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Abstract. A recent paper [Jokela et al., arxiv:0806.1491 (2008)] contains a surmise
about an expectation value in a Coulomb gas which interacts with an additional
charge £ that sits at a fixed position. Here I demonstrate the validity of the surmised
expression and extend it to a certain class of higher cumulants. The calculation is based
on the analogy to statistical averages in the circular unitary ensemble of random-matrix
theory and exploits properties of orthogonal polynomials on the unit circle.
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1. Purpose and result

In a recent paper Jokela, Jarvinen and Keski-Vakkuri studied n-point functions in
timelike boundary Liouville theory via the analogy to a Coulomb gas on a unit circle
[1]. In this analogy, N unit charges at position ¢; interact with additional charges of
integer value ,, situated at position 7,. To illustrate this technique the authors of [1]
considered the canonical expectation value

1 / IJ_V[ dt; H
27
(where Z is a normalization factor so that (1) = 1) and surmised that

(Reay) = <Zcos >: Ngi\:g (2)

In this communication I demonstrate the validity of (2), and also compute

() (1)

expectation values of the more general quantities

= Y exp (i S (1, — T)> . 3)

11 <i2<...<in k=1
As a result, I find
(N —n+1)O(n+1)ED

(ap) = (=1)" DO D)ED Vn=0,1,2,...,N; £>0, (4)

where ()% = T'(z + y)/T'(z) is the generalized rising factorial (Pochhammer symbol).
In particular, the validity of (2) follows from (4) by setting n = 1.
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Expression (4) will be obtained by relating the generating polynomial
N

pre(N) = D (an) (=N (5)

n=0

to a weighted average of the secular polynomial in the circular unitary ensemble
(CUE). This in turn establishes a relation to the Szegd polynomial of a Toeplitz matrix
composed of binomial coefficients. This calculation sidesteps Jack polynomials and
generalized Selberg integrals, which can be used to tackle general expectation values in
multicomponent Coulomb gases [2].

2. Reformulation in terms of random matrices

The CUE is composed of N x N dimensional unitary matrices U distributed according
to the Haar measure. Identify ¢; with the eigenphases of such a matrix. The joint
probability distribution is then given by [3]

P({t:}}, (6)

where z is again a normalization constant. This expression can also be written as the

1<j

product of two Vandermonde determinants det V* det V ~ with matrices V;7, = elo(m=bh,
Furthermore, we can write
[Ile™—e = [det(1 — Ue ) det(1 — UTel)]e. (7)

Finally, the expressions a, in (3) arise as the expansion coefficients of the secular
polynomial
N

det(Ue™ — X)) =3 a,(—\)" " (8)

n=0
Note that in all these expressions 7 can be shifted to any fixed value by a uniform shift
of all ¢;’s, which leaves the unitary ensemble invariant. Therefore the expectation values
are independent of 7. Collecting all results, we have the identity
\ ([det(1 = U) det(1 = UN]E det(U = N))
= . 9
Pre) = e = 0 det(1 = U )

This can be interpreted as a weighted average of the secular polynomial in the CUE.

3. Random-matrix average

Statistical properties of the secular polynomial without the weight factor (£ = 0) have
been considered in [4]. Clearly, ono = (—A)V, so that in this case the attention quickly
moves on to higher moments of the a,. The main technical observation in [4] which
allows to address the case of finite & concerns averages of expressions g({t;}~ ;) that are
completely symmetric in all eigenphases In this situation the average can be found via

(o({tH ) evs = [ H*g {t}i,) det W, (10)
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where W), = eitm(=m)

. Equation (10) is simpler than the general expression involving
the product of two Vandermonde matrices, since each eigenphase only appears in a
single column of W.

In the present problem, the numerator in (9) is represented by the completely
symmetric function

N

gi({t:}il) = JTI(e" = M) (1 —e")$(1 —e )], (11)

=1
while for the denominator we need to consider the similar expression
N

g({t:}il) = [T — e™)5(1 — ™)), (12)

i=1
Using the multilinearity of the determinant we can now pull each factor into the
1th column and perform the integrals. This delivers the representation

det(B — AA
ene(A) = (detA >7 (13)

where the matrices A, = (—1)l*m<£+§fm>, By, = (=1)mft (£+13§ﬂ+1) have entries
given by binomial coefficients. We now exploit the regular structure of these matrices
in two steps.

1) Matrix B contains the same entries as matrix A, but shifted to the left by one
column index. In order to exploit this, let us expand the determinant in the numerator

into a sum of determinants of matrices labeled by X = (x,,,)¥_,, where we select each

m=1
column either from A (x,, = A) or from B (z,, = B). [Note that we set these symbols
in roman letters.] The related structure of A and B then entails that det X vanishes if
X contains a subsequence (Z,,, Tmy1) = (A, B). Consequently we only need to consider
determinants of matrices X,, = (B)"_, @ (A)Y_ .|, associated to sequences that contain
n leading B’s and N — n trailing A’s. As A is multiplied by —\, det X,, contributes to
order (—=A\)¥~". (Note that Xy = A and Xy = B.)

2) Next, consider the matrix Ay, where the subscript denotes the dimension, and
strike out the first row and the n + 1st column (n = 0,1,2,---, N). This takes exactly
the form of the matrix X,, of dimension N. Therefore, the expressions (—1)"det X,
are the cofactors of the first row of Ayy;. These, in turn, are proportional to the first
column of A]’VlJrl, where the proportionality factor is given by det Ay,;. Consequently,
taking care of all alternating signs,

vdet Anin o, N-n
ene(N) = (=1) WZ(ANH)LHM : (14)
N n=0

Via steps 1) and 2) we have eliminated any reference to the matrix B.

4. Orthogonal polynomials

Matrix A is a Toeplitz matrix, A, = ¢;_,. In order to find the explicit expression (4) we
now make contact to the theory of orthogonal polynomials on the unit circle [5]. Among
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its many applications, this theory provides a general expression for the inverse of any
Toeplitz matrix in terms of Szegd polynomials ¥ (\). For the case of real symmetric
coefficients, the inverse is generated via
A (N (™)) = AWV by (Ao () det Ay . .
Wgwl™) O ewlpn) _ detdwen S gy a8 (1)
A— % det A N

,m=0

Comparison of this equation with m = 0 to (14) immediately leads to the identification
of (—1)Ypne(N) with the Szegd polynomial ¥n(A) of degree N. These polynomials
satisfy recursion relations which for real symmetric coefficients take the form

1 o
W= _5N—1 27T1¢N 1A )n;oo e’ (162)
Un(A) = Moyt (A) + WA oy (AT, (160)
Sn = On—1(1 —~%). (16¢)

The initial conditions are dy = ¢g, ¥o(A) = 1. The numbers ~yy are known as the Schur
or Verblunsky coefficients.

It can now be seen in an explicit if tedious calculation that the polynomials
N (N —n+1)©O(n+1)ED
A) = (—1)None(N) =

n=0
= A2 (=N, & =N = &1 (176)
[with coefficients and expansion given in (4), (5)] indeed fulfill the Szegd recursion

generated by the binomial coefficients ¢, = (—D"(;fn

AN (17a)

). The recursion coefficients take
the simple form
3 _ NI26+1)W)
E+N Y e+ WP
This completes the proof of (4), and also entails the validity of (2).

N = (17¢)
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