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1. Introduction

The graphs we consider here are either simple graphs, that is they have no loops or
multiple edges, or are multigraphs, that is they may have more than one edge joining a
pair of vertices, but again have no loops. In particular we shall consider a special kind
of multigraph, called a star-multigraph: this is a multigraph which contains a vertex
v*, called the star-centre, which is incident with each non-simple edge. An edge-
colouring of a multigraph G is a map </>: E(G)^>-<€, where ^ is a set of colours and E(G)
is the set of edges of G, such that no two edges receiving the same colour have a vertex
in common. The chromatic index, or edge-chromatic number, x'(G) of G is the least value
of \c&\ for which an edge-colouring of G exista. Generalizing a well-known theorem of
Vizing [14], we showed in [6] that, for a star-multigraph G,

where &(G) denotes the maximum degree (that is, the maximum number of edges
incident with a vertex) of G. Star-multigraphs for which #'(<?) = A(G) are said to be
Class 1, and otherwise they are Class 2.

This paper is one of several we are writing on star-multigraphs and their appli-
cations. Star-multigraphs are turning out to be a very useful tool in the study of the
chromatic index of simple graphs, as well as being of some interest in their own right.
In particular, we shall use the results in this paper to obtain further results on the
chromatic index in [7] and [8]; furthermore, in [11] C. A. Rodger and the second author
apply results in this paper to the study of decompositions of complete graphs and to
totally symmetric quasigroups.

For n > 4, let K* denote the star-multigraph obtained from Kn by removing one
edge, say v*v', and doubling two other edges on v*, say v*Vj^ and v*v2. For n ^ 1, let
K*n denote the star multigraph obtained from Kn by doubling one edge. The main
theorem we prove in this paper is:

THEOREM 1. Let Gbea connected star multigraph with star-centre v*, with three vertices
of maximum degree including v*, and with no induced subgraph on three vertices having
more than A(G) edges. Then G is Class 2 if and only if either

or

(li) G = K*n+1for some n 35 2,

(1 ii) G has three vertices of degree | V(G) | - i and the remainder have degree \ V(G) \ - 2,
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or
(1 iii) A(G) = 2m + 1 Js 3 for some integer m, G contains a bridge e, and

where

and
i = K*m+i (for m > 2) or G1 = K*2m+1.

Star multigraphs satisfying (Iii) must have odd order; all simple graphs satisfying
(1 ii) are obtained from K2n+1 by removing n — 1 independent edges.

Since no more than [| F((?)|/2J edges can have the same colour in an edge-coloured
multigraph G, if

then G is necessarily Class 2. If G satisfies this condition, then G is called overfull. A
very common reason for a multigraph to be Class 2 is that it contains an overfull sub-
graph H with A(H) = A{G). If

then G is called just overfull. A multigraph G is critical if it is connected, Class 2 and
X'ifi \e) < x'(G) for all e e E(G). A result which is more or less equivalent to Theorem 1
is:

THEOREM 2. Let Gbea star multigraph with star-centre v* and with at most 3 vertices
of maximum degree, including v*. Then the following are equivalent:

(2i) G is critical;
(2ii) G is just overfull;
(2 iii) G is one of the following graphs:

(a) \V(G)\ = 3and\E(G)\ = A(G)+1 > 3;
(b) G = K\n+lfor some n > 1;
(c) G = K$n+1for some n ^ 2;
(d) | V(G) | is odd and G has three vertices of degree | F"(6?)| — 1 and the remainder have

degree | F (G) | -2 .
A conjecture formulated in [3] by Chetwynd and Hilton was:

CONJECTURE 1. Let 1 < s < n. Let Gbea regular star multigraph on2n + 2 vertices of
degree 2n + 1 - s. Suppose G does not contain a subgraph on three vertices with 2n + 2 — s
edges. Then G is Glass 1.

This was proved for s = 1 or 2 in [3]. Here we show that Conjecture 1 is true for
s = 3.

THEOREM 3. Let 1 < s < 3. Let G be a regular star multigraph on 2n + 2 vertices of
degree 2n +1 — s. Suppose G does not contain a subgraph on three vertices with
2n + 2 - s edges. Then G is Class 1.

In the case when G is a simple graph, Theorem 3 was proved in [5]. Of course, a
regular star multigraph of odd order is overfull and consequently Class 2.

We now turn our attention to simple graphs. We propose the following conjecture.
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CONJECTUBE 2. Let G be a simple graph with A(G) > ̂  | V(G)\. Then G is Class 2

if and only if G contains an overfull subgraph H with A(G) = A(H).
Petersen's graph shows that the figure j ^ would be best possible. By applying

Theorem 1, we prove Theorem 4 below, which verifies Conjecture 2 in one case. This
particular case will be of great use in a forthcoming paper by C. A. Rodger and the
second author on triangulating nearly complete graphs [11].

THEOREM 4. Let Gbea simple graph with \ V(G)\ =2n+l, A{G) = 2n-2and

117(0)11 /2n+l\
i-Zv^trn — L±\\Tj. i ——— i — i _ i — on.

I 2 J \ z f

Then G is Class 2 if and only if G contains an overfull subgraph H of maximum degree
A(H) = A(G).

Analogous results were proved by Plantholt[13] for A(G) = |F(<?)|-1 and by
Chetwynd and Hilton [3] for A(G) = | V(G) | - 2. Theorem 4 itself will be improved upon,
partly by removing the restriction on |2£(6r)|, in [7] and [8].

2. Preliminary results

We now give a number of Lemmas which we shall need to use.
The first is due to Chetwynd and Yap [9], extending results of Jakobsen [12] and

Beineke and Piorini[l]. Let P be the graph obtained from Petersen's graph by
removing one vertex (P is an example of a critical graph which is not overfull).

LEMMA 2-1. Let Gbea simple critical graph with | V(G) | < 10. / / G =f= P, then G is just
overfull.

The next few lemmas are proved in [6].

LEMMA 2-2. Let Gbea critical star multigraph with star centre v*, where d(v*) — A(G),
and with r vertices of maximum degree. Then

(2(\V(G)\-1)
if r > 4,

if r = o.

LEMMA 2-3. Let Gbea star multigraph with at most two vertices of maximum degree,
and let G not contain a subgraph on three vertices with A(G) + 1 edges. Then G is Class 1,
unless, for some n > 2, G = Kln+1.

LEMMA 2-4. Let Gbea critical star multigraph with star centre v*, where d(v*) = A(G),
with r vertices of maximum degree, and with maximum multiplicity of an edge fi. Then

A(G) < \V(G)\+r+fi-5.

In a star multigraph G, for each v £ V(G), let d*(v) be the number of edges joining v
to vertices of maximum degree.

LEMMA 2-5. Let Gbea critical star multigraph with star centre v*, where d(v*) = A(G).
Let u and w be adjacent vertices, w 4= v*. Then

(A(G) - d(u) +1 if d(u) < A(G),

if d(u) = A(G).
d*lw) ^ \

[



306 A. G. C H E T W Y N D AND A. J . W. H I L T O N

LEMMA 2-6. Let G be a star multigraph with star centre v*, where d(v*) = A(6r). Let
d*(w) < 1 for some we V(G) \{v*}, let eeE{G) and let e and w be incident. Then

&(G) = &(G\w)=>x'(G) = X'(G\w),
and

A(<?) = A(G \e)=> *'((?) = *'(<? \e).

LEMMA 2-7. Let Gbea critical star multigraph with star centre v*, where d(v*) = A((?),
with at least three vertices of maximum degree. Then either G is a simple graph of odd order
which is just overfull and with A(6?) = | V(G) | — 1, or there is a vertex which is non-adjacent
to v*.

LEMMA 2-8. Let G be a star multigraph. If G is Class 2, then G contains a critical
subgraph G* with A(G*) = A(G).

The next lemma was proved in [5].

LEMMA 2-9. Let G be a simple Class 2 graph with three vertices of maximum degree.
Then | V(G)\ is odd and G has three vertices of degree \ V(G)\ — 1 and the rest have degree
\V(G)\-2.

The next lemma is a generalization due to Berge [2] of a well-known theorem of
Chvatal[10] on Hamiltonian circuits.

LEMMA 2-10. Let Gbea simple graph of order n with degrees dr < d2^ ... < dn. Let q
be an integer with 0 ^ q ^ n — 3 and let F be a subgraph of G with \E(F)\ = q and such
that the components of F are paths. If, for 0 < k < \{n — q),

dk < k + q^dn_k_q ^ n-k,

then G contains a Hamiltonian circuit which contains F.

3. The equivalence of Theorem 1 and Theorem 2

I t will be of great use in our proof of Theorem 1 if we know that Theorems 1 and 2
are equivalent to each other. In this section we prove this assertion.

LEMMA 3-1. Let G be a star multigraph with three vertices of degree \V{G)\, where
\V{0)\ is odd and ^ 5, one vertex of degree \V{G)\ — 2, and the remainder of degree
\V(G)\-l.ThenG = K$n+1.

Proof. Let v' be the vertex of degree | V[G)\ — 2. Any vertex non-adjacent to v* has
degree at most | V(G)\ — 2. Therefore each vertex, except possibly v', is adjacent to v*.
The three vertices of degree | V{G) | each have at least one multiple edge on them, and
so v* has maximum degree and is joined to the other two vertices, say vl and v%, of
maximum degree by multiple edges. Since d(v*) ^ |F(Cr)|, v* is in fact joined to vx

and v2 by double edges, is not joined to v', and is joined to all other vertices by single
edges, &ndd(v*) = |F(6?)|. A vertex Z J ^ J U * , ^ , ^ } is joined to all other vertices. Finally
vx and v2 are the two other vertices of degree | V(G)\ and are each joined to all other
vertices. Therefore G = Kfn+l.

LEMMA 3-2. Let Gbea star multigraph with star-centre v* and with at most three vertices
of maximum degree, including v*. IfG is just overfull, then G satisfies (2iii).

Proof. Since G is just overfull, | V(G)\ is odd, say | V(G) \ = 2n + 1. If | V(G)\ = 3 then
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clearly G satisfies (2 iii), so suppose | V(G)\ > 3. If G has at most two vertices of maxi-
mum degree, then, by Lemma 2-3, G — K\n+1, so again G satisfies (2iii). So now suppose
that G has three vertices of maximum degree.

Let the deficiency, def (G), of G be defined by

def(G)= 2 (A(G)-l-d(v)).
ve V(O)

d(v)<A(G)-l

Then nA{G) + l = \E(G)\

= |(3A(G) + (2w - 2) (A(G)-l ) -def (<?)).

Therefore 2nA(G) + 2 = (2n + 1) A(<?) - 2» + 2 - def (G),

and so def (<?) = A(G) - 2n. Therefore

A(G) >2n. (1)

Since G is a star-multigraph, there are at most I I edges between vertices of

V(G) \{v*}. Therefore

Therefore nA(G) < 2n2 - n - 1 + A(G),

so that A(G) < 2n+ 1.

In view of (1), it now follows that either G has three vertices of degree | V(G)\, one
of degree | V{G)\ — 2, and the rest have degree | V(G)\ - 1, in which case, by Lemma 3-1,
G = K%n+1, so that (2iiic) is satisfied, or G has three vertices of degree | V(G)\ — 1 and
the remainder have degree | V(G)\ — 2, so that (2iiirf) is satisfied.

This proves Lemma 3-2.
For use in the induction argument in Section 5, we need a more detailed assertion

than simply that Theorems 1 and 2 are equivalent to each other. The assertion we
need is the following lemma.

LEMMA 3-3. Let 1 < q < p. Then Theorem 1 is true for \ V(G)\ = p and A(G) < q, or for
| F(#)| < p, if and only if Theorem 2 is true when \ V(G)\ = p and A(G) ^ q or when
\V(G)\ <p.

Proof. Both assertions are easily seen to be true if 0 < A(G) ^ 2. Suppose therefore
that A{G) > 3.

Throughout we shall assume that all graphs considered satisfy | V(G)\ = p and
A(£) < q, or \V(G)\ <p.

(I) Suppose first that Theorem 1 is true when | V(G)\ = p and A(G) < q, or when
V(G)\ < p. Then we wish to show Theorem 2 is true when | V(G)\ = p and A(G) < q,

or when 17(0)1 < p.
If (2 i) is true, so that G is critical, then, from Theorem 1, it is clear that (2 iii) follows.

If (2 iii) is true, then it is easy to see that both (2 i) and (2 ii) are true. Finally, if (2 ii) is
true, then it follows from Lemma 3-2 that (2 iii) is true.

(II) Now suppose that Theorem 2 is true when | V(G)\ = p and A(G) < q, or when
\V(G)\ <p. Then we wish to show that Theorem 1 is true when \V{G)\ =p and

q, or when | V(G)\ < p.
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Suppose that G satisfies the conditions of Theorem 1. If G satisfies (1 i), (1 ii) or (1 iii)
then it is easy to see that G is Class 2. Now suppose that G is Class 2. Then we shall show
(using Theorem 2) that G satisfies (li), (Iii) or (1 iii). Since G is Class 2, by Lemma 2-8,
G contains a critical subgraph G* with A(C?*) = A((r). In Theorem 1, we are assuming
that G contains no subgraph on three vertices with A(G) +1 vertices. Therefore, by
Theorem 2, | V(G*)\ is odd (= 2m + 1, say) and either A((?*) = 2m + 1 and G = K^+x

for some m > 1, or A((r*) = 2m +1 and G = Kfm+1 for some m > 2, or G* has three
vertices of degree 2m and the remainder have degree 2m— 1.

In the first case, since we are assuming in Theorem 1 that G has exactly three
vertices of maximum degree, it follows that | V(G*) \ < | V(G) \. Let G2 be the subgraph
of G induced by V(G)\V(G*). Then G* and <?2 are connected by a bridge e; thus G
satisfies (1 iii) (with G± = G*).

In the second case, either |F(G*)| = |F(G)|, in which case G satisfies (li) or
| V(G*)\ < | V(G)\. Let G2 be the subgraph of G induced by V{G)\V(O*). Then, since
G is connected and has exactly three vertices of maximum degree, G* is joined to G2

by a bridge e (which is incident with the vertex of degree 2m — 1 in G); thus G again
satisfies (liii) (with Gx = G*).

In the third case, since G is connected and has exactly three vertices of maximum
degree, V(G) = V(G*), so G = G*. Then G satisfies (Iii).

This proves Lemma 3-3.

4. A bound on the maximum degree

For a critical star multigraph G, when there are only three vertices of maximum
degree, including v*, the bound on A(G) in Lemma 2-4 reduces to

A(G)< \V(G)\+/i-2,
where /i is the maximum multiplicity. Our task in this section is to reduce this bound.

LEMMA 4-1. Let Gbea critical star multigraph with star-centre v* and with three vertices,
vlt v2, v*, of maximum degree. Then either (i) A((?) < | V(G)\ — 1 and d(v) ^ A((r) — 1
(Vwe V(G)) (so that \ V(G)\ is odd), or (ii) G = K^n+1for some n>2.

Proof. By Lemma 2-9, if G is a simple graph, then | V{G)\ is odd and G has three
vertices of degree | V(G)\ — 1 and the rest have degree | V{G)\ — 2. Thus (i) is satisfied.
Therefore we may suppose that | V(G)\ is not simple. Then it follows from Lemma 2-7
that G has a vertex v0 which is non-adjacent to v*; we note that then

If d{v) ^ A(G) - 1 (Vt> e V(G)), then it follows that A(G) - 1 < d(v0) ^ | V(G)\ - 2, so
j V(G)\ ~ 1. Thus Case (i) of the lemma follows.

Suppose from now that there is a vertex u e V(G) such that d(u) = A(6?) — x, for some
x ^ 2. Let u be joined to v* by m* edges. As G is critical, u cannot be joined solely to
v*, so let u also be joined to vertices wlt ...,wt, where t > 1. By Lemma 2-5,

d*{wi) > A(G)-d(u) + l = x+l

for 1 ^ i < t. Therefore, for 1 ^ i ^ t,

fa: — 1 if wt${vvvj,
\

if wte{vx,v^.
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By Lemma 2-5, again, d*(v) > 2 for all ve V(G) \{v*}. But since d*(vt) > 2, d*(v2) =s 2
and m(vv v2) < 1, it follows that d*(v*) ^ 2 also. Thus

d*(v)>2 (VveF(G)).

Whatever the value of \{vv v2} n {wlt..., wt}\, we have

A(G) = d*(v) >m* + t(z-l) + 2.

Since d(u) = A(G)-£ = m* + t, it follows that m* = A(G)-x-t, and so, after sub-
stituting, we find that 2(t — 1) ^ a;(£ — 1). Therefore either t = 1 or x = 2.

Suppose that f = 1. Consider the possibility that w1e{v1,v^. Then we may assume
that wx = «!. By Lemma 2-5, d*(wx) ^ x+l, and so it follows that m(«*, wx) ^ a;. Also
by Lemma 2-5, d*(w2) ^ 2, and so m(v*,v2) ^ 1. Since d(«) = A((r) —x, we have
m(v*, u) = A(Cr) — x— 1. Since there are exactly A((?) edges incident with v*, it follows
that m(v*, Wj) = x, m(v*, v2) = 1 and that v* is joined to no vertex other than u, wt

and v2. Consequently m{vlt v2) = 1. Thus, within the subgraph induced by {v*, wl, v2, u},
there are x + 2 ^ 4 edges incident with w>x and 2 edges incident with i>2. But any further
vertex satisfies d*(v) ^ 2, is not joined to v*, and so is joined to vt and v2. Therefore
d(wx) > rf(w2) + 2, so ê w )̂ #= d(v2), a contradiction.

Now suppose that t = 1 but M ^ I * ! , V 2 } - By Lemma 2-5, d*(Wj) ^ a;+1, d*(v) ^ 2
and d*(«2) ^ 2, and so m(v*,w^) ^ a;—1, m(v*,vj ^ 1 and m(i>*,»a) ^ 1. As above,
m(v*,u) = A((?)-a;- 1. As there are exactly A(Cr) edges incident with »*, it follows
that »!(«*,«>!) = a:—1, ?«(»*,«!) = m(v*,v2) = 1, and that v* is joined to no other
vertex. Consequently m(vx, v2) = 1. Since d*(v) ^ 2 for all« e F(Cr), it follows that any
vertex peV\{v*, u, vv v2} is joined to both vx and v2, and consequently

A(G) = d(v1)=\V(G)\-2.

But by Lemma 2-5, d(p) > A((?) -d*(v1) + 1 = A((?)-l = |F(<?)| - 3 . Thus p is joined
to all vertices except v* and u. Therefore

Therefore x = 0. But x ^ 2, a contradiction. Thus < # 1.
Now suppose that t ^ 2 and a; = 2. Then rf(«) = A(G) - 2. Suppose first that

{vi> VH ^ {wi> •••> wt}- We may assume that ŵ  = vx and w2 = f2. Since

it follows that m(«*,wt) > 1 (S^i^t), m(v*,Vi) ^ 2 and m(v*,v2)^2. Since
m(«*,M) = A(G)-a;-« = A((?)-2-< and d(«*) = A(G), it follows that ^( t ;*,^) = 1
(3 < i ^ £), that m(v*, vt) = m(z)*,«2) = 2 and that u* is joined to no other vertices.
Therefore, as before, vx is joined to all vertices ve V(G) \{v*,u, vu v2, w3,..., wt}. Since
d*(Vj) = Sandm^*,^) = 2,itfollowsthatm(«1,«2) = l.Since,for3 ^ i < t,d*(wi) ^ 3
and m(«*,wt) = 1, it follows that m^v^w^ = m(v2,wt) = 1 and d*(wt) = 3. Therefore
A(G) = d(vx) = | F(G!)|. Now consider the vertex v0, which is non-adjacent to v*. Then
vo${vltv2,v*,w3, ...,wt}. If v0 + M, then v0 is non-adjacent to both v* and u0, so
d(v0) ^ |F(6r)| - 3 . However, as v0 is adjacent to vx and d*(vt) = 3, it follows from
Lemma 2-5 thatd(t;0) > A((?) - 2 = | V(G)\ — 2, a contradiction. Therefore v0 = u. Then
m* = A(G)-2-t = 0, so t = A(G)-2 = \ V(G)\ -2, so v* is joined to every vertex
except v0, and is joined to i^ and v2 by two edges, and to every other vertex by one
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edge. Since d(u) = | V(G)\ — 2, v0 = u is joined to every vertex except v*. For 3 < i < t,
wt is adjacent to u, so by Lemma 2-5, d(wi) > A(G) — d*(u) + 1 = | V(G)\ — 1, so wt is
joined to every vertex. Therefore G = K% for some m > 4.

We now show that m is not even. Suppose, to the contrary, that m = 2p. If p = 2
then JTJp is Class 2, but is not critical, a contradiction. Now suppose thatp ^ 3. Then
we obtain a contradiction by showing that K%p is Class 1. Let K2p be edge-coloured with
colours cv ...,c2p_1, and let v*, v0, vlt v2, v' be distinct vertices such that v*v0 and vxv'
are both coloured c2p_1. Then recolour vxv' with c2pt remove the edge v*v0, insert an
extra edge joining v* to vx coloured cSp_lt and an extra edge joining v* to v2 coloured c2p.
Then K%p is edge-coloured with 2p colours, and so K%p is Class 1. Therefore G 4= K$p.
Therefore G = K%n+1 for some n > 2, so G satisfies Case (ii) of this lemma.

Now suppose that \{vltv2} n {wv ...,wt}\ = 1. We may suppose that vx — wx and
that v2 $ {wx wt}. We have m(v*, u) = A((?) — t — 2 and, by Lemma 2-5,

d*(wt) > 3 (1 < i ^ <).

somfi;*,^) ^ 2andw(t;*,wi) > 1 (2 ^ t < i). We also have d*(v%) ^ 2, so m(v*, v2) ^ 1.
As d(v*) = A((?), it follows that ra^*,^) = 2, m{v*, w{) = 1 (2 < i ^ <). m(»*,»2) = 1,
m(wi> ^2) = li u* is joined to no other vertex, and that each vertex not in

{v*,u,vt,v2,w2 wt}

is joined to vx and v2. But then within the subgraph induced by {v*, u, vlt v2, w2,... ,wt},
vx has t+ 3 edges on it and v2 has t+ 1 edges on it, so A((?) = d ^ ) =)= d(«2) = &(@)> a

contradiction. Therefore \{vv v2] n 1^ , ...,wt}| #= 1.
Finally, suppose that {v^v^ n {w!,..., wt} = 0 . As in earlier cases, it follows that

m(v*,u) = A(G)-t-2, ?»(»*,»!) ^ 1, m(«*,v2)^l and m ^ * , ^ ) > 1 (1 < i < «)•
Therefore, as d(«*) = A((?), it follows that

m(v*,u) = & ( G ) - t - 2 , m(v*,v1) = m(v*,v2)'=m(v*,wi)= 1 ( l ^ i ^ t ) ,
m(Vn vi) = 1» w* is joined to no other vertices, and all vertices of

V(G) \{v*, u, vu v2, w^..., wt}

are joined to vx and v2. Since m(vlt v*) = 1 and vt is joined to all vertices except u, we
have A(G) = d(vx) = \ V(G)\ - 2. By Lemma 2-5, it follows that if

veV(G)\{v1,v2,v*,v),

then d(v) = A(G) — 1 = |F((?)| — 3. If pe V(G)\{v1,v2,v*,u,w1, ...,wt}, thenp is joined
to all vertices except u and v*. As the vertices wv ...,wt are each joined to each vertex
of V(G)\{wly ...,«>t} by a single edge, wlt ...,wt induce a graph which is regular of
degree t — 3. Therefore t ^ 3. We also have

m{v*,u) = A(G)-t-2=

Since G is not a simple graph, it follows that m(v*, u) ^ 2. Therefore | V(G)\ ^ 9.
Suppose first that | V(G)\ is even, | V(G)\ = 2n say. Let G' be a graph obtained from

G by replacing all the edges between u and v* by a single edge. Let d[ ^ d'2 < ... < d2n

be the degrees of (?'. Then, as n ^ 5, we have

d ; ^ 4 , rf2^6, d ^ 2 n - 3 , ...,d'2n_2> 2re-3, d2n_x = d2n = 2n - 2,



Star multigraphs with three vertices of maximum degree 311

and the condition
d'k ^ i + l = > ^ 2 n _ f c - i > 2 n — k ( l ^ k ^ n — 1 )

is satisfied, so, by Lemma 2-10, G' has a Hamiltonian circuit which includes the edge
v±v%, and hence G has a 1-factor F including vvv2. Now G \F has three vertices v*, vu v2

of maximum degree A(G)-1 and d^^Vj) = d%^F{v2) = 1. By Lemma 2-8, if G\F
were Class 2, then G \F would contain a critical subgraph H with A(H) = A(G \F). But
by Lemma 2-5, vvv2$ V(H), and so H has just one vertex, namely v*, of maximum
degree. Since A(G) = |F(C?)| - 2 ^ 8 > 2, # contains no subgraph on three vertices
with A(H) + 1 edges [the only possibility for this would include v* as one of the three
vertices, but the neighbours of v* are mutually non-adjacent]. Therefore,byLemma2-3,
H is Class 1, a contradiction. Therefore | V(G)\ is not even.

Next suppose that | V(G)\ is odd, | V(G)\ = 2n + 1, say. Let G' be a graph obtained
from G by replacing all the edges between u and v* by a single edge. Let G" be obtained
from G' by adjoining the further edge v2u. Let d\ < d"2 < ... < d"2n_i be the degree
sequence of G". Then, as n ^ 4, we have

dj ^ 5 , dj > 6, ^ ^ 2w-2, ...,<&,_! ^ 2 « - 2 , ( ^ = 2 « - 1, d^+1 = 2w,

and G" satisfies the condition

Therefore, by Lemma 2-10, G" has a Hamiltonian circuit which includes the path
v1«2, v2u. Therefore G has a near 1-factor F which includes the edge v1v2 and does not
contain an edge incident with u. Then G \F has three vertices v*, vv v2 of maximum
degree A(G) — 1 and dov*1^) = dg^v^ = 1. We now obtain a contradiction as above.

5. Proof of Theorems 1 and 2

By Lemma 3-3, Theorems 1 and 2 are equivalent. Formally we shall prove Theorem 2,
but we shall make use of this equivalence. To see that (2ii) => (2iii) we use Lemma 3*2.
I t is easy to see that (2iii)=> (2ii) and that (2iii)=> (2i). What we have to prove is that

Let G be a critical star multigraph with star centre v* with at most three vertices
of maximum degree, including v*. For simple graphs, the truth of Theorem 2 follows
from Lemma 2-9. Therefore we shall assume that G has at least one multiple edge. If
| V(G)\ = 3, then, since G is a star multigraph, \E(G)\ = A(G) + l. Suppose from now
on that |F(Cr)| > 3. Then G contains no subgraph on three vertices with A(Cr) + l
edges, for otherwise G would not be critical. It therefore follows from Lemma 2-3 that
Theorem 2 is true when G has at most two vertices of maximum degree. Therefore we
shall also assume that G has three vertices of maximum degree, v*, vx and v2.

I t follows from Lemma 4-1 that either G is K%n+1 for some n ^ 2, in which case G is
clearly overfull, or G has three vertices of degree A(G) and the rest have degree A((?) — 1,
where A(G) s£ | V(G)\ - 1. In this case, since \E(G)\ = £(| V(G)\ (A{G)- 1)4-3), it
follows that | V(G)\ is odd and A(G) is even. If A(G) = | V(G)\ - 1 then G is just overfull,
as required. We suppose from now that A(G) < | V(G)\ - 2. Then, in fact, we have

3. (2)
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By Lemma 2-2, we may assume that

(3)

I t follows from (2) and (3) that | V(G)\ Js 9, and that if | V(O)\ = 9 then A(G) = 6.
•The proof proceeds by induction. We asssume that Theorem 2 (and therefore, by

Lemma 3-3, Theorem 1 also) is true for lower values of | V(G)\, or for the given value of
| V(G)\ and lower values of A(G).

As in Lemma 4-1
d*(v)>2 (VeeF(G)).

Therefore, as there are three vertices of maximum degree,

3A(G) = S d*(v) * 2\V(G)\.

Let the excess e(G) of G be defined by

e(G) = 3A{G)- 2\V(O)\.

Thus e(G) measures the amount by which S»6F(O)^*(W) exceeds 2|F(6r)|. By (2) we
havee(G) < A(G)-2(\V(G)\ -A(G)) <A(<?)-6,so

6 (4)

with e(G) = A(G) - 6 only if A(G) = 17(G)\ - 3. Therefore

2 (mo(t>*,w)-2)<A(fl')-6, (5)
ice r(0)\v*

with equality only if A(G) = | F(G)| - 3 .
There is a vertex a which is non-adjacent to v*. Since do(a) = A(G) — 1 < | V(G)\ - 4,

there is a vertex b $ {vlt v2, v*} which is non-adjacent to a. Our first move is to show that
there is a near 1-factor F which does not include an edge which is incident with b,
but which does include the edge avv

From G, form a graph G+ by inserting an edge ab. From G+ form a graph G' by
replacing each multiple edge on v* by a single edge. Let the vertices of G' be

and have degrees d'x < d'2 < ... < d'2n+1. We may suppose that wx = v* except perhaps
when there is only one multiple edge, between v* and, say, wlt where ^ ( ^ I ) = A((?) — 1,
and then we may take v* to be w2.

If d'(v*) s? 3 then, since d*(vx) > 2 and d*(v2) ^ 2, it follows that e{G) ^ A(G) - 6.
From (4) it then follows that e(G) = A(G) - 6 and that

d'(v*) = 3, mo(v*, Vl) = mo(v*, v2) = 2, mG(v*, w2) = A(G) - 4,
and

A(G)=\V(G)\-3.

But if v e V(G) \{v*, w2, vlt v2}, then v is joined to vv so do(Vj) = | V(G)\ — 2, a contra-
diction. Therefore

d'(v*) 2 4. (6)
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For 1 < i < 2ra+ 1, if wt 4= v*, let/*f be the number of edges in G+ joining wt to v*.
By Lemma 2-10, if

d'k^k + 2=>d'Zn_1_k > 2n+l-k (1 ^k^n-1), (7)

then G' contains a Hamiltonian circuit including the path vxa, ab, and so G contains a
near 1-factor F including the edge avx but not including any edge incident with b.

First suppose, for some k with 3 < k < n — 1, that d'k < k + 2; we shall consider later
the possibilities when k = 1 or 2.

Suppose that

«*o(«*)= S A**-
t=i

Then u1,v2e{w1, ....w^.}. Since dfc<i + 2 and d'k = da(wk)—/ik+l ^ A(G)—/ik, it
follows that/ifc ^ A(G) — k — 2. Bearing in mind that dgivj) = rfG(fl2) = ^(^) a n d that
^i < ... < d'k, we have

rft + 2 if /*i£{«*,t;1,t>2} and 1 ̂  t < A,

I.A4-1 ll /*i = «i or u2.
I t follows that

(k-l)A(G)-A(G)=

and so, for i Js 3,

Using (3), since k < ?i— 1, we have

| ^ j [^J (8)
3

Now suppose that

do(v*) =

Then {vx, v2} n {wi,..., wk} # 0 . In a similar way, we obtain

(fc-l)A((?)-(A(G)-l)= 2

from which (8) again follows.
Lastly, if

then we obtain similarly

(

and so (8) follows again.
If k > 5, then it follows from (8) that « ^ 4 , so&<«— 1 < 3 , a contradiction.

Therefore & = 3 or 4. From (8) it now follows that A(6?) < 8. Applying (8) yet again,



314 A. G. CHETWYND AND A. J. W. HILTON

(4n + 2)/3 < 8, and so n < 5. By (3) and (8), it follows that the values of {k,n,
we must consider are (4, 5, 8), (3,4, 6) and (3,5,8). We consider these cases separately.

First consider the case when (k, n, A(G)) = (4,5, 8). Then d[ ^ d'2 < d'z < d't < 6 and
w1 = v*. Bearing in mind that mG(v*,v^ 5= 1 and mG{v*, v2) > 1, the only possibilities
are either that (a) d'(v*) = 5 and v* has on it two edges of multiplicity 1 and three edges
of multiplicity 2, or that (b) d'(v*) = 4 and there is one edge of multiplicity 1, two edges
of multiplicity 2 and one edge of multiplicity 3 on v*, or that (c) d'(v*) = 3 and there
is one edge of multiplicity 2 and two edges of multiplicity 3 on v*. In case (a), we have
d'x = 5, d'2 = d3 = d't = 6, d'5 = 7, and so G+ satisfies the Chvatal-Berge condition (7).
In case (6), we have d[ = 4, d2 = d'3 = d't — 6, d'5 = 1 and again (7) is satisfied. Finally,
case (c) does not in fact arise, because e(G) = 3A((r) —2| V(G)\ = 2, so that d*(v) = 2
for all except at most two vertices v.

Next consider the case when (k, n, A((?)) = (3,5, 8). Then d'x < d'% < d'3 < 5 and
w^ = «*. Bearing in mind that mo(v*, vx) > 1 and ma(v*,v2) > 1, and that, by (6),
d'(v*) ^ 4, the only possibility is that d{v*) = 4 and v* has two edges of multiplicity 1
and two edges of multiplicity 3 on it. Let dx < ... ^ d"w be the degrees of G' \^ox\
Since, as above, d*(v) = 2 for all except at most two vertices v, w2 and w3 cannot be
joined to either vr or v%. Therefore d\ = 3, d\ = 5, $J = 5 and d\ = 6. Therefore the
condition

d"k s

is satisfied with n = 5, and so, by Lemma 2-10, t r ' ^v j has a Hamiltonian circuit
containing the edge ah. Therefore C \{»j} has a 1 -factor containing ab. But a is adjacent
to vx in G+, so (?+ (and therefore G) has a near 1-factor F containing the edge avx and
avoiding the vertex b.

Lastly consider the case when (k, n, A((?)) = (3,4, 6). In this case we obtain a contra-
diction by arguing directly that G is Class 1. Since e(G) = 3&(G)-2\V(G)\ = 0 and
d*(v) $5 2 (Vt)G V(G)), it follows that do(v*) = 2 (Vve V(G)). Therefore there is exactly
one edge between any two of v*, vv v2, there are no edges of multiplicity greater than 2
and any vertex joined to v* by a double edge is not joined to v1 or v2. Either (a) v* has
four edges of multiplicity 1 and one edge of multiplicity 2, or (b) v* has two edges of
multiplicity 1 and two edges of multiplicity 2. In case (a) G\v* has degrees 3, 4, 4,
5, 5, 5, 5, 5. By Lemma 2-10, G\v* has a Hamiltonian circuit containing the edge
vxv2. Consequently G has a near 1-factor F' containing one edge from the double edge
on v* and the edge vxv2. But G \F' is a simple graph of order 9 and maximum degree 5
and is not overfull. Therefore, by Lemma 2-1, G\F (and therefore G) is Class 1, a
contradiction. In case (b), G\v* has degree sequence (3, 3, 5, 5, 5, 5, 5, 5). Let v7 and v8

be the vertices joined to v* by a double edge. By Lemma 2-10, G \v* has a Hamiltonian
circuit. Therefore G has a 1-factor Fx containing one of the edges joining v* to vB, an
edge incident with v1 and an edge incident with v2- Then G \FX has four vertices v*, vu v2,
and, say, w, of degree 5, and the remaining vertices have degree 4. If w = v7, then the
degree sequence of (G \Fj) \v* is (3, 3, 4, 4, 4, 4, 4, 4). By Lemma 2-10, this has a
Hamiltonian circuit, and so G has a near 1-factor F2 containing an edge joining v*
to v7, an edge incident with vlt and an edge incident with v2. Thus G\(FX u F2) is a
simple graph of order 9 and maximum degree 4, and is not overfull. Therefore, by
Lemma 2-1, G\{FX u F2) is Class 1. Therefore G is Class 1, a contradiction. If w # v7,
then the degree sequence of (G \FX) \v* is (2, 3, 4,4, 4,4, 4, 5). The argument is the same,
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except that F2 must include an edge incident with w as well, and also leads to a contra-
diction. In view of (2) and (3), we may assume from now that | V(G)\ > 11 and

At this point we have shown that either d'j. ^ k + 3 (3 ^ k 4: n — 1), or G contains a
near 1-factor F which includes the edge avx and avoids b, or G is Class 1 (a contra-
diction).

Now suppose that either d'x ^ 3 or d'2 < 4. Then, by (6), d'(v*) = 4. If d[ < 3, then
v* = w2 and mG(w1> w2) = A(G) — 3, contradicting (5). Therefore d[ = 4, so v* = wi and
d'(w2) = 4. If w2 e {vlt v2} then mo(v*, w2) = A(G) — 3, again contradicting (5). Therefore
M>2 ${vl7 v2) and mo(v*, w2) = A(G) — 4. Therefore, by (5),

e((?) = A(G)-6 and A{G) = \V(G)\ - 3 ,

and so d*(v) = 2 for v${w2,v*). Therefore ma(v*,v^) = mo(v*,v2) - mo{v1,v2) = 1 and
mo(v*,y) = 2.

Let the degrees of G' \{w1} be d\ < ... sg d^- Then dj = 3, d2 = 4,

«? = . . . = d2"n-3 = A((?) - 2 and d2"n_2 = d"2n_^ = 4'ra

Therefore the condition

is satisfied, and so, by Lemma 2-10, (?' \{ux} has a Hamiltonian circuit containing the
edge ah. Therefore G' \{«1} has a 1-factor containing ah. But a is adjacent in G+ to vv

so G+ (and therefore G) has a near 1-factor F containing the edge ai^ and avoiding the
vertex b.

If G' satisfies (7) then G contains a near 1-factor F including av^ and avoiding b.
Thus in all cases it follows that either G is Class 1 (a contradiction) or G contains a near
1-factor F including av1 and avoiding b. So from now on we shall assume G contains F.

The graph G \F has four vertices, v*, vlt v2, b, of maximum degree A(Gf) — 1, but the
vertex a is adjacent to only one of them (v2). Therefore, by Lemma 2-6, G\F and
G° = (G\F) \{a}]havethe same chromatic class. The graph G0 has three vertices, v*, vlt b,
of maximum degree, and has 2n vertices.

If G° contains a subgraph H on three vertices with A(G!0) 4-1 edges, then, since G°
is a star-multigraph, v* must be one of the vertices. Then do»(v*) = A(G°) — A{G)~ 1,
so d'(v*) < 3. But this contradicts (6). Therefore G° contains no such subgraph.

Since | V(G)\ > A((?) + 3 it follows that | V(G°)\ > A(G°) + 3, and so by induction we
obtain the contradiction that G° (and therefore G) is Class 1, unless A(G°) = 2m + 1 for
some integer m, G° contains a bridge e, and G° \e = (?J U G\, where G\ n G\ — 0,

A(fl?) = 2m+1, and G\ = K%n+1 (for m ^ 2) or G\ = Klm+1.

The number of edges of E{G) \E(G°) which are incident with vertices of G\ is at
most 2m + 1. The vertex v* is incident in G with at most one vertex of F(G§) U {a}, so at
least one of vlt v2, say vlt is in V(G\). But then vx is incident in G with at most two ver-
tices in V(G%) u {a}. However, since d*(v) > 2 (Vve V(G)), any vertex in V(G%) U {a} is
incident with v* or vx\ consequently | V(G\) U {a}\ < 3. Since all multiple edges of G
are incident with v*, not more than one edge of F is incident with two vertices of Gv

and yet each vertex of G\, except for possibly one, is incident with an edge of F.
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Therefore |F((?g) U {a}| > |F(<?})|-3 = 2m-2 . Therefore 3 > 2m-2 , so m < 2, so
A(G°) ^ 5, and so A(G) < 6. By (3), therefore, 6 ^ §|F(£)|, so 9 ^ \V(G)\. However,
this contradicts the assumption we are now making that | V(G)\ > 11.

Thus there is no critical star multigraph H with three vertices including v* of
maximum degree satisfying (2). This proves Theorems 1 and 2.

6. Proofs of Theorems 3 and 4
Theorem 3 is an easy consequence of Theorem 1, and Theorem 4 follows from

Theorem 3.

Proof of Theorem 3. The cases when s = 1 or 2 were proved in [3]. Now consider the
case when s = 3. If n = 1 or 2, then Theorem 3 is easily seen to be true in this case.
So suppose that n > 3. Let v* be the star centre and let to be a vertex which is non-
adjacent to v*. Then G\w has 2n + l vertices, three vertices of maximum degree,
including v*, and no induced subgraph on three vertices with more than

edges. Furthermore G\w is connected. Therefore G\w satisfies the hypotheses of
Theorem 1. The minimum degree of G\w is 2n — 3 = 2n — s > n. Therefore G\w does
not contain a bridge, so G \w does not satisfy Case (1 iii) of Theorem 1. Clearly it does
not satisfy Cases (li) or (Iii) either. Therefore G\w is Class 1. Since

\E(G\w)\ = i((2n + 2)(2n-2))-(2n-2)
= (2n-2)n

in any edge-colouring of G \w with A(6?) = A(G \w) colours, each colour is missing from
exactly one vertex. Therefore any such edge-colouring can be extended to an edge-
colouring of G by giving each edge incident with w the colour missing at the corre-
sponding vertex of G\w. Therefore G is Class 1. This proves Theorem 3.

Proof of Theorem 4. The sufficiency is trivial, and we need to prove the necessity.
Let G be a simple graph with

\V(G)\=2n+l, A(G) = 2n-2 and \E(G)\ = A(G)

Suppose also that G does not contain any overfull subgraph with maximum degree
2n — 2 (any such subgraph would have 2n—l vertices).

Adjoin a further vertex v* and 2n-2 further edges so as to create a regular star-
multigraph G* of degrees 2n — 2 with In+ 2 vertices. Since

- 2 ) = i(2» + 2)(2n-2),

this can be done. If we show that G* contains no subgraph on three vertices with 2n — 1
edges, then it follows from Theorem 3 that G* is Class 1, and therefore G is Class 1, as
required.

Suppose otherwise, namely that G* does have a subgraph on three vertices with 2n—l
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edges. One of the three vertices must be v*; let the other two be denoted by w1 and w2.
Then each of the 2n — 2 edges on v* would have to be joined to wt or w2, and wt and w%

would have to be joined by one edge. Therefore wx and w2 would be joined in G* by a
total of 2(2» - 2) - (2n - 2) - 2 = In - 4 edges to vertices of V(G*) \{v*, wx, w2}. Since
G* is regular of degree 2n — 2, it follows that G* \{v*, wt, w2} contains

£ { ( 2 T O - 1 ) ( 2 » - 2 ) - ( 2 » - 4 ) } = ( 2 » - 2 ) ( » - l ) + l

edges, and so G* \{v*, wv w2} is overfull, a contradiction.
Therefore G is Class 1, and Theorem 4 is proved.
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