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Abstract. Concerns over climate change and global emissions has again placed attention

on clean energy sources. Nuclear power plants are one of many sources of clean energy and

yet few studies have examined the structure of technology exclusively in this area. We utilize

Bayesian empirical likelihood methods to estimate a stochastic frontier model to examine

scale economies, technical efficiency and technological change in the United States nuclear

energy generation sector. We find decreasing scale economies, a fact consistent with the

recent decline of the industry. Our results suggest that small nuclear reactors may benefit

the sector as a whole.
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1. Introduction

A major hurdle towards building new nuclear generation is the ability to build it at a

small enough scale to meet regional energy demand while keeping costs competitive with

more traditional sources of energy. U.S. Secretary of Energy Jennifer Granholm noted at a

small nuclear reactor (SMR) partnership meeting alongside the United Nations COP26 that

the United States “have been supporting the development of SMRs for decades. . . ” and

“views nuclear energy as a pivotal technology in the global effort to . . . ultimately combat
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climate change”(DOE, 2021). These comments and historic nuclear investments made in the

Inflation Reduction Act of 2022 highlight the importance of examining the returns to scale

of the U.S. nuclear fleet since it represents a crucial component of nuclear power costs.

Assessing returns to scale at the plant level could occur either through the size of the

nuclear power generators themselves or through the siting of different units. For example, if

focusing on scale economies based on the size of the generator, this would suggest new power

plants should deploy larger generators to provide cheaper power. Alternatively, achieving

scale economies by siting multiple generators at the same site (common in several European

countries) would suggest providing cheaper energy costs by building more generators. In

either setting, understanding how scale economies arise (if at all) is of tremendous importance

for the nuclear power sector, and yet, outside of Krautmann & Solow (1988), there has been

little research into the presence of returns to scale in the nuclear power industry.

Another concern with the production of nuclear energy (and electricity production more

broadly) is if it is produced efficiently. Even with a lack of scale economies, cost savings rel-

ative to more traditional production could be realized if nuclear energy producers were more

efficient than their competitors. Despite the importance of this issue, to our knowledge, no

empirical evidence exists that studies technical efficiency in the nuclear power industry di-

rectly even though there is ample evidence on technical efficiency in the coal and gas powered

electricity generation industry including Greene (1990), Knittel (2002), Rungsuriyawiboon &

Stefanou (2007), Greene (2008), Chen, Schmidt & Wang (2014), Ghosh & Kathuria (2016),

Filippini, Geissmann & Greene (2018) and Bernstein (2020).

Previous studies of technical efficiency of electricity generating nuclear power plants have

always been in the context of a broad array of power plants (coal-fired, natural gas, hydro,

nuclear). However, given the fundamental difference in heat formation at pressurized-water

and boiling-water nuclear reactors, these plants clearly operate a different technology than

https://www.energy.gov/ne/articles/us-secretary-energy-jennifer-granholm-and-romanian-minister-energy-virgil-popescu


BETEL SFA 3

say a combined cycle gas plant. This makes these types of comparisons dubious. Here we

focus our attention exclusively on nuclear power plants. Further, use of a dummy variable to

signify type of power generation to assess differences in technical efficiency is of little value

when the technologies themselves differ across types of power generation.

The study of technical efficiency is commonly carried out using either data envelopment

analysis (DEA, Simar & Wilson 2013) or stochastic frontier analysis (SFA, Parmeter &

Kumbhakar 2014). Our focus will be with SFA, as these methods allow direct modelling of

stochastic noise. This is important since nuclear power plants go down unexpectedly due

to accidents, equipment failure and random safety shutdowns. Furthermore, the regulatory

environment in which nuclear power plants operate also introduces uncertainties that are

difficult to measure from an operational standpoint and are best captured with a random

error. Utilities must make choices about input use in the face of uncertain regulatory impacts

on the level of output, which may lead to optimization errors which produces additional noise

in the production process.

It is likely that in the presence of these types of stochastic impacts, that the error term in

our model is likely to be nonstandard. To allow for this case we construct a novel estimation

approach that allows the error term in the production process to be asymmetric, rather than

the commonly assumed symmetric noise.1 This has many plausible benefits, one being the

avoidance of the wrong skewness (Simar & Wilson 2010) that commonly plagues stochastic

frontier modelling.

Asymmetry in the noise term is modeled through an assumption of Asymmetric Laplace,

where it has recently been shown by Bera, Galvao, Montes-Rojas & Park (2016) that the

first order conditions stemming from maximum likelihood using the Asymmetric Laplace

distribution is equivalent to the solution stemming from a maximum entropy problem with

1Other papers that have explored this feature include Bonanno, De Giovanni & Domma (2015), Badunenko
& Henderson (2023), Wei, Zhu & Wang (2021) and Horrace, Parmeter & Wright (2023).
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moment constraints imposed. Further, the score functions from the Asymmetric Laplace pro-

vide estimators for the slope parameters along with a representative quantile. These results

are not dependent on the error term actually having an Asymmetric Laplace distribution; in

this sense the maximum likelihood estimator can be viewed as robust to misspecification of

the error term. Along this lines, both Tsionas (2020) and Tsionas, Assaf & Andrikopoulos

(2020) estimate the stochastic frontier model allowing the noise to be distributed as Asym-

metric Laplace using standard Bayesian methods.2 Our goal here is to consider the same

specification but estimate the parameters using novel Bayesian exponentially tilted empiri-

cal likelihood (Schennach 2005, BETEL, hereafter). Use of BETEL also imparts robustness

to potential outliers in the estimation itself, another common concern in empirical work

involving the stochastic frontier model and also within the nuclear power generation setting.

Here we adapt the work of Lancaster & Jun (2010) (who in turn adapt Schennach’s (2005)

BETEL), so that one can estimate a ‘quantile like’ stochastic frontier model (see also Yang &

He 2012). To provide Bayesian inference, we focus on the first-order conditions of maximum

likelihood, similar to Komunjer’s (2005) modifications to standard likelihood procedures.

These first-order conditions involve orthogonality of regressors to certain generalized resid-

uals and they are, in fact, moment conditions, a result that paves the way to application of

generalized method of moments (GMM), empirical likelihood and, therefore, BETEL meth-

ods. To our knowledge this marks the first use of BETEL methods in the setting of the

stochastic frontier model and is a marked departure from previous approaches that have

relied exclusively on Asymmetric Laplace prior distributions in more standard Bayesian se-

tups.

2Estimation of the stochastic frontier model using Bayesian approaches has become quite common in the
energy field. See Chen, Barros & Borges (2015), Li et al. (2016), Makiela & Osiewalski (2018) and Haider
& Mishra (2021) for recent examples.
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We then apply these methods to an unbalanced panel of 58 US nuclear power plants over

the 1994-2016 period. We find that estimated returns to scale are significantly less than 1

for a majority of the plants in the sample, that the modal plant is near fully efficient, and

that technical change is nearly evenly distributed around 0. These results are consistent

with the extant literature. As noted by Krautmann & Solow (1988), the basic technology

underlying nuclear power generation has not changed much since the 1960s, even though

the regulatory environment has. Thus, a finding of very little average technical change is

not surprising. The finding of mainly decreasing returns to scale is in line with the work of

Rungsuriyawiboon (2008), albeit for a different time period. Furthermore, our new approach

delivers estimates that are quite different than a standard Bayesian setting, suggesting that

the BETEL estimation approach is indeed imparting its impact on the empirical findings.

Given our earlier discussion on how these nuclear plants are run it is not surprising to find

such high levels of technical efficiency.

All of these results speak to an industry that is operating near the frontier, but the lack of

updated technology or new plants coming on line suggests that further increases in nuclear

energy generation are not likely coming unless new plants are opened. This is consistent

with EIA’s projection for nuclear energy production declining by 17% by 2025 (EIA, 2019).

A key policy question, and one tied to our work here, is if new plants should be founded

upon a single large generator or a multi-generator framework. Given the focus on reducing

dependency on fossil-fuel generated electricity, the potential expansion for nuclear energy is

of first order importance.

The remainder of the article is organized as follows. Section 2 provides background infor-

mation on the nuclear power sector. Section 3 describes BETEL estimation of the stochastic

frontier model through both asymmetric Laplace priors as well as BETEL and describes
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key implementation issues. Section 4 provides our nuclear powered electricity generation

estimates. Section 5 contains concluding remarks and avenues for future research.

2. Background of Nuclear Power Generation in the United States

In 2017, 38% of all energy consumed in the United States was electric power (EIA, 2018)

and of all electric energy produced in the U.S in 2018, the second largest source, after

fossil fuels3, came from nuclear with 19.3% (807 billion kWh) of total electricity generation

(EIA, 2018). Nuclear power harnesses the energy of a fissile material (such as Uranium-235)

through a process called nuclear fission whereby the splitting of atoms generates heat for the

steam generation process. Nuclear fission emits no CO2 whereas the burning of fossil fuels

is responsible for 99% of CO2 emissions for electricity (EIA, 2018).

As Davis (2012) notes “Nuclear power continues to generate enthusiasm based on its

potential to reduce greenhouse gas emissions. A single pound of reactor-grade uranium oxide

produces as much electricity as over 16,000 pounds of coal – enough to meet the needs of the

average U.S. household for more than a year. While burning 16,000 pounds of coal generates

thousands of pounds of carbon dioxide, sulfur dioxide, and nitrogen oxides nuclear power is

virtually emissions-free.” Yet, expansion of the nuclear energy generation market is virtually

nonexistent. Only several new applications4 for siting nuclear reactors has occurred over the

last several decades while a large number of nuclear power plants either have already been

taken off the grid or are planned to be removed in the next several years.5 These features

of the nuclear power generation industry are important as they speak to understanding how

efficient the plants in operation are, given the focus on carbon emissions reduction and the

substantial portion of the electricity market that nuclear currently accounts for.

3Fossil fuels include: natural gas, coal, petroleum and other gases.
4Two new nuclear generating units at Plant Vogtle in Georgia were scheduled to open in 2023
(https://www.southerncompany.com/innovation/vogtle-3-and-4.html).
5https://www.eia.gov/todayinenergy/detail.php?id=38792.

https://www.eia.gov/tools/faqs/faq.php?id=77&t=8
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Moreover, Davis & Hausman (2016) document that even though nuclear power plants have

low marginal costs, their prospects for long-term viability have been substantially reduced

since 2009 given both the lower costs of coal and natural gas and the number of plants

scheduled for closure. One report (UBS 2013) provided the following summary: “Nuclear

units, with their high dispatch factors have among the greatest exposure to gas/power price

volatility, as they are price takers. In tandem, nuclear generators have continued to see rising

fuel and cost structures of late, with no anticipation for this to abate.”

Davis & Wolfram (2012) find that deregulation and consolidation beginning in 1999 are

associated with a 10% increase in plant operating performance.6 This improvement was

largely brought about by a reduction in outages. Along these lines, Hausman (2014) uses

panel data from 1996-2009 to show that over the sample period, restructuring and relaxation

of price regulation led to improved safety outcomes and increased output. Hence, much like

the broader electricity literature (Fabrizio, Rose & Wolfram 2007, Rungsuriyawiboon &

Stefanou 2007), there is consensus that the regulatory environment prior to deregulation

was inferior to the current market.

Apergis, Payne, Menyah & Wolde-Rufael (2010) deploy a panel error correction model

of 19 countries from 1984-2007 and find that nuclear energy consumption at the country

level reduces CO2 emissions in the long-run, while the opposite holds for renewable energy

consumption. Given that renewable energy sources have historically required peaker plants

to pick up the load at the tail end of the ‘duck curve’, while nuclear plants service baseload

demand, this result is plausible from a technical viewpoint. Iwata, Okada & Samreth (2010)

and Menyah & Wolde-Rufael (2010) also find that nuclear power plays a statistically signif-

icant role in reducing emissions. Davis & Hausman (2016) conclude that, “Current policies

aimed at reducing carbon emissions tend to focus on wind, solar, and other renewables, but

6Karney (2019) replicates this result.
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keeping existing nuclear plants open longer could mean hundreds of millions of tons of carbon

abatement.” Similarly, Roth & Jaramillo (2017) find that, “Preserving the existing nuclear

power plant fleet, especially multi-reactor plants, is thus a cost effective carbon-avoidance

strategy compared to the social cost of carbon.” Apergis & Payne (2010) find a positive

long-run relationship between nuclear energy consumption and real GDP. Another branch

of research related to nuclear energy is principally concerned with nuclear accidents.

Zelenika-Zovko & Pearce (2011) argue that the indirect subsidy given to nuclear power

plants, by the Price Anderson Act of 1957 and subsequently by the Energy Policy Act of

2005, is too large, given that nuclear facilities are not insured on the open market. The

authors conclude that renewable energy sources should replace nuclear capacity. Conversely,

Zhang, Mclellan, Tezuka & Ishihara (2012) argue that despite the Fukushima Daiichi acci-

dent of 2011, that nuclear power should not be discarded from an economic, environmental

and energy independence viewpoint. Ultimately, Davis (2012) and Bistline, James & Sow-

der (2019) find that without carbon pricing, technological innovation, and business model

innovation, the U.S. nuclear power sector will continue to decline.

Electric generation from nuclear power plants also produces bad outputs, primarily in the

form of spent nuclear fuel and radioactive materials, which is regulated by the U.S. Nuclear

Regulatory Commission. Given the high density of nuclear materials, nuclear waste is often

stored on site.7 Occasionally, nuclear leakage occurs, most notably at Three Mile Island in

1979, Chernobyl in 1986, and Fukushima in 2011.

Lastly, we note that a full accounting of the productive aspects of the nuclear power

generation sector in the US have not been extensively studied. To our knowledge, only

Krautmann & Solow (1988) and Rungsuriyawiboon (2008) have focused on technical change

7The U.S. Nuclear Regulatory Commission (NRC), “regulates spent fuel through a combination of
regulatory requirements, licensing; safety and security oversight, including inspection, assessment of
performance; and enforcement; operational experience evaluation; and regulatory support activities.”
(https://www.nrc.gov/waste/spent-fuel-storage.html, checked 03/2/2023).
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and scale economies. However, neither of these papers has modeled if the plants operate

efficiently. Thus, a full accounting using frontier methods is warranted.

3. The Stochastic Frontier Model

Our main interest focuses on the benchmark stochastic frontier model (SFM):

yi = x′iβ + vi − ui, i = 1, . . . , n, (1)

where ui is a non-negative random variable representing technical inefficiency. We assume

that vi and ui are independent of one another and of xi, though we will allow for some

elements of x to be endogenous in our application. A straightforward approach to estimation

of this model is to place assumptions on both of the error components and optimize the

corresponding likelihood. However, if these distributional assumptions are incorrect this can

then lead to statistical issues with the estimation of the parameters of the model. Moreover,

if there are outliers in the data, this can also impact direct maximum likelihood estimation.

We elect instead to use a Bayesian “quantile-like” approach to estimate the stochastic frontier

model. This has the ability to impart robustness to the analysis.8

Interestingly, application of quantile methods have been slow to mature in the study

of technical efficiency (Kumbhakar, Parmeter & Zelenyuk 2020). The extant approaches

can be divided into those that simply deploy quantile regression and then classify firms as

efficient based on the sign of their residual (Bernini, Freo & Gardini 2004, Knox, Blankmeyer

& Stutzman 2007, Liu, Laporte & Ferguson 2008, Behr 2010), to more formal setups that

attempt to parse noise from technical inefficiency while engaging in a quantile style framework

(Jradi, Parmeter & Ruggiero 2019, Jradi, Parmeter & Ruggiero 2021, Tsionas 2020, Tsionas

8We avoid directly using the term “quantile stochastic frontier” since, as noted by Papadopoulos & Parmeter
(2022), estimating quantiles in a stochastic frontier model is not clearly linked to any meaningful productive
concept.
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et al. 2020). It is this last group of papers that most closely align with the work presented

here. Jradi et al. (2019) seek to determine the quantile that is ‘consistent’ with the idea of

a frontier, what they call, for lack of a better term, the “optimal quantile”.9 Setting the

quantile in this fashion explicitly acknowledges that we do not know at which probability

level the corresponding conditional quantile agrees with the true production efficiency frontier

and must be estimated. The work of both Tsionas (2020) and Tsionas et al. (2020) look at

standard Bayesian methods to estimate the stochastic frontier model,10 but do so within the

confines of the Asymmetric Laplace distribution. Here our goal is to consider the models of

Tsionas (2020) and Tsionas et al. (2020) but to use Bayesian exponentially tilted empirical

likelihood (Schennach 2005, BETEL hereafter) methods to estimate the model.11

While the application of BETEL may be viewed as straightforward for the stochastic

frontier model, previous uses of this approach in the quantile regression setting (for example

Lancaster & Jun 2010) have done so with a known quantile (such as the median). In the

stochastic frontier setting however, only one quantile is consistent with the exact location

of the frontier (Papadopoulos & Parmeter 2022), which is almost universally unknown in

applications. Further, as shown in Horrace et al. (2023), τ cannot be interpreted as a quantile;

rather it captures a degree of asymmetry of the noise distribution. Thus, differently from

earlier applications of BETEL, we embed a prior on τ to facilitate data-driven estimation of

the asymmetry.12

Our extension of the BETEL approach to estimate the stochastic frontier model is not

without additional complications however. The moment conditions we consider here involve

unobserved variables (more specifically technical inefficiencies due to the composed error

9This terminology is not ideal but is the one in the current argot of the field. See Papadopoulos & Parmeter
(2022) for a detailed treatment of this entire literature.
10See also Makiela & Osiewalski (2018) and Haider & Mishra (2021).
11See Appendix A for a full discussion of BETEL in general.
12See Appendix B for a detailed treatment of our MCMC algorithm.
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of the stochastic frontier model). We circumvent this problem via application of entropic

latent variable integration simulation (Schennach 2014, ELVIS hereafter). Through ELVIS,

we average these moment conditions, using a least-favorable distribution and entropy max-

imization, via simulation. This results in conventional moment conditions involving only

observable variables and, therefore, one can use GMM or BETEL, as we do in this paper.13

The method requires the specification of a (dominating conditional) measure for the distribu-

tion of the unobservables given the observables. The exact choice has no direct effect on the

results as long as it satisfies some basic properties stated in Definition 2.2 and Proposition

2.1 of Schennach (2014). Using a measure in the Exponential family satisfies the so-called

“least favorable” property which roughly says that the dominating measure is not simpler

compared to the actual distribution of the unobservables given the observed variables.

Conditional on ui, our analysis goes through if we replace yi by yi +ui. This is hardly any

progress as the uis are unknown. Suppose, however, that we assign to each ui (assumed to

be iid) a marginal distribution14 whose density is f(ui|θ) and θ ∈ Θ ⊆ Rdθ is defined as a

vector that includes β and parameters in the distribution of ui. Then, with some abuse of

notation, we have

p(θ,u|D) ∝ p(θ)
n∏
i=1

w∗i (θ,u) ·
n∏
i=1

f(ui|θ), (2)

where u = [u1, . . . , un]′, p(θ) is a prior on θ,

w∗i (θ,u) =
exp {λ(θ,u)′%τ (yi + ui − x′iβ)xi}∑n

i′=1 exp {λ(θ,u)′%τ (yi′ + ui′ − x′i′β)xi′}
, i = 1, . . . , n, (3)

and the Lagrange multipliers, λ(θ,u), solve:

λ(θ,u) = arg min
ϕ
n−1

n∑
i=1

exp {ϕ′ [%τ (yi + ui − x′iβ)xi]} . (4)

13Example 1.5 of Schennach (2014) describes the measurement error case.
14Here an advantage is that the uis are not necessarily assumed to be independent of the regressors xi or
the error term vi.
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The expression in Equation (2) can be used to define the final posterior for the SFM:

p(θ|D) ∝
∫
Rn+
p(θ,u|D) du (5)

∝ p(θ) ·
∫
Rn+

n∏
i=1

w∗i (θ,u) ·
n∏
i=1

f(ui|θ) du.

Therefore, the problem can be understood in two stages: In the first stage, we use a speci-

fication for yi|xi,θ, ui which is based on the derivative of the check function (which can be

used to provide the first-order conditions for MLE). In the second stage, we assign a distri-

bution to inefficiency, ui, to yield (2). We assume that ui
iid∼ N+(0, σ2

u), viz. a Half-Normal

distribution whose density is f(u|σu) =
(
πσ2

u

2

)−1/2

e−u
2/(2σ2

u), u ≥ 0.

In practice, to explore the posterior we use MCMC, drawing from the posterior conditional

distributions θ|u, Y and u|θ, Y . For the first distribution we utilize first and second-order

derivative information from the log posterior using Girolami & Calderhead’s (2011) algo-

rithm. For the second distribution, the procedure is more involved. For the conditional

posterior of interest, p(u|θ, Y ), we approximate it making the guess that

p(u|θ, Y ) ' q(u;α) ∝
n∏
i=1

qi(ui;α), (6)

where α ∈ A ⊆ Rdα is a parameter vector that we calibrate to make q(u;α) as close as

possible to p(u|θ, Y ). We assume that each qi(ui;α) is the density of a Truncated Normal

distribution, denoted N+(αi1, α
2
i2), where αi1 and α2

i2 are respectively location and scale

parameters (i = 1, . . . , n). The calibration is performed by minimizing Kullback-Leibler

divergence:

KL =

∫
A

q(u;α) log
q(u;α)

p(u|θ, Y )
du, (7)
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for a given θ ∈ Θ. Given a random sample
{
ũ(d), d = 1, . . . , D

}
from the distribution with

density q(u;α), the integral can be approximated by

KL ' D−1

D∑
d=1

log
q(ũ(d);α)

p(ũ(d)|θ, Y )
. (8)

As the Kullback-Leibler divergence provides a lower bound to the “marginal likelihood”

p(u|D) its use here, is natural. In turn, we use standard numerical optimization techniques

to solve for the optimal values, α̂ of α. What makes this process computationally intensive is

that we need to have access to the posterior in the denominator of Equation (8); this requires

repeatedly solving for the Lagrange multipliers in Equation (4). However, this problem is

much easier than Equation (8) as the dimensionality of ϕ in Equation (4) matches the

dimensionality of the moment conditions.

To make the approach even simpler, we do not solve for each new Lagrange multiplier

vector that results from a new evaluation of p(ũ(d)|θ, Y ) in Equation (8). Instead, we fix

ϕ for each d ∈ {1, . . . , D} and we assume that αi1, and α2
i2 are the same across i so, in

effect, there are only two parameters for the optimization in Equation (8). Assuming that

the αi1s are all different (but the scale is the same) did not result in any material differences.

Specifically, we assume D = 1, 000 (making the results remain the same for D = 2, 000 and

D = 5, 000 and we use S =150,000 MCMC iterations, omitting the first 50,000 to mitigate

possible start up effects. The optimization in Equation (8) is performed only during the

burn-in phase which results in additional computational savings. The prior we have used is:

p(θ) ∝ p(β, σu, τ) ∝ p(β|σu, τ)σ−(n+1)
u e−q/(2σ

2
u)p(τ), σu > 0. (9)

Our prior p(β|σu, τ) is flat in the set B which is defined as the set where the monotonicity

conditions of the production function hold at the mean of the data and another randomly
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chosen nine data points. We set n = 0 and q = 10−6 which is improper and imposes little prior

information. Our prior for the quantile parameter is τ ∼ B(a, b), where B(a, b) denotes the

Beta distribution, viz. p(τ) ∝ τa−1(1−τ)b−1, 0 < τ < 1, a, b > 0. We set the hyperparameters

a and b both to 5. As we will see for our application in Figure 2, the prior is proper but not

particularly informative; the prior mean is 1
2

and places positive probability density over all

values in (0, 1). In our MCMC, we reparametrize τ ∗ = arctanh(τ) or τ ∗ = 1
2

log 1+τ
1−τ , and

σ∗u = log σu so that the resulting parameters for τ and σu fall in the needed domain. The

arctanh transformation is Fisher’s transform for the correlation coefficient.

As the MCMC provides draws
{
u(s), s = 1, . . . , S

}
that converge in distribution (as S →

∞) to p(u|D), these draws can be used in a straightforward way to compute posterior

moments and/or marginal densities of technical inefficiencies. For example, posterior mean

technical efficiency is estimated as ri = S−1
∑S

s=1 e
−u(s)i , i = 1, . . . , n.

4. The Performance of Electricity Generation from Nuclear Power

We collect output data for a subset of nuclear power plants in the United States. The

data originates from the FERC Form 1 data requirements and span the period of 1994 to

2016. These data represent plant-level observations for major15 steam-electric generating

facilities that use nuclear fuel. The variables considered in the analysis include a single

output, net generation exclusive of plant use in kilowatt hours (Y) four inputs: the total

installed capacity or maximum generator name plate ratings - MW (K), average number

of employees (L), barrels of oil (Oil) and units of nuclear fuel in grams of Uranium (Nf)

indicated by each plant, and two plant level controls: plant hours connected to the load

(Hours) and net peak demand on Plant in MW per 60 minutes (Peak).

15FERC defines major as: “(1) one million Megawatt hours or more; (2) 100 megawatt hours of annual sales
for resale; (3) 500 megawatt hours of annual power exchange delivered; or (4) 500 megawatt hours of annual
wheeling for others (deliveries plus losses).”
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Table 1. Summary statistics for nuclear electric generating plants from 1994-2016

Y K L Oil Nf Peak Hours
mean 868, 572 1, 080 765 39 18, 558 988 7, 449
sd 611, 121 693 337 333 37, 729 697 2, 662
min 4, 176 3 22 0 1 0 0
max 2, 137, 776 2, 667 2, 277 4, 139 193, 950 2, 605 17, 507

Notes: The sample contains 481 observations.

Table 1 displays the mean, standard deviation, maximum and minimum for each variable.

Y, Oil and Nf are each divided by 1,000 for fit. The sample contains 481 observations across

58 power plants.

Our sample consists of plants in nearly every state with nuclear reactors, from New York

to California to Texas to Minnesota. The states not represented in the sample are almost en-

tirely contained to areas outside of regional transmission organizations (RTO) in the Western

Electricity Coordinating Council area where there are no nuclear power plants. As nuclear

plants serve regions of large load demand, this makes our sample highly representative of

nuclear plants in the the U.S. The distribution of our data is fairly even across the remaining

states, as can be seen in Figure 1.

We model output as a translog function:

ln yit =β0 +
4∑

m=1

(βm + ρmt) lnxmit + 0.5
4∑
p=1

4∑
m=1

βmp lnxmit lnxpit

+ (δ1 + δ2t)Peakit + (γ1 + γ2t)Hoursit + λ1t+ (1/2)λ2t
2 + vit − uit, (10)

where t is a time trend and our four conventional inputs (xm) are K, L, Nf and Oil. We

treat Peak and Hours as exogenous controls. We estimate two versions of this production

function using quantile BETEL. Quantile BETEL I treats all inputs, the time trend and

their squares and interactions as exogenous. Quantile BETEL II treats all lagged inputs as
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Figure 1. Distribution of observations in the analysis.

well as their squares and interactions as exogenous, thus allowing contemporaneous inputs

to be endogenous.

In Figure 2 we provide marginal posterior densities of the parameter τ along with its

prior for different values of the prior parameter q. The marginal posterior densities are not

materially sensitive to the choice of this parameter. The posterior mean and median are,

respectively, 0.817 and 0.894, the posterior standard deviation is 0.190 and the posterior

mean absolute deviation is 0.152. As the marginal posteriors seem to be bimodal with a

mode around the median (0.50) we repeat the analysis using a flat prior for τ . The resulting

marginal posteriors are reported in panel b.
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Figure 2. Marginal posterior densities of τ – quantile BETEL.

The new marginal posterior densities are similar to those in panel (a) around the dominant

ones and lose the local mode near unity. Specifically, the posterior mean and median are,

respectively, 0.897 and 0.923, the posterior standard deviation is 0.090 and the posterior mean

absolute deviation is 0.070. We take this as evidence that there is some prior sensitivity to the

form of the prior (beta versus flat) but the effect is, for the most part, relatively insignificant,

as the conclusion remains the same in that the “optimal quantile” (which has been sought

out in the previous literature, Jradi et al. 2021) is in the neighborhood of 0.90. It goes

without saying that if the researcher wants to be dogmatic about the value of τ this can be

easily accommodated in our approach. The results are virtually identical when we allow for

potential endogeneity of inputs albeit with slightly less probability mass in the lower tail of

the posterior distributions.

Our prior for the Bayes Normal-Half-Normal model is p(β, σv, σu) ∝ σ
−(n̄+1)
v e−q̄/(2σ

2
v)σ−1

u ,

where n̄ = 0 and q̄ = 10−6 which is improper and imposes little prior information. We use
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150,000 Gibbs sampling iterations, omitting the first 50,000 to mitigate possible start up

effects.

Figure 3 presents the estimated input elasticities for the production of electricity across

the three specifications estimated. We see that the support of the distribution of estimated

elasticities for all inputs are relatively small, with the modal input elasticities of nuclear fuel

being the largest (between 0.2 - 0.3), as expected. The modal input elasticities for labor and

capital are close in magnitude, while oil has the smallest estimated modal input elasticity.

Most plants do not use oil in production; hence, it is re-affirming that all three models find

oil to be the least important factor in production.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

elasticity
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K
L
Nf
Oil
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(c) Bayesian SFM

K
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Figure 3. Estimated Input Elasticities.
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It is difficult to compare these estimated input elasticities to the extant literature since

so few papers have focused exclusively on nuclear power generation. Perhaps the closest is

Rungsuriyawiboon (2008). Rungsuriyawiboon (2008) estimates price and output elasticities

(found through a cost function) with the results suggesting that fuel, labor and capital had

statistically different price elasticities (with capital being the most price responsive in the

long run) and fuel having the largest output elasticity. This last result of Rungsuriyawiboon

(2008) trues with our finding here that fuel appears to have the most sensitivity. We also

observe that the model value of labor elasticity depends upon the estimation method (with

the BETEL II posterior estimates having the largest model value for the input elasticity).

Figure 4 presents the posterior distribution of estimated returns to scale. The distribution

is close to symmetric and centered on 0.8 for quantile BETEL I with a similar shape for

quantile BETEL II (albeit a mode that is shifted to the left, near 0.75), suggesting the

presence of decreasing RTS. Further, traditional Bayesian SFA produces estimated RTS

much smaller than either of the BETEL models, with a modal RTS of 0.58. Our BETEL

estimates (both I and II) align closely with those of Rungsuriyawiboon (2008), who found a

short run RTS of 0.895 and a long run RTS of 0.776, albeit for an earlier time period than

we are analyzing here.16

It is clear that the vast difference in modal/average RTS between our BETEL estimates

(both BETEL I and II) and standard Bayesian estimation suggest that, between the allowed

asymmetry of the noise term and the robust estimation that the new approach we adopt,

has important implications for what is observed regarding optimal plant size. The finding of

substantial decreasing RTS is important and widely known. Beginning in the early 2000s,

a decline in baseload electricity generation relative to peaking and intermittent capacity

occurred as a result of the Shale Revolution, and more recently, growth in wind. Intermittent

16Kahouli (2011), using a cross-country dataset from the years 1971 to 1997, found increasing returns to
scale using a statistical approach much different from that deployed here.
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capacity poses a challenge to the baseload model because in times of high production of

renewable sources, baseload plants lack flexibility, whereas natural gas plants can generally

adjust their output levels rapidly.

0 0.2 0.4 0.6 0.8 1 1.2

returns to scale

Quantile BETEL I
Quantile BETEL II
Bayesian SFM

Figure 4. Estimated Returns to Scale.

The nuclear industry is well aware of the lack of scale economies. As noted in Johnson

(2013), “Proposals for smaller, modular reactors – from less than one-tenth to one-third

the size of a traditional reactor could speed construction, reducing costs and financial risk.

SMRs, as they’re known, would be built using modular components made in factories and

shipped to the site. Promoters hope that process would bring economies of scale to a business

where few have existed.”

Figure 5 displays the distribution of estimated production efficiency. While RTS may

be below one, we see that the majority of our plant-year observations have high levels of

efficiency (for both quantile BETEL I and II), suggesting little room for improvement in
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overall nuclear energy production. This is consistent with the idea that increasing electricity

production at a nuclear plant is a relatively straightforward process. Contrast this with the

standard Bayesian SFM estimates of inefficiency, which suggest that the industry is more

inefficient. We note that we cannot make comparisons with Rungsuriyawiboon (2008) as that

approach did not allow for technical efficiency. However, with such high levels of technical

efficiency, it is surmised that this might not have had a large impact on those empirical

findings.

0.7 0.75 0.8 0.85 0.9 0.95 1

efficiency

Quantile BETEL I
Quantile BETEL II
Bayesian SFM

Figure 5. Estimated Efficiency.

Productive efficiency in this context is explicitly linked to the capacity factor of nuclear

plants via the numerator. The capacity factor is defined as the actual output relative to

potential output given capacity, while productive efficiency is actual output over model

output. In 2016, nuclear plants had a capacity factor of close to 92% relative to 34% percent

for wind and roughly 55% for coal and natural gas (EIA). The disparity in capacity factors can

https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_6_07_b
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be understood for two reasons. First, nuclear plants require less maintenance than natural

gas or coal plants. Second, while solar and wind energy sources can be highly intermittent

hour to hour, nuclear fuel lasts for over a year.

We do, however, see that some nuclear plants operate well below frontier levels. Another

substantial difference between the methods developed here and more traditional methods

are the estimated efficiency scores. The modal efficiency for quantile BETEL I and II is

right at 0.90 while standard SFA produces a model mean efficiency of 0.78, a 14% difference.

This is an economically meaningful difference in the implications between the models. For

comparison, using a jointly derived dataset on natural gas plants, Bernstein (2020) finds

(transient) productive efficiency to be 0.71 percent on average for standard SFA with much

wider distributions than the present work.

Figure 6 presents the estimated distributions of technical change,17 efficiency change18

and productivity growth19 for the nuclear plants in our database. Technical change is, on

average slightly positive but distributed around 0. This is not surprising as once a nuclear

plant is built, the mechanism by which to generate electricity is fixed. This magnitude is also

consistent with the earlier findings of Rungsuriyawiboon (2008, pg. 13) who notes that “The

magnitudes of the technological change are relatively small, but significant. These results

suggest that technological progress in nuclear power generation may have slowed over the

sample period.”

Both efficiency change and productivity growth are negative, at about 2% annually at the

modal value. Again, this is not surprising as the massive fixed costs of building a nuclear

plant make changes over time costly. In fact, despite the closure of several nuclear power

plants in the U.S. over recent years, the EIA reports that from 2010 to 2018, nuclear power

17See Sengupta (1995) for a definition.
18Badunenko & Kumbhakar (2017) for a formal definition.
19Caves, Christensen & Swanson (1981) for a definition.
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generation actually increased slightly. In order to increase a plant’s output, additional capital

expenditures are required to use more highly enriched fuel or the use of newer fuel, according

to the U.S. Nuclear Regulatory Commission.
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Figure 6. Estimated Technical change, efficiency change and productivity growth.

5. Concluding Remarks

This paper has proposed adaptation of Schennach’s (2005) BETEL approach to estimate

the stochastic frontier model which posed additional challenges as the inefficiencies are unob-

served. We deployed this new approach to novel data studying the generation of electricity

through nuclear power in the U.S. This industry has seen a steady decline in the U.S. over

the past several decades and some have questioned its long term viability. Our results here
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suggest that the industry is characterized by decreasing returns to scale, negative technical

change and high levels of efficiency.

Krautmann & Solow (1988) explain that predicting the future of the nuclear sector is

difficult due to the ever evolving regulatory environment. They note that, “. . . it is not

clear what impact the regulations imposed after Three Mile Island have had on economies of

scale. . . ”. More recently, the future of nuclear power is similarly difficult to assess. On the

one hand, the closures of plants, and growing public opposition to nuclear power (according

to a recent Gallup poll), could spell a downturn. Conversely, the ability of modern small-

scale modular reactors to increase the current RTS measured herein, and the potential of

nuclear energy in quickly fighting climate change, are developments that could revitalize the

sector over the medium-run. Future work should continue to study this critically important

area of electricity generation as the U.S. moves further towards a fully clean energy grid.
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Appendix A. Bayesian Exponentially Tilted Empirical Likelihood

The appeal of studying conditional quantiles is manifest for practitioners. Faced with

clear underlying heterogeneity, the conditional mean can obscure differences that arise in the

conditional distribution. Moreover, quantile estimators are robust in the presence of outliers

that are known to influence and undermine their counterparts constructing an average. Given

the recognized importance of studying quantiles of conditional distributions, a wide range of

estimators have been proposed for an even wider array of statistic and econometric models.

Among available estimators of conditional quantiles, quantile regression is undoubtedly

the most popular and easily applied (Koenker & Hallock 2001, Koenker 2005). However,

a wide variety of alternative approaches have recently begun to appear in the literature.

For example, Komunjer (2005) proposes quasi-maximum likelihood estimation based on the

‘Tick-Exponential’ family, which is demonstrated to be equivalent to quantile regression

when the Tick-Exponential family equals the Asymmetric Laplace family. This natural like-

lihood generalization is an important development in the progression of likelihood estimation

in the quantile setting. The work of Bera et al. (2016) has demonstrated that the first order

conditions from maximum likelihood using the Asymmetric Laplace distribution are equiva-

lent to the solution stemming from the maximum entropy problem with moment constraints

imposed.

Komunjer (2005) proposed a class of estimators for conditional quantiles in possibly mis-

specified nonlinear models belonging to the family of quasi-maximum likelihood estimators.

In this paper, we propose a general class of quantile ML estimators, precisely as Koenker &

Bassett (1978) defined a general class of quantile estimators for the linear model. To begin

consider the linear model:

yi = x′iβ + vi, i = 1, . . . , n, (A.1)
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where xi ∈ Rk is the vector of explanatory variables in a linear model whose dependent

variable is yi ∈ R, β ∈ Rk is a parameter vector, and vi is two-sided measurement error. We

denote the data by D = {(yi,xi)}ni=1. Suppose vi⊥xi, i = 1, . . . , n.

Suppose we have a log likelihood function:

logL(θ;D) =
n∑
i=1

l(Di; θ), (A.2)

where θ ∈ Θ ⊆ Rd is the parameter vector. The ML estimator θ̂ maximizes the above

expression in θ. Our intention is to define a quantile maximum likelihood estimator (qMLE),

θ̂τ , for every quantile τ ∈ (0, 1).

To do so, we find it more convenient to start from the first-order conditions:

∂ logL(θ;D)

∂θ
=

n∑
i=1

∂l(Di; θ̂τ )
∂θ

= 0. (A.3)

These first-order conditions are essentially moment conditions of the form:

n∑
i=1

g(Di, θ̂τ ) = 0, (A.4)

where g : R× Rd → R, which can often be rewritten as:

n∑
i=1

h(ε̂i, θ̂τ )xi = 0, (A.5)
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with ε̂i = yi−x′iβ̂τ and h(yi−x′iβ) is the generalized residual (Gourieroux, Monfort, Renault

& Trognon 1987). An empirical quantile likelihood can then be defined as:

max
∏n

i=1 pi,

subject to∑n
i=1 pih

(
ε̂i, θ̂τ

)
xi = 0,∑n

i=1 pi = 1, pi ≥ 0, i = 1, . . . , n.

(A.6)

where the weights differ from traditional likelihood analysis pi = 1/n ∀i.20

Schennach (2005) has shown that a Bayesian version of empirical likelihood is BETEL

which relies on the following posterior:

p(θ|D) ∝ p(θ)
n∏
i=1

p∗i (θ), (A.7)

where p(θ) is a prior and p∗i , i = 1, . . . , n are solutions to the following optimization problem:

min
n∑
i=1

pi log pi,

subject to∑n
i=1 pih

(
ε̂i, θ̂τ

)
xi = 0,∑n

i=1 pi = 1, pi ≥ 0, i = 1, . . . , n.

(A.8)

The first-order conditions provide the weights:

p∗i (θ) =
exp

{
λ(θ)′h

(
ε̂i, θ̂τ

)
xi

}
∑n

j=1 exp
{
λ(θ)′h

(
ε̂i, θ̂τ

)
xj

} , i = 1, . . . , n, (A.9)

20Endogeneity of x can be easily taken into account by replacing the orthogonality between h
(
ε̂i, θ̂τ

)
and

x with orthogonality between h
(
ε̂i, θ̂τ

)
and instruments z.
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where the Lagrange multipliers, λ(θ), solve:

λ(θ) = arg min
ϕ
n−1

n∑
i=1

exp
{
ϕ′
[
h
(
ε̂i, θ̂τ

)
xi

]}
. (A.10)

In turn, the posterior in (A.7) can be analyzed using standard Markov Chain Monte Carlo

(MCMC) methods, such as the Metropolis-Hastings algorithm. In practice, to explore the

posterior we use first- and second-order derivative information from the log posterior using

the algorithm of Girolami & Calderhead (2011) described in Appendix B.

Appendix B. Markov Chain Monte Carlo

A standard MCMC resampling algorithm uses local information about both the gradient

and the Hessian of the log-posterior conditional of θ at the existing draw. Following this,

a Metropolis test is used to determine if the generated candidate should be accepted. High

acceptance rates can be achieved by using smaller transitions in the parameter space. Unfor-

tunately, the smaller the transition, the longer it takes to traverse the parameter space. We

recommend against this standard MCMC algorithm as the Girolami & Calderhead (2011)

algorithm moves appreciably faster. Even if smaller transitions are used, in high dimensions,

the typical random walk underlying traditional MCMC becomes inefficient, exhibiting both

poor mixing of the chain and highly correlated samples.

To overcome these known issues with MCMC Girolami & Calderhead’s (2011) algorithm

adapts the Metropolis adjusted Langevin algorithm (MALA) and Hamiltonian Monte Carlo

(HMC) into an overarching geometric framework. It has been found that the Girolami &

Calderhead (2011) algorithm performs vastly superior relative to the standard Metropolis-

Hastings algorithm with autocorrelations that are much smaller across the chain. The gains

in efficiency are due to the fact that the geometric framework uses explicit structure of the

target density to traverse the parameter space.



32 BETEL SFA

To more adequately explain the algorithm of Girolami & Calderhead (2011) let L (θ) =

log p (θ|X) denote the log posterior of θ for simplicity. Moreover, define

G (θ) = est.cov
∂

∂θ
log p (X|θ) (B.1)

as the empirical counterpart of

Go (θ) = −EY|θ
∂2

∂θ∂θ′
log p (X|θ) . (B.2)

The Langevin diffusion, which is a stochastic differential equation and is commonly used to

explain Brownian motion, is given by:

dθ (t) =
1

2
∇̃θL{θ (t)} dt+ dB (t) (B.3)

where

∇̃θL{θ (t)} = −G−1 {θ (t)} · 5θL{θ (t)} (B.4)

is the so called “natural gradient” of the Riemann manifold generated by the log posterior.

The elements of the Brownian motion are

G−1 {θ (t)} dBi (t) =|G {θ (t)} |−1/2

Kβ∑
j=1

∂

∂θ

[
G−1 {θ (t)}ij |G {θ (t)} |1/2

]
dt (B.5)

+
[√
G {θ (t)}dB (t)

]
i
.

The lack of differentiability, due to the use of generalized residuals stemming from the check

function, is not concerning given that it occurs only at a single, known, point.
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To implement the resampling scheme we use the discrete form of the stochastic differential

equation as follows:

θ̃i =θoi +
ε2

2

{
G−1 (θo)∇θL (θo)

}
i
− ε2

Kθ∑
j=1

{
G−1 (θo)

∂G (θo)

∂θj
G−1 (θo)

}
ij

(B.6)

+
ε2

2

Kθ∑
j=1

{
G−1 (θo)

}
ij

tr

{
G−1 (θo)

∂G (θo)

∂θj

}
+
{
ε
√
G−1 (θo)ξo

}
i

=µ (θo, ε)i +
{
ε
√
G−1 (θo)ξo

}
i

where βo is the current draw. The proposal density is

q
(
θ̃|θo

)
= NKθ

(
θ̃, ε2G−1 (θo)

)
(B.7)

and convergence to the invariant distribution is ensured by using the standard form of the

corresponding Metropolis-Hastings probability

min

1,
p
(
θ̃|·,Y

)
q
(
θo|θ̃

)
p (θo|·,Y) q

(
θ̃|θo

)
 . (B.8)

We select the hyperparameter ε during the burn-in phase so that 20-30% of candidates are,

eventually, accepted.
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