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We develop a random-matrix model of two-dimensional dielectric resonators which combines in-
ternal wave chaos with the deterministic Fresnel laws for reflection and refraction at the interfaces.
The model is used to investigate the statistics of the laser threshold and line width (lifetime and
Petermann factor of the resonances) when the resonator is filled with an active medium. The laser
threshold decreases for increasing refractive index n and is smaller for TM polarization than for
TE polarization, but is almost independent of the number of out-coupling modes N . The Peter-
mann factor in the line width of the longest-living resonance also decreases for increasing n and
scales as

√
N , but is less sensitive to polarization. For resonances of intermediate lifetime, the

Petermann factor scales linearly with N . These qualitative parametric dependencies are consistent
with the random-matrix theory of resonators with small openings. However, for a small refractive
index where the resonators are very open, the details of the statistics become non-universal. This
is demonstrated by comparison with a particular dynamical model.

I. INTRODUCTION

Two-dimensional dielectric microresonators attract
considerable attention because of their prospective appli-
cation as microlasers and single-photon cavities, as well
as sensors in chemical and biological systems [1–6]. These
systems also allow the study of generic properties of par-
tially confined waves in a clean setting, and hence provide
a route to acquire knowledge which can be transferred,
e.g., to mesoscopic electronic devices [7]. The analogy
is most complete when comparing non-interacting elec-
trons in cooled, patterned two-dimensional semiconduc-
tor devices (which usually leak through quantum-point
contacts) with passive optical (or micro-wave) resonators
equipped with small openings. For such geometries,
semiclassical methods and random-matrix theory have
provided a deep theoretical understanding of the spec-
tral and transport properties, which have been found to
agree with numerous experiments and numerical compu-
tations [8–13]. In particular, it is now well established
that the predictions of random-matrix theory, designed
for wave-chaotic systems with strong mode-mixing, are
of universal applicability when the width of the open-
ings W is much less than the linear system size L, im-
plying a long mean lifetime in the system. For two-
dimensional ballistic geometries, this requirement can be
quantified by comparing the numbers N ∝ Wk of outcou-
pled channels at wavenumber k to the number of chan-
nels M ∝ Lk which are mixed by the scattering at the
boundaries. Standard random-matrix universality then
requires M À N .

Dielectric microresonators, however, leak everywhere
around the interface and are far more open than the res-
onators considered in standard random-matrix theory.
The photonic confinement relies on internal reflection,
which only becomes perfect for angles of incidence above
a critical value. As a consequence, the effective ‘open-

ness’ increases with the system size, resulting in N ∝ M .
Universality is no longer guaranteed, and a more detailed
modelling is required. This modelling also has to account
for the possible presence of an active medium, essential
for microlasers, which have been manufactured in many
forms and materials [4, 14–27].

In this paper we develop a quantum-dynamical descrip-
tion of two-dimensional dielectric microresonators which
combines wave-chaotic propagation of photons inside the
resonator with the Fresnel laws for reflection and refrac-
tion at the interface. The general construction is based on
a variant of the quantum surface-of-section method [28–
33]. The propagation inside the resonator is expressed
in terms of an internal scattering matrix, which we spec-
ify by either using random-matrix theory [10, 34] or a
quantum-dynamical paradigm of chaotic wave propaga-
tion, the quantum kicked rotator [35]. Similar models
have recently been developed for mesoscopic electronic
and hybrid-superconducting devices [36–40], which re-
quire different boundary conditions to open up the sys-
tem and do not allow for amplification.

The random-matrix and quantum kicked rotator vari-
ants of the model are explored to investigate the thresh-
old and the quantum-limited line width of wave-chaotic
dielectric microlasers. The laser threshold is related to
the decay rate Γ of the longest living resonances, and
can be read off from the imaginary part of the frequency
(which is complex for the non-hermitian operator describ-
ing an open system). For a good, conventional laser res-
onator (with almost-perfect mirrors), the line width (full
width at half maximum of the Lorentzian line shape) is
given by the Shawlow-Townes formula [41]

∆ωST =
1
2

Γ2

I
, (1)

where I is the total output intensity. In an open res-
onator, the line width is enhanced with respect to this
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prediction by the so-called Petermann factor K,

∆ω = K ∆ωST , (2)

which can be related to the mutual non-orthogonality of
the resonance modes obtained from the non-hermitian
operator [42–47], and has been studied extensively in a
wide range of quantum-optical frameworks [48–59]. We
investigate how Γ and K depend on the refractive index
n and the size of the resonator (quantified by N and M),
and also discriminate between the two possible polariza-
tions TE and TM (where the electric or magnetic field
lies inside the resonator plane, respectively). The results
are contrasted with predictions of random-matrix theory
for resonators with small openings [12, 44–46, 60, 61].

We start this paper in Section II with a brief summary
of the basic concepts involved in the description of two-
dimensional dielectric microresonators. The quantum-
dynamical models are formulated in Section III. In Sec-
tion IV we present the statistics of decay rates Γ (de-
termining the laser threshold) and Petermann factors K
(determining the line width). These results are obtained
by numerical sampling of the random-matrix ensemble
and the parameter space of the quantum-kicked rotator.
A summary of the results and conclusions is presented in
Section V.

II. TWO-DIMENSIONAL DIELECTRIC
RESONATORS

We consider planar dielectric microresonators of a
small width ∆z whose material properties are character-
ized by a refractive index n(ω), which may depend on the
angular frequency ω. Amplification is modelled within an
effective medium approach, so that the refractive index
is complex, with − Im n > 0 proportional to the ampli-
fication rate. The refractive index is taken as homoge-
neous within the resonator and unity in the surrounding
medium. The geometry of the resonator is specified by a
region D in the (x, y) plane.

We assume that only the lowest-lying transverse mode
is excited, which provides the best confinement at the
planar interfaces and hence results in the longest-living
resonances. For small wavelengths (λ = c/ω ¿ L,
where c is the velocity of light and L is the linear dimen-
sion of the resonator in the plane), the radiation outside
the resonator is mostly confined to the resonator plane.
Throughout this plane, the electromagnetic field can then
be described by a scalar wavefunction ψ(r), r = (x, y),
which represents the electric or magnetic field component
parallel to the z axis (TM or TE polarization, respec-
tively).

The wavefunction ψ(x, y) obeys the Helmholtz equa-
tion

[c2∇2 + n2(r)ω2]ψ(r) = 0. (3)

At the interfaces the wavefunction ψ and its normal
derivative ∂⊥ψ are continuous for TM polarization, while

for TE polarization these continuity requirements are ful-
filled by ψ and n−2∂⊥ψ.

For interfaces with no curvature, these boundary con-
ditions result in Snell’s law

sin η = n sin χ, (4)

which relates the angle of incidence η from a wave ap-
proaching the interface to the angle of refraction χ of the
wave within the refractive medium. The reflection prob-
abilities for both polarizations are given by the Fresnel
laws [62, 63]

RTM =
sin2(χ− η)
sin2(χ + η)

, RTE =
tan2(χ− η)
tan2(χ + η)

. (5)

From within the medium, total reflection occurs for an-
gles of incidence χ > χc larger than the critical angle,
which is determined by the condition sin χc = 1/n.

For the more complicated interface geometry of a mi-
croresonator, the radiative properties are encoded in the
scattering matrix S(ω), which relates the incoming and
outgoing amplitudes ψ

(out)
i =

∑
j Sijψ

(in)
j in a suitably

chosen, flux-normalized basis of scattering states. The
poles of the scattering matrix are defined by the condi-
tion S(ωm) = ∞. For ω = ωm, the Helmholtz equation
(3) permits solutions ψm(r) with purely outgoing bound-
ary conditions, ψ

(in)
j = 0. For a real refractive index,

these poles lie in the lower part of the complex plane
Imωm ≡ −Γm/2 < 0, where Γm is the cold-cavity decay
rate of the mode. Amplification shifts the poles towards
the real axis. Within this effective-medium approach, the
laser threshold is reached when the first pole crosses the
real axis, so that the purely outgoing wave field of the
laser can be realized at physical, real frequencies ω = ωm

[64, 65].
The active medium within the resonator emits radia-

tion due to the spontaneous emission of photons and their
subsequent amplification. Assuming total population in-
version of the active transition within the medium, the
frequency-resolved output intensity is given by [66, 67]

I(ω) =
1
2π

tr [S†(ω)S(ω)− 1]. (6)

This expression vanishes for a passive medium (with a
real refractive index), for which the scattering matrix is
unitary.

Close to the laser threshold, the radiation is dominated
by a Lorentzian peak around ω = Re ωm. The width
of the peak can be associated to the spontaneous emis-
sion processes, which perturb the amplitude and phase
of the emitted radiation. The Shawlow-Townes formula
(1) arises when the resonance in the intensity (6) is cal-
culated within Breit-Wigner perturbation theory, which
is based on the mutually orthogonal modes of the closed
resonator. Equation (2) including the Petermann factor
accounts for the non-orthogonality of the modes in the
open resonator. For ωL À c, the Petermann factor can
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be expressed in terms of the resonance wave function as
[43, 68],

Km =

∣∣∫
D

dr |ψm(r)|2
∣∣2

∣∣∫
D

drψm(r)2
∣∣2 . (7)

Above the laser threshold, the resonator becomes un-
stable, since the gain in the medium outweighs the losses
through the interfaces. The steady-state intensity is lim-
ited by pumping and saturation of the medium, which
requires study of the non-linear regime as done, e.g., in
Refs. [51, 56, 69]. The feedback with the medium stabi-
lizes the amplitude of the laser, but not the phase, whose
dynamics gives rise to a finite laser line width. The result-
ing width is half the width obtained from the cold-cavity
calculation, which also includes the amplitude fluctua-
tions [48]. Equations (1) and (2) include this reduction
factor of one-half.

III. QUANTUM-DYNAMICAL MODEL

A. Construction

In order to set up the quantum-dynamical model of a
dielectric microresonator we separate the motion within
the cavity, which is assumed to be wave-chaotic, from
the reflection and refraction processes at the resonator
interfaces, which is assumed to be governed by the Snell
and Fresnel laws (4) and (5), respectively.

The construction follows a variant of the quantum
surface-of-section method [28–32] which we adapt to the
specifics of wave propagation in a microresonator, and
bares similarities to the methods used in an efficient nu-
merical scheme for specific cavities [33]. For motiva-
tion let us first consider the classical ray dynamics in
the system. The successive internal reflections of these
rays at the interfaces are conveniently represented in
terms of Birkhoff’s canonical coordinates, given by the
length along the boundary, q, and the sine of the an-
gle of incidence, p = sin χ. The internal ray dynamics
is then reduced to a sequence of points (qn, pn), which
are generated by an area-preserving map M : (qn, pn) →
(qn+1, pn+1). At each encounter with the interface, a
ray is split into a refracted part, which escapes to the
exterior, and a reflected part which remains inside the
resonator. The relative amount of reflection is measured
by the reflection coefficients (5), which in Birkhoff coor-
dinates are written

RTM (p) =

(√
1− p2 −

√
n−2 − p2

√
1− p2 +

√
n−2 − p2

)2

, (8a)

RTE(p) =

(√
1− p2 − n

√
1− n2p2

√
1− p2 + n

√
1− n2p2

)2

(8b)

for |p| < 1/n, while R = 1 for |p| > 1/n.

In wave optics, a similar separation of the internal dy-
namics and the encounters with the interface can be car-
ried out for kL À 1. In this limit, the internal wave
function ψ(int) = ψ(int,in) + ψ(int,out) can be separated
into the component ψ(int,in) which propagates away from
the interfaces, towards the interior of the resonator, and
the component ψ(int,out) which propagates towards the
interfaces. Because the separation relies on the propaga-
tion direction it is best carried out in momentum space,
corresponding to states with a well defined canonical co-
ordinate p. The geometry of the collision with the inter-
face is encoded in the internal scattering matrix F (ω),
which relates the components of the internal wave func-
tion,

ψ(int,out) = F (ω)ψ(int,in). (9)

This is equivalent to Bogomolny’s transfer operator [29],
originally introduced for closed systems. The matrix
F (ω) is unitary and symmetric, the latter property
arising from the time-reversal symmetry in a dielectric
medium. The dimension M ∼ Int[Cnω/πc] of F (ω) de-
pends on the perimeter C of the interface, which is pro-
portional to the system size, C ∝ L.

In the classical limit ωL/c ∝ M → ∞, F (ω) corre-
sponds to the map M. When ωL/c À 1, the momentum
p is quasi-continuous,

pl ∼ 2l −M − 1
2M

, l = 1, . . . , M. (10)

At the interfaces the internal wave function is cou-
pled to the external wave field, which can be decomposed
in the conventional scattering states ψ(ext) = ψ(ext,in) +
ψ(ext,out). The coupling is of the general form

ψ(int,in) = Rψ(int,out) + T ψ(ext,in), (11a)

ψ(ext,out) = −Rψ(ext,in) + T ψ(int,out), (11b)

whereR is the reflection matrix and T is the transmission
matrix, constrained by R†R+T †T = 1. The linear Eqs.
(9) and (11) can be solved to arrive at the scattering
matrix

S(ω) = −R+ T F (ω)
1

1−RF (ω)
T . (12)

This general form of the scattering matrix has also been
encountered in recent investigations of electronic trans-
port and superconducting hybrid structures with small
ballistic openings [36–40].

Our construction of the quantum-dynamical model is
completed by concrete specifications of the matrices R
and F (ω). For kL À 1, Snell’s law dictates that the
matrices R and T in Eq. (11) become diagonal between
states which conserve np, while the Fresnel laws (8) de-
liver the values of the diagonal elements,

Rlm = δlm

√
R(pl), Tlm = δlm

√
1−R(pl), (13)

with pl given by Eq. (10).
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Concerning the internal dynamics encoded in F (ω),
we now follow two routes — we either employ random-
matrix theory or a generic wave-chaotic quantum map,
the quantum kicked rotator.

1. Random-matrix model

It is commonly accepted that statistical properties of
wave systems with chaotic ray dynamics are well de-
scribed by random-matrix theory. In the present case of a
dielectric system, which preserves time-reversal symme-
try, this approach amounts to assuming that F at fixed,
real ω can be represented by a unitary symmetric matrix
randomly drawn from the Circular Orthogonal Ensemble
(COE) [34]. This substitution should best capture the
statistical features of the longest-living resonances, since
in a realistic resonator ray chaos is only established after
a few internal reflections.

In general, the frequency dependence of F (ω) is com-
plicated. In the subsequent analysis we will only require
the local dependence around the poles of the scattering
matrix, and employ as a simple approximation

F (ω) = exp(inωL̄/c)U, U from COE(M), fixed, (14)

where L̄ is the mean propagation distance between two
reflections. Sabine’s law of room acoustics delivers the
universal expression L̄ = πA/C, where A is the area of
the resonator and C is its perimeter. Our approxima-
tion entails (2π)−1 Im tr F † dF

dω = MnL̄/2cπ ∼ Anω/2πc.
This reproduces the correct expression for the mean den-
sity of states, while a more elaborate modelling of the ω
dependence would also describe fluctuations around this
value.

The random-matrix model of two-dimensional wave-
chaotic microresonators is obtained by combining Eqs.
(12), (13), and (14). In order to simplify the notation we
introduce the quasi-energy

θ = nωL̄/c. (15)

This delivers the scattering matrix

S = −R+ T U
1

exp(−iθ)−RU
T , (16)

where U is an M ×M matrix from the COE, while the
diagonal matrix R is given in Eq. (13).

2. Quantum kicked rotator model

The quantum kicked rotator [35] is a quantized version
of the classical standard map on the torus (q, p) ∈ [0, 1)2,
which consists of a combination of torsions p → p+q and
nonlinear ‘kicks’ q → q + f(p), where f(p) = f(p + 1) =
−dv/dp is periodic and can be represented as the deriva-
tive of a potential v(p). In order to break all symmetries

apart from time-reversal symmetry we employ a quan-
tum kicked rotator corresponding to a torsion followed
by a kick with

f(p) = K1 sin(2πp) + K2 sin(4πp + α), (17)

v(p) =
K1

2π
cos(2πp) +

K2

4π
cos(4πp + α), (18)

where the kicking strengths K1, K2 and the shift α are
free parameters. The classical dynamics is known to be
chaotic for K1, K2 & 8.

The propagator, or Floquet matrix, takes the form

Unm =
1√
iM

e
iπ
M (m−n)2− iM

2 [v( n
M )+v( m

M )]. (19)

The quantum kicked rotator model of a wave-chaotic mi-
croresonator follows when this matrix is introduced into
the scattering matrix (16).

B. Resonances and the Petermann factor

We now explore the general structure of the scatter-
ing matrix in the quantum-dynamical model and derive
general relations for the resonances and the Petermann
factor.

The scattering matrix (12) diverges when the resonant
denominator 1−RF (ω) has a vanishing eigenvalue. The
matrix RF (ω) describes one round trip of a wave which
propagates through the cavity, and then is internally re-
flected at the interface. This quantization condition is
analogous to the scattering-matrix quantization condi-
tion in a closed systems [70, 71], which is recovered for
R = 1.

For the specific form (16) of the scattering matrix, the
quantization condition takes the form

RUΨm = exp(−iθm)Ψm, (20)

which is of the form of an eigenvalue equation with eigen-
value exp(−iθm). The matrix RU can be interpreted as
a reduced round-trip operator. Since RU is subunitary,
RU(RU)† = RR† < 1, all eigenvalues are submodular,
| exp(−iθm)| < 1; therefore the quasienergies θm have a
negative imaginary part, γm ≡ −2 Im θm > 0.

The subunitarity of RU furthermore implies that the
right eigenvectors Ψm defined by Eq. (20) are not mutu-
ally orthogonal. However, they form a bi-orthogonal set
with the left eigenvectors,

〈Φl|Ψm〉 = δlm, (21)

where the latter are defined by the adjoint eigenvalue
problem

Φ†mRU = Φ†m exp(−iθm). (22)

In the original variables, the eigenphases θm can be
interpreted in two different ways: (1) They are poles
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θm = nωmL̄/c of the scattering matrix for fixed (possi-
bly complex) refractive index n but variable, generally
complex ωm, (2) they deliver the threshold condition
θm = nmω′mL̄/c of a given resonant state for real ω′m
and a refractive index nm = n′ + in′′m for which only the
real part is fixed. For the scattering matrix (16), both
problems are intimately related since only the product
nω enters the expressions. The cold-cavity poles ω

(cold)
m

are obtained for a real refractive index n = n′. The
threshold amplification is then given by

n′′m = n′ Im ω(cold)
m / Reω(cold)

m . (23)

For realistic dielectric microresonators, this relation is
indeed well established in the semiclassical limit L À λ =
Re ω/c [72]. In such systems, it is moreover reasonable
to assume that the width of the amplification window of
the active medium is much less than the center of this
window, Re ωm. Within the amplification window, the
threshold values n′′m then mainly depend on the imag-
inary part Im ω

(cold)
m ≡ −Γm/2, where Γm is the cold-

cavity decay rate. The laser threshold is hence deter-
mined by the longest-living resonances of the cold cavity,
which are characterized by a small value of Γm.

We now turn to the radiation emitted close to reso-
nance, brought about by steering the amplification close
to the threshold value (23), n′′ = n′′m + δn, while keeping
ω = Re ω

(cold)
m + δω real. We combine both deviations

into the quasienergy deviation θ ≈ θm + δθ. The scatter-
ing matrix (16) can then be evaluated by only keeping
the resonant term in the denominator,

S ≈ T UΨm
eiθm

e−iδθ − 1
Φ†mT (24)

The frequency-resolved output intensity Eq. (6) takes
the form

I(θ) ≈ 1
2πc

K
4 sinh2( Im θm)

| exp(i Re δθ)− exp( Im δθ)|2 , (25)

where

K = (Ψ†mΨm)(Φ†mΦm). (26)

We now can linearize in δθ, which produces the
Lorentzian lineshape

I(θ) ≈ 1
2π

K
4 sinh2( Im θm)
Re δθ2 + Im δθ2

. (27)

Since we are mainly concerned with long living reso-
nances in a large cavity, − Im ωm = Γm/2 ¿ Re ω, we
further linearize the numerator and obtain in the fre-
quency domain

I(ω) ≈ 1
2π

K
Γ2

m

(ω − Reω
(cold)
m )2 + ∆ω2/4

, (28)

where the full width at half maximum is ∆ω =
2δn Re ω

(cold)
m /n′. The total intensity is given by

I =
∫

dωI(ω) = K
Γ2

m

∆ω
. (29)

This recovers relation (2) [excluding the factor of 1/2 due
to the suppression of amplitude fluctuations by the non-
linear feedback in the lasing regime]. Consequently, K
defined in Eq. (26) has to be identified with the Peter-
mann factor.

Expression (26) assumes that the left and right eigen-
vectors are normalized according to the bi-orthogonality
condition (21). When this condition is dropped, the Pe-
termann factor takes the more general form

K =
(Ψ†mΨm)(Φ†mΦm)

|Φ†mΨm|2
. (30)

In the present, time-reversal-symmetric situation
where U = UT , the right and left eigenvectors defined
by Eqs. (20) and (22) can be chosen (via a suitable nor-
malization) such that Φ = U∗Ψ∗. This relation can be
further exploited by decomposing U = V V T in terms
of a unitary matrix V , which is fixed up to transforma-
tions V → V O with an arbitrary orthogonal matrix O.
This decomposition allows us to pass to the symmetrized
eigenvalue problem

V TRV Ψ̃m = exp(−iθm)Ψ̃m, (31a)

Φ̃†mV TRV = exp(−iθm)Φ̃†m, (31b)

which is solved by the right and left eigenvectors Ψ̃ =
V T Ψ and Φ̃ = V T Φ = Ψ̃∗, respectively. In terms of
the symmetrized eigenvectors, the Petermann factor (30)
takes the form

K =
|Ψ̃†mΨ̃m|2
|Ψ̃T

mΨ̃m|2
. (32)

This expression is formally analogous to expression (7)
for the Petermann factor in terms of the resonance wave
function inside the cavity, but involves the eigenvec-
tors Ψ̃m of the symmetrized reduced round-trip operator
V TRV . Furthermore, Eq. (32) is formally equivalent to
the expression used in earlier random-matrix theories for
cavities with small openings [44–46, 61, 73–76].

IV. NUMERICAL RESULTS

We now employ the quantum-dynamical model with
scattering matrix (16) in order to investigate the statisti-
cal properties of wave-chaotic dielectric microlasers. For
fixed values of the refractive index n and polarization
(TE or TM), the matrix U is either chosen as a ran-
dom representative from the COE or as the quantum
kicked rotator (19). The laser threshold follows from
Eq. (23), while the Petermann factor follows from Eq.
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FIG. 1: Probability distribution P (γ) of the scaled decay rate
γm = −2 Im θm, obtained from the eigenvalue equation (20).
In the upper panels the refractive index is n = 1.5 while in
the lower panels n = 3.6. The left panels are computed in
random-matrix theory, while the right panels are computed
in the quantum kicked rotator model. The matrix dimension
is M = 200 (solid curves) and M = 100 (dashed curves). The
labels TM and TE discriminate the different polarizations.
Each curve is based on 105 realizations of U .

(32). In order to present the results for the life times
and laser threshold we use the scaled imaginary part
γm = −2 Im θm = ΓmL̄/c.

In the following we contrast the case of a relatively
open resonator with refractive index n = 1.5 (close to
the value of glass) to a relatively closed resonator with
n = 3.6 (close to the value of Ga(Al)As). In the random-
matrix model, the computations are based on 105 re-
alizations of U from the COE with matrix dimension
M = 100 or M = 200 [77]. In the kicked-rotator model,
the same number of matrices with identical dimensions
are obtained by varying the parameters α, K1 and K2.
We also present n-dependent averages, which are based
on 104 realizations of U in each of the models.

Figure 1 shows the probability distribution function
P (γ) of scaled decay rates for both polarizations and the
two representative values of the refraction index. The
results obtained for matrices of dimension M = 100 and
200 are very close, suggesting a mild dependence of P (γ)
on the wavelength when the resonator size increases. For
the relatively closed resonator, n = 3.6, the distributions
found in both models are almost identical. For the rel-
atively open resonator with n = 1.5, however, the limit-
ing distribution in the random-matrix model is distinctly
different from the result in the quantum kicked rota-
tor model. This demonstrates that universality starts to
break down as the system becomes more open, due to the
greater influence of short-time dynamics (this breakdown
has been studied in more detail for the spectrum and res-
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FIG. 2: Probability distribution P (γ0) of the extremal (small-
est) scaled decay rate γ0. The symbols and parameters are
the same as in Fig. 1.

onance wave functions of ballistic systems in [40, 78, 79],
using semiclassical arguments). On the other hand, the
characteristic qualitative features of the distributions dis-
play a robust parameter dependence. For both values of
the refractive index n and in both models, the TE po-
larization leads to larger decay rates compared to TM.
For a given polarization, the decay rates decrease with
increasing n. Both trends are consistent with the gen-
eral features of the Fresnel laws (5), which provide better
confinement for TM polarization, and for large refractive
indices.

For each realization, the laser threshold is determined
by the extremal resonance with the smallest rescaled de-
cay rate, which we denote by γ0. Figure 2 shows the dis-
tribution P (γ0) of the extremal decay rate for the same
parameters as used in Fig. 1. Again the results from
both models coincide for the relatively closed resonator,
while for the relatively open resonator the random-matrix
model has a distinctively more narrow distribution than
the quantum kicked rotator model. In all cases, TM po-
larization yields smaller decay rates than TE polariza-
tion, which is inherited from the behavior of P (γ) in Fig.
1. The results also show a trend to larger decay rates
as the dimension M is increased. This trend can be ex-
plained by the (hardly visible) sharpening of the small-γ
flank in the distribution function P (γ) [Fig. 1] when M is
increased, which suppresses the tail with very small de-
cay rates. Such a sharpening has also been demonstrated
in the random-matrix theory of cavities with small ballis-
tic openings, where the distribution function eventually
becomes discontinuous [12, 60, 80, 81].

Figure 3 shows the average value 〈γ0〉 of the extremal
decay rate as a function of the refractive index n. For
this quantity, the results from the random-matrix and
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FIG. 3: Ensemble average 〈γ0〉 of the scaled extremal decay
rate γ0 as a function of refractive index n, for TM and TE
polarization (squares and circles, respectively). Solid symbols
are obtained in random-matrix theory, while open symbols are
obtained in the quantum kicked rotator model. Each data
point is based on 104 realizations of U with matrix dimension
M = 200.

kicked-rotator models agree very well. As expected from
the increasing confinement, 〈γ0〉 decreases with increas-
ing refractive index n, and is smaller for TM polarization
than for TE polarization.

We now turn to the statistics of the Petermann fac-
tor. Following the results from other variants of random-
matrix theory [44–46, 61, 73–76] it has to be expected
that the Petermann factor increases with increasing de-
cay rate of a resonance, and moreover increases with in-
creasing number of outcoupling channels. In the present
class of systems this number is simply proportional to M .

Anticipating these trends, we show in Fig. 4 the dis-
tribution P (κ) of rescaled Petermann factors κ = K/M .
The distribution represents the Petermann factor of all
resonances, without discriminating them by width; pa-
rameters are the same as in Fig. 1. The collapse of the
curves demonstrates clearly the linear scaling with M .
Smaller Petermann factors are observed for TM polar-
ization and/or increasing refractive index, which is con-
sistent with the reduction of decay rates [see Fig. 1]. In
contrast to the distribution of decay rates, the results
from the random-matrix and kicked-rotator model agree
well for both refractive indices, indicating that the Pe-
termann factor has a more universal statistics.

Figure 5 shows the conditional probability distribution
P (κ|γ), of Petermann factors with a given value of the
rescaled decay rate. We again find an approximate lin-
ear scaling with M . The dependence on polarization and
refractive index follows the same trends as in Fig. 4. Uni-
versality is also present, since the results for both models
are very similar.

The line width of the microlaser is determined by the
Petermann factor of the longest-living resonance, which
we denote by K0 and refer to as the extremal Petermann

 0

 2

 4

 6

 8

 10

 0  0.2  0.4  0.6  0.8  1

P
(κ

)

κ

TM

TE

n=1.5, RMT

Μ=200
Μ=100

    

    

    

    

    

    

 0  0.2  0.4  0.6  0.8  1

 

κ

TM

TE

n=1.5, kicked rotator

 0

 20

 40

 60

 80

 0  0.05  0.1  0.15

P
(κ

)

κ

TM

TE

n=3.6, RMT

    

    

    

    

    

 0  0.05  0.1  0.15

 

κ

TM

TE

n=3.6, kicked rotator

FIG. 4: Probability distribution P (κ) of the scaled Petermann
factor κ = K/M . The symbols and parameters are the same
as in Fig. 1.
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FIG. 5: Conditional probability distribution P (κ|γ) of scaled
Petermann factors κ = K/M at a fixed value γ ≈ 2.0 of the
scaled decay rate. Results are shown for both polarizations
and two matrix dimensions. The refractive index is n = 1.5.

factor. (For a given realization, this is not necessarily the
smallest Petermann factor among all the resonances.) As
shown in Fig. 6, K0 does not scale linearly with M , but
scales instead with

√
M . This different parametric de-

pendence can be traced to the fact that the decay rate
of the extremal resonance is not fixed [Fig. 2]. The same
parametric dependence, but as a function of N , is also
obtained in the random-matrix theory of cavities with
small ballistic openings, where N ¿ M [45, 46]. Accord-
ing to Fig. 6, the details of the statistics for the extremal
Petermann factor are again non-universal for the rela-
tively open resonator with n = 1.5 — the distribution in
the random-matrix model is more narrowly peaked than
in the kicked-rotator model.

Similarly to what is observed in Fig. 4, the extremal
Petermann factor in Fig. 6 is reduced when increasing
refractive index n. However, K0 displays a weaker po-
larization dependence. These trends are further under-
lined in Fig. 7, which shows the ensemble average 〈κ̃0〉
of the scaled extremal Petermann factor κ̃0 = K0/

√
M .
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FIG. 6: (color online) Probability distribution P (κ̃0) of the

scaled extremal Petermann factor κ̃0 = K0/
√

M of the
longest-living resonance. The symbols and parameters are
the same as in Fig. 1.

This average is significantly larger than the modal value,
which is due to the long tail in the distribution function.
The average decreases with increasing refractive index,
similarly to the averaged extremal decay rate in Fig. 3.
The results from the random-matrix and kicked-rotator
models converge for large refractive index.

In summary, Figs. 1–3 demonstrate that the laser
threshold of a wave-chaotic dielectric microresonator de-
creases for increasing refractive index n and is smaller for
TM polarization than for TE polarization. The thresh-
old increases slowly for increasing number of out-coupling
modes. Figures 6 and 7 show that the Petermann fac-
tor of a wave-chaotic dielectric microresonator decreases
for increasing refractive index n and scales as the square-
root of the number of out-coupling modes, but is less
sensitive to polarization. Figure 4 shows that this be-
havior critically depends on the requirement to determine
the longest-living resonance, which first reaches the laser
threshold.

For all quantities, details of the statistics are model-
dependent for relatively open resonators, but become
universal for relatively closed resonators with a large
refractive index (for very closed resonators the results
eventually converge to the predictions of conventional
random-matrix theory [12, 44–46, 60, 61]).

V. CONCLUSIONS

The quantum-dynamical model of dielectric microres-
onators presented in this work addresses geometries
which facilitate well-established wave chaos in the semi-
classical limit λ ¿ L, where L is the typical resonator

 0

 0.5

 1

 1  2  3  4

〈κ̃
0〉

n

RMT TM
RMT TE

kicked rotator TM
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FIG. 7: Ensemble average 〈κ̃0〉 of the scaled extremal Peter-

mann factor κ̃0 = K0/
√

M as a function of refractive index
n. The symbols and parameters are the same as in Fig. 3.

dimension and λ is the wave length. We developed two
variants of the model, one being based on random matrix
theory while the other is based on the quantum-kicked
rotator. In general, we found that relatively closed res-
onators (with a large refractive index) display universal
statistics while model-dependence sets in for relatively
open resonators (with a small refractive index). In the
latter case the non-universal features even affect long-
living resonances, which classically correspond to rays
which enjoy many internal reflections at the dielectric
interfaces.

The longest-living resonances determine the laser ac-
tion of the resonator. We concentrated most of our ef-
forts on the laser threshold and the quantum-limited line
width, which should be directly accessible in a suitable
experiment. We found that among the two competing
polarizations, TM will usually win the mode competition
for the most stable resonance. The threshold decreases
with increasing refractive index. The Petermann factor
in the line width also decreases with increasing refractive
index, and furthermore scales ∝

√
L/λ.

Experimentally, Petermann factors of the laser mode
have been determined for various geometries in Ref. [57–
59]. Recent experimental progress [82] now makes it pos-
sible to address the life time and Petermann factors of
individual resonances via direct means. These methods
are not restricted to the longest living resonance, and do
not require an active medium (they, hence, also apply
to passive or absorbing resonators). Such an experiment
could serve to validate the different scaling ∝ L/λ of Pe-
termann factors for resonances of a fixed decay rate.

Many microresonators of interest have a geometry
which facilitates ray chaos only in parts of the classi-
cal phase space [4, 14–23]. While random-matrix the-
ory is not applicable to these systems, the kicked-rotator
model can readily account for such situations when the
kicking strengths are suitably reduced. In general, Eq.
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(12) for the scattering matrix provides a vehicle to study
a wide range of situations, including integrable or dis-
ordered systems, by a suitable round-trip operator RU .
Equation (23) for the laser threshold and Eq. (32) for the
Petermann factor do not depend on the specific choice of

the round-trip operator and can serve as a starting point
for further analytical considerations.

This work was supported by the EPSRC and by the
European Commission, Marie Curie Excellence Grant
MEXT-CT-2005-023778.
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