientific and vernacular names of flowers and plants. As for the book Los Árboles en España, it consists of almost 155,000 words with more than 600 terms in the section of Glossary. The book describes the details of each plant, its family names, its vernacular names and synonyms, its origin, etymology, description and cultivation information. It also provides illustrative images of each plant. The book Biología de la Conservación de Plantas en Sierra Nevada was also valuable as some of its chapters contained lists of scientific names of endemic flowers from Sierra Nevada and its common names too. In order to enhance the datasets, we also added more specialised, semi-specialised and informative texts in the domain of botany to obtain more rich contexts. It consists of 460,258 words. The full list of the sources used to compile the English corpus are listed in Appendix.

With this paper, we release datasets of English and Spanish flower and plant names with their annotations metaphoric or not. The English dataset consists of 6330 total plant and flower names as a combination of 1869 metaphorical names and 4461 non-metaphorical names. The Spanish dataset consists of 875 metaphorical names and 4,988 non-metaphorical names out of 5863 total.

Data Preparation Since we model the metaphoric name identification task as a token level classification task, we used IOB format tagging for our corpus. IOB format is widely used in token level classification tasks (Sang and De Meulder, 2003) where B - Beginning, I - Inside and O - outside of a metaphorical flower or plant name. After tagging the sentences from the corpus, we identified that there were a very high number of sentences which do not have a single metaphorical name. In other words, the majority of the sentences only had 'O' as the tag for all their words. Since this has a negative impact on the model training process, we decided to balance the dataset by removing some sentences. Finally, we have 2020 total sentences divided 1500 and 520 in English training and test set respectively. For Spanish, we used only 250 sentences as the dataset.

4 Methodology

Discriminative Models Transformers (Vaswani et al., 2017) have been a major breakthrough in Deep Learning research, since they provide a robust mechanism based on attention for the neural networks to flow information without recurrence and convolution. This architecture has produced state-of-the-art results in many NLP applications. With the introduction of BERT (Devlin et al., 2019), which employs the transformers architecture, the pre-trained large language models have played an important role in pushing the boundaries of all NLP tasks and achieving new state-of-the-art. With this motivation, we use transformers as our primary experimental setup and evaluate multiple pre-trained language models. These models follow similar architectures to BERT (Devlin et al., 2019) while they are pre-trained on different corpora and different objectives. Figure 1 shows the transformer architecture we used where we input sentences which contain metaphorical flower and plant names, then we obtain BIO tags from the output layer by adding a softmax layer on top of the last hidden state of the deep network to classify each token into one of I,O,B tags. We used several popular transformers based
pre-trained language models. For the experiments on English dataset, we used the cased and uncased variants of BERT base and BERT large versions. In order to establish the capabilities of multilingual models, we experimented with the multilingual-bert(Devlin et al., 2019) model with its cased and uncased variants and xlm-roberta-base(Conneau et al., 2020) model and xlm-roberta-large(Conneau et al., 2020) version. We further experimented with google/electra-base-discriminator(Clark et al., 2020) model which is different from BERT architecture. Finally, within these discriminative models we evaluate allenai/scibert_scivocab_cased(Beltagy, Lo, and Cohan, 2019) and allenai/scibert_scivocab_uncased(Beltagy, Lo, and Cohan, 2019) variants which are specifically pre-trained on scientific corpora. We assume that flower and plant names could appear in those corpora such that the model can leverage the learning to produce better results.

Since Spanish is low in resources on metaphoric flower and plants names corpora, we experimented zero-shot learning for Spanish on English data. We specifically used the multilingual-bert(Devlin et al., 2019) and xlm-roberta(Conneau et al., 2020) for our experimental setting as these models provide multilingual capabilities.

All the models were trained for three epochs, learning rate 4e-5 with 32 training batch size and for the hardware we used a GeForce RTX 3090 GPU.

Generative Models While all above methods rely on the discriminative approach, which tries to identify boundaries in the data space, generative models attempt to model the placement of the data throughout the space. This approach attracted huge attention in the research community with the release of ChatGPT\(^4\) by openAI\(^5\). The research on Generative Pre-trained Transformer (GPT)(Radford et al., 2018) models have produced multiple versions of it including GPT-3, GPT-3.5 and GPT-4. The free version of ChatGPT only supports GPT-3.5 for the time being and all our experiments are based on ChatGPT free version. According to OpenAI, the most cost capable and cost effective models out their models is gpt-3.5-turbo, which we used to our experiments.

Since ChatGPT is a generalised conversational application, it does not essentially provide IOB tags as outputs. After experimenting with different prompts to retrieve IOB tags from ChatGPT, we decided it would be easier to retrieve the metaphoric flower or plant name in the sentence from the API\(^6\) and No otherwise. Prompt we used: *Is there a metaphoric flower name or metaphoric plant name included in the following sentence, say yes or no, if yes what is the metaphoric flower or metaphoric plant names in the sentence separately: {sentence goes here}*. The outputs of ChatGPT are not uniform, and we had to post process the outputs using regular expressions to re-generate the IOB tags for evaluation.

Since this is a token level classification task, we use macro averaged Precision, Recall and F1 score as our evaluation metrics.

\[
\text{Precision} = \frac{TP}{TP + FP} \tag{1}
\]
\[
\text{Recall} = \frac{TP}{TP + FN} \tag{2}
\]
\[
F1 = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} \tag{3}
\]

5 Results and Discussion

5.1 English

The results in table 1 show the competitive performance of transformer models, in the flower and plant names classification task.
<table>
<thead>
<tr>
<th>Model</th>
<th>Precision</th>
<th>Recall</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>bert-base-uncased</td>
<td>92.8204</td>
<td>89.4824</td>
<td>91.0784</td>
</tr>
<tr>
<td>bert-base-cased</td>
<td>93.4157</td>
<td>90.8295</td>
<td>92.0801</td>
</tr>
<tr>
<td>bert-large-uncased</td>
<td>92.8424</td>
<td>90.6789</td>
<td>91.7219</td>
</tr>
<tr>
<td>bert-large-cased</td>
<td>93.4157</td>
<td>90.8295</td>
<td>92.0801</td>
</tr>
<tr>
<td>bert-base-multilingual-uncased</td>
<td>91.7655</td>
<td>89.6286</td>
<td>90.6648</td>
</tr>
<tr>
<td>bert-base-multilingual-cased</td>
<td>93.3662</td>
<td>91.1718</td>
<td>92.2349</td>
</tr>
<tr>
<td>xlm-roberta-base</td>
<td>90.1220</td>
<td>89.6020</td>
<td>90.8560</td>
</tr>
<tr>
<td>xlm-roberta-large</td>
<td>90.8455</td>
<td>89.4348</td>
<td>90.1220</td>
</tr>
<tr>
<td>xlnet-base-cased</td>
<td>89.8189</td>
<td>90.8769</td>
<td>90.3402</td>
</tr>
<tr>
<td>roberta-base</td>
<td>91.9779</td>
<td>89.8922</td>
<td>90.9025</td>
</tr>
<tr>
<td>google/electra-base-discriminator</td>
<td>92.0412</td>
<td>91.1617</td>
<td>91.5898</td>
</tr>
<tr>
<td>allenai/scibert_scivocab_uncased</td>
<td>91.7084</td>
<td>90.3453</td>
<td>91.0071</td>
</tr>
<tr>
<td>allenai/scibert_scivocab_cased</td>
<td>92.3408</td>
<td>90.6466</td>
<td>91.4750</td>
</tr>
<tr>
<td>ChatGPT</td>
<td>62.1516</td>
<td>45.1943</td>
<td>48.1392</td>
</tr>
</tbody>
</table>

Table 1: Results for English metaphoric flower and plant names identification; the Model column represents the model we experimented, the Precision column shows the macro precision, the Recall column shows macro recall and the F1 column shows macro F1 value for the results.

<table>
<thead>
<tr>
<th>Model</th>
<th>P</th>
<th>R</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>bert-base-multilingual-uncased</td>
<td>59.2957</td>
<td>40.3103</td>
<td>43.0472</td>
</tr>
<tr>
<td>bert-base-multilingual-cased</td>
<td>54.0904</td>
<td>52.1401</td>
<td>52.8657</td>
</tr>
<tr>
<td>xlm-roberta-base</td>
<td>67.4035</td>
<td>36.5622</td>
<td>37.4988</td>
</tr>
<tr>
<td>xlm-roberta-large</td>
<td>64.1040</td>
<td>47.4813</td>
<td>51.8174</td>
</tr>
<tr>
<td>ChatGPT</td>
<td>63.1887</td>
<td>46.6820</td>
<td>51.4120</td>
</tr>
</tbody>
</table>

Table 2: Results on metaphoric flower and plant names identification in Spanish; P - The macro averaged precision, R - The macro averaged Recall, F1 - The macro averaged F1 score.

Despite the fact that most of the transformer models we experimented with are not specifically pre-trained on botanic corpora, almost all discriminative models were able to produce more than 90% F1 score in the task. Interestingly, the multilingual bert model could surpass the other models and mark the top results at 92.2349% F1 score.

Another noteworthy observation in our study was that cased models outperformed all the respective uncased models. Even though the xlm-roberta-base was the least performer in discriminative models, the performance gap to the best performer is only 2.3789% which shows the competitiveness of the transformers in token level classification tasks.

Even though scibert models are specifically trained on scientific corpus, these models were not able to outperform the bert multilingual model, which shows that the general knowledge could play a significant role in metaphoric identification task.

While ChatGPT seems very good at handling general text, it does not perform well in metaphoric names identification in flower and plant names. Given that we cannot further fine-tune the GPT model with our corpus, the ChatGPT is struggling to identify and generate text with metaphoric flower and plant names. Another important observation was, ChatGPT was not producing consistent results because we could observe different results for the same sentence if we retrieve twice. This shows that ChatGPT is uncertain about its answers on metaphoric flower and plant names, maybe with GPT-4 it may have a better understanding with more data. We leave it for future work.

5.2 Spanish

Table 2 shows the results on Spanish data in zero-shot configuration on English data. We note that in all models, learning from English data has lead to decent results on Spanish metaphoric flower and plant names identification. Interestingly, bert-base-multilingual-cased model performs better in both languages marking over 52% F1 score on Spanish. It was noted that there is a significant difference between English and Spanish re-
results, as expected because the English models were fine-tuned on English metaphoric data, but we were not able to do that in Spanish due to lack of resources.

ChatGPT has kept similar performance for Spanish recording over 51% F1 score. This is very close value to the best discriminative model but could not outperform bert-base-multilingual-cased model. Unlike ChatGPT, since discriminative models are able to fine-tune, we conjecture that their performance could be boosted with a fine-tuning step with more data.

6 Conclusions

Detection of metaphorical terms is an important research area for many NLP applications. Detecting metaphor-based terms of flowers and plants may give birth to different multidisciplinary research and applications. On the one hand, it may help in overcoming the so-called plant awareness disparity or plant blindness (Parsley, 2020) as the metaphoric factor would help in remembering the names of flowers and plants and their aspect. It may also give insightful information to Cognitive Studies towards understanding phenomena such as metaphor and metonymy, and even towards a more comprehensive understanding of conceptual complexes (Ruiz de Mendoza Ibáñez, 2017). This may be carried out by comprehending the associations between metaphoric names and the image of the flower and plant representing them, and how the resemblance of images or the metonymic aspect is conceptualised through the coinage of terms. On the other hand, this information is also helpful for the studies of representation of abstract phenomena in art and its comprehension across languages. The automatic extraction of those terms is a step towards achieving more comprehensive and accurate results. In addition, this may help rendering texts more accessible to people with ASD. At the same time, these types of studies may also help in the development of software or mobile applications to be used by both laypersons and professionals.

In conclusion, we show that state-of-the-art transformers are well capable of performing very well to identify metaphoric flower and plant names.

Bibliography

Brickell, C. 2012. Encyclopedia of plants and flowers. Dorling Kindersley, Santa Fe, New Mexico, USA.

A Appendix 1: English And Spanish Corpus

List of references used to compile the corpus in English and Spanish.
References

<table>
<thead>
<tr>
<th>Reference</th>
<th>Page</th>
</tr>
</thead>
</table>

Table 3: English Corpora

<table>
<thead>
<tr>
<th>Reference</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paul Gonzáles, et al. Las Plantas Comunes Del Bosque Seco Del Marañón: Biodiversidad Para Las Comunidades Locales</td>
<td></td>
</tr>
<tr>
<td>Andinos. Bosques Andinos, Lima- Perú, Biblioteca Nacional del Perú, 2020</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Spanish Corpora