Exogenous monoterpenes mitigate H2O2-induced lipid damage but do not attenuate photosynthetic decline during water deficit in tomato

Zhou, Hao and Ashworth, Kirsti and Dodd, Ian C (2023) Exogenous monoterpenes mitigate H2O2-induced lipid damage but do not attenuate photosynthetic decline during water deficit in tomato. Journal of Experimental Botany. ISSN 0022-0957

[thumbnail of Exogenous_monoterpenes_mitigate_H2O2-induced_lipid]
Text (Exogenous_monoterpenes_mitigate_H2O2-induced_lipid)
Exogenous_monoterpenes_mitigate_H2O2_induced_lipid.pdf - Submitted Version
Available under License Creative Commons Attribution.

Download (3MB)

Abstract

Although monoterpenes are suggested to mediate oxidative status, their role in abiotic stress responses is currently unclear. Here, a foliar spray of monoterpenes increased antioxidant capacity and decreased oxidative stress of Solanum lycopersicum under water deficit stress. The foliar content of monoterpenes increased with spray concentration indicating foliar uptake of exogenous monoterpenes. Exogenous monoterpene application substantially decreased foliar accumulation of hydrogen peroxide (H2O2) and lipid peroxidation (malondialdehyde). However, it appears that monoterpenes prevent the accumulation of reactive oxygen species rather than mitigating subsequent reactive oxygen species-induced damage. Low spray concentration (1.25 mM) proved most effective in decreasing oxidative stress but did not up-regulate the activity of key antioxidant enzymes (superoxide dismutase and ascorbate peroxidase) even though higher (2.5 and 5 mM) spray concentrations did, suggesting a complex role for monoterpenes in mediating antioxidant processes. Furthermore, soil drying caused similar photosynthetic limitations in all plants irrespective of monoterpene treatments, apparently driven by strong reductions in stomatal conductance as photosystem II efficiency only decreased in very dry soil. We suggest that exogenous monoterpenes may mitigate drought-induced oxidative stress by direct quenching and/or up-regulating endogenous antioxidative processes. The protective properties of specific monoterpenes and endogenous antioxidants require further investigation.

Item Type:
Journal Article
Journal or Publication Title:
Journal of Experimental Botany
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/1100/1110
Subjects:
?? plant sciencephysiologyplant sciencephysiology ??
ID Code:
197396
Deposited By:
Deposited On:
29 Jun 2023 12:40
Refereed?:
Yes
Published?:
Published
Last Modified:
29 Jun 2024 00:38