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Abstract

Georgios Sofronis
Volatility Modelling with High-Frequency Financial Data on

a Continuous Time Scale

Financial volatility is the core of multiple sectors in finance. This work investigates
different aspects of volatility using high-frequency data. High-frequency data offer a
complete picture of the dynamics of the intraday patterns, contributing to a more precise
inference about these patterns. However, their complex structural form yields several
challenges in the analysis for the practitioners. Our research takes place in both the
univariate and multivariate space, meaning that we explore the data characteristics for
every asset separately and as a factor of interactions among the assets.

In terms of the analysis in the univariate space, Chapters 2 and 4 develop some
volatility estimators in discrete and continuous time scales, respectively. More specifi-
cally, we develop several estimators of the intraday volatility in Chapter 2 where each
estimator approximates the intraday volatility, exploiting different characteristics of the
dataset. On the other hand, we consider an estimator of the daily volatility along with
its theoretical framework in Chapter 4. Our simulation study shows that our estima-

tor is superior to standard estimators of daily volatility when the variance of the noise



incorporated in the intraday observations takes values of normal size.

In the multivariate space, Chapter 3 studies whether we can decompose the daily
volatility traits to some components, inferring the assets which drive these components
the most. Also, we extend the relevant methodology to volatility estimates with high
frequency, as those provided by the estimators in Chapter 2. Through our proposed
approach, we can deduce the stocks which present the highest variability as well as the
intraday periods this variability is observed more intensely.

In Chapter 5, we develop a technique for estimating the conditional dependence
structure between the assets using the concept of graphical models. This chapter treats
high-frequency data as functional data, allowing us to exploit their virtues to draw

inferences about the assets’ conditional interdependencies.



Acknowledgement

In this section, I would like to acknowledge the contribution of some people who have
played a decisive role during my educational journey.

I would like to express my warmest thanks to my supervisor, Dr Juhyun Park, for the
cooperation, her guidance and the countless hours we have spent discussing my research
issues. Dr Park is a mentor who taught me how a statistician should think in order to
confront complex research challenges.

Also, I highly appreciate the acceptance of my supervisor’s request from Dr Alex
Gibberd and Dr Mikko Pakkanen to be my viva’s internal and external examiners, re-
spectively.

I am deeply thankful to Lancaster University and its staff for honouring me with
a full scholarship for my doctoral studies and making my investigation more painless,
supplying all the comforts I have needed for my research.

I would like to thank Prof. Ingmar Nolte and Dr Sandra Nolte for their insightful
comments on my research during the first year of my doctoral studies and the provision
of the dataset for this study.

In addition, my special thanks to Dr Stylianos Xanthopoulos and Dr Markus Jochmann
who supervised my dissertation during my undergraduate and postgraduate studies, re-
spectively. The positive interaction with my former supervisors was a key factor in my
decision to extend my studies with a PhD.

Next, I would like to thank Effrosini Daouti, Eirini Daouti, Prof. Emmanuel Koukios



and Dr Panagiotis Korovessis for their support, motivation and guidance while I was
planning my next steps after the completion of my undergraduate studies.

Finally, T would like to express my gratitude to my parents, loannis Sofronis and
Toanna Davouti, my sister, Eirini Sofroni and my grandmother, Eirini Solomou. All

their aid, backing and encouragement have always been priceless to me.



Declaration

I hereby declare that the work in this thesis titled “Volatility Modelling with High-
Frequency Financial Data on a Continuous Time Scale” has been done by me. Also, this
thesis has not been submitted elsewhere for the award of any other degree. The results
in this study were produced using the programming language MATLAB, where all codes
and algorithms either made by me or they are standard MATLAB codes. For the ACF
plots in Chapter 3, the function ‘autocorr’ is used and requires the installation of the
toolbox ‘Econometrics Toolbox’. Besides, the figures in this thesis have been created by
me using MATLAB, unless something else is clearly specified in the main body of this

work. The word count of this thesis is 54,272 words.



Contents

1 Introduction, Motivation and Preliminaries 20
1.1 Imtroduction . . . . . . . . . .. L L 20
1.2 Microstructure of Financial Markets . . . . ... ... ... ... ..... 26
1.3 Financial Volatility . . . . . . ... ..o oL 29
1.4 High-Frequency Financial Data . . . . .. .. .. ... ... ........ 32

1.4.1 Preliminaries . . . . . . . . . Lo 33
1.4.2 Returns . . . . . . . 35
1.5 Dataset Description and Exploratoty Data Analysis . . . ... ... ... 38
1.5.1 Correlation . . . . . . ... 44
1.5.2  Correlation Between the Returns of the Stocks . . . . .. ... .. 46
1.5.3 Correlation Between the Returns of Stocks and Sectors . . . . .. 49
1.5.4 Clustering . . . . . . .. . o 51

2 RV-Based Estimators of Intraday Volatility 53
2.1 Imtroduction . . . . . . . . . L 53
2.2 Theoretical Framework . . . . . . .. .. .. o o 54
2.3 Realised Variance . . . . . . . . . .. e 62
2.4 Intraday Volatility Estimation . . . . . . .. ... ... ... 65

2.4.1 Properties of the Estimators. . . . . ... ... ... ... ..... 69
2.5 Empirical Example . . . . .. .. oo 74



2.6 Discussion . . . . . . . 80

Factor Analysis with RV-Based Estimators 83
3.1 Introduction . . . . . . . . L L e 83
3.2 Factor Analysis . . . . . . . . .. 87

3.2.1 Principal Component Analysis . . . . . . ... ... ... ..... 87

3.2.2  Methodology of Factor Analysis. . . . . .. ... .. ... ..... 89

3.2.3 Optimal Number of Factors . . . . . . ... ... ... ... .... 93
3.3 Factor Analysis for Intraday Volatility Estimates . . . . . .. .. ... .. 95
3.4 Empirical Analysis - Daily RV-Based Estimates . . . . . . ... ... ... 100
3.5 Empirical Analysis - Intraday RV-Based Estimates . . . . . .. .. .. .. 104
3.6 Discussion . . . . . . .. 112

Integrated Variance Estimation with Local Polynomial Regression 114

4.1 Introduction . . . . . . . . . Lo 114
4.2 Local Polynomial Regression . . . .. ... .. ... ... ... ..... 116
4.2.1 Kernel Function . . . . .. ... . oo 120
4.2.2 Bandwidth Selection . . . . . . . ... ... oL 122
4.3 LPR-Based Estimator of IV . . . . . . . .. ... . o0 128
4.3.1 Estimation of Noise Variance . . . . ... ... ... ... ..... 132
4.3.2 Asymptotic Properties . . . . . ... ... 133
4.4 Standard IV Estimators . . . . . . . .. .. ... oL 140
4.41 Two-Scales RV . . . . . . . .. 140
4.4.2 Pre-Averaging Approach . . . . . . . ... ... .. L. 141
4.4.3 Realised-Kernel Estimator . . . . . . .. ... ... ... ... .. 143
4.5 Spot Volatility . . . . . . ... 145
4.6 Simulation . . . . ... 146
4.6.1 Simulation - Results . . . . . .. .. ... 000000 149



4.7 Empirical Application . . . . . . . ...

4.8 DiIScussion . . . . . ... e e e

5 Conditional Dependence Structure Estimation with Functional

Graphical Models
5.1 Introduction . . . . . . . . .. e
5.2 Graphical Models . . . . . .. ..
5.2.1 Graphical LASSO Approach. . . . . . ... ... ... ... ...,
5.2.2  Tuning Parameter Estimation in Graphical LASSO . . . . . . . ..
5.3 Functional Graphical Models . . . . . . ... ... ... ... ... ...
5.3.1 Notation for Functional Variables . . . . . . . . .. ... ... ...
5.3.2 Estimation of Functional Covariance Function. . . . . . . . .. ..
5.3.3 Bivariate LPR . . . . .. .. oo
5.3.4 Estimation of the Inverse of the Variance-Covariance Matrix
5.3.5  Functional GLASSO Algorithm . . . . . .. ... .. ... .....
5.3.6 Tuning Parameter Estimation in Functional Graphical LASSO
5.4 Simulation Study . . . . . ...
5.5 Empirical Analysis . . . . . ...

5.6 Discussion . . . . . . .. e

Appendix for Chapter 1

Appendix for Chapter 2

B.1 Properties of the Intraday RV-Based Volatility Estimators . . . . . . . ..
B.1.1 Momentsof V; . . . . . . ... ...
B.1.2 Conditional Moments of B; . . . . . . . ... .. .. ... .....

B.1.3 Conditional Mean and Variance of the RV-based Estimators . . .

160
160
164
167
171
172
174
176
181

. 185

189

. 191

193
198
204

221

228
228
229
230

. 231



C Appendix for Chapter 3 233

C.1 Simulation Study . . . . . . . . ... 233
C.2 ACF Plots . . . . . . . o 237
C.3 Factor Analysis Findings - Daily RV-Based Estimates . . . ... ... .. 241
C.4 Factor Analysis Findings - Intraday RV-Based Estimates . . . . . . . . .. 244
D Appendix for Chapter 4 255
D.1 Derivation of the Local Polynomial Estimators . . .. ... ... ... .. 255
D.1.1 Nadaraya-Watson Estimator . . . ... ... ... ... .. .... 255
D.1.2 Local Linear Estimator . . . .. .. .. .. .. ... ... ..... 257
D.1.3 Local Quadratic Estimator . . . ... ... ... ... .. ..... 261
D.1.4 Local Cubic Estimator . . . . . .. .. ... .. ... ... ..... 267

D.2 Derivation of the Mean Squared Error . . . . ... ... ... ... .... 277
D.3 Derivation of the Expectation of Cross-Validation . . . . . ... ... ... 277
D.4 Moments of Returns . . . . . . . . . ... 278
E Appendix for Chapter 5 280
E.1 Description of Relevant Concepts . . . . . . . . . . ... ... ... .... 280
E.2 Derivation of the GLASSO Algorithm . . . ... ... ... ... ..... 282
E.2.1 Steps of the GLASSO Algorithm . . . ... ... ... ... .... 286

E.3 Properties of the Functional Variance-Covariance Matrix . . . . . . . . .. 287
E.4 Derivation of the FGLASSO Algorithm . . . . ... ... ... ...... 289
E.4.1 Preliminary Calculations. . . . . ... ... ... ... .. ..., 289
E.4.2 Derivation of the FGLASSO Approach . . . . .. ... ... .... 293
E.4.3 Derivation of the Coefficients Minimisation Problem . . . . . . .. 300

E.5 Simulation Model . . . . . . . .. 303
E.5.1 Correlated Variables . . . . . .. .. ... o000 304
E.5.2 Uncorrelated Variables . . . . . . ... ... ... ... ... 308



E.6 Empirical Analysis Results . . . .. .. ... ... ... ... .......

E.6.1 Log-Prices
E.6.2 Returns .

10



List of Figures

1.1

1.2

1.3

1.4

2.1

The observed high-frequency stock prices (blue line) of Pfizer Inc. (PFE) are
plotted against the closing prices (red line) of the same company for the trading
days of January 2012. The observed open prices are also given as green asterisks
in the figure. . . . . . . .. L oL e
The observation times of Mastercard Inc. (MA) for two consecutive dates, 26
and 27 of November 2013. . . . . . . . . . ..o
This heatmap visualises the correlation coefficient between the daily re-
turns of the underlying stocks. . . . . . .. ... L oo
These heatmaps visualise the correlation coefficient between the daily re-

turns of the stocks related to the same sector. . . . . . . . . .. ... ...

The left-hand side column presents the logarithmic value of the intraday volatility
estimates of the following estimators RV (Intr—all) - gt Ry (Intr—all) 4, Ry (Intr—all)
RV Untr) = st RV U™ (from top to bottom) for the liquid stock Citigroup Inc.
(C). In the right-hand side column, the logarithmic value of the estimates of
these estimators are presented (given in the same order) for the illiquid stock
Mastercard Inc. (MA). The trading session has been split into 13 intraday in-
tervals, i.e. I = 1,---,13. The data refer to the dates 25 (red line), 26 (green

line) and 27 (blue line) of November 2013. . . . . . . . .. .. .. ... .. ..

11



2.2

3.1

3.2

3.3

3.4

3.5

4.1

The frequency of the durations between the observed prices for the liquid

(C) and the illiquid (MA) stock for the three examined days. . . ... .. 7

This figure depicts the autocorrelation of the volatility estimates of RV ()

for the stocks with identifier code MMM, T, AA AXP, AIG, BAC, BA,
CAT, CHK, CVX, C,CLF. . . . . . . .. it 96
This figure presents the frequency of the proposed number of factors given
by the ratio-based estimator using ¢ = 1 — 100 for the daily RV-based
estimators. . . . . . . L 102
This figure presents the proposed factor (solid black line) with the centred
volatility estimates of the two stocks that direct this factor the most (blue
and orange dash-dotted lines). . . . . . ... ... Lo Lo 105
This figure presents the frequency of the proposed number of factors given
by the ratio-based estimator using £ = 1 — 100 for the intraday RV-based
estimators. . . . . . . L 107
In the panels of this figure, we plot the resulting factor (solid black line)
along with the centred interval estimates of the stocks with the highest
variability (blue and orange dash-dotted lines), as given by the corre-
sponding factor. The headlines include the estimator and the names of

the two stocks with the most variable performance captured by the factor. 111

This figure illustrates how the weights are allocated around a given point xg for
the Gaussian (solid blue line), Epanechnikov (dashed red line), biweight (dotted
black line), triweight (dash-dotted green line) and the uniform kernel function

(solid magenta line). . . . . . . . .. ..o 121

12



4.2

4.3

4.4

4.5

5.1

5.2

5.3

5.4
5.5

5.6

5.7

This figure depicts the intraday prices (blue curve) of Cleveland-Cliffs Inc. (CLF)
over the date 03 January 2012, along with the local linear fit using a low band-
width value (red curve), a mid-range bandwidth value (green curve) and a high
bandwidth value (magenta curve). . . . . . . . . .. ... 124
This figure depicts the logarithmic value of the daily IV estimates of the
LPR-based (blue line), RK (red line), TSRV (green line) and RV (cyan
line) estimator for the stocks CLF and WFC over the trading days of the
yvears 2012-2014. . . . . . oL e e 155
This figure depicts the daily noise variance estimates of CLF and WFC us-
ing the Estimators (4.10) and (4.11) with cyan and blue line, respectively,
over the trading days of the years 2012-2014. . . . . . .. .. .. .. ... 156
This figure depicts the local estimates of the LPR-based estimator over
the first five trading days of 2012. . . . . . . . . .. ... ... 157

An illustrative example of a graphical model with six variables. . . . . . . 166
This figure visualises the iterative optimisation process applied to the
row/column vector of the W matrix until convergence. This example
considers four variables. . . . ... ... L L oL 171
A visual representation of the matrix X, and the vector Y in the bivariate
local linear regression. . . . . . . . ... Lo L oo 184
An illustration of the structure of the precision matrix ©. . . . . .. ... 190
The variables dependence structure using five (left panel) and ten (right
panel) variables. . . . ... Lo 196
The true adjacency matrices for five (left panel) and ten (right panel)
variables. . . ... Lo 197
The conditional dependence structure of the log-prices of the stocks for

eight different tuning parameter values. . . . . .. .. .. ... ... ... 200

13



5.8 The conditional dependence structure of the returns of the stocks for eight
different tuning parameter values. . . . . . . .. ... L oo 203
5.9 The conditional dependence structure of the stock returns for the esti-

mated optimal tuning parameter. . . . . . .. ... ... 205

A.1 The boxplots depict the descriptive statistics of the daily returns across the stocks.222

C.1 ACF plots of RVU™7) for the first nine stocks of Table 1.2. . . . . . . .. 238
C.2 ACF plots of RVUntr=all) for the first nine stocks of Table 1.2. . . . . . . 239
C.3 ACF plots of stRVU™7) for the first nine stocks of Table 1.2. . . . . . . . 239
C.4 ACF plots of stRVUntr—all) for the first nine stocks of Table 1.2. . . . . . 240
C.5 ACF plots of wRVUIntr=all) for the first nine stocks of Table 1.2. . . . . . 240

C.6 This figure depicts the daily volatility estimates against the mean function
of the estimates for the first three stocks of Table 1.2. . . . . . . ... .. 242
C.7 These boxplots show the range of the estimated eigenvalues (first three
row-panels) and the range of their ratios (last three row-panels) for the
daily RV-based volatility estimates for {=1—100. . . . . .. .. .. ... 243
C.8 This figure plots the volatility estimates of RV ") against the mean
functions of the stocks 3M Co. (MMM) and AT&T Inc. (T) for each
intraday interval over the days. . . . . . .. .. ... . oo 249
C.9 This figure plots the volatility estimates of RV ("7=all) goainst the mean
functions of the stocks 3M Co. (MMM) and AT&T Inc. (T) for each
intraday interval over the days. . . . . . .. .. ... . 0oL 250
C.10 This figure plots the volatility estimates of stRVU"") against the mean
functions of the stocks 3M Co. (MMM) and AT&T Inc. (T) for each

intraday interval over the days. . . . . . .. .. ... . 0oL 251

14



C.11 This figure plots the volatility estimates of stRV " —all) against the mean
functions of the stocks 3M Co. (MMM) and AT&T Inc. (T) for each
intraday interval over the days. . . . . . . . ... ... L.

C.12 This figure plots the volatility estimates of wRV ("7=all) aoainst the mean
functions of the stocks 3M Co. (MMM) and AT&T Inc. (T) for each
intraday interval over the days. . . . . . .. .. ... . o0

C.13 These boxplots show the range of the estimated eigenvalues (first three
row-panels) and the range of their ratios (last three row-panels) for the

intraday RV-based volatility estimates for { =1—100. . . . . .. .. ...

E.1 The function f(z) = |z| (blue line) is plotted along with several possible
subgradients (dashed red lines) at point (0,0).. . . . . .. ... ... ...
E.2 This figure shows the fully conditionally independent stocks using log-
prices for eight different tuning parameter values. . . . . . . . .. ... ..
E.3 This figure shows the fully conditionally independent stocks using returns
for eight different tuning parameter values. . . . ... ... ... .. ...
E.4 This figure shows some indicative cases of maximal cliques as presented

In section B.5. . . . .. L e

15

252

253

312



List of Tables

1.1

1.2

1.3

1.4

1.5

2.1
2.2

2.3

Company’s Sectors. . . . . . . . . .
The name of the companies, their ticker, their sector and the industry they

are related to. Businesses information was taken from finance.yahoo.com

Descriptive statistics of the daily returns for the 50 stocks of our dataset.

Descriptive statistics of the 10-minute returns for the 50 stocks of our

The first column of this table contains the stocks identifier code. The
second column contains the initial letters of the underlying stock’s sector.
The rest columns exhibit the correlation coefficient between the daily
returns of the stocks and the daily returns of the market capitalisation-

weighed index of each sector. . . . . . .. .. ... ... ... ...,

Summary of important notations. . . . . . .. ... L.
The average duration between the observed prices for the liquid (C) and
the illiquid (MA) stock for the three examined days. . . . ... ... ...
The aggregated estimates of the defined estimators are given along with
the estimator RV (*) for the liquid (C) and the illiquid stock (MA). The

findings refer to the dates 25, 26 and 27 of November 2013. . . . . . . ..

16



3.1

3.2
3.3

3.4

4.1
4.2

4.3

5.1

Al
A2

A3

A4

A5

The amount of variation explained by the proposed factor, as given for
C=T1. e
Squared loadings of the most distinct stocks. . . . . . .. .. ...
The first row in the matrix on the top indicates the amount of variation
explained by each factor. The matrix on the bottom reports the total
explained variation for the second most desirable case of k, as given for
the lowest £ value. . . . . . . ...
This table illustrates the squared loadings of the most distinct stocks for
all estimators. The rows refer to the particular stock and the columns

refer to the specific intraday interval. . . . . . . ... ... ... ...

Common kernel functions. . . . . . . .. ... ... ... ...
Simulation results based on 100 iteration for all the combinations n =
[256, 1024, 4096, 9216] and w? = [0.01, 0.001, 0.0001]. . ... ... ...
Simulation results based on 100 iteration for all the combinations n =

[256, 1024, 4096, 9216] and w? = [0.00001, 0.000001, 0.0000001].. . . . .
The mean values of TPR and FPR over 100 iterations. . . . . . . . .. ..

The correlation matrix of the daily returns for the underlying stocks. . . .
The correlation matrix of the daily returns for the stocks of the sector
‘Basic Materials™. . . . . . . . . . .
The correlation matrix of the daily returns for the stocks of the sector
‘Communication Servises’. . . . . . . . .. .. L oo
The correlation matrix of the daily returns for the stocks of the sector
‘Consumer Cuclical’. . . . . . .. ...
The correlation matrix of the daily returns for the stocks of the sector

‘Consumer Defensive’. . . . . . . . . . s

17

224



A6

AT

A8

A9

The correlation matrix of the daily returns for the stocks of the sector

The correlation matrix of the daily returns for the stocks of the sector
‘Financial Services’. . . . . . . . .. L
The correlation matrix of the daily returns for the stocks of the sector
‘Healthcare’. . . . . . . . . . . . e
The correlation matrix of the daily returns for the stocks of the sector

‘Industrials’. . . . . . . e

A.10 The correlation matrix of the daily returns for the stocks of the sector

‘Technology’. . . . . . . . . e

A.11 The companies’ annual market capitalisation for the years 2012-2014.

C.1

C.2

Market capitalisation data were taken from companiesmarketcap.com (nd)

and they are expressed in § billions. . . . ... ... ... .. .......

The three matrices separated by a black line show the ratio-based estima-
tor’s success rate for three different occasions based on 200 iterations. In
the matrix on the top, the estimator exploits all of the eigenvalues for the
estimation. In the middle matrix, the p/2 highest eigenvalues are used
by the estimator, whereas in the matrix on the bottom, the |p/3] highest
eigenvalues have been taken into consideration by the estimator. This
table refers to the case where we have considered three strong factors in
themodel. . . . . . . . .
The simulation results as given in Lam et al. (2012) under the same sim-
ulation settings for an aliquot of eigenvalues. The matrix on the top pro-
vides the simulation results considering three strong factors in the model,
whereas the matrix on the bottom reports the simulation results for three

weak factors in the model. . . . . . . . . . ...

18



C.3

C4
C.5

C.6

C.7

C.8

C.9

The three matrices separated by a black line show the ratio-based esti-
mator’s success rate for three different occasions based on 200 iterations.
In the matrix on the top, the estimator exploits all of the eigenvalues
for the estimation. In the middle matrix, the p/2 highest eigenvalues are
used by the estimator, whereas in the matrix on the bottom, the |p/3|
highest eigenvalues have been taken into consideration by the estimator.
This table refers to the case where we have considered three weak factors
inthemodel. . . . . . .. L
Squared factor loadings. . . . . . . ... oo
This table illustrates the squared loadings of factor 1 for the intraday

(Intr)

volatility estimates of RV The rows refer to the particular stock

and the columns refer to the specific intraday interval. . . . . . ... . ..
This table illustrates the squared loadings of factor 1 for the intraday
volatility estimates of RV (Intr_a”). The rows refer to the particular stock
and the columns refer to the specific intraday interval. . . . . . .. .. ..
This table illustrates the squared loadings of factor 1 for the intraday

Int
n r). The rows refer to the particular stock

volatility estimates of stRV
and the columns refer to the specific intraday interval. . . . . . .. .. ..
This table illustrates the squared loadings of factor 1 for the intraday

. . —— (Intr—all)
volatility estimates of stRV .

The rows refer to the particular
stock and the columns refer to the specific intraday interval. . . . . . . ..
This table illustrates the squared loadings of factor 1 for the intraday
volatility estimates of wﬁv([ntr_a”). The rows refer to the particular

stock and the columns refer to the specific intraday interval. . . . . . . ..

19

244

245

246



Chapter 1

Introduction, Motivation and

Preliminaries

1.1 Introduction

In the last decades, the rapid growth of technology has led to the exploration of
new fields in sciences, where first the deep investigation of these fields was not an easy
task. Nowadays, we are able to collect and handle large datasets more easily than 50
years ago. The swift development of computer science has enabled us to manipulate and
study the patterns that arise in a dataset of millions or even billions of observations in
a relatively painless interval of time. Finance is one of those areas that has benefited
from this development. Now researchers are able to analyse financial data with higher
frequencies than the common daily scale, contributing to more precise inferences about
the intraday assets’ behaviour. This work deals with the concept of financial volatility
in the stock market with high-frequency financial data. In this study, we often remove
the term ‘financial’ from both terms for conciseness.

High-frequency data refer to intraday data which contain every piece of information

observed in the market within a day, as opposed to daily data which summarises in a

20



scalar-valued observation the intraday behaviour of an asset. Thus, high-frequency data
enables us to investigate the dynamics in the dataset which are not evident in the daily
time series, such as the stock closing prices. This fact, in turn, allows us to shed light
on the data’s intraday trends or even more about the factors that direct these trends.
In finance, some of the most common high-frequency observations are the stock prices,
stock returns and transaction times.

In literature, logarithmic returns (log-returns) are preferred over stock prices because
they exhibit more handy properties in terms of the analysis procedures (Tsay, 2005). As
we will see later, the log-returns are defined as the difference between two consecutive
logarithms of prices. In daily time series, the last intraday logarithmic prices (closing
log-prices) are used for the daily log-returns calculation. The time point at which a
closing price is released does not substantially differ from day to day and it occurs in
the very last minutes or seconds of the trading session. Therefore, the log-returns are
considered equally spaced observations in practice since every return refers to a period
of approximately 24 hours.

However, this assumption does not hold for high-frequency returns, making their
analysis intricate sometimes. In particular, pointwise intraday returns can occur at
different time points, which may significantly differ from intraday interval to intraday
interval and from day to day. Hence, the pointwise returns of an asset are likely to refer
to intraday periods with noticeable time differences depending on the asset’s trading
frequency. This event can generate confusion. For example, two returns of an asset with
a similar value may refer to intraday periods with a distinctive length difference. We
can overcome this kind of irregularity in the realisation of the dataset in three different
ways.

First, the researcher can rescale the pointwise returns of irregularly spaced observa-
tion times so that they define the returns of equilength periods using Formula (1.6). As

we discuss later, this rescaling procedure could produce returns of different sizes when
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the frequency of trading varies greatly, distorting the intraday patterns of the return val-
ues. Second, we can define the intraday returns over lower frequencies than the actually
observed frequency by subsampling the data (e.g. every five minutes) and ignoring the
other intraday data in between. Lastly, we can study the intraday returns in continuous
time. This work shall regard the latter two techniques.

High-frequency data show some peculiarities compared to the daily time series data.
In short, this kind of data is observed for inequally spaced intraday time points, as
opposed to daily time series data. Also, the noise in the high-frequency data is more
significant than in the daily data (Taylor, 2005), making their research more challenging.
Often, the modelling procedure of this dataset needs to be defined over lower frequencies.
Estimating the optimal modelling frequency requires effort, although frequencies from
five to 30 minutes are usually utilised in the literature (Andersen et al. (2001a), Zhang
et al. (2005), Ait-Sahalia and Yu (2009) among others).

Besides, we may observe no trades within intraday periods, likely triggering an error
for some automatic procedures. In this case, the practitioner needs to define a non-
misleading datum for this period so that the analysis process will continue normally.
Moreover, the dataset may contain some mistaken records which need to be removed
through a data-cleaning procedure. The steps of such a procedure are overviewed in
Hautsch (2011). In general, the analysis of high-frequency data is more computationally
expensive than for daily time series because of the incomparably larger data size. For
example, on average, we have 2,428 observed prices per stock within a day in the dataset
we use in this work. Assuming 252 trading days in a year, this data size corresponds to
a dataset that refers to a 10-year period in daily time series. This number substantially
increases for highly traded stocks since we can observe more than 6,000 observed prices
daily, which approximately corresponds to a dataset of 25 years for daily time series.
Furthermore, the accessibility to high-frequency data is more restricted than for the

daily time series of which the closing stock price is released to the public every day.
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However, as Corsi et al. (2000) show, high-frequency data are preferred compared
to daily time series in terms of volatility estimation and forecasting evaluation. This
fact is also visible in Figure 1.1, where we plot the high-frequency prices of the stock
Pfizer Inc. (PFE) against its daily prices for all the trading dates of January 2012. This
figure illustrates how more informative high-frequency data are compared to daily data.
Also, Taylor (2005) concludes that “analysis of high-frequency data is rewarding and well
worth the additional effort” and the field is continuously expanding.

Most development in this field has focused on the problem of dimensionality in the
framework of discrete time series data analysis. This thesis develops new statistical mod-
elling approaches for high-frequency data from the perspective of continuous function
estimation problem.

Chapter 1 is an introductory chapter where we briefly describe how the stock market
works in section 1.2. Beyond the manipulation of high-frequency data, the investiga-
tion of financial volatility is the secondary axis that this work lies, and thus we discuss
some basic concepts of financial volatility in section 1.3. Broadly speaking, considerable
fluctuations are observed in the stock markets during periods of financial uncertainty.
These fluctuations can cause significant economic losses to investors. Therefore, estimat-
ing or predicting the magnitude of these fluctuations is vital for protecting the investors’
wealth. A measure of the size of fluctuations is financial volatility, however volatility
cannot be represented by an explicit formula. Specialists define volatility according to
their needs, making several convenient assumptions each time depending on the partic-
ular scope of their interest. In financial markets, the standard deviation is a widely used
measure of daily volatility computed from daily returns.

Although its simple form, the standard deviation is a valid measure under the strong
assumption of constant variance over the days, which has been proved wrong through
time. For example, a sudden market announcement can abruptly increase the fluctua-

tions in the market within a day. This event is not visible in the volatility estimate of
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standard deviation which is given as a scalar number and refers to a long data period.
Usually, standard deviation is utilised for daily or monthly time series data and similar
models have been proposed for high-frequency data. In section 1.4, we introduce some
preliminaries, notations and necessary definitions for high-frequency data that will be
utilised in the rest of this work. Chapter 1 is completed with section 1.5 where we in-
troduce our dataset. We also conduct an exploratory analysis on our dataset, which will
permit us to compare the results to the findings in the later stages of this study.

In Chapter 2, we construct different types of volatility measures exploiting intraday
information about the timing of the events or the trading frequency. After a brief dis-
cusion of the relevant context, we report two standard estimators of the daily volatility
that utilise intraday returns for the estimation. These estimators are considered supe-
rior to the standard deviation in the sense that they exploit the intraday information,
delivering more accurate daily volatility estimates. Moreover, the volatility estimates
can considerably vary from day to day, as opposed to the standard deviation estimator
where its approximation defines the volatility of a predetermined period. Therefore, the
examination of the volatility patterns becomes easier through these measures.

In section 2.4 we develop five estimators of the intraday volatility, that is, the volatil-
ity observed over the intraday intervals of a day, along with their statistical framework.
These estimators follow a similar logic to the aforementioned daily volatility measures
and we can use them both for intraday and daily volatility approximation. Each of these
five measures uses different information for the estimation. Indicatively, such informa-
tion is the time space between the intraday observations or the number of observations
that occurred within the intraday intervals in a day. In the last section of Chapter 2,
we provide an example using the defined intraday volatility measures. In this example,
the intraday and daily volatility of two stocks are estimated for three days.

In Chapter 3, we investigate the stocks’ common volatility patterns as derived by

the proposed volatility estimators of Chapter 2. Factor analysis is a popular method for
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a multivariate dataset, and it summarises the volatility features from a high-dimension
problem to a lower-dimensional scale. Through this technique, we intend to explore
whether we can efficiently outline the volatility estimates to a few volatility components.
The benefit of factor analysis is that it allows us to investigate the resulting components
instead of the whole dataset, facilitating the analysis procedure.

This study uses the factor analysis approach presented by Lam et al. (2012). The
latter work takes a time series process of multiple variables as input, assuming that this
process does not violate the stationarity conditions. In financial literature, the time
series process consists of daily observations; nevertheless in our work, we also test this
method using the intraday volatility estimates, as given by the estimators of Chapter 2.
Considering the intraday estimates as a time series process for each stock, we show that
it violates the stationarity conditions. For this reason, we extend the Lam et al. (2012)
approach under the intraday framework. In this framework, we can monitor which
stocks highly contribute to the resulting volatility components as well as which intraday
intervals drive the volatility patterns the most. Chapter 3 concludes with two empirical
applications. In the first application, we apply the factor analysis to the daily volatility
estimates, whilst in the second one, the factor analysis is applied to the intraday volatility
estimates.

Chapter 4 develops a daily volatility measure using the local polynomial regression
method. Local polynomial regression, presented in section 4.2, is a popular statistical
technique that estimates the observations’ mean function, enabling specialists to model
the data patterns continuously. Further, this method allows us to filter out the noise
admittedly contained in financial observed stock prices (Zhang et al. (2005), Hansen and
Lunde (2006) among others).

Our proposed estimator, as defined in section 4.3, is similar to the measure of Kris-
tensen (2010); however, the latter was developed assuming that the observed data mirror

the true data values. In contrast, the theoretical background of our estimator consid-

25



ers that financial observations are blurred by noise, which has been proved in practice.
Section 4.6 conducts a simulation study where the superiority of our estimator against
standard volatility estimators is demonstrated for noise levels which follow normal con-
ditions. This chapter ends with an empirical example.

Besides, this work investigates the stocks’ dependence network when the data have
a functional form. Functional data refer to a dataset where every observation is given in
the form of functions instead of a scalar value (Yao et al., 2005; Ramsay and Silverman,
2005). On the one hand, because of the great abundance of information, functional data
provide a more comprehensive picture of the population characteristics. However, they
require special manipulation because of their complex structural form.

After a brief discussion of some relevant preliminary concepts, Chapter 5 develops
the methodology for predicting the (conditional) dependence network in the functional
domain, utilising the Gaussian graphical model. The Gaussian graphical model is a way
to estimate and visualise the variables which share partial correlation. Qiao et al. (2019)
introduces the theoretical and practical context concerning the estimation of the depen-
dence structure of a set of variables in the functional domain with the Gaussian graphical
model. Our approach is based on this work but differs in the methodological part. In
addition, as far as we know, this is the first study which applies functional graphical
models in the financial field and even more to high-frequency data. The simulation
study of section 5.4 indicates that our approach works efficiently under the specified set-
tings. Chapter 5 concludes with an empirical application in section 5.5. Appendices A-E

correspond to Chapters 1-5, in respective order.

1.2 Microstructure of Financial Markets

In this section, we outline how the stock market works. When a company needs
money to satisfy some goals, it can join the stock exchange to find them after complet-

ing an institutionalised procedure. By entering the stock exchange, a company makes
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Figure 1.1: The observed high-frequency stock prices (blue line) of Pfizer Inc. (PFE) are plotted
against the closing prices (red line) of the same company for the trading days of January 2012.
The observed open prices are also given as green asterisks in the figure.

available to the public through the stock market a number of shares of the underlying
company’s stock at a predetermined price. In this way, the company asks for capital
admission so that it will be able to broaden, improve and enrich its services.

On the other hand, when the public -more formally, the investors- believe that this
capital admission will lead to the growth of this company, they become shareholders of
the underlying company, expecting to receive several gains from this growth. Such gains
can be the annual bonuses the companies often share with their shareholders from their
earnings (also known as dividends) or the shareholders can profit from an increase in
the stock price of the underlying company.

The price of a stock is determined by the financial markets. Financial markets rely on
the concept of supply and demand. This concept shortly describes the situation where a
person A is willing to sell to a person B and, simultaneously, a person B is willing to buy
from a person A an asset. If the amount the potential buyer is willing to pay for this

asset meets or exceeds the potential seller’s requirements, then the transaction becomes
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real. On the other hand, if the amount that the potential buyer is willing to pay for
this asset does not reach the lowest amount the potential seller is expecting to receive
by selling the asset, then either at least one has to revise his plan or the transaction is
cancelled. This is a descriptive explanation of what happens in financial markets with
the difference that there are more than one potential buyers, sellers, assets and shares.
There are different types of assets, such as stocks, bonds, currencies, but this work with
the term assets refers exclusively to stocks.

Every market has its own rules; however, the trading process follows a similar ratio-
nale across the markets. In particular, all the orders from potential buyers and sellers
are collected in the market’s electronic system, called the order book. In the sequel,
the buyers’ and the sellers’ orders (also called the bid and ask prices, respectively) are
sorted into preferable (for the investors on the other side of the market) order. Then, the
transaction between the two counterparties takes place when the ask and the bid prices
match up. This price dominates the market, consequently defining the current stock
price. The reader can refer to the second chapter of Hautsch (2011) for more details
about the microstructure of the financial markets.

New York Stock Exchange (NYSE) is the stock exchange that we use data from in
the empirical applications of this work. NYSE is a continuous auction market where the
matchup between trades is done immediately. Also, it is one of the world’s most liquid
markets and is active from 9:30 to 16:00 (Eastern Time Zone); six and a half hours in
total. In NYSE, investors can place (but not execute) their orders before the market’s
open time. Upon the beginning of the trading session, these orders are offset, defining
the open price of the asset. From that time on, regular orders arrive in the market as

described above.
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1.3 Financial Volatility

The exploration of financial volatility is of central interest in this study. Loosely
speaking, volatility refers to the overall magnitude of the price change over a period.
Volatility is directly linked to financial risk. As aptly Poon (2005) points out, risk refers
to a situation around the possibility of an investor to lose money through a period of
financial uncertainty. A reason why volatility is mainly linked to an adverse market
shock compared to a positive one is the so-called leverage effect. The leverage effect
refers to the widely observed event where market volatility is higher during a downward
than an upward market trend. The reader can refer to Black (1976) and Christie (1982)
for more information on this topic. Thus, volatility analysis plays a key role in investors’
strategy to hedge or modify their portfolios in such a way to minimise risk.

Volatility is a random quantity that can be distinguished differently depending on
the question one needs to address. Taylor (2005) summarises the main ways to interpret
volatility. In particular, a popular way to interpret volatility is by historical volatility,
which refers to the volatility approximated by observed data. Variance and standard
deviation are broadly used tools for the historical volatility estimation. The variance of

a random variable Y is defined by:
VarlY] =E[(Y —E[Y])?.
For a finite sample of daily stock log-returns Ry, defined by:
Ry =log(Py) — log(Pi—1) (1.1)

where P, indicates the closing price of the d day, then an empirical estimator of the daily
variance is given by:

N
Vary(R Z Ry — Ry)? (1.2)
d:
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where Ry denotes the mean value of the observed log-returns Ry for d = 2,..., N and
N refers to the number of working days we consider in the model. The reduction by
one unit in the denominator of Equation (1.2) stems from the degrees of freedom of the
estimator. The degrees of freedom (i.e. the maximum number of values that can vary)
are defined as the difference between the number of observations and the parameters that
need to be estimated. In our case, the only parameter that needs to be approximated is
the population mean E[X], resulting in N — 2 degrees of freedom.

The daily standard deviation is defined as the square root of the daily variance.
Hence, an estimator of the standard deviation is given by taking the square root of the
empirical variance. Moreover, the monthly and the annualised standard deviations are

estimated as a proportion of the daily standard deviation estimate:

Dazly

TstDev Var(R (1.3)
62?323““(1%) = 252@@%)
Monthl 252 —
Sipen " (R) =/ 73 Var(R)

since there are 12 months and, in general, 252 trading days in a year.

However, as Poon (2005) states, the standard deviation is preferred from variance for
the following reasons. The standard deviation is chosen regarding volatility estimation
and forecasting since “variance is much less stable”. Also, standard deviation has a
natural representation of the unit. For example, the standard deviation of the returns is
expressed in dollars ‘$’, as opposed to variance, which should be expressed in ‘$?’, giving
rise to a bizarre representation. A drawback of using standard deviation to estimate
volatility is that this is a valid estimator under the assumption of fixed variance (i.e.
homoscedasticity) over the understudied period. Nevertheless, in the real world, the
returns’ variability may vary considerably over time, leading to an erroneous inference.

A second popular notion of volatility is conditional volatility. This term refers to the
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volatility of a future stock price change, given the past information about price changes.
A popular model under the framework of time-varying conditional volatility estimation
is the ARCH model, developed by Engle (1982). This model considers the conditional
variance as a function of a number of the preceding error terms of returns. A model
that permits “longer memory and a more flexible lag structure” (Bollerslev, 1986) is the
GARCH model. In this model, the conditional variance further considers the dependence
in the preceding conditional variances to be formed. Hence, conditional volatility covers
the case where the variance can change over time (i.e. heteroscedasticity), as opposed
to historical volatility.

Implied volatility is based on the concept of option pricing in the framework of
financial derivatives. Options are financial instruments widely used in the market, and
the reader can find more about this topic in Hull (2012). Implied volatility is defined
as the current volatility value that will give the option derivative’s theoretical price
when placed as an input in the option pricing model. It relies on the market volatility
expectation for a predetermined future period, as opposed to historical volatility which
exclusively depends on the observed price evolution of the past. The most famous option
pricing model is the Black-Scholes model developed by Black and Scholes (1973).

Lastly, some studies are interested in understanding how volatility behaves through
time. Then, the concept of stochastic volatility arises. In this area, the It6 process
is a popular process for modelling the price evolution of a stock using a time-varying
stochastic volatility term. The Black-Scholes model assumes constant volatility in the
asset price changes throughout the option’s life, which may sometimes be a strong as-
sumption. One can overcome this situation by considering stochastic volatility models
instead. Heston is such a model, developed by Heston (1993).

Overall, historical volatility is the most popular concept out of the ones mentioned
above since it is also utilised for comparison purposes. For example, implied volatility

is a more prevalent measure for derivative traders since it provides a forward-looking
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estimation (as opposed to historical volatility). Nevertheless, experts often compare the
implied volatility value to the historical one to make investment decisions on derivative
markets.

This study focuses on the concept of historical volatility under the high-frequency
sampling context. Realised variance is a measure that utilises intraday high-frequency
data to approximate the notional daily volatility. A drawback of the conventional daily
volatility estimators, like the standard deviation in Equation (1.3) is that they deliver
a fixed estimate over the examined period. In contrast, realised variance gives a daily
estimate over each day, providing more accurate daily volatility estimates and enabling us
to model the volatility patterns of a stock. The concept of realised variance is explicitly

given in the next chapter with the pertinent theoretical background.

1.4 High-Frequency Financial Data

When two counterparties agree to make a transaction for a specified asset, at a spec-
ified price, for a specified quantity, then all of these pieces of information are recorded on
an intraday basis, offering high-frequency financial data. Engle (2000) refers to this kind
of dataset -which contains all of the intraday trading information of an asset- as “ultra-
high-frequency data”. Usually in relevant literature, studies use intraday frequencies of
a lower scale, such as frequencies of five, ten, or 30 minutes (Andersen et al. (2001a),
Zhang et al. (2005), Ait-Sahalia and Yu (2009) among others). In this study, by the
term ‘high-frequency data’ we refer to the full records of the intraday stock information
where any modification on the frequency scale will be explicitly specified.

It is more convenient for specialists to analyse returns than prices (Tsay, 2005). In
addition, returns are a direct measure of the price change and, thus, of volatility, demon-
strating the situation prevails in the market. High-frequency observations occur several
special characteristics compared to daily observations. In particular, high-frequency re-

turns yield heavier tails than daily returns. As Tsay (2005) shows, the non-synchronous
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trading, as observed in continuous markets, is responsible for the introduction of neg-
ative autocorrelation, which introduces some noise in the observed data. The noise in-
corporated in high-frequency data is higher than for common daily data (Taylor, 2005).
Furthermore, the intraday prices react to economic news promptly, increasing stock
volatility in a short time. The highest variability in stock prices is usually observed
during the beginning of the trading session, followed by a downward trend by lunchtime,
and the variability increases again before the end of the trading session (Andersen and

Bollerslev (1997), Taylor (2005), Li et al. (2015) among others).

1.4.1 Preliminaries

At this point, it would be useful to establish the notational and theoretical framework
around high-frequency data. Also, the observed values will be considered as a function
of time for the rest of this work.

In general, financial markets are active for six and a half hours in a day, translated
as 23,400 trading seconds. When a stock transaction occurs in the market information
like the transaction price, the transaction volume, the number of transactions and the
specific timestamp are monitored. A timestamp refers to the time point at which a stock
transaction is monitored in the market and expressed in seconds. Transaction prices
define the observed prices in a day; consequently, the observed timestamps correspond
to the observation times of the observed prices on this day.

In literature, statisticians rescale the observation times to values between zero and
one by dividing these time points by 23,400. In this way, they align the scale of observed
ticks to the relevant theory, as explained later in this work.

Let P(t;) be a sequence of the actual intraday prices of a stock observed at time

points:
e t; =i/n (i.e. equally spaced time points), or

e 0<t; <..<t;<..<t, <T =1 (ie. unequally spaced time points),

33



where t; denotes the intraday time point when the i-th transaction takes place for i =
1,...,n. Here, n indicates the number of observed prices in a trading day.

In literature, it is commonplace for researchers to consider the stock prices in their
logarithmic form. The reason they make this modification is linked to the concept of log-
returns, which is explained in the next subsection. Let Y (¢;) be the observed log-price

of a stock at time point ¢;, given by:

Y(ti) = log <P(ti))

where P(t;) denotes the observed actual price of a stock at ¢;. In an ideal world, Y (¢;)

reflects the ‘true’ (or effective) log-price X (¢;) of this stock:
V(1) = X (1) (1.4)

Nevertheless, Equation (1.4) rarely holds because of the existence of microstructure noise
in the observed log-prices. Under the existence of noise, the observed log-price at a given

time point Y (¢;) can be represented as a function of the true log-price and an error term:
Y(ti) = X(t:) + E(t:)

where X (t;) depicts the i-th true log-price -which is a latent variable- and E(t;) shows
the corresponding error term.
The noise comes from several microstructure effects that dominate the market. Corsi

(2005) refers to the main sources of the microstructure noise:

e Non-Synchronous Trading: we compute the stock returns assuming that they
refer to periods of equal length, which may be a strong assumption on high-

frequency scale;

e Asymmetric Information: All investors do not share the same information
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about companies. Investors who acquire exclusive companies’ information can

take advantage compared to other investors;

e Bid-Ask Bounce: The observed stock price commute between the same values,

being stable in fact;

e Price Discriteness: We represent the stock price using a limited number of

decimals;

e Rounding Error: Some noise is introduced into the stock prices by rounding the

observed prices;
e Infrequent Trading: Prices of illiquid stocks often diverge from their true price;
e Price Jumps: Abrupt price changes can introduce some error in stock prices.

The reasons behind the introduction of noise are extensively studied in Madhavan (2000).

1.4.2 Returns

Volatility is associated with the concept of stock returns. A stock return refers to the
rate of change in the price of a stock for a predetermined period. The intraday pointwise

log-returns are defined as:

R(t;) = log <P(ti)) ~log (P(ti_1)> =Y (t;) — Y(tii1) (1.5)

for i = 2,...,n and n denotes the number of the intraday observed prices in a day. In the
rest of this work, we refer to log-returns by the general term ‘returns’ for conciseness.
A cursory look at the returns may overlook the fact that a transaction can happen at
any moment during trading hours. In Figure 1.4.2, a visual illustration of the observed
prices of a stock for two consecutive days is provided. As we observe, the sampling

frequency of the transactions can change at different intervals of the day. This can
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happen because of several reasons; for example, economic news arrives in the market,
increasing the market transactions instantly. Therefore, comparing the intraday returns
can lead us to a confusing inference since they refer to unequal intraday periods. Hence,

it seems useful for statisticians to convert the corresponding returns to a comparable

time scale.
26/11/2013
T T T T T T
m@'m@w m@@m O.JPGDO CD{GDGDO@#MIDO O |O(I) @leomDO | m
| | 1 1 1 1 | 1 | 1 | L 1
N T T T T S S N S S
ORI I Y IV R R N
AN PN RN RN SN N N AN N N PN RN BN S
Time
27/11/2013
T T T T T T
1 1 1 1 1 1 | 1 | 1 | 1 | 1
N N N N N Y S S S
T S T S AT S TN S ST T S TP S
AN HEEPN RN RN N N N PN N N NN RPN S
Time

Figure 1.2: The observation times of Mastercard Inc. (MA) for two consecutive dates, 26 and
27 of November 2013.

We can distinguish high-frequency returns to the following two different cases:

e Returns of periods of different length: refers to the case where prices are
observed at different rates within a day. The observed time points are given at

0<t; <..<ty, <T=1. In order to convert the intraday returns for periods of
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different length to a comparable scale, one can compute:

R(t;) = (Y(ti) - Y(ti_l))zti (1.6)

where Y(¢;) denotes the log-price observed at time point t; and z;, = A71/At;.
Here, AT = 1/n denotes the time space supposing equilength observation times
and At; = t;—t;_1 denotes the time difference between the i-th observed prices and
its preceding one. The following example highlights the weakness of converting and
analysing returns using the above technique. Suppose a stock has a transaction
approximately every five minutes within a day. As described at the beginning of
section 1.4.1, this means At; ~ 0.026. If suddenly this stock realises two transac-
tions placed one second away, then At; ~ 0.000043, while A7 remains constant.
Placing these two hypothetical At; values into Equation (1.6) would give rise to
two returns of completely different size, affecting the analysis of the intraday return

patterns for this stock.

e Returns of periods of same length: refers to the case of returns of equally
spaced observations, given at t; = i/n where ¢ = 1,...,n. In this case, we have
that:

R(ti) = R(t;) =Y (t:) = Y (ti-1)-

Researchers sometimes assume intraday returns of equidistant observations in their
studies, however, this is an unrealistic scenario in continuous markets. An alternative
way to handle the issue arising from this event is to study the returns data patterns in

continuous time, which is the approach of this work.
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1.5 Dataset Description and Exploratoty Data Analysis

This section introduces the dataset of this study. We conduct an exploratory analysis
of the dataset, and the results are compared against later findings in this work. The
dataset refers to the high-frequency stock data of 50 underlying companies for the period
between 3 January 2012 and 31 December 2014; that is, 754 trading days. The dates
are also presented in the format ‘DD/MM/YYYY" in this work. The selected companies
were considered among the most prominent stocks an investor could hold in these three
years, and they are related to different sectors (see Table 1.1). The companies’ names,
identifier codes, corresponding sectors and related industries are listed in Table 1.2. We
extracted the information of these companies from the website finance.yahoo.com (nd).
All of the selected companies traded at NYSE, where, generally speaking, 2012 and 2013

are considered good years for the market, whereas 2014 was a bad one.

Sectors:

Basic Materials
Communication Services
Consumer Cyclical
Consumer Defensive
Energy

Financial Services
Healthcare

Industrials

Technology

Table 1.1: Company’s sectors.

In the context of high-frequency data the term ‘tick data’ is broadly used in order
to describe a dataset of information recorded when we observe a trade execution in the
trading session. Tick data can signify different types of information, such as stock (trade
data) and quote (quote data) prices. This study works with trade data which were kindly
granted from the Lancaster University Management School’s database by Prof. Nolte

and Dr Nolte. Our trade data consist of the following intraday observations:
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Asset Name Identifier Code Sector Industry

3M Co. MMM Industrials Conglomerates

AT&T Inc. T Communication Services Telecom Services

Alcoa Inc. AA Basic Materials Aluminium

American Express Co. AXP Financial Services Credit Services

American International Group AIG Financial Services InsuranceDiversified

Bank of America BAC Financial Services Banks-Diversified

Boeing Co. BA Industrials Aerospace & Defense
Caterpillar Inc. CAT Industrials Farm & Heavy Construction Machinery
Chesapeake Energy Corp. CHK Energy Oil & Gas E&P

Chevron Corp. CVX Energy Oil & Gas Integrated

Citigroup Inc. C Financial Services Banks-Diversified
Cleveland-Cliffs Inc. CLF Basic Materials Steel

Coca-Cola Co. KO Consumer Defensive Beverages-Non-Alcoholic
Corning Inc. GLW Technology Electronic Components

Delta Air Lines Inc. DAL Industrials Airlines

Devon Energy Corp. DVN Energy Oil & Gas E&P

E.I. DuPont de Nemours & Co. DD Basic Materials Specialty Chemicals

Eli Lilly and Co. LLY Healthcare Drug Manufacturers-General
Exxon Mobil Corp. XOM Energy Oil & Gas Integrated

FedEx Corp. FDX Industrials Integrated Freight & Logistics
Ford Motor Co. F Consumer Cyclical Auto Manufacturers
Freeport-McMoRan Inc. FCX Basic Materials Copper

General Electric Co. GE Industrials Specialty Industrial Machinery
General Mills Inc. GIS Consumer Defensive Packaged Foods

General Motors Corp. GM Consumer Cyclical Auto Manufacturers
Halliburton Co. HAL Energy Oil & Gas Equipment & Services
Hewlett-Packard Co. HPQ Technology Computer Hardware

Home Depot Inc. HD Consumer Cyclical Home Improvement Retail
International Business Machines Corp. IBM Technology Information Technology Services
JPMorgan Chase & Co. JPM Financial Services Banks-Diversified

Johnson & Johnson JNJ Healthcare Drug Manufacturers-General
Lockheed Martin Corp. LMT Industrials Aerospace & Defense

Lowes Companies Inc. LOW Consumer Cyclical Home Improvement Retail
Mastercard Inc. MA Financial Services Credit Services

McDonald’s Corp. MCD Consumer Cyclical Restaurants

Merck & Co. Inc. MRK Healthcare Drug Manufacturers-General
National Oilwell Varco Inc. NOV Energy 0Oil & Gas Equipment & Services
Newmont Goldcorp Corp. NEM Basic Materials Gold

Nike Inc. NKE Consumer Cyclical Footwear & Accessories

Pfizer Inc. PFE Healthcare Drug Manufacturers-General
Procter & Gamble Co. PG Consumer Defensive Household & Personal Products
Schlumberger Ltd. SLB Energy 0Oil & Gas Equipment & Services
Target Corp. TGT Consumer Defensive Discount Stores

US Bancorp USB Financial Services Banks-Regional

United Technologies Corp. UTX Industrials Aerospace & Defense

Verizon Communications Inc. V7 Communication Services Telecom Services

Visa Inc. \% Financial Services Credit Services

Wal-Mart Stores Inc. WMT Consumer Defensive Discount Stores

Walt Disney Co. DIS Communication Services Entertainment

Wells Fargo & Co. WEC Financial Services Banks-Diversified

Table 1.2: The name of the companies, their ticker, their sector and the industry they
are related to. Businesses information was taken from finance.yahoo.com (nd).
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the timestamp at which a transaction took place during the trading session (given

in seconds),

the number of transactions that happened at the particular time points,

the stock price as formed by the corresponding transactions,

the number of shares traded at the given time point (also known as transaction

volume),

however, this study exclusively utilises the transaction timestamps and the corresponding
stock prices in the investigation procedures, whilst both information will be transformed
appropriately. In particular, the timestamps are transformed into values between zero
and one in the analysis procedures. The stock prices are taken in their logarithmic form
and are usually used to calculate the returns.

In the financial literature, researchers prefer to work with stock returns instead of
prices. This happens because the return series presents several convenient properties
(Tsay, 2005). In particular, stock returns are believed to follow a weakly stationary
process (Tsay, 2005), meaning that the mean, the variance and the autocorrelation
structure of the process remain constant over time without showing any periodic pattern.
These properties are not the case for stock prices. So return series perform stable patterns
through time, making the explorational analysis less challenging than price series.

In past times, a broadly used assumption in mathematical finance was that the daily
returns, as given by Equation (1.1), are Independent and Identically Distributed (IID)
where their mean value and their variance are constants (Tsay, 2005). In addition,
one can view the daily returns as a sum of all the intraday returns of a similar nature
(IID). Then assuming that the number of transactions is sufficiently large, by virtue of
the central limit theorem, the normality assumption was considered to be reasonable
for the daily returns (Fama, 1963). Kendall and Hill (1953) and Osborne (1959) are

among the first who observed that the bell-shaped distribution yielded from the returns
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approximates the normal distribution. Nevertheless, numerous studies have shown that
the empirical distribution of the returns presents fatter tails than the normal distribution
(Officer (1972), Mota (2012) among others). Especially, a leptokurtotic distribution
arises, which means that the kurtosis value of this distribution is greater than three
(Kendall and Hill, 1953; Franke et al., 2019; Tsay, 2005).

One can directly gain intuition about the overall stock behaviour by looking at the
descriptive statistics of the stocks’ daily returns. The descriptive statistics of the chosen
stocks are given in Table 1.3, and a visual representation is offered in Figure A.1 in
appendix A. Before proceeding with the calculation of the descriptive statistics, a pre-
processing of the data for some particular stocks has been applied to treat anomalies
related to stock splits.

More specifically, on 22 of January 2014 the stock price of Mastercard Inc. (MA)
dropped from $818.97 (closing price on 21/01/2014) to $82.35 (open price on 22/01/2014).
This happened due to the stock split realised in that period. Stock split refers to the sit-
uation where a shareholder receives a number of shares of an underlying stock for every
share he owns, decreasing the stock price proportionally. In particular, every shareholder
of MA on 22 of January 2014 received nine additional shares for every individual one,
making the stock price drop ten times. Three additional companies that conducted a
stock split were Coca-Cola Co. (KO) on the 13 of August 2012, Nike (NKE) on the 26 of
December 2012 and National Oilwell Varco Inc. (NOV) on the 2 of June 2014. For the
NOV, every shareholder received 1109 shares for every 1000 shares he owned, decreasing
the stock price by about 10%, while for KO and NKE the shareholders received two
shares for every share they had in their possession, making the stock price drop by 50%.

A company conducts a stock split because this technique makes the stock price more
affordable to the public, attracting new investors. Ikenberry et al. (1996) show that
the companies that have experienced a stock split have high returns in a three-year

horizon. Although the market worth of a company remains the same after a stock split,
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this technique ruins the behavioural patterns of the stock data, generating misleading
statistic values. For this reason, we rescale the intraday stock prices after the stock split
to previous level values by multiplying these prices by 2, 10, 1.109 and 2 for KO, MA,
NOV and NKE, respectively. Now, we can securely analyse the data patterns without
removing any stock from the dataset. Table 1.3 lists the descriptive statistics of the daily
returns after the rescaling procedure for the stocks that have experienced stock split.

According to the data features marked above, we expect that the distribution of the
daily returns of the stocks will approach the form of the normal distribution but with
heavier tails. This happens for a skewness value near zero and a kurtosis value higher
than three. Regarding kurtosis, the returns distribution presents heavy tails for all
companies in Table 1.3, consistent with the studies cited above. According to Ruppert
and Matteson (2011), the skewness of stock returns is expected to be approximately
zero, which is the case for most stocks in this table. In addition, we observe a slight
left-skewed performance for most stocks, given as a negative skewness values. This
event is more visible for International Business Machines Corp. (IBM) and Freeport-
McMoRan Inc. (FCX). As Fan and Yao (2017) notices, this comes from the leverage
effect. Table 1.3 shows that most companies have location parameters (mean, median
and mode) close to zero. This is consistent with the empirical results of other studies
(for example, Larson (1960), Tsay (2005)). Further, we do not observe any distinct
performance regarding stocks’ variability, where Cleveland-Cliffs Inc. (CLF) is the stock
with the highest variability.

Taylor (2005) concentrates the characteristics of the empirical distribution of the
high-frequency returns from a few studies. More specifically, he reports that the em-
pirical distribution of 10-minute returns has location parameters close to zero. Besides,
he cites the work of other studies which show a kurtosis value between 16 and 38 for
returns of different frequencies and a skewness value around zero based on the analy-

sis of market indices. In Table 1.4, we list the descriptive statistics of our dataset for
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Mean Median Mode Variance St. Deviation Max Min Skewness Kurtosis

MMM 0.0009  0.0009 0 0.0001 0.0091 0.0427 -0.0439  -0.2947 5.817

T 0.0001  0.0009 0 0.0001 0.0093 0.0369 -0.0509 -0.5357 5.9243
AA 0.0007 0 0 0.0003 0.0173 0.0858 -0.0742  0.3269 4.9863
AXP 0.0009  0.0007 0 0.0001 0.0118 0.0503 -0.044  -0.0942 3.9319
AIG 0.0011  0.0015 0 0.0002 0.0154 0.0576 -0.0741  -0.2959 5.6376
BAC 0.0015  0.0012 0 0.0003 0.0183 0.0824 -0.0726  0.2395 4.7375
BA 0.0007  0.001  -0.0527  0.0002 0.0125 0.0529 -0.0527  -0.0848 4.7265
CAT 0 0 0 0.0002 0.0136 0.0571 -0.0616  -0.0974 4.9883
CHK  -0.0002 0 0 0.0006 0.0254 0.1574 -0.1567  -0.5106 9.5898
CvX 0 0.0007  -0.0554  0.0001 0.0104 0.0412 -0.0554  -0.4664 5.246

C 0.0009  0.0006 0 0.0003 0.0171 0.0616 -0.0855  -0.1217 4.681

CLF -0.003  -0.0038 0 0.0013 0.0364 0.2025 -0.2244  -0.3547 9.3234
KO 0.0002  0.0001 0 0.0001 0.0092 0.0556 -0.0614  -0.1866 8.1313
GLW  0.0008 0.0011 0 0.0003 0.0162 0.1322 -0.1115  -0.341 16.0921
DAL 0.0024  0.0024 0 0.0005 0.0229 0.0986 -0.1228 -0.3113 5.1815
DVN  -0.0001 -0.0005 0 0.0003 0.0163 0.0951 -0.0822  0.0661 6.822

DD 0.0006  0.0006 0 0.0001 0.011 0.0511 -0.0951 -0.64 11.1409
LLY 0.0007  0.0009 -0.0426  0.0001 0.0109 0.0528 -0.0426 0.099 5.5475
XOM  0.0001 -0.0002 0 0.0001 0.0094 0.0339 -0.043  -0.3107 5.077

FDX 0.0009  0.0005 0 0.0002 0.013 0.06 -0.0711  -0.0218 5.6849
F 0.0004  0.0008 0 0.0002 0.0149 0.0749 -0.077  -0.3449 5.4047
FCX  -0.0007 -0.0003 0 0.0004 0.0193 0.0819 -0.1742  -1.1139 12.749
GE 0.0004  0.0002 0 0.0001 0.0107 0.0447 -0.0423  0.0622 4.5791
GIS 0.0004  0.001 0 0.0001 0.0084 0.0305 -0.0451  -0.7572 6.1595
GM 0.0007  -0.0003 0 0.0003 0.0173 0.0912 -0.0611  0.4722 5.6335
HAL 0.0002  0.0001 0 0.0003 0.018 0.0594 -0.1157 -0.8439 7.6444
HPQ 0.0005  0.0006 0 0.0004 0.021 0.157 -0.1397  -0.1955  15.2078
HD 0.0012  0.0009 0 0.0001 0.0111 0.0561 -0.0365  0.1651 4.9357
IBM -0.0002 -0.0002 -0.0877  0.0001 0.0109 0.0437 -0.0877 -1.2606  13.6061
JPM 0.0008  0.001 0 0.0002 0.014 0.068 -0.0973  -0.3635 7.5392
JNJ 0.0006  0.0005 0 0.0001 0.0078 0.0255 -0.0268  -0.2039 4.3181
LMT  0.0011 0.0012 -0.0401  0.0001 0.0101 0.0372 -0.0401  -0.1483 4.2148
LOW  0.0013 0.0011 0 0.0002 0.0144 0.0615 -0.1068  -0.5033 9.0374
MA 0.0011  0.0014 -0.0512  0.0002 0.0136 0.0893 -0.0512 0.304 6.5651
MCD -0.0001 0.0005 0 0.0001 0.0082 0.0369 -0.0459  -0.5147 6.0954
MRK  0.0005 0.0005 -0.0023  0.0001 0.0108 0.0627 -0.0446  0.2633 5.992

NOV 0 0.0006 0 0.0002 0.0154 0.0848 -0.0765 0.069 5.6405
NEM -0.0016 -0.0015 0 0.0005 0.0223 0.0837 -0.1104  -0.113 5.0058
NKE  0.0009 0.001 -0.0119  0.0002 0.0135 0.1151 -0.0987  0.8586 18.6612
PFE 0.0005 0 0 0.0001 0.0095 0.0411 -0.0452  -0.0896 4.6844
PG 0.0004  0.0002 0 0.0001 0.0087 0.0396 -0.0679  -0.3245 9.9714
SLB 0.0003 0 0 0.0002 0.0147 0.0622 -0.0765  -0.121 4.8079
TGT  0.0005 0.0005 0 0.0001 0.011 0.0713 -0.0452  0.3832 7.9048
USB 0.0006  0.0008 0 0.0001 0.0096 0.044 -0.0504 -0.1894 4.8093
UTX  0.0006 0.0006 -0.0343  0.0001 0.0106 0.0401 -0.0343  0.0671 3.6356
A%/ 0.0002  0.0005 0 0.0001 0.0098 0.0341 -0.0418  -0.1077 4.3121
A% 0.0012  0.0011 -0.0729  0.0002 0.0131 0.0976 -0.0729  0.3238 8.7434
WMT  0.0005 0.0003 0 0.0001 0.0088 0.0463 -0.0479  -0.2476 7.1689
DIS 0.0012  0.0014 0 0.0001 0.0112 0.0514 -0.0617  -0.2572 4.9861
WFC  0.0009 0.0007 0 0.0001 0.011 0.0558 -0.0614  -0.1048 5.6001

Table 1.3: Descriptive statistics of the daily returns for the 50 stocks of our dataset.
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10-minute returns. The return of an intraday period is defined later in Equation (2.7).
In Table 1.4, we observe that the location parameters of all stocks are almost zero (up
to the first three decimals), the skewness value is close to zero for most stocks and the
kurtosis values do not differ substantially from those documented in Taylor (2005).

There are three shorter trading sessions in NYSE annually. Namely, these sessions
are the session before U.S. Independence Day, the session after Thanksgiving Day and
the session on Christmas Eve. On these days, the market opens at 09:30 and closes at
13:00 local time. Given that one of the aspects that this work investigates is the intraday
volatility patterns through the days, we discard half trading days from our dataset for
the intraday analysis. In this way, we avoid the effect of days of different lengths in the
empirical applications of the following chapters. This approach is also adopted in Ding
et al. (2022).

In terms of the estimation procedures, very rarely do not exist enough observations
within the intraday intervals for the computation of the intraday returns. Then, we set
as return for such an interval the return of its preceding interval in order to facilitate
the automatic estimation process. Also, if there are not enough observations within the

first intraday interval of a day, the return for this interval is defined as zero.

1.5.1 Correlation

The correlation coefficient (also known as Pearson’s correlation coefficient) is a mea-
sure of the linear dependence between two variables. The correlation coefficient shows
the degree to which two variables move together in the market and it takes values be-
tween -1 and 1. The closer the correlation coefficient to -1, the higher the indication
that a pair of variables move oppositely to one another. Similarly, the closer the cor-
relation coeflicient to 1, the higher the signal that a pair of variables move identically
in the market. Furthermore, when the correlation coefficient is equal to 0, this signifies

that the two variables do not share linear dependence, meaning that we cannot export
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Mean Median Mode Variance St. Deviation Max Min Skewness Kurtosis

MMM 0 0 0 1E-06 0.0012 0.0213 -0.0114  0.3692 13.3085
T 0 0 0 2E-06 0.0013 0.0161 -0.0163  -0.2975  14.4566
AA 0 0 0 5E-06 0.0023 0.021 -0.0268 0.016 8.6687
AXP 0 0 0 2E-06 0.0015 0.0175 -0.0152  0.1677 10.3501
AIG 0 0 0 5E-06 0.0022 0.0218 -0.0265  0.0122 10.3936
BAC 0 0 0 5E-06 0.0023 0.0211 -0.0286 0.037 10.5492
BA 0 0 0 3E-06 0.0017 0.0217 -0.0479  -1.0819  42.9939
CAT 0 0 0 3E-06 0.0018 0.0154 -0.0222  -0.1546  10.3219
CHK 0 0 0 1E-05 0.0032 0.0318 -0.061 -0.4743  16.9599
CvX 0 0 0 2E-06 0.0014 0.0146 -0.0181  -0.0936 9.5448
C 0 0 0 5E-06 0.0022 0.0209 -0.0288  0.0862 10.5412
CLF -0.0001 0 0 2.2E-05 0.0047 0.0701 -0.0739  0.3052 19.3905
KO 0 0 0 2E-06 0.0012 0.013 -0.0152  -0.1699 11.4563
GLW 0 0 0 4E-06 0.0021 0.0264 -0.0599 -1.2198  39.6196
DAL 0 0 0 1.2E-05 0.0034 0.052 -0.0821  -0.0347  24.5613
DVN 0 0 0 5E-06 0.0022 0.0377 -0.0189  0.2924 13.6606
DD 0 0 0 2E-06 0.0015 0.0342 -0.0149  0.6638 23.3097
LLY 0 0 0 2E-06 0.0015 0.0168 -0.0193 0.14 13.2699
XOM 0 0 0 2E-06 0.0013 0.0164 -0.0127  0.1198 8.7044
FDX 0 0 0 3E-06 0.0017 0.0238 -0.0174  0.3851 12.1

F 0 0 0 4E-06 0.0021 0.0169 -0.039  -0.5787  16.9481
FCX 0 0 0 6E-06 0.0025 0.0372 -0.0219  0.0958 10.2483
GE 0 0 0 2E-06 0.0014 0.013 -0.0205 -0.1302 9.8567
GIS 0 0 0 1E-06 0.0012 0.015 -0.0155  -0.047 13.9338
GM 0 0 0 6E-06 0.0024 0.0606 -0.0305  0.6021 27.1196
HAL 0 0 0 6E-06 0.0025 0.0516 -0.0349  0.2643 18.0685
HPQ 0 0 0 6E-06 0.0025 0.0885 -0.0322 2.004 74.006
HD 0 0 0 2E-06 0.0015 0.0151  -0.032  -0.2371 16.5212
IBM 0 0 0 2E-06 0.0013 0.0199 -0.0131  0.3636 11.7234
JPM 0 0 0 4E-06 0.0019 0.0197  -0.03 0.09 13.5463
JNJ 0 0 0 1E-06 0.0011 0.0237 -0.0241  -0.0703  24.2609
LMT 0 0 0 2E-06 0.0014 0.0167 -0.0263  -0.0578  16.5968
LOW 0 0 0 4E-06 0.0019 0.0183 -0.0222  0.1603 11.6814
MA 0 0 0 3E-06 0.0018 0.0311 -0.0355  0.3489 24.1874
MCD 0 0 0 1E-06 0.0011 0.0256 -0.0134  0.5614 22.9194
MRK 0 0 0 2E-06 0.0015 0.0195 -0.0166  0.1733 12.6049
NOV 0 0 0 5E-06 0.0022 0.019 -0.0328 -0.2087  11.3351
NEM 0 0 0 8E-06 0.0028 0.0328 -0.0265  0.1014 8.4859
NKE 0 0 0 3E-06 0.0016 0.0152 -0.0213 -0.1254  10.9261
PFE 0 0 0 2E-06 0.0015 0.0161 -0.0136  0.1296 9.2228
PG 0 0 0 1E-06 0.0012 0.019 -0.0168  0.2504 15.158
SLB 0 0 0 4E-06 0.002 0.0247 -0.0234  0.0271 10.223
TGT 0 0 0 2E-06 0.0015 0.0166 -0.0153  0.0505 11.5442
USB 0 0 0 2E-06 0.0015 0.0146 -0.0189  -0.0427  10.4204
UTX 0 0 0 2E-06 0.0015 0.0199 -0.0239  -0.0301 15.7468
A%/ 0 0 0 2E-06 0.0014 0.0115 -0.0211 -0.53 12.9925
v 0 0 0 3E-06 0.0017 0.0249 -0.0288  0.1049 25.7592
WMT 0 0 0 2E-06 0.0012 0.0119 -0.0144 -0.0306  11.6003
DIS 0 0 0 2E-06 0.0015 0.0287 -0.0154  0.4436 15.5094
WFC 0 0 0 3E-06 0.0016 0.0195 -0.0199  0.1984 12.2224

Table 1.4: Descriptive statistics of the 10-minute returns for the 50 stocks of our dataset.
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any inference about the movement of a variable by looking at the direction of the other
variable. We are going to use the findings of this section for comparison purposes with
Chapter 5 mainly, where the conditional dependence structure between the pairs of the

selected stocks is explored.

1.5.2 Correlation Between the Returns of the Stocks

This subsection focuses on understanding the linear dependence structure between
the stocks’ returns. As we have mentioned above, volatility is related to financial risk.
A way for specialists to eliminate market risk is to build a portfolio with uncorrelated
stocks. This happens because stocks with a high correlation may show similar adverse
behaviour during a negative market move. Therefore, it would be helpful for us to have a
picture of the correlation between the stocks for this period. Due to the different number
of intraday transactions observed for each stock, we use the stocks daily returns in this
analysis. The explicit correlation matrix of the daily returns for the underlying stocks
is given in Table A.1 in appendix A, while the heatmap in Figure 1.3 gives a visual
representation of this matrix. In Figure 1.3, the red colour stands for a correlation
coefficient near 1, the white colour for a coefficient near 0 and the blue colour stands for
a correlation coefficient close to -1. We see that most stocks are more or less positively
correlated during these three years, with few uncorrelated pairs of stocks.

Moreover, we may obtain more insights investigating the linear dependence of the
stocks related to the same sector. More specifically, we anticipate that stocks in the
same sector will be highly correlated. The heatmaps in Figure 1.4 depict the correlation
between the daily returns of the stocks in the same sector. We observe that stocks in
the same sector are positively correlated distinctly, while just few pairs of stocks have
a small correlation. The exact correlation coefficients between the stocks related to the

same sector are given in Tables A.2-A.10 in appendix A.

46



"S)009)s SUIAIOPUN o1} JO SWINJOI A[IRP 9} U90MId( JUAIDIO0D UOIPR[OII0D 9} sosifensia deuryeay Sy, :¢'7 2Ind1g

) S N S &
FL T T E TP PN TF T e
I B I

> > S o @ ) e Q& @ N
P LT Ee L, PPLe sl &
I

o

90

80

24M
sia
Lam
A
ZA
XN
asn
191
a15
9d
34d
DIN
WaN
AON
S
aow
VI
Mol
1w
INF
wdl
wal
aH
OdH
IWH

47



*10399S

ouIES 9} 0} PAYL[OI SID0JS Y} JO SWINIAI A[Tep O} U0M)O( JUIIDIJO0D UOIPR[OLI0d ) ostpensia sdewyeoy 989y ], T 9InSI]

ojouydayl

24M A 8SN VW Wdl D Jv8 OV dXV

S92IAISS |eldueUl]

W9 4

18211943 Jswnsuo)

XN 1A ED] Xad va  1vo

sjel3snpuj

91S  AON IYH  WOX  NAQ

sla ZA

Ve WWW 34d HHW INM AT

aiedyjjesy

XAD  MHD Liam 191 9d SI9 o

9AISUDa(Q JaWNSUO)

1 W3N X24 aa 410 w

S3JIAIDS uonedIUNWWo)

s|eajey diseg

48



1.5.3 Correlation Between the Returns of Stocks and Sectors

The correlation coefficient between the returns of the stocks and the sectors could
provide insights into how the stock patterns behave with respect to the patterns of stocks
related to a specific sector. For this reason, we have created an index composed of the

stocks related to a specific sector, given by:

ps
sector indexs(d) = Z wg?;x/;si)
j=1

where s denotes the specific sector for s =1, ..., 9, Ys({i) denotes the daily log-price for the
j-th stock related to the sector s for the d day where j = 1, ..., p;. Besides, p, denotes

the number of companies related to the sector s. The weights in the formula above are

given by:
)
W) Yeid
s, d R
b YL

where the denominator is the summation of the stocks’ daily log-prices for the companies
that compose the sector s and refer to the day d.
However, sometimes it would be safer to use the market capitalisation instead of the

log-prices for the weights’ calculation. The market capitalisation is calculated by:
MEtCap = total number of company's outstanding shares x stock price. (1.7)

In this case, the weights are calculated by:

M ktCapg C)l
P Mk:tC'apgfg

where M k‘tC'apgjg denotes the market capitalisation of the j-th stock related to the
sector s for the d day where j = 1,...,ps. The denominator indicates the summation

of the market capitalisation of the companies which form the sector s and the market
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capitalisation refers to the day d. Then, the composite index is defined by:

Ps

: _ =(7)y()
sector indexs(d) = )y W ]dYs,J

87
J=1

where YS(ZI) denotes the daily log-price for the j-th stock related to the sector s for the d

day where j = 1,...,ps and sector indexs = [sector indexs(1), ..., sector indexs(754)] €
R}ﬁlﬂ for the 754 days of our dataset.

The annual market capitalisation is given in Table A.11 in appendix A for all compa-
nies. As we see in Equation (1.7), the market capitalisation changes continually during
the trading hours since the stock price incurs intraday changes, and occasionally, the
number of outstanding shares of a company can change too. However, the annual market
capitalisation values have been considered in the explorational procedure of this subsec-
tion. Nevertheless, we do not expect that the dynamics of the composite sector indices
will be significantly affected by this event. Thus, we can receive valuable insights into
the overall image of the correlation between the sectors and the stocks. In the case of
sectors, the weights are calculated using the annual market capitalisation. Table 1.5
displays the correlation coefficient between the daily returns of the underlying stocks
and the underlying sectors.

We expect positive correlation between most stocks and the sectors’ composite index.
Further, we anticipate a high correlation between a stock and the related to this stock
sector. As we notice, both cases are fulfilled to a high degree, with several exceptional
cases. Significantly, the composite index of the sector ‘Technology’ appears to be neg-
atively correlated with almost every stock. A negative correlation coefficient appears
even with two out of the three companies composing this index. The reason behind this
event is that the mean value of the market capitalisation for the company International
Business Machines (IBM) is $190.24 billion for the three years. The corresponding mean

values of the other two companies are $24.23 billion for Corning Inc. (GLW) and $51.59
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billion for Hewlett-Packard Co. (HPQ). Thus, IBM ultimately gives the direction of the
underlying composite index, allowing the rest of the two companies a proportionally low
involvement in the performance of the index ‘Technology’. This is also visible in Fig-
ure 1.4, which demonstrates a weak and moderate correlation coefficient between IBM
and the other two companies. The small number of companies composing this index is
an additional factor that inflates this behaviour. With a higher number of companies in
this index, the proportion of involvement would have been determined more uniformly

among the stocks, allowing us to make safer inferences.

1.5.4 Clustering

A popular unsupervised classification method based on the similarities among the
variables of a dataset is the k-means clustering. In short, the idea behind the stan-
dard technique is to classify the variables into different groups (also known as clusters)
according to the euclidean distance from some centroid values. After an iterative pro-
cedure, when the variables’ classification ceases to change based on the centroid values,
the resulting clusters identify the variables that share common features. Beyond the
euclidean distance, alternative distances can be used depending on the analyst’s needs
each time. In this analysis, the daily squared returns are used and the classification of
the stocks has been made with respect to their correlation coefficient. Squared returns
are measures of the price changes of the stocks, so by this technique we aim to explore
whether we can classify the stocks’ price changes into distinct groups.

The standard algorithm in MATLAB does not deliver any strong inference about
the optimal number of clusters. In particular, always the highest number of specified
possible clusters is chosen. Hence, we cannot draw unequivocal conclusions about the
grouping of the stocks with respect to the linear dependence of their squared returns.

More elaborate methods will be developed in Chapter 5.
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Chapter 2

RV-Based Estimators of Intraday

Volatility

2.1 Introduction

In the introductory chapter, the notion of historical volatility was outlined. The
empirical variance and the standard deviation are two estimators of widespread usage
to estimate the daily volatility. However, both measures provide estimates under the
assumption of homoscedasticity in the dataset. Furthermore, these estimators utilise the
daily returns, omitting a vast number of intraday observations in the estimation.

Plenty of estimators have been proposed in the literature which consider high-frequency
financial data to approximate the daily notional volatility (Zhang et al. (2005), Barndorff-
Nielsen et al. (2008), Podolskij et al. (2009) among others). The most common measure
is the realised variance (also called realised volatility), an empirical estimator of daily
volatility. This estimator evaluates the daily volatility with greater efficiency since the
intraday observations aid in a more accurate volatility estimation. Realised variance is
defined by summing up all the pointwise squared returns of a stock in a day. However,

due to the microstructure noise contained in the observed prices and, in turn, in the re-
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turns, the realised variance is proven to be a biased estimator of the true daily volatility.
Thus, an alternative realised variance-based method has been developed. This estima-
tor makes use of a lower number of intraday data, resulting in the reduction of the bias
introduced by the noise aggregation. We define these two estimators in section 2.3.

It would be interesting to investigate how volatility behaves on an intraday basis.
This work considers five estimators defined similarly to the realised variance, but they
are used for intraday volatility estimation instead. Two of these measures exploit part of
the intraday observations for the volatility estimation, whereas the rest three estimators
use the total intraday observations as input.

The proposed estimators take into consideration different aspects of the intraday
stock behaviour, such as the difference in time between the observed transactions and
the number of observations that occurred within some specified intraday intervals. The
purpose of defining these volatility estimators is the following. By these estimators, we
can investigate the intraday volatility dynamics, as we intend to do in Chapter 3.

The rest of this section has the following structure. Section 2.2 establishes the rel-
evant preliminary background, and two standard estimators of the daily volatility are
discussed in section 2.3. In section 2.4, we develop five intraday volatility estimators and
report their properties. An empirical example is offered in section 2.5, and this chapter

concludes with a discussion in section 2.6.

2.2 Theoretical Framework

In this section, we review the theoretical background of continuous-time stochastic
processes required for the definition of realised variance and the related models developed
in this thesis. More details about the context of continuous-time stochastic processes can
be found in Jacod and Shiryaev (2003), @Qksendal (2003), Protter (2005), Capasso and
Bakstein (2015) and Klebaner (2012). In particular, one can refer to Elliott and Kopp

(1999), Cvitani¢ and Zapatero (2004), Shreve et al. (2004), Duffie (2010), Lamberton
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and Lapeyre (2011), Mykland and Zhang (2012) and Ait-Sahalia and Jacod (2014) for a
centralised description of this context in the field of finance. The aforementioned studies
are also the sources of the standard definitions reported in this section.

Let (92, F,P) be the probability space where  denotes the sample space, F denotes
the o-algebra and P denotes the probability measure. We assume that the true log-price
evolution, (X (t))t>0 is defined on the probability space (€2, F,P) and it is a stochastic
process. B

Definition 2.2.1 (Stochastic Process) A stochastic process X on (Q, F,P) is a col-

lection of real-valued random variables (X(t)>t>0.

In particular, we assume that the true log-price evolution (X (t)) . is a stochastic
24
process which is defined on the filtered probability space (2, F, (Ft)t>0, P) where (F;)e>0

represents a family of o-algebras called filtration.

Definition 2.2.2 (Filtration) A filtration (F:):>0 is an increasing family of sub-o-
algebras of F (i.e. Fy CF and if u < v, then F, C Fy).

Also, we suppose that the filtration (F;):>0 satisfies the ‘usual conditions’ (Liptser and
Shiryayev, 1989; Elliott and Kopp, 1999; Protter, 2005), that is, (F;)s>0 is complete and
Fu = MysuFy (ie. right continuous) for all u > 0. Broadly speaking, F; expresses the
knowledge available to investors and researchers up to (and including) time ¢. In this
framework, a process X () is called adapted with respect to the filtration (F;);>0 or just
Fi-adapted when X (t) is Fi-measurable for every t. Given the information in F;, this
means that the value of X (¢) is known at time ¢ along with its past history.

A convenient assumption for the true log-price evolution is that it follows a standard

Brownian motion.

Definition 2.2.3 (Standard Brownian Motion) A standard Brownian motion is a

Process (W(t)>t>0 defined by the following properties:
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e W(0) =0 almost surely;

For any times u and v such that uw > v, W(u) — W(v) ~ N(0,u — v);

For any times tg, ..., t, such that 0 < tg <ty < --- < t, < 0o, the random variables

W(to), W(t1) = W(tg), -, W(tn) — W(tn—1) are independently distributed;

For each w € Q, the sample path t — W (w,t) is continuous.

However, considering that the true log-price evolution follows a standard Brownian mo-
tion is a “too restrictive” assumption (Duffie, 2010). In this context, a more flexible

assumption is that the evolution of the true log-price follows an It6 process.

Definition 2.2.4 (Itd Process) Let (Q,F,(Fi)i>0,P) be a filtered probability space
and (W(t))

valued Ito process if it can be written as:

a standard Fi-Brownian motion. The process (X(t)) s a real-

>0 0<t<T

t t
X(t) = X(0) +/0 p(s)ds —i—/o o(s)dW (s), 0<t<T (21)

where X (0) is Fo-measurable, (,u(t)) and (U(t)) are Fi-adapted processes

0<t<T 0<t<T

such that fOT lu(s)|lds < oo almost surely and fOT lo(s)|2ds < oo almost surely, respec-

tively.

In high-frequency literature, it is a common assumption that the true log-prices follow
an Itd Process (2.1) (Zhang et al., 2005; Barndorff-Nielsen et al., 2008; Podolskij et al.,
2009) and we make the same assumption in this work.

In Equation (2.1), the second term is an ordinary integral and the third term is a
stochastic integral (for the definition and the properties, see Shreve et al. (2004) and
Protter (2005) among others). As opposed to the ordinary integral, where standard
calculus can be used to differentiate this integral, the same does not happen for the

stochastic integral. This comes from the properties of the standard Brownian motion
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contained as a component in this integral. More specifically, although the sample paths

of the standard Brownian motion are continuous functions of time ¢, its paths are not

differentiable anywhere (Cvitani¢ and Zapatero, 2004; Ait-Sahalia and Jacod, 2014).
The It6 Process (2.1) can be equivalently expressed by the following Stochastic Dif-

ferential Equation (SDE):

dX(t) = p(t)dt + o(t)dW(t), 0<t<T.

The above SDE intuitively indicates that the log-price change of time t is a random
process where u(t) indicates the instantaneous drift, o(t) signifies the spot volatility of
this process and W (t) denotes the standard Brownian motion.

Before proceeding further, we define several necessary concepts at this point. In
particular, the concepts of a cadlag process, stopping times, martingale process, local
martingale process, predictable o-algebra and predictable process are given. Then, we
would be able to introduce what a semi-martingale process is, an essential notion in the
field of finance, and formalise our assumptions.

Firstly, we define the notions of cadlag and local martingale processes, while for
the latter process we first need to introduce the concepts of a martingale process and

stopping times.

Definition 2.2.5 (Cadlag Process) A stochastic process X is said to be cadlag if it

almost surely has sample paths which are right continuous with left limits.

Definition 2.2.6 (Stopping Time) A random variable T : Q — [0, +00] is a stopping

time if the event {T <t} € Fy, everyt, 0 <t < +o0.

The intuitive meaning of the definition of stopping times is that 7 is called a stopping
time when we are able to identify whether 7 has occurred (or not) up to (and including)

time t, given Fy, for every t.
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Definition 2.2.7 (Martingale Process) A real-valued, adapted process (X(t)> . is
t>

called a martingale with respect to the filtration (Fi)i>o if:
o E[X(#)]] < oo;
o if s <t, then E[X(t)|Fs] = X(s), almost surely.

A martingale process describes a process where, loosely speaking, the best guess for a
future stock price is given by the current stock price. This process is widely used to
describe a fair environment where no one can predict the future value by exploiting
the price history up to the current time. Using the definitions of stopping times and

martingale processes, we can now define the local martingale process.

Definition 2.2.8 (Local Martingale Process) An Fi-adapted real-valued stochastic
process (X(t)) . is called a local martingale with respect to the given filtration (Fy)i>o

> >
if there exists an increasing sequence of Fi-stopping times Ty such that:

e 7, — 00 almost surely as k — oo;
o X(t ANTy) is an Fy-martingale for all k.

The concept of a local martingale process is used to show that a process “behaves like
a martingale up to suitably chosen stopping times” (Ait-Sahalia and Jacod, 2014). If a
process is a martingale, then it is a local martingale process, whereas the opposite is not
necessarily true (Cherubini et al., 2011; Ait-Sahalia and Jacod, 2014).

At this point, we introduce the notion of a predictable o-algebra.

Definition 2.2.9 (Predictable o-Algebra) The o-algebra generated by the adapted

left-continuous processes is called the predictable o-algebra.

Now, we can give the definition of a predictable process. Informally speaking, a pre-
dictable process refers to a process where the value of this process at ¢ is known just

before t. A predictable process is given by the following definition.
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Definition 2.2.10 (Predictable Process) A process is called predictable if it is mea-

surable with respect to the predictable o-algebra.

Using the definitions above, we can now introduce the concept of a semi-martingale

process.

Definition 2.2.11 (Semi-Martingale Process) X (t) is a semi-martingale if it can

be written:

X(t) = X(0)+ A(t) + M(t), 0<t<T

where X (0) is Fy-measurable, M (t) is a local martingale and A(t) is a process of finite
variation, i.e.,

sup Z |A(t;) — A(ti—1)| < oo,
i
where the supremum is over all grids 0 <ty <ty <---<t, =T, and all n.

The second term of (2.1) is a process of finite variation. Let A(t;) = [y u(<)ds, then

this holds since:

T
dg Z/t 1 |d§—/0 lu(s)|ds < 00, a.s.,

tll

Z\A(t tlly_Z}/

for all grids 0 < tg < t; < --- <t, =T. Also, the last term in (2.1) is a local martingale
(see for example Shreve et al. (2004) and Ait-Sahalia and Jacod (2014)). Therefore,
the 1to6 Process (2.1) is a semi-martingale process. Also, the It6 process is an adapted
and cadlag process (Jacod and Shiryaev, 2003; Ait-Sahalia and Jacod, 2014). These are
important characteristics since they allow the pricing process to behave similar to the
price evolution in continuous trading.

As Cherubini et al. (2011) state “The decomposition of a semi-martingale is not
unique, however; there is at most one such decomposition where the process A can be

chosen predictably”. In the case that A(t) is a predictable process of finite variation and
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M(0) = A(0) = 0, then the semi-martingale process can be represented in a unique way,
which gives rise to the concept of a special semi-martingale process (Protter, 2005).
We make the following assumptions on the true log-prices of stocks and the coeffi-

cients of the It6 process.

Assumption 2.2.1 The true log-prices X (t) follow an Ito semi-martingale process,
given by (2.1), where the coefficient u(t) is a locally bounded predictable process and

the coefficient o(t) is a strictly positive cadlag stochastic process.

Assumption 2.2.2 The coefficients u(t) and o(t) are jointly independent of W (t) for

all t.

Assumption 2.2.1 is commonly used in the framework of high-frequency volatility es-
timation (Christensen and Podolski (2005), Barndorff-Nielsen et al. (2008), Podolskij
et al. (2009), Gongalves et al. (2014) among others). It is known that Assumption 2.2.2
implies the absence of the leverage effect in the true price process X (¢) (Kristensen,
2010). Hansen and Lunde (2006), Kristensen (2010) and Nolte and Voev (2012) argue
that this is not a crucial assumption when it comes to estimation, however it can simplify
the derivation of the properties of the estimators.

The semi-martingale assumption enables us to consider a frictionless market (i.e. a
market without trading costs and constraints) without arbitrage opportunities (Barndorff-
Nielsen et al., 2008). Arbitrage is a term of widespread usage in finance that describes
an investor’s ability to make money in the market without being exposed to risk. For
instance, such a situation occurs when an investor sells a company’s stock at a specific
price and, at the same time, buys this company’s stock at a lower price in a different
market. After a short time, the stock price will be the same across the markets since
many investors will aim at exploiting such a misprice, offsetting the stock price to the
same value across the markets. Hence, the investor has sold a stock expensively and

has purchased the same stock cheaply, profiting from the difference in price across the
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markets, with no risk.

The It6 semi-martingale process can be extended to a model that includes price
jumps in the process by adding an extra term. However, we assume the absence of price
jumps in the true log-price evolution in this study. The reader can refer to Ait-Sahalia
and Jacod (2012) who provide the mathematical framework around the price jumps in
the above process along with an extensive study on high-frequency stock returns under
the framework of this model.

The pathwise volatility of the Itd6 Process (2.1) is given by the Quadratic Variation
(QV):

n 2 T
QV = plim X(t;) — X (ti—q :/aﬁtﬁ
pim 3 (X(t) = X () = [ o%0)
and the proof is provided in Shreve et al. (2004). Under the assumption of the absence

of price jumps in the It6 process, the QV is synonymous with the Integrated Variance

(IV) defined as:

JV:/Tﬁ@ﬁ. (2.2)
0

Here, we set T' = 1 to refer to one day period; hence IV expresses the daily notional
volatility.

Let 0 =1tg <t; <ty <--- <ty, <T be the n (irregularly spaced) observation times
within the horizon [0,T]. A realistic assumption in high-frequency econometrics is that
the observed log-prices are contaminated by noise. Under the existence of noise, the

observed log-price at a given time point Y (¢;) can be expressed as:
Y(t) = X(t:) + E(t) (2.3)

where X (t;) depicts the i-th intraday true log-price, given by (2.1), and E(t;) depicts
the corresponding error term. In volatility modelling, o(¢) is the coefficient of interest,

however it is not observable. Hence, we should rely on the observed log-prices to derive
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insights about it. We make the following modelling assumptions.

Assumption 2.2.3 The observed log-price at a given time point t;, Y (t;), satisfies the

relation in (2.3).

Assumption 2.2.4 The error terms E(t;) are IID with E[E(t;)] = 0, E[E?(t;)] = w? <

oo and E[E4(t;)] < .
Assumption 2.2.5 The price process is independent of the errors.

Assumptions 2.2.3 and 2.2.4 are common assumptions in this context (Podolskij et al.,
2009; Gongalves et al., 2014; Nolte and Voev, 2012). As regards Assumption 2.2.5,
Barndorff-Nielsen et al. (2008) comment that “from a market microstructure theory view-
point is a strong assumption as one may expect E to be correlated with increments in
X (t). However, the empirical work of Hansen and Lunde (2006) suggests this indepen-
dence assumption is not too damaging statistically when we analyze data in thickly traded

stocks recorded every minute”.

2.3 Realised Variance

An empirical estimator of QV, and by extension of IV, is given by the Realised
Variance (RV), defined as:
RV =" R2(t,). (2.4)
=2

where R(t;) stands for the intraday returns, given by (1.5). As we notice, the formula
of RV is nothing more than the daily empirical variance of returns in Equation (1.2)
under the assumption of E[R(t)] = 0 for all ¢, without averaging the squared returns.
However, instead of the daily returns, the pointwise returns are utilised in this estimator.

As Andersen et al. (2003) report, under the absence of microstructure noise and price

jumps we have that RV (@) & 1V However, considering that the Equation (2.3) holds,
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then RV i a biased and inconsistent estimator of IV. Further, we recall that the
pointwise returns are given by taking the difference of consecutive intraday log-prices.
This often results in a (negative) autocorrelation between the successive intraday returns
(Taylor, 2005; Tsay, 2005), affecting, in turn, the unbiasedness condition of RV (ald),
Several alternative RV-based estimators have been proposed to overcome this problem
without improving the properties considerably.

Before defining the typical RV estimator, we introduce relevant notations. Suppose
we divide a day into J non-overlapping intervals of equal length. Then, each interval I
contains a number of observed prices denoted by ny, for I = 1,..., J. Usually, the length
of the intraday intervals is arbitrarily set by the specialist, whilst the number of the J

intervals in a trading day is calculated by:

23,400
J=———, suchthat J €N
q- 60

where ¢ denotes the length of the intraday intervals, given in minutes, and 23,400 refers
to the total trading seconds in a trading session. For example, using 1-minute intervals
we obtain J = 390 intraday intervals. Similarly, defining 5-minute intervals we obtain
J = 78 intervals and so on. In the literature, frequencies of 30, 15, 10 and especially
5-minute returns are used (Andersen et al. (2001a), Zhang et al. (2005), Ait-Sahalia and
Yu (2009) among others), given for J = 13, 26, 39 and 78 intervals, respectively.
Considering that Y (¢7;) denotes the i-th observed log-price within the interval I, the

Equation (2.3) can be re-expressed as:
Y(tri) = X(tri) + E(tr:) (2.5)

where X (t7,) denotes the i-th true log-price within the interval I and E(t;;) stands for
the corresponding error term. To avoid any misconception, it is important to mention

that the subscript I refers to the particular interval for I = 1, ..., J and the subscript ¢
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refers to the i-th observed log-price within this interval.

Let R(tr;) be the intraday pointwise return at ¢; within the interval I, given by:
R(tr;) =Y(tr;) —Y(tri-1) (2.6)
where ¢ = 2,...,n7. Then, we define the return of the interval I by:
R(tr) =Y (trm;) —Y(tr1) (2.7)

where n; denotes the number of observed prices in the interval I and thus Y'(¢7,,)
represents the last log-price in the same interval.
The standard RV estimator (Andersen et al., 2001b; Barndorff-Nielsen and Shephard,

2002) is expressed as the aggregation of the J squared interval returns:

RV =Y R(ty) (2.8)

where R(t;) denotes the return of the interval I, given by Equation (2.7) for I =1, ..., J.

In the RV estimator, the effect of noise in the IV estimation is weakened. This
happens because RV considers fewer returns as inputs than RV (@) hence less noise is
aggregated in the estimation. For this reason, RV is preferred compared to RV (@) in
the literature. Ideally, the chosen sampling frequency should yield a high number of
intraday returns, so we incorporate many intraday features in the estimation. However,
we should also consider the minimum possible number of error terms (embedded in
returns) in the aggregation scheme of this measure. The sampling frequency can be
optimally chosen with respect to the trade-off between the estimation bias and variance.
Nevertheless, specialists often define sampling frequencies of five or ten minutes. The

estimators mentioned above are extensively studied -along with similar techniques- by

Zhang et al. (2005).
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2.4 Intraday Volatility Estimation

One of the aspects that this study investigates is the intraday volatility. By this term,
we refer to the volatility within the equilength and non-overlapping intraday intervals
of a day. This work develops five empirical estimators that follow a similar rationale
to those in the previous section, but the new estimators are utilised for the intraday
volatility estimation. Fvery estimator offers higher estimates for the stocks with par-
ticular properties in their observations. One can utilise the intraday estimates of these
measures for further analysis. In the next chapter, we develop a methodology that ex-
ploits the patterns of the intraday estimates to infer the stocks and the intraday periods
with the highest intraday variability based on the different characteristics of the dataset.
By these estimators, we aim to incorporate different traits of data that signify volatility
in the intraday and daily volatility estimation. These data traits are observed on the
high-frequency scale and customarily ignored by conventional methods.

Following the same theoretical background as defined above, the log-price in a given
interval I is expressed by (2.5) and the pointwise returns in the interval I are given
by (2.6). Then, the pointwise return R(t7;) in an interval I is a function of the true

point return and an error term V:

Y(tr:) = Y(tri1) = X(tri) — X(tri-1) + E(trs) — E(trio1) <

R(tri) = R*(tr;) + V(trs)

where R*(t;;) denotes the true return at time point ¢; within the interval I and V' (¢7;)
denotes the difference of the error terms at time points ¢7; and t;;_1 within the same
interval.

In this context, it is more meaningful to transform Equation (2.2) into:

IV = / ! o?(s)ds (2.9)

I—-1
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where I refers to the corresponding interval for I = 1,...,J. Equation (2.9) describes
the notional volatility that arises in the intraday interval I.
We now define two estimators of (2.9). These estimators follow similar rationale as

(all)

the standard measures RV and RV'; however, they are used for intraday estimations.

The first estimator is defined as:
RV (Intr—all) ZRQ tIz

where R(tr;) stands for the poinwise returns within the interval I, given by Equa-

tion (2.6), for I = 1,...,J. The second estimator is defined by:
nir 2
RV = §2(ty) = (Y (tr,) = Y (1) (2.10)

where R(t7) denotes the return of the interval I, as given by the Equation (2.7), and nj
denotes the number of observed prices occurred within 1.
Let t; = I/J defines the grid points of the J intraday intervals in a day where

I=1,---,J. Using the internal addition property of integrals we notice that:

1 ty
v —/ o?()ds —/ o?()ds
0 to
t1 to tr ty
= / 02(§)dg + / 02(g)dg + ..+ / 02(g)d§ + ..+ / 02(g)d§
to t1 tr—1 tr—1

=IVi+IVo+ ...+ IV + ...+ 1IV;.

Therefore, by aggregating the J estimates of RV U™ results in the standard RV es-

timator in Equation (2.8). In contrast, by aggregating the estimates of the estimator

(all)

Ry Untr=all) e do not receive the same estimation as RV since J — 1 fewer returns

(at the boundary of the intervals) are used. However, the difference in the estimation is

(all)

negligible since J is tiny compared to n. Similar to the case between RV and RV for
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noisy observations, we expect that RVUntr) provides superior performance compared
to RVUntr=all) when the intraday estimates are aggregated for the approximation of
IV. However, RV Untr—all) jpcorporates more observations in the estimation, inevitably
discarded by RV (ntr),

In the market, a stock presents some additional traits which can contribute to volatil-
ity other than high intraday price fluctuations. These traits are related to the stock
trading behaviour, that is how frequently a trade occurs in the market. For example,
suppose we observe the same price for a stock at the beginning and the end of the in-
traday interval I, with many different price values in between. In that case, we notice
that there is some volatility, which is not captured by the Estimator (2.10) since its
estimate would be zero for this interval. Another example which reveals the weakness
of Estimator (2.10) to capture features that show volatility is the following. Suppose a
liquid and an illiquid stock which have the same prices at the beginning and the end
of the intraday interval I, the Estimator (2.10) will provide the same estimate for both
stocks, even if the first one had a more intense trading behaviour in this interval.

High-frequency data have some particular characteristics which include fruitful infor-
mation about the intraday volatility behaviour of an asset, such as the difference in time
between the stock trades and the number of observed prices within an intraday interval.
We intend to incorporate these data features in the volatility estimation, introducing
the following volatility estimators for the intraday interval I:

R*(tr)

stRV; "M = T
I

2
(Intr—all) Z R tIz

t
s RVI Atr, ,

where R(tr) is given by Equation (2.7) and R(tr;) is given by Equation (2.6). Here, Aty
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denotes the difference in time between the last and the first observed prices that occurred
in the interval I, i.e. Aty = tr,, —tr1. Similarly, At7; denotes the time difference
between the consecutive pointwise observed prices in I, i.e. Atr; =1tr; —tr;—1, and ny
stands for the number of observed prices within /. The intraday estimates are delivered

as a 1 x J vector, such that:

Rv(jntr_all) _ R‘/vl(lntr—all)’ - RVJ(Int'r—all)) c Ri,

Ry Unir) — RVIU"““),...,RV}I””)) eR,

StRV(Intr—all) _

(
(

stRyUntr) — (stRVlU””), ...,stRV}I””)) 3:
<stﬂ,vl(lmsr—all)7 . stRVJ(Intr—all)> c R—JH
(

wRY Untr—all) _ va;”"”‘“”),...,wRV}I"”‘“”)> eRY.

A list of the main symbols is given in Table 2.1 on page 70.

In the estimators proposed above, the squared pointwise and interval returns are
weighted using trading frequency features of the stocks. In this way, we include additional
volatility characteristics in the estimation, driven by the intensity of the trading, other
than the magnitude of the price fluctuations. Such features are the duration between
the observed prices and the number of observed prices within I.

The different weights we introduce in the estimation procedure contribute to higher
interval estimates for stocks that exhibit particular properties within the interval I.
The main differences among the above estimators are briefly explained. The estimate

(Intr)

of RV i)

exclusively relies on the interval return, whilst the estimator stRV;

makes further use of the time space between the first and the last observed prices in the
interval I. Hence, we expect the latter to provide higher estimates for intervals with
high squared returns in which the time difference between the last and the first observed
prices is short. We recall that the observed time points are given in milliseconds after the

rescaling procedure to values between zero and one. Thus, the lower the time difference
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in the denominator, the higher the volatility estimates for stRVI(Intr) . Practically, this

event happens more often for illiquid stocks. So, a high volatility estimation over the
interval I is a function of a relatively high squared interval return and a low intraday

activity for a stock through stRVI(Imr).

For StRVYI(Intr—all)

, a high interval estimate depends on the high squared pointwise
returns and the short time space between the sequential observed prices. So, it provides
higher estimates for intensively traded stocks with considerable price changes over the

VI(I ntr=all) o ffers high interval estimates for stocks

given interval. On the other hand, wR
with relatively high squared returns and low trading frequency because of the averaging
scheme applied to every interval.

Also, the different weights applied to the returns make the estimates non-comparable
across the estimators. As we explain in section 2.4.1, assuming enough observations
within I (n; > 2), we have that wRVUntr—all) < Ry (Untr=all) < g gy (Intr=all) gince
1/(nr—1) <1< 1/Atr;. Similarly, RVU™7) < st RVU™7) since 1 < 1/At;. As opposed
to RV Untr—all) and RV Unt) where the aggregation of the interval estimates provides an
approximation of IV, this does not hold for st RV (") gt Ry (Intr—all) gnd o RY (Intr—all)
due to the additional weights. Thus, the daily volatility estimation can be considered a
function of IV for the latter three cases. The benefit of using these estimators is that
they allow us to compare the volatility estimates across the stocks, exploiting different

characteristics of the dataset. The empirical example of section 2.5 discusses more about

the distinctions of these estimators based on an analysis of a liquid and an illiquid stock.

2.4.1 Properties of the Estimators

In this section, we provide the properties of the intraday volatility estimators for the
intraday interval I given R* in terms of mean and variance. For the derivation, along

with the assumptions in section 2.2, the following assumption is made.
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H Notation: ‘ Denotes: H

1 A specified intraday interval
J Number of intraday intervals in a day
ny Number of the observed prices in the interval I
Y (tr,) The i-th observed log-price of stock in the interval [
X(trs) The i-th true log-price of stock in the interval I
R(tr) The observed interval return for the interval I
R*(ty) True interval return for the interval I
R(tr4) The i-th observed pointwise return of stock in the interval [
R*(tr,) The i-th true pointwise return in the interval I
w? Noise variance
Aty Time difference between the last and the first observed prices
in the interval I
N Time difference between the i-th and its preceding observed price
' in the interval I

Table 2.1: Summary of important notations.

Assumption 2.4.1 The observed time points are non-random but not equidistant, thus

they are independent of the price process.

Assumption 2.4.1 rules out the case of observation times dependent on the price process
(i.e. endogeneity). This assumption simplifies the derivations and is often made in this
context, see for example Mykland and Zhang (2009) and Nolte and Voev (2012) among
others. Barndorff-Nielsen et al. (2011) assume random and non-endogenous times for
the definition of their estimator. Endogeneity could affect the properties of the RV
estimator, as studied by Li et al. (2014b). Mykland and Zhang (2012) review different
assumptions on the observation times and their effect on the properties of RV.

More specific modelling assumptions could be made on the time process. For ex-
ample, if we assume that the observation times are random variables which follow a
homogeneous Poisson process, the number of observations N; in an interval follow a
Poisson random variable. Then, conditional on the number of observations within I,

N; = nj, the arrival times within the interval have the same distribution as the order
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statistics of Uniform random variables (Renault and Werker, 2011; Mykland and Zhang,
2012). This could give an alternative explanation for almost regular but non-equidistant
time points. A general inhomogeneous assumption for the time process requires more
complex justifications, which we do not pursue further but refer to Hautsch (2011) for
more details.

Before stating the properties of the estimators, we make some informal comparisons
of different measures of volatility. Recall that t; € [0,1] and n; ~ n/J. The proposed
measures can be expressed as a weighted version of the standard realised variance esti-

mators:
ny
RV (Intr—all) Z miR tI ), StRVI(Intr—all) _ Z SZ‘RQ (tl,i)
=2

where, provided that n; > 2,

1 <1< !
me — =g,
Yonp—17 - Aty Y
leading to:
wRVI(Intr—all) < R‘/}(Intr—all) < StRVI(Intr—all) ) (211)

The weight m; transfers the overall volatility to volatility per transaction, while s; trans-
fers that to volatility per unit time, thereby revealing different dynamics over the pe-
riod. For highly traded stocks, m; decreases, s; increases and the variation in s; is small
(si = sj, © # j). Thus, if s; or At;; does not vary much, stRVI([ntr_a”)/RVI(IMT_G”)
is approximately constant for all I. This does not hold for infrequently traded stocks.

(Intr—all)

In particular, the diverging shape between stRV; and RVI(IMT_GZZ) is a sign of

irregular trading. On the contrary, stRV ") /RVUnT) — 1 /At; = O(J) remains ap-

proximately constant in both cases.

Considering the assumptions above, we can now provide the explicit formulas of the
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conditional mean and variance of the estimators, given the fixed sample size ny. The

complete derivation of the properties is given in appendix B.1.

Proposition 2.4.1 (Conditional Mean of the Intraday Volatility Estimators)
The conditional expectation of the intraday volatility estimators with respect to R* over

the interval I have the following form:

2
E[RVI(IntT)‘R*] _ (R*(t1)> + 2w27

nr

2
E[R‘/}(Intrfall) |R*] _ (R* (tl,i)> + 2(71[ o 1)0.)2,
=2
R(1))
I 2w?
E (Intr)| px _
[stRV} |R*] At + Aty
2

ny (R*(U,i)) 2(ny — 1)w?

(Intr—all)| px
E[st =
[S RV} |R ] Aty + Atl,z’ ’

(R*(tu)> ’ + 2w

The interpretation of the above notations is given in Table 2.1. As expected from (2.11),
the conditional mean retains the same ordering and shows different factors affecting
the finite sample behaviour. In relation to the assumption on the time points, had
we assumed random time points, it would have been a simple matter to replace Atr;
and At by their respective expectations. For example, under a Poisson process with a
constant rate A, the duration Aty ; follows an independent Exponential distribution with
mean 1/A (Hautsch, 2011) but the mean of the 1/At;; does not exist so the measure
stRVI(Imr_a”) can be very large for highly regular trading stocks. On the contrary, At; =
>ty Atr, as the sum of Exponential variables follows Gamma(n; — 1, \) distribution
with mean E[At;] = (n; — 1)/X and 1/At; follow an Inverse Gamma distribution with
mean E[1/At;] = N/(n; — 2) if n; > 2 and variance A\?/[(n; — 2)%(n; — 3)] if n; > 3.

As Axn~npJ, stRVI(Intr) / RVI(I"W) = O(J) so the global behaviour of the estimators
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would be similar between random and fixed time points.

For the variance, since all estimators are in the form of ), w; R? with R; = R(tr,;)
and R; = R} + V;, we derive a general form of the conditional variance below. The

complete derivation is found in appendix B.1.3.

Proposition 2.4.2 (Conditional Variance of the Intraday Volatility Estimators)
The conditional variance of the estimator RV = Yo wiR;, given R*, has the following

form:
Var [E‘J/\R*] = 2a4(§wi(wi + wit1) + wi) + 2a§<§wi(wi —wit1) + wi)

n—1 n—1
+dag Yy wiwi (RY — RYyy) + 8as (Z wilRy (wiRy — w1 Ry ) + wi(RZ)2>

i=1 i=1

where

RVI(Int'r—all) cwp =1, StRVI(Imfr—all) Y wRVI(]ntr—all) Cw; =

L At[,i’

SERS

and ap = E[E*(t;)], fork=1,...,4.

In the proposition above, by Assumption 2.2.4 we have that E[E?(t;)] = az = w?.
Effectively, the most general form with w; = s; is for stRVI(Intr_a”). The first term
is the leading term in the conditional variance formula, which is proportional to the
fourth moment of the error. For stRVI(Intrfa”), although it is not possible to simplify
the formula without further assumptions on the model, we can deduce various effects
of neighbouring observations in the additional terms. For example, if either w; = w;y1,

R} = R}, or w;R; = w;11 R}, {, the corresponding terms will disappear.

For specific estimators, we can apply the variance formula with n =n; —1 or n = 1.
Case I: RV Untr—all) wwith w; =1 for all i = 1,..., n:

Var |:va(lnt7“—all) |R*
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=2n(as +a3) +2(n — 1)(ay — a3) +8agz _8GQZR R}, +4a32 (R; — Rj,1)
= dayn — 2(aqg — a3) + Say Z( SaQZR R;,, —4a3(R; — RY)

=4dasn + Op(1);

Case II: wRVUn=dl) with constant weight w; = 1/nforalli=1,....n
(Intr—all)| px | __ 1 (Intr—all)| px7 _ 4&4
Var|wRV; |R*| = ?Var[RVI IR ] = — + Op(n~?);

Case IIT: RVUn) and stRVUIM) with n = 1:

Var [RVIU"”) |R*} = 2a4 + 242 + Sas(R})?,

Var [stRV}’"”) |R*} - (2a4 + 242 + 8as(RY)?).

1
(Atr)?
In the above results, R} denotes the true interval return for the intraday interval I,
ar = E[E¥(t;)] denotes the k-th moment of the errors E(t;) for k = 1,...,4, and At;
denotes the time space between the first and the last prices within /. Similar derivation

is found in Zhang et al. (2005).

2.5 Empirical Example

This section gives an empirical example for the estimators of section 2.4. In this
example, the intraday volatility estimators are applied to two stocks for the dates 25, 26
and 27 of November 2013. It would be interesting to comprehend how these estimators
behave for stocks with a different trading frequency behaviour. For this reason, we
select the most and the least liquid stock of the data period for this investigation. The
most liquid stock in terms of the total number of transactions is Citigroup Inc. (C),

with an average of 8,387 transactions per day. For the chosen dates, 8,248, 4,679 and
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4,799 transactions were monitored. On the other hand, the least active stock concerning
the total number of intraday transactions is Mastercard Inc. (MA), with an average of
1,896.7 transactions per day. For the selected dates, 522, 516 and 208 transactions were
observed. Indicatively, 4,346.7 intraday transactions occurred per stock, on average, for
the data period. As regards the analysis settings, the estimators consider intervals of 30
minutes, resulting in 13 intraday intervals.

In the panels on the left-hand side in Figure 2.1, we present the logarithmic value of
the intraday estimates of RV Intr—all) gt Ry (Intr=all) 4, Ry (Intr—all) - py/(Intr) - gy Ry (Intr)
(from top to bottom) for the liquid stock. In the panels on the right-hand side of the
same figure, the estimates of the aforementioned estimators are depicted (given in the
same order) for the stock with the least frequent trading behaviour. Note that as the
scale of the estimates is not comparable, the y-axis varies among the estimators and the
stocks. In addition, the second intraday return is zero for RVU™") and stRVUnt) on
27 November 2013, and thus its logarithmic value is not defined. The latter event is
not unusual for the estimators RV U™ and stRVU"")  Although there is some price
variation within the specific interval, the estimated volatility is zero since the last and
first log-price are the same in this interval for the liquid stock. This is one of the aspects
the estimators RV Untr—all) g py/(UIntr—all) ), py/(Untr—all) come to cover, each of them
exploiting different data characteristics for the estimation.

As we notice, the estimators stRV U —all) and st RV Un") provide the highest esti-
mates among the estimators for both stocks because of the standardised scheme applied
to the squared returns. Also, the aggregation of the squared pointwise returns is the
reason for the higher estimates of stRVUnr—all) compared to stRV 7).

In addition, we can see that the intraday performance of Ry Untr) gnd Ry Untr—all)
are similar to stRVU™7) and stRV Untr—all) " yegpectively, for plenty cases albeit on a
lower scale. This comes from the fact that they use a similar estimation approach. How-

ever, the latter estimators additionally standardise the squared returns, providing higher
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Figure 2.1: The left-hand side column presents the logarithmic value of the intraday volatil-
ity estimates of the following estimators RV (Intr—all) = gy Ry UIntr—all) o, R/ (Intr—all) = py/(Intr)
stRVU") (from top to bottom) for the liquid stock Citigroup Inc. (C). In the right-hand side
column, the logarithmic value of the estimates of these estimators are presented (given in the
same order) for the illiquid stock Mastercard Inc. (MA). The trading session has been split into
13 intraday intervals, i.e. T =1,---,13. The data refer to the dates 25 (red line), 26 (green line)
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and 27 (blue line) of November 2013.
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estimates. In Figure 2.2, we depict the frequency of the durations between consecutive
transactions and Table 2.2 reports the average value of these durations for both stocks.
It is straightforward that the liquid stock is traded more frequently than the illiquid
one; thus, the durations are smaller and usually of compatible size. In contrast, the
time difference between consecutive transactions for the illiquid stock is more likely to
differ in size. Indicatively, the range of the time difference for the liquid stock (C) on
25/11/2012 is between [4.274 - 1075, 3.2 - 1073] whereas the corresponding range for the
illiquid stock (MA) on the same day is [4.274 - 1075,4.47 - 1072].

C - 25/11/2013 MA - 25/11/2013
1500
- 5,200
2 1000 e
g g
100
Z 500 o
e e
0 . ‘ 0 - .
0 1 2 3 0 0.0l 0.02 0.03 0.04
dt; <1073 dt;
- 26/11/201 MA - 26/11/201
1000 C - 26/11/2013 200 6/11/2013
> >
9] O
@ o
3 500 2100
g g
[N [N
0 - ' 0
0 2 4 6 0 0.01 0.02
dt; <1073 dt;
C - 27/11/2013 MA - 27/11/2013
1000 7/11/ ‘ ] ‘ /11/
> >
g £
S 500 S 40
O O
g 220
[N [N
0 — 0
0 2 4 0 0.01 0.02 0.03
dt; «1073 dt;

Figure 2.2: The frequency of the durations between the observed prices for the liquid
(C) and the illiquid (MA) stock for the three examined days.

The facts above make the behavioural patterns of stRVUntr—al) and Ry (Untr—all)

more similar for the liquid stock than the illiquid one, as we also see in Figure 2.1. This
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Stock
Date C MA

25/11/2013 | 2.2172E-04 | 2.5664E-03

26/11/2013 | 3.5865E-04 | 2.5403E-03
27/11/2013 | 3.3281E-04 | 6.0632E-03

Table 2.2: The average duration between the observed prices for the liquid (C) and the
illiquid (MA) stock for the three examined days.

is because the intense trading behaviour of the liquid stock results in comparable weights
to the pointwise returns for the volatility estimation. For the illiquid stock, the duration
between transactions is more likely to vary substantially across the interval. Thus, the
squared pointwise returns may be divided by durations of different length, changing the
behavioural patterns of the estimates between stRV (ntr—all) and Ry Unir—all)  Hence,
we are able to incorporate some additional traits in the volatility estimation through
stRV Untr=all) " related to the intensity of the trading frequency, where they are not
taken into consideration by the standard-based volatility measure RV (/ntr—all),

The estimator stRV ") utilises the squared interval returns divided by the time
difference between the last and the first observations within the intervals for the esti-
mation. Similar to the case between RV Untr—all) ang gt Ry Untr—all) e anticipate that
stRV U7) incorporates further information in its estimation, compared to RV ") re-
lated to the duration between the first and the last observations within the intervals.
Therefore, when this duration differs in size for an interval compared to the other in-
tervals, this will result in a different behavioural pattern for the estimate of stRV (I"tr)
compared to RV ™) Across the intraday intervals, the range of the time difference
is [0.0750,0.0769] (on 25/11/2013), [0.0747,0.0768] (on 26/11/2013) and [0.0740,0.0769]
(on 27/11/2013) for the liquid stock. The ranges for the illiquid stock are [0.0480,0.0767],
[0.0423,0.0751] and [0.0262,0.0766] for these dates (in respective order). The ranges

do not substantially vary across days for both stocks; thus, the volatility estimates of

stRVUI7) follow similar patterns to RV ™) This is visible in Figure 2.1 where the
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volatility estimates of RV U™ and stRV ") are identical but of different scale. How-
ever, when the duration between the first and the last observations within an interval is
of different size compared to the rest intervals, this would be illustrated in the intraday
patterns of the estimates.

Even if it is not the case for all days, the estimators provide the highest volatility
value for the first intraday interval. In many cases, the volatility gradually falls after the
beginning of the trading session and sometimes increases again towards the end of the
session. This behaviour is most common for the liquid stock. This is related to a widely
observed phenomenon in the markets where the highest volatility usually occurs at the
beginning of the trading sessions. Then, volatility declines by lunchtime and increases
again before the end of the trading hours (Andersen and Bollerslev (1997), Taylor (2005),
Li et al. (2015) among others). We will discuss again about this phenomenon in the next
chapter.

After that, the defined intraday estimators can be used for the daily volatility mea-
surement by aggregating the intraday estimates. The summation of the intraday es-
timates does not offer an estimate of IV for the estimators stRVUntr) gt Ry (Intr—all)
and wRVUntr=all) “ag opposed to RVU™") and RV Untr=all)  However, we can use the
aggregation of the intraday estimates as an alternative measure to distinguish liquid and
illiquid stocks or other characteristics of the stocks which may contribute to volatility.

In Table 2.3, the daily estimates are given for all estimators. We recall that the sum-
mation of the intraday estimates of RV ™) results in the RV estimator. RV (Intr—all)
and stRV Untr—all) offer the highest volatility estimate for the liquid stock for all days.
This is reasonable since the aggregation of the squared pointwise returns for a liquid
stock usually results in higher estimates than for a stock with considerably less frequent
trading performance.

The estimators RV U"7) and stRV ™) also give higher estimates for the liquid stock,

except for the second date in this table where the illiquid stock has the highest estimates
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on that date. A high volatility estimate for both estimators is based on high squared
interval returns, as opposed to RVUntr—all) and st Ry Intr—all) where a high estimate is
based on high squared pointwise returns. This fact implies that a high trading frequency
does not necessarily signal a high volatility estimate for RV ™) and stRV ")

For the liquid stock, we notice that the highest estimates are observed on 25 Novem-
ber 2013 for all estimators, except wRV (™7 =all) " This can be justified by the high num-
ber of transactions that occurred on that date compared to the following two dates. For
the stock with the low trading frequency, the estimators demonstrate the highest volatil-
ity estimation for the second examined date, except wRV Untr—all) anq g¢ Ry Untr—all),
The latter estimator gives the highest estimate for the first date. Both days present a
similar number of intraday transactions, whereas the third day has a considerably lower
trading frequency.

As regards wRVUntr=all) it brovides the highest estimates for the illiquid stock
across the days. By this finding, one can deduce that even if the liquid stock has
the most intense trading performance, the average squared return over the intervals is
higher for the illiquid stock. Also, the highest daily estimate is offered for the day with
the lowest trading frequency (27/11/2013). This is a sign that small but dense price
variations contribute to small estimates for wRV U™ —all)  This event can be related
to some extent to the occasion where the stock prices commute repeatedly around the

Intr—all)

same values (bid-ask bounce). Thus, wRV discounts such a trading behaviour,

producing low estimates.

2.6 Discussion

The realised variance is an ideal estimator of IV using high-frequency data without
noise under a dense, regular sampling scheme. RV and RV (*) are two common measures
of IV. In general, RV is preferred in the literature since it results in less biased estimates

of TV. However, a notable drawback of RV compared to RV (@) is that it discards a
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25/11/2013 26/11/2013 27/11/2013
C [ MA C [ MA C [ MA

Ry (el 8.3065E-05 | 4.9877E-05 || 6.0915E-05 | 5.3542E-05 || 5.0822E-05 | 4.5673E-05
RV/ Y1 RVI™) | 2.3682E-04 | 3.5706E-05 || 3.2138E-05 | 4.7472E-05 || 3.1076E-05 | 1.7318E-05
13 RV 1 8 9959E-05 | 4.7698E-05 || 6.0773E-05 | 4.9339E-05 || 5.0657E-05 | 4.1584E-05
S8 stRVI™) | 3.1083E-03 | 5.6659E-04 || 4.2011E-04 | 6.7223E-04 || 4.0677E-04 | 2.7214E-04
13 stRVIMT | 9.0591E-01 | 1.0143E-01 || 5.2989E-01 | 8.3055E-02 || 4.4461E-01 | 5.0657E-02
13 wRVI™ ™ 79 1065E-07 | 1.6426E-06 || 2.3527E-07 | 2.0203E-06 || 2.0054E-07 | 3.8750E-06

Estimator

Table 2.3: The aggregated estimates of the defined estimators are given along with the
estimator RV () for the liquid (C) and the illiquid stock (MA). The findings refer to
the dates 25, 26 and 27 of November 2013.

considerable number of observations. Thus, the intraday data patterns are only exploited
to a partial extent, disregarding the initial scope of their usage. Hence, even if RV is a
more accurate estimator of the daily notional volatility, we expect that the estimates of
RV(@) embody more information about the intraday volatility patterns.

Although useful at the aggregation level, often over a day, we do not gain insights into
the volatility’s intraday behaviour. We have proposed alternative measures for intraday
volatility estimation with high-frequency data by exploiting variable trading characteris-
tics observed in the market linked to the finite sampling effect within irregularly sampled
data. The main components accounted for are the varying number of observations and
the variation in the times between the transactions over the period of interest. Similar
characteristics are often investigated as liquidity measures independently (Ait-Sahalia
and Yu, 2009). Our estimators directly incorporate these features into the volatility
measure. The estimation procedure is easy and quick, offering the researcher insightful
information about the intraday trading behaviour of a stock against the other stocks
in terms of volatility dynamics. This information was discussed in section 2.4. Briefly,
a high estimate provides a picture of the overall volatility of a stock within a period
(RVI(IMT) and RVI(I"tPa”)), the average squared return (wRVI(Imr*a”)) or the intensity
in the trading frequency of a stock in connection with the squared value of the returns

in the understudied period (stRVI(Intr) and stRVI(Intr_a”)).
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The empirical findings of section 2.5 showed that all estimators generally give the
highest measures for the liquid stock, except wRV U™ =al) " Thyis is due to the averaging
scheme applied to the observations per interval for the latter estimator. So even if
the liquid stock had a more intense trading behaviour, wRV Untr=all) ghowed that the
average squared price change was bigger for the illiquid stock.

Most estimators deliver the highest estimates for the first intraday intervals. Then,
they often follow a downward trend and sometimes increase again before the end of the
trading session. This intraday behaviour occurs more often for the liquid stock, and
it is consistent with a well-documented phenomenon in the market which states that
volatility is at its highest level at the beginning of the trading session, then gradually
falls and it increases again before the end of the session.

As it is natural, the volatility estimates are incomparable because of the different
weights we apply to the squared intraday returns in the estimation procedure. In-
dicatively, RV Untr=all) anq RV Un7) estimate IV using squared pointwise and interval
returns, respectively. The estimates of stRVUntr—all) and st RV U™7) are greater than
those of the other estimators since the squared pointwise and interval returns, respec-
tively, are divided by the time difference between the observed points. Under normal
market circumstances, this time difference is much smaller than 1, giving rise to high es-
timation values. Besides, the time space between the transactions plays an essential role
in the intraday patterns of the estimates of stRV Untr—all) and s¢RVUnt) compared to

the patterns of RV Untr—all) gnd RV Untr) a5 we have explained in sections 2.4.1 and 2.5.
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Chapter 3

Factor Analysis with RV-Based

Estimators

3.1 Introduction

The understudy dataset consists of the intraday observations of 50 stocks over a
period of 745 days. A dataset containing numerous variables is called a multivariate or
multidimensional dataset since the data are distributed in a multidimensional space. A
common problem that yields when specialists work with a multidimensional dataset is
the curse of dimensionality. By this expression, statisticians refer to the effect where
the observations are sparsely distributed in the space, making the analysis procedure
complex and computationally costly.

Factor analysis is a method of broad usage for the dimensional reduction of the prob-
lem. Intuitively, through factor analysis the necessary information is incorporated into
several components called factors. Moreover, the dimensions that do not contain compa-
rably valuable information are eliminated in favour of the problem simplification. By this
method, practitioners use some specified factors that absorb the essential information

instead of the full multivariate dataset, facilitating their study.
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In this context, the term information is attributed to the dataset variation in the
multidimensional space. Hence by the factor analysis, the common variation observed
in the data is summarised into a number of factors, where ideally this number will be
substantially lower than the initial high dimensional problem.

Two widely used methods in factor analysis are the maximum likelihood method
and the Principal Component Analysis (PCA). The rationale behind the first method
is the following. Through an iterative process, the maximum likelihood estimates the
factors which make the data most likely to occur. However, the number of the factors is
predetermined from the beginning (Tsay, 2005) and it assumes that the variables follow
a multivariate normal distribution (Howard, 2016).

On the other hand, PCA is applied to a non-negative definite matrix. In the fi-
nancial literature, this matrix (usually) refers to the correlation or the sample variance-
covariance matrix of the stock returns (Tsay, 2005; Alexander, 2008). The rationale
behind this method is the decomposition of the above matrix into some components.
These components capture the unique variations of the dataset in the multidimensional
space and also these components are uncorrelated to each other. To achieve this, PCA
uses the notion of eigenanalysis, as we further describe in section 3.2.1.

In financial studies, the factor analysis is often conducted to the daily returns (Tsay,
2005; Goyal et al., 2008; Fat and Dezsi, 2012). Recently, the factor analysis has been
applied to historical daily volatility estimates (Askanazi and Warren, 2017; Shen et al.,
2020; Ding et al., 2022). More specifically, Askanazi and Warren (2017) explore the
degree to which the factor of the market volatility and the idiosyncratic volatility are
connected, concluding that they are highly correlated for stock data. Shen et al. (2020)
use the framework of factor modelling in order to express the data’s realised covariance
matrix (see Barndorff-Nielsen and Shephard (2004) for this topic) in a lower dimension.
Ding et al. (2022) re-express the standard factor model in a comparable (multiplicative)

form based on the empirical findings in US stocks, demonstrating superior performance
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in volatility forecasting compared to standard techniques in this field. Ding et al. (2022)
have also shown that applying PCA to idiosyncratic RV estimates instead of idiosyncratic
returns contributes to more valuable inferences about the form of the resulting factors.

Dynamic factor analysis is a related popular dimension reduction technique in macroe-
conomics and finance (for example Luciani and Veredas (2015), Barigozzi and Hallin
(2016), Calzolari et al. (2021) among others). A main difference from the standard fac-
tor analysis is in the structural form of the model since the variables are expressed as
a function of a factor component which contains time dynamics in its form. We are
not going to expand further to the concept of dynamic factor models; one can refer to
Breitung and Eickmeier (2006) and Barhoumi et al. (2013) for an overview of this notion
and existing literature.

In this work, we explore the performance of factor analysis utilising the RV-based
estimates as data. Often a period with high stock price fluctuations is followed by a few
periods of high volatility. An approach of factor analysis that exploits the information
arising over different time lags for a multivariate dataset is considered by Lam et al.
(2012). Instead of the data correlation or sample variance-covariance matrix, their ap-
proach forms a new matrix, using the data sample autocovariance matrix as a component
over different time lags. This approach was developed under the stationarity assump-
tion for the dataset. By this approach, we are able to profit from the cross-correlation
and the autocorrelation that the RV estimates can exhibit in their series. This chapter
aims to investigate whether we can efficiently summarise the common variation of the
multidimensional dataset into a few factors.

A crucial part of factor analysis is the estimation of the number of factors that need
to be considered in the model. A simple estimator is developed by Lam et al. (2012).
This estimator takes as inputs a number of elements (the eigenvalues of the non-negative
definite matrix) for the estimation. The authors recommend that the number of eigen-

values can be practically one-half of the total number of variables. We indicate through
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a simulation procedure (given in appendix C.1) that this estimator does not work effi-
ciently when all the available eigenvalues are utilised for the estimation. Furthermore, we
confirm that using one-half or one-third of the most informative eigenvalues is adequate
for estimating the optimal number of factors we should include in the factor model.

Beyond the simulation procedure, this chapter’s novelty lies in two axes. Firstly, in
Lam et al. (2012) their methodology is applied to the daily returns of 123 stocks. In our
analysis, we conduct their methodology to the daily volatility estimates of the estima-
tors presented in sections 2.3 and 2.4. Hence, our interest is in estimating the variability
that daily volatility estimates exhibit over the days for the RV-based estimators which
exploit different intraday information to estimate volatility. Secondly, the factor analysis
procedure is explored using the intraday volatility estimates as observations. However,
we indicate that these estimates exhibit seasonality in their series, violating the station-
arity assumption. For this reason, we appropriately modify the approach of Lam et al.
(2012) so that we can apply it to this kind of dataset under a theoretically consistent
framework.

In particular, analysing the intraday volatility estimates as a time series process can
lead to a false inference since these estimates exhibit seasonality over the days, infringing
the theoretical framework of Lam et al. (2012). This means that their sample autocovari-
ance matrix is a non-stationary matrix, affecting the validity of their methodology. Our
approach treats the whole intraday volatility trajectory estimates over a day as a unit of
observation, an instance of functional data (Ramsay and Silverman, 2005; Ferraty and
Vieu, 2006; Horvath and Kokoszka, 2012). Hence, although the sample autocovariance
matrix is a non-stationary matrix for a day, the intraday autocovariance matrices across
the days are considered stationary (Ferraty and Vieu, 2006).

This chapter is set out as follows. In the first two subsections of section 3.2, we
report the concepts of PCA and factor analysis. In subsection 3.2.3, an estimator of the

optimal number of factors is defined, as proposed by Lam et al. (2012). In section 3.3,
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we develop an extension of the methodology of Lam et al. (2012), valid for the (non-
stationary) intraday volatility estimates. Besides, this chapter conducts two empirical
studies. In the first study, the factor analysis is applied to the daily estimates of the
RV-based estimators. The second empirical study is applied to the intraday estimates

of these estimators. This chapter ends up with a discussion in section 3.6.

3.2 Factor Analysis

3.2.1 Principal Component Analysis

Principal Component Analysis (PCA) is a popular method utilised in factor analysis.
In this subsection, we outline the general idea behind this technique. Loosely speaking,
PCA converts the dataset into a lower dimensional summary measure called principal
components. The components are ordered in such a way that every principal component
represents the direction in which the remaining variation of the dataset exhibits the
maximum variation, which means the most relevant information for the dataset.

PCA is linked with the concept of the eigendecomposition of a non-negative definite
matrix. By eigendecomposition, a p X p non-negative definite matrix is decomposed
into a simpler form based on p orthogonal vectors, called eigenvectors, corresponding to
the ordered eigenvalues. Usually, the dataset’s sample correlation or variance-covariance
matrix is used for the eigendecomposition (Tsay, 2005; Alexander, 2008). Therefore, a
necessary assumption is that the first two moments of the data exist. In the investigation,
the volatility estimates of the measures of Chapter 2 are used as data. Thus, we suppose
that the first two moments of the volatility estimates exist. This is reasonable under our

setting excluding extreme jumps in price changes.

Let Y = [Y1,... ,Y},]T denotes a p-dimensional random vector with mean py and
common variance-covariance matrix Yy . Further, let Y = Y1 — ,ug/l), N ugf)]T be

the mean-centred observations. Let v be a p-dimensional vector and write PC = vTY.
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PCA aims to find the weight vector v in such a way that satisfies the follwoing condition:

max Var[v?Y] = maxv? Var [}7} v, subjectto viv=1.
v v

Denote the solution by v1. The successive components v; are defined in a similar way with
additional orthogonality constraint ’Uijj =1 and ’UJZLIUJ' = 0 for j > 2. The solutions
to such optimization problem turn out to be the eigenvectors of ¥y corresponding to
the ordered eigenvalues. The derivation is explicitly given in chapters 1 and 2 in Jolliffe

(2011). The j-th eigenvalue and eigenvector satisfy:
Zy’l)j:)\j?}j, jzl,...,p,

where Ay > Ay > ... > A\, > 0 are ordered eigenvalues. Let V' be a p x p matrix where

the j-th column represents the eigenvector v;. By eigendecompoision, we have:
Sy = Vdiag(\)P_, VT =Y Aol

where vavj =1 and UJTUk = 0 for j # k. Hence, the first principle component PC}
is given by vlTXN/, the second principle component PCs is given by UQTXN/ and so on. An
essential property of PCA is that the first component corresponds to the eigenvector
which captures the highest degree of the data (i.e. the RV-based estimates in this
study) variation. Similarly, the second component corresponds to the eigenvector which

captures the second-highest degree of variation of the dataset and so on. To be more

specific, the following properties hold.

Theorem 3.2.1 (Moments of Principle Components - Hérdle et al. (2007)) For

a given'Y ~ (uy,Xy) let PC be the principle component transformation. Then:

E[PC]‘]:O, Var[PCj]:/\j, jIl,...,p,
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and

Cov(PCj,,PCj,) =0, j1# j2.

By the properties above, we notice three things:

e The lower the eigenvalue A;, the lower the variation of the principal component

P Cj;
e In the case of a zero eigenvalue, this results in a constant principal component;

e The principle components are uncorrelated to each other.

The above features make PCA a desirable method in the context of dimensionality re-
duction techniques. More specifically, low eigenvalues demonstrate relatively few pieces
of information towards the direction given by the corresponding eigenvectors. Hence,
we can reduce the problem’s dimensionality by removing the principal components as-
sociated with these eigenvalues. Besides, the principle components are uncorrelated to
each other. So, the variability in a principal component’s form is unique and any other
principle component does not contain it. This comes from the orthogonal condition of

eigenvectors.

3.2.2 Methodology of Factor Analysis

The idea behind factor analysis is to capture the common variation that arises in
the dataset to several uncorrelated components, called factors. This method intends to
express this common variation on a lower-dimensional scale. The decomposition of data’s
variability into some factors can be done by PCA. This section presents the methodology
we use in factor analysis, as proposed in Lam et al. (2012).

We consider that the following formulas can describe a p-dimensional variable at the

i-th time point:

Yl(ti) =A11F1 (tz) + A172F2(ti) + ...+ Al,ka’(ti) + €1 (tl)
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}/Q(tl) = A2 1F (tz) + A2,2F2(ti) + ...+ AQ’ka-(ti) + Gg(ti)

Yp(ti) = ApaFr(ti) + AppFa(ti) + ... + AppFr(ti) + €p(ti)

where ¢ = 1,...,n. Here, p denotes the number of variables and n indicates the number of
observations in the dataset. The above formulas can be concisely represented pointwisely
by the factor model:

Y(t) = AF(t) + €(t) (3.1)

where Y (t) is a p x 1 vector of the observations at time ¢. In this section, Y indicates
the centred daily volatility estimates of the estimators presented in sections 2.3. The
component F(t) represents the model’s factors which is a latent variable of size k x 1
and A denotes the factor loadings, given as an unknown matrix of size p x k that has to
be estimated along with the factors. The term €(t) represents the errors, expressed as a
p x 1 vector. The elements of this vector follow a zero-mean White Noise (WN) process
denoted by €(t) ~ WN(0, X).

We make the following assumptions, as reported in Lam et al. (2012).

Assumption 3.2.1 In Model (5.1), the error terms €(t) ~ WN(0,%.). If ¢ F(t) is WN

for a constant ¢ € RP, then ¢/ Cov (F(t +m), e(t)) = 0 for any non-zero integers m.

Assumption 3.2.2 In Model (3.1), NA = I, where Ij, indicates the k x k identity

matriz.

Assumption 3.2.1 assures that the factors are non-trivial and Assumption 3.2.2 is the
identifiability condition.

The factors F' capture the common variation of the p variables across the days and
PCA is the method that will be utilised to decompose the common variation of the

dataset into the factors. Later, we will see that the factors are linked to the eigenvectors
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through a linear relationship. Thus, exploiting the association between eigenvectors and
eigenvalues explained in subsection 3.2.1, we arrive at the following induction. The
factor associated with the highest corresponding eigenvalue, via the eigenvector, delivers
the highest magnitude of common variation. Accordingly, the factor associated with the
second-highest eigenvalue includes the second-highest amount of the common variation
and so on. Furthermore, the variation contained in the factors is unique for every factor
because of the condition of orthogonal eigenvectors.

Thereafter, the factor loadings, given by the matrix A, have a valuable interpretation.
More specifically, the squared value of this matrix’s elements indicates the variation of
a variable captured by a factor. The latent variable F' is of an undetermined length k
where k < p. The parameter k£ defines the number of factors considered in the model,
and it is not determined directly by the dataset, so it needs to be estimated.

The value of k£ plays a crucial role in terms of the problem simplification since it
specifies the number of the factors in F' that will be used in the Model (3.1). Conse-
quently, a relatively small number for k -compared to p- will result in a small number
of factors. These factors follow the data patterns, embedding the higher percentage of
the data variation, reducing the problem’s dimensionality from p to k£ at the same time.
So, the lower the k value, the better the problem simplification on a lower-dimensional
scale. A direct and easy estimation of k is proposed by Lam et al. (2012) and it is given
in subsection 3.2.3.

In addition, the following assumptions are made on the factors.

Assumption 3.2.3 In Model (3.1), F(t) is weakly stationary. Also, for any m > 0,
then Cov (F(t), e(t+ m)) =0.

Assumption 3.2.3 states that the factors are uncorrelated with any current or future error
components. This relaxes a common assumption in factor analysis where the factors are
assumed to be uncorrelated with the error components at any time point (Lam et al.,

2012). Also, the factors are assumed to be weakly stationary. Although this may seem
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a strong assumption at first sight for the daily estimates of RV (Luciani and Veredas,
2015), Ding et al. (2022) show that it is not a damaging assumption in practice. So, it
is reasonable to assume that the daily RV estimates are stationary (Ding et al., 2022).
The method developed by Lam et al. (2012) is valid under the assumption of sta-
tionarity for the observations. However, this assumption is violated for the intraday
volatility estimates, as we will see later, where the intraday volatility series of our esti-
mators exhibit periodicity. In order to analyse data with this kind of characteristic, we
properly extend the technique of this section for non-stationary time series in section 3.3.
Factor analysis typically utilises PCA on the correlation or the variance-covariance
matrix of the data. Under a theoretically compatible framework to ours, assuming that
IV follows a stationary process and the factors’ structure exists, Ding et al. (2022) show
that conducting PCA on the sample variance-covariance matrix of the RV estimates can
consistently approximate the factors’ form. Lam et al. (2012) apply PCA to the non-
negative definite matrix M. This matrix is defined as the summation of the product
between the data sample autocovariance matrix and its transpose matrix for all lags up

to a specified lag number /:

¢
M= > Sy (b)Y (ko). (3:2)
lo=1

In the formula above, Sv (¢) denotes the sample autocovariance matrix, given by:

n—~y
S (lo) =~ 3 (V{tiss) = VY () = 7T
i=1

where Y (¢;) denotes the p-dimensional data at time point ¢; for i = 1,...,n and n indicates
the number of observations. Also, fy represents the number of the lags we consider in

the sample autocovariance matrix each time, while Y denotes the variables mean value,
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given by:
Y =

S|

n
> Y(ti).
i=1

This is an ideal approach when the data exhibit stable autocorrelation or cross-
correlation since it exploits information arising from different lags, which are inevitably
ignored by other methods. As Lam et al. (2012) state, data usually have the most potent
form of its auto/cross-correlation at its first time-lags, so the chosen ¢ value is suggested
to be a low number. We add that for a large dataset, a small number for ¢ is preferred
in the sense of a parsimonious approach; that is, for the formation of the matrix M we
need fewer matrix operations. However, Lam et al. (2011) show that the choice of ¢ does
not substantially distort the validity of the number of factors we choose in the model
or the quality of the matrix A. The A matrix is of size p x k and constituted by the k
eigenvectors with the highest eigenvalue.

By the Model (3.1), the resulting factors are given by:
F(t) =ATY (t) (3.3)
and the error terms are estimated through the matrix equation:
at) = (I, — AATYY (¢)
where I, denotes the p x p identity matrix.

3.2.3 Optimal Number of Factors

The resulting factors capture the highest proportion of the common data variability.
So, the first factor captures the highest degree of the joint variation of the dataset, the
second factor captures the second-highest degree of the joint variation of the dataset,

and so on. A feature of the factor analysis is that the variation captured by a factor
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is not included in the variation captured by the rest factors. So every factor contains
the common variability observed in the dataset, and at the same time, this variability is
unique for every factor.

A central question in the factor analysis is how many factors are needed to describe
an adequate high degree of data variation. The magnitude of the variation captured by
every factor is related to the corresponding eigenvalues. So, the higher the eigenvalue,
the higher the variation captured by the related factor. Hence, the eigenvalues are
significantly involved in estimating the number of factors that should be included in the
model.

Numerous different approaches have been proposed for the selection of the number
of factors that we should incorporate in the Model (3.1). A simple approach is presented
by Kaiser (1960) who selects only the factors with eigenvalues higher than one in the
model. An alternative technique is suggested by Cattell (1966) who plots the eigenvalues
in descending order, choosing the factors whose eigenvalues occur visible change in value
in the plot. Besides, Horn (1965) establishes the parallel analysis, another popular
method in this area. The techniques above are of widespread usage in the context of
factor retention methods; nevertheless, these approaches are based on a heuristic rather
than a statistical framework. Under the Model (3.1), Bai and Ng (2002) have developed
a criterion based on a squared-residuals minimisation problem for a different number of
factors, subject to a penalty term.

However, the ratio-based estimator is preferred in this study, as proposed by Lam
and Yao (2011) and Lam et al. (2012). This estimator relies on the theoretical framework
of subsection 3.2.2 and appears to have desirable properties. Following their approach,
we place the positive eigenvalues of the M matrix in descending order and compute their

consecutive ratios. Then, % is chosen to equal the ratio with the lowest value:

- - Nig1
k = arg min as
1<i<q A
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where Xl > > XZ > > Xq > 0 and ¢ is a constant such that ¢ < p. In practice,
Lam et al. (2011) and Lam et al. (2012) suggest that we can consider ¢ = p/2 in the
estimator. As we show in the simulation study in appendix C.1, the estimator works
quite well when we exploit one-half or one-third of the eigenvalues. On the other hand,
when we use all the eigenvalues, the efficiency of this estimator substantially decreases.
So, by utilising one-half of the available eigenvalues, we avoid the effect of very low ratios
derived from negligible eigenvalues.

If the lowest value is given for the first ratio, then we form A using the eigenvector
with the highest eigenvalue. In this case, we obtain one proposed factor by Equa-
tion (3.3). Similarly, assuming that the lowest value is given for the second ratio, we
form A using the two eigenvectors with the highest eigenvalues, obtaining two proposed
factors and so forth. This intuitively means that we are looking for the most remark-
able change between the positive and descending eigenvalues. The eigenvectors which
correspond to eigenvalues with a lower value than Xk are ignored from the A matrix
specification and the determination of the factors. Lam et al. (2012) display in their

simulation study that the higher the sample size, the better the estimation of k.

3.3 Factor Analysis for Intraday Volatility Estimates

An ACF plot visually illustrates the autocorrelation observed in a variable at different
time lags. In Figure 3.1, we provide the ACF plots of the intraday volatility estimates of
RVUn) for the first nine stocks in Table 1.2. The ACF plots depict the autocorrelation
of the first 78 lags. This representation uses the intraday estimates as a time series
process over the days. Also, the sampling frequency has been set to intraday intervals
of 30 minutes, implying that a day consists of 13 intraday intervals. Therefore, the ACF
plots refer to a six days period.

The ACF plots demonstrate three essential pieces of information. Initially, there is

a high autocorrelation between the first and the second intraday volatility estimates on
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Figure 3.1: This figure depicts the autocorrelation of the volatility estimates of RV U"7)

for the stocks with identifier code MMM, T, AA AXP, AIG, BAC, BA, CAT, CHK, CVX,
C, CLF.

day one. This autocorrelation decays over the subsequent interval estimates, and then
it follows an upward trend up to the end of the trading session, that is, the 12-th time
lag. Secondly, we notice that this diurnal pattern continues over the days, no matter the
order of the day in the plot. Thirdly, the autocorrelation is at its highest level every 13
lags, where this lag distance refers to the first intraday interval of each day.

The above periodic patterns can be related to a well-documented event in the finan-
cial markets. More specifically, it is widely observed (Andersen and Bollerslev (1997),
Taylor (2005), Li et al. (2015) among others) that the volatility is at its highest level at
the beginning of the day. Then, it gradually falls until lunchtime and exhibits a slight
increase by the end of the trading session, depicted as a U-shaped curve. By the ACF
plots, we deduce that the high autocorrelation performed in the plots is directly related
to increased volatility estimates. These diurnal features are also visible in the ACF plots
of the rest intraday RV-based estimators, given in Figures C.1-C.5 in appendix C.2.

As we have mentioned, the methodology of factor analysis described in section 3.2

is valid when the estimate series follows a stationary process. However, the periodic
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pattern in the autocorrelation between the estimates violates the stationarity condition.
In this section, we modify the methodology of section 3.2 in order to become a reliable
approach under the context of the intraday volatility estimates of the estimators proposed
in section 2.4.

We consider an extended factor model for multivariate responses. The unit of time
is days, as if daily time series, but the responses over a day constitute multivariate
responses on the day t. Let Y (t) = (Yl([) (1), ...,Yp([) (t))T be a p-variate random
vector, representing the I-th response at time t. We assume that the factor model is of

the form:

Y@y = ADFPE) +eD@),  forI=1,..,J (3.4)

where Y (t) is a p x 1 vector, AU is a p x k matrix, F(t) is a k x 1 vector and e(!)
is the p-dimensional error term. Note that we assume that there is a common latent
process over time t but allows for the effect to vary for different responses within a day.
The error terms are assumed to be a WN process. Amalgamating the above notations

in a matrix, we have that:

v ) \a0 ) \rm) \eo

To simplify the notation, we can express the extended factor model as:
Y(t) = AF(t) + €(t)

where Y (t) represents a (Jp) x 1 vector of the response variable, that is our intraday
RV-based estimates. Here, J denotes the number of intraday intervals and p stands for
the number of variables in the dataset. The first p elements in Y represent the estimates

of the first intraday interval of the p stocks. Likewise, the following p elements refer to
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the estimates of the second intraday interval of the p stocks and so forth.

We claim that Y (t) is likely to be stationary, as their behaviour is similar across
days, so is Y (t). However, the different responses within a day are not necessarily
stationary, as observed in the empirical analysis. Nevertheless, this is not necessary as

the unit of our analysis is the whole responses within a day as a multivariate vector.
Assumption 3.3.1 In Model (3.4), F(t) is a weakly stationary process across days.

Under Assumption 3.3.1, Y(¢) is a stationary process. So, we define the autocovariance
function at lag /¢ as:

Sy () = Cov (Y(t +0), Y(t)).

This covariance matrix can be decomposed into:

i) - X500
Ty (0) = : : (3.5)

X)) - X500

where X1, 1,(¢) = Cov (Y(Il) (t40), Y 2) (t)) is the covariance between the I;-th response
at time ¢t + £ and the I>-th response at time t, for I1,lo =1,...,J.

Similarly to section 3.2, to recover the factors we base our analysis on the M matrix,

defined as: ,

M =" Sy ()T (fo).
lo=1

For a finite sample of data, we can construct an empirical estimator M as:
¢
M =" Sy (t) S (L)
lo=1

where Sy (£o) has the same structure as the Matrix (3.5) but with the empirical estimates

of ¥, 1,(¢) as elements. In particular, for a finite sample of data y@D (t;), i = 1,..,n,
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I =1,...,J, an empirical covariance estimator can be constructed as:

n—~Lg

ih,b (€0> = Z (y(Il)(ti+€0> - y(h)(tiJreo)) (y(b)(ti) B y(h)(tl))

=1

T

The selection of the optimal number of factors is delivered through the ratio-based

estimator:
- - Ait1
k = arg min Sax
1<i<qg A

where ¢ represents the ¢ highest eigenvalues for ¢ = (Jp)/2.

Again, the A matrix consists of the k eigenvectors corresponding to the K highest
eigenvalues. It is worth noting that under this modifying context, the squared factor
loadings not only indicate the stocks with the highest captured proportion of variation
by the corresponding factors but additionally show the intraday interval that motivates
this variation the most. Finally, the model factors and the error terms are estimated
through:

F(t) = ATy (t),

&t) = (I — AAT)Y (t)

where Ij, denotes the Jp x Jp identity matrix.

In summary, as we illustrate in Figure C.1, the univariate intraday volatility es-
timates as given by the RVU") estimator exhibit periodicity in their autocorrelation
structure. This event is also apparent for the rest of the intraday RV-based estimators in
appendix C.2. This fact makes the approach reported in Lam et al. (2012) a precarious
method for analysing this kind of intraday observations. For this reason, we modified
this approach by transforming the univariate intraday series of a stock into multivari-
ate series so that we obliterate the periodic pattern that arises in their autocorrelation

structure. An empirical application of this technique is presented in section 3.5.
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3.4 Empirical Analysis - Daily RV-Based Estimates

This study investigates whether we can summarise the common variability yields
among the volatility estimates of multiple stocks to a low number of factors for the
daily volatility estimators of Chapter 2. More specifically, the factor analysis is con-
ducted on the daily estimates of RV (@) RV Ry Untr—all) = g py/(Intr) g Ry (Intr—all)
and wRV Untr=all) for the stocks given in Table 1.2. We remind that the daily volatility
estimates for RV Untr—all) =gt Ry Untr) g Ry (Untr—all) anq o RV Untr—all) gre computed
by summing up the intraday estimation values. We set 30-minute intervals, yielding
13 intervals within a day. Furthermore, the analysis considers the entire data period
from 3 January 2012 to 31 December 2014. The stocks that have experienced stock split
during this period are not removed from the dataset in this analysis. This is because
the investigation of the daily volatility series is not affected by this event.

The daily estimates of Rval) Ry Ry Untr—all) - g Ry (Intr) and RV Untr—all) ape
low numbers which may need even seven or eight decimals so that they will be depicted as
non-zero estimates. In the calculation of the sample autocovariance matrix, the pairwise
multiplication of these low numbers results in autocovariance approximations of even
smaller sizes. This fact implies that the eigenvalue estimates of the M matrix will be
tiny numbers, requiring in some cases more than 20 decimals to be illustrated as non-
zero values. These eigenvalues are considered practically zero, and for this reason, we
multiply the daily estimates of RV (@) Ry Ry Untr—al) g Ry Untr) and o RY (Intr—all)
by 1000. In this way, we rescale the estimates to a convenient numerical size which,
in turn, results in more easily manageable eigenvalues. Furthermore, the explorational
procedure is not affected by this numerical modification. On the other hand, we keep

y Untr—all) ypchanged since their range does not affect the

the daily estimates of stR
interpretation of the eigenvalues of the M matrix.
The observations’ mean value can be different from zero, which also happens for the

RV-based estimates. Therefore, we use the mean-centred estimates in this analysis to
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align the application with the theoretical framework of PCA, as outlined in section 3.2.1.
To do so, we subtract the functional mean value of the daily estimates from their value.

In this case, the factor model takes the following form:
RV(t) = RV(t) — prv(t) = AF(t) + €(t) (3.6)

where RV (t) denotes the RV-based estimates, ury(t) = E[RV (t)] displays the func-
tional mean value of the estimates, and the rest components are the same as defined in
section 3.2.2. We depict the centred estimates with the tilde symbol above the corre-
sponding estimator.

Several methods have been proposed in the literature to estimate E[RV (¢)]. A simple
method is the local polynomial regression method, discussed later in section 4.2. This
method estimates the functional mean value of the dataset, taking the observed time
points and the corresponding observed values as inputs. Then, the mean value of each
point is estimated through a weighting allocation scheme applied to the neighbouring
observation values. In this application, we have considered that the weighting allocation
scheme is conducted in the observations placed up to four days (i.e. four estimates) away
from the given observation each time. This is the case for a smoothing parameter value
equal to 0.0027. The weights are normally distributed across the specified neighbourhood
through a Gaussian kernel function. The Gaussian kernel function spreads the weights
to observations beyond the selected area -because the bell-shaped curve’s tails never
touch zero- but with a much smaller impact on the estimation of the mean value. The
plot of the daily volatility estimates against their estimated mean function is presented
in Figure C.6 in appendix C.3 for the first three stocks of Table 1.2, for all estimators.

The first step in the model determination is the estimation of the matrix M in (3.2)
for a specified number of time lags ¢. Lam et al. (2012) comment that ¢ could be a low

number since the highest amount of information in a time series process is often observed
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at its first lags. In Figure 3.2, we provide an illustrative representation regarding the
frequency of the estimated number of factors where the parameter ¢ takes values from
1 to 100. We notice that the choice of ¢ does not determine the number of factors the
model selects. For all the estimators in this analysis, we always obtain one factor, no
matter the value of /. Thus, we use £ = 1 for reasons of parsimony in the rest of this
investigation procedure. In appendix C.3, we also provide the boxplots of the estimated
eigenvalues and their ratios for £ = 1 — 100 (see Figure C.7). The boxplots show how

these eigenvalues and their ratios vary over the different ¢ values.
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Figure 3.2: This figure presents the frequency of the proposed number of factors given
by the ratio-based estimator using ¢ = 1 — 100 for the daily RV-based estimators.

We estimate one proposed factor for all volatility estimators via the ratio-based
estimator. This means that a single factor is sufficient to incorporate the variation of
the daily volatility estimates over the data period. In the empirical analysis of Luciani
and Veredas (2015), Askanazi and Warren (2017) and Ding et al. (2022), they also

conclude that a single factor is adequate to capture the variability of their daily volatility

estimates.
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An eigenvalue shows the variance of the corresponding factor. Therefore, the propor-
tion of explained variation of each factor is given by dividing the factor’s eigenvalue by
the sum of all the eigenvalues higher than zero. In Table 3.1, we display the amount of
variation explained by the proposed factor for all estimators. The percentage of variation

Intr—all
explained by the factor lies between 75.72% and 91.03% where Z}il stRVE : and

—~—(Intr)
Z}il StRV ; are the estimators with the lowest and highest percentage, respectively.

As the ratio-based estimator suggests, more possible factors would have added only a
small proportion of captured variation, and hence they have been left outside of the

factor model determination in favour of the problem simplification.

—(all — — —all —~——(Intr) (Intr—all) —— (Intr—all
v | RV gy s GEel™ | s arve R
Factor 1 || Factor 1 Factor 1 Factor 1 Factor 1 Factor 1

[ Variation | 86.89 [ 90.02 ] 87.20 I 91.03 I 75.72 I 88.93 I

Table 3.1: The amount of variation explained by the proposed factor, as given for £ = 1.

Thereafter, the squared elements of the A matrix (the so-called squared factor load-
ings or briefly squared loadings) show the amount of each stock’s variability explained
in the resulting factor. In Table 3.2, we list the squared loadings for the most important
stocks. The complete table is given in Table C.4 in appendix C.3. We observe that the
captured variation of the first factor is mainly driven by the variation in the estimates of
the stock Cleveland-Cliffs Inc. (CLF) for all estimators. More specifically, the percent-
age of CLF in the explained variation of the first factor always exceeds 97%, whereas
the rest of the stocks share a negligible proportion. Since the first factor captures the
highest degree of data variability, we expect that CLF presents a relatively high vari-
ance compared to the rest of the stocks. Indeed as we see in Tables 1.3 and 1.4 in the
exploratory analysis of Chapter 1, CLF is the stock with the highest returns variance in
the data period.

The volatility estimators we have defined in Chapter 2 use different aspects of data

features that contribute to volatility in the estimation. So, the estimated factors are
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composed of the variability of different stocks, depending on the features the estimators

exploit. Our analysis shows that the stock with the second-highest explained variation by

——(all) —=(Intr—all)
the factor differs across the estimators. For the daily estimates of RV~ °, RV

—~—(Intr—all — ntr
and stRV( : is Newmont Goldcorp Corp. (NEM). For RV, stRV( ) is General
Intr—all
Motors Corp. (GM) and for wRV( ' : is Devon Energy Corp. (DVN). In general,

all of these stocks display high variation in Tables 1.3 and 1.4 in section 1.5.

— — (Intr—all Intr —~—(Intr—all —— (Intr—all

Stock RV RV L 1RV( ) S st RV§ ) > stRV 5 ) ik wRY Er )
Factor 1 || Factor 1 Factor 1 Factor 1 Factor 1 Factor 1
CLF 0.9739 0.976 0.9737 0.9775 0.9717 0.9893
DVN 0.0003 0.0005 0.0004 0.0003 0.0005 0.0033
GM 0.0003 0.005 0.0003 0.004 0 0.0001
NEM 0.0055 0.0006 0.0055 0.0005 0.0053 0.0001

Table 3.2: Squared loadings of the most distinct stocks.

In Figure 3.3, we plot the proposed factor along with centred volatility values of
the two stocks which exhibit the highest involvement in the factor’s explained variation.
The factor is displayed as a solid black line, the most variable stock as a blue dash-
dotted line and the stock with the second-highest variability captured by the factor as
an orange dash-dotted line. In this figure, the proposed factor efficiently captures the
most considerable variation of the most volatile stock (CLF). On the other hand, the
variation of the second most variable stock does not drive the factor’s variability in such
a visible way. Looking at Table 3.2, this is plausible since the second most volatile stock

has a tiny involvement in the explained factor’s variation.

3.5 Empirical Analysis - Intraday RV-Based Estimates

In this empirical application, we implement the factor analysis in the intraday RV-
based estimates of RV Untr) Ry Untr—all) - g py/(Intr) - gy R/ (Intr—all) gnd o Ry Untr—all)
as defined in section 2.4. The intraday volatility estimates stem from the 50 stocks listed
in Table 1.2, and they refer to the period between 3 January 2012 and 31 December 2014.

We consider 30-minute intervals daily. Also, in order to avoid the effect of tiny eigenval-
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Figure 3.3: This figure presents the proposed factor (solid black line) with the

centred

volatility estimates of the two stocks that direct this factor the most (blue and orange
dash-dotted lines).
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ues, we multiply the estimates of Ry Untr) - gy (Untr—all) = g R/ (Intr) and RV Untr—all)
by 1000.

Similar to the investigation in section 3.4, we analyse the centred values in this
application. Thus, we consider the Model (3.6) and the centred estimates are given by
subtracting the functional mean values from the original volatility estimates of every
intraday interval across days for every stock. The functional mean pry (t) is estimated
through the local polynomial regression. The Gaussian kernel function is considered for
the weights allocation around the four neighbouring values of the understudy value each
time, given for a smoothing parameter value equal to 0.0027. In Figures C.8-C.12 in
appendix C.4, we illustrate the interval estimates across the days against their mean
functions for the first two stocks of Table 1.2. The centred estimates are depicted with
the tilde symbol above the corresponding estimator in the rest of this section.

Figure 3.4 indicates the frequency of the estimated k for lags £ = 1 — 100. Again, a
single factor is enough to explain the variation in the centred estimates of the estimators
that define the returns over lower frequencies (i.e. RV (i) and Eﬁﬁ(mm). On the

other hand, the situation seems more ambiguous for the estimators that use all the

. . . . ——(Intr—all) (Intr—all) —— (Intr—all)
pointwise returns in a day (i.e. RV , StRV and wRV ). For
——(Intr—all
the estimator RV( e ), we observe two factors for ¢ = 12 — 15, three factors for

¢ =16 — 41, whilst one factor is enough to explain the data variation for the remaining
lag values. In the case of gﬁ?(lmr—all), usually the ratio-based estimator suggests four
factors. Besides, we receive one factor for £ = 1 — 12 and £ = 38 — 41, two factors for
¢ = 15,16 and three factors for £ = 17 — 37. As regards the estimator JRT/U””_‘I”), we
find one factor for the most ¢ values, whereas two factors arise for the lags £ = 16 — 39.
The boxplots which depict the range of the estimated eigenvalues and their ratios for

the different ¢ values are given in Figure C.13 in the appendix section C.4.

——(Intr) ——(Intr—all
For the estimation of the M matrix, we select £ = 1 for RV( " T), RV( e ),
—~——(Intr) —— (Intr—all) L. . . .
stRV and wRV . This time lag provides the k& with the highest frequency
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Figure 3.4: This figure presents the frequency of the proposed number of factors given
by the ratio-based estimator using £ = 1 — 100 for the intraday RV-based estimators.

for the aforementioned estimators and, at the same time, results in the highest explained
variation compared to the lag values that produce more factors in the model. In the
case of g]\%?(lntr_a”), we obtain four factors more frequently across the different lag
values. Nonetheless, four factors also yield the highest total explained variation; we
define ¢ = 1, which summarises the data variation in a single factor. We make this
choice since we receive three fewer factors by the ratio-based estimator and the cost in
the total explained variation is merely about 3%.

Presumably, the more estimated factors in this analysis across the different lags
compared to the analysis of the daily estimates are because of the following two reasons.
Firstly, when we extend the scale on an intraday basis there are more pieces of infor-
mation about the stock’s variability, not directly visible on the daily basis. Thus, more
factors are required to explain this variability sufficiently. Secondly, more factors are

evident for the intraday estimators which exploit the full high-frequency observations.

Hence, when all the intraday data contribute to volatility estimation, the factor model
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often needs more than one factors to capture the volatility patterns effectively.
In Table 3.3, we report the amount of variation expressed by the estimated fac-

tors. The variation captured by the first factor lies between 48.94% and 63.71% for

. ——(Intr) ——(Intr—all) —~—(Intr) —~—(Intr—all) .
the estimators RV , RV , StRV and stRV , whereas this per-
—— (Intr—all
centage drops to 35.27% for wRV( e ). In this table, we additionally report the

total variation as would have been determined for the second most beneficial £ value for
comparison purposes. The total variation is computed as the sum of variation of the

proposed factors.

(Intr)

——(Intr) E\V(Im&r—all) (Intr—all) m(['ntr—all)

RV stRV stRV
Factor 1 Factor 1 Factor 1 Factor 1 Factor 1
[ Variation [ 48.94 | 63.71 [ 4995 | 51.49 | 35.27 |
Total explained variation by considering the second most desirable k£ in the model
L/k: - =16 /k=4 - (=13 /k=4|£=16/k=2
Total Variation - 59.57 - 54.56 33.76

Table 3.3: The first row in the matrix on the top indicates the amount of variation
explained by each factor. The matrix on the bottom reports the total explained variation
for the second most desirable case of k, as given for the lowest ¢ value.

Under the framework of daily estimates, the squared loadings indicate the proportion
that a stock contributes to a factor’s variation. In the case of the intraday estimates, the
squared loadings provide the proportion of variability in the intraday interval of a stock
as captured by the factor. This investigation offers insights into which intraday periods
drive the factor’s variation the most. In Table 3.4, we list the factors’ squared loadings
for the most distinct stocks related to every estimator. CLF remains the stock with the
highest proportion of captured variability by the first factor across the estimators. Also,
the overall proportion of CLF is higher for the estimators that use interval returns in
the volatility estimation. The proportion of the stock with the second-highest involve-
ment in the captured factors’s variation differs across the estimators due to the different
characteristics the estimators exploit to measure volatility. However, this proportion is

considerably lower than that of CLF. Indicatively, the second most variable stock across
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the intraday intervals, as captured by the factors, is Chesapeake Energy Corp. (CHK)

——(Intr) —~—(Intr) . ——(Intr—all)
for RV and stRV , Walt Disney Co. (DIS) for RV , Johnson & Johnson
—~—(Intr—all —— (Intr—all
(JNJ) for stRV( : and Mastercard Inc. (MA) for wRV( ).

Furthermore, the variation contained in the factors is mainly driven by the first in-
traday intervals of the most important stocks. An increased captured variability is often
visible in the squared loadings for the intraday intervals towards the end of the trading
sessions, usually for the volatility measures which use all intraday observations. We can
link these findings with the diurnal volatility pattern, described in section 3.3, where the
intraday volatility is represented as a U-shaped curve. Our outcome can also be related
to the empirical results of Chapter 2 (see Figure 2.1). In that empirical example, we
generally observe similar patterns for the stocks’ intraday volatility estimates, as found
in this analysis. Nevertheless, only a small sample was considered in that application,
discouraging us from making generalisations. The full tables of the squared loadings are

given in appendix C.4 for all estimators (see Tables C.5-C.9).

— (I —(Intr—all) ———>(Int —~——(Intr—all

In Figure 3.5, the first factor of RV( ntr), RV( nir—a ), stRV( " T), stRV( =l
—— (Intr—all

and wRV( rr=alh) is plotted (from top to bottom) against the intraday centred volatility

estimates of the two most volatile stocks across the intraday intervals. The factor is given
by the solid black line and the two stocks which drive the variability in this factor by
the blue and the orange dash-dotted line. We notice that the factors adequately capture
the variability that arises in the intraday intervals of these stocks. CLF is the stock
that drives the variability of the proposed factor for all volatility estimators. The second
most variable stock does not motivate the variability of the factors so clearly because of

the considerably lower involvement of this stock in the factor’s variation compared to

CLF.
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LI
Stock 1 2 3 4 5 6 7 8 9 10 11 12 13
——(Intr)
Factor 1 - RV
CHK 0.0095 | 0.0005 | 0.0012 | 0.0008 | 0.0007 0 0 0 0.0005 0 0.0045 | 0.0002 | 0.0004
CLF 0.7554 | 0.0911 | 0.0428 | 0.0001 | 0.004 | 0.0063 | 0.0023 | 0.0017 | 0.0001 | 0.0013 | 0.0004 | 0.0003 | 0.0004
DAL 0.001 0 0.0005 0 0.0002 0 0 0 0.002 | 0.0001 | 0.0053 | 0.0005 | 0.0006
FCX 0.0069 | 0.0012 | 0.0025 | 0.0011 | 0.0002 | 0.0001 | 0.0008 0 0 0 0 0 0
MA 0.0041 | 0.0001 | 0.0008 | 0.0002 0 0 0.0002 | 0.0001 0 0 0.0001 0 0
NEM 0.0001 | 0.0014 | 0.0004 0 0 0 0.0001 0 0 0 0 0 0
SLB 0.0013 | 0.0003 0 0 0.0001 0 0.0003 0 0 0.0002 0 0 0
Factor 1 - }Fﬁ/< el
CHK 0.0001 0 0 0 0.0001 | 0.0001 | 0.0002 0 0.0001 0 0 0.0002 0
CLF 0.4738 | 0.0968 | 0.031 | 0.0199 | 0.0003 | 0.0073 | 0.0023 | 0.0103 | 0.001 | 0.0003 | 0.0027 | 0.3089 | 0.005
GLW 0 0 0.0003 | 0.0001 0 0 0.0003 0 0 0 0 0 0
DAL 0.0002 0 0 0.0002 0 0 0.0001 0 0.0001 | 0.0002 0 0.0032 | 0.0001
JNJ 0.0095 | 0.0014 | 0.0004 | 0.0001 0 0 0 0 0 0 0 0.0011 0
MA 0.0002 0 0 0.0004 0 0 0.0002 | 0.0001 0 0 0.0001 0 0
DIS 0.0017 | 0.0002 0 0 0 0.0004 0 0.0008 | 0.0006 | 0.0001 0 0.0002 | 0.0005
Factor 1 - 31?&7“"")
AA 0.0001 | 0.0005 | 0.0032 | 0.0001 0 0 0.0001 0 0 0 0 0 0
CHK 0.011 | 0.0004 | 0.0015 | 0.0009 | 0.0008 0 0 0 0.0007 0 0.0053 | 0.0002 | 0.0006
CLF 0.7429 | 0.0795 | 0.0647 | 0.0004 | 0.004 | 0.0063 | 0.0016 | 0.001 | 0.0002 | 0.001 | 0.0004 | 0.0004 | 0.0004
DAL 0.0014 0 0.0004 0 0.0001 0 0 0 0.0018 | 0.0001 | 0.0045 | 0.0004 | 0.0005
FCX 0.0074 | 0.0011 | 0.0031 | 0.0011 | 0.0002 | 0.0001 | 0.0007 0 0 0 0 0 0
MA 0.0045 | 0.0001 | 0.0009 | 0.0002 0 0 0.0002 | 0.0001 0 0 0.0001 0 0
NEM 0.0001 | 0.0014 | 0.0004 | 0.0001 0 0 0.0001 0 0 0 0 0 0
SLB 0.0011 | 0.0003 0 0 0.0001 0 0.0003 0 0 0.0002 0 0 0
Factor 1 - ;;%V frr=a
CLF 0.4984 | 0.0493 | 0.0212 | 0.0139 | 0.0001 | 0.0003 | 0.0003 | 0.0008 0 0.0019 | 0.0024 | 0.3475 | 0.0035
DAL 0.0001 0 0 0.0003 0 0 0.0001 | 0.0002 0 0.0002 | 0.0001 | 0.0056 | 0.0002
XOM 0.0016 | 0.0001 0 0 0 0.0001 0 0.0002 | 0.0002 0 0 0.0002 | 0.0007
JNJ 0.0222 | 0.0017 | 0.0007 | 0.0001 0 0 0 0 0 0 0 0.0027 0
MA 0.0002 0 0 0.0006 0 0 0.0002 0 0 0 0.0002 0 0
SLB 0.001 0 0 0 0 0 0 0 0 0 0 0.0001 | 0.0001
DIS 0.002 | 0.0002 0 0.0001 0 0.0002 0 0.0005 | 0.0006 | 0.0001 0 0.0007 | 0.0019
Factor 1 - wRV frtr=a
AXP 0.0024 | 0.0004 | 0.0001 0 0.0001 0 0 0.0001 | 0.0002 0 0 0 0.0001
CVX 0 0 0 0 0 0 0 0 0 0 0 0 0
CLF 0.3594 | 0.3041 | 0.056 | 0.0411 | 0.0396 | 0.0261 | 0.0065 | 0.0002 | 0.0003 | 0.0021 | 0.0002 | 0.1185 | 0.0021
DAL 0 0 0 0 0 0.0007 | 0.0003 0 0.0003 | 0.0002 | 0.0001 | 0.0004 | 0.0001
DVN 0.0007 | 0.0001 0 0 0.0002 0 0 0.0001 | 0.0007 0 0.0001 | 0.0001 | 0.0001
LMT 0.0014 | 0.0001 0 0.0001 | 0.0005 0 0 0.0002 0 0.0005 0 0 0.0001
MA 0.0014 | 0.001 | 0.0008 | 0.0003 | 0.0012 | 0.0005 | 0.0002 | 0.0005 | 0.0003 0 0.0002 0 0
NEM 0 0.0001 | 0.0001 0 0 0.0001 0 0 0 0.0001 0 0.0006 0
\% 0.0001 | 0.0002 | 0.0001 0 0.0001 | 0.0001 | 0.0005 | 0.0005 0 0 0 0 0

Table 3.4: This table illustrates the squared loadings of the most distinct stocks for all
estimators. The rows refer to the particular stock and the columns refer to the specific
intraday interval.
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Figure 3.5: In the panels of this figure, we plot the resulting factor (solid black line) along
with the centred interval estimates of the stocks with the highest variability (blue and
orange dash-dotted lines), as given by the corresponding factor. The headlines include
the estimator and the names of the two stocks with the most variable performance
captured by the factor.
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3.6 Discussion

In this chapter, we investigate the factor analysis approach of Lam et al. (2012)
utilising the daily RV-based estimates of the estimators developed in Chapter 2, and
we extend this method for the intraday volatility estimates of these estimators. More
specifically, we show that considering the intraday volatility estimates as a time series
sequence violates the usual stationarity assumption, a critical assumption for the factor
analysis approach of Lam et al. (2012). We observe that the non-stationarity is driven
by the periodic behaviour across days. For this reason, we extend their methodology to
a vector-valued process to properly treat the non-stationarity inherited in the intraday
volatility estimates of our dataset.

An essential outcome of the empirical applications is that we can effectively sum-
marise the variability of the daily and intraday volatility estimates in only a few factors.
The analysis of the daily volatility estimates reveals that one factor is enough to capture
the variability for the estimates of the RV-based measures. This finding is consistent
with Luciani and Veredas (2015), Askanazi and Warren (2017) and Ding et al. (2022)
who estimate one factor for their daily volatility estimates.

As regards the investigation of the intraday volatility estimates, the empirical results
suggest that one factor is enough to explain the variability of the estimates for the
volatility estimators which utilise a part of the intraday observations (i.e. for RVI(IMT)
and stRVI(ImT)). In contrast, the estimators which use all the pointwise returns (i.e.
RV}(I"”_‘I”) , stRVI(Intr_a”) and wRVI([mr_a”)) need from one to four factors, depending
on the lag we choose to form the autocovariance-based matrix. This can be interpreted in
the following way. The intraday volatility estimates contain more information about the
stock intraday patterns; thus, more factors are often needed to capture their variability
effectively. This event is perceptible for the volatility estimators which make use of all
intraday data.

All empirical findings in this chapter suggest that CLF exhibit the most variable
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performance, which fact is also evident in Tables 1.4 and 1.5 in the exploratory analysis
of Chapter 1. The rest stocks share a significantly smaller proportion in the factors’
explained variation. This explained variation depends on the volatility estimator we use
and the data features that the estimators exploit for the volatility estimation. Also,
analysing the intraday volatility estimates permits us to investigate some intraday pat-
terns, not visible in the daily estimates. This is the reason why the stocks with the
second-highest captured variability by the factors differ between the daily and the intra-
day estimates.

An additional advantage of conducting the factor analysis on the intraday compared
to the daily estimates is that we can further infer which part of the day motivates the
variability explained by the factors the most. The empirical investigation of the intraday
volatility estimates shows that most factors’ variability is largely driven by the variability
observed within the first 30-minute periods over the days. Besides, a high variability is
also noticed in some intraday intervals towards the end of the trading session, mainly for
the estimators which utilise all the intraday observations. This can be linked with the
well-documented diurnal volatility pattern, presented as a U-shaped curve. This finding

has also been demonstrated in the empirical example in Chapter 2 for several cases.
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Chapter 4

Integrated Variance Estimation

with Local Polynomial Regression

4.1 Introduction

Accurate volatility estimation is of vital importance in areas like financial risk anal-
ysis and financial risk management since it plays a key role in understanding the causes
of market fluctuations or predicting future fluctuations. In this way, experts would be
able to protect their portfolios from expected fluctuations that are possible to happen in
the future. This chapter develops an estimator of IV, using all of the pointwise intraday
returns in the estimation.

The RV-based estimators of section 2.3 are practical tools that allow the investigator
to quickly and easily approximate IV. However, several technical and problematic issues
can occur when one models the pointwise intraday returns through these estimators. In
particular, the aggregation of all the intraday squared returns for the measurement of
daily IV can cause high bias in the estimation. For this reason, practitioners prefer to
aggregate interval returns to reduce the estimation bias. This technique has been proven

superior since less noise is aggregated into the estimate. However, it leaves a part of the
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data untapped, resulting in a loss of information in favour of bias elimination. Also, this
approach could create computational issues. For example, suppose no transaction can
occur within an intraday interval. In that case, the calculation of the interval return is
unfeasible, calling the investigator to define a non-misleading return for this interval. In
addition, pointwise returns refer to periods of different lengths because of the spatially
random design of the observed price realisations in a day. So, an obscure interpretation
arises when the investigator wants to compare the returns of these intraday periods.

One can get over the points above by analysing the intraday patterns in continuous
time. A popular nonparametric method that permits us to investigate the data patterns
in continuous time and, at the same time, the observations are softened towards the local
mean value is the Local Polynomial Regression (LPR). Specialists utilise this method
to estimate the data mean function based on a weighting allocation scheme. In this
chapter, we intend to mitigate the size of the noise in the pointwise squared returns of
a stock by using their mean function instead. Then, the smoothed squared returns are
used to estimate IV.

In particular, we show that aggregating the elements of the mean function of the
squared returns will result in better IV approximations when the noise variance takes
values of normal daily size. A similar technique has been proposed by Kristensen (2010)
for the instantaneous volatility (also called spot volatility) approximation. The author
applies LPR to the pointwise squared returns and then states that aggregating the
pointwise estimates can provide a measure of IV. However, his approach relies on the
assumption of the absence of noise in the observed values. Also, as far as we know, it
has yet to be examined for its accuracy in estimating IV. On the contrary, our estimator
assumes that the observed log-prices are blurred by noise and we apply a bias correction,
as driven from the properties of the estimator.

Moreover, we exploit the LPR characteristics to overcome the issues that can arise,

as quoted above. More specifically, every intraday (smoothed) return is involved in
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the IV estimation; thus, the daily estimate absorbs the complete intraday information.
Consequently, there is no need for the specification of intraday intervals, and further, the
computational problems disappear. In addition, this method enables us to approximate
the mean function at any time we wish through interpolation. Hence, we can determine
the pointwise observations so they refer to periods of identical length. This technique is
mainly used in the methodology of the next chapter.

This chapter proceeds as follows. In section 4.2, we define the LPR method and the
proposed IV estimator is presented along with its asymptotic statistical properties in
section 4.3. In section 4.4, three benchmark estimators of IV are overviewed. In sec-
tion 4.6, we examine the performance of the LPR-based estimator against the standard
IV estimators through a simulation study. In section 4.7, we highlight a few empiri-
cal applications of our estimator to two stocks. Finally, this chapter concludes with a

discussion in section 4.8.

4.2 Local Polynomial Regression

Regression analysis is a common way to investigate the dependence structure between
the explanatory and the response variables. In particular, when the data exhibit a linear
relationship, linear regression is ideal for manipulating such a situation. However, linear
regression cannot express this association when the data follow non-linear patterns. This
happens because the linear line used to describe this relationship fails to capture the
random non-linear trends, generating a significant bias. A famous but not efficient way
to fix this feature is by using the notion of polynomial regression. This approach adds
more parameters to the model, allowing more flexibility in the estimator. However, this
way does have some drawbacks. Fan and Gijbels (1996) mention several of them, such
as the degree of the polynomial is hard to be manipulated on a continuous time scale.
Also, the polynomial functions have the constraint that all derivatives exist, making the

modelling procedure complex enough. Further, some extreme data points can affect the
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efficiency of the estimation.

A different way to handle such a situation is by applying a linear regression at various
points of the dataset. This gives rise to the concept of local linear regression around a
specified neighbourhood. This approach can also be extended in more forms than the
linear one by using polynomials of a higher degree. In this case, the idea of the local
polynomial regression arises. Fan and Gijbels (1996) is an extensive study which discuss
the context around this method.

The central topic around the concept of local polynomial regression is the estimation
of the mean function E[Y|X = z] for n pairs of observations (z1,y1), ..., (Zn,yn). The

underlying statistical model can be expressed as follows:
Y =m(x) + o(x)e (4.1)

where the function m(zx) = E[Y|X = z]| denotes the unknown mean function. Also,
o(zr) = \/Var[Y|X = x| denotes the conditional volatility of ¥ given X and the errors
¢ have the properties Ele] =0, Var[e] =1 and X L e. Furthermore, m(z) and o(x) are
fixed functions. The m(z) can be approximated with polynomials around a given point

xzo with the Taylor series:

m” (z mP) (g
m(x) = m(xo) +m/(zo)(z — x0) + 2(' 0) (x —20)* + ... + DEO)(az — x0)P
= Bo + Bi(z — x0) + Bo(x — 20)* + ... + Bp(z — z0)” (4.2)
where By = m(xg), 1 = m/(x0), B2 = %,..., Bp = m(Dl;!(mO). Also, z stands for

the observations and D denotes the degree of the polynomial in the Taylor series. In
the formula above, we assume that all of the derivatives exist. Now, given a finite
sample of data (x;,y;) for i = 1,...n, our interest is centred on how we will minimise
the corresponding error term by utilising the proper amount of contribution of = to the

understudy point zg. This describes a weighted least of squares minimisation problem,
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expressed as:

n

2
Y; — Bo — Bi(xi — o) + ... + Bp(xi — 20)” | Kp(zi — m0)
>

i=1

where the function Kj(x; — xo) is called kernel function, and it indicates a non-negative
function which is associated with the weights allocation around xq for the estimation of
the regression function. More details on kernel functions are found in subsection 4.2.1.

Then, the minimisation of the empirical error at zq is achieved with:

Ba—1 = e (X F Wao Xao) ' X Wo Y (4.3)
where eqT isa 1 x (D + 1) vector of zeros except for the position ¢ which is one. So, we

obtain the point approximation at xy for ¢ = 1. For ¢ = 2, we obtain an approximation
of the first derivative of the function at z¢. Similarly, we obtain a measure of the second
derivative at this point for ¢ = 3 and so on. This results in the following coefficients for
the point xg:

ﬁxo = (507 /817 ceey BD)T

The remaining terms of Equation (4.3) are given by:

1 (21— x0) (21— x0)? (21 — 7o)
. 1 (22 - o) (2 - 70)? - (s - 20)P | )
1 (zn—20) (tn—10)2 ... (n—z0)P
K (21 — ) 0 0
e 0 K (22 — 20) 0 | @)
0 0 Ky (2 — 0)
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Y = (Y1,Ys, ..., Y,)T.

As we can see in Equation (4.2), the higher the degree of the polynomial, the higher
the derivative order used in this equation, and thus, the more precise the point ap-
proximation at xg. Although, this statement is not completely correct. This is because
there are some interesting properties about the selection of the polynomial degree in
conjunction with the balance between the estimation bias and variance asymptotically.

In Theorem 3.1, Fan and Gijbels (1996) report that considering polynomials of even
degree will result in the increase of the estimation bias asymptotically, compared to
polynomials with a degree higher by one unit. On the other hand, both polynomial
degrees share the same size of conditional variance. Consequently, polynomials of degree
D =1 are preferred compared to polynomials of degree D = 0, polynomials of degree
D = 3 are preferred compared to degree D = 2 and so on. This happens because of an
extra factor in the asymptotic conditional bias for polynomials of odd degree compared
to polynomials of even degree (Fan and Gijbels, 1996). So, one can claim that an
increase in the polynomial degree results in a drop of the estimation bias; however, as
they conclude, it sometimes seems wiser for experts to choose polynomials of an odd
than an even degree for the estimation of the regression function. Besides, they propose
the linear fit (given for D = 1) as a sufficient technique for the point approximation for
most cases.

Some indicative cases of local polynomial estimators for a specified point zq, given

the parameter h, are the following:

e For D =0, we end up with the Nadaraya-Watson estimator:

Bo = > i wiiYi
D iy Wi

119



e For D =1, we end up with the local linear estimator:

= " (52 — s1di)w;;Y;
5022(2 1d:)

8082 — s%

)

=1

5, = i (—815+ So_dz');Uu'Yi.
i=1 052 = 51

In the equations above, we have that w;; = Kp(x; — x0), sq = >y diw;; and df =

(z; — x0)%, for ¢ = 0,1,2. In the case of ¢ = 1, the power in d] is omitted. By

Equation (4.2), we also see that the derivatives of the local polynomial regression at

xo are given by m(xg) = 0!8y, m'(xg) = 1!8; and so forth for polynomials of higher

degree. The derivations of the above estimators are provided along with the derivations

of the local quadratic (given for D = 2) and local cubic (given for D = 3) estimators in

appendix D.1.

4.2.1 Kernel Function

The Kj(x; — xp) function is called kernel function and it is a non-negative function

which is defined by:
K(2522)

Kp(x; —x0) = .

where h is a positive constant whose definition is given in the subsection 4.2.2. The
function K can take different forms according to how we wish to allocate the weights
around a specified local neighbourhood. For example, the weights are equally distributed
across the observations in this neighbourhood for the uniform kernel function. For the
Gaussian kernel, the weights are allocated according to the distance of each observation
to xg. So, the smaller the distance of a particular observation to xg, the higher its
contribution. In Table 4.1, we provide the form of the most popular kernel functions
and Figure 4.1 depicts how the weights are distributed around the given point x( for

these kernel functions.
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H Kernel Function: ‘ Function: H

Uniform K (u) = 51(uj<1)
. _ 1 —u?/2
Gaussian K(u) = —Z=e /
Epanechnikov K(u) = %(1 - U2)1(|u|§1)
Biweight K(u) = 15(1 = u?)* Ly <1
35

w!

2

Triweight K(u) = 35(1 = u?)3 ]y <)

Table 4.1: Common kernel functions.

Kernel Function:

—Gaussian

- = Epanechnikov

e Biweight
Triweight

——Uniform

Xo-h Xo Xyth

Figure 4.1: This figure illustrates how the weights are allocated around a given point xq for the
Gaussian (solid blue line), Epanechnikov (dashed red line), biweight (dotted black line), triweight
(dash-dotted green line) and the uniform kernel function (solid magenta line).

This study considers kernel functions with the following properties. They are non-
negative continuous functions, and hence Probability Density Functions (PDFs) where
fj;o K(u)du = 1. Furthermore, they are symmetric functions K(u) = K(—u) Yu € R

and their two first moments satisfy:

+00 +0oo
/ uK(u)du =0 and / u? K (u)du # 0.

—00 —00

121



The kernel functions in Table 4.1 are called second-order kernels since the first non-zero
moment is the second moment.

Higher-order kernels emerge when the first non-zero moment is observed for higher
moments. The main trait of higher-order kernels is that they permit negative weights
to the most distant observations from z in the specified neighbourhood. In this way, a
bias correction is achieved where sometimes this correction can be remarkable. However,
Marron (1994) shows that a substantial improvement may depend on the kind of curve
one wants to estimate and there is a cost in the interpretability (the higher-order kernel
ceases being a PDF') because of the negative weights. In addition, the same author states
that in the context of local polynomial regression, we can eliminate bias by considering
a higher degree polynomial for the local approximation. By the term kernel functions,
we exclusively refer to second-order kernel functions in this study and the form of the
kernel function is specified in the empirical applications.

Nevertheless, the selection of the kernel function does not play a crucial role in the
quality of the estimation. On the contrary, determining the optimal range for the local
neighbourhood is often essential for the quality of the analysis. This range is given
by the smoothing parameter h (also called bandwidth), and its selection ultimately
controls the number of observations included in the understudy neighbourhood z¢y + h.
So, for a relatively small bandwidth value, the neighbourhood will consist of a small
number of observations, delivering a significant variance in the estimation. On the other
hand, a relatively high bandwidth value will decrease the variance, producing, inevitably,
considerable bias. Hence, we have to select the proper bandwidth to offset the balance

between variance and bias optimally. This topic is discussed in the following subsection.

4.2.2 Bandwidth Selection

The estimation of an ideal bandwidth is of great importance. The bandwidth A

essentially controls the neighbourhood range in which the weights of a kernel function
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are allocated around a specific point zy. A relatively high bandwidth sets a wide neigh-
bourhood around z(, including many observations in this neighbourhood. This means
that many data points will contribute to the point approximation at xg. In this case,
we observe an oversmoothed estimation, portrayed as a curve with high bias but low
variance. Similarly, a relatively low bandwidth considers a short neighbourhood around
xg, embedding an insufficient number of observations. In this case, we notice an un-
dersmoothed estimation, given as an estimation with low bias but great variance. It
is straightforward that as the sample size increases (n — o), the local neighbourhood
range should decrease (h — 0), so it contains an analogous number of observations in
this local window.

In Figure 4.2, we plot the intraday prices (blue curve) of Cleveland-Cliffs Inc. (CLF)
for the date 03 January 2012, along with the local linear fit for three different bandwidth
values. In particular, a low bandwidth value (red curve), a mid-range bandwidth (green
curve) and a high bandwidth value (magenta curve) are considered in the local estimator,
presenting from undersmoothed to oversmoothed estimation. In this figure, we notice
that the bandwidth value can play a central role in the estimation quality.

Choosing a suitable bandwidth is a demanding task. An efficient way to choose the
optimal bandwidth value is by minimising the Mean Squared Error (MSE), expressed as

a function of a bias and a variance term:

MSE(xo;h) =E [(T/T\L(k)(iﬂo; h) — m(k)(:co)>2‘x1, ,xn}

= Bias*(xo; h, 1, ..., xn) + Var[zo; h, z1, ..., Tp)

where m*) (xg; h) indicates the estimated k-th derivative of the regression function at
xo given the bandwidth h and z; denotes the i-th data point. The above derivation of
MSE is given in appendix D.2.

MSE provides a picture of the estimator’s performance at a local point xy for a
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Figure 4.2: This figure depicts the intraday prices (blue curve) of Cleveland-Cliffs Inc. (CLF)
over the date 03 January 2012, along with the local linear fit using a low bandwidth value (red
curve), a mid-range bandwidth value (green curve) and a high bandwidth value (magenta curve).
specified bandwidth h. In the context of global optimal bandwidth selection, the Mean
Integrated Squared Error (MISE) is a more appropriate measure to deal with this prob-
lem globally, intending to utilise the properties of MSE for the whole data curve. MISE
also considers an additional non-negative weight component, referring to the observa-
tions’ density. Consequently, the bandwidth selection for MISE is given by minimising

the following expression for different h values:
MISE(h) = /MSE(x; h)w(z)dz.

Here, w(x) stands for the non-negative weight component, which is used to erase the
boundary errors. The boundary errors refer to the misestimation that often occurs at
the beginning and the end of the regression function because of the low number of data
that contribute to the estimation in these areas. So, one can edit out this component
when he refers to the middle part of the data curve.

A method that approximates the above expression is Cross-Validation (CV) (Clark,
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1977). In a nutshell, the procedure of this method goes as follows. We remove an
observation or a part of observation values (test data) from the dataset. Then, using
the remaining data (train data), we attempt to estimate the test data for a grid of
bandwidth values through LPR. The optimal bandwidth is the value h that minimises
the prediction error. We can express CV as:
L
CV(h)=— Z(m(—i)(l'i; h) —y;)?.

n-
=1

where y; stands for the i-th observed value for i = 1, ..., n. Moreover, ﬁl(_i) (x;; h) denotes
the estimated regression function where the i-th observation or part of observations have
been removed from the dataset. In appendix D.3, we show that for the regression function

(k =0), we obtain:

E[CV (h

:z; ( (—i)(Tis h m(xl)>2
%/0 E [(’ffl(l‘, h) — m(:v)) }dm + o2

which is nothing more than an estimator of the MISE in discrete time with an additional

1 n
+ - z; JQ(wi)
1=

constant term ¢2. The term o2 of the above quantity does not considerably affect the
quality of the estimation (Bowman and Azzalini, 1997) since it is not a function of h.
Therefore, the minimisation of MISE can be considered equivalent to the minimisation
of CV.

In the applications of this study, the k-fold CV is conducted for choosing the optimal
h. The difference between the standard CV and the k-fold CV is that the latter method
partition the observations into a number of groups of approximately equal size, acceler-
ating the estimation procedure. One group is considered as test dataset and the rest are
considered training datasets. Then, we use the training datasets to estimate the regres-

sion function using the time points of the test dataset in the Matrices (4.4) and (4.5).
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The optimal h is chosen to be this value which allows the lowest possible discrepancy
between the test dataset and the regression function as derived by the training dataset
across the groups.

The under examination bandwidths are given as some grid points of the interval
[Amins hmaz]- In practice, the bandwidth h,,;, can be set as that value that takes at
least five observations in the specified neighbourhood for each point. On the other hand,
hmae can take a value that includes a large number of observations within the local
neighbourhood. Intuitively, we can set a value for A,,q, so that the point approximation
will take place using roughly one-third of the total observations on each side in the local
neighbourhood. The steps of the CV are summarised in ALGORITHM 1.

In the context of linear fitting models, the Generalised Cross-Validation (GCV) is an
alternative estimator of MISE. GCV is proposed by Craven and Wahba (1978) and it is
defined by: )

1 & i —m(xi h
GOV (h) = ~ ; (W)
where S indicates the global smoothing matrix for a given bandwidth h. The S matrix is
related to the concept of the local smoothing matrix. In particular, the local smoothing

matrix at xg for a bandwidth h, S(zg;h), is derived from:
(05 1) = X Bro = Xao (XE Wao Xug) XL W, Y = S(wo; B)Y

where S(zo;h) = Xao (XL WaoXao) XL Way. For example, evaluating at x1 gives
m(z1;h) = S(z1;h)Y. The matrix S(z1;h) is of size n x n and the first row of this
matrix is called effective kernel. Likewise, using xo as evaluation point, then the effec-
tive kernel is the second row of the local smoothing matrix S(x2;h). In like manner,
the i-th row of the matrix S(z;;h) is the effective kernel for the evaluation point x;.
Collecting the n effective kernels in a new matrix S(x;h), then this matrix is called

global smoothing matrix. The definition and the derivation of the local and the global
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Algorithm 1 k-fold Cross-Validation for Bandwidth Estimation in LPR
b SPGCify [hmzny hmam];
e Divide the dataset into G groups;
for hy, where £k =1,..., K do:
for group g, where ¢ =1, ..., G, do:
e Remove the group g from X and Y (test data) and keep the rest (train data);
e Specify the evaluation points of the regression function, as given by the test
data of X;
e Estimate the regression function using the bandwidth hj and the train data
at the particular evaluation points;
e Calculate the Prediction Error:

2
PEg(hy) = mean((Y(teSt) - ﬁl(*g)> )

where Y (t¢st) denotes the test dataset of Y and m(~9) denotes the regression function
where the group g has been removed;

end for

e Calculate the mean error for the given hy by:

G
1
CV(hk) = 5 D PEy(h);
g=1

end for
e The optimal tuning parameter is chosen by:

hoy = arg min OV (hy).
k

smoothing matrices are given in appendix D.1 for the local smoothers with polynomial
degree D =0, ...,3.
Thus, we end up that the optimal bandwidth A for the CV and GCV score functions

is given by:

hey = arg nin CV(hg),
k

haoy = arg }Ilm>1% GCV (hg).
k

where k =1,..., K.
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Simonoff (2012) points out that both the CV and the GCV estimators often choose
bandwidths that lead to undersmoothed estimations, whilst Hastie et al. (2009) remark
that this event is more frequent for CV. Nevertheless, choosing the proper bandwidth is a
demanding task. Although one follows the methods mentioned above, the estimation can
still perform poorly. Seasonality or autocorrelation between the data series can lead to
bandwidth misestimation (Opsomer et al., 2001; De Brabanter et al., 2018). Alternative
approaches for optimal bandwidth selection have been proposed in the literature. Some
studies develop the theoretical framework for a locally adaptive bandwidth selection.
These studies treat the bandwidth as a variable, allowing the bandwidth to change
across the data points.

Miiller and Stadtmiiller (1987), Staniswalis (1989), Fan and Gijbels (1996), Lepski
et al. (1997) are some popular studies which propose a methodology for the estimation of
local bandwidths. The reader can refer to Kohler et al. (2014) who provide an extensive

overview and comparison of the most popular bandwidth selection practices.

4.3 LPR-Based Estimator of IV

In this section, we develop an empirical estimator of IV, along with its relevant
statistical framework. In the proposed approach, we utilise the mean function of the
pointwise returns (in their standard and squared form) for the estimation. LPR, as
defined in section 4.2, is the method used to approximate the mean functions; hence we
refer to this measure as LPR-based estimator of IV.

LPR is a method which estimates the observations’ mean value in continuous time
based on a weighting allocation scheme around a specified local neighbourhood. Sev-
eral daily volatility estimators (Andersen et al., 2001a; Podolskij et al., 2009) assume
equidistant observed time points in order to be defined. Although, this is not a damag-
ing assumption in terms of the estimation procedure it requires pre-processing to ensure

that every intraday interval contains sufficient (non-zero) number of observations and
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the volatility is defined at the predefined time points. The continuous trading is more
realistically represented by non-equidistant observed time points and such restriction is
not necessary under the continuous function estimation framework. In the LPR-based
estimator, we can specify the range of the neighbourhood in order to contain enough
observations for the volatility estimation. On the other hand, boundary errors can affect
the precision of the LPR-based estimator.

We consider the same theoretical framework as described in Chapter 2, including all

the assumptions made there. Recall that:

ti

X(t;) = X(ti1) = /ti w(s)ds +/ a(s)dW (s).

ti—1 ti—1

In section 2.2, ;4 and o are supposed to be random processes. In addition, we assume

that they are smooth functions in this chapter.

Assumption 4.3.1 The coefficients u(t) and o(t) are continuously differentiable and
the derivatives of the sample paths are uniformly Lipschitz continuous: there exists a

constants L > 0 such that a.s.
W(s) =W (B < Lls—t], |o'(s) =o' (O < Lis—t| forall s,;te=[0,1].
In addition, there exists a constant C' such that

sup [ ()] < €, sup [t (8)] < C, for v=10,1.
tel tel

Similar smoothness conditions are considered in Miller et al. (2006), Fan and Wang
(2008), Kristensen (2010) and Miiller et al. (2011). It is possible to make a weaker
assumption with (Holder) continuity of order 0 < a < 1 or consider some specific classes
of the models for ¢ to refine the order of smoothness but for simplicity we stay with

this assumption. From now on, our derivations are understood as being conditional on
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w and o. Effectively, they are treated as if they are fixed functions.

The i-th observed log-price Y (¢;) of a stock at time ¢; is defined by:
Y (t:) = X(t:) + E(t:)

where X (¢;) denotes the i-th intraday true log-price, which is unknown and follows a
stochastic process given by Equation (2.1). Furthermore, F(¢;) displays the correspond-

ing error term. Consequently, the i-th intraday return is defined by:
R(t;) = R*(t;) + V(t;)

where the return R(¢;) = Y (¢;) — Y (t;—1) and R*(¢;) stands for the corresponding true

return, given by:

R*(ti):/i u(c)d§+/i o(c)dW (<)

ti—1 ti—1

with E[R*(¢;)] = ftiil p(s)ds and Var[R*(t;)] = fttf,l 02(s)ds. Besides, the term V(t;)
indicates the difference between the error terms E(t;) and E(t;—1). By taking the ex-

pectation of the squared returns and using Assumption 2.2.4, we have that:
2 2 2 2 2
BIRA (1)) — E [ (R(t)) ] + EIV2(0)] = VarlR* ()] + (EIR*(8)])? + 2ELE(1)],

Observe that E[R*(t;)] = E[R(t;)]. Thus, we conclude with the following local volatility

relation:

[ (s = BIR @) - BIRG)? - 2650 (4.6

ti—1

An approximation of the local volatility can be obtained by estimating the right-hand
side terms of Equation (4.6). An estimator of the term E[R?(¢;)] is given by the mean

function of the squared returns. Similarly, an estimation of the term E[R(¢;)] is provided
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by estimating the mean function of the observed returns. For the estimation of the mean
functions E[R%(¢;)] and E[R(t;)], we apply LPR to the squared and the standard returns,
respectively. The term E[E?(t;)] defines the noise variance w?. For the estimation of w?,
several common estimators are outlined in section 4.3.1. Hence, a natural estimator of

the local volatility by direct application of moment matching may be defined as:

/ "’ o2(¢)ds ~ i (t:) — (@(m))2 W (4.7)

ti—1

where mp2(t;) denotes the estimated mean function of the pointwise squared returns
R%(t;), mg(t;) indicates the estimated mean function of the pointwise returns R(t;) and
w? is the noise variance estimate. This defines our proposed estimator. The approxima-
tion error will be made more precisely by studying the asymptotic properties of these
estimators later in section 4.3.2. The impact of the error correction will depend on the
magnitude of the error w? and this will be investigated in the simulation study as well.

The daily IV is defined by:
1
A% :/ o?(s)ds
0

where the limits of integration denote one day period. Exploiting the fact that we can
re-write the above integral as the summation of integrals using the interior points of the
interval [0,1] as limits, we end up that a measure of IV is provided by aggregating the

local volatility estimates of Equation (4.7):

v = Z (@(tn - (@(n))Q - 2&5).
=2

In Chapter 2, we have defined that t; represents the time point of the i-th observed price
in the trading session. Assuming n observed prices within a day, this impies that we
obtain n — 1 pointwise returns. So, the functions mg2(t;) and mg(t;) would be more

meaningful to start from the time point ¢z in the mathematical representation above.
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4.3.1 Estimation of Noise Variance

For the estimation of the noise variance w?, Zhang et al. (2005) propose the following
estimator:
-5 Rv(all)

w :m*}w, as n — o0 (48)

where the derivation of this estimator comes from the theoretical properties of RV (@)
given the increments of the true price process. Besides, Zhang et al. (2005) on page 1398
further prove that:

n'?@? — w?) — N(0,E[EY]), (4.9)

where

gyt
E[ET) = 22(—7; (_Rll)) = 3(w2>2.

Two alternative estimators of w? suggested by Hansen and Lunde (2006). The first

estimator has the following form:

_— Rv(all) _ Rv(30—min)
w? =
2((n 1) 13)

(4.10)

where RV (30—min) denotes the RV estimator using 30-minute returns and the term ‘13’
in the denominator of (4.10) comes from the 13 equilength and non-overlapping intraday
intervals which yield setting 30-minute returns. The second estimator is a generalisation

of the Estimator (4.10), given by:

—~ RV _Jy

where IV depicts any alternative measure of IV. Hansen and Lunde (2006) show that
even if all of the aforementioned estimators are identical as regards the probability limit

for n — oo, the Estimator (4.8) can be biased for finite n.
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4.3.2 Asymptotic Properties

Recall that the estimator of the local volatility is defined as m(t;) = mp2(t;) —

2~
<m/\R(tz)> — 2w?, which are constructed from two regression models
R; =mpg(t;) + ¢, R? =mp2(t;) +ni,

where the errors ¢; and 7; are assumed to have mean zero and finite variance. We consider
that the design points of the regression are fixed but satisfy the following standard
assumption (Mykland and Zhang, 2009; Nolte and Voev, 2012).

Assumption 4.3.2 For the observed time points 0 < t; < --- < t, <1, we have that:

21;1%}% |ti - ti—l‘ = O(l/n)

as n — 0.

Denote by h; and ho the bandwidths applied to the returns and the squared returns by
the LPR, respectively. Using the properties of the local polynomial smoothers, we derive

the asymptotic properties of the estimators below.

Lemma 4.3.1 (Properties of the Local Linear Estimator of m(x) - Fan and Gijbels
(1996)) Suppose that (X;,Y;),i =1,...,n are IID copies of (X,Y) andY = m(x)+o(z)e
where m(x) = E[Y|X = z], 0%(z) = Var[Y|X = x| and € has mean 0 and variance
1. Assume that X ~ f(x) > 0 and that f(-), m"(:) and o?(-) are continuous in a
neighborhood of . Further, assume that h — 0 and nh — oo. Then, for the point

approzimation with the local linear smoother the asymptotic conditional bias is given by:

2

aBias (fﬁ(x)) = %kgm”(az) +0p(h?),
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and the asymptotic conditional variance is given by:

14 0'2 T
aVar |i(r)] = r?hf((x)) +0p(%)’

where K denotes the kernel function, h stands for the bandwidth, vo = [ K?(u)du and

ko = fuZK(u)du denotes the second-order moment of the kernel function K.

The same result holds for stationary correlated errors as long as the correlation decays
fast enough (Simonoff, 2012; De Brabanter et al., 2018). This is the case in our setting
as the correlation of the errors is zero beyond finite lags, as shown in appendix B.1.1.

In order to apply the results of Lemma 4.3.1 to our setting, we need to verify that
mip(t) = Op(1), m/;{? (t) = 0p(1),
and

oh(t) = 0p(1),  0ga(t) = Op(1).

Assumption 4.3.1 is sufficient to guarantees this. Below we derive the bias and vari-
ance for our combined estimator, conditional on p and o, and we make the following

assumptions on the bandwidths.

Assumption 4.3.3 Asn — oo, hi — 0 and ho — 0 and nhy — oo and nhy — .
Assumption 4.3.4 Assume that h1 = O(n*1/5) and h1 and hy are of the same order.

Assumption 4.3.3 is a common assumption in this context (Fan and Gijbels, 1996; Op-
somer et al., 2001; De Brabanter et al., 2018). In addition, the bandwidths h; and hs
are assumed by Assumption 4.3.4 to be of the same order and h; is of order O(n~1/%),
which is optimal in the sense of asymptotic MSE (Fan and Gijbels, 1996). The latter

assumption is not essential but can simplify the derivations as we show below.
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To consider at arbitrary time point ¢, we assume that the gap between transaction
times, t; — t;_1, is independent of ¢; and approximately uniform, t; —¢;_1 = d; = J. For

simplicity, let §; = ¢ and we write R*(t) = X (t) — X(t — ) ~ N(T(t), U(t)) where:

r(t) = / w(S)ds, v(t) = / o2(s)ds .

—6 —6

and m(t) = v(t). For correspondence to the Equations in appendix D.4, v(t;) = s2.

Asymptotic Bias

Moment properties of returns are summarized in the appendix section D.4. From (D.1)

and (D.2), the mean of the returns and that of the squared returns are:

t 2
,u(g)dg) + 2w

mR(t):/tt u(s)ds = r(t), mRz(t):/t 02(<)d§+</t

-0 t—§& =

The bias of m is given by:

Efi(t) — m(t)] = E [mza(t) — (1))~ 22 — (mpa(t) — (m(0) —27)]

=& [ma(t) ~ mpe)] ~E[(7a0) ~ (ma) ] —28[2 -] @12)

where the noise does not contribute to smoothing bias, see (4.9). To express the second

term, we observe that:

so the second term is given by:

E[(mr(0) —m0)] = B[ (750) — ma) ] + 2me) B[ (75(0) ~ ma()]
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2
= Var[ma(t) = ma(®t)] + (B — ma(t)]) +2mp(t) EFa(E) — ma(t)).
Plugging the quantity above into (4.12) gives:

E[m(t) — m(t)] = E[mpz(t) — mpz(t)] = Var[mg(t) — mg(t))

) N (4.13)
~ (E[mR(t) — mp®)]) — 2ma(t) EfR(®) - ma(t)] - 2E [ - w?]
From Lemma 4.3.1, the leading terms in asymptotic bias are:
_ h3 _ h?
aBias <mRQ (t)) = ?kgm;’p (t), aBias (mR(t)) = ?kgm’é(t),
and the leading term in asymptotic variance of mp(t) is:
Var|mi(1)] L) (4.14)
aVar|m = .
f (n — 1h fr(t)

where 0%(t) = Var[R(t)] = m(t)+2w? (see (D.3) in appendix D.4) and fr(t) = 1. Thus,

the asymptotic bias of m in (4.13) can now be expressed as:

aBias (T?L(t)) = aBias (@ (t)) — 2mp(t)aBias (m/\R(t)) - (aBias(TrL/\R(t)))2 —aVar [m}(t)]

_n
T2

ht 2 pok(t)
" 12 Iz Mgl n _ _Y0Y%R
ko (1) = Wtkama(miy(0) = SH (ma(e)) — 2
h 2 h
= 2o (" (8) +2(mp() + 2mR(OmE(1) ) — hikama(tym(t) - “Lk3

S [((H)’(f) — (@) (t=0) +2(u(t) — e - 9)) +2( [

t—o

(mis(0)” - 2oL

t

p(<)ds ) (w'(6) = (¢ - 5))]

R 2y j::ls 02 (s)ds + 2vow?

— ke ( /t;mc)dc) (0 = we=0) = =R (W0 - - 0)) - ==

In (4.13), the second and the third term express the MSE of mz(t). So, the expression
can be further simplified if hy is chosen optimally, that is, to minimize the asymptotic
MSE:

aMSE (mAR(t)) = O, (hd + (nh1)™1),
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leading to hy = O(n~1/%) (see Assumption 4.3.4), in which case aBias? = O,(n~%/) is
negligible compared to aBias = Op(n_2/ %). Thus, the asymptotic bias of m is simplified

to:

aBias (fﬁ(t)) = aBias (@ (t)) — 2mp(t)aBias (T/nE(t)) + 0p(1)

2 t
h2

=y, [((ﬁ)'(t) ~ (@) (t=0) +2(u(t) — ut - 5)) +2( [

t—o

p()as) (w'(t) = (¢ - 6))]

ks [ 0e) (50 - - 0)) = 0,138 + i) = 0,430)

where the constants involving u and ¢ and their derivatives are controlled by the smooth-
ness conditions for ¢ and g in Assumption 4.3.1. As the gap between transaction times
§ = O(n™!) (see Assumption 4.3.2), if the bandwidth hs is chosen to have the same
order as hi (see Assumption 4.3.4), the bias is dominated by the estimation of the mean
of the squared returns. This is consistent with the common assumption that the effect
of u is negligible compared to that of o (Fan and Wang, 2008; Miiller et al., 2011).
Consequently, the asymptotic bias of IV is:

E [ﬁ/—n/} —E {zn:ﬁz(ti) —IV}

< 2_; [(@'2)’(%) — (@ (t0) + 2t = nti-0)) +2( [ pl)de) (4 (t:) - u’(tm))]

-3 (W) - ) [ a0

=2

= 0, (h2n6 + h2n6? + nd2h2) = O, (h2) .

As discussed above, the leading error is driven by the estimation of the variance term

from squared returns.
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Asymptotic Variance

To complement the calculation, we can also consider the variance by observing that:

Varlm] = Varlmm — (mp)? — 207]

= O(Var[@} + Var[(mg)?] + 4Var FJED ) (4.15)

Thus, it is sufficient to consider the leading term of the variance of each term. More

specifically, the asymptotic variance of mp2(t) is given by:

1/00%2 (t)

aVar | (t)] = 2

where 0%, (t) from (D.4) can be expressed as:

oFa(t) = Var [RQ(t)} = 20%(t) + 4m%(t)v(t) + Sas (m%—i(t) + v(t)) + 2(ayq + a3)

= 20%(t) + dv(t) (m%(t) + 2az) + S8agm%(t) + 2(as + a3)

([ on) o[ 0w) {([ o) )

+ 8ay </tt w(s) d§>2 +2(as + a3)

—6

= 2(ay —i—a%) + 8as (/
t

-0

t

(<) dg) + 0p(6?).

where aj, = E[E*(t;)]. Thus,

21/0 52

aVar [@(t)} = [4@ /t; o2(<) ds + (a4 +a§)} +0, <nh2> . (4.16)

The constant term a4 + a3 is due to the error component. If the errors are assumed to
be Gaussian, then ay = 3a% with as = w? so that the last term is simply 40*. Here
we assume that the noise variance is constant. In other circumstances, it is possible

to consider the case where the noise variance is a function of the sample size (Ait-
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Sahalia and Yu, 2009), and then the interplay between the noise variance (w?) and the
discretization (§) could be looked into further.
2
For the second term Var [(m/\R(t)> } in (4.15), we use delta method, that is, a first-

order Taylor approximation of f(x) = 22, together with (4.14) to obtain:

Var|(m5(1)) | = Var |ElmR()] + 2 B[RO #a() - BERO)]

= 4(EmR(0)]) Varlma(®)] = 4[ma(t) + Bias(ma() | Varfma().

It follows that:

aVar [(mAR(t)f] ~ AVarimpg(t)] [mR(t) +aBias (mR(t))} 2

_4m(ﬁ5“ )“+2@){/tM@ﬁb+h%ﬂwG%—M@—5ﬂr
t—0

nh1 2

81y (ft 502 )ds—|—2a2> t 2 p4,2
< 12 o1yt 2
< — (/t_ém.s)ds) + U ) - e - )
8w ([ 2 | 3452
= o°(s) ds + 2az | Op(6° + hi6%)

nhi \Ji—s

62 + 83 + hio? 52

From (4.9), &? is a /n-consistent estimator so aVar [@2} = O(n~!). Combining (4.16)
and (4.17) gives:

2 1/0

Var ()] = 2 [4@ /t;a?(odw(aﬁa%)}wp(f;j )*O (5; )*O (711)

Similar to bias, the variance is also dominated by the estimation of the mean of the

squared returns. Consequently, the asymptotic variance of IV is dominated by:

S ) m Sy )+ Bl +

Var[IV]=V
ar[IV] ar[ i

+0,(1).
=2
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where the latter follows from § = O(n~!) (see Assumption 4.3.2). Although it is odd
to have increasing variance, this is natural because the estimator IV is defined as the
sum of the individual estimator. Perhaps our approximation is rather crude as the effect
of the noise variance is not cancelled out but the asymptotic analysis suggests that ho
should be relatively large to attenuate the effect of noise variance. Here, we assume
that the noise variance is constant independent of the sample size. In practice, the noise
variance and noise-to-signal ratio tend to be lower for highly traded stocks (Ait-Sahalia
and Yu, 2009). Then, one could consider the case where the noise variance decreases as

a function of n with a certain order.

4.4 Standard IV Estimators

In this section, we report three standard IV measures under the presence of mi-
crostructure noise. These estimators are utilised in the simulation study of this chapter
for comparison purposes. More specifically, the two-scales RV estimator, the realised
kernel estimator and the pre-averaging approach are briefly explained where the first es-
timator converges to the rate n=/6, whereas the latter two measures achieve the optimal

—1/4

rate of convergence n . For the presented estimators, we assume the same theoretical

framework described in section 2.2.

4.4.1 Two-Scales RV

The Two-Scales RV estimator (TSRV) was proposed by Zhang et al. (2005). Assum-
ing that we observe a new transaction at time points 0 < t] < ... < ¢; < ... < t, < T,

where i = 1, ...,n, then the TSRV model is defined by:

TSRV = Ry _ 9 py(a)
n—1
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and

L g
RV (avg) — %Z Z (Y(ti+k£) - Y(ti+(k—1)£))2

i=1 k=1
where RV(@) represents the Estimator (2.4) and Y (tjs) and Y (tit-(k—1)¢) show the
log-prices that are placed ¢ lags away. Further, g; indicates the highest number such
that ¢ 4+ k€ < n using the i-th point as starting point for i = 1,...,£. Also, n denotes the

number of the observed prices in a day and:

Q|
Il
|
]~
)
~

@
Il
—

TSRV is a simple measure of IV and it has been proven superior to the standard
RV-based estimators because of the bias correction realised within its application. Zhang
et al. (2005) show that TSRV is an unbiased and consistent estimator, reaching a con-

vergence rate equal to n=1/6.

4.4.2 Pre-Averaging Approach

The Pre-Averaging (PA) estimator was introduced by Podolskij et al. (2009) and a
generalised version of this approach is provided by Jacod et al. (2009). For this technique,
we consider that the observed prices occur at equidistant time points ¢; = i/n where

i =1,...,n. Then, the PA estimator is defined by:

where n; denotes the number of observed prices within the intraday interval I and J
refers to the number of non-overlapping and equilength intraday intervals we set in a day
such that I =1,...,J. Besides, Y (t1,;) represents the i-th log-price within the intraday
interval I and Y (t;;4¢) depicts the log-price within this interval, observed ¢ lags later

than the log-price Y'(¢7;).
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Also, Podolskij et al. (2009) suggests that J and ¢ can be computed optimally by:

J =n/(cl), {=civn

where n denotes the number of the observed prices within the day and ¢, co display
two constant values. Assuming that the volatility process o does not vary through time,

then c¢; and co are given by:

_ 18w
TN @-—1DEd—a)s

Cy = 1.6.

In their simulation study, Podolskij et al. (2009) mark that we can use IV as a measure
of o in the above formula, however, they specify ¢; = 1 and ¢y = 1.6 in their simulation
study because of the intricacy in the relevant computations.
According to Theorem 1 in Podolskij et al. (2009), the following expression holds:
1 1

PA,(Y) B PAY) = p (v102 + vow?)du

c1 max(3ca—4+(2—c2)3,0) Vo — 2min(ca—1),1)

3(c2—1)° V2= TG Therefore, we have that:

where v =

c1caPA(Y) — vow? I /1 o2du
121 0 u

Hence, they end up with the Modulated Realised Variance (MRV) estimator of IV:

ClcQPA(Y) — 1/2(,02
131

MRV (Y) =

which is a superior estimator compared to PA. We can estimate the noise variance w?

through the estimators in subsection 4.3.1.
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The advantages of this technique are the following. Using a modified form of the PA
estimator, we can obtain alternative measures of volatility. Also, for the IV estimation
MRV achieves the optimal rate of convergence n~/4.

Although the magnitude of the noise is mitigated through this approach, the pre-
averaging scheme may also induce some noise (Jacod et al., 2009). In addition, this
estimator is defined for regularly spaced data. In the real world, the investigator may
confront computational obstacles using automatic procedures. For example, when the
understudy stock occurs with low trading behaviour and the time points have a random
design. This happens because we define the interval returns based on a constant number

of time lags, which is the same for each interval. Therefore, pre-averaging may be a

challenging task for intraday intervals with different trading frequencies.

4.4.3 Realised-Kernel Estimator

The Realised-Kernel (RK) estimator was developed by Barndorff-Nielsen et al. (2008),
who provided the theoretical framework around this estimator. A more practical view
of this estimator is delivered by Barndorff-Nielsen et al. (2009), who describe how we
can use it in the real world.

We consider that the observed prices occur at random time points 0 < t; < ... < t; <

v <tn <T where i =1,...,n. In this context, the RK estimator is defined as:

RE(Y)= Y K( h )vh (4.18)

h=—H

where K represents a kernel function with bandwidth h. The component v; is given by:

= R(t:)R(tin)

i=|h|+1

where R(t;) denotes the i-th return and R(¢;45) indicates the return placed h posi-
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tions apart from the return i. Barndorff-Nielsen et al. (2009) suggest the Parzen kernel

function because it always provides non-negative estimates, given by:

0, if u>1
K(u) = {2(1 - u)3, if 1/2<u<1.
6(ud —u?) + 1, if 0<u<1/2

In the Estimator (4.18), the initial optimal bandwidth value H* can be estimated by
minimising the bias-variance trade-off asymptotically. Barndorff-Nielsen et al. (2009)

report that this value is given for:
H* = ¢ £4/53/5

where ¢ refers to a constant that depends on the kernel function. Indicatevely, for the
Parzen kernel ¢ = 3.5134. Moreover, n shows the sample size and an estimator of & is

given by: .
2
f = =-

A%

In the above formula, we can estimate IV by (2.8), whilst Barndorff-Nielsen et al.

(2009) use the following estimator for w?:

9i

¢
w2 = 2; <21Zz Z (Y(ti+k£) - Y(ti+(k—1)€))2>

k=1

where / refers to a specified lag, g; indicates the highest number such that :+k¢ < n using
the i-th point as starting point for i = 1,...,£. Also, Y (t;4x¢) — Y (t;4(x—1)¢) indicates the
differences of log-prices placed £ lags away for k = 1, ..., g;, using the i-th log-price as the
starting point. Besides, z; denotes the number of non-zero elements for all the differences

starting from the i-th log-price each time. Barndorff-Nielsen et al. (2009) recommend
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a value for ¢ that places the log-prices Y (¢;yxe) and Y (¢;4(x—1)¢) two minutes away, on
average.
Some features of this estimator follow. RK is a consistent estimator of IV and

1/4

achieves the optimal convergence rate n="/*. Also, it is defined for irregularly spaced

data, making its application more convenient than for the PA approach.

4.5 Spot Volatility

The pointwise estimates of our proposed approach can be utilised to approximate
the spot volatilities. As opposed to volatility -a diachronic notion that measures the
daily, monthly or annual fluctuations- the investigation of the spot volatility patterns
has developed over the last three decades. Spot volatility refers to the volatility observed
at a specific time over a day.

Foster and Nelson (1996) first focused on exploring spot volatility, proposing an
estimator given as the summation of the squared returns within an intraday interval
based on a weighting scheme. Later, Andreou and Ghysels (2002) modified this model
by subtracting the drift from the returns before squaring this quantity. On the other
hand, Fan and Wang (2008) proposed a kernel-based estimator for the spot volatility
approximation. Kristensen (2010) applies the local constant smoother to the intraday
squared returns for the estimation of spot volatilities under the assumption that the
observed returns mirror the true returns (absence of noise).

Other popular studies on this topic were published by Zu and Boswijk (2014) who
define an estimator that utilises as component the TSRV model, as given in the subsec-
tion 4.4.1, over intraday periods for the point approximation of o2 through time. Ogawa
and Sanfelici (2011) measure the spot volatility by applying a two-step procedure to
filter out the microstructure noise. In particular, they average the observed prices and
calculate the squared returns based on these averaged prices. Then, they implement a

regularisation scheme on the resulting squared returns for the spot volatility estimation.
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4.6 Simulation

This section applies a simulation procedure where the accuracy of the LPR-based
estimator is tested against the common IV estimators, outlined in section 4.4. We
perform the simulation procedure 100 times, and the error between the estimated and

the true IV is collected for each iteration:
error(iter) = IViter — IViger

where TV iter — 1 Viter denote the difference between the estimated and true IV for a
particular iteration. Once we have collected the 100 errors from the estimators, the
mean, the MSE and the variance are computed. The simulation model rarely offers
outliers and for this reason the median, the median squared error and the squared value
of the median absolute deviation of the errors are also considered.

The ‘Stochastic Volatility - Factor One’ model (or briefly SVF1) simulates the IV
for every iteration. The acronym SVF1 was given by Huang and Tauchen (2005), and it
is a special case of a broad family of stochastic processes, introduced by Chernov et al.
(2003). This is a popular simulation model in the field of stochastic volatility modelling
with high-frequency data (Barndorff-Nielsen et al. (2008), Podolskij et al. (2009) among

others). The SVF1 model has the following form:

dX (t) = p(t)dt + o(t)dW (1), (4.19)
dr(t) = ar(t)dt + dB(t), (4.20)

where
o(t) = ervp(ﬁo + Blf(t)), (4.21)

Corr <dW(t), dB(t)) = p.
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In the formulas above, W(t) and B(t) indicate two standard Brownian motions that
are correlated with a correlation equal to p. This can be constructed from B(t) =
pW (t)++/1 — p?Z(t), where Z(t) is a Brownian motion independent of W (¢). In the lit-
erature, this correlation coefficient is referred as ‘leverage parameter’ (Barndorff-Nielsen
et al., 2008) or ‘leverage correlation’ (Huang and Tauchen, 2005) and enables the ex-
istence of leverage effect (Nolte and Voev, 2012). Although we assume the absence of
leverage effect for the derivation of our estimator (see Assumption 2.2.2), we assess its
performance under the presence of this effect. The component p refers to the drift of the
log-price change dX (t) and o(t) indicates the spot volatility through time, specified by
Equation (4.21). In addition, 7(t) refers to a component that determines the volatility
process through time.

For the construction of the two correlated standard Brownian motions, the next steps

are followed:

1. Generate one two-dimensional correlated sequence @) of size n such that:
1
Q~N([0,( "
p 1
where p is chosen to be -0.03.

2. Then, the two (correlated) standard Brownian motions in Equations (4.19) and (4.20)

obtained on finite grids by:

k n—1
an = Wn = [va(tl)’ w(tl) + ’UJ(tz), ey Zw(tl)v ey w(tnfl)]\/ﬁa
=1 =1
k n—1
Q2n = Bn = [0,b(t1), b(t1) + b(ta), s D b(ti), s D bltn—1)]VdL.
=1 =1

For the construction of the SVF1 model, we follow the next steps:
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. Generate n equidistant time points ¢; within the interval [0, 1] and the sample size

is taken to be n = [256, 1024, 4096, 9216].

. Generate a process of n normally distributed random variables for 73, such that:

T~ N(o, —1/(2a)>

where « is chosen equal to -0.025 in this model.

. We randomly choose a value from N (O, -1/ (2(1)) as the initial value for 7.
. Then, o(t1) can be computed by (4.21).

. The initial value of the true log-price Xy is chosen from N <3, 02(t1)>.

. The two SDE models have the following form:
dX(t) = p(t)dt + o(t)dW(t),

dr(t) = ar(t)dt + dB(t).

The formulas above can be expressed as:

X () — X (o) = /t " )t + /t oW () <
X(t) = X(to) + /t " )t + /t " o dW (1),

These quantities can be estimated by the Euler-Maruyama approximation method:

X(ti) = X(ti—1) + pltim1)dt + o(ti) (W () — W(ti-1)) (4.22)
T(ti) = T(ti_l) + on'(tz-_l)dt + B(tz) - B(ti_l)

o(t;) = exp(ﬂo + 51T(ti))
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where W(t) — W(t — At) = AW(t) ~ N(0,At). Also, u is set equal to 0.03,
B1 = 0.125 and By = b?/(2a) = —0.3125, so that E[o?(t)] = 1.

7. The true IV is computed by:

n

IV =Y o*(t)At.
t=1
8. After that, the noisy log-prices that will be used as inputs in the estimators are
given by:
Y(t;) = X(t:) + E(t).

The pointwise true log-prices X (¢;) are simulated by Equation (4.22), and the error

terms E(t;) are generated from a normal distribution, such that E ~ N(0,w?).

4.6.1 Simulation - Results

In this subsection, we examine the performance of the LPR-based model against
some standard estimators of IV through a simulation procedure based on 100 iterations.
The simulation design is the same as determined at the beginning of this section. The
difference IV — IV is collected for every iteration, and relevant statistics of this difference
are computed.

In this application, the estimators RK, MRV, TSRV and RV are tested against our

LPR-based estimator. Our estimator is considered in the following two forms:

n

LPRW =>" (@(ti) - (m/\R(ti))2>a

LPR® = Z (@(m) = (mAR<ti>)2> —2(n — 1)w?

where mp2(t;) denotes the mean curve of the pointwise squared returns, mpg(t;) displays

the mean curve of the pointwise returns and w? refers to the noise variance. The es-
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timator LPR?) expresses the standard estimator, as defined in section 4.3, whereas in
LPRM the term 2(n — 1);5 is ignored. This modification aims to infer whether the
third term of our proposed estimator is essential for the IV estimation.

We use the Gaussian kernel in both alternatives for the weights allocation, and the
CV method is used to estimate the optimal bandwidth value. In terms of RK, the

Tukey-Hannings kernel is used, given by:
K (u) = sin? (g(l — u)2>

Barndorff-Nielsen et al. (2008) show the superiority of this kernel compared to other ker-
nel functions, and this kernel is also utilised in the simulation studies of Barndorff-Nielsen
et al. (2008) and Podolskij et al. (2009). For RV and TSRV, we specify intraday returns
based on 10-minute intervals. In the model LPR®, the noise variance is approximated
by (4.10).

Hansen and Lunde (2006) explore the annual mean noise variance for 30 stocks
traded in the Dow Jones Industrial Average for the years 2000-2004 using the estimators
presented in subsection (4.3.1). They found that the annual absolute mean value of w?
lies between 0.00001 and 0.02891. In general, values around 0.01 are not observed too
often in their findings, whereas values around 0.0001-0.001 are regarded as normal. The
simulation study of Barndorff-Nielsen et al. (2008) and Podolskij et al. (2009) examine
their estimator for noise variance values w? = 0.01,0.001,0.0001 and w? = 0.01,0.001,
respectively.

Table 4.2 reports the performance of the estimators based on these noise variance
values. More specifically, the mean, MSE and variance are computed along with the
median, Median Squared Error (MedSE) and the Squared value of the Median Absolute
Deviation (SMAD). The latter three statistics are also considered because of the very

few extreme values the simulation model produces. As sample size we choose n =
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[256, 1024, 4096, 9216] where the estimators of Barndorfl-Nielsen et al. (2008) and
Podolskij et al. (2009) are also evaluated for similar sample sizes. Indicatively, we notice
2,428 intraday prices, on average, through the data period in our dataset.

In Table 4.2, RK outperforms the rest estimators for all the pairs of w? and n,
followed by TSRV. The performance of MRV only exceeds TSRV for the occasions where
n = 9216. In terms of the LPR-~based methods, they present poor results because much
noise is aggregated in the estimation. Among the two LPR-based measures we have
specified in the simulation study, LPR®) is the estimator which performs better due to
the additional term compared to LPR(M™. In some cases, it can also be considered a
slightly better measure than RV, especially when w? = 0.01. However, it fails to afford
accurate estimates compared to the estimators RK, MRV and TSRV for these w? values.

Nevertheless, noise variance values of size 0.0001-0.01 can be regarded as extremely
high on the daily scale. In the findings of Hansen and Lunde (2006), the noise variance
values converted on the daily scale correspond to values between 3.9E~8 and 9.87E7°.
Table 4.3 summarises the findings of the simulation study where the noise variance takes
values w? = 1E75, w? = 1E7% and w? = 1E~7. For these values, LPR(") exhibits the
best performance across the estimators, followed by RK. More specifically, RK offers
better MedSE values only for the cases where the sample size is 4096 and 9216 for
w? = 1E7°, that is, for the case of high sampling frequency when the noise variance
is large. This is a natural result due to the noise aggregation in LPR(". Overall,
we conclude that LPR™ outperform the rest estimators for common daily w? values,
especially for w? = 1E7% and w? = 1E~7. On the other hand, LPR® has the worst
performance among the measures due to the noise variance subtraction in the third term

of this model.
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w?=0.01 w? =0.001 w? =0.0001
Estimator n Mean MSE Variance Mean MSE Variance Mean MSE Variance
Median MedSE SMAD Median | MedSE | SMAD Median | MedSE | SMAD
9256 -0.09607 1.4583 1.4637 0.0072 | 0.45828 | 0.46285 -0.0229 | 1.3461 1.3592
-0.04006 0.06319 0.06537 0.01796 | 0.05012 | 0.04271 || -0.07668 | 0.05424 | 0.0481
1024 -0.02673 0.5561 0.561 0.04951 | 0.16716 | 0.16638 || -0.13041 | 0.34246 | 0.32875
RK -0.00922 0.04312 0.0431 0.02096 | 0.02472 | 0.02212 || -0.07019 | 0.01523 | 0.01534
4096 0.01991 0.20133 0.20296 0.02831 | 0.06636 | 0.06622 || -0.09177 | 0.12687 | 0.11964
0.00935 0.0136 0.01587 0.00383 | 0.00787 | 0.00787 || -0.02813 | 0.00542 | 0.00486
9216 -0.01883 0.11366 0.11445 0.0292 | 0.05673 | 0.05644 || -0.05439 | 0.06561 | 0.06328
-0.00535 0.00853 0.00955 || -0.00637 | 0.00457 | 0.00421 || -0.01387 | 0.00392 | 0.0049
9256 -0.30498 4.7295 4.6833 0.26961 | 2.9957 2.9525 0.11897 | 10.5163 | 10.6083
-0.15156 0.33715 0.25064 || -0.03647 | 0.25541 | 0.24161 || -0.21123 | 0.3906 | 0.42099
1024 -0.12687 3.8849 3.9079 0.16238 | 2.3185 2.3153 -0.05233 | 2.1913 2.2107
MRV -0.10318 0.12235 0.12721 0.01846 | 0.13631 | 0.12376 || -0.08905 | 0.17595 | 0.1428
4096 0.10263 0.93545 0.93426 0.22401 | 0.74044 | 0.69723 0.05165 | 1.4466 1.4585
-0.02264 0.09443 0.09545 0.05945 | 0.07931 | 0.08256 || -0.01171 | 0.0828 | 0.07746
9216 -0.0651 0.96246 0.9679 -0.02093 | 0.4266 | 0.43047 -0.0946 | 0.51878 | 0.51499
-0.00947 0.04331 0.04004 0.017 0.03016 | 0.03291 || -0.05556 | 0.04489 | 0.05006
9256 -0.70079 3.0186 2.553 -0.43466 | 1.0414 | 0.86108 || -0.45116 | 1.587 1.3974
-0.24367 0.17238 0.11225 || -0.19355 | 0.12292 | 0.06788 || -0.25136 | 0.12801 | 0.08826
1024 -0.33351 1.2499 1.1501 -0.15224 | 0.54848 | 0.53061 || -0.17322 | 1.2913 1.274
TSRV -0.13664 0.08403 0.05927 || -0.08199 | 0.05034 | 0.05377 || -0.12935 | 0.07116 | 0.06853
4096 -0.22897 1.047 1.0046 -0.06669 | 0.47013 | 0.47039 || -0.08622 | 1.3003 1.3059
-0.08375 0.07661 0.06728 || -0.03981 | 0.04863 | 0.03989 || -0.09813 | 0.06503 | 0.05748
9216 -0.22259 1.0309 0.99122 || -0.05514 | 0.46419 | 0.46581 || -0.07402 | 1.2981 1.3057
-0.08043 0.08862 0.07974 || -0.03835 | 0.04201 | 0.03937 || -0.08828 | 0.06518 | 0.05459
9256 -0.00803 4.5191 4.5647 -0.39651 | 1.7863 1.6455 -0.33778 | 1.8127 1.7157
0.52347 0.50794 0.18059 || -0.13129 | 0.07805 | 0.08894 || -0.20002 | 0.0922 | 0.06645
1024 0.50772 2.8464 2.6148 -0.0475 | 0.9692 | 0.97671 || -0.00832 | 1.7655 1.7833
RV 0.72662 0.67085 0.19838 -3e-05 | 0.14005 | 0.14006 || -0.03973 | 0.08225 | 0.0715
4096 0.67445 2.8442 2.4135 0.11778 | 1.0013 | 0.99737 0.11415 | 2.4679 2.4796
0.74973 0.71413 0.18858 0.09185 | 0.13924 | 0.1109 -0.0059 | 0.0976 | 0.09694
9216 0.6214 2.4452 2.0798 0.17557 | 0.98549 | 0.9643 0.11609 | 2.1733 2.1816
0.681 0.67219 0.09781 0.07975 | 0.17295 | 0.1213 -0.00119 | 0.10395 | 0.10392
9256 5.1513 27.3067 0.77852 0.5223 | 0.45366 | 0.18269 || -0.09657 | 0.361 0.35523
5.0541 25.5441 0.19597 0.49485 | 0.25309 | 0.01556 0.0269 | 0.00739 | 0.00632
1024 20.4288 418.8159 1.4957 2.0794 4.4038 | 0.08071 0.16948 | 0.08729 | 0.05915
LPRD 20.3641 414.6978 0.73548 2.0731 4.2976 | 0.01721 0.20036 | 0.04523 | 0.00281
4096 91.5496 | 8387.4111 6.1418 9.1758 | 84.3413 | 0.14671 0.91675 | 0.85524 | 0.01496
91.5041 | 8373.0087 2.5176 9.1927 84.505 | 0.03125 0.92214 | 0.85034 | 0.00203
9216 184.7359 | 34139.9017 | 12.6601 18.3724 | 337.713 | 0.16822 1.8375 3.3841 | 0.00777
185.2634 | 34322.5219 | 6.0815 18.385 338.01 | 0.05745 1.8392 3.3827 | 0.00202
9256 -0.46372 5.6449 5.4847 -0.02866 | 2.1276 2.1483 -0.01034 | 7.446 7.5211
-0.19278 0.33081 0.30497 || -0.07832 | 0.14772 | 0.13178 || -0.14177 | 0.1613 | 0.14506
1024 -0.36693 4.3962 4.3046 0.18523 | 4.2197 4.2277 0.09907 | 8.9608 9.0414
LPR® -0.27913 0.36 0.41941 0.00912 | 0.13946 | 0.13964 || -0.09352 | 0.14531 | 0.12807
4096 -0.30094 5.8976 5.8657 0.20453 | 4.1755 4.1754 0.17582 | 9.0161 9.076
-0.30611 0.58225 0.40806 || -0.01786 | 0.16246 | 0.15891 || -0.07415 | 0.1421 | 0.14047
9216 -0.35637 5.2916 5.2168 0.21246 | 4.2206 4.2176 0.18849 | 9.2651 9.3228
-0.34992 0.98566 0.65487 0.04564 | 0.15094 | 0.14574 || -0.04389 | 0.13154 | 0.13301
Table 4.2: Simulation results based on 100 iteration for all the combinations n =

[256, 1024, 4096, 9216] and w? = [0.01, 0.001, 0.0001].
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w? =0.00001 w? = 0.000001 w? = 0.0000001
Estimator n Mean MSE Variance Mean MSE Variance Mean MSE Variance
Median | MedSE | SMAD Median | MedSE SMAD Median | MedSE SMAD
256 -0.21081 | 1.7896 1.7628 0.23207 | 1.8363 1.8005 -0.04613 | 0.79815 | 0.80406
-0.01964 | 0.0485 | 0.05167 || -0.00301 | 0.03662 | 0.03662 | -0.02211 | 0.03155 | 0.02948
1024 -0.13374 | 0.78666 | 0.77654 0.15193 | 0.43992 | 0.42105 || -0.02685 | 0.24314 | 0.24486
RK -0.0084 | 0.01869 | 0.01952 0.00254 | 0.01132 | 0.01186 || -0.00804 | 0.0145 0.0128
4096 -0.04201 | 0.18799 | 0.18811 0.13432 | 0.34855 | 0.33384 0.0306 | 0.12507 | 0.12539
0.00046 | 0.00528 | 0.00526 0.00712 | 0.00303 | 0.00353 || -0.00702 | 0.01097 | 0.01032
0216 -0.01042 | 0.10928 | 0.11027 0.1149 | 0.29112 | 0.28072 0.02348 | 0.07094 | 0.0711
-0.00059 | 0.00385 | 0.00378 0.00028 | 0.00275 | 0.00278 || -0.00494 | 0.00693 | 0.00613
256 0.04274 | 3.5835 3.6178 -0.06374 | 5.0231 5.0698 -0.43376 | 4.3941 4.2485
-0.09733 | 0.25092 | 0.17018 || -0.02788 | 0.2661 | 0.27169 || -0.13329 | 0.24295 | 0.26648
1024 -0.29997 | 4.5364 4.4913 0.39121 | 10.0716 | 10.0187 0.2936 5.5296 5.4984
MRV -0.0404 | 0.10991 | 0.11862 || -0.05599 | 0.14277 | 0.14273 || -0.02179 | 0.14105 | 0.12742
4096 -0.1471 1.7195 1.715 0.41519 | 2.3835 2.2334 -0.09913 | 1.3136 1.3169
-0.02387 | 0.03275 | 0.03583 0.03625 | 0.04806 | 0.05311 || -0.02023 | 0.04622 | 0.04458
9216 -0.10286 | 1.6158 1.6214 0.23349 | 1.7627 1.7254 -0.07899 | 0.61691 | 0.61684
-0.02261 | 0.03016 0.036 0.00622 | 0.0305 0.0293 -0.025 | 0.02901 | 0.02551
9256 -0.77088 | 4.3063 3.7496 -0.29024 | 1.4288 1.3582 -0.55486 | 1.5728 1.2777
-0.21877 | 0.12757 | 0.10265 || -0.20414 | 0.06554 | 0.05197 || -0.24601 | 0.083 0.07319
1024 -0.41339 | 2.5697 2.423 0.01245 | 1.3089 1.322 -0.24258 | 0.8972 | 0.84682
TSRV -0.09813 | 0.07751 | 0.06233 || -0.07464 | 0.03321 | 0.03373 | -0.08959 | 0.03229 | 0.03229
4096 -0.29548 | 2.0189 1.9511 0.10607 | 1.3787 1.3812 -0.13808 | 0.76376 | 0.75222
-0.06396 | 0.05917 | 0.04949 || -0.04417 | 0.02524 | 0.0275 -0.04469 | 0.03894 | 0.03334
9216 -0.27848 | 1.9563 1.8977 0.11921 | 1.3865 1.3861 -0.12264 | 0.75249 | 0.7449
-0.05644 | 0.05634 | 0.04893 || -0.03656 | 0.02511 | 0.0268 -0.03728 | 0.03981 | 0.03459
256 -0.81056 | 4.9281 4.3143 -0.28792 | 0.87311 | 0.79819 || -0.75585 | 2.2433 1.6889
-0.24826 | 0.1252 | 0.09799 || -0.20334 | 0.06505 | 0.05426 || -0.23532 | 0.10169 | 0.05337
1024 -0.36173 | 2.4943 2.3873 0.16625 | 2.3731 2.3691 -0.25518 | 0.89814 | 0.84144
RV -0.08635 | 0.10521 | 0.1046 -0.00653 | 0.04365 | 0.04127 || -0.13211 | 0.05409 | 0.04634
4096 -0.25364 | 2.0856 2.0417 0.2477 2.2338 2.1943 -0.13096 | 0.94865 | 0.94091
-0.02762 | 0.07411 | 0.07969 || -0.01497 | 0.04346 | 0.04193 || -0.07191 | 0.05865 | 0.04587
9216 -0.24193 | 2.0361 1.9976 0.25688 | 2.2561 2.2122 -0.12621 | 0.93428 | 0.92763
-0.02209 | 0.06112 | 0.07253 0.00834 | 0.04654 | 0.04606 || -0.06916 | 0.06105 | 0.04577
9256 -0.10966 | 0.22138 | 0.21147 0.07411 | 0.24629 | 0.24323 || -0.01145 | 0.14195 | 0.14325
-0.03287 | 0.0158 | 0.01227 || -0.00875 | 0.00616 | 0.00487 | -0.00692 | 0.00715 | 0.00685
1024 0.08122 | 0.09263 | 0.0869 0.05741 | 0.1249 | 0.12284 || -0.02893 | 0.04559 | 0.04521
LPRY 0.02318 | 0.00314 | 0.00313 || -0.00048 | 0.00216 | 0.0022 -0.00841 | 0.00323 | 0.00367
4096 0.09672 | 0.0234 | 0.01419 0.01049 | 0.0149 | 0.01494 || -0.00488 | 0.01803 | 0.01818
0.08847 | 0.00821 | 0.00125 0.01313 | 0.00055 | 0.00043 0.00037 | 0.00052 | 0.00052
9216 0.19365 | 0.05086 | 0.01349 0.01318 | 0.00562 | 0.00551 || -0.00596 | 0.01773 | 0.01788
0.18705 | 0.0366 | 0.00056 0.01625 | 0.00045 | 0.00016 0.00167 | 0.00023 | 0.00024
256 -0.14367 | 2.7056 2.7121 -0.12314 | 1.9141 1.9181 -0.53386 | 3.3052 3.0507
-0.07605 | 0.17483 | 0.16119 || -0.05539 | 0.13788 | 0.11545 || -0.24411 | 0.3439 | 0.21138
1024 -0.05885 | 2.9209 2.9469 0.11333 | 3.7835 3.8088 -0.32285 | 3.3644 3.2931
LPR® -0.0444 | 0.17184 | 0.18732 || -0.03812 | 0.17576 | 0.17184 || -0.19607 | 0.16727 | 0.17357
4096 0.12443 | 2.7556 2.7678 0.14454 | 4.8124 4.8399 -0.26671 | 3.4519 3.4149
0.01637 | 0.15474 | 0.15621 || -0.00738 | 0.18864 | 0.18676 || -0.16257 | 0.17815 | 0.1803
9216 0.13725 | 3.2534 3.2673 0.13382 | 4.7811 4.8113 -0.26752 | 3.3813 3.3432
0.01918 | 0.18856 | 0.18083 || -0.02011 | 0.19734 | 0.19443 || -0.13148 | 0.17036 | 0.19052

Table 4.3: Simulation results based on 100 iteration for all the combinations n =
[256, 1024, 4096, 9216] and w? = [0.00001, 0.000001, 0.0000001].
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4.7 Empirical Application

This section estimates the daily IV of Cleveland-Cliffs Inc. (CLF) and Wells Fargo
& Co. (WFC) over the years 2012-2014. As we have noticed in Table 1.3 and in the
empirical applications of Chapter 3, CLF is the most variable stock. Thus, we expect
that it will exhibit high IV estimates, whilst WFC is a liquid stock generally, with 2,860
observed prices per day, on average.

This application affords a comparative view of the behaviour of our proposed LPR-
based estimator against the estimators RK, TSRV and RV. As we will see later in this
analysis, the daily noise variances of the two stocks need more than six decimals to be
presented as non-zero values. Following the results of the simulation study, our estimator

is considered in the form:

LPR=Y" (rﬁ; (t) - (mARu»)Q) .
=1

We choose the Gaussian kernel function to allocate the weights and the optimal band-
width is chosen via CV. In addition, we consider 10-minute intervals daily for RV and
TSRV, whilst the Parzen kernel function is used in the RK estimator.

Figure 4.3 illustrates the logarithmic value of the daily IV estimates of the afore-
mentioned measures over the trading days. Due to the difference in the size of the IV
estimates for the two stocks, we choose to plot the estimates on different scales so that
one can have a clear view of the estimators’ behaviour. Overall, the IV estimates are
higher for CLF than for WFC. This fact is not surprising because of the high variability
of this stock, reported in Tables 1.3, 1.4 and the empirical applications of Chapter 3.
Beyond that, RV (cyan line) often presents the highest estimates for both CLF and
WEFC, while the estimates of TSRV (green line) are usually lower than the other models’
estimates. On the other hand, the LPR-based and the RK models (given by blue and

red line, respectively) appear to have more comparable performance. As we also see
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in the simulation analysis with noise variances of normal daily size, the MSE and the
median squared error values of LPR and RK are much smaller than the corresponding

values of RV and TSRV.
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Figure 4.3: This figure depicts the logarithmic value of the daily IV estimates of the
LPR-based (blue line), RK (red line), TSRV (green line) and RV (cyan line) estimator
for the stocks CLF and WFC over the trading days of the years 2012-2014.

Furthermore, it would be interesting to estimate the magnitude of the noise vari-
ance for these assets. Figure 4.4 displays the daily noise variance estimates of the two
stocks over the working days of the data period. Again, we plot the estimates on a
different scale for the two stocks in favour of a clearer view. In this figure, the Es-
timators (4.10) and (4.11) are used and they are depicted by cyan and blue colour,
respectively. In the latter estimator, our LPR-based model is used to estimate IV. In
Figure 4.4, the Estimator (4.11) offers less variable estimates of w? than the Estima-
tor (4.10), mainly for CLF. To avoid intricate statements, we use the terms ‘higher’ and
‘lower’ to refer to the absolute value of the estimates in Figure 4.4. This is because
negative values for noise variance are likely to occur due to the subtraction that appears

in the nominator of the Estimators (4.10) and (4.11). This is also the case in the findings
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of Hansen and Lunde (2006).

Concerning WFC, the estimates of (4.10) are higher for the years 2012 and 2013,
whereas the estimates of (4.11) considerably increase within 2014, exceeding the cor-
responding values of (4.10) for the second half of this year. For the Estimator (4.10),
the range of w? values is between -2.2E-06 and 7.4E-07 for CLF, while these values lie
between -9.5E-08 and 2.2E-08 for WFC. As regards the Estimator (4.11), the corre-
sponding values are between -1.1E-07 and 6.9E-08 for CLF and between -3.5E-09 and
3.2E-09 for WFC. Therefore, we can say that the noise variance can take higher values

for CLF compared to WFC.
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Figure 4.4: This figure depicts the daily noise variance estimates of CLF and WFC using
the Estimators (4.10) and (4.11) with cyan and blue line, respectively, over the trading
days of the years 2012-2014.

Besides, we can get insights about the volatility locally using the local elements
of our proposed estimator. Figure 4.5 illustrates the local estimates of our LPR-based
estimator for the two stocks over the first five trading days of 2012. We choose to portray

the estimates on a different scale for the two stocks since they are of different magnitudes.

We observe that the highest estimates are given at the beginning of the trading hours
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for both assets, while CLF has greater estimates at this part of the day. Then, the
estimates of both stocks follow a smoother behaviour in later hours with several distinct
exceptions, mainly for CLF.

CLF is generally a more volatile stock than WFC on these five days. For CLF, the
most volatile time point was observed at the beginning of the trading session of the
second day (red line), whereas the most volatile time point was noticed at the same time
point but on the fifth day for WFC (black line). During the last part of the trading
sessions, we do not see any particular volatile performance for the two stocks on these
five days. Note that each day has a different number of observations, resulting in curves

of different lengths along the z-axis.
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Figure 4.5: This figure depicts the local estimates of the LPR-based estimator over the
first five trading days of 2012.
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4.8 Discussion

We have proposed a new nonparametric estimator of IV based on local polynomial
regression for high-frequency volatility estimation under the irregular design points with
the presence of noise. Although similar ideas of nonparametric estimators have been
around long time, some of them were studied under either the regular design points or
without noise setting. Our estimator can be easily implemented without the need of pre-
processing. The LPR-based method can also be utilised for spot volatility estimation.
The simulation study showed that as the noise variance is of normal daily size, our
proposed approach (discarding the error-correction term) can be considered superior
compared to the benchmark methods based on the MSE and median squared error.
Especially, the advantage of our approach to estimate IV for intermediate and low w?
daily values is evident, no matter the sample size. For these values, our estimator’s
MSE and the median squared error values are always from four to 51 times less than the
corresponding statistic values of the estimator with the second-best performance.

In the empirical analysis, we observed that the LPR-based estimator performs sim-
ilarly to RK regarding the IV estimation across the days. In many cases, RV provides
more extreme values and TSRV remarkably lower estimates than the other measures. In
general, our estimator offers higher estimates for the most variable stock of our dataset
(as found in the exploratory analysis of Chapter 1 and the empirical investigations in
Chapter 3). This is also the case for the other IV measures. In addition, our estimator
can be used as a component for the estimation of the noise variance via the Estima-
tor (4.11). Our investigation also used the Estimator (4.10). The estimator which
incorporates the LPR-based measure to approximate the noise variance usually offers
lower values than the Estimator (4.10), generally. Applying our approach to multiple
days on two stocks, we notice that the highest local estimates occur at the beginning
of the days, followed by a smooth decrease before keeping a constant trend with a few

exceptions.
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Although our estimator shows comparable performance, theoretical analysis suggests
that the effect of constant noise variance could be a problematic factor asymptotically.
One simple approach to remove this effect in our estimator would be to use smoothed
log-prices to calculate the returns. On the other hand, it has been noted that the effect
of noise tends to decrease as the sample size increases (Ait-Sahalia and Yu, 2009), which
suggests an alternative modelling framework where the noise variance is a function of

the sample size.
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Chapter 5

Conditional Dependence

Structure Estimation with

Functional Graphical Models

5.1 Introduction

Dependencies in the data patterns of stocks concern plenty of financial sectors, such as
financial risk management, financial risk analysis and portfolio analysis. Experts, being
aware of these dependencies, are able to construct or modify a portfolio so that they will
minimise the market risk. Market risk refers to the danger of heavy financial losses for
a portfolio when steep fluctuations occur in the market. During these fluctuations, it
is highly probable that dependent stocks will behave similarly, magnifying the portfolio
losses when a sharp downward trend is observed. For this reason, specialists are used to
composing portfolios with independent stocks so that they will offset the possible losses
during an unexpected unfavourable event.

Thus, a correct interpretation of the dependence structure of a set of variables is

crucial for risk management; for example, for protecting investors’ wealth during periods

160



of uncertainty. Graphical models are useful tools in this field since they permit us to
estimate and visualise the conditional dependence structure between stocks. Given a set
of variables, the conditional dependence between two variables expresses the relationship
between these variables when we control the rest of them.

Our particular interest is in the estimation of the stocks’ dependence networks us-
ing high-frequency financial data. A necessary step is the estimation of the variance-
covariance matrix. High-frequency financial data are irregularly spaced noisy observa-
tions and their number differs from stock to stock and across the days. Hence, we can-
not approximate the conventional variance-covariance matrix with standard techniques.
However, we can study this kind of data as functional data defined on a continuous
domain (Ramsay and Silverman, 2005; Ferraty and Vieu, 2006; Horvath and Kokoszka,
2012).

In a functional dataset, every sample point of a variable is given in the form of a
function, as opposed to a scalar or a vector value. Because of the plurality of informa-
tion in their form and the fact that their realisations can follow an arbitrary process,
we cannot treat them as usual time series data. This fact makes a functional dataset
more challenging to handle. Nevertheless, the vast amount of information contributes
to a more accurate approximation of the population features. In general, a conventional
multivariate dataset is of fixed finite dimension, it is defined for discrete time points
and does not include any shared information. On the other hand, functional data are
“intrinsically infinite dimensional” (Wang et al., 2016) and are defined at any point
in the continuous space. Also, they incorporate several special characteristics, such as
common behaviour and common trends over the continuous domain, which differentiate
this dataset from a conventional multivariate one. So, this kind of data includes tremen-
dous information and thus interesting data patterns can be investigated, not directly
observable in a multivariate dataset (Wang et al., 2016).

Smoothing methods and interpolation are valuable tools in this research area (Ullah
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and Finch, 2013). We can exploit the smoothing methods to mitigate the noise size
in the intraday observations and express the variance-covariance matrix in continuous
time. That is, the variance-covariance matrix can be defined for irregularly spaced ob-
servations as opposed to the conventional matrix, which is defined for regularly spaced
time points that do not differ across the variables. Besides, highly dependent variables
might be a problem for determining the conventional variance-covariance matrix since
singularities are likely to occur and hence its inverse matrix could be undefined. On
the other hand, functional data as continuous smooth functions are highly dependent
but we can approximate well its inverse function without removing any points. A con-
ventional variance-covariance matrix is defined for finite points of observation. Even if
the variance-covariance matrix under the functional data context is also determined for
fixed time points, we can specify the points we want to evaluate the variables’ depen-
dence on the continuous time scale, independently of the observation time points. All
of these considerations make the functional graphical analysis preferable for the high-
frequency time series data to the multivariate graphical analysis based on a conventional
variance-covariance matrix.

This chapter assumes that the data come from a multivariate Gaussian stochastic
process, which means that any sample point from the data follows a multivariate normal
distribution. Under this normality setting, the correlation coefficient sufficiently de-
scribes the dependence relationship of a set of variables (Embrechts et al., 2002; Meucci,
2005; Sweeting, 2017). In this case, the graphical model summarises the variables’ con-
ditional correlation, also called partial correlation.

Undoubtedly, one can claim that the normality assumption is a constraining conjec-
ture; for example, Solea and Li (2022). Li and Solea (2018) report the three consequences
we accept by the normality assumption. Namely, statisticians often consider the normal
distribution because it is convenient for the investigation; however, it may be different

in reality. Secondly, this assumption implies that the variables are exclusively connected
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through a linear relationship. Thirdly, this association does not incorporate any ad-
ditional (independent) component, which brings any linear dependence down. Beyond
that, Rachev et al. (2009) mark several reasons why correlation is not an adequate mea-
sure of dependence. The above assertions may seem strong at first sight since the model
does not capture non-linear dependencies, providing a delusive image of the variables’
relationship. However, the assumption that the dataset follows a Gaussian process is
convenient, and Gémez et al. (2020) cite several studies demonstrating that this is not
damaging in practice under the framework of functional graphical models.

Considering the above context, Qiao et al. (2019) developed a methodology for the
prediction of the variables’ dependence structure through the graphical models. In their
approach, the variance-covariance matrix is estimated using the most critical coefficients
in their analysis, as suggested by the functional PCA. Furthermore, they develop an
algorithm for the estimation of the dependence network of the coefficients. As regards
our analysis, it follows the same theoretical environment as Qiao et al. (2019). However,
the methodology for the estimation of the variance-covariance matrix differs. More
specifically, we use the complete dataset to estimate this matrix by taking the cross-
product of each function across the variables, and then we smooth it through a bivariate
LPR. This technique is considered by Yao et al. (2005). Its advantages are that we
exploit the complete data information for the estimation and the variance-covariance
matrix can be defined for irregularly spaced time points. Once the variance-covariance
matrix has been approximated, we adopt the algorithm of Qiao et al. (2019) on this
matrix for the conditional dependence structure estimation. Alternative works in this
area are discussed later in this chapter.

The main contribution of this chapter can be summarised as follows:

1. High-frequency data present diurnal patterns over the days. We exploit their
special characteristics by studying high-frequency data as functional data. Thus,

the curves consist of high-frequency data instead of common daily or monthly time
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series data.

2. Our scope is the estimation of the stocks’ conditional dependence through the
functional graphical LASSO approach. Most of the existing methods eliminate the
dimension of the problem using the best coefficients in the basis function repre-
sentation (conditional dependence of the coefficient vectors). We develop a new

methodology for estimating conditional dependence through functions.

3. We introduce a practical CV-based method for the estimation of the sparsity of
the dependence network. This method approximates the optimal level of sparsity,
that is, which variables appear to be conditionally independent, by examining the

similar patterns of the variance-covariance matrix over different periods.

4. To the best of our knowledge, this is the first work that develops a comprehensive
technique for estimating the dependence structure through graphical models and

using functional data in the field of finance.

This chapter is organised as follows. Section 5.2 discusses the concept of graphical
models, while the idea of graphical models is extended in the context of functional data
in section 5.3. In the same section, we also analyse our proposed methodology for the
estimation of the conditional dependence structure for a set of variables. In section 5.4,
we conduct a simulation study for the proposed approach. In section 5.5, an empirical
analysis is applied to stock data. This work comes to an end with a discussion in

section 5.6.

5.2 Graphical Models

A probabilistic graphical model (or briefly graphical model) expresses the conditional
dependence structure of a set of variables. This structure is given in the form of networks

where each variable, represented as a node, is connected through edges to the variables
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it shares dependence with.

The graphical model is denoted by:

Gg=MWV¢)

where V denotes the graph’s vertices (i.e. the variables) and £ denotes the set of edges,
such that &€ C V x V. The set of edges visualises the conditional dependence observed
in each pair of variables.

There are two types of graphical models, the directed and the undirected graphi-
cal models. The directed graphical models depict the conditional dependence structure
among the variables as well as the variables from which the dependence is driven. How-
ever, we focus on the undirected graphical models in this work. An undirected graphical
model illustrates the dependence network of a number of variables, and the dependent
variables are linked with edges.

A useful term in the context of graphical models is the ‘clique’. A clique defines
the sets of nodes where they are connected to each other through edges. In addition, a
‘maximal clique’ refers to a clique that cannot be extended by including more vertices
in it. To highlight the differences, we portray a graphical model G in Figure 5.1. In this
figure, we include six variables V(G) = (1,2,3,4,5,6) -given as nodes- in graph G and
their conditional dependence structure is given by the edges £(G) = (< 1,2 >,< 1,3 >, <
1,4 >,<2,3>,<24><3,4><4,6>,<5,6>). The first four variables are fully
connected in this graph, showing that these variables share (conditional) dependence.
On the other hand, variable 6 shares conditional dependence with variables 4 and 5;
however, variable 5 is conditionally independent of the rest variables. The subgraphs
EG1) =(<2,3>,<24>,<3,4>),E(G2) =(<1,3><1,4>,<3,4>),&E(G3) =
(<L,2><1,4><24>)and £(Gy) = (< 1,2 >,< 1,3 >,< 2,3 >) form four cliques

since the variables of each subgraph are adjacent to each other. However, these cliques
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cannot be considered maximal cliques since we can summarise the dependence networks
of these four subgraphs in the broader subgraph £(Gs) = (< 1,2 >, < 1,3 >, < 1,4 >
,<2,3>,<2,4>,<3,4>). The subgraph £(G5) forms a maximal clique because it is
a clique itself and cannot be extended by incorporating more variables in it. Moreover,
variable 6 only shares dependence with variable 4 from the variables in subgraph Gs and
thus is left outside the maximal clique determination. For the same reasons, variables
4, 6 and 5, 6 form two cliques which, at the same time, are maximal cliques because we
cannot extend these cliques by including more variables into them. Therefore, these two

maximal cliques are given by the edges £(Gg) = (< 4,6 >) and £(G7) = (< 5,6 >).

3

Figure 5.1: An illustrative example of a graphical model with six variables.

By understanding the variables’ conditional dependence structure, we can express
their joint distribution utilising their conditional distributions (Gémez et al., 2020). In
this way, we reduce the problem’s dimensionality, facilitating our analysis. In the case

of undirected graphical models, the joint distribution satisfies the following;:

1
P(X1, Xs, 0 Xp) = — I ve(xe) (5.1)
ceC(G)

where ¢ stands for the cliques, C(G) denotes the set of all the maximal cliques in the
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graph G = (V, £), 1. represents a non-negative function related to the cliques and Z is

called partition function and is given by:

Z = Z H @Z)c(Xc)'

X1,X2,....Xp ceC(G)

Hence, the graphical model gives the means to decompose and visualise the condi-
tional dependencies arising in the joint distribution of p variables (X1, X, ..., X}) so we
can utilise it for the determination of the joint probability in Equation (5.1). Indicatively,

the joint probability in Figure 5.1 is given by:

1
(X1, X0, X3, Xy, X5, X¢) = §¢1,273,4($17$2,$3,904)1#4,6(9647966)1#5,6(9357%6)

and the variables’ conditional independence structure in this figure is:

11 5[2,3,4,6 2 1 51,3,4,6 31 5|1,2,4,6
11 6/2,3,4,5 2 1 6|1,3,4,5 31 6|1,2,4,6
41 5|1,2,3,6.

The question now is centred on how we can estimate the conditional dependence
network of the p variables. This can be done using the graphical LASSO approach
outlined in the following subsection. In this work, we assume that the observations
stem from a joint Gaussian distribution, and thus we focus on the linear conditional

dependence, also known as partial correlation.

5.2.1 Graphical LASSO Approach

The Graphical LASSO (GLASSO) approach was developed by Friedman et al. (2008),
and it makes use of the concept of LASSO (Tibshirani, 1996). In a nutshell, assuming the

linear regression model the scope of the LASSO (the initials of the letters Least Absolute
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Shrinkage and Selection Operator) approach is to eliminate the explanatory variables
which have a relatively small impact on the response variable using a penalty term in
favour of a problem simplification. LASSO is a popular technique in sparsity modelling.
In statistics, the latter term refers to the procedure where we identify and discard the
parameters of low importance in the model to facilitate the model interpretation. One
can refer to Hastie et al. (2015) for more details about LASSO and its generalisations.
Relative to LASSO, the target of GLASSO is to shrink small conditional dependencies
between the variables to zero, utilising a penalty term. Supposing that the variables come
from a Gaussian distribution, then it is known that the variance-covariance matrix X

expresses the dependence between a set of variables, where:

Ejle =0 le A Xj2

for two variables j; and jo. Our purpose via GLASSO is the estimation of the precision
matrix ©. The © matrix is defined as © = ¥ ~! and gives the partial correlation between

the variables. This means that when:

@j1j2 =0& le A Xj2|ij1j2~

By this method, we are able to visualise the (linear) conditional dependence structure

between the variables, where the conditionally uncorrelated variables correspond to zero
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elements in the © matrix. For instance, in Figure 5.1 the © matrix would be of the form:

NZ NZ NZ NZ 0 0
NZ NZ NZ NZ O 0
NZ NZ NZ NZ 0 0
NZ NZ NZ NZ 0 NZ

0 0 0 0 NZ NZ

0 0 0 NZ NZ NZ

where the acronym N Z shows the non-zero elements of the © matrix.
Suppose a p-dimensional vector X, such that X ~ N(0,Y), then the corresponding
multivariate Gaussian PDF is given by:

e{—%xTﬁflm}

(27)P/2 det(X)1/2

flz) = x e{=2%707} qet(9)1/2 (5.2)

where ¥ = E[X X 7] is the non-negative definite variance-covariance matrix, © denotes
the precision matrix such that © = £ ~!, assuming that ©~! exists, and the notation
‘det’ refers to the determinant of the particular matrix.

The maximum likelihood is a popular method for estimating the optimal ©. To do
so, we have to calculate the log-likelihood function. Assuming n IID samples x;, the

log-likelihood function is given by:

L(®) = :Lilog flxy) = %log (det(@)) - % iaz?@mz
=1 =1

x log (det(@)) —tr(50)

where S = %Z?Zl mzchT is the sample variance-covariance matrix and the notation ‘tr’
refers to the trace of the particular matrix. The derivation of the above quantity is given

in appendix E.2. Then, the optimal © matrix is given by maximising the penalised log-
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likelihood function based on a ¢1-norm (see appendix E.1) penalty:
R P
6 = arg max (log (det(e)) ~ tr(S0) — /\Z; H@jHl) (5.3)
]:

where ©; is the j-th column-vector of the © matrix and A stands for the non-negative
tuning parameter which determines the magnitude of the penalty term. The basic esti-
mation methods for the tuning parameter are outlined in section 5.2.2. In appendix E.2,
we show that Equation (5.3) describes a convex optimisation problem and the optimal

© parameter is given by solving the gradient equation:
W =8 = A = 0pxp (5.4)

where W = ©71, assuming that © 7! is defined. In terms of I, we explain in appendix E.2

that it satisfies:

;

=1, if@ij>0

Iiyj: Qe [-1,1], if ©;; =0

= -1, if @ij <0

\

where the subscripts ¢ and j specify the elements of the I' and © matrices.
The matrices W, S and I' are of size p X p and they have the following block-matrix

structure:

Wit wia S11 s12 i 7o
|/|/ = 75 = 71—‘ =
T T T
wy,  Waa S51 S22 Va1 To2

where Wiy, S11, I'11 are matrices of size (p—1) X (p—1), w12, S12, Y12 are vectors of size
(p—1) x 1 and Way, Soo, I'yy are scalars. Equation (5.4) can be blockwisely optimised
using standard mathematical operations on the blockwise inversion of a matrix. This

is the logic behind a popular technique developed by Friedman et al. (2008) for the
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optimisation of Equation (5.4). Briefly, the GLASSO algorithm of Friedman et al. (2008)
optimises Equation (5.4) with respect to each row/column-vector of W (and hence of
O, since ©~! = W) through an iterative procedure until convergence. In Figure 5.2,
we graphically represent how this algorithm operates to optimise the j-th row/column-
vector of the matrix W for j = 1, ...,4. Also, the exact algorithm’s steps are summarised
in ALGORITHM 5 in appendix E.2.1, given the tuning parameter A\. The efficiency of
this algorithm depends on the assumption that p < n. A crucial step in constructing an
accurate dependence network is the estimation of the optimal tuning parameter value.

This topic is overviewed in the following section.

Wi . Wiz Wi Wip Wiz 1 Wiy Wi Wiz Wig

Waz Waz Waa e ° Wa1 Wiz 1 Way Wa1  Waz  Was

W3z Wizz  Way Wsa1 . Wszz Wsy ] Ws1  Wsa  Was

Wao Wiz  Waa War 1 Wiz Wy Wy Wiz 0 Wy e e R

Figure 5.2: This figure visualises the iterative optimisation process applied to the row/-
column vector of the W matrix until convergence. This example considers four variables.

5.2.2 Tuning Parameter Estimation in Graphical LASSO

Ultimately, the tuning parameter \ determines the size of the penalty. For a relatively
high value of ), the essential conditional dependencies are considered as independent
cases. On the other hand, the model considers more than the necessary conditional
dependencies for a relatively low value of A\. Hence, we require a tuning parameter that
reveals merely the critical dependencies.

The tuning parameter in GLASSO can be estimated using several methods and CV

is one of them. The scope of CV is the estimation of that Ag, for £k = 1,..., K, which
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minimises the prediction error over the groups g:

PE,(\) = tr(S(test)é()\k)> —log (det ((:)()\k))>

based on the train and the test data where g = 1,...,G. The equation of the prediction
error above is derived from the Formula (5.3).
Alternative ways to estimate the tuning parameter are through the AIC and BIC

score functions:

AIC(\) = —2L (@()\k)> + 2df (Ar.),

BIC(\,) = —2L<(:)()\k)> + log(n)df (\r)

where ]L((:)(/\k)) indicates the log-likelihood function of © evaluated at the estimates,

given A, df (Ag) refers to the number of non-zero elements in the upper diagonal of the

@)(Ak) matrix and n refers to the number of observations. In the framework of GLASSO,

the CV and BIC methods are studied by Lafit et al. (2019) along with a great deal of
log(p)

alternative approaches. Hastie et al. (2015) uses =2 —= where p indicates the

number of variables and n stands for the number of observations.

5.3 Functional Graphical Models

This section deals with the estimation of the variables’ dependence structure when
the dataset is of functional nature (Ramsay and Silverman, 2005; Ferraty and Vieu, 2006;
Horvath and Kokoszka, 2012). The latter term refers to a set of variables where each
observation is given as a curve instead of scalar values. In particular, we assume that
the dataset is given by the p-dimensional variable Y, for the day d = 1,..., D, where
Yy = Y145 Yjd, - Yp,a). Further, we assume that each variable Yj 4 is expressed in

the form of curves. In this work, we assume that the dataset follows a noisy Gaussian

172



stochastic process.

Similar to the non-functional case, the variance-covariance matrix is directly related
to the precision matrix, which defines the variables’ conditional dependence structure.
Qiao et al. (2019) develop a theoretical framework and methodology for estimating the
precision matrix in the functional domain via the graphical models. Their work will be
a guideline regarding the development of our approach. The methodology for defining
the variance-covariance matrix is a distinctive feature between the two studies.

In their work, they reduce the dimension of the dataset by conducting a PCA un-
der the functional regime. For the approximation of the variance-covariance matrix,
they use the most critical curve coefficients instead of the data themselves. After that,
they develop an algorithm for the prediction of the dependence network by solving the
GLASSO optimisation function in (5.3) under relevant changes in the functional environ-
ment. Consequently, we can infer the conditional independence between the coefficient’s
vectors, not the underlying functions.

On the other hand, we estimate the variance-covariance matrix using all the covari-
ance functions across the variables. We conduct a bivariate LPR to smooth the above
matrix, allowing the matrix to keep its continuous characteristics. Then, we approx-
imate the precision matrix using the algorithm suggested by Qiao et al. (2019). Our
methodology exploits the full dataset to estimate the variables’ conditional dependence
structure as opposed to the methodology of Qiao et al. (2019) which only utilises the
most essential coefficients of the functions. Thus, we expect that more information about
the interdependencies will be incorporated into the estimation in our methodology, re-
sulting in safer conclusions. Under the theoretical context of Qiao et al. (2019), Zapata
et al. (2022) define the functional covariance function by considering a new structural
form of the eigendecomposition.

Other relevant studies in the context of inference about the functional variables’

dependence networks and under Gaussian settings are outlined below. Gdémez et al.
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(2020) deal with the concept of directed graphical models. They study two case scenarios
when the structure of the model is known and when it is not. In the second case, they
propose an algorithm which targets to minimise a loss function which is composed of a
group-LASSO penalty (see Yuan and Lin (2006) for this technique) and a fo-norm (see
appendix E.1) penalty in the estimation procedure. Applying both penalties results in
better dependence estimates when multiple variables drive the patterns of a variable.
By the normality assumption, the predicted network corresponds to the partial corre-
lation between the variables. Li and Solea (2018) relax this assumption to the non-linear
and heteroscedastic case by considering the concept of additive conditional independence,
developed by Li et al. (2014a). Later, Solea and Li (2022) estimate the most important
functions’ coefficients and they model the chosen coefficients through the Gaussian cop-
ula model (see Joe (2014) for this concept) to define the variables’ dependence network,
which technique also goes beyond the simple correlation structure. On the other hand,
the studies of Zhu et al. (2016) and Lunagmez et al. (2021) deal with the concept of

graphical models under Bayesian statistical assumptions.

5.3.1 Notation for Functional Variables

Standard functional data analysis considers a random curve as an element of L? space
(Bosq, 2000; Horvath and Kokoszka, 2012). For a functional variable X = {X (¢),t € Z =
[0,1]} with E||X]|?> = E[fol X2(t) dt] < oo, we write the mean and covariance functions

as:

u(t) =E[X(1)], (s,t) = Cov (X(s),X(t)> ,

and Var[X(t)] = ¢(t,t) for t € Z. We assume that the mean and covariance functions

are continuous. If we evaluate at finite grid points 71, ..., 7y, we write the corresponding
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covariance matrix as:

C(Tl,Tl) e C(Tl,TJ)

c(ry,m) ... c(r5,77)
and simply refer to functional covariance matrix.
Similarly, for a multivariate functional data X = (X1,...,X,) = {(Xl(t), ce Xp(t)),
t € [0, 1]} with E[fol X3(t)dt] < o0,j = 1,...,p, the mean for each variable and the

(cross-)covariance between a pair of variables are defined as:

wi(t) = ELXG (0], ey (s:1) = Cov (X, (), X (1))

where ji # j2, so the covariance function for the j-th variable is C'ov (Xj(s),Xj (t)) =

¢jj(s,t). The corresponding functional variance-covariance matrix with evaluation at

finite grid points at 71, ..., 7y has a block-matrix structure:
0(171) e C(Lp)
C— . ) .
Con - Cop)
where C(;, i), j1,J2 = 1,...,p, is the J X J cross-covariance function evaluated at finite

grid points.

For D realizations of X denoted by X1,...,Xp, Xg = (X1,4,...,Xp,d) represents a
p-dimensional functional variable. An additive noisy functional data can be expressed
as:

}/},d:Xj,d_'_Ej,dv j=1....p;d=1,...,D

where F; 4 has mean zero and finite variance. In addition, if the data are only available

at finite incidents, we can express as Yj 4(t;) for i =1,...,n;4.
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5.3.2 Estimation of Functional Covariance Function

For the estimation of the conditional dependence structure, our first step is the es-
timation of the functional variance-covariance matrix since the approximation of the
dependence network is based on the analysis of this matrix. For this reason, an ac-
curate estimation would be essential. However, due to the specific traits of a dataset
of functional nature, standard methods for time series data would result in mistaken
matrix estimates. To approximate the variance-covariance matrix using functional data
with irregularly sampled observations, we adopt the methodology proposed by Yao et al.
(2005). This methodology was developed for one-dimensional functional data but can
be easily extended to multivariate functional data as we consider here.

We assume that the i-th intraday observation of the j variable on the d day, Yj 4(t;),
can be expressed as a function of its corresponding true value X; 4(¢;) and an error term
Eja(ti):

Yja(ti) = Xja(ti) + Eja(t:) (5.5)

for j = 1,...,p, d = 1,..., D where p denotes the number of variables, D indicates
the number of days and ¢ = 1,...,nj4. The number of observations, n, can vary over
the variable j and the day d. We further consider that the error terms are IID, with

2

mean zero and finite variance w®. In addition, we assume that the error processes are

independent of the latent process X.

The covariance function for the variables j; and jo over the day d is given for:
Cov(Yisaltin), Visa(tis)) = B | (Vialtis) = tjsatin) ) (Viealtia) = izaltia) )| (5:6)

where Mjl,d(til) = E[Y}l,d(til)] and ,u,j27d(ti2) = E[}/}g,d(tig)]a fOI‘ jl,jg = 1,... , P, d =
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1,...,D,i1=1,...,n5 gand 12 = 1,...,nj, 4. It is shown in appendix E.3 that:

Var[Xj, q(ti,)] +w?,  if j1 = jo and i = iy
Cov (Yrjl,d(til )7 Yr]'Q,d(tiQ )> - .
Cov (le,d(t’il)u ij,d(tiz )) , otherwise

For the development of our methodology, we make the following assumption.

Assumption 5.3.1 The covariance function of X, does not depend on the days d but

on the stocks.

Assumption 5.3.1 considers a covariance function that does not vary much over the days
(not time-dependent across days) but depends on the stocks. Therefore, we can pool all
data and estimate the common covariance function across the days. If we are interested
in time-dynamics we could apply the same methodology pooling the data over a shorter
period of time and update the estimate regularly.

Regarding the covariance function estimation, the component 115 4(t;) of Equation (5.6)
can be estimated through the LPR, as discussed in section 4.2. Hence, an estimator of
the covariance function over the day d can be constructed using the pseudo-data of the

cross-product of the residuals:

‘/}1,j2,d(ti1vti2) = <Yj1,d(ti1) - Iu’/j:d(til)) (Yj%d(tiz) - Iu/j;d(tlé)) . (5'7)
This is justified because:

E[W1,j2,d(ti1’ti2)] + w27 if j1 = jo and i1 =i
COU(le,d(til)aXjQ,d(ti2)> ~
EV}, jo,a(tiy tis)], otherwise .

The LPR technique can be utilised on the elements in (5.7) for the approximation of
E[V}, jo.d]- As opposed to Chapter 4 where we discuss the notion of LPR for a single vari-

able, we now need to define the LPR in the bivariate space. The detailed methodology
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of the bivariate local linear smoother is summarised later in section 5.3.3.
In particular, on the basis of Assumption 5.3.1, we follow the next steps in order to
estimate the functional covariance matrix. For two variables j1, jo we pool the pseudo-

data of (5.7) for all D days into:

Viige = |Viijad = thjmd le,ij

where YN/jm-Q is a vector such that ‘7j1,j2 € RY where N = ZdD:1 Nj, d Nj, 4- This consti-
tutes the response variable Y in (5.11) as a function of two coordinates (¢;,,;,). Then,
we smooth ‘N/jm using the bivariate LPR for some pairs of evaluation points in the
two-dimensional space.

In Chapter 4, the point approximation took place utilising as evaluation points the
observation times. However, this is not a limitation and we can specify the time points
we want to approximate our regression function. Considering the spatially random time
points of our financial dataset, we choose to evaluate the above function at J specified
points via the bivariate LPR method in favour of the analysis facilitation. Based on our
high-frequency framework, we can use as evaluation points the grid points of J intraday
intervals. This corresponds to the points from 7 = 1/J to 7; = 1 with step 1/J for
every pair of variables. Under the new notational specification, the subscript ¢ in the
observation times ¢; is replaced by r for the evaluation times 7, such that r=1,...,J.

When j; # jo, an estimate of the functional covariance function for these two vari-

ables at the evaluation grid points is given by:

Ciga(T1T1) G (T, m2) -+ Gy g (T1,7)

~ Cirga (T2, 1) Cjr (T2, m2) o Gy ga(T2,T)

Clirgz) = (5.8)
@(T%Tl) @(TJvTZ) @(TJ,T])
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where ¢}, ;, (7, Tr,) denotes the smoothed cross-product at time points (7, 7,) for
r1, 7o = 1,..., J. Hence, é(jl,jz) is a matrix such that C*(jm) e R/*J,
Putting all the estimates of the functional covariance functions in the same matrix

offers the estimate of the functional variance-covariance matrix as follows:

~ ~ ~

Can Caz - Cup

| c C . O

& @1) (32) @2) (5.9)
Cony Cu2 - Cop

where C € R/P*JP. However, the diagonal elements of the above matrix include addi-

tional error. The way to eliminate this error is explained below.

Noise Elimination in the Functional Variance-Covariance Matrix

In the case where j; = jo, the diagonal elements (variances) of the Matrix (5.8)
contaminated by measurement error, as shown in appendix E.3. This noise is equal
to the errors’ variance and this subsection describes the steps we follow to remove this
noise, as suggested by Yao et al. (2005).

Once we have estimated the Matrix (5.8) for j3 = jo = j, we collect the diagonal

elements of this matrix in a new vector B:

B=[¢jj(ri,m1) ¢j(T2,7m2) - € i(77,77)]

where B € RJJF and we replace the elements of the main diagonal in the estimated
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functional covariance matrix by zero, obtaining:

! Cij(Tme) - &(T, )
_ ¢ (T2,71) 0 e G Ty)
Cig) =
C/]'\J(TJaTl) C/j\,j(TJ,TQ) 0

We collect the cross-product of the residuals in Equation (5.7) which refer to the
same observation times (t;, = t;, = t;) over the D days for the variable j in the following

vector:

Q= [Vjj1(ti,ti) -+ Vijats, ti) -+ Vijp(tits)]

where Vj ; 4(ti, t;) = (de(ti) - @(ti)>2, ford=1,..,D and ¢ = 1,...,nj4. Then, we
apply a (univariate) LPR on the @ vector using as evaluation points the same points
we smoothed the Matrix (5.8); i.e. 71 = 1/J to 77 = 1 with step 1/J. We illustrate the
smoothed values of ) by @

An estimator of w? can be expressed by:

2 = /t<@(t) ~B())d

and w? can be approximated by:

1 [3J/4]

BT (Q(m) - B(m)).

r=|J/4]

w? =

where we set ;5 =0, if ;5 < 0. For the estimation of w?, we ignore the elements
placed at the beginning and the end of the vectors Q(7) and B(r) in order to avoid
the boundary effects. Generally, when the weight allocation takes place for the point
approximation close to the boundary, the weighting scheme is applied to insufficient and

spatially random -in time- observations, affecting the accuracy of the estimation at these
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points. For example, when the understudy point is the first observation, the weighting
scheme will consider only the later observation for the point approximation, reducing
the length of the local neighbourhood by one-half.

Consequently, when j; = jo = j an estimate of the functional covariance matrix is

given by:
@(Tl)—uﬂ Gii(m,m) o ¢i(m,7s)
A~ C/j\:j(TQaTl) @(7'2) — w2 ... C/j\,j(7-277_J)
Clig) = 510
Girrnm)  Gy(rnm) - Qry) — w?

Hence, the complete estimate of the functional variance-covariance matrix is given by

replacing every diagonal element in (5.9) by (5.10), for each j =1,...,p.

5.3.3 Bivariate LPR

This subsection discusses the smoothing approach through LPR when two variables
are considered in the local linear regression. Similar to the univariate LPR, the purpose
of this technique is the estimation of the conditional mean function m(x) = E[Y|X = z]

of the response variable Y:

where X; = (X4, X2;) and m(X) is now a function of two variables x = (z1, z2), 0(X)
is the conditional volatility of Y, given the covariates X = x, and € indicates the error
terms.
For given points z, the estimation of the optimal coefficients is provided by minimis-
ing the following:
N

2
Z (Yz — Bo — Bi(X1,; — 1) — Ba( KXo — 962)) Kpy (X1 — 1) - Kpy (X2 — 22) (5.12)

i=1
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with respect to coefficient 8, = (8o, 51, 82)7 where:

om(x)
8561

om(x) '

/60 = m(x), ﬂl = ax2

B2 =

In Formula (5.12), K}, indicates the kernel function and h stands for the bandwidth,

such that A > 0. The estimation of the coefficients at given points z is provided by:
Bg = (XgWQXE)ingWQY”

where X, = [1| X1 — 21| X2 — x2] is the N x 3 design matrix, W is the N x N matrix of
kernel weights and Y is the response vector.

When applying to the problem of estimating the functional covariance matrix, the
estimation of the coefficients is given at the evaluation points 79 = (7, 7, ). In this case,
the matrix X;, contains a vector of ones in the first column. The second column of this
matrix contains the distance of the observed time points of the variable j; over the D
days from the evaluation time point 77. Similarly, the third column contains the distance
of the observed time points of the variable jy over the D days from the evaluation time
point 75. We need to place the observed time points so that all possible combinations of
the time points and the evaluation points for the two variables have been considered in
the last two columns.

On the other hand, the Y vector contains the pseudo-data of the cross-product of the
residuals (see Formula (5.7)), taken in respective order to correspond to the elements of
the matrix X,. Figure 5.3.3 shows the form of the X, matrix and the Y vector. In

this figure, the general notation tl(j @) refers to the i-th time point of the variable j for
the day d, such that ¢ = 1,...,m;4, j=1,...,pand d = 1,...,D. In notation ¢;, the
superscript (j,d) is added compared to the standard notation in Equation (5.5). This
happens for illustrative purposes, so we can discriminate the variable and the day the

time points refer to. Besides, 7 denotes the points we want to evaluate our function for
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r=1,...,J.

As regards the kernel weights matrix W, it is provided by:

wé?}l’rl)(t )Aw(hz Tz)(t ) 0

— (h1,7m1) (ho,r9)
W, = wi 1 () w27 (1)

wh1:r1) wh2:r2)
0 Wi D (tn]l a) WiyiD (tn]-%d)

where each weight component can be represented in the general form wj(hd )(ti) =
Kh(tgj’d) — 1), for a bandwidth h. The notations hi, i; and r; show that the these
elements refer to the variable j; in W,,. Analogous notation holds when the elements
refer to the variable j». In W, we have considered that the two variables’ weight
components are independent for simplicity.

By mathematical matrix calculations (similar to those given in appendix D.1), the

estimation of the coefficients at 79 = (7,7, ) in the linear smoother are given for:

(s385 — si)uo + (5284 — $185)u1 + (5154 — S283)u2

fo = 505385 + 2(515284) — 8083 — S355 — 3 * S3
5 = (s254 — s155)u0 + (s0s5 — s3)u1 + (s152 — S054)ug
= 2

505385 + 2(515254) — 8083 — s355 — 83 * S3

5 (s154 — s283)ug + (5152 — s084)u1 + (083 — 57)ug

o = 2 2 2

508355 + 2(815254) — S0S3 — 7155 — S5 % S3

where

D "jy,dMjg,d

hlﬂ”l (h2,T2)
o= > Y wii M (t) wpi (t),
d=111=1 i2=1
D "j1,d g,d

hlﬂ“l (h2,r2) (41,d)
51 = E E E W d Z1 "W, 1 (tiQ) ’ (til - 7-7“1)’
d=11i1=1 i2=1

D "j1,djg,d

h’ ? h El j ,d
52 = Z Z Z Jl 1drl t“ ’ ](2,21T2)(ti2) : (tgl ) - 7}2),

d=1i1=1 is=1
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1 tgjl’ ) _ Try tgp’ ) _ Try ‘/j17j2,1(t17t1)
1 tg]hl) — Ty tng’l) — Ty ‘Glan?l(t:L? t2)
1,1 j2,1
1 tg‘h ) — 7—71 tgijji,l) - 7_7-2
(41,1) (42,1) le’j%l(tl’tnjz’l)
1t Tr b Try Vi, ipi(ta,t1)
1 t(]lal) —_T t(]271) — T ]17]2’1 2
2 T1 2 ' T2 ‘Gl,jz,l(t27 tz)
Gil) (j2,1) ,
1 tQ —Try t”j2,1 — Try ‘/}l’j271(t2’ tnj?’l)
1,1 j2,1
1 tggjll 1) —Try t(lm )~ Try ‘/}1,]'271(75%1,1:751)
1 tgzjjlf,l) = Try té”’ )~ Try Virgad (tnyy 10 t2)
1 t'l(’ij‘;llill) — Trl t'gl]]z’,ll) - TTQ -‘/‘vjl ,j271(tnj1,1 ’ tan’l)
1 tgjhz) - t(32,2) - Vj17j2,2(t17 tl)
1 2
Vi i o(t,t
G o t§j2,2) . ]1=J2»2'( 1,12)
Xrp = : Y=
,2 ,2
1 tgjl 2) - 7—7‘1 tg]zg) - TT2 ‘Gl,jQ,Q(tl? tnj2,2)
1 t(]l: ) 7—1”1 t(jQ’ ) _ TTQ ‘/j17j2,2(t27t1)
1 tgjlr ) _ TT‘l té]% ) _ TT‘Z ‘/‘vjlvj272(t27 tz)
L, Vil )
1 “;ﬁ ’jQ’Q(inh’wil)
1 tq(ﬂijjll’z) T tgjg,z) — Ty J1,J272('nj1,27 2)
. (J'172). (j2,2) %1,j272 (t”jlﬂz ’ t”j2’2)
1 g s —Tri tij,o — Tro :
. (j ,D). (4 ,D)'
1 tnjllg T t1.2 D —Tr2 le’jQ’D(tnjLD’tl)
1 t7(7‘/7j11’,D) - TT1 t(j% ) - TTQ ‘/}1’.7'27D(tn]'17D7t2)
i D
1 tgz]jll’g) - Try t%’,p) — Try le,jz,D(tnn,D’t”ﬂ'z’D)

Figure 5.3: A visual representation of the matrix X, and the vector Y in the bivariate
local linear regression.
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D "j1,d Tg,d

hw‘l (h2,m2) (41,4) 2
= >0 D wid () iy () - (7Y = 1),
d=11i1=1 i2=1

D "j1,d%g,d

h ? h ’ j 7d ,d
sa= 303 Dot () i () - (0 1) (0 ),
d=111=1 i2=1

D "j1.,d%jg,d

h1,7"1 (h2,r2) (j1,d) 2
=33 Y ) - wl T ) - (Y = 7,
d=11i1=1 i2=1
D "jp,d g,d

hlﬂ”l (ha,r2)
uo = E E E W d 11 "Wia (tiy) - le,jzd(tiutiz)?
d=1 Z1 1 7,2 1
D Mjy,dNa,d

(ha, ho, i,d
=000 D Wl ) w3 (b)) - (B = ) - Vi et i),
d=11i1=1 i2=1

D "j1,d%g,d

(ha, ha, i,d
Z Z Z w;, 1d7’1 11 ’ w]('2?1T2)(ti2) ’ (tgl ) — 7-7"2) ’ thjz,d(tilatiz)

d=1i1=1 ia=1

where 1,70 = 1,...,J, for given variables ji, jo and bandwidths hi, ha. However, only

the By estimation concerns this study.

Bandwidth Selection in Bivariate LPR

The CV approach is conducted to estimate the optimal bandwidth in the bivariate
case of LPR. Our scope is to find the bandwidth value which minimises the average
prediction error based on a grid of bandwidth values. This method follows the same
logic as that presented in the univariate case of section 4.2.2, and ALGORITHM 2

provides the full steps.

5.3.4 Estimation of the Inverse of the Variance-Covariance Matrix

For functional variables, the inverse of the covariance function is not well defined.
We explain how this is estimated based on functional principal component analysis, the

basis of which is Mercer’s Lemma (Bosq, 2000; Horvath and Kokoszka, 2012).

Lemma 5.3.1 (Mercer’s lemma) Let ¢ be a covariance function continuous over [0,1]%.
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Algorithm 2 k-fold Cross-Validation for Bandwidth Estimation in Bivariate LPR
1 SPGCify [hmzny hmam];
e Divide our dataset into G groups;
for hy, where £k =1,..., K do:
for group g, where ¢ =1, ..., G, do:

e Remove group g from Xi, X5, Y (test data) and keep the rest (train data);
(test)
2 9

Specify as evaluation points the observation times tgteSt) and t
of the test data of X7 and X», respectively
Estimate the regression function using the understudy hg,
the train data and the specified evaluation points
e Calculate the Prediction Error:

2
PEg()\k) = mean<<y(t68t) — m(_g)) >’

end for
e Calculate the mean error for the given hy by:

G
1
OV = £ PE, ()
g=1

end for
e The optimal bandwidth is chosen through:

hov = arg min CV(hy).
k

Then there exists a sequence ()32, of continuous functions and a decreasing sequence

(Ae)2, of positive numbers such that:
1
/ o(s,e(s) ds = Mtby(t), t€[0,1], £>1, (5.13)
0

and

1
/ Vo(s)p(s)ds =S 0,0 > 1.
0
Moreover,

C(Sa t) = Z )\Z@Z)Z(S)@Z}E(t) NS [07 1] )

(=1

186



where the series converges uniformly on [0,1]2; hence:

Z)\g / (t,t)dt < oo.

The pair (Ag, 1)) are the eigenvalues and the eigenfunctions of the covariance operator
C, defined by:
Clx) =E[X — p,z)(X —p)], =z €L

By Mercer’s lemma, one obtains the decomposition:
ZM o)y, we L.

The eigendecomposition of ¢ implies that the inverse operator C~! which satisfies C~1C(z) =

x may be defined as:

=D Ny e, ye L

/=1

However, the inverse does not exist for all 4y € L? and the sum converges only if:

Ic (y)|1? = ZA

Instead, one can define a pseudo-inverse. Suppose that A\; > Ao > ... > A > 0 and

define: .
Crl W) =Y Ny e

1

~
Il

The operator Czl is defined on the whole of L?. The sample counterpart of this pseudo-

inverse is defined by:

— L
Cry) =D Ny e (5.14)
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where Xg, @g are the estimated eigenvalues and eigenfunctions of the empirical covariance
operator C. The same principle applies to both scalar and vector-valued functional
variables.

In order to compute the eigenvalues and eigenfunctions of C, we use the corresponding
empirical covariance function ¢. Section 5.3.2 explains how to obtain the empirical covari-
ance function ¢ and the corresponding matrix C evaluated at finite grids t1,...,t; € [0,1]
with A =t; —t;_1. In order to find the eigenvalues and eigenfunctions, we need to solve
the Integral Equation (5.13) with ¢. Let ¢ = (@b(tl), cee @b(tj))T be the vector of the
evaluation of the function at the finite grids. The integral equation can be approximated
by:

Cpe = My, b/ WA =0

Define ’IZ[ = A2, Tt follows that:
Cpo = A, ) O = o

where Xz = M¢/A. Thus, it is sufficient to compute the eigenvalues and eigenvectors

(Xz, 1,7@) of the matrix C. Then, we can obtain:

o= A2 N=AN, (>1.

~

Let Xl > /):2 > ... > Mg > 0 be the positive eigenvalues. From (5.14), the corresponding

element of the inverse matrix C~! is estimated by:

L
il t) = A )
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The determinant of C is computed by:

L
det(C) = ] Ae-
(=1

5.3.5 Functional GLASSO Algorithm

This section analyses the steps for estimating the precision matrix © under the
functional regime. This matrix demonstrates the conditional dependence form of the
variables. The algorithm we use in this study and its derivation were developed by
Qiao et al. (2019) who used the acronym FGLASSO, which stands for the initials of
Functional Graphical LASSO. The derivation of this algorithm follows a similar rationale
as the algorithm of Friedman et al. (2008) in the case of functional data. The reader can
find the complete derivation in appendix E.4 of this work. In a nutshell, similar to the
graphical LASSO approach, presented in subsection 5.2.1, the purpose of this technique

is the maximisation of the following penalised log-likelihood with respect to ©:

O =arg max <log (det(@)) —tr(S0) — )\Z H@leF) (5.15)
J#l

where O is the precision matrix, .S stands for the estimated functional variance-covariance
matrix, given by (5.9), and ||-||r denotes the Frobenius norm. Our approach exploits the
full data information since all data contribute to the estimation of S and ©, as opposed to
the method of Qiao et al. (2019) who merely utilise the most significant coefficients of the
data curves. Therefore, we expect our estimated functional variance-covariance matrix
to result in better inference regarding the variables’ conditional dependence network.
This is because more information about the interdependencies among the variables is
considered in the estimation.

The precision matrix © and the estimate of the functional variance-covariance matrix
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S have the following form:

9]' @_j Sj S_j

A visual representation of the © matrix is given in Figure (5.4) while the matrix S has
an identical structure. In this representation, J denotes the number of evaluation points
we have considered in the bivariate LPR (the grid points of J intraday intervals) and p

denotes the number of variables.

0j; : HJT:
J xJ JxJ(p—1)
0: @—j:
0; : Jp—1) xJ(p-1)
Jp—1)xJ

Figure 5.4: An illustration of the structure of the precision matrix ©.
The solution of (5.15) over the fixed j row/column block-vector is given by:
5. _ o1, 3To-17
for such 5]

p—1
0; = arg n%in (tr(Sjo;‘-F@_;Qj) + 2tr(s;‘-F9j) + 2\ Z H%ﬂp) (5.16)
! =1
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where s; and 6; denote the j-th column block-vector of the matrices S and ©, respec-
tively. Both vectors are composed of (p — 1) matrices of size J x J each. Also, [|0;||r
denotes the Frobenius norm (see appendix E.1) of the I-th matrix in 6;. Appendix E.4.3
reports the derivation of (5.16). The zero block-matrices in © show the conditional
independence cases for the corresponding variables.

The detailed steps of the FGLASSO algorithm are presented in ALGORITHM 3, and
standard calculations on blockwise inversion of a matrix are utilised for the derivation.
In ALGORITHM 3, the ¥ matrix has the same form as given in Figure (5.4). In addition,
the notation {@:}} wk @ Sj; indicates the Kronecker product (see appendix E.1) between
the inverse of the k-th matrix on the main diagonal of ©_; and the matrix S;;. Also, rj;
denotes the block-residual, which is a J x J matrix, and A denotes the tuning parameter,
such that A > 0. Besides, the acronym vec demonstrates that the particular matrix has
been transformed into a vector.

The algorithm only requires the estimated variance-covariance matrix S as an input
to begin with, which is obtained by the Matrix (5.9) in our case. For updating steps,
we need to be able to compute the inverse of the part of the matrix. One of the main
difficulties with direct approximation of functional variables is that the dimension of
the matrix is very large, so the inverse matrices i\)J_Jl and 9:31‘ are not well defined. To
overcome this issue, we have used the approximation based on the eigendecomposition

explained in section 5.3.4 to estimate i;jl, then (:):]1 is given by Equation (5.17).

5.3.6 Tuning Parameter Estimation in Functional Graphical LASSO

Optimal tuning parameter estimation is of great importance since it controls which
dependencies will be considered negligible by the graphical model. For a relatively high A,
more than the necessary non-zero conditional dependencies will be set equal to zero. On
the other hand, the model will not shrink the minor conditional dependencies to zero for

a relatively low A. Hence, the optimal X has to be of that size that keeps the meaningful
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Algorithm 3 FGLASSO Algorithm
e Initialise © = Iy, and 5= Iyp;
for iter = 1, ... , until convergence do:
for j=1,...,p do:
e Estimation of @:]1- through:

ol=% ;5,517 (5.17)

e Initialise gj, e.g.:
0; = 05p-1)xs + 1le — 10;
fork=1,...,p—1do:
e Estimate block-residual matrix rj:

ik = {05 h0:Si; + sjk;
14k

if H’I/“\]kHF < A then

Ot = 05xJ;
else

01 is given for that 6;, which solves:

<{@_1-}kk: ® Sjj) vec(0;1) + vec(rjr) + )\% —0;

10kllr

end if
end for R
e Reformulate ©:

9, O,

e Reformulate & applying:

Xjj = Sjj
a; = —Uj;Sjj
Z,j = @:jl + UijjUjT

where U; = @:jlgj,

end for

if mean(|©(er) — @liter—1)|) < 1E=3 then

Return ©;

end if

where ©(r) is the © matrix as results by the corresponding iteration and 0O
refers to the initial © matrix.
end for
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conditional dependencies discarding, at the same time, the trivial dependencies and
simplifying the variables’ dependence structure.

Qiao et al. (2019) and Gémez et al. (2020) state that the practitioner can apply
alternative methods for the A estimation, such as CV, GCV, AIC or BIC. In this work,
we have conducted a k-fold CV based on the specific characteristics of our dataset. In
particular, our technique takes as input the estimate of the functional variance-covariance
matrix over different neighbouring periods, and it computes the prediction error based

on the following formula:
PEn(\) = tr(@m : @(A)) _log (det ((:)()\))) (5.18)

where @m indicates the estimate of the functional variance-covariance matrix for the
period m, such that m = 1,...,M. For example, m can refer to weeks or months.
Besides, © denotes the precision matrix for given A\. The formula of the prediction error
is the log-likelihood component of the maximisation problem in (5.15), where it has been
transformed into a minimisation problem by taking the opposite quantity. To select A,
we set an interval of grid points [Amin, Amaz] Where Apin is a value lower than the smallest
Frobenius Norm of the submatrices in C for the period of our interest. Similarly, Ajqz
is chosen to be a high value so that it will shrink all conditional dependencies to zero
in the ©® matrix. ALGORITHM 4 reports the complete steps. By this method, we
aim to estimate the optimal A which minimises the prediction error, exploiting similar

conditional interdependencies among the variables across neighbouring periods.

5.4 Simulation Study

Our proposed methodology procedure is examined via a simulation study in this
section. This study simulates an intraday observation every 15 minutes (arising 26

intraday intervals) for five and ten variables over six months. Also, we consider 20
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Algorithm 4 k-fold Cross-Validation for GLASSO
b SPGCify P\mzna )\max];
for \;, where k =1, ..., K do:
e Estimate © for the desired period through the FGLASSO algorithm;
for period m, where m =1, ..., M, do:
e Calculate the Prediction Error with © and the matrix C for different periods:

PE,,(\;) = tr(@m . @)(Ak)> — log (det (@M)));

end for
e Calculate the cross-validation score for the given A\ by:

M
CV(A) = D PEn(M);
m=1

end for
e The optimal tuning parameter is chosen by:

)\/CT/ = arg miny, >0 CV ().

working days in a month period, and each day is simulated to be independent of the
rest days across the sample period and the variables. The properties of the model are
given in appendix E.5. Furthermore, the Epanechnikov kernel function is used in both
the univariate and bivariate local linear smoother.

The reported technique is computationally expensive, so we examine our model for
five and ten variables. This computational cost mainly stems from the selection proce-
dure of the optimal bandwidth in the bivariate LPR, the estimation of the proper tuning
parameter in the model and the optimisation process by iteration.

This study uses the simulation model considered in Yao et al. (2005), where several
minor changes have been applied. More specifically, the true observation of the j-th

variable on the d day is simulated through the formula:

X;ati) = pyalts) + €496l 0t) + €268 t:)

194



where j = 1,...,p (for p =5 and p = 10) and d = 1, ...,120. The mean function f;4(t;)
is formed by:

pja(ti) = t; +sin(t;)

and the eigenfunctions are expressed as:

(1), —cos(0.1-m-¢)
¢j,d (tl) - \/g )
sin(0.1 -7 - ¢;
o) = 0Lt

V5

where 1/26 < t; < 6 with step 1/26 at a time.

For simplicity, we have considered that variable 1 is dependent on variables 2, 5
(using five variables) and variables 2, 5, 8, 9, 10 (using ten variables). The rest variables
are independent of each other. The concept of the adjacency matrix is helpful in the
context of graphical models. When a pair of variables are conditionally dependent,
the corresponding matrix element is given as 1; otherwise, it is given as 0. Figure 5.5
shows a graphical representation of the specified dependence structure, and Figure 5.6
depicts the adjacency matrices for this structure. When j = 1,3,4 (for five variables)
and j = 1,3,4,6,7 (for ten variables), the components 5](}3 , 552 for the variable j,
are simulated through a univariate random normal distribution with zero mean and
variance equal to 4 and 0.6, respectively. In the case where j = 2,5 (for five variables)
and j =2,5,8,9,10 (for ten variables), fj(.}cz and 553 are specified through:

b= PEyd + €50
(2)

2 _ 2
§1a= PS50+ €

where p introduces the correlation between the processes. The correlation coefficient
(1 (2

is set equal to p = 0.6 in this work. Moreover, €5d> €5.d incorporate some error in the

process. These errors are simulated through a random normal distribution with zero
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mean and variance 1 — p?.

Finally, we produce the noisy intraday observations through:

Yja(ts) = X a(t:) + Eja(t;)

where the error terms follow a random normal distribution with zero mean and the

variance equals 0.25.

2 s10

o] ol

Figure 5.5: The variables dependence structure using five (left panel) and ten (right
panel) variables.

Two measures that evaluate the proposed technique’s precision are the True Positive
Rate (TPR) and the False Positive Rate (FPR). Ultimately, TPR refers to the probability
that the estimated adjacency matrix successfully captures the conditional dependence
between two variables. On the other hand, FPR indicates the probability that two
independent variables are estimated as conditionally dependent. These two rates are

computed by:

TP FP
TPR= —— FPR=——
R TP+ FN’ R TN + FP

where:

TP : conditional dependence cases estimated as conditional dependencies,

F'N : conditional dependence cases estimated as conditional independencies,
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Figure 5.6: The true adjacency matrices for five (left panel) and ten (right panel) vari-
ables.

F P : conditional independence cases estimated as conditional dependencies,

TN : conditional independence cases estimated as conditional independencies.

Both rates take values within the interval [0, 1]. For TPR, a value close to one shows
that the estimated adjacency matrix captures the conditional dependencies between the
variables with high accuracy, whereas a value near zero displays that the estimated ad-
jacency reports the conditional dependencies as independent cases. As regards the FPR,
a value close to zero indicates that the estimated adjacency matrix correctly captures
the conditional independencies between the variables with high accuracy. In contrast,
a value close to one shows that the estimated adjacency predicts the conditional inde-
pendencies between the variables as dependencies. For both rates, a value close to 0.5 is
a sign of random estimates for the estimated adjacency matrix. Therefore, a rate close
to one is desirable for TPR. On the other hand, a rate near zero is required for FPR in
terms of an accurate conditional dependence structure estimation.

These preferred values highly depend on the tuning parameter. However, a meagre
A value would result in TPR and FPR rates (almost) equal to one, and an extremely

high A value would imply that the values of TPR and FPR are (nearly) zero. An ideal
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A would bring about an adjacency matrix with a TPR rate equal to one and FPR equal
to zero. In practice, this is often a somewhat unrealistic scenario, mainly because of the
noise incorporated in the observations (yielding a noisy approximation of the functional
variance-covariance matrix) and the selection of a suboptimal tuning parameter through
the estimation methods.

Table 5.1 summarises the mean value of TPR and FPR over 100 iterations for five
and ten variables. This table demonstrates that the proposed approach successively
captures the conditional dependence between the variables since TPR is higher than
90% in both cases. On the other hand, FPR takes values 7.75% and 6.06% for five and
ten variables, respectively. These results summarise that the proposed model, under
these settings, is able to capture the conditional dependencies between the variables for
a rate higher than 90%. Besides, it fails to capture the corresponding independencies by

less than 8%, on average.

. Rate || 1pr | FPR
5 0.92 | 0.0775
10 0.905 | 0.0616

Table 5.1: The mean values of TPR and FPR over 100 iterations.

5.5 Empirical Analysis

This section investigates the conditional dependence structure of the 50 stocks of
Table 1.2 for January 2012. In this analysis, we work both with the log-prices and
the returns of the stocks. Because of the high computational cost of this method for a
considerable number of observations, we have decided to specify an intraday frequency
of 15 minutes in the procedure, resulting in 26 intraday intervals for each day.

For the estimation of the functional variance-covariance matrix, the evaluation points

are set to be 26 equispaced points between 0 and 1. The Gaussian kernel function
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is selected for the weights allocation through the local linear smoother for both the
univariate and the bivariate cases. In the latter case, we consider the same bandwidth
in the kernel functions Kj, and Kjp,, i.e. hy = ho. The CV method is used for the
estimation of the optimal bandwidths (see sections 4.2.2, 5.3.3).

The CV method is also utilised to estimate the optimal tuning parameter in the
functional GLASSO approach, as presented in section 5.3.6. Applying direct multivariate
method can produce a negative value for the determinant of the 5) matrix, making its
logarithmic value undefined for some tuning parameter values. For this reason, we apply
an eigenanalysis to this matrix and define the determinant as the product of the positive
eigenvalues of this matrix, as explained in section 5.3.4. The CV score is computed by
aggregating the absolute value of the prediction errors for every tuning parameter. For
the calculation of the prediction errors in (5.18), the C Matrix in (5.9) is specified for all
the months from January to June of 2012. None of the stocks realised a stock split during
the chosen months; hence our dataset does not need any pre-processing for the empirical
investigation. In this analysis, we refer to the particular stocks by their identifier code for
brevity and one can find their full names and related sectors in Table 1.2. Appendix E.6

contains supplementary results.

Log-Prices

In Figure 5.7, we present the stocks’ conditional dependence structure for eight differ-
ent tuning parameter values. As expected, the model provides more independent stock
pairs as we increase the tuning parameter. In this figure, the missing stocks refer to
those which are conditionally independent of the other stocks. These stocks are given in
Figure E.2 in appendix E.6.1 for every tuning parameter case.

For the tuning parameters in Figure 5.7, we have applied a CV to infer which value
offers the optimal conditional dependence structure. The CV method estimates A =

0.0826 as the optimal tuning parameter, given by the bottom right panel. For this
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Figure 5.7: The conditional dependence structure of the log-prices of the stocks for eight
different tuning parameter values.

value, we obtain six maximal cliques and they are defined for the following subgraphs:

E(G1) = (< DAL, AA >),

£(Go) = (< DAL,CLF >),
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E(Gs) = (< DAL,SLB >),
£(G4) = (<« DAL, BAC >,< DAL, FCX >,< BAC,FCX >),
£(Gs) = (< DAL, BAC >,< DAL,CAT >, < BAC,CAT >),

E(Gs) = (< DAL,BAC >,< DAL,GM >,< BAC,GM >).

Except for the stocks DAL and CAT, which are related to the sector ‘Industrials’,
all the other conditionally dependent stocks are related to different sectors. This finding
is surprising since, generally, it is anticipated that stocks of the same sector would be
highly correlated. Further, taking into consideration Figure 1.3 and Table A.1, which
provide insights about the correlation coefficients of the above stocks, we notice that
their coefficients are relatively weak.

The stocks BAC and DAL, which show the most dependencies in the estimated
network, have the lowest prices in the examined period among the stocks. On the other
hand, CAT and CLF are among the stocks with the highest prices. The fact that the
two groups of stocks are highly connected suggest that the stocks with low price have the
tendency to follow the patterns of stocks with higher prices. As the stock returns tend
to be of similar size, we also investigate the conditional interdependencies with respect

to returns.

Returns

In Figure 5.8, we visualise the conditional dependence structure of the stock returns,
again for eight different tuning parameter values. Besides, the stocks which do not share
conditional dependence with the other stocks are given in Figure E.3 in appendix E.6.2
for the chosen tuning parameter values. As also happens for the log-prices, the de-
pendence network becomes more sparse as we increase the tuning parameter. Besides,
the cliques given by the highest tuning parameter are also formed for the lower tuning

parameter values.
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The findings show more reasonable performance compared to the results with the
log-prices. Indicatively, the resulting networks for the two highest tuning parameters
mainly comprise stocks related to the same sector. For instance, the maximal cliques
of the network with a tuning parameter equal to 0.4125 are given with the following

subgraphs:

E(G1) = (< SLB,HAL >),

E(G2) = (K HAL,NOV >),

£(Gs) = (< BAC,C >,< BACZWFC >, < C,2WFC >),
£(Gs) = (< WFC, JPM >),

£(Gs) = (< AA, FCX >)

where the subgraphs G; and Gy are related to the sector ‘Energy’, the following two
subgraphs are related to the sector ‘Financial Sevices’ and the fifth subgraph to the
sector ‘Basic Materials’. In Table A.2, we notice that the correlation coeflicient between
AA and FCX is about 52%, while the correlation coefficients between the underlying
stocks in subgraphs G; — G4 exceeds 60%, as we observe in Tables A.6 and A.7 in
appendix A.

CV estimates that the optimal conditional dependence structure is given for the
graph with tuning parameter equal to 0.1602 (second row, left panel). This structure is
more clearly depicted in Figure 5.9. The dependence structure offers a more complex
structure compared to the proposed structure for the log-prices; however, this seems
more natural given the interdependencies that occur in the market. Some indicative

maximal cliques in this graph are given by:

£(G1) = (< MMM,CLF >,< MMM,NOV >,< CLF,NOV >),

E(Gy) = (< AAF >, < AAJHAL >, < AA,NOV >,< AA,SLB >,
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Figure 5.8: The conditional dependence structure of the returns of the stocks for eight
different tuning parameter values.

< F HAL > < F,NOV > < F,SLB >, < HAL, NOV >,
< HAL,SLB >,< NOV,SLB >),

E(Gs) = (< AXP,F >,< AXP,IBM >,< AXP,JPM >,< AXP,WFC >,
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< F,IBM > < F,JPM > < FWFC >, <IBM,JPM >,
<IBM,WFC >, < JPM,WFC >),

£(Gs) = (< AXP,GE >,< AXP,JPM >,< AXP,WFC >,< GE,JPM >,
<GE,WFC >,< JPM,WFC >),

£(Gs) = (< AIG,HAL >, < AIG,NOV >,< AIG,SLB >, < HAL,NOV >,
< HAL,SLB >,< NOV,SLB >),

£(Gs) = (< BAC,C >,< BAC,MA >,< BAC_WFC >,< C,MA >,
< C,WFC > < MAZWFC >),

£(G;) = (< AXP,F >, < AXP,GE >, < AXP,JPM >, < AXP,WFC >
< F,GE >,< F,JPM >,< FFWFC >, < GE,JPM >,
<GE,WFC >, < JPM,WFC >),

E(Gs) = (< AA,CLF >, < AAF >, < AA,SLB >, < AA,VZ >
<CLF,F > <CLF,SLB><CLF,VZ > < F,SLB >,

<FVZ><SLB,VZ>).

Also, a visual representation of the aforementioned maximal cliques is given in Figure E.4

in the appendix section E.6.2.

5.6 Discussion

Modelling high-frequency data in the standard time series framework poses many
challenges. The dimension of the data is large, they are irregularly sampled with noise
and can exhibit complex trends and complex dependence structure. On the other hand,
due to the regularity of human activities and common structure of the system, it is pos-
sible to identify a certain degree of commonality. In fact, high-frequency financial data

often exhibit particular diurnal patterns. Exploiting such information can be beneficial
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Figure 5.9: The conditional dependence structure of the stock returns for the estimated
optimal tuning parameter.

in making inferences about the data co-movements and risk management.

We have proposed a functional data approach to investigate patterns in high-frequency
data. Functional data approach allows us to easily treat large-dimensional and irregu-
larly sampled data with noise and makes it possible to extract the commonality and to
characterise variability in the continuous domain. In particular, this chapter aimed to
estimate the conditional dependence structure through the graphical LASSO approach
using high-frequency data as continuous functions. As far as we know, this is the first
study which develops a methodology utilising the graphical LASSO approach, consider-
ing high-frequency observations as functional data in finance.

Under this framework, a necessary step is the estimation of the covariance struc-
ture of functional data, which expresses the co-movements between the stocks, and
its inverse, which defines the stocks’ conditional dependence network. Estimation of
these quantities in functional data context is challenging, as the problem is posed in

the infinite-dimensional setting. Previous studies apply basis expansion methods to es-
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timate the curves’ coefficients and then apply multivariate methods to the truncated
coefficients (Qiao et al., 2019). In our extension, we estimate the corresponding quanti-
ties in functional covariance function and its inverse using the full dataset, with a proper
functional approximation. A similar idea appears in recent work by Zapata et al. (2022)
who develops an alternative theoretical framework to propose a new algorithm in the
functional context.

A basic assumption we make for developing our proposed methodology is that the
covariance function is time-independent across days but varies according to the pairs of
stocks. Although the pointwise data (the intraday observations) within a day can be
non-stationary, they remain similar across the days. Further, we utilise the functional
variance-covariance matrix to express the variability of the dataset in this chapter as
opposed to the Chapters 2 and 4 of this thesis where we estimate the volatility of a
stock by the proposed volatility estimators, without considering the dependence between
different time periods within a day.

Besides, we have also proposed a CV-based method for the estimation of the opti-
mal tuning parameter in this chapter, assuming that the functional variance-covariance
matrix shares similar behaviour to the corresponding matrices of neighbouring periods.
The simulation study showed that the methodology works satisfactorily; however, its
computational cost increases when we consider more variables in the model. Exploring
alternative algorithms to improve efficiency is left for future work.

In the empirical analysis of this chapter, we attempted to estimate the conditional
dependence structure between the stocks of our dataset. The investigation was conducted
on both the log-prices and the returns of the stocks in our dataset. Between the two,
the returns presented a more plausible dependence structure.

For the log-prices of the stocks, we mainly found strong conditional dependencies
between stocks of different sectors. Possibly, this is due to the fact that the price patterns

of stocks with low prices are affected by the patterns of stocks with noticeably higher
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prices through the covariance functions. In this case, implementing our approach to the
stocks’ correlation matrix could reduce the effect of price differences among the stocks.

On the other hand, the dependence network seems to have a more sensible formation
for returns. As we increase the tuning parameter, the dependencies between the stocks
of the same sector become more apparent. The correlation coefficient is also strong for

these cases, as found in the exploratory analysis in section 1.5.
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Appendix A

Appendix for Chapter 1

his appendix provides the figures and the tables of the exploratory analysis of sec-
tion 1.5 in Chapter 1. In particular, we report the boxplots of the descriptive statistics
across the stocks (see Figure A.1), the correlation coefficients between the stocks (see
Table A.1), the correlation coefficients between the stocks related to the same sector (see

Tables A.2-A.10) and the companies’ annual market capitalisation for the data period

(see Table A.11).
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Figure A.1: The boxplots depict the descriptive statistics of the daily returns across the stocks.
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y | AA CLF DD FCX NEM

AA 1 0.3347 0.4668 0.5164 0.3120
CLF || 0.3347 1 0.2857 0.4127 0.2573
DD 0.4668 0.2857 1 0.4443 0.1496
FCX || 0.5164 0.4127 0.4443 1 0.4716
NEM || 0.3120 0.2573 0.1496 0.4716 1

Table A.2: The correlation matrix of the daily returns for the stocks of the sector ‘Basic
Materials’.

y | T VZ  DIS |

T 1 0.7194 0.3586
VZ || 0.7194 1 0.3346
DIS || 0.3586 0.3346 1

Table A.3: The correlation matrix of the daily returns for the stocks of the sector
‘Communication Servises’.

| | F GM HD LOW MCD NKE

F 1 0.6637 0.3922 0.3374 0.2473 0.3407
GM || 0.6637 1 0.3332 0.3036 0.2634 0.2832
HD 0.3922 0.3332 1 0.6519 0.2859 0.3125

LOW | 0.3374 0.3036 0.6519 1 0.2105 0.2793
MCD || 0.2473 0.2634 0.2859 0.2105 1 0.3259
NKE || 0.3407 0.2832 0.3125 0.2793 0.3259 1

Table A.4: The correlation matrix of the daily returns for the stocks of the sector
‘Consumer Cuclical’.

y | KOO GIS PG TGT WMT |

KO 1 0.4283 0.4569 0.2558 0.3297

GIS 0.4283 1 0.4647 0.2501 0.3292

PG 0.4569 0.4647 1 0.2562 0.3739
TGT || 0.2558 0.2501 0.2562 1 0.4555
WMT || 0.3297 0.3292 0.3739 0.4555 1

Table A.5: The correlation matrix of the daily returns for the stocks of the sector
‘Consumer Defensive’.
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[ CHK CvX DVN XOM HAL NOV SLB |
CHK 1 0.4649 0.6025 0.4031 0.4422 0.4723 0.4507
CVX || 0.4649 1 0.6136 0.7670 0.5575 0.5539 0.6307
DVN || 0.6025 0.6136 1 0.5483 0.5699 0.5740 0.6225
XOM || 0.4031 0.7670 0.5483 1 0.5407 0.5308 0.6116
HAL || 0.4422 0.5575 0.5699 0.5407 1 0.6304 0.7375
NOV | 0.4723 0.5539 0.5740 0.5308 0.6304 1 0.6895
SLB || 0.4507 0.6307 0.6225 0.6116 0.7375 0.6895 1
Table A.6: The correlation matrix of the daily returns for the stocks of the sector
‘Energy’.
| | AXP. AIG BAC C JPM MA USB V. WEFC |
AXP 1 0.5373 0.5255 0.5432 0.5479 0.5513 0.6415 0.5488 0.6242
AIG || 0.5373 1 0.5280 0.5806 0.5217 0.4406 0.5118 0.4195 0.5343
BAC || 0.5255 0.5280 1 0.7771 0.7103 0.3591 0.6011 0.3316 0.6432
C 0.5432 0.5806 0.7771 1 0.7693 0.4348 0.6356 0.3802 0.6608
JPM || 0.5479 0.5217 0.7103 0.7693 1 0.3939 0.6362 0.3525 0.6613
MA || 0.5513 0.4406 0.3591 0.4348 0.3939 1 0.4431 0.7191 0.4456
USB || 0.6415 0.5118 0.6011 0.6356 0.6362 0.4431 1 0.4186 0.7809
\Y 0.5488 0.4195 0.3316 0.3802 0.3525 0.7191 0.4186 1 0.4076
WEC || 0.6242 0.5343 0.6432 0.6608 0.6613 0.4456 0.7809 0.4076 1

Table A.7: The correlation matrix of the daily returns for
‘Financial Services’.

the stocks of the sector

y [ LLY JNJ MRK PFE

LLY 1 04804 0.4359 0.4882
JNJ || 04804 1 0.4524 0.5252
MRK | 0.4359 0.4524 1  0.4899
PFE || 0.4882 0.5252 0.4899 1

Table A.8: The correlation matrix of the daily returns for the stocks of the sector
‘Healthcare’.
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] [ MMM  BA CAT DAL FDX GE LMT UTX

MMM 1 0.5136 0.5415 0.3257 0.5160 0.6284 0.5359 0.6598
BA 0.5136 1 0.3692 0.2931 0.4217 0.4305 0.5470 0.5778
CAT | 0.5415 0.3692 1 0.2471 0.4640 0.5510 0.3714 0.5856
DAL | 0.3257 0.2931 0.2471 1 0.3874 0.3238 0.2948 0.3026
FDX || 0.5160 0.4217 0.4640 0.3874 1 0.4888 0.4175 0.4910
GE 0.6284 0.4305 0.5510 0.3238 0.4888 1 0.4151 0.5319
LMT || 0.5359 0.5470 0.3714 0.2948 0.4175 0.4151 1 0.5927
UTX || 0.6598 0.5778 0.5856 0.3026 0.4910 0.5319 0.5927 1

Table A.9: The correlation matrix of the daily returns for the stocks of the sector
‘Industrials’.

| [ GLW HPQ IBM

GLW 1 0.2562 0.3126
HPQ || 0.2562 1 0.3095
IBM || 0.3126 0.3095 1

Table A.10: The correlation matrix of the daily returns for the stocks of the sector
‘Technology’.
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Stock || 2012 | 2013 | 2014

MMM || 63.79 | 93.02 | 104.36
T 188.14 | 183.75 | 174.22
AA 8.79 8.3 8.6

AXP 63.51 | 96.53 | 95.17
AIG 52.11 | 74.74 | 77.06
BAC 125.13 | 164.91 | 188.14
BA 56.94 102 91.86
CAT 58.69 | 57.92 | 55.48
CHK 9.69 16.35 | 14.95
CVX 210.51 | 239.02 | 210.85

C 119.82 | 157.85 | 163.62
CLF 5.49 4.01 1.09
KO 162 181.84 | 184.33

GLW 18.55 | 24.93 | 29.21
DAL 10.1 23.38 | 40.59
DVN 21.12 | 25.11 | 25.03
DD 38.9 53.51 | 52.79
LLY 56.54 | 56.95 | 76.62
XOM || 389.64 | 438.7 | 388.38
FDX 28.84 | 44.88 49.2

F 51.1 61.47 | 62.13
FCX 32.45 | 39.17 | 24.27
GE 218.41 282 254.14
GIS 26.13 | 31.17 | 32.19
GM 39.39 61.3 55.85
HAL 32.22 | 43.08 | 33.35
HPQ 27.76 53.4 73.6

HD 92.47 | 115.95 | 138.33
IBM 214.03 | 197.77 | 158.91
JPM 167.25 | 219.65 | 232.47
JNJ 194.77 | 258.34 | 291.04
LMT 29.62 | 47.71 | 60.85
LOW 39.94 | 51.82 | 66.93
MA 60.54 | 133.86 | 99.3

MCD 88.44 | 96.09 | 90.22
MRK || 123.91 | 146.52 | 161.17
NOV 29.18 | 34.07 | 27.45
NEM 22.83 | 11.34 9.42

NKE 46.21 | 69.83 | 83.07
PFE 182.47 196 195.96
PG 185.45 | 220.73 | 245.98
SLB 92.04 | 117.8 | 108.92
TGT 38.5 39.99 | 48.35
USB 59.7 73.71 | 80.27
UTX 75.35 | 104.31 | 104.57
\W/ 123.69 | 140.63 | 194.36

\Y% 99.79 | 140.37 | 161.09
WMT || 228.24 | 254.62 | 276.8
DIS 89.62 | 129.88 | 160.12

WFC 180 | 238.67 | 283.43

Table A.11:  The companies’ annual market capitalisation for the years 2012-2014.
Market capitalisation data were taken from companiesmarketcap.com (nd) and they are
expressed in $ billions.
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Appendix B

Appendix for Chapter 2

This appendix provides the derivation of the properties of the intraday RV-based

estimators, presented in Chapter 2.

B.1 Properties of the Intraday RV-Based Volatility Esti-

mators

In this section, we derive the properties of the intraday RV-based estimators in
Propositions 2.4.1 and 2.4.2. Recall that assuming that the intraday observed log-prices

can be expressed by (2.3):

Yo=Yt = X(6) + B). X)X = [ n@dc+ [ a@aw(s),
the intraday pointwise returns for two consecutive time points are given by:
Ri=R(t;) =Y, —Yi1=[X(t;)) — X(tic1)] + [E(t;) — E(tic1)| =R +V;
where R} = R*(t;) and V; = V (t;). We write E[E*(t;)] = ar, k = 1,...,4 with ay = w?.

The proofs are done in steps and we start with some preliminary calculations involving
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V; and R;.

B.1.1 Moments of V;

For the first four moments of V; = E(t;) — E(t;—1), recall that:

(a+b)? = a® + 2ab+ V2,
(a+b)® = a® + 3ab + 3ab® + b°,

(a+b)* = a* +4a%b + 6a%b* + 4ab® + b*.

Applying to V; and using the Assumptions 2.2.4 and 2.2.5, we obtain that:

E[V?] = B[E?(t;) — 2E(t;)E(ti—1) + E%(t;—1)] = 2as,
E[Vzg] = E[Eg(ti) — 3E2(ti)E(tz‘_1) + 3E(ti)E2(ti_1) - E3(ti_1)] = a3 —agz = 0,
E[VA] = B[E*(t;) — 4E3(t;)E(ti—1) + 6E(t;) E*(ti_1) — AE(t;))E3(t;_1) + E*(t;i_1)]

= 2a4 + 6a3 = 2(ay + 3a3)

where E[E*(t;)] = ay, for k =1,...,4.

For covariance, first observe that:
Cov(V;,V;) =0, ifli—j|>1, (B.1)
and thus:

Cov(Vi, Vier) = Cov(E(t:) — E(tir), Eltinn) - E(t)) = ~Var(E(t)) = ~as,
CO?)(‘/;7 ‘/;,3»1) = Cov <E(tz) - E(ti_l), E2(ti+1) — 2E(ti+1)E(ti) + E2(ti)>

= —2Cou(E(t:), B(tis1) E(ts) + Con(B(t:), E*(t:)) = as,
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Cov(V2, Visy) = Cou <E2(ti) —2B(t)E(ti1) + E2(t;_1), E(tis1) — E(ti))
= —Cov (EQ(ti),E(ti)) +2C0u(B(t)E(ti_1), E(ti)> S—
Cov(V2,V2,) = Cov (E2(ti) —OB(t)E(tior) + E2(ti_1), B(tis1) — 2E(tis ) E(t) + EQ(ti))
— —2Cov (E2(ti), E(tiH)E(ti)) + Cov (EQ(ti),EQ(ti))
+ 4Cov( E(t:)B(ti-1), E(ti1)B(t:) ) — 2Cov( E(t)B(tio1), B(t:) )

:a4—a%.

B.1.2 Conditional Moments of R;

Since R; = R} + V;, from the results from section B.1.1, it follows that:

E[R;|R*] = R},
E[R|R*] = (R})? + 2E[V?] = (R})? + 2as,
E[R}|R"] = (R}) + 3R} E[V?] + E[V}’] = (R})® + 6as R},

E[R}|R] = (B))" + 6(R))*E[V;’] + 4R E[V?] + E[V}'] = (B))" + 12a2(R})* + 2(aa + 3a3)

where E[E¥(t;)] = ag, for k = 1,...,4. Similarly, the conditional variance and covariance

of R? are given by:

Var[R?|R*] = E[R}|R*] — (E[R}|R*])* = 8aa(R;)* + 2(a4 + a3),
Cou(B2, RER") = Cou((R})? + 2R}V + V2, (R})* + 2R}V; + V)

= 4R R;Cov(V;,V;) + 2R; Cov(V;, V}) + 2R;Cov(V2, V) + Cov (V2 V7).
Because of (B.1), the non-zero conditional covariance of R? occurs only in one lag:

Cov(R}, R, 1|R*) = 4R; R}, ,Cov(V;, Vig) + 2R Cov(Vi, Vi3) + 2R}, Cov(VE, Vigr)

+ COU(V?? V%—l)

2
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= —dasR; R} +2a3(R; — R},|) +as—a
Cov(R?, R ||R*) = 4R R;_,Cov(V;, Vi_1) + 2R; Cov(V;, VA,) + 2R} Cov(V;2, V1)
+ Cov(V2, V)

= —4asRIR; | +2a3(R;_; — R}) + a4 — a3,

Using the properties above, we derive the conditional mean and variance of the

intraday volatility estimators in section B.1.3.

B.1.3 Conditional Mean and Variance of the RV-based Estimators

As the estimators are in the form of a weighted average of returns, the estimators

can be expressed as:
n
_ Z 2
i=1
where

1
ny—1

" o 1 ntr—a
RVI(I fr=all) . ;= 1, stRVI(I frell) .y, = Altr) U)RVI(I )y =

The estimators RVI(I"”_a”) and stRVI(Imr_a”) with n = 1 and relevant straightforward
notational modifications define RV ™) and stRVU™")  respectively.

Conditional on R*, we wish to compute the mean and the variance of Uy:
E[Uy|R*] = sz [R?|R*], Var[Uy|R*] ZZw,ijov R? R}|R").

For the mean, we have that:

E[Uy|R*] = sz R2|R*—Z (( +2a2> ZMR* +2a22w1

where as denotes the noise variance w?. With an appropriate choice of w;, the results in
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Proposition 2.4.1 follow.

For the variance, first observe that:
VarlUy|R*] = Zszw]Cov (R? R2|R*)
= Zwi (inar[R?] + wi41Cov(R2, R2, ) + w;_1Cov(RZ, RZ-Q_I)) .
Using the derivations given in section B.1.2 gives:
Var|Uy|R*| = Z w?Var[R?|R*] + Z wiw;11Cov(RZ, R 1) + Z wiw;_1Cov(RZ, R? ;)
= Zw (8&2(}2*) + 2(ay + a3 ) szwlﬂ ( —4as R} R} + 2a3(R} — R}, 1) + a4 — a%)
+ Z wiwi_1< —4asR;R;_; +2a3(R;_; — R}) + a4 — a%)

2(a4—i—a2 Zw +2(a 4—@2 Zwlwﬂ_l—{—SaQZM R* 8a22wiwi+1RZ‘Rf+1
=1 i=1 i

+ 4as Z wiwi+1 (R — Rj (1)

where E[E*(t;)] = ay, for k = 1,...,4 and by convention as = w?. With an appropriate

choice of w;, the results in Proposition 2.4.2 follow.
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Appendix C

Appendix for Chapter 3

This appendix provides the analysis results of Chapter 3. More specifically, ap-
pendix C.1 offers the simulation study which shows that the ratio-based estimator is an
accurate estimator of the optimal number of factors in the factor model when we discard
a number of eigenvalues in the estimation procedure. Also, the ACF plots, as mentioned
in section 3.3, are presented in C.2. Finally, the figures and the tables of the analysis

procedures of sections 3.4 and 3.5 are reported in C.3 and C.4, respectively.

C.1 Simulation Study

In subsection 3.2.3, we outlined several factor retention methods, concluding that the
ratio-based estimator is the estimator that best suits the theoretical framework of sub-
section 3.2.2. The ratio-based estimator determines the optimal number of factors that
need to be contained in the factor model, utilising the eigenvalues of the Matrix (3.2) as
components. As Lam et al. (2011) and Lam et al. (2012) report, instead of considering
all the available -p- eigenvalues, they choose only the p/2 highest eigenvalues in this esti-
mator. Consequently, the maximum number of factors that are likely to be incorporated
in the factor model decreases from (p — 1) to (p — 1)/2. This assumption may seem

strong at first sight since the significance of numerous factors is not considered in the
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ratio-based estimator; however, as we highlight in this section’s simulation procedure it
is a necessary condition in terms of the estimator’s efficiency.

In the simulation study of Lam et al. (2012), the ratio-based estimator is evaluated
under different settings, illustrating its success in selecting the true number of optimal
factors when the sample size or the number of variables increase. In these works, the
estimator is defined for part of the total number of eigenvalues. In this simulation study,
we compare the efficiency of this estimator for three different cases. In the first case, we
consider all the eigenvalues as inputs in the estimator, in the second case, we consider
the p/2 highest eigenvalues and lastly, we consider the p/3 highest eigenvalues.

The simulation model is the same as Lam et al. (2012), and the estimator is ex-
amined under the same simulation settings as considered by these authors. In partic-
ular the simulation model is tested for all the possible combinations of a sample size
n = 50, 100, 200, 400, 800, 1600, 3200 and number of variables p = 0.2n,0.5n,0.8n,1.2n.

The factor model has the following form:

y=AF+¢

where y indicates the p x n matrix of the simulated dataset. In the factor model, we
choose three factors. So, A displays a p x 3 matrix of the model’s coefficients, F' is a 3 xn
matrix representing the elements of the three factors. Besides, € is a p X n matrix which
contains the model’s error terms. These error terms are uncorrelated random numbers
generated through a multivariate normal distribution with zero mean and variance equal
to one. The three factors are considered to follow an autoregressive AR(1) process, as

given by the following equations:

Fi(t;) = 0.6F (ti_1) + e1(t;),

Fg(ti) = —0.5F2(t,‘_1) + eg(ti),
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b %150 100 200 400 800 1600 3200
0.2n | 003 016 0.505 0.735 0.92 0.965 0.98
0.5n | 0.075 0.315 0.66 0.845 0.885 0.97 0.975
0.8n | 0.065 0.39 0.695 0.86 0.925 0.935 0.965
12n |0 0 0 0 0 0 0
0.2n | 022 057 0.885 0.995 1 1 1
0.5n | 029 0715 094 1 1 1 1
0.8n | 04 0.77 098 1 1 1 1
12n | 046 0.765 0.97 1 1 1 1
0.2n | 023 057 088 0995 1 1 1
0.5n | 029 0715 094 1 1 1 1
0.8n | 04 077 098 1 1 1 1
12n | 046 0.765 097 1 1 1 1

Table C.1: The three matrices separated by a black line show the ratio-based estimator’s
success rate for three different occasions based on 200 iterations. In the matrix on the
top, the estimator exploits all of the eigenvalues for the estimation. In the middle
matrix, the p/2 highest eigenvalues are used by the estimator, whereas in the matrix
on the bottom, the |p/3] highest eigenvalues have been taken into consideration by the
estimator. This table refers to the case where we have considered three strong factors
in the model.

Fg(ti) = 0.3F3(tz‘_1) + 63(ti)

where e;’s are considered to follow a multivariate normal distribution with zero mean,
variance one, for i = 1,...,n, and they are uncorrelated to each other and across time.
In terms of the factor coefficients A, they are set under two different conditions.
Firstly, they are generated from a continuously uniform distribution taken from the
interval [-1,1]. On this occasion, they signify strong factors. Secondly, the uniformly

distributed random numbers of the first occasion are divided by p%2°

. On this occasion,
the factors’ strength decreases.

Tables C.1 and C.3 list the ratio of the successful estimates for 200 iterations as given
by the simulation procedure. A black line separates both tables into three different ma-

trices. These three matrices depict the estimator’s accuracy when all the eigenvalues,

one-half of the eigenvalues and one-third of the eigenvalues (from top to bottom, respec-
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50 100 200 400 800 1600 3200

p

0.2n | 0.165 0.680 0.940 0.995 1
0.5n | 0.410 0.800 0.980 1 1
0.8n | 0.560 0.815 0.990 1 1
1.2n | 0.590 0.820 0.990 1 1

0.2n | 0.075 0.155 0.270 0.570 0.980
0.5n | 0.090 0.285 0.285 0.820 0.960
0.8n | 0.060 0.180 0.490 0.745 0.970
1.2n | 0.090 0.180 0.310 0.760 0.915

—_ = = R = = e
—_ = = = = = = =

Table C.2: The simulation results as given in Lam et al. (2012) under the same simulation
settings for an aliquot of eigenvalues. The matrix on the top provides the simulation
results considering three strong factors in the model, whereas the matrix on the bottom
reports the simulation results for three weak factors in the model.

b * 50 100 200 400 800 1600 3200
02n |0 0.005 0.005 0.015 0.14 0.285 0.425
0.5n | O 0 0.025 0.035 0.135 0.3 0.44
0.8n | 0O 0 0 0.02 0.135 0.265 0.38
12n |0 0 0 0 0 0 0

0.2n | 0.105 0.1 0.205 0.44 0.78 0.98
0.5n | 0.075 0.09 033 0585 0905 1
0.8n | 0.04 0.14 041 062 094 0.995
1.2n | 0.105 0.15 0335 0.65 0925 1
0.2n | 0.185 0.1 0.2056 0.44 0.78 0.98
0.5n | 0.08 0.09 0.33 0.585 0.905 1
0.8n | 0.04 0.14 041 0.62 094 0.995
1.2n | 0.105 0.15 0335 0.65 0925 1

1
1
1
1
1
1
1
1

Table C.3: The three matrices separated by a black line show the ratio-based estimator’s
success rate for three different occasions based on 200 iterations. In the matrix on the
top, the estimator exploits all of the eigenvalues for the estimation. In the middle
matrix, the p/2 highest eigenvalues are used by the estimator, whereas in the matrix
on the bottom, the |p/3] highest eigenvalues have been taken into consideration by the
estimator. This table refers to the case where we have considered three weak factors in
the model.
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tively) are utilised in the ratio-based estimator. Furthermore, Table C.1 refers to the
case where we have considered strong factors in the model, whereas Table C.3 refers to
the case of weak factors. The simulation results of Lam et al. (2012) are also presented
in Table C.2 for three strong factors (matrix on the top) and three weak factors (matrix
on the bottom).

As we observe in Table C.1, the estimator presents a poor performance when it
makes use of all the eigenvalues. Especially the ratio-based estimator delivers completely
inaccurate estimates when the number of variables exceeds the data sample size. On
the other hand, when part of the eigenvalues is used in the estimation procedure, the
estimator’s efficiency increases intensely. As we detect, when one-half (middle matrix)
or one-third (matrix on the bottom) of the highest eigenvalues are utilised, we arrive at
identical results. Thus, we conclude that the effect of very low ratios when negligible
eigenvalues are used in the estimation procedure affects the validity of the ratio-based
estimator.

Table C.3 illustrates the simulation results where three weak factors have been incor-
porated into the simulation model. The ratio-based estimator reveals similar behaviour
to the results in Table C.1 as regards the evolution of the precision across the sample size
and the number of variables; however, the estimator’s accuracy declines conspicuously.
In addition, the failure of the estimator to correctly estimate the optimal number of

factors when all of the eigenvalues are exploited is apparent in this table too.

C.2 ACF Plots

This appendix section presents the ACF plots of the intraday volatility estimates,
taken as a time series sequence. These plots depict the autocorrelation of the volatility
estimates, as derived by the intraday volatility models of Chapter 2, for the stocks with

identifier code MMM, T, AA AXP, AIG, BAC, BA, CAT, CHK (nine first companies in

Table 1.2). The intraday estimates are based on 30-minute intraday intervals and cover
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a period of six days (i.e. 78 time lags).
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Figure C.1: ACF plots of RV for the first nine stocks of Table 1.2.
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c MMM = T

= =)

® ®

@ 0.6 @ 0.6

= £

o o

804 204

£ £

2 2

o 0.2 o 0.2

[=% [=8

g g Jo LI

c 0 c 0

gl 0 13 26 39 52 65 78 w 0 13 26 39 52 65 78
Lag Lag

= AXP c AIG

= 1=

& &

w 0.6 w 0.6

£ =

S S

k] 0.4 k] 0.4

2 2

0.2 @02

ot e

£ E

s 0 s 0

w 0 13 26 39 52 65 78 w 0 13 26 39 52 65 78
Lag Lag

o BA c CAT

= ) 1

K ©

w 0.6 w 0.6

= =

o o

§ 0.4 § 0.4

2 2

w02 w02

a a

£ | R A S I [ =

s 0 s 0

gl 0 13 26 39 52 65 78 w 0 13 26 39 52 65 78
Lag Lag

MMM s T
0.2 2 02
v
0.15 5015
8
0.1 g 0.1
0.05 L0.05 I
] = A
0 S 0 1l [l
0 13 26 39 52 65 78 U 0 13 26 39 52 65 78
Lag Lag
AXP s AIG
0.2 B 02
v
0.15 50.15
3
0.1 2 0.1
<<
0.05 TT 1 20.05
o AT E
0 13 26 39 52 65 78 U 0 13 26 39 52 65 78
Lag Lag
BA s CAT
0.2 B 02
I
0.15 50.15
3
0.1 £ 01
<<
0.05 1 20.05
P O I NP A PO PR E o
0 13 26 39 52 65 78 U 0 13 26 39 52 65 78
Lag Lag

Figure C.3: ACF plots of stRV{") for the first nine stocks of Table 1.2.
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C.3 Factor Analysis Findings - Daily RV-Based Estimates

——(all — a2 ——(Intr—all Intr Intr—all o —— (Intr—all
Stock RV( : RV }3:1 RV(I ) ZI 1° stR ( ) 21 1 stR ( ) }il UJRV§ )
Factor 1 || Factor 1 Factor 1 Factor 1 Fac tor 1 Factor 1
MMM 0 0 0 0 0 0
T 0 0.0001 0 0.0001 0 0
AA 0.0032 0.0009 0.0033 0.001 0.0023 0
AXP 0 0 0 0 0 0.0002
AIG 0.0001 0.0003 0.0001 0.0003 0.0001 0
BAC 0.0001 0 0.0001 0 0 0
BA 0.0005 0 0.0004 0 0.0002 0.0001
CAT 0.0004 0.0011 0.0004 0.001 0.0009 0.0001
CHK 0 0 0 0.0001 0.0025 0.0002
CVX 0.0003 0 0.0003 0 0 0
C 0 0 0 0 0 0
CLF 0.9739 0.976 0.9737 0.9775 0.9717 0.9893
KO 0 0 0 0 0 0
GLW 0.0019 0.0005 0.002 0.0006 0.0018 0
DAL 0.0032 0.0025 0.0033 0.0017 0.0027 0
DVN 0.0003 0.0005 0.0004 0.0003 0.0005 0.0033
DD 0 0.0001 0 0.0001 0 0
LLY 0.0005 0.0006 0.0005 0.0006 0.0005 0.0004
XOM 0.0001 0.0003 0.0001 0.0002 0.0001 0
FDX 0 0.0001 0 0 0 0.0002
F 0 0.0001 0 0.0001 0.0002 0
FCX 0.0006 0.0009 0.0005 0.0011 0.0002 0.0005
GE 0.0001 0.0001 0.0001 0.0001 0.0003 0
GIS 0 0 0 0 0 0
GM 0.0003 0.005 0.0003 0.004 0 0.0001
HAL 0 0.0007 0 0.001 0.0005 0.0002
HPQ 0.0005 0.0001 0.0005 0.0001 0.0004 0
HD 0.0001 0.0002 0.0001 0.0002 0.0002 0
IBM 0.0001 0 0.0001 0 0 0
JPM 0.0001 0.0004 0.0001 0.0003 0.0001 0
JNJ 0.0017 0.0031 0.0017 0.0031 0.0033 0
LMT 0.0003 0 0.0003 0 0.0001 0.0006
LOW 0.0003 0 0.0003 0 0.0002 0
MA 0.001 0.0022 0.0009 0.0023 0.0009 0.0022
MCD 0.0001 0.0003 0.0001 0.0003 0.0001 0.0001
MRK 0.0002 0.0006 0.0002 0.0006 0.0004 0
NOV 0.0008 0.0009 0.0008 0.0009 0.0002 0.0002
NEM 0.0055 0.0006 0.0055 0.0005 0.0053 0.0001
NKE 0 0.0003 0 0.0002 0 0.0001
PFE 0 0.0002 0 0.0002 0 0
PG 0 0.0001 0 0.0001 0.0001 0
SLB 0.0004 0.0008 0.0004 0.0006 0.0005 0.0001
TGT 0 0.0001 0 0.0001 0 0.0006
USB 0 0 0 0 0 0
UTX 0.0002 0 0.0002 0 0.0001 0.0007
A%/ 0.0001 0 0.0001 0 0.0002 0
\ 0.0023 0.0003 0.0023 0.0003 0.003 0
WMT 0 0 0 0 0.0001 0
DIS 0.0005 0 0.0005 0 0.0001 0
WFC 0.0002 0 0.0001 0 0 0

Table C.4: Squared factor loadings.
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Figure C.7: These boxplots show the range of the estimated eigenvalues (first three
row-panels) and the range of their ratios (last three row-panels) for the daily RV-based

volatility estimates for £ = 1 — 100.



C.4 Factor Analysis Findings - Intraday RV-Based Esti-

mates
LI 1 2 3 4 5 6 7 8 9 10 11 12 13
Stock b :
MMM 0 0.0001 0 0 0 0 0 0 0 0 0 0 0
T 0 0 0 0 0 0 0 0 0 0 0 0 0
AA 0.0001 | 0.0004 | 0.0024 0 0 0 0.0001 0 0 0 0 0 0
AXP 0.0002 0 0 0 0 0 0 0 0 0 0 0 0
AIG 0.0009 0 0 0 0 0 0 0 0 0 0 0 0
BAC 0 0.0001 0 0 0.0001 0 0 0 0 0 0.0001 0 0
BA 0.0005 0 0 0 0 0 0 0 0 0 0 0 0
CAT 0.0032 | 0.0001 | 0.0001 | 0.0001 0 0 0 0 0 0 0.0001 0 0
CHK 0.0095 | 0.0005 | 0.0012 | 0.0008 | 0.0007 0 0 0 0.0005 0 0.0045 | 0.0002 | 0.0004
CVX 0.0002 0 0 0.0001 0 0 0 0 0 0 0 0 0
C 0.0004 0 0 0 0 0 0 0 0 0 0 0 0
CLF 0.7554 | 0.0911 | 0.0428 | 0.0001 | 0.004 | 0.0063 | 0.0023 | 0.0017 | 0.0001 | 0.0013 | 0.0004 | 0.0003 | 0.0004
KO 0.0001 | 0.0001 0 0 0 0 0.0002 0 0 0 0 0 0
GLW 0.0005 0 0.0008 | 0.0003 | 0.0001 0 0 0 0 0 0 0.0001 0
DAL 0.001 0 0.0005 0 0.0002 0 0 0 0.002 | 0.0001 | 0.0053 | 0.0005 | 0.0006
DVN 0.0002 | 0.0001 | 0.0001 | 0.0003 0 0 0 0 0 0 0 0 0
DD 0 0 0.0002 0 0 0 0 0 0 0 0 0 0
LLY 0.0002 | 0.0001 | 0.0002 | 0.0002 0 0 0 0 0 0 0 0 0
XOM 0.0002 0 0 0 0 0 0 0 0 0 0 0 0
FDX 0 0.0004 0 0.0002 0 0 0 0 0 0 0 0 0
F 0.0017 | 0.0002 | 0.0002 0 0.0001 0 0 0 0 0 0.0001 0 0
FCX 0.0069 | 0.0012 | 0.0025 | 0.0011 | 0.0002 | 0.0001 | 0.0008 0 0 0 0 0 0
GE 0 0 0 0 0 0 0 0 0 0 0 0 0
GIS 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
GM 0.0006 0 0 0 0 0 0 0.0001 0 0.0001 0 0 0
HAL 0.001 0 0 0 0 0 0.0004 0 0 0 0.0001 0 0
HPQ 0.0058 0 0.0004 | 0.0003 | 0.0006 0 0.0008 | 0.0001 | 0.0001 0 0.0019 | 0.0002 | 0.0001
HD 0.0005 0 0 0 0 0 0 0 0 0 0 0 0
IBM 0 0 0 0 0 0 0 0 0 0 0 0 0
JPM 0.0004 0 0 0 0 0 0 0 0 0 0 0.0001 0
JNJ 0.0015 0 0.0003 | 0.0003 | 0.0003 0 0.0002 0 0.0001 | 0.0001 0 0.0003 0
LMT 0.0004 0 0 0 0 0 0 0 0 0 0 0 0
LOW 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
MA 0.0041 | 0.0001 | 0.0008 | 0.0002 0 0 0.0002 | 0.0001 0 0 0.0001 0 0
MCD 0 0 0.0001 0 0 0 0 0 0 0 0 0 0
MRK 0 0 0.0006 | 0.0002 0 0 0 0 0 0 0 0 0
NOV 0.0017 0 0.0002 0 0 0 0.0001 0 0 0 0 0 0
NEM 0.0001 | 0.0014 | 0.0004 0 0 0 0.0001 0 0 0 0 0 0
NKE 0.0008 | 0.0002 0 0.0002 0 0 0 0 0 0 0 0 0
PFE 0.0002 0 0 0 0 0 0.0002 0 0 0 0 0 0
PG 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
SLB 0.0013 | 0.0003 0 0 0.0001 0 0.0003 0 0 0.0002 0 0 0
TGT 0 0 0.0001 0 0 0 0 0 0 0 0 0 0
USB 0 0 0 0 0 0 0 0 0 0 0.0001 0 0
UTXx 0 0 0 0 0 0 0 0 0 0 0 0 0
VZ 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
Vv 0.0004 0 0 0 0 0 0 0 0 0 0 0 0
WMT 0 0 0 0 0 0 0 0 0 0 0 0 0
DIS 0 0 0 0 0 0 0 0 0 0 0 0 0
WFC 0.0001 0 0.0001 0 0 0 0 0 0 0 0.0003 0 0

Table C.5: This table illustrates the squared loadings of factor 1 for the intraday volatility
——(Int
estimates of RV( " r). The rows refer to the particular stock and the columns refer to

the specific intraday interval.
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L L . , .
Stock 1 2 3 4 5 6 7 8 9 10 11 12 13
MMM 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
T 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
AA 0 0 0 0 0 0 0 0 0 0 0 0.0001 0
AXP 0.0007 | 0.0001 0 0 0 0 0 0.0002 | 0.0001 0 0 0 0.0001
AIG 0 0 0 0 0 0 0 0 0 0 0 0 0
BAC 0 0 0 0 0 0 0 0 0 0 0 0 0
BA 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
CAT 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
CHK 0.0001 0 0 0 0.0001 | 0.0001 | 0.0002 0 0.0001 0 0 0.0002 0
CVX 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 0 0 0 0
CLF 0.4738 | 0.0968 | 0.031 | 0.0199 | 0.0003 | 0.0073 | 0.0023 | 0.0103 | 0.001 | 0.0003 | 0.0027 | 0.3089 | 0.005
KO 0 0 0 0 0 0 0 0 0 0 0 0 0
GLW 0 0 0.0003 | 0.0001 0 0 0.0003 0 0 0 0 0 0
DAL 0.0002 0 0 0.0002 0 0 0.0001 0 0.0001 | 0.0002 0 0.0032 | 0.0001
DVN 0 0 0 0.0002 0 0 0 0 0.0001 0 0 0 0
DD 0 0 0 0.0001 0 0 0 0 0 0 0 0 0
LLY 0.0003 | 0.0001 0 0 0 0 0 0 0 0 0 0 0
XOM 0.0016 | 0.0002 0 0 0 0.0002 0 0.0004 | 0.0003 0 0 0 0.0002
FDX 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
F 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
FCX 0.0013 | 0.0001 | 0.0001 0 0 0 0 0 0 0 0 0.0001 0
GE 0 0 0 0 0 0 0 0 0 0 0 0 0
GIS 0 0 0 0 0 0 0 0 0 0 0 0 0
GM 0.0002 0 0 0 0 0 0 0 0 0 0 0 0
HAL 0.0007 | 0.0003 0 0 0 0 0 0 0 0 0 0.0001 0
HPQ 0 0 0 0.0002 0 0 0 0 0.0001 | 0.0001 0 0 0
HD 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
IBM 0 0 0 0 0 0 0 0 0 0 0 0 0
JPM 0.0008 | 0.0001 0 0 0 0 0 0 0 0 0 0.0001 0
JNJ 0.0095 | 0.0014 | 0.0004 | 0.0001 0 0 0 0 0 0 0 0.0011 0
LMT 0.0002 0 0 0 0 0 0 0 0 0 0 0 0
LOW 0 0 0 0 0 0 0 0 0 0 0 0 0
MA 0.0002 0 0 0.0004 0 0 0.0002 | 0.0001 0 0 0.0001 0 0
MCD 0 0 0 0 0 0 0 0 0 0 0 0 0
MRK 0 0.0001 0 0.0001 0 0 0 0 0 0 0 0.0001 0
NOV 0.0001 0 0 0.0002 0 0 0 0 0 0 0 0.0001 0
NEM 0.0001 0 0 0.0004 0 0 0 0 0 0 0 0.0001 0
NKE 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
PFE 0 0 0 0 0 0 0 0 0 0 0 0 0
PG 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
SLB 0.0009 | 0.0001 0 0 0 0 0 0.0001 0 0 0 0 0
TGT 0 0 0 0 0 0 0 0 0 0 0 0 0
USB 0 0 0 0 0 0 0 0 0 0 0 0 0
UTX 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
A\ 0 0 0 0 0 0 0 0 0 0 0 0 0
\Y% 0.0001 0 0 0.0003 0 0 0.0001 | 0.0001 0 0 0 0 0
WMT 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
DIS 0.0017 | 0.0002 0 0 0 0.0004 0 0.0008 | 0.0006 | 0.0001 0 0.0002 | 0.0005
WEFC 0 0 0 0 0 0 0 0 0 0 0 0 0

Table C.6: This table illustrates the squared loadings of factor 1 for the intraday volatility
——(Intr—all
estimates of RV( S ). The rows refer to the particular stock and the columns refer

to the specific intraday interval.
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L L . .
Stock 1 2 3 4 5 6 7 8 9 10 11 12 13
MMM 0 0.0001 0 0 0 0 0 0 0 0 0 0 0
T 0 0 0 0 0 0 0 0 0 0 0 0 0
AA 0.0001 | 0.0005 | 0.0032 | 0.0001 0 0 0.0001 0 0 0 0 0 0
AXP 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
AIG 0.0009 0 0 0 0 0 0 0 0 0 0 0 0
BAC 0 0.0001 0 0 0.0001 0 0 0 0 0 0.0001 0 0
BA 0.0004 0 0 0 0 0 0 0 0 0 0 0 0
CAT 0.0031 | 0.0001 | 0.0001 0 0 0 0 0 0 0 0.0001 0 0
CHK 0.011 | 0.0004 | 0.0015 | 0.0009 | 0.0008 0 0 0 0.0007 0 0.0053 | 0.0002 | 0.0006
CVX 0.0002 0 0 0.0001 0 0 0 0 0 0 0 0 0
C 0.0004 0 0 0 0 0 0 0 0 0 0 0 0
CLF 0.7429 | 0.0795 | 0.0647 | 0.0004 | 0.004 | 0.0063 | 0.0016 | 0.001 | 0.0002 | 0.001 | 0.0004 | 0.0004 | 0.0004
KO 0.0001 | 0.0001 0 0 0 0 0.0002 0 0 0 0 0 0
GLW 0.0007 0 0.001 | 0.0002 | 0.0001 0 0 0 0 0 0 0.0001 0
DAL 0.0014 0 0.0004 0 0.0001 0 0 0 0.0018 | 0.0001 | 0.0045 | 0.0004 | 0.0005
DVN 0.0002 | 0.0001 | 0.0001 | 0.0003 0 0 0 0 0 0 0 0 0
DD 0 0 0.0003 0 0 0 0 0 0 0 0 0 0
LLY 0.0002 | 0.0001 | 0.0002 | 0.0002 0 0 0 0 0 0 0 0 0
XOM 0.0002 0 0 0 0 0 0 0 0 0 0 0 0
FDX 0 0.0004 0 0.0002 0 0 0 0 0 0 0 0 0
F 0.0017 | 0.0002 | 0.0002 0 0.0001 0 0 0 0 0 0 0 0
FCX 0.0074 | 0.0011 | 0.0031 | 0.0011 | 0.0002 | 0.0001 | 0.0007 0 0 0 0 0 0
GE 0 0 0 0 0 0 0 0 0 0 0 0 0
GIS 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
GM 0.0006 0 0 0 0 0 0 0.0001 0 0.0001 0 0 0
HAL 0.001 0 0 0 0 0 0.0004 0 0 0 0.0001 0 0
HPQ 0.0054 0 0.0004 | 0.0003 | 0.0005 0 0.0007 0 0.0001 0 0.0017 | 0.0002 | 0.0001
HD 0.0005 0 0 0 0 0 0 0 0 0 0 0 0
IBM 0 0 0 0 0 0 0 0 0 0 0 0 0
JPM 0.0004 0 0 0 0 0 0 0 0 0 0 0.0001 0
JNJ 0.0015 0 0.0003 | 0.0003 | 0.0003 0 0.0002 0 0.0001 | 0.0001 0 0.0003 0
LMT 0.0004 0 0 0 0 0 0 0 0 0 0 0 0
LOW 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
MA 0.0045 | 0.0001 | 0.0009 | 0.0002 0 0 0.0002 | 0.0001 0 0 0.0001 0 0
MCD 0 0 0.0001 0 0 0 0 0 0 0 0 0 0
MRK 0 0 0.0006 | 0.0002 0 0 0 0 0 0 0 0 0
NOV 0.0018 0 0.0002 0 0 0 0 0 0 0 0 0 0
NEM 0.0001 | 0.0014 | 0.0004 | 0.0001 0 0 0.0001 0 0 0 0 0 0
NKE 0.0007 | 0.0002 0 0.0002 0 0 0 0 0 0 0 0 0
PFE 0.0003 0 0 0 0 0 0.0002 0 0 0 0 0 0
PG 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
SLB 0.0011 | 0.0003 0 0 0.0001 0 0.0003 0 0 0.0002 0 0 0
TGT 0 0 0.0002 0 0 0 0 0 0 0 0 0 0
USB 0 0 0 0 0 0 0 0 0 0 0.0001 0 0
UTX 0 0 0 0 0 0 0 0 0 0 0 0 0
A\ 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
v 0.0005 0 0 0 0 0 0 0 0 0 0 0 0
WMT 0 0 0 0 0 0 0 0 0 0 0 0 0
DIS 0 0 0 0 0 0 0 0 0 0 0 0 0
WEFC 0.0001 0 0.0001 0 0 0 0 0 0 0 0.0003 0 0

Table C.7: This table illustrates the squared loadings of factor 1 for the intraday volatility
(Intr)
estimates of stRV . The rows refer to the particular stock and the columns refer to

the specific intraday interval.
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L L . .
Stock 1 2 3 4 5 6 7 8 9 10 11 12 13
MMM 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
T 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
AA 0 0 0 0.0001 0 0 0 0 0 0 0 0 0
AXP 0.0003 0 0 0 0 0 0 0 0.0001 0 0 0.0001 | 0.0002
AIG 0 0 0 0 0 0 0 0 0 0 0 0 0
BAC 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
BA 0.0004 0 0 0 0 0 0 0 0 0 0 0 0
CAT 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
CHK 0 0 0 0.0001 0 0 0.0001 0 0 0 0 0.0005 0
CVX 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 0 0 0.0001 0
CLF 0.4984 | 0.0493 | 0.0212 | 0.0139 | 0.0001 | 0.0003 | 0.0003 | 0.0008 0 0.0019 | 0.0024 | 0.3475 | 0.0035
KO 0 0 0 0 0 0 0 0 0 0 0 0 0
GLW 0 0 0.0002 | 0.0001 0 0 0.0002 0 0 0 0 0 0
DAL 0.0001 0 0 0.0003 0 0 0.0001 | 0.0002 0 0.0002 | 0.0001 | 0.0056 | 0.0002
DVN 0 0 0 0.0001 0 0 0 0 0 0 0 0 0
DD 0 0 0 0 0 0 0 0 0 0 0 0 0
LLY 0.0003 0 0 0 0 0 0 0 0 0 0 0 0
XOM 0.0016 | 0.0001 0 0 0 0.0001 0 0.0002 | 0.0002 0 0 0.0002 | 0.0007
FDX 0 0 0 0 0 0 0 0 0 0 0 0 0
F 0.0003 | 0.0001 0 0.0001 0 0 0 0 0 0 0 0 0
FCX 0.0011 | 0.0001 0 0 0 0 0 0 0 0 0 0.0001 0
GE 0 0 0 0 0 0 0 0 0 0 0 0 0
GIS 0 0 0 0 0 0 0 0 0 0 0 0 0
GM 0.0005 0 0 0 0 0 0 0 0 0 0 0 0
HAL 0.0009 | 0.0001 0 0 0 0 0 0 0 0 0 0.0003 0
HPQ 0.0001 0 0 0.0004 0 0 0 0 0 0 0 0 0
HD 0 0 0 0 0 0 0 0 0 0 0 0 0
IBM 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
JPM 0.0014 | 0.0001 0 0 0 0 0 0 0 0 0 0.0002 0
JNJ 0.0222 | 0.0017 | 0.0007 | 0.0001 0 0 0 0 0 0 0 0.0027 0
LMT 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
LOW 0 0 0 0 0 0 0 0 0 0 0 0 0
MA 0.0002 0 0 0.0006 0 0 0.0002 0 0 0 0.0002 0 0
MCD 0 0 0 0 0 0 0 0 0 0 0 0 0
MRK 0 0 0 0 0 0 0 0 0 0 0 0.0001 0
NOV 0 0 0 0 0 0 0 0 0 0 0 0 0
NEM 0.0002 0 0 0.0004 0 0 0.0001 0 0 0 0 0 0
NKE 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
PFE 0 0 0 0 0 0 0 0 0 0 0 0 0
PG 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
SLB 0.001 0 0 0 0 0 0 0 0 0 0 0.0001 | 0.0001
TGT 0 0 0 0 0 0 0 0 0 0 0 0 0
USB 0 0 0 0 0 0 0 0 0 0 0 0 0
UTX 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
A\ 0 0 0 0 0 0 0 0 0 0 0 0 0
\Y% 0.0002 0 0 0.0005 0 0 0.0001 0 0 0 0 0 0
WMT 0 0 0 0 0 0 0 0 0 0 0 0 0.0001
DIS 0.002 | 0.0002 0 0.0001 0 0.0002 0 0.0005 | 0.0006 | 0.0001 0 0.0007 | 0.0019
WEFC 0 0 0 0 0 0 0 0 0 0 0 0 0.0001

Table C.8: This table illustrates the squared loadings of factor 1 for the intraday volatility
(Intr—all)
estimates of stRV . The rows refer to the particular stock and the columns refer

to the specific intraday interval.
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L L . .
Stock 1 2 3 4 5 6 7 8 9 10 11 12 13
MMM 0.0003 0 0 0 0 0 0 0 0 0 0 0 0
T 0 0 0 0 0 0 0 0 0 0 0 0 0
AA 0.0003 | 0.0001 0 0 0 0.0001 | 0.0004 0 0 0 0 0 0
AXP 0.0024 | 0.0004 | 0.0001 0 0.0001 0 0 0.0001 | 0.0002 0 0 0 0.0001
AIG 0 0 0 0 0 0 0 0 0 0 0 0 0
BAC 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
BA 0.0003 0 0 0 0.0001 0 0.0001 0 0 0 0 0 0
CAT 0 0 0 0 0 0 0 0 0 0 0 0 0
CHK 0.0001 0 0 0 0 0.0007 | 0.0007 0 0.0002 | 0.0001 0 0 0
CVX 0 0 0 0 0 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 0 0 0 0
CLF 0.3594 | 0.3041 | 0.056 | 0.0411 | 0.0396 | 0.0261 | 0.0065 | 0.0002 | 0.0003 | 0.0021 | 0.0002 | 0.1185 | 0.0021
KO 0 0 0 0 0 0 0 0 0 0 0 0 0
GLW 0.0001 | 0.0003 | 0.0005 0 0 0.0002 | 0.0002 0 0 0 0 0.0001 0
DAL 0 0 0 0 0 0.0007 | 0.0003 0 0.0003 | 0.0002 | 0.0001 | 0.0004 | 0.0001
DVN 0.0007 | 0.0001 0 0 0.0002 0 0 0.0001 | 0.0007 0 0.0001 | 0.0001 | 0.0001
DD 0.0006 | 0.0001 | 0.0001 | 0.0001 0 0.0001 0 0 0 0 0 0 0
LLY 0.0002 | 0.0003 0 0 0.0001 | 0.0002 0 0 0 0.0001 | 0.0001 | 0.0001 0
XOM 0.0005 | 0.0001 0 0 0 0 0 0.0001 | 0.0001 0 0 0 0.0001
FDX 0 0.0003 0 0 0 0.0001 | 0.0006 0 0.0001 0 0 0.0001 0
F 0.0001 0 0 0.0002 0 0 0.0001 0 0 0 0 0 0
FCX 0.0006 0 0.0001 0 0 0.0001 | 0.0001 0 0 0 0 0 0
GE 0 0 0 0 0 0 0 0 0 0 0 0 0
GIS 0.0005 | 0.0001 0 0 0 0.0001 0 0 0.0001 0 0 0 0
GM 0 0.0001 0 0 0 0 0 0 0 0 0 0 0
HAL 0.0006 | 0.0004 0 0 0.0001 0 0 0 0 0.0001 | 0.0001 0 0
HPQ 0.0002 0 0 0 0.0001 | 0.0001 0 0 0.0001 | 0.0001 0 0 0
HD 0 0 0 0 0 0 0 0 0 0 0 0 0
IBM 0 0 0 0 0 0 0 0 0 0 0 0 0
JPM 0 0 0 0 0 0 0 0 0 0 0 0 0
JNJ 0.0006 | 0.0001 0 0 0 0 0 0 0 0 0 0.0001 0
LMT 0.0014 | 0.0001 0 0.0001 | 0.0005 0 0 0.0002 0 0.0005 0 0 0.0001
LOW 0.0001 | 0.0001 0 0 0 0.0001 0 0 0 0 0 0 0
MA 0.0014 | 0.001 | 0.0008 | 0.0003 | 0.0012 | 0.0005 | 0.0002 | 0.0005 | 0.0003 0 0.0002 0 0
MCD 0 0 0 0 0 0 0 0 0 0 0 0 0
MRK 0.0001 | 0.0001 0 0 0 0 0 0 0 0 0 0 0
NOV 0 0 0 0 0 0.0004 0 0.0001 0 0 0 0 0
NEM 0 0.0001 | 0.0001 0 0 0.0001 0 0 0 0.0001 0 0.0006 0
NKE 0.0004 | 0.0002 0 0 0 0 0 0 0 0 0 0 0
PFE 0 0 0 0 0 0 0 0 0 0 0 0 0
PG 0.0002 0 0 0 0 0 0 0 0 0 0 0 0
SLB 0.0001 0 0.0001 0 0 0.0002 0 0 0 0 0 0.0001 0
TGT 0.0007 | 0.0001 0 0.0001 | 0.0001 | 0.0001 0 0 0 0 0 0 0
USB 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
UTX 0.0014 | 0.0005 | 0.0001 0 0.0002 | 0.0001 | 0.0001 0 0 0 0 0 0
A\ 0 0 0 0 0 0 0 0 0 0 0 0 0
\Y% 0.0001 | 0.0002 | 0.0001 0 0.0001 | 0.0001 | 0.0005 | 0.0005 0 0 0 0 0
WMT 0 0 0 0 0 0 0 0 0 0 0 0 0
DIS 0.0004 | 0.0001 0 0 0 0 0 0.0001 | 0.0001 0 0 0 0.0001
WEFC 0 0 0 0 0 0 0 0 0 0 0 0 0

Table C.9: This table illustrates the squared loadings of factor 1 for the intraday volatility
—— (Intr—all
estimates of wRV( e ). The rows refer to the particular stock and the columns refer

to the specific intraday interval.
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Figure C.13: These boxplots show the range of the estimated eigenvalues (first three row-
panels) and the range of their ratios (last three row-panels) for the intraday RV-based
volatility estimates for £ =1 — 100
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Appendix D

Appendix for Chapter 4

This appendix refers to Chapter 4. In particular, we derive the local smoothers up
to the third polynomial degree in D.1. We provide the derivations of MSE and CV
in D.2 and D.3, respectively. Besides, the derivation of specific properties that used in

the derivation of our proposed LPR-based estimator are given in D.4.

D.1 Derivation of the Local Polynomial Estimators

This appendix section gives the derivation of the Nadaraya-Watson (appendix D.1.1),
the local linear (appendix D.1.2), the local quadratic (appendix D.1.3) and the local
cubic (appendix D.1.4) estimators. Unless explicitly stated otherwise, all quantities in
this appendix section refer to a particular point xy, and thus further clarification is

omitted. So, for instance, by sp we mean so(xg), by w11 we mean w1 (o) and so on.

D.1.1 Nadaraya-Watson Estimator

This appendix section provides the derivation of the local constant estimator (i.e. for
the case D = 0). By Equation (4.3), the coefficients of the regression function at point
xg, are given by:

B\IO = (Xg:)onXxo)_leTonoY
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which can be separated into two terms, as follows.

For X! W,,Y :

Kh(frl —Io) 0 0 Y1
0 Ky(xo —x ... 0 Y5 n
(1 1. 1>>< , 3 : 0 _ <| =3 wav;
. . '-. : . Z:l
0 0 Kh(xn - xO) Yy

where w;; = Kp(x; — xp).

For X1 W, X, :

w11 0 0 1
0 1wy .. 0 1 n
(1 1 1)>< , X = wii = s
o i=1
0 0 Wnn 1

Therefore, the inverse form of X;;FO Wao Xz, 1s given by:

B 1
(X W Xao) ™= —.
80

So for the understudy point zg, the Nadaraya-Watson estimator is given by:

D i WiiYi

Bo = (ngonxo)ingz)WmY - Z?:1 Wi

Global Smoothing Matrix for the Nadaraya-Watson Estimator

The local smoothing matrix, at a particular point xg, has the following form:

S(205 1) = Xag (XE Way X)) P XL W
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Therefore, by the derivations above, we conclude that the local smoothing matrix S(xo; h)

can also be written as:

1 wi1 w22 Wnn
S0 S0 S0
1 wil w22 Whn
_ S0 S0 S0

e <510) X <w11 w22 wnn> =
1 wi1 w22 Wnn
S0 S0 S0

For n random specified points, we conclude with the following global smoothing matrix:

wii(z1)  wae(w1) Wnn (1)
so(x1) so(z1) 7 so(z1)
wit(z2)  waz(w2) Wnn (T2)
so(z2) so(z2) T so(z2)
wi(Tn)  wo22(xn) Wnn (Tn)
s0(xn) s0(Tn) ce s0(zn)

The argument x; in the parenthesis indicates that the corresponding value was obtained
for the i-th (specified) point where we choose to evaluate the observations at. In the
above derivation, the number of specified points which has been selected is equal to
the number of observations. However, this is not a limitation as regards the number of
points we can choose. So, a different number (higher or lower) of specified points can be

selected, depending on how frequently one wants to approximate the regression function.

D.1.2 Local Linear Estimator

This appendix section provides the derivation of the local linear estimator (i.e. for
the case D = 1). By Equation (4.3), the coefficients of the regression function at point
xg, are given by:

on = (Xﬂzz)onXﬂﬁo)ing)onY

which can be separated into two terms, as follows.
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For XITOWQCOY :

Ky (w1 — x0) 0 0
1 1 1 0 Kh($2—$(]) 0
X
(r1 — o) (z2—x0) ... (Tn— o) : :
0 0 Kh(xn - mO)
i wiiYi
Yo diwiY;
where w;; = Kp,(z; — x9) and df = (x; — x0)".
For X1 W0 X, :
w11 0 0 1 dl
1 1 1 0 woo . 0 1 d2
X X
di do dn, '
Z?:l Wij Z?:l wiid; S0 51
S wiidi Yo wid; 51 82
Hence, the form of (X7 Wa Xzo) t XL Wy, Y can be expressed as:
_ 1 S2  —81 Yo wiY;
(X Wao Xao) XL WY = ey e
0°2 7 °1 —51 S0 > diwi Y

Yo (s2 — s1di)wyY;

S082 — 51 Yo (=s1 4 sodi)wyY;
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For the understudy point zy, we end up with the following coefficient estimators:

n

2 (s2 — s1di)wi;Yi
BO = Z Snso — 52 )
i=1 052 = 21

~ " (=51 + sod;)wiY;
b= Z S0S9 — §2 '
i=1 0°2 = =1

Global Smoothing Matrix for the Local Linear Estimator

The local smoothing matrix, at a particular point xg, has the following form:
S(wos h) = X (X Wao Xag) ™ X2 Wi,

Hence, by the derivations above, we conclude that the local smoothing matrix S(zg; h)

can also be written as:

1 d;
1 d 52 =31 w w W
2 % 808278% 808278% % 11 22 nn
—S1 S0
8052_8% 8052_5% d1w1 dgwgg . dnwm
1 d,
1 d;
(s2—s1d1)wi1 (s2—s1d2)waz (s2—s1dn)wnn
1 d2 3052—5% 8052—s§ e 5052—5%
= X
(=s1+sodi)wir  (—s1+sod2)was (=s1+so0dn)wnn
sosz—s% sosg—s% e 5052—5%
1 d,
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[(s2—s1d1)+(—s1+s0d1)d1]wis

[(s2—s1d2)+(—s1+s0d2)d1]wan

505275?

[(s2—s1d1)+(=s1+50d1)d2]wiy

SQngsf

[(s2—=s1d2)+(=51+50d2)d2]was

S082—87

[(s2—s1d1)+(=s1+50d1)dn]wis

S082—87

[(s2—s1d2)+(—s1+s0d2)dn]waz

SOSQ—S%

S0S82 —S%

[(52_sldn)+(_81+50dn)d1]u’nn
505275%

[(s2—s1dn)+(=s1+50dn)do]Wnn
S082—87

[(52_Sldn)+(_51+30dn)dn]wnn

SpS2 —S%

All the above quantities refer to a particular point xg; thus, further clarification is
omitted. So, for instance, by so we mean so(zg), by w11 we mean wi1(zo) and so on.

For n random specified points, the global smoothing matrix is given by:

[1 (z1)+B1 (z1)d (#1)]wii (1)

[v2(z1)+B2 (1) d1 (#1)]waz (1)

&(z1)

[v1 (z2)+B1 (z2)d2(w2)|wi1 (z2)

&(z1)

(2 (22)+B2(22)d2 (w2)| w2z (z2)

&(x2)

[al (xn)‘f'ﬁl ($n)dn (xn)]’wll (33")

&(z2)

[o2(@n)+B2(Tn) dn (zn)|waz (zn)

&(zn

&(zn

[an (z1)+Bn (z1)d1 (z1)]wnn (T1)

&(x1)

[an (z2)+Bn (z2)d2(w2)]wnn (T2)

&(x2)

[Ocn (In)""ﬂn (-In)dn (-Tn)}wnn (-fn)

£(zn)

where £(;) = so(w;)s2 () —s7(2:), (i) = sa(wi) —s1(wi)dj(2) and Bj(w;) = —s1 (i) +
so(x)dj(x;) for 1 < 4,5 < n. Additionally, the argument x; denotes the i-th specified
point where we choose to evaluate the observations at. In the above derivation, the
number of specified observations which has been selected is equal to the number of the
observations. However, this is not a limitation as regards the number of points we can
choose. So a different number (higher or lower) of specified points can be selected, de-

pending on how frequently one wants to approximate the regression function. Then, the

global smoothing matrix will be transformed analogously.
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Furthermore, in the case we choose to evaluate our regression function at the same
points as those given from the observations, then the global smoothing matrix is further

simplified as follows:

s2(z1)wii(w1) [ov2(21)+B2(21)d1 (x1)]waz (1) [an (1) +Bn (x1)d1 (21)]wnn (1)
&(z1) &(x1) (1)
(o1 (w2)+P1(x2)d2(z2)|wil(x2) s2(x2)waz(x2) [an (22)+Bn(z2)d2 (x2)]wnn (T2)
&(z2) &(w2) T &(w2)
[21(zn)+B1(Tn)dn (Tn)|wii(zn)  [a2(2n)+B2(%n)dn (Tn)]wez(Tn) 52(2n)Wn (Tn)
£(zn) £(zn) T &(zn)

D.1.3 Local Quadratic Estimator

This appendix section provides the derivation of the local quadratic estimator (i.e.
for the case D = 2). By Equation (4.3), the coefficients of the regression function at
point xg, are given by:

Beo = (XE Wy Xuo) L XE W, Y

which can be separated into two terms, as follows.

For X] W, Y :

Kh(.’E1 — .’Eo) 0 0
1 1 1
0 Kh(l’g — 1‘0) 0
(1 —x0) (z2 —x0) (xn —x0) | X .
(21— w0)* (22 —20)? (Tn — 0)?
0 0 Kh(xn - LL'())
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Yy wiiY
= | Y, diwuYi
Sy dFwiY;
where w;; = Kp,(z; — x9) and df = (x; — x0)".

For X1 WX, :

o 1 w0 0 1 d &
0 w2 ... 0 1 d2 d%
dy dy ... dp| x| o A e
2 oo & - '
0 0 ... wy 1 dp &2
Do Wi Y widi Yy widy 50 S1 82
= | Y wadi Y op wad? Y wid] | = | s1 sy s3
Yoy widy Yoy wid] Y wiidy S2 83 S84

As regards the calculation of (X] Wy X4,) ™! :

So S1 S2
e The determinant of A = | gy sy 3| is:
S2 83 54

det(A) = sps254 + S15283 + S15283 — s% — 30352)) — S%S4

= 50(5054 — 52) + 52(25153 — 53) — 5754.

e Therefore, the matrix of co-factors of A is:

85984 — s§ —(81584 — S253) 5183 — s%
—(81584 — 5253) 5084 — 53 —(s0s3 — s152)
5183 — 83 —(s0s83 — $152) 5082 — S5

e The transpose matrix remains the same as the matrix of co-factors:
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8984 — S% 5983 — 81854 8183 — 8%
§983 — S154 S0S4 — S% §1892 — S0S3

8183 — S% 8189 — S0S3 S0S2 — S%

Hence, the inverse form of X! W, X, is given by:

S§984 — S?)) S§9283 — 8184 §183 — S%

1
2
5. X | 8283 — 8184  S0S4 — 83  S1S2 — 8083

XE W, X))t =
( zo "' To zf’) 30(3234—S§)+82(23153_8%)_8134

5183 — 8% S§182 — S0S3 5082 — 8%

So, the form of (X7 Wa,Xzy) t XL WaoY can be expressed as:
(X%onXmo)lel)onY =

2 2 n
S9584 — S5 8253 — 5154 5183 — Sj ) im1 Wi Y5
1
= X | s983 — 818 S0S4 — S2 8189 — Soss | X §7L d;w;; Y
2 2 2 293 194 094 2 122 0°3 — g Wei L g
S0(8284 — 83) + s2(25183 — 83) — S7sa i=1

2 2 no g2
5183 — S5 8182 — S0S3  S0S2 — ST > iy diwyY;
: : . T —1yT _ 1
which gives: (X, WaoXeo) ™ Xp WeoY = N PP N P

(5281 — $3) i wiiYi + (s283 — 5184) Dy diw;i Vi + (s183 — 83) >y 2wy Vs
X | (s253 — 5154) Doiq Wi Vi 4 (Sos4 — 83) Doi 1 diwy Vs + (s152 — sos3) >ory diw;;Y;

(5183 — 83) Doiq wiiYi + (s182 — 5083) Do iy diwii Vi + (s0s2 — 87) Doy dZw;;Y;

For the understudy point xg, we end up with the following coefficient estimators:

> " (8284 — S?)) + (8283 — 8184)dl‘ + (8183 — S%)d?)’w”Y;
50 - Z ’

S0(s284 — sg) + 52(28183 — 82) — 8254

i=1

> n (8283 — 8154 + (5054 — S%)Cll + (8182 — Sosg)d?)wiﬂfi
Br=>_

— so(s284 — s3) + 52(2s183 — s3) — s¥s4 ’
B\Q _ zn: (8183 — S% + (8182 — Sosg)di + (8082 — S%)d?)’w“Y;
P So(s284 — 5%) + 52(28183 — 83) — %54
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Global Smoothing Matrix for the Local Quadratic Estimator

The local smoothing matrix, at a particular point xg, has the following form:

S(x0§ h) = Xug (XxToWonﬂﬁo)_lxaz;WfUO'

Hence, by the derivations above, we conclude that the local smoothing matrix S(xo; h)

can also be written as:

2
1 di dy 5254—8%  s9s3—sisq  S153—S3 w w w
9 I3 I3 11 22 v nn
1 d2 d2 508 52
8983—S8184 054— S$182—S80S8 —
X € 2 1 25 03 X d1w1 d2w22 e dnwnn -
2 2
$183—S8 S$182—5S0S 5082—8 2 2 2
2 122 2023 1 d1w11 d2w22 e dnwnn
2 3 3
1 d, d?
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(1x)3 e (“)3 (“2)3

(V) wum[(va) gp(Ha) ho(Ha) up(Ha) tat () ] (vx)eem|(vx) gp(Ha)eot(Ha) vp(Va)eat (V) o] (M) uum[(ta) gp (V) Lo+ (a) up(Ha) tat () L]
(ex)3 e (5z)3 (cx)3

(ez)vum|(2z) gp(a) “o+(2x)Tp(2a) “a+(Bw) vrl] (z)eem[(ex)gp(ex)to+(ew)ep(ex)bat(Ca) er] (5@) 1tm|(52) gp(ex) Lo+ (5w ep(ex) L+ (Gx) ]
(Tz)3 e (fx)3 (fz)3

(tz)vum](tz) gp(Ta) “o+ (1) Tp(T@) “a+ (@) vrl] (1z)zem|(Tz) gp(Ta) 2o+ (1a) Ip(Te) et (1)) (tz) 1t [(12) gp(1x) Lo+ (@) Ip(1x) L+ (Ta) 1]

XLIJeW SUIJOOWS [RYO[3 SUIMO[[0] 93 [Im opn[ouod am ‘syutod poyroods wopuel U I0g .mw — o505 =9

‘€505 — tsls =5 ‘Cs — V505 = ¢ ‘Ts — €515 = L ‘Tsls — €585 = ¢f ‘E5 — V55 =0 ‘Vsls — (&5 — €s1s7)Cs + (§5 — V5s)0s = 3 oToyMm

z z e
3 - 3 3
wum[Tp(p I+ "pa+L)+4p(pa+ U po+d) +(Zph+ pg+o)] @m[p(Epo+epo+A)+ p(Epo+2pe+d)+(Cpi+tipg+o)]  TIm[ p(Ip5+Tpo+L)+4p(Ip>+Tpe+d)+((pi+Tpgd+0)]
3 - 3 3
wum[Ep(Tpd+1pa+L)+2p(pa+ pe+g)+(pi+“pd+o)] gem[ep(Epo+2epa+L)+ep(Epa+epo+d)+(Ephtepg+o)]  TIm[Ep(Ipd+Tpa+L)+ep(ipa+1pe+g)+(fph+1pg+0)]
3 R 3 3

wum[Ip(epI+ pa+L)+1p(ppo+"po+g)+(pA+ pgd+o)] sem[Ip(gpo+epr+4h)+1p(Epo+opo+d)+(gpi+ipg+o)]  TIm[Ip(gpdo+1po+4)+1p(po+1po+)+(gph+ IPg+0)]
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(ex)uum((ex) gp(2a)b+(2) vp(2a)g+(2x)0) (cx)eem () (ez) T ((22) gp(2a) b+ (22) Tp(ea) g/ +(2x)0)
(Iz)3 . (12)3 (tz)3
(Ta)wim((Tz) gp(Te) b+ (Ta) vp(T) g+ (T)0) (tz)eem((1z)gp(Te)lt(1z)2p(1a)g+(1x)0) (tz) ()0
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(f)gp (1) + () p(*2)e + (') = (*x)ia e
(0)gp ()l + () p(t2)g + (w)o = (*0)nl o
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D.1.4 Local Cubic Estimator

This appendix section provides the derivation of the local cubic estimator (i.e. for
the case D = 3). By Equation (4.3), the coefficients of the regression function at point
Tg, are given by:

on = (X;;)onXxO)_lX;WxOY

which can be separated into two terms, as follows.

For X1 WY :

1 1 1 Kn(z1 — x0) 0 0 Y,
(xr1 —x0) (2 —2x0) ... (Tp—x0) y 0 Kp(xe — o) ... 0 y Ys
(1 —20)*  (x2 — 20)? (20 — z0)?
(r1 —20)® (2 —20) ... (20 —x0)3 0 0 coo Kp(zn — x0) Y,
w11 Wy ...  Wnn Yi Yo wiY;

B diwyr dowaa ... dpWan y Y, B Yo diwi Y

d2wyy d3way ... d2wpy : Yo d?wiiYi

d3wyy diwey ... dBwpp Y, S dBwY;

where w;; = Kp(z; — 2¢) and df = (z; — x¢)? for ¢ =1, ..., 3.

For X W, X, :

11 ... 1 wyy 0 ... 0 1 & & d}
di do ... dy 0 wyp ... 0 1 dy d3 d
X X

2 a3 ... &2
d d3 ... & 0 0 ... wpy 1 d, d?2 d&
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n n n 2 n 3
Do Wi e wipdy Y wgds Y wids 50 S1 S2 83

n n 2 n 3 n 4
B Do widy Y widy Y widy Y wid; 51 os2 s3 s
n 2 n 3 n 4 n 5
Do widy D widy Y widy YO wid; S3 83 S84 S5
S wudd ST widd SO wed? ST wid? S3 S4 S5 S
i=1 Wity i=1 Wity i=1 Wity i=1 Wity 3 4 5 6

As regards the calculation of (X} Wy X4) ™t :

So S1 S2 83

. 81 S22 S3 S4 | .
e We can see that the determinant of A = is :

S2 83 S4 S5

det(A) =sps25486 + 250535485 + 281838?1 + s?s% + 251595386 + 25%5355 + s%si + séf

— (sosi + S()SQS? + 303336 + 8%8486 + 2313335 + 2515954585 + 3336 + 3525%54).

e The elements (row, column) of the matrix of co-factors have the following form:

S2 83 S4
) _ 3 2 2
(1,1) 1 |s3 s4 s5| = 525456 + 2535455 — S5 — 8255 — 8356,
S4 S5 S¢
S1 83 54
1.9): — a2 2 _ _ 2
(1,2) : —|sy s4 s5| = 5155 + 5355 + 525386 — 515456 — 525455 — 5355,
53 S5 Sé6
S1 82 S4
(1,3) : = + + S987 — S354 — — 53
y9) ¢ So 83 Sy| = S153S86 T 5253585 T S254 — 5354 — 515455 — 5356,
83 S84 S6
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S1

52

53

51

53

54

50

82

53

50

52

53

50

52

53

51

82

S4

50

S1

53

S0

S1

53

52

83

S4

82

54

S5

S2

S4

S5

S1

83

S4

S1

53

S4

52

83

S5

52

53

S5

S1

82

84

83

S4

S5

83

S5

S6

83

S5

56

83

S5

S6

82

S4

S5

53

84

S6

83

84

S6

83

S4

56

- S4,
3
Sa+ 8 + 51838 282
3 19355
82 S985 S
4
3 1
3

5355,
525485

515456

Sg —

1+ 5283

2 4 5353

== 5]_55

2
52 — 5356,
80 5
2 —_
S4
s
2525355
S
+
56
S4
= s

5S4,
S3
— 59
S5

— 5183

S6

— 5053

S6

182

+s

S5

s3 + 5084

= 53

5255,
2 s1

2 - 8084

- 8253

+ 5584

5354

+ 51

S5

= 5083

2
56,
— 55
S5
S4
2 8584 — 51
+ 3234 -
S5
S3
2
+ s
S6
— 8183

S4,
S3
— S9
S5

— 5183

56

— 5083

56

152

+ s

S5

3 + 8084

= 53

2
2 - 8186,
54
2 S0
53
— 89
2818384
+
S6
52
= 50
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82
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83

84
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52
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S 5183 51898
25 09295

8583 + 538 S1S8 S0S

1

34

2 S0 +

3

2

54,
— 28983

3 — 515355

52+ 5555

3+ 5154

53

S5,
1— 518
52 — 808]

— $983

+'S%S4

5384

+ 81

S5

= 5083

4,
3 192

S 5183 51898
2 5 05255

S S0S

1

8583 + 8058354 + S

2 0

3

2

) S/ D 2 ) 3 1 .
S0S2S S S 84
25 S 53 S S

ts:
onen

ing comp

he following

t the

we se

Now,

o =

(=

S
+ 2535485
S6
5254
S
+ 2598385
56
5054
+ 2818384
S6
5052

+ 2515253
Sq4
5052

2 5386,
3 - 5285
— 84

2 8356,
2 - 8085
- 3334

2 8%86,
2 505
- 3233

2

2 - 8184,
3 5053
_ 32

8%85,
525485

518456

2 + 525356

2 + 5384

= 5155

2
56,

— 55

5485
2 s§34 — 81
+ s95; —
S5
53
+ 82
S6
5153

5S4,
— 28983
518385

2 J—

S5

2 53

5+ s181+

= s}

’[7 =

S4,
— S§283
S5

— 8183

505356

5256

+ 81

S5

3 5054

0 = 33 +
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K = 808385 + S15354 + 5354 — 828§ — SoSZ — 515985,
)\ = 52 2 2

= 8583 + S0S384 + 7S5 — S0S285 — S1S3 — S15254,

_ 9 9 2 2,2 4 9 942 2.2 4
& = 50595456 + 250535455 + 51838y + 8155 + 251525386 + 2555355 + S554 + S3

2 2 2 2 2
— (sosi ~+ 805255 + 505356 + 515456 + 2515355 + 251525455 + 8%86 + 3525554).

Then, we obtain the following form for the symmetric matrix (X Wy, Xz0) ™

a € ¢
1 e B 0 k
- X
S ¢ 07 A

n kK 1)

Thus, (XTWX) ' XTWY can be expressed as:

a € ¢ n Z?:l w;; Y;
1 e B0 kK Yo diwY;
J— >< p—
6 C Y A Zz 1 dl g
ponoA 5) \Sn dey;

adt  wiY;+ed o diwi Y+ Y0 2w Y +n Y on ddw;Y;
1 ed ot wiYi+ O diwi Y + 0> Zw“Y—&—HZZ 1 ZwiiYi
3 CY O wi Y+ 030 diwi Yy +y Yo 2w Y + A ddwyY;
NI wiYi + kY diwi Y + A dPwy Y 4 63 d3wY;

So for the understudy point xg, we end up with the following coefficient estimators:

~ " (a + ed; + Cd? + ndd)wiY;
ﬁlzz( (g nd;) ’

=1
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n

~ €+ Bd; + 0d? + kd3)w;;Y;
B=Y! )

i=1 3 ’
S (€ 0d; + yd? + MNP )wyY;
By = Z (¢ gl ) ,
=1 5
5= (04 kdy 4 A2+ 0d3)wyY;
A=Y (n . JwiiYi
=1
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D.2 Derivation of the Mean Squared Error

By definition, the bias and variance at a point xg can be expressed as:

Bias(xg) = E[ﬁ”b(k) (xo; h)] — mk) (z0),

Varlao] = E [ (® (z0: ) — Efa® (xo: )] ) |

where m¥) denotes the estimation of the kt-derivative of the m function. Then, the

MSE at a point xg, given the bandwidth h, is defined as:

MSE(z:h) = E :(fﬁ(k)(xo; h) — m(k)(xo))z}

=E :(ﬁ(k) (zo; h) — E[ﬁ@(k) (o3 h)] + E[fﬁ(k) (z0; h)] — m®) ($0)>2}

=F :(fﬁ(k) (zo; h) — E[fﬁ(k) (zo; h)])Q} IR [(E[m(k) (z0; h)] — m®) (m0)>2}
+2E [(m(’“) (z0; h) — E[m® (zq; h)]) (E[m(k) (203 h)] — m™® (mo))]

= Var[zg] + Bias*(xg).

D.3 Derivation of the Expectation of Cross-Validation

The expectation of the cross-validation can be written as follows:
1, )
B[CV()] =B |- S (@ () — i)
i=1

[i zn: ( y(zis h) — (m(z) + U(wi)ﬁz‘)f] (by Equation (4.1))

=1

1112": <E Mg (w53 h) — m(xl)>2} —2E [(ﬁz(_i)(:ﬂi;h) - m(a:ﬁ)a(xi)ei}—l—
i=1

+2E[m(zi)o(zi)e] + Elo ()f])

— ?122 <E [(ﬁl(_i)(ivi; h) — m(:vﬂ)z} + GQ(xi)) (since E[e;] =0, Var[e] = 1)
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1 R 9 1
%/o E{(m(m,h)—m@)) }dm—}—/o o?(z) dx

— MISE + o2

where 02 denotes the integrated variance, so it is a constant.

D.4 Moments of Returns

For the moments of normal random variables, we use the following lemma.

Lemma D.4.1 (Moment Generating Function for a Normal Random Variable - Ross
(2010)) The moment generating function for a normal random variable X ~ N(u,0?)

18 given by:

1
M(t)=E [etx} = exp {t,u + 202t2} .

So E[X*] = M®)(0), for k = 1,2,.... In particular, the first four moments are given by:

M'(t) = M(t)(p+0°t),  M'(0)=p
M"(t) = M'(t)(u+ o*t) + > M(t), M"(0) = u? + o>
M"(t) = M"(t)(u+ o*t) + 20°M'(t), M"(0) = p3 + 3uo?

MW (t) = M"(t) (1 + 0%t) + 362 M" (), MDD (0) = pu* + 6p%0> + 30

We recall that:

R*(t;) = /ti w(s)ds + /ti a(s)dW (c) ~ N(/ti u(§)d§,/ti 02(§)d§) 2 N(ry,s?)

ti—1 ti—1 ti—1 ti—1

(D.1)

where r; = E[R*(t;)] and s? = Var[R*(t;)]. So by Lemma D.4.1, we have that:

E [(R*(tl))z} =ri+s?, E [(R*(tz))g] =73 +3rs?, E [(R*(ti))4] =7} + 6r2s? + 3st.
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Therefore, the variance of the true squared returns is given by:
2 4 2\ 2
Var[(R*(tﬂ) } ~E [(R*(ti)) } - ((R*(ti)) ) = 4r2s? + 251,
For the errors E(t), we have shown in the appendix B.1.1 that:
E[V(t:)] = E[V°(t:)] =0, E[V(t;)] =2w* E[V*(t:)] = 2(as + 3a3)

where E[E¥(;)] = a; and, by convention, E[E?(t;)] = az = w?. Putting them together,
we can derive an expression for the variances of R(t;) and R?(t;). More specifically, we

have that:

E [R(m: —E :R*(t,»)} =,

E [R2(ti): —E :IE [RQ(ti)

R*(ti)H ~E [3*2(@-)} + 2as = 12 + 52 + 2as, (D.2)

E [R‘l(ti): —E :IE [R‘*(ti)

R*(tz-)H _F [R*‘*(ti)} Y 6E {R*Z(ti)} E [V2(ti)] +E {V“(ti)}

=i+ 61257 + 357+ 12(r7 + s)ap + 2a4 + 6a3.
So, the variances of R?(t;) and R%(t;) can be expressed with the following forms:

Var[R(t)| = E[R(t)] - (E [R(ti)D2 — 2 +a, (D.3)

Var [R2(ti)] E [R4(ti)] — (E [R2(t7;)D2 =25} 4 4r25? + 8(r? + 5?)ag + 2(aq + a3).

(D.4)
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Appendix E

Appendix for Chapter 5

E.1 Description of Relevant Concepts

This section expresses mathematically some relevant concepts that we mention in

Chapter 5.

Frobenius Norm

Assuming a m X n matrix A:

a1 a2 ... aip

asy 92 ... QG2n
A= ,

Aml Am2 ... Gmn

then the Frobenius norm of A, ||A]||r, is calculated by:

m n
_ 2
||A||F - § : § : Qrow col

row=1 col=1

Kronecker Product
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Assuming two matrices A, B of size m x n and p X g, respectively:

ail ai2
a1 a2
aml  Am2

Q1n

a2n

Qmn

bi1 b2
ba1r  bao
bpl bp?

then the Kronecker product of A and B, A B, is given by:

AQR)B =

anB algB
ang a22B

Am1 B amgB

a11b11

a11b21

a11bp1

a1b11

ao1b21

a21bp1

am1b11

am1ba1

am1 bpl

where AQ B € R™P*"4,

a11b14

a11bag

allbpq

a1b1q

a21bag

a21 bpq

amlblq

am1bag

am1 bpq
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alnB
agnB

amnB

a12b11

a12ba1

a12bp1

a2b11

a22b21

a22bp1

amabi1

am2ba1

am2 bpl

a12b14

a12bag

alprq

a22b14

a22bag

a2 bpq

am2b1q

am2bag

Am?2 bpq

a1nb11

a1nbo1

alnbpl

a2nb11

a2pba1

a2nbp1

Amnbi1

Qmn b2 1

Qmn bpl

alnblq

alanq

alnbpq

CLanlq

a?nb2q

a2n bpq

Qmn, blq

Amn b2q

Gmn bpq




¢,-Norm

The ¢)-norm of a variable X, where X = (z1,...,2,), is defined by:
" 1/p
X1 = (D fal?) ™
i=1

E.2 Derivation of the GLASSO Algorithm

Considering a p-dimensional vector X, such that X ~ N(0,X), then the correspond-

ing multivariate Gaussian PDF is given by:

1 1 Ty —1
_ {(~1aTE 1)
1@ = G damz®

1 —1:Tox —
= We{ 2 }det(@>1/2 (det(A 1) = m)

x el~z2" 02} det(©)/2

where ¥ = E[X X7] is the (non-negative definite) variance-covariance matrix and © =
¥ !, assuming that X! exists. By taking the maximum log-likelihood function of the

Equation (5.2) for a set of n IID samples x;, we obtain the following quantity to maximise:

= %log det(©) — % Z:UZT@xZ (by (5.2))

= % (log (det(@)) - tr(S@)) (see proof (E5))

o log (det(@)) —tr(SO)
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where S = % S @zl is the sample variance-covariance matrix. Considering a ¢1-norm

penalty, the optimal © matrix is given by maximising the following quantity:

0>0

0= arg max (log (det(@)) —tr(SO) — /\Z ||®j]|1) (E.1)
j=1

where ©; is the j-th column-vector (or row-vector since © is symmetric) of the © matrix
and A denotes the tuning parameter, such that A > 0.
Equation (E.1) describes a convex optimisation problem, and so the optimal param-

eter is given by solving the following gradient equation with respect to ©:

1 n
e t— - szxZT —A' = 0pxp =
i=1

O =S\ =0pxp =

W — S — AT = Oy (E.2)

where W = ©7!, assuming that ©~! is defined. In the following, zero vectors and
matrices are depicted with zero bold in this appendix.

As regards the first term of Equation (E.2), as Boyd et al. (2004) shows (p. 641)
and Friedman et al. (2008) note, (log (det(@)))l = ©7L. In terms of the second term

of Equation (E.2), assuming that:

91’1 9172 Ql,n X1
Oo1 O22 ... Oy T2

6 — I b I ’X — ,
On1 971,2 en,n Tn
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then for %XTG)X we have that:

011 012
1 o1 022
g rT T2 ... Ip : :
enl 9n,2

)

1
= (Z?:1 2ilin iy il

S|

S

By mathematical properties, we have that:

af af
001,17 0012
of of
ﬁ _ 0021 002 2
00 :
of of
00n,1  00pn2
Hence, we get from Matrix (E.3):
$% 12

of 1| xex1 a3

Il Tpd2

01.n 1

02, T2

Hn,n Tn
x1
X2

n
> i1 Tibin

Tn

= [ ( Z wﬂi,l) x1 + ( Z $i9i,2> To+ -+ < Z xzem> l’n]
i—1 i—1 i—1

n n n
(Z xi0; 121 + Z xi0; 20 + - + Z l’iei’nxn).
i=1 =1 =1

T1Tn

T2Tn

S

where f(z1,x2,...,2,) = %(Z?Zl zifiix1 + Y i wibioxo -+ Y0 xiei,na:n). Fur-
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ther, we notice that (E.4) can be equivalently written as + XX which defines the S
matrix.
As regards the derivative of the third term of Equation (E.2), by mathematical

properties the derivative of the function f(z) = |z| is given by:

=1, ifx>0
df(x) _ d(]z|)
dr  dr - not defined, ifxz=0-
= -1, ifx <0

Since the derivative of = is not defined at x = 0, we use the notion of subgradients
(see Bertsekas et al. (2003) among others), which generalises the idea of gradients for
non-differentiable points of a convex function. If we assume a convex function f, then

the subgradient g at the point x for all y is defined by:

Fy) = fx)+ 9" (y — ).

At the points where the function f is non-differentiable (i.e. at point x = 0 in our
case), then the subgradient may not be unique in its domain. In this case, the set of all
planes that go through the point x = 0 are given by the subdifferential Jf(z) at this
point, obtaining;:

=1, ifx>0

of (x Olx
o o

= -1, ifz <0

When x = 0, we have %ﬁ‘) € [—1,1]. This happens because of the following reason.
Since the point x = 0 is not differentiable, the approximation at this point is given by the
subgradients that go through this problematic point. All the possible lines (subgradients)

that go through this point need a slope between [—1,1]. A visual representation of
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the subgradients (dashed red lines) at a non-differentiable point (0,0) for the function

f(x) = |z| (blue line) is given in Figure E.1.

Figure E.1: The function f(z) = |z| (blue line) is plotted along with several possible
subgradients (dashed red lines) at point (0, 0).

Similarly, in our case we obtain that:

=1 if@ij>0

)

Lij:qe[-1,1], if0;=0

=—1, if Gij <0

where ¢ and j indicate the particular element in the matrices I' and ©.

E.2.1 Steps of the GLASSO Algorithm

Exploiting the derivation in appendix E.2 and using standard mathematical opera-
tions on blockwise invesion of a matrix, similar to those given in (E.8) in appendix E.4.2,

we can derive the full steps of the coordinate descent algorithm. The steps of the
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GLASSO algorithm are reported below.

Algorithm 5 GLASSO Algorithm

e Initialise W = S + \I;
— S: the sample variance-covariance matrix;
— A: the tuning parameter;
— I,: the identity matrix.
for iter = 1,2, ..., until convergence do:
for j=1,...,p do:
e Partition of W, S and I into:

Wit wia S11 s12 '
W= S = T =
B A R

with respect to the j-th row/column vector;
e Solve:

Wip —si2+M12=0

where 712 € sign(f);
e Update w12 as follows:
wi2 = W1 5;

end f(/)\r R
e Set 619 = —0993, where:

~ 1

Opg = ————;
- w2 — wngﬂ
if mean(m?(iter) - WWW—UD < 1E7% then

Return ©;

end if

Y12
99

where W) is the W matrix as results by the corresponding iteration and wo

refers to the initial W matrix.
end for

E.3 Properties of the Functional Variance-Covariance Ma-

trix

We assume that an observed value with noise can be represented by:

Yja(t:) = Xja(t:) + Eja(t;)
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where Y 4(t;) denotes the i-th observed value of the stock j for the day d such that
i=1,...,n,7=1,...,pand d = 1,...,D. Also, X;4(t;) is the corresponding true
value and Fj 4(t;) indicates the corresponding error term. We consider that the error
terms Ej 4(t;) are IID, with E[E}; 4(;)] = 0, E[Efd(tz)] =w? < ocoand X(t) 1L E(t). The

covariance function of the noisy observations Yj 4(tx) and Yj 4(;) can be written as:

Cov(Yialte). Yia(t)) = E | (Vialte) — ENGa(t)]) (Yia(t) - El¥a(t))]
=E [Yj,d(tkm,d(h) = Yja(tr) ElYja(t)] = Yja(t) B[Yja(te)] + E[Yja(te)] E[Yj,d(tz)]]
= B [X(t) X5.a(ts) + X;a(te) Esaltr) + X a(t) Esalt) + Esa(te) Eyaty)

— (Xate) + Bya(te)) ( EIXa()] + BB a(t)])

- (Xj,d(tl) + Ej,d(t1)> <E[Xj,d(tk)] + E[Ej,d(tk)D

+ (EXalte)) + ElEa(t)]) ( EXa(t)] + BB a(0)) |

= B [X;a(t) X;.a(t1) = X;.a(tr) BIX a(t)] — X a(t) BIX; a(t)]
+ E[X; a(tr)]) E[X;.a(t)] } Eja(tr)Eja(ty)]
=B [(Xa(ts) ~ BIXa(th)] )( jat) = EX;a(t)]) | + ELE; (t8) By (1)

= Cov[Xj a(tk), Xja(t)] + E[E;a(tr)Eja(t)]
where k,l =1,...,n

In the case where k£ =1I:

Cov( Jd(tk),YJd(tk>>
= E | (Xjalt) — ELXa(te)]) (Xsa(te) = EIXGa(00)]) | + BB a(te) B ate)]
= B [(Xjate) — B[ a(t)?] + ELE2(t)]

=Var(X;q(ty)] +w
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where IE?[EJ2 4(t)] = w? the noise variance.

In the case where k # [:

Cov(Vialts), Yialtn)) =
=FE [(Xj,d(tk) - E[Xj,d(tk)]) (de(tl) — E[de(tl)])} + E[E; a(ty) E[E;a(t))]
~ B [(Xyalte) = B a(t)]) (X5at) - EXGa@)])] by X0 L E@))

=Cov (Xj7d(tk), Xj,d(tk)>'

E.4 Derivation of the FGLASSO Algorithm

This appendix section provides some preliminary calculations required for the deriva-
tion of the functional GLASSO approach. In this derivation, we assume that X denotes
the variance-covariance matrix of a multivariate variable X, © = ¥~! under the as-
sumption that the ¥~! matrix is defined, and S denotes the sample variance-covariance

matrix of X. Also, the zero vectors and matrices are presented with zero bold.

E.4.1 Preliminary Calculations
e We show that 2 37 | 270z, = tr(50).
Proof:
- 1
1 Z el 0z, = —(xT 0z + 2702y + ... + 2L 0Ox,) (where a scalar)
n = n
1
= tr(ﬁ(:clTG)azl +2l0xy + ...+ 210z,)) (by c= tr(c))
1
= — (tr(wlT@:pl) + tr(xd Oxo) + ... + tr(x%@x,ﬂ)
n

- ;itr(x? 0z;)) (by tr(A+B)= tr(A)+ tr(B))
i=1
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1

= =3 tr(@ial ©)) (by tr(AB)= tr(BA))
=1

- tr(izn;a:ix?@) (by tr(A)+ tr(B)= tr(A+B))

= t1(SO). (E.5)

O

otr(S0O) = tr(5;;0;;) + 2tr(s?9j)

Proof: By induction:

Assuming three variables (p = 3), we have:

O11 012 O3 S11 s12 s13
O=1| 0y O O3 |,S=| sa1 So s23

31 032 ©Oas3 S31 832 533

where S;, ©;; denote the diagonal submatrices of S and ©, respectively, for j =1,2,3

and s;;, 0;; indicate the off-diagonal submatrices Vi < j. So:

S s12 S13 ©11 012 O3
SO =1 sy Sy s 021 Oz a3
s31  S32 S33 031 032 Oss
S11011 + 812075 + 513075 S11019 + 512002 + 513035 S11613 + s12023 + 513933

= | s1,011 + So20Ly + s230%y 1,019 4+ 22000 + s930%; 515013 + So2623 + 523033.

s1.011 + s3307, + Ss30%y 51,010 + 13000 + S3303;  sT5015 + 525003 + 533033

Since the elements of the matrices S and © are submatrices of size n X n, then the trace
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of the product SO, it is straightforward that it is given by:

tr(SO) = tr((sllell + 512075 + 513073) + (513012 + S22O20 + $03023) + (813013 + 535003 + 5'33@33)>

=tr ((511@11 + 529099 + 933033) + (512075 + 5130715 + 523023) + (515012 + 513613 + 853923)>

= tr(S11011 + S22090 + S33033) + tr(s12075 + 513075 + 523023) + tr(s1y019 + 515013 + s25023)
(by the trace property tr(A + B) = tr(A) + tr(B))
= t1(S11011 + 522020 + S33033) + 2tr (515012 + S13613 + s55023)

(b the trace property tr(A” B) = tr(ABT))

— (Y 8,05) + 20 32578,

j=1 i<j

We assume that it also holds for (p — 1) variables:

tr(S@) = tr(Sll@ll + ...+ S(p—l)(p—l)@(p—l)(p—l)) -+ 2131'(5{2912 + ...+ 8%;)_2)(:0_1)(9(1,_2)(1)_1))

( Z Sﬂeﬂ) n 2tr(z swew)

1<J

Now, we show that it also holds for p variables:

tr(S0) = tr<(811@11 + 519015 + 513013 + . + s1-1)01(,_1) + s1,01,)

+ (515612 + S22022 + 523033 + S2403, + ... + 82(p_1)02T(p_1) + 521,0%;)
+ (513613 + S33023 + S33033 + 53405, + ... + S30p—1) 05 3-1) + spej;)))

+ (5{4914 + 5546’24 + 854934 + S44O44 + 845(9{5 + 54604{6 + ...+ 84(p,1)0£(p_1) + S4p9£))

+ (S{palp + 35;;021) + 33Tp‘93p +o Tt S(p—l)pe(jl;—np + Spp@pp)) :
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Separating the elements of the products of the submatrices for the p-th variable to a

different parenthesis factor, we have:

tr(S@) = tr ((511@11 + ...+ Sl(p_l)eﬂp_l)) + (8{2012 + ...+ 52(p_1)02T(p_1))

+ (8?3913 + ...+ sg(p,l)ﬁg(pfl)) + (8?4914 + ...+ 84(;071)‘94{(;9—1))

=+ (S{(p_l)el(p_l) + ...+ S(p—l)(p—l)ea—l)(p—l)) + (S,{pelp + ...+ sPPng)

+ (slTp91p + 82Tp92p ++.. 5(p1)P9(71;1)p> ’

Assuming that the under examination formula holds for (p — 1) variables, then:

tr(50) = tr Z 81103 ) + tr(z i) + tr(Z 5i0%) + tr(SppOpp)

1<j 1<j

+ tr(si 0 + .. + S(p e o-1p) + (51507 + oo + S(pfl)peafl)ﬁ
p
tr(z Sj](ajj) + tr(z s w) + tr(Z S¢j0iTj>
i<j

(b the trace property tr(A + B) = tr(A) + tr(B))

tr(zp:sj ) +2tr<zp:s?j€ij>
=1 i<j

<by the trace property tr(ATB) = tr(ABT)>

p p p
tr(S;;0;;) + tr(ZS”@u) +tr<zsﬁeﬂ + s?;elj) + tr( Z sh0i + 817;0”)
1#] 1 i#j<l

In all the cases above, for a fixed row/column block-vector, we have that:

tr(SO) = tr(5;;0;;) + 2tr(s] 0;),
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SO:

3(2%@) B agZ (r(55049) + 20x(s] )

where évj = [@jj Gj]

O
E.4.2 Derivation of the FGLASSO Approach
We consider the multivariate Gaussian model with zero mean and variance X:
1 1 Ts—1
— {—g3z" 57z}
J@) = G ezt
1 —1:Tox 1/2 — 1
= Gt ) det(©)Y (by det(47) = i)

o e{—327 01} det(©)1/2

where X indicates a p-dimensional vector, such that X ~ N(0,%), ¥ = E[XXT] is the
(non-negative definite) variance-covariance matrix and © = ¥ 7!, assuming that %!
defined.

Our purpose is the maximisation of f. To do so, we take the maximum log-likelihood

of the above quantity with respect to © for n IID samples:

1(0) = - log ( (1)
= 7112": <log e 2% @x’) + log (det(@)1/2>>
- Zlog e 2% 6% )+ %nlog (det(@)1/2)

:——Z —zTOe;)log(e) + %log<det(@)>

_ Z12n@5” 51og (det(@)) (by E.5)

x log <det(@)) —tr(50)
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where S = % S @zl is the sample variance-covariance matrix.

Assume that 27 = (x%x?|x%x§||x},xg), such that z € R" where p
denotes the number of variables and n indicates the number of observations. By adding

a norm-penalty in the above quantity, then we are looking for that © which maximises:
6 — arg max <10g (det(@)) —tr(50) ~ A \|ej,||F> (E.6)

J#l
where || - ||F denotes the Frobenius norm, A denotes the tuning parameter, such that

A > 0, and © € R"*"_ This represents a convex optimisation problem, and the

maximisation of the above quantity is given through the gradient equation:

a[log (det(@))}

o 56 =071 | (by Boyd et al. (2004), section A.4.1)
otr(Se)  Otr(t Y wmal0) 1< T
‘e T 00 _nz;” =5

O l10allr) _ AOC [1650lr)

00 - 90 = Al

. Amalgamating the above quantities in the same equation and

0> .4 1195111 F)
where T' = ”‘ali@]

setting this equation equal to zero, we have that:
O l-S-A'=0. (E.7)

Now, we define the following block-matrices:
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where indicatively, the ©® matrix is of the following structure:

©;; : 9;‘-F:
nxmn nxn(p—1)
O:
©-;
0; : n(p—1) xn(p—1)
np—1) xn

and the block-elements of the matrices S and I' have the same form and dimension as
the © block-matrix. In addition, we define the W block-matrix, such that W = ©~!. By
standard calculation on the inverse of a block-matrix (see Lu and Shiou (2002) among

others), we have that:

N A N A CV R ~W;;0707; (E8)

w; W-; —0_10,Wj; O +0_i0,W;0Te;

assuming that @:Jl and (©;; — 9}’@:;9]-)_1 exist.

Using standard mathematical matrix calculations in Equation (E.7), for a fixed row /-
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column block-vector j, we have that:
O 1-S-AN'=0W-S—-A'=0
where in matrix form, it is written as:

Wjj U)JT Sjj ST Fjj ’Y;'r o 00

wj W_j Sj S_j ’)/j F_j 00

obtaining the following four equations:

Wjj —Sjj — Al'j; = 0, (E.9)
w;fp—s;*-r—/\*yf:O,

W_j —S_;—Al'_; =0. (E.10)

In the Equations (E.9) and (E.10), the diagonal elements of I'j; and I'_; are zero.

Thus, solving the Equation (E.9) with respect to ©;;, we have that:

Wj' —Sjj —Arj]’ =0&
(0, —06776;)"' —5;;—0=0«
0, —0;0_0; =5 <

0, = S;;' +07010;,

assuming that Sj_j1 exists. Also, Qiao et al. (2019) show that the minimisation of:

p—1
6; = arg min (tr(sjjef ©_16;) + 2tr(s] ;) + 23 |yeﬂ|F> (E.11)
I =1
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can estimate ¢;, where 0 indicates the /-th matrix of the block-vector 6; and the com-

plete derivation is given in the appendix section E.4.3.
The quantity in (E.11), for a fixed row/column block-vector j, is equivalent to the

minimisation with respect to each one of the submatrices 6;1, 6j2,...,0;(,—1) of the block-

vector 0;:
p—1p—1 p—1 p—1
arg min tr( Sjjaﬁ{@:}}lkajk + 2 Z S?kejk> +2A Z 10kllF | =
Oty 0i= 1=1 k=1 k=1 k=1

01,000,
JlseY5(p—1) £k k=1

p—1
arg  min (tr(SUH R —&—ZSJJG {0 kb, +225jkejk) +2)\Z||9ﬂc||F>
-1

arg  min tr(S;,;07. {0 irbjn) + tr Sﬂe {07 kb1, ) + 2tr skejk 1055
J J J

01,05 (p—
g1 Jj(p—1) £k k=1 k=1

In order to minimise 6, we take the partial derivative of the above formula and set

this formula equal to zero with respect to 0

3<tr(5jj‘9ka{@Il<}kk9jk)+tr(Zf¢1§5 07075 1k0;1) + 2tx (30 JTk9;k)+2)\Z£;ill91kllF>
0

90,1,
Otr(S;;05, {0} Yrrbjn) N otr(Y02, S;505{07 1 hikb;r) +23tr( b1 505k
(99]'1C 89Jk 89]k
—1
+2/\52§:1 105ellr _ o

90,
Considering each term separately, we have:

0tr(S;;05407 bekbjr)
[ J
90,1

= {07 itk Ss5 + {05 ikbn S
This derivation is proven by Qiao et al. (2019) where, on page 16 in supplementary
materials, they show that:

otr(AXT)BX

=BXA+ BTx AT,
X +
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Also,

otr(XF,, Sj00i0 ) 22 - -
o #k 277 j J A Z {@_;}17;;93'1531;- + {@_;}Eelejj
00y, T

since:

otr(AXTB) otr(XA)  otr(AX)  p

—ax A ad sy =4
Furthermore,

otr(3h_, S?kejk‘) otr(ATX)

and

_ (1,1) 2 (1,2) 2 (n,n) 2
O 18ellp) _ o053 * + 057 % 4 65 %) _ Ok _
80,1 90, 0] 7

Yk

where 1)1, defines the quantity H(f'% and 9§Zj ) represents the element at i-th row, j-th
J

column of the n X n matrix:

(1,1) (1,2) (1,m)
gjk: ejk T ejk

(2,1) (2,2) (2,n)
ij gjk T gjkn

(n,1) (n,2) (n,m)
ij ejk T ejk

For example, for the first element of the matrix above, we have that:

1,1 1,1
ollosllr 205 oY

80%1) 20l 10kl
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So, for each element of the matrix, we have that:

MOjelle  OMNOjklle . Ollfkllr PICRY) p(1:2) gL
0(171> 9(172) ‘9(1771) Jk L .. gk
ik gk ik N06lle 1105k]lF 10k F
B||93k\|p aHeijF L 8”9]ka ej(i,l) 9](%,2) G;i,n)
MOjrllr _ | “oh ™ "oz o2 | _ | WE T 05+ TTF
89jk . .
(n,1) (n,2) (n,m)
MOjelle  OMNOjklle . Ollfkllr O Ok L O
(1) o(2) PICED) N0;kllFr  1l0skllF [10;k1lF
jk jk Jjk

Amalgamating the partial derivatives in the same equation, we obtain that:

p—1

{OZ 5 kk0n S H{O S 03k ST +> ({@‘ﬂﬁeﬂsfﬁ{e‘l}{leﬂsjj> +255+2Mbjx = 0.
1£k

Since both S and © are symmetric matrices we have that S;; = SJ-TJ- and, under the

property of symmetric matrices A = AT & A7l = (A7)l & A7l = (A™HT| we also

have that {©~1}% = {©~1}4. Therefore, we can simplify the above equation as follows:

p—1
2{@:}}kk0jk5jj + 2 Z{@jl}ﬁeﬂsﬂ + 28k + 2\, =0 &
14k
p—1
{073 b Sij + > {07} ub51Sj5 + sj + Mok = 0.
14k

If we define the block-residuals by:

ik =Y {071} k0;Si; + sk,
17k

then the equation above can be expressed as:
{6:;}%0%5”» + 7k + AP =0

where
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. i£05. 70
Jk - )
Vi € R™™ where ||¢ji]|r <1, if 6, =0

Concluding to the solution of 6. If 85 = 0, then ||rj;||r = A||¢jk||F < A. Other-

wise, it is given by the following minimisation, with respect to 6;;:

9.
arg min {@:;}kkejksj'j + 1+ A ik .
01 105kl 7

E.4.3 Derivation of the Coeflicients Minimisation Problem

As we have seen in Equation (E.6) in the appendix section E.4.2, we are looking for

that © which maximises:

0= ( ) _ _ .
arg max <log det(©)) — tr(SO) )\Z \|eﬂ||F>
J#l
where 60;; indicates the [-th submatrix in the j-th block-vector ¢;. Following the matrix
notation on page 294 and using the Schur complement property, assuming that ©_; is

invertible, we have that:

T
det(©) = ) @J = log <det(@_j)> log (det(G)jj - 0?@:}@)),
J —J

then the first term of Equation (E.6) can be written as:

log (det(@)) = log (det(@_j) det(©;; — ajT@:jl.ej))

—log ((det(©;)) +log ( det(6; — 07O716)).
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If ©;; is constant, then the determinant of a constant number is constant, ending up

with the following simplification:
log (det(@)) — log (det((a,j)) +log (det(@jj - ef@:}ej))

however, we are not interested in this case.

For the maximisation of the j-th row/column block-vector in ©, it is straightforward
that ©_; remains unchanged since the under examination block-vector is not contained.
Therefore, log (det(@_j)) can be considered as a constant term and we can ignore
it in the optimisation procedure. As regards the second term, we have shown in ap-
pendix E.4.1 that:

otr(S0) 0

= (t1(S,:0.) + 2tr(s1h;
6 8@j( (83035) + 26x(s76)))

where 6; = [©;; 0;]. So, we can rewrite the Equation (E.6), for fixed ©_j, as:

O = arg m@ax <log <det(®jj — 6]1“@:]1@])) - tI‘(Sjj@jj) — 2131‘(8?9]‘) - A; H0J1HF> .
J
(E.12)

Using the partial derivative of each term for the maximisation of the quantity above

with respect to ©;;, we obtain that:

dlog ( det(0,; — 6TO}0))
‘ ( 90;; ) (855 — 6;0256;) (655 — 6, 0756,

= (85— 007;60;)"' (I, - 0)

= (0, —0/6756;)""

where this arises by the derivation of Boyd et al. (2004) in section A.4.1 who shows that
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V log (det(X)) = X1 Also,

V9805 o 9518 o OO loallr) _
00, 08y 98 ’

concluding to:

(0j—07070;)7 ~ 8, =0=
(04, —070750;)"" = Sj5 =
0, —0]0_50; = 5! =

0 = S;;' +0]070;, (E.13)

assuming that S;jl is defined.
Formula (E.12) is maximised for that ©;; given by (E.13). However, 6; is unknown,
so we have to find the profile likelihood. Considering the Equations (E.12) and (E.13),

we obtain the maximum log-likelihood of 8;:

A _ -1 To-1lg. _ aTo-1p3\) Cra—1 To-1p
@—argnleax<log<det(5jj + 076710, — 070710;)) — tr(Sy5(5;," + 07 0716))

J

p—1
—2tr(s] 0;) =2\ ) H%Hp)

=1

p—1
= argmax <log (det(Sj_jl)) —tr(l) — tr(SjjﬁjT@:jlﬂj) — 2tr(s]T6j) -2\ Z HHﬂHF)

J =1

(where the first two terms above remain fixed over j for 6;)

p—1
= arg IneaX ( - tr(SNGJT@:]lHJ) - QtF(S?Qj) —2A Z HQﬂHF>

J =1

p—1
= arg Héin (tr(SjojTG_Jlﬂj) + QtI"(S?Hj) + 2\ Z leleF>
I I=1

ending up with the negative profile likelihood. Then this procedure is conducted for
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every j row/column block-vector until convergence. Note that the term A, [|0;||F
can be equivalently written as 2A>°7_ ||(9jl|| r. This happens because the submatrices
6;; and 9].1 are two components of the © matrix, which give the same outcome when we

calculate their Frobenius norm.

E.5 Simulation Model

Assuming that the ¢-th true observation of a stock ji1, on the day d, is given by:

Xy alts) = g alts) + €000 8) + €202 (1)

where 115, 4(t;) refers to the variable’s mean function, ¢;, 4(1), ¢;, 4(2) indicate two eigen-
functions and & (1 & f i indicate the functional principal component scores. According
to the theoretical framework of functional PCA, the variance of £ and ¢®) are given
by the corresponding eigenvalues A\; and \g, respectively. Also, we assume that £ and

€@ stem from a normal distribution with zero mean. Hence, we have that:
(M~ N©O,A) and £~ N(0,\ .14
Ea~ N0, A1) and &5 ~ N(0, X2). (E.14)
Taking the expectation and the variance of Xj 4(t;), we obtain:

E[X;,.a(t:)] = Elujy a(t) + €550 () + 503080 ()]
=y alti) + 054 () EIES ] + 612, (t:) EEP) ]
(since 11, a(t:), @51y (t:), ¢\ (t:) constants)
= s, alt), (by (E.14))
Var(X;, a(t:)] = Var(u, a(t:) + €505 () + €262 (1)
= VarleD o0 () + €200 ()

since 4(t;) constant
Fjr,
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= Varle,olD ()] + Varle'? 6@ (t:)]
+2E[(E,00 () — BIE D00 (00D (€208 () — BIED 0P (t)])]
(since Var[X + Y] = Var[X] + Var[Y] + 2E[(X — E[X])(Y — E[Y])])
= o\ 2t VarleV) + ot Vare®)] + 2B 60 (806D 6P (1))
(by (E.14) )
= o0t Varlel)) + 23t VarleD,] + 265 (1)) (1) BIES ELED,)
(since ](.1)d 1L 5](.127)01)

= Mo\ (1) + Ao (t). (by (E.l4)>

Hence, X, a(t) ~ Ny, a(te). Ml 2 1) + Moo P2(1)).

Now, we derive the properties of the simulation model considering a second variable
X, a(ti), correlated to the variable X;, 4(¢;) in appendix E.5.1. Also, we derive the prop-
erties of the model when the variable X}, 4(¢;) is uncorrelated to the variable X; 4(¢;)

in appendix E.5.2.

E.5.1 Correlated Variables

Assuming a second variable X, 4(¢;):
1 2) (2
Xip.ati) = pjn,alts) + Eylaya(ti) + 5040 a(1)
correlated to variable X 4(;) with correlation coefficient p, then:

1 1
i = PE5L T €5y

2 2
gj(z)d - ’0531 d gz)d
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(2

where € o €jond indicate the error terms of the correlation structure. By the theory of

correlated random variables, we have that:

e~ N 0,1 p%) and €2, ~ N (0,1 - p?). (E.15)

The component f aid has the following distribution properties:

E[E())) = Elpg(ls + eyl
=pEE) (b (B15))
=0, (by (B19)

Varle)] = Var[pe), + €

= Var[ﬂf L)+ Varle, W al + QE[(Pf EX[pgj('ll,)d])(fg?d - E[Eﬁi?d])]

= pQVar[ﬁj( )d] + Varle, () al + QpE[fj(.ll’)d] E[Eg?d]

(by (E.14), (E.15) and £, 1 €l)))

= P\ (1—p2). (by (E.14) and (E.15))
Thus, we have that:
el ~ N(O,p2x\1 r(1- p2)> and, similarly, €, ~ N(O,;;% +(1- p2)>. (E.16)
So, the expectation and the variance of X, 4(t;) can be expressed as:

E[Xy.a(t:)] = Eluga(ts) +€0,0'0 (1) + €201 (8]
= ppalts) + D () EED ] + 6D (1) EED)
(since fuj,.q(t;), ¢§2)d(tl) ¢§?d(t ) constants)

= jp,d(ti), (by (E-16)>

Var(Xj,a(t)] = Var(uj, a(ts) + €060, ) + €262 (1)
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= Var[e)),6!,) ()] + Varlel? 02 (1)

+ 2E[(6),05))1(t:) — BIEL 00 () (€0 (k) — BIER, 0%, (t:)))]
= 2t Varlel)) + 23 (k) VarleD) + 265 (1)) (1) BIE  BIED)
(since €11, 1 €12

= o{V3(t) (0 + (1= %)) + 6525 (1) (0720 + (1 - 7))
= 2 (Mo t) = )5 (1) + Ao (0) — 23 (1)) + 6,3 (1) + 025 (1),

Concluding to the following properties for Xj, 4(¢;):

Xjpalts) ~ N (pgpa(t), 0 (M3 (1)~ 02 (6)+ 020 (4) =025 (1) )+ (1) + 05 (1)),
The correlation between X, 4(tx) and Xj, 4(t;) is

Cov (X altn), Xjpaltr))
VVar X, a(ti)]Var[Xj, a(t)]

Corr (le,d(tk)a X, d(tz))

The covariance can be expressed as:

COU( ir.d(te), Xj2,d(tl)) =

E[(Xjy,a(te) — E[X;,,a(te)])(Xjs,a(t) — B[X, a(t)])]
El(Xj1,a(tk) = pjr,a(te)) (Xja,a(t) = pjs.a(te))]
E

(Xj1,a(tk) Xja,a(t)] = wjo,a(t) E[XG, a(te)] — pgy,a(te) E[XG, a(t)] + pgy,a(te)is,a(ty)

(since pjy a(tk), pjs,a(t) constants)
= E[X}, a(te) Xj,.a(t)] — pjo,a(ti) g, ,a(te)

=K

(Nﬁ,d(tk) + f(l dd)ﬁ d(tk) + 6(12)d¢f)d( )) (sz,d(tl) + 5(2 d%z d(tl) + 5(2 dd)p d( ))1

= fgy,d () d(tk)

= o'V (t1) ' () BED D T+ oD (t)0l (t) Bl €]
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+ ¢J1 d( )¢j2 d( ) [gj(l dgjz d] + ¢j1 d(tk)¢J2 d( ) [fjl dsz d]
(by (E.14) and (E.16) )

+ o) (1) 02 (1) E

1 2
éh]('ly)d (pfjl aTt egz)d)]
&2 (el + eg)d)l

= ¢§i)d(tk)¢;i)d(tl)< [95(1)2] [gj(l)dejz, d]) + (15]1 d(tk)d)Jz d( )( [pfj(f)dfjl d] + E[ﬁj(ll)d%z d])
+ (;5]?) (tk)¢J2 d( )(E[ng('ll)dfh d] + E[ﬁj(f)dé; d]) (bﬁ)d( )¢32)d( )( [ 531 d] + E[gj(f)degz)d])

= 05 a(th)85) (6 E l@ld( €0 +el)

+ 6 (t)0 Ly (1) B [fﬁd(ps;P +ey) | + 05t () E

- At this point we assume & L € -
= 6512 (t) 0, (1) (Blogl ) + EIES L)) + 0006 (1) ( Elog s )l + EIEL B2, ])
6340854 (1) (ElpES a2 ] + EIET L)) + 01266 (1) ( Eloglrs] + Elg  Elel2 )
= P05 a8, (1) EIES 3] + 0ol ()0 a(t) BIES €51 u] + o a(ti) 65 o (1) BIES 6 2]

+ p¢§‘?d(tk)¢32 () E [gj(f)dQ] ( by (E.15) )

) L

- At this point we assume 5(.1 i

= P00 ()0 () EIEL ) + 6L (1) 02 (1) BIED ) BIE

8 ()0 () BIELNBIED ) + 062 ()02 () BIEDS) by (B15))
= o6 a6 ) BIEDT + 62 (06D () BIET) by (B14) )
= (&0 at)6 )V arlel ] + 6 (062 () Varle?))

where the properties Var[f(-l) | = E[é(-l)g] - (E[fj(-ll)d])2 and (E [§j1 d}) = 0 are utilised
in the last equation. The same holds for f( too. Using the properties in (E.14), we

conclude that:

1
C'OU< .d(tk), ij,d(tl)) = P(M(bg-l?d(tkwh a(t) + >\2¢]1 d(tk)¢]2 Lt ))-
Furthermore, we have derived above that:

X alts) ~ N((le,d(ti)a /\1¢§-1?d( i)+ A ¢§?3( ))
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Xjpalts) ~ N (pugpalts), 0 (Mol 5 (1) — 053 (0) + Mad2 (1) — 05 (1)) + 63 (8) + 625 (1) )

so we have all components for the correlation coefficient:

Cov( Xy alti) Xipa(t)) = p(M68 (1) 020 (0) + a0l (102 (1) )
Var(X;, a(te)] = Mo\ s (1) + Ao (1),

Var(Xpa(t)] = 0* (Mo (t) — 60,3 (1) + A6 23 (1) — 603(0) ) + 6 (1) + 023 (1),

E.5.2 Uncorrelated Variables

Now, we assume a second variable X}, 4(¢;) with form:

ij,d( ) Hija, d( )+€2d¢§i?( ) 5](3, ¢]27( )

uncorrelated with the variable X 4(¢;). Following the same steps as for the derivation

of the properties of variable X}, 4(¢;), then:

S~ N(0.M), &2~ N(0, %) (E.17)

and Xj, q(t;) ~ N(,uj2 a(ts), )\1%1)2( i)+ A ¢32d( )) Then, the covariance between

X, a(ty) and X, q(t;) has the following form:

Cov( Xy alti), X, altr)) =

= E[(Xj, a(tr) — E[Xj, a(tk)]) (Xy.a(tt) — E[X, a(t1)])]
= E[(Xj,.a(tr) = tr.a(tr))(Xja,a(tt) — pgp,a(t)]

= E[X;,,a(te) Xj,a(t)] — pjp.a(te)iy,alt)

=E

(.t + €500 (1) + €262 (10 ) (1gnia(t) + €000 (1) + s§§?d¢§§?d<tz>)]
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= Hjp,d(t1) gy a(tr)
= 60 (tn)05 ) () BIER €0 ] + o\ (8) o2 (1) BIE 682 + 02 (1) e, () BIED €]
+ 0Dt SIS ST (by (E.14) and (E.16) )
- At this point we assume £ 1L €2 ¢V 1 D) Dy f® ey @)
= 650 (1) (1) ELES B [f}?d] + o\ (t) e (1) B ELER)
+ 62 ()6 (t) BIED N EIED ] + 082 ()02 (1) BIED ) Bl

= 0. (by (E.14) and (E.17) )
In addition, X, 4(t;) and Xj, 4(t;) have the following distribution properties:

Xjpalt) ~ N (p.alts): Mol 3 (t) + o0l (1) ).

Xjpalt) ~ N (alts): ol a(t) + o023 (1) ).

so we end up with a correlation coefficient equal to zero where:

COU( j1,d(te), ng,d(tl)) =0,
VarlXj, a(te)] = Mol V3 (t) + A D5 (t),

Var[Xj,a(t)] = MoLs () + Aol 5 (1)

E.6 Empirical Analysis Results

This section provides the findings not reported in the empirical analysis of section 5.5.
In particular, the fully conditionally independent stocks for eight different tuning pa-
rameter values are plotted using log-prices (see appendix E.6.1) and returns (see ap-
pendix E.6.2) as data. In addition, for the case of returns (in appendix E.6.2) some
indicative maximal cliques are given, as formed for the estimated optimal tuning param-

eter.
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E.6.1 Log-Prices

Fully Conditionally Independent Stocks for A=0.0006

Fully Conditionally Independent Stocks for A=0.0057

o

4N) oIS

Fully Conditionally Independent Stocks for A=0.0023

Fully Conditionally Independent Stocks for A=0.0118

GIS o«

XOM MRK

DVN #MCD

BA 4N] oIS

Fully Conditionally Independent Stocks for A=0.0187

GE #1CD o
XOM «MT #JSB
QYN 4N #FE
&A GIS MRK oIS

Fully Conditionally Independent Stocks for A=0.0603

«CHK oY D oA PFE &

B|A DVN HPQ 4OW NKE «Z

AIG  «GLW HAL «MT NEM «JTX

AXP &«O «GIS 4Np eNOV «JSB &WEC
o «C «GE 4PM «VRK TGT «DIS
MM «CVX &XOM 4BM @MCD ®G eWMT

Fully Conditionally Independent Stocks for A=0.0413

«CVX: GIS «MCD «JSB SWEC
BA GE MA SIGT IS
AlG «OM +OW PG SWMT
AXP LY MT sPFE o«

of. DVN 4N]J NEM wZ
MM «O =D MRK YTX

Fully Conditionally Independent Stocks for A=0.0826

«€VX &XOM D MCD oIGT @eWFC
«CHK  eLY HPQ MA *G IS
BA DD AL QW RFE  dUMT
AlG DVN GIS &MT oNKE o/
AXP  «GLW GE 94NJ NEM «Z
of. «O o 4PM NOV  JTX
MMM € DX dBM @MRK «JSB

Figure E.2: This figure shows the fully conditionally independent stocks using log-prices
for eight different tuning parameter values.
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E.6.2 Returns

Fully Conditionally Independent Stocks for A=0.0516 Fully Conditionally Independent Stocks for A=0.126

XOM MCD BIS
LY MT SWMT
«O 94N] PG
VX GIS MRK

Fully Conditionally Independent Stocks for A=0.1602 Fully Conditionally Independent Stocks for A=0.1835

oLy «MT NEM AYMT XOM LOW #FE @IS

oLLY MT NKE SWMT
«O0 9N) @MRK G

O 9N]J NEM TX
«€CVX GIS MCD  PFE

«€VX PQ MRK STGT
oT. XOM L)) NKE @DIS of G[S MCD *G

Fully Conditionally Independent Stocks for A=0.2129 Fully Conditionally Independent Stocks for A=0.2495

KOO HPQ MCD  #G ©YN GM &OW #FB &
VX GIS «OW #FE @IS KD €G> «MF NKE  «Z

VX GE> 4N NEM  dTX
BA XOM  &MD KB  WMT

BA> DX dBM MRK «SB
o <> fEM X o XOM D> &MCD &GT @IS
MM ©YN D>  MRK  STGT MMM LY  HPQ MA RGO WMT

Fully Conditionally Independent Stocks for A=0.3018 Fully Conditionally Independent Stocks for A=0.4125

«O DX dBM @MRK «JSB «CAT DAL d4BM «VIRK «JSB

VX o&XOM D CD eoIGT IS BA GLW DX D &NCD oIGT «DIS
«CHK «&LY «¢PQ oA ®G WMT AIG KO &OM &+HPQ MA ®G WMT
A DD «GM dOW RFE & AXP «C[F dLY «GM dOW ®FE &

o DOVN «GIS «&MT NKE &Z o VX DD GIS «&MT NKE «Z

MMM DAL GE 9N] NEM  JTX MM «CHK VN «GE d¢Np oNEM «JTX

Figure E.3: This figure shows the fully conditionally independent
for eight different tuning parameter values.

stocks using returns
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®) B )4
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Figure E.4: This figure shows some indicative cases of maximal cliques as presented in
section 5.5.
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Abbreviations - Acronyms

AIC

BIC

Ccv

FGLASSO :

GLASSO

FPR

IID

IV

LASSO

LPR

MISE

MSE

MRV

NYSE

OLS

: Akaike Information Criterion

: Bayesian Information Criterion

: Cross-Validation

Functional Graphical Least Absolute Shrinkage and Selection Operator

: Graphical Least Absolute Shrinkage and Selection Operator
: False Positive Rate

: Independent and Identically Distributed

: Integrated Variance

: Least Absolute Shrinkage and Selection Operator

: Local Polynomial Regression

: Mean Integrated Squared Error

: Mean Squared Error

: Modulated Realised Variance

: New York Stock Exchange

: Ordinary Least Squares
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PA

PCA

PDF

Qv

RK

RSS

RV

SDE

SVF1

TPR

TSRV

: Pre-Averaging Approach

: Principal Component Analysis

: Probability Density Function

: Quadratic Variation

: Realised Kernel Estimator

: Residual Sum of Squares

: Realised Variance

: Stochastic Differential Equation

: Stochastic Volatility - Factor One Model

: True Positive Rate

: Two Scale RV

: White Noise
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