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Abstract

The rapid development of convolutional neural networks (CNNs) in com-

puter vision tasks has inspired researchers to apply their potential to em-

bedded or mobile devices. However, it typically requires a large amount

of computation and memory footprint, limiting their deployment in those

resource-limited systems. Therefore, how to compress complex networks

while maintaining competitive performance has become the focus of at-

tention in recent years. On the subject of network compression, filter

pruning methods that achieve structured compact model by finding and

removing redundant filters, have attracted widespread attention. Inspired

by previous dedicated works, this thesis focuses on the way to obtain the

compact model while maximizing the retention of the original model per-

formance. In particular, aiming at the limitations of choosing filters on

the existing popular pruning methods, several novel filter pruning strate-

gies are proposed to find and remove redundant filters more accurately

to reduce the performance loss of the model caused by pruning. For in-

stance, the filter pruning method with an attention mechanism (Chapter

3), data-dependent filter pruning guided by LSTM (Chapter 4), and filter

pruning with uniqueness mechanism in the frequency domain (Chapter

5).

This thesis first addresses the filter pruning issue from a global perspec-

tive. To this end, we propose a new scheme, termed Pruning Filter with

an Attention Mechanism (PFAM). That is, by establishing the depen-

dency/relationship between filters at each layer, we explore the long-term

dependence between filters via attention module in order to choose the to-

be-pruned filters. Unlike prior approaches that identify the to-be-pruned

filters simply based on their intrinsic properties, the less correlated filters

are first pruned after the pruning step in the current training epoch and

then reconstructed and updated during the subsequent training epoch.

Thus, the compressed network model can be achieved without the require-

ment for a pre-trained model since input data can be manipulated with



the maximum information maintained when the original training strategy

is executed.

Next, it is noticed that most existing pruning algorithms seek to prune the

filter layer by layer. Specifically, they guide filter pruning at each layer by

setting a global pruning rate, which indicates that each convolutional layer

is treated equally without regard to its depth and width. In this situation,

we argue that the convolutional layers in the network also have varying

degrees of significance. Besides, we propose that selecting the appropriate

layers for pruning is more reasonable since it can result in more complexity

reduction with less performance loss by keeping and removing more filters

in those critical and nonsignificant layers, respectively. In order to do this,

long short-term memory (LSTM) is employed to learn the hierarchical

properties of a network and to generalize a global network pruning scheme.

On top of that, we present a data-dependent soft pruning strategy named

Squeeze-Excitation-Pruning (SEP), which does not physically prune any

filters but removes specific kernels involved in calculating forward and

backward propagations based on the pruning scheme. Doing so can further

decrease the model’s performance decline while achieving a deep model

compression.

Lastly, we transfer the concept of relationship from the filter level to the

feature map level because the feature maps can reflect the comprehen-

sive information of both input data and filters. Hence, we propose Filter

Pruning with Uniqueness Mechanism in the Frequency Domain (FPUM)

to serve as a guideline for the filter pruning strategy by generating the

correlation between feature maps. Specifically, we first transfer features

to the frequency domain by Discrete Cosine Transform (DCT). Then, for

each feature map, we compute a uniqueness score, which measures its

probability of being replaced by others. Doing so allows us to prune the

filters corresponding to the low-uniqueness maps without significant per-

formance degradation. In addition, our strategy is more resistant to noise

than spatial methods, further enhancing the network’s compactness while

maintaining performance, as the critical pruning clues are more concen-

trated following DCT.
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Chapter 1

Introduction and Background
Theory

1.1 Research Background

The fast growth of convolutional neural networks (CNNs) has shown astounding per-

formance and efficiency in various computer vision applications [1–6]. In order to

further improve performance, the majority of existing algorithms prioritize designing

immensely complicated network structures, resulting in a vast number of parame-

ters and massive model sizes. Reference [7] demonstrates that VGG-16 [8] requires

138M weights and 15.5G multiply-and-accumulates (MACs) to process one 224×224

input image. Moreover, we have to utilize at least 2 GTX1080 graphics processing

units (GPUs) to successfully train the VGG-16 with a batch size of 128 since it re-

quires around 16GB of GPU memory. Similarly, the sophisticated and lightweight

model Resent-152 [9] also needs 231 MB of memory space and over 6 seconds to pro-

cess one image to release its powerful performance. Such implementations demand

intensive computations and large memory footprints, restricting their further deploy-

ment in resource-limited systems such as embedded or mobile devices. Therefore,

how to compress complicated networks while preserving competitive performance has

attracted extensive attention from industry and academia.

To realize the aforementioned goals, several network compression approaches such

as knowledge distillation [10–12], parameter quantization [13–15], tensor decompo-

sition [16–18], and network pruning [19–21] have been proposed. In contrast to the

first three branches of research, which construct lightweight networks from scratch

or alter the parameter storage types, network pruning methods obtain compactness

by selecting and pruning unnecessary parameters from the original networks. This

1



way, the pruned networks can retain the most knowledge from the original networks

without consuming as much memory and computation resources as before.

Fig.1.1 depicts a simplified flow chart based on the network pruning method

(NP) [22] that helps to further illustrate the network pruning process. This flow

chart can be easily extended to other types of pruning methods, such as filter prun-

ing. In NP, the pruning algorithm depends on the parameters from the pre-trained

model, requiring the initial training of the model to obtain well-trained model param-

eters. Next, we can determine which connections are not important and need to be

removed based on specific importance criteria. Evaluating the magnitude of weight

can be viewed as a straightforward and effective criterion for identifying unimportant

connections. After the connection selection stage, the connections with low weight

are pruned from the model. However, after the pruning process, the structure of the

pruned model becomes extremely sparse due to the elimination of a large number of

connections, resulting in a significant loss of performance. Therefore, to reduce the

performance loss, the pruned network needs to be trained again in the following stage

to get the final weights for the remaining sparse connections. It is worth mentioning

that this process can be iterated many times to achieve extreme network compression.

After several iterations, we end up with a lightweight network without sacrificing too

much performance.

Before Pruning After Pruning 

pruning  
neurons 

pruning 
connections 

Figure 1.1: Connections and neurons before and after pruning.

The three earliest representative research in the field of network pruning are Biased

Weight Decay (BWD) [23], Optimal Brain Damage (OBD) [24], and Optimal Brain
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Surgeon (OBS) [25]. In particular, OBD [26] and OBS [25] use the hessian of the

loss function rather than the magnitude-based criterion to remove some unimportant

connections during the pruning stage. However, such proposed approaches require

additional computational costs to accomplish the second-order derivative calculation,

which greatly affects the efficiency of pruning. However, the second-order derivative

needs additional computation. Later, some classical weight pruning methods [27–

29] are proposed to prune unimportant weights instead of connections or neurons.

Compared to the previous methods that prune connections, although these methods

can reduce the parameters of the network significantly while losing less performance,

the pruned network is sparse and unstructured, which cannot fit into the software

libraries [30] and hardware architecture [31] to achieve acceleration. Consequently,

filter pruning has been developed rapidly since it removes all weights in a filter and

then generates a structure-pruned model to make the acceleration.

In this thesis, we will focus on filter pruning for image classification tasks in

computer vision. In particular, we propose several new filter pruning algorithms

to solve the several major challenges in network pruning, which are shown as filter

pruning with an attention mechanism (Chapter 3), data-dependent filter pruning

guided by LSTM (Chapter 4), and filter pruning with uniqueness mechanism in the

frequency domain (Chapter 5). The proposed methods can generate the structure-

pruned model, which could reduce the computation costs and memory usage while

maintaining the excellent performance as the original one.

In the following subsections, we first provide further insights into the fundamental

theory of network pruning and briefly present the motivations for proposing those

novel methods. Then we summarize the contributions of each chapter. Finally, the

organization of this thesis is given.

1.2 Formulation of Network Pruning

1.2.1 Expressions of Network Pruning

Given a CNN model with L layers, let W l ∈ Rcl×cl−1×h×w be the filter tensor of the

l-th convolutional layer, where h and w, cl, and cl−1 represent the kernel height, kernel

width, output channel, and input channel of the filter, respectively. In particular, h

and w are set to 1 for the fully-connected layer. To simplify the discussions, only

convolutional layers are discussed as instances in the subsequent sections. The goal

of network pruning is to select and remove unnecessary parameters from the original

network. To visualize the pruning principle in a straightforward way, we can represent
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it by applying a mask K l to W l. Notably, K l is a binary tensor (0 or 1) that indicates

the states of network parameters, where 0 means they can be removed, and 1 means

they will be kept. Therefore, given a specific pruning rate p, network pruning can be

expressed as:

arg max
Kl

R
(
Wl ⊕Kl

)
, s.t.

∥∥K l
∥∥
0

= 1− p, (1.1)

where ⊕ denotes the masking operation and R(•) evaluates the importance of its

input. There are several input importance measurements, such as `1-norm, `2-norm,

etc.

1.2.1.1 Weight Pruning

Fig.1.2 depicts a simplified framework of weight pruning method. The objective of

weight pruning is to select and prune individual filter weights. Thus, the weight that

needs to be removed could be located anywhere in the parameter matrix of the filter.

Consequently, the dimension of pruning mask K l should coincide with that of W l at

the convolutional layer l. In general, filter pruning formulates the objective function

as follows:

arg max
Kl

cl∑
j

cl−1∑
k

hl∑
m

wl∑
n

R
(
Wl

j,k,m,n ·Kl
j,k,m,n

)
, s.t.

∥∥K l
∥∥
0

= 1− p. (1.2)

Weight Pruning 

Filter 

Sparsity Regularization 

Filter 

Figure 1.2: Framework of weight pruning using sparsity constraints.
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1.2.1.2 Filter Pruning

Instead of pruning individual weights in each filter, filter pruning, which is shown in

Fig.1.3 aims to prune the whole filter W l
j , which removes all weights of each filter.

Hence, the corresponding pruning mask K l
j and filter share the same shape Rcl . Filter

pruning typically formulates the objective function as follows:

arg max
Kl

cl∑
j=1

R
(
Wl

j ·Kl
j

)
, s.t.

∥∥K l
∥∥
0

= 1− p. (1.3)

Filter Pruning 

Filter 

5.2 

Properties Calculation 

1.3 

6.5 

3.1 

Filter 

Figure 1.3: Framework of filter pruning with importance criterion. In particular, the
smaller norm values (3.1 and 1.3) normally can be treated as unimportant and need
to be removed.

In addition, the filter pruning method based on feature maps shows more merits

than traditional filter pruning methods for measuring pruning criteria since it embeds

more comprehensive information about filters and input data. As a result, it is given

more attention as a metric for measuring the importance of filters. Notably, Al
j

∈ Rh×wis the j-th feature map from the l-th layer. The objective function can be

rewritten as the following form:

arg max
Kl

cl∑
j=1

R
(
Al
j ·Kl

j

)
, s.t.

∥∥K l
∥∥
0

= 1− p. (1.4)

1.2.2 Evaluation Metrics

To pursue maximum performance, most methods are proposed to build sophisticated

and heavy network architectures. However, such implementations require intensive
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computation and memory occupancy due to their number of parameters and complex-

ity, limiting their applications in resource-limited systems (e.g., embedded or mobile

devices). Hence, network pruning has gradually become a hot research topic since it

aims to generate a lightweight sub-network from the original complicated one with a

tiny performance loss.

Compared to large and powerful workstations, the memory space of the embed-

ded systems is designed to be very small to maintain their portability. Moreover,

the performance of their processor is also mediocre due to their heat dissipation re-

quirement. Therefore, these two main limitations require the model to have a small

size and low computational consumption before being deployed into such resource-

constrained systems. To achieve the two main goals above, computation consumption

and the number of parameters become the two most important indexes to evaluate

the advantages and disadvantages of the network pruning algorithms.

1.2.2.1 Floating Point Operations (FLOPs)

The computation consumption is the computation times required by the model, which

reflects the requirements of the model for hardware computing units. It is usually

expressed as operations (Ops). Since the most common data format is float32, it is

also commonly written as Floating Point Operations (FLOPs). Therefore, FLOPs are

one significant factor for network pruning to evaluate the complexity of the network

since the pruned model with low FLOPs could decrease the dependency on processor

performance. Given one

Given one convolutional layer, the FLOPs are calculated with:

FLOPsconv = [(kw ∗ kh ∗ cin) ∗ cout + cout] ∗ H ∗ W, (1.5)

where cout, cin and kw and kh are the output channel, input channel, kernel height

and kernel width of filter, respectively. H and W are the height and width of input

feature map. It can be seen that the number of floating point operations not only

depends on the size of the convolution kernel and the number of input and output

channels but also depends on the size of the feature map. This metric has been used

in the experiments of Chapter 3, Chapter 4 and Chapter 5.

For the fully connected layer, the FLOPs are calculated with:

FLOPsfc = (nin ∗ nout ) + nout . (1.6)
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1.2.2.2 The number of Parameters (Params)

The number of parameters (Params) is a critical factor for evaluating the size of the

model. It is the sum of the parameters in the model and directly relates to how

much disc space the model needs. For embedded and mobile devices, their memory

capacities are small due to their size limitations, which results in a strict limit on the

size of model packages. Therefore, network pruning methods need to generate a new

sub-network with fewer parameters to meet this requirement. For CNNs, the number

of parameters of the model is mainly composed of the weights of the convolutional

layers and the fully connected layers.

Given one convolutional layer, the Params are calculated with:

paramconv = (kw ∗ kh ∗ cin ) ∗ cout + cout , (1.7)

where cout, cin and kw and kh are the output channel, input channel, kernel height

and kernel width of filter, respectively. It can be seen that the number of parameters

in the convolution layer is only related to the size of the convolution kernel and the

number of input and output channels. This metric has been used in the experiments

of Chapter 5.

For the fully connected layer, the Params are calculated with:

paramfc = (nin ∗ nout ) + nout . (1.8)

1.3 Research Problems and Challenges

Although existing filter pruning methods have achieved remarkable results in network

compression, there are still some limitations in reaching the goal of removing more

redundant filters with less performance degradation. Therefore, in this thesis, we

mainly analyzed the three potential improvement areas of filter pruning: the rela-

tionship between filters, the importance of convolutional layers, and the relationship

between feature maps. We elaborate on the challenges and issues of these research

points that have not been addressed. These challenges stimulate our research interests

and motivate our works.

1.3.1 The Pruning Strategy of Filter

In filter pruning, how to select and remove redundant filters more accurately becomes

one of the most important factors that researchers consider when designing pruning
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criteria. Some works [30, 33, 34] determine and prune unimportant filters according

to their intrinsic properties. For example, Li et al. [33] proposed to prune parameters

at the filter level, which evaluates a filter by calculating the sum of its absolute

weights and removes unimportant filters sequentially. Chin et al. [34] proposed the

filter pruning method to prune unimportant filters according to the magnitude-based

ranking after the training stage, and some of them with lower ranks will be pruned.

Fig.1.4 shows the traditional filter pruning process.

Feature maps 

conv1 conv2 

Zeroed filter  

Zeroed feature maps  Zeroed feature maps  

Zeroed filter  

Feature maps Feature maps 

Feature maps 

conv1 conv2 

Filters  Feature maps Feature maps Filters  

50% Pruning rate 

Figure 1.4: A simple example of filter pruning. The CNN comprises two convolutional
layers, which originally have four and six filters, respectively. At the 50% pruning
rate, the second and third filters in the first layer and the first, fourth, and sixth
filters in the second layer are pruned. Therefore, the corresponding output feature
maps in the two following layers are eliminated.

Besides, [33,35,36] generally compressed the deep CNNs in a hard manner. They

follow the basic three steps to prune redundant filters. However, once the filters are

selected, these to-be-pruned filters are abandoned permanently during the pruning

process and never recovered again in the following fine-tuning stage. Although the

model is dramatically reduced in size due to the removal of filters, such a hard prun-

ing method is more likely to yield unsatisfactory performance due to the shrinkage

8



of model capacity. As a result, these methods may have surprisingly expensive com-

putational resource costs since the fine-tuning stage usually needs plenty of time to

re-train the pruned model to recover its performance. Fig.1.5 illustrates the filter

pruning process based on properties calculation.

3.1 

6.5 

5.2 

1.3 

Properties Calculation 

Pruned 

Pruned 

Filters 

Filter-based Pruning with Properties Calculation  

Filters 
Feature maps 

Figure 1.5: The work pipeline of filter pruning process based on properties calculation.

Unlike the hard pruning methods, pruning filters in a soft manner is becoming

a popular research topic since the pruned filters from the previous pruning stage

can be recovered at the next training epoch to make a new pruning decision. Soft

filter pruning [30] dynamically removes redundant filters at each training epoch to

avoid some important filters being pruned mistakenly in the early pruning stage.

However, similar to previous pruning methods, it still only focused on the importance

of individual filters without taking the correlation among filters into consideration,

which made the filter selection less discriminative.

He et al. [37] argued that the magnitude-based pruning methods that only focus on

individual filters make it easier to obtain the sub-model with a locally optimal solution

than with a globally optimal solution, thus hindering the model from achieving better

performance. Then they proposed a filter pruning method based on correlations

among filters rather than their individual properties. To be specific, they aim to find

and remove the filters that can be replaced by other filters. They get the replaceable

scores by computing the geometric median of the filters, and then they prune the

filters with high replaceable scores. Fig.1.6 illustrates the filter pruning process based

on correlation calculation.
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Filter-based Pruning with Correlation Calculation  

Filters 
Feature maps 
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0.472 

Correlation Calculation 

Pruned 

Pruned 

Figure 1.6: The work pipeline of filter pruning process with corrletaion calculation.

However, this method still has some drawbacks. If some filters with large norm

values are deemed replaceable and then removed due to the criterion of the geometric

median, the actual pruning effect is worse than that of the pruning method that only

considers their norm values. Moreover, the correlation proposed by this method only

depends on the mathematical distance to the geometric median point and does not

consider the interrelation between the filters. Therefore, how to effectively express

the correlation of filters is still a challenging topic.

1.3.2 The Importance of Convolutional Layers

As mentioned above, the soft filter pruning approach based on the correlation cri-

terion shows many benefits over traditional filter pruning methods with individual

importance criteria. However, previous works still have two major limitations, which

impede their performance in filter pruning.

Firstly, most existing filter pruning methods [30,33,36–38] tend to prune filters by

setting a global pruning rate. In other words, all convolutional layers are deemed to be

of equal importance during the pruning step, and the filters are removed layer-by-layer

from top to bottom. However, removing filters in this way contradicts the observation

that the layers differ in terms of significance. If it prunes a few filters from a crucial

layer, the entire performance of the system may degrade substantially. In contrast,

reducing the number of filters in an insignificant layer can drastically reduce the

model’s complexity while having no effect on its performance. Consequently, pruning
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filters with only one global pruning rate for all convolutional layers may provide a

suboptimal pruned model.

Secondly, a few filter pruning methods empirically [39,40] set the specific pruning

rate for each layer in the pruning stage to improve performance. However, such an

empirical setting is modified several times after a large number of experimental results,

which undoubtedly increases the time and computational cost significantly. Moreover,

it may be a suboptimal pruning decision for the network because enumerating all

the parameter combinations is extravagant. In addition, this pruning decision is

generated statically and cannot be driven by data, which limits it to prune filters

more accurately.

1.3.3 The Relationship between Feature Maps

Due to the excellent acceleration of filter pruning, identifying which filters need to

be pruned has become a primary challenge. One intuitive solution is to measure the

intrinsic properties of the filter to determine its importance. For example, Fig.1.7(a)

calculates the norm value of the filter and then assumes that the filters with low

norm values are named unimportant filters and need to be pruned. However, since

the importance of filters is measured by their norm values and the correlation between

filters is ignored, some filters are still easily replaced by others, which should be treated

as redundant even though their norm values are high enough. To solve the above issue,

in Fig.1.7(b), some pruning methods [37, 41] are proposed to make the correlation

between filters to select redundant filters more accurate than the pruning methods

that only focus on the properties of the individual filters. Although it considers the

correlation between filters, these filter-based pruning methods still mainly focus on

the filters only and ignore the richer and more comprehensive information after the

convolutional operation.

Unlike the filter-based pruning methods, Lin et al. [39] proposed using the feature

map’s rank as the filter’s importance evaluation. In Fig.1.7(c), compared to filter-

guided pruning, feature-guided pruning offers a more accurate guide to determining

which filters are redundant because it measures the comprehensive information of both

the input data and filters. However, two drawbacks still hinder selecting redundant

filters more accurately. First, current methods only calculate the rank based on

its intrinsic properties for each feature map, ignoring the correlation between maps.

Second, in the spatial domain, the critical information in the feature map is relatively

scattered. If their norm or rank is calculated directly, noise information could mess
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up the calculation, which would affect the selection result of the redundant filters.

Therefore, finding redundant filters in the frequency domain seems less efficient.

3.1 

6.5 

5.2 

1.3 

Properties Calculation 

0.311 

0.121 

0.213 

0.472 

Correlation Calculation Filters 

Pruned 

Pruned 

Pruned 

Pruned 

Filters 

Filters 
Feature Maps 

2.2 

5.6 

1.7 

6.3 

Properties Calculation 

Pruned 

Pruned 

Filter-based Pruning with Properties Calculation  

Feature-based Pruning with Properties Calculation  

Filter-based Pruning with Correlation Calculation  

（a） （b） 

（c） 

Figure 1.7: A simple example of filter pruning. The CNN comprises two convolutional
layers, which originally have four and six filters, respectively. At the 50% pruning
rate, the second and third filters in the first layer and the first, fourth, and sixth
filters in the second layer are pruned. Therefore, the corresponding output feature
maps in the two following layers are eliminated.

In this section, we have concisely discussed the significant research challenges in

network pruning. To handle the above problems, several novel solutions are proposed

for those problems separately, which will be further detailed in the main chapters. In

the following subsections, we briefly summarize the contributions of each work and

provide the chapter outlines correspondingly.

1.4 Overview of Contributions

In this thesis, the content covers three main research improvements in filter pruning:

the relationship between filters, the importance of convolutional layers, and the rela-
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tionship between feature maps. The contribution of this thesis can be expressed as

proposing novel solutions to tackle the discussed research challenges while achieving

superior performance with significantly reduced model size and computational con-

sumption in the above scheme. Without loss of generality, the contributions of each

work are briefly summarized as follows:

• Chapter 3: To address the challenges above in Section 1.3.1, a novel deep net-

work compression method termed Pruning Filter with an Attention Mechanism

(PFAM) is proposed for efficient image classification. The compact network

model is obtained by integrating the attention-based filter pruning strategy

into a unified end-to-end training process. Besides, a novel correlation-based

filter selection criterion is proposed in the filter pruning, where the correlation

value of each filter is calculated through the attention module. Then, the less

correlated filters are pruned to reduce the network complexity. The proposed

attention module efficiently generates the correlation among filters by exploring

their long-range dependencies, which is more likely to make wise decisions in se-

lecting the to-be-pruned filters without compromising the network performance.

• Chapter 4: The experiment results verified the argumentation that the layers

are different in terms of importance, which provide the experimental basis for

setting a specific pruning rate in different layers in the filter pruning stage. To

this end, an end-to-end framework is proposed to determine the importance of

each layer and thus generate the specific pruning decision for each one. The

core module LSTM is updated using the policy gradient method with both

model performance and complexity as the reward. Besides, we propose the

SEP pruning method rather than adopting a hard pruning strategy to prune

redundant filters accurately. SEP is a data-dependent soft pruning method,

which preserves all the filter parameters, but for each image data, only some

important ones participate in calculating forward and backward propagations.

Different filters may be softly pruned when the given image is changed according

to the SEP selection.

• Chapter 5: To tackle the problems in Section 1.3.3, we introduce the concept

of uniqueness, a novel criterion for filter pruning. Unlike the intrinsic properties

of filters, uniqueness is measured from the correlation between feature maps.

It implicitly indicates how uniquely a feature map embeds critical information.

Therefore, a more comprehensive pruning strategy can be achieved. In addition,
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we propose to determine to-be-pruned filters in the frequency domain rather

than the spatial domain. With the advantages of frequency-domain operations,

our proposed method can find and prune unimportant filters more efficiently

without much noise interference as in the spatial domain..

1.4.1 Thesis Outline

The rest of this thesis consists of a comprehensive literature review of the existing

works and the proposed state-of-the-art filter pruning frameworks to solve three main

issues in network pruning. Firstly, instead of pruning filters based on their individual

properties, we propose to select and prune filters by exploring the long-range de-

pendencies among filters via an attention module. Besides, the data-dependent soft

pruning guided by LSTM is proposed to let the network provide the specific pruning

decision for each layer by itself rather than setting a global pruning rate or empiri-

cally setting a specific pruning rate for each layer by the human. Then, we extend the

concept of correlation to the feature map domain and propose a novel filter pruning

method to choose and remove filters by evaluating the uniqueness of corresponding

feature maps in the frequency domain. Finally, we conclude this thesis and discuss

potential research directions. The remaining chapters are summarized as follows:

• Chapter 2: Literature Review on network pruning. A comprehensive

overview of the state-of-the-art network pruning algorithms is given in this

chapter, which covers the research works from various domains in the network

pruning. Moreover, to address the issues, some research publications related to

the proposed algorithm are also mentioned since they give us great inspiration,

which helped us solve the issues successfully.

• Chapter 3: Pruning Convolutional Neural Networks with an Atten-

tion Mechanism. In this chapter, we propose a new scheme, termed Pruning

Filter with Attention Mechanism (PFAM), to compress and accelerate tradi-

tional CNNs. In particular, a novel correlation-based filter pruning criterion,

which explores the long-range dependencies among filters via an attention mod-

ule, is employed to select the to-be-pruned filters. The extensive experiments

involving various network architectures on three public image datasets demon-

strate that our proposed method outperforms the state-of-the-art in accuracy

and model compression.
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• Chapter 4: Data-Dependent Soft Pruning Guided by LSTM. In this

chapter, we present a novel filter pruning framework to evaluate the importance

of each network layer and select the most unimportant layers to prune. Con-

sidering the hierarchical structure of CNN, we employ LSTM as an evaluation

model to generate pruning decisions. Besides, based on the slimmer architec-

ture generated from LSTM, we further propose the SEP attention mechanism

to rebuild the baseline network, which realizes the data-dependent soft pruning.

Experiment results show that our pruning method is capable of compressing a

variety of network structures with comparable accuracy and works well on both

convolutional and fully-connected networks. It also reveals that our method

learns the sensitivity of each network layer.

• Chapter 5: Filter Pruning with Uniqueness Mechanism in the Fre-

quency Domain. In this chapter, a novel filter pruning method is presented,

which operates mainly in the frequency domain and computes uniqueness as

the critical criterion for removing filters. We further transform the encoded

features into the frequency domain by DCT to mine more valuable and concen-

trated information from the feature maps. After this, we compute uniqueness

scores from each feature map, considering the properties within and across maps.

The network pruning is achieved by removing the filters corresponding to the

low-uniqueness maps, which can be easily replaced by others. This way, the

proposed method can effectively reduce network complexity while maintaining

its performance to the largest extent. We evaluated our method with various

network architectures on two different scales of datasets. The experimental re-

sults showed that our method achieves superior performance compared to the

state-of-the-art approaches.

• Chapter 6: Conclusion and Future Work. Finally, we summarize the

contributions of this thesis in this chapter and present future research interests.
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Chapter 2

Literature Review on Network
Compression

This chapter provides a comprehensive overview of previous network compression

methods, including tensor decomposition, knowledge distillation, quantization tech-

niques and network pruning. Although tensor decomposition, knowledge distillation,

and quantization techniques are not the main research directions in this thesis, they

all belong to diverse sub-research areas of model compression. Moreover, some of the

proposed methods in their research areas inspired the works in my thesis. Therefore,

this thesis concludes with the above three sub-topics (Sections 2.1, 2.2, and 2.3) of

network compression in this chapter.

In Section 2.4, there are two main branches of network pruning: weight pruning

and filter pruning. Notably, weight pruning methods are presented in Section 2.41

since they were proposed and extended in the earliest field of network pruning. Their

underlying idea provided heuristic assistance for subsequent research on filter prun-

ing. In addition, to address the three main issues in this thesis, some research areas

related to the proposed algorithm are also mentioned to ensure the integrity of the

work. Therefore, attention mechanisms, network architecture search, and frequency

information utilization are presented as subsections in Sections 2.5, 2.6, and 2.7.

2.1 Tensor Decomposition

In CNNs, convolution operations are typically operated in the form of the multipli-

cation of tensors (matrices). In addition, as the structure of CNNs grows increas-

ingly sophisticated, their network weight matrices become enormous. As a result,

huge amounts of storage and computational resources are required for optimal per-

formance. The low-rank approximation technique can reconstruct the large weight
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matrix by combining several low-rank matrices. Hence, the number of network param-

eters can be reduced to save on the consumption of storage and computing resources.

The framework of the classical low-rank tensor decomposition method (Tucker de-

composition) is shown in Fig.2.1.

≈ U 
V 

W 

g 
X 

I  ×I  ×I   1   2     3  
I  ×R     1   1 

R  ×R  ×R   1   2     3  

I  ×R     2   2 

I  ×R     3   3 

Figure 2.1: The framework of Tucker decomposition. It can be decomposed as a
tensor into a set of factor matrices (U, V, W) and one small core tensor (g).

Denton et al. [42] proposed a tensor decomposition method to achieve network

compression by finding a suitable low-rank approximation to compress each convolu-

tion layer. For this purpose, they explored a variety of tensor decomposition methods,

such as the singular value decomposition method for two-dimensional tensor decom-

position and clustering low-rank decomposition. This method achieves more than

twice the acceleration on convolutional layers with only about 1% performance loss.

Besides, Jaderberg et al. [43] combined two different tensor decomposition strategies

to accelerate the network. They first approximated the original filter matrix by linear

combinations of fewer filter matrices based on tensor decomposition and then create

a low rank of filters with rank-1 to make the further speedup.

Lebedev et al. [44] proposed a network compression method that accelerates net-

works by using tensor decomposition. In particular, they leveraged CP decomposition

to decompose the 4D kernel tensor into several small 2D kernel tensors. Then the fine-

tuning stage was required to recover the performance loss. Inspired by [43], Tai et

al. [45] presented a new low-rank decomposition method to achieve compact networks

more efficiently. They calculated exact global optimal solutions rather than approx-

imate local solutions obtained by iterative methods, which are tested effectively for

various deep convolutional networks on the large-scale dataset.
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Zhang et al. [46] proposed a low-rank decomposition method to accelerate non-

linear convolutional neural networks. To be specific, it is based on minimizing the

reconstruction error of the nonlinear response and using the low-rank constraint to re-

duce the computation. To solve the constrained optimization issue, they decomposed

it into two feasible subproblems and solve them iteratively. Then, they minimized

the asymmetric reconstruction errors, which effectively reduces the cumulative er-

rors of multiple approximation layers. As the extension of previous work, Zhang et

al. [47] achieved excellent acceleration on the deep convolutional network, proving the

effectiveness of their method. Kim et al. [48] first leveraged Tucker decomposition

to decompose the tensors and then estimate their rank using variational Bayesian

matrix factorization. Since the optimization goal of each layer is to minimize the re-

construction error of the parameter tensor, the fine-tuning stage is required to ensure

network performance.

The CPD-based methods [49,50] were proposed to compress the networks. Astrid

et al. [49] combined the Canonical Polyadic Decomposition (CPD) and Tensor Power

Method (TPM) to decompose the entire convolutional layer successfully. Phan et

al. [50] made the combination of Tucker-2 (TKD) and Canonical Polyadic Decompo-

sition (CPD) to achieve a compact network while maintaining network performance.

Yin et al. [51] proposed a model compression method based on tensor decomposi-

tion to compress the network. Specifically, they leveraged the alternating direction

method of multipliers (ADMM) to train the network, which gradually acquires low-

tensor rank characteristics. After that, the well-trained network was decomposed

in a tensor train (TT) way, and finally, a compact network was obtained after the

fine-tuning stage.

Although the tensor decomposition methods can decompose the large weight ten-

sor into two or more small weight tensors to reduce the number of parameters in

the network, they still have some weaknesses that limit their development in network

compression. For example, the operation of low-rank decomposition often consumes

a lot of computing resources, which makes its computing cost very expensive. Sec-

ond, since different convolution layers contain various information, existing methods

typically choose to conduct the low-rank approximation layer by layer as opposed to

performing the global parameter compression. Last, the fine-tuning stage is necessary

for these methods, which requires a large amount of time to restore performance.
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2.2 Knowledge Distillation

Knowledge distillation is a network compression technique in which the knowledge

from a well-trained network (teacher model) is transferred into a small or compact

one (the student model). Therefore, its goal is to achieve similar performance to the

original model with fewer network parameters. The basic framework of knowledge

distillation (KD) is shown in Fig.2.2. The most representative work of knowledge

distillation for network compression in the earliest years is proposed by Hinton et

al. [52]. Generally, knowledge distillation consists of three parts: the distilled knowl-

edge derived from the teacher network, the knowledge distillation algorithm, and the

distillation process between the teacher and student networks.

Teacher Network (Pre-trained) 

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 

Student Network 

Layer 1 Layer 2 Layer 3 

Predictions 

Predictions 

Data 

Distilled  
Knowledge 

Figure 2.2: The work pipeline of knowledge distillation.

Currently, the knowledge distillation process can be mainly divided into two cat-

egories according to different training types. The first category of knowledge distil-

lation aims to distill the knowledge from the teacher network in an offline manner.

To be specific, [53–57] proposed offline distillation methods by setting up two stages.

In the first stage, they fully trained a powerful original model in the pre-training

stage and use it as the teacher model. Afterward, the well-trained weight parameters

from the teacher model were frozen and then used to train the small student model

through the designed distillation algorithm. Instead of training teacher and student

networks separately, the second category of knowledge distillation tends to accomplish

the knowledge distillation in an online manner. [58–60] trained both the teacher and

student networks to reduce the knowledge distillation time compared to the offline

methods. Besides, the original large model is more like a peer than a teacher, and
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they supervise and influence each other to achieve better learning effects during the

training process.

For distilled knowledge, it can be obtained from the teacher network in two ways:

the logits-based method and the feature-based method. For example, several logits-

based works [1, 52, 61–64] were proposed to train the student network by utilizing

the softened outputs of the teacher network. Hinton et al. [52] utilized the softened

labels to learn the class distribution and then transfered the knowledge to the student

network. Instead of statically predefining a one-way transition path between teacher

and student networks, Zhang et al. [61] proposed deep mutual learning (DML) to

allow a set of student networks to learn from and mentor each other during training.

Cho et al. [62] argued that the mismatch of model capacity results in the student

network not being able to learn well from the powerful teacher network and then

proposed an early-stop teacher regularization to solve this issue in the knowledge

distillation process. Xie et al. [1] trained the student network by using a larger

noise dataset. Yang et al. [63] achieved optimization by adding constraints to the

distillation process. Another series of works distill knowledge from the features of

the teacher network. Romero et al. [65] first learned knowledge through intermediate

feature layers and treated them as a hint to guide the learning process of the student

network. Zagoruyko et al. [66] trained the student network by extracting the attention

generated by the teacher network. Doing so allows the student network to learn more

flexible feature information to improve the network’s performance.

Although a compact student model can be obtained from the powerful teacher

model through knowledge distillation techniques, there are still some limitations to

achieving the compact model with excellent performance. For example, in the knowl-

edge distillation process, these methods typically require a lot of prior knowledge to

accurately determine and extract the “knowledge” from the teacher model, which

significantly increases the time cost and complexity of network training. Besides,

different dataset scenarios have various requirements for the specific knowledge, thus

limiting the generality and adaptability of the learned student network. Last, in the

calculation of distillation losses, many hyper-parameters need to be set empirically,

which takes additional time.

2.3 Parameter Quantization

Various methods were proposed to binarize the network models to obtain massive

reductions in computation resources and memory costs. For example, BinaryCon-
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nect [67] constrained the full-precision 100 weights to two certain values (+1 or -1)

during the training. As a result, many multiply-accumulate operations can be re-

placed by simple additions and subtractions. Although the binarized network only

uses 1 bit to represent +1 or -1, which achieves a compression ratio of 32x, the large

quantitative loss still exists if the network parameters are represented directly with

1-bit rather than 32-bit.

In [14], BinaryNet was proposed as an extension of BinaryConnect, where both

weights and activations are binarized. This method uses binary weights and activation

in the gradient computations. However, the real-valued gradients of those weights are

still accumulated. Kim et al. [68] proposed a bitwise network with binary input and

output parameters and binary weights. The forward propagation of the network is

operated via XNOR and bit counting rather than the multiplication and addition of

real values. Although the bitwise neural network achieves an outstanding effect on

model compression, its performance is inferior due to the conversion of parameter

types.
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Figure 2.3: Comparison of convolution operation types between the traditional con-
volution and XNOR-Net.

XNOR-Net [69] was proposed with two efficient sub-binarized networks, namely
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Binary Weight Networks (BWN) and XNOR Networks (XNOR), which are shown

in Fig.2.3. Particularly, BWN made the combination of a single scaling factor and

binary filters, which ends up with 32x memory saving compared to that with real-

valued weight values. While for XNOR, they used binary values instead of real values

on both the weights and the inputs to the convolution layers, which results in 58x

faster convolutional operations compared with full-precision operations and extra 32x

memory savings. Despite the fact that XNOR could significantly improve accuracy

compared with previous methods, it still has large quantitative losses.

To remedy this situation, [70, 71] aimed to reduce the quantitative losses by

setting the scaling parameters. Li et al. [70] employed a high-order binarization

strategy to convert the initial input data into a sequence of binary inputs with varying

orders. Modulated Convolutional Networks (MCNs) [71] was proposed, where M-

Filter (a matrix serving as the binarized filter weight) is employed to reconstruct the

binarized filters in an end-to-end framework instead of using a scaling factor. Each

layer shares only one M-Filter such that the computational costs of the network model

can be reduced. Although MCNs obtain better performance than most state-of-the-

art methods, it only focuses on the local (i.e., weight) binarization rather than the

global (i.e., whole model) binarization.

Lin et al. [13] believed that the complex network approximated by the combination

of N 1-bit networks has faster computing speed and better performance than the

network with N-bits. Therefore, they proposed a method that approximates the full

precision network by constructing a linear combination of multiple binary networks.

Hu et al. [15] transformed the training of binary networks into a hash problem and

therefore leveraged the alternate updating strategy to learn hash codes instead of

learning binary weights directly.

Wang et al. [72] argued that simultaneously quantifying the weight and activation

values could seriously harm network performance. Specifically, during SGD training,

the slight change in gradient caused by the quantization process may increase the

variance of the activation gradient, thus making the training difficult to converge.

To solve this issue, they proposed a two-step quantization method to quantify the

activation values and weight parameters separately. Mishra et al. [73] first widened the

activation maps and then divide them into several small parts before the quantization

stage to improve the network performace.

Following the previous method [69], Bulat et al. [74] aimed to construct a hy-

brid parameter by merging the activation and weight scaling factors. Besides, they

designed several shapes of the hybrid parameter for various application scenarios.
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Faraone et al. [75] proposed a quantization method that generates specific scaling

factors in pixel-wise, row-wise and layer-wise manners to quantify networks efficiently.

Zhou et al. [76] proposed an incremental network quantization strategy to com-

press a full-precision model into a low-precision model with a slight performance loss.

Specifically, they first divided each layer of parameters in the pre-trained model into

two groups. The parameters in the first group are directly quantized and frozen, and

then parameters in another group are retrained to compensate for the accuracy loss

caused by quantization. The preceding stages are continued until all model parame-

ters are quantified. [54,77] combined network quantization and knowledge distillation

to improve the performance of compressed networks. Xu et al. [78] added the network

pruning technique to network quantization to achieve higher model compression.

Some works prefer to reduce the number of bits of weights to accelerate the net-

work. For instance, Vanhoucke et al. [79] accelerated the network by quantizing the

type of parameters as 8-bit. Gong et al. [80] and Wu et al. [81] used the k-means scalar

method to quantize the parameter values. Furthermore, some works [67, 69, 71, 82]

binarized the weights and activations in CNNs. They directly quantized the param-

eter values to 1-bit to achieve extreme model compression. However, these methods

change the format of the stored parameters(from 32-bits to only 1-bit), which results

in irreversible information loss. Although a series of subsequent approaches have

been proposed to compensate as much as possible for the loss of information caused

by changes in data formats, their performance is inferior to that of the original model.

2.4 Network Pruning

2.4.1 Weight Pruning

Unlike previous methods that leverage low-rank decomposition, knowledge distilla-

tion, or change the type of parameter storage in it, network pruning aims to find

and remove redundant parameters to reduce memory and computing resources while

achieving similar performance as the original complex network. For example, Based

Weight Decay (BWD) [83] was proposed for network pruning to solve the issue of net-

work overfitting in the early time. To be specific, a penalty term is introduced into

the normal error function to improve the generalization capabilities of networks [84].

Inspired by this method, they first proposed the concept of weight decay and added

it to the back-propagation to decay all weights during the weight update step. There-

fore, it can remove some connections and hidden units to reduce the complexity of the
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network. This work inspires the following network pruning methods that use sparsity

constraints.

Besides, Optimal Brain Damage (OBD) [24] and Optimal Brain Surgeon (OBS) [25]

reduced the complexity of the network by utilizing the Hessian matrix of the loss func-

tion to prune the number of connections. In OBD [24], they believed that parameters

with small values have little influence on training errors, and therefore, they aimed

to remove the connections that have tiny growth of training error. To reach this goal,

they first computed the second derivative for each parameter and then used the second

derivative values to calculate the saliencies for each parameter. Finally, parameters

with low saliency could be removed safely without much performance degradation.

As an extension of OBD [24], OBS [25] analyzed the reason OBD removed the wrong

parameters and argued that the Hessian matrix OBD used to remove parameters is

actually non-diagonal. Therefore, they calculated the inverse Hessian matrix rather

than the Hessian matrix from training data to remove unnecessary parameters more

accurately than OBD. However, this method consumes a lot of computing resources

when calculating the Hessian matrix, which makes it only applicable to small neural

networks.

The superior performance of convolutional neural networks [8, 85, 86] compared

to the traditional neural network Multi-Layer Perceptron (MLP) has tremendously

benefited the advancement of computer vision. LeNet [85] contains fewer parame-

ters than previous neural networks, yet achieves prominent performance. Although

AlexNet [86] and VGG-Net [8] provide stronger performance, the number of model

parameters rises rapidly. Consequently, the objective of network pruning is to elim-

inate the weights of the convolutional neural network rather than the weights of the

neural network.

In 2015, Han et al. [22] proposed a classical weight pruning method for convolu-

tional neural networks (CNNs) compression. They designed a three-step procedure

for eliminating irrelevant connections: pre-training, pruning, and fine-tuning. The

L2 norm penalty term is added to the loss function in the pre-training stage to train

the network. Thus, the values of some connections will be pushed to zero after train-

ing, which can be treated as unimportant. In the pruning phase, a predetermined

threshold value is set, and connections below it are removed. The pruned network

becomes sparse after the pruning stage, resulting in a significant performance loss.

Hence, the fine-tuning stage was required to retrain the pruned network to restore its

performance. After several iterations of pruning, a large number of input and output

connections were set to zero. Therefore, some neurons linked by those eliminated
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Figure 2.4: The work pipeline of traditional weight pruning, which contains of three
major steps: pre-trained stage, weight pruning stage and fine-tuning stage. The
information of the generated feature maps is severely damaged after the pruning
process and hence, the fine-tuning stage is needed to recover the representation ability
of them.

connections can be safely removed without compromising network performance. The

work pipeline of weight pruning is shown in Fig 2.4.

In contrast to the methods that remove unimportant weights, Srinivas et al. [87]

selected and removed the redundant neurons in a data-free manner. They believed

that two similar neurons have similar contributions, which could be merged into

one. Therefore, pruning one of them does not affect the final output. Deep Com-

pression [88] achieved considerable energy and memory savings by extending their

previous work [16]. In particular, they combined connection pruning with the quan-

tization techniques, where several remaining important connections could share the

same weights. Then, Huffman encoding technology was utilized to achieve further

compression. Although Deep Compression obtained a high compression ratio on the

CNN models by removing unimportant parameters, the parameter importance varied

dramatically if the network structure was changed. This implies that this hard prun-
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ing method will suffer if the important connections are removed incorrectly during

long-term training.

However, Guo et al. [89] found that previous method [22] required multiple it-

erations of pruning and retraining to achieve satisfactory compression rates, which

can be extremely time-consuming. In addition, since the connections are pruned

permanently, these removed filters will not have a chance to recover after pruning,

which may result in a severe loss of accuracy. Therefore, they proposed a weight

pruning method named dynamic network surgery to dynamically prune superfluous

weights through the cyclical process of pruning and splicing stages. The pruning

stage in this method is shown in Fig.2.5. In the pruning stage, redundant connec-

tions are eliminated, similarly to prior techniques. However, in the splicing stage,

some pruned connections can be recovered and properly spliced into the overall prun-

ing cycle if deemed essential. Park et al. [90] argued that previous methods pruned

massive parameters at fully connected layers rather than convolutional layers, which

requires a lot of computational resources. Although they could achieve excellent pa-

rameter reduction, the actual inference speed of the network is tiny. Therefore, they

introduced the sparsity constraints to the convolutional layers and proposed guided

sparsity learning (GSL) to sparse and remove the weights at the convolutional layers.

Pre-trained network 

1    pruning  

Network after pruning Network after pruning 

N    pruning  
st th 

Figure 2.5: The pipeline of dynamic network pruning method. The gray dotted lines
show the pruned connections after the pruning stage. The orange line indicates that
previously removed lines are restored during subsequent parameter updates.

Different from the methods that reduce the size or computation of the CNNs, Yang

et al. [91] proposed a new scheme to reduce the energy consumption of the network.

This method directly leverages the energy consumption of the network to guide the

pruning process. In particular, they estimate the network’s energy usage based on the

hardware’s energy measurements. In addition, redundant weights are determined in
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the pruning process by minimizing the error of the output feature maps rather than

the properties of weights. The redundant weights are first pruned for each layer, and

then the fine-tuning stage is required to restore accuracy.

Although OBS [25] has been demonstrated to be effective for shallow neural net-

works, extending it to deep neural networks remains challenging due to the high

computational cost of computing the second derivative (the inverse of the Hessian

matrix on all parameters). In this situation, Dong et al. [92] proposed a novel strat-

egy for weight pruning to address this issue. They restricted the calculations to the

parameters at each layer. Therefore, when calculating the second derivative, the

Hessian matrix only aims at the parameters of a specific layer. Doing so can make

the calculation easier to solve. In addition, they further reduce the computational

complexity of Hessian matrix inversion by using the back-propagation of the fully con-

nected layer in well-trained deep networks. In this way, they successfully deployed

the OBS to CNNs.

Xiao et al. [93] compressed the model by optimizing a set of trainable and re-

movable weights, which come from the product of the original weights and auxiliary

parameters. Ding et al. [94] divided all the weights into two subsets through the

Taylor expansion estimation. After this, the subsets are trained with different up-

dating rules to achieve more sparse weights. Sanh et al. [95] proposed a first-order

weight pruning method, which leverages the movement pruning to make the pre-

trained model fine-tuning more adaptive. Lee et al. [96] proposed a layer-adaptive

and magnitude-based method to approximate the distortion of the pruned network.

Net-Trim [97] leveraged sparse constraints to remove unimportant weights. In this

method, sparse parameters are learned by minimizing the reconstruction errors of

each layer, and then the trained network is pruned layer by layer in a sparse way to

obtain a compact network.

Carreira-Perpinán et al. [27] introduced constrained optimization to the pruning

method. They proposed an alternative optimization strategy consisting of learn-

ing and compression stages to remove unimportant weights. Clip-Q [28] combined

network pruning and weight quantization to compress the network. Firstly, the re-

dundant weights were selected and removed in the pruning stage. Specifically, they

employ the clipping operation to zero out and delete weights defined between two

thresholds to obtain a pruned network at each iteration. Finally, the pruned network

is further quantified to achieve greater compression.

Similar to the previous method [91] that considers some limitations in the real

world, Chen et al. [98] proposed a constraint-aware weight pruning method to obtain
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the compact network that meets some practical requirements of specific hardware.

In contrast to prior approaches that pruned weights in the spatial domain, Liu et

al. [99] proposed a new pruning method in the frequency domain. In particular, they

argued that there is spatial redundancy in CNNs since most of the filters tend to

be smooth, which is caused by the local smoothness of the image. Consequently,

they first express convolution or inner product through DCT domain multiplication.

Then, they dynamically prune the DCT coefficients of the network filters using varying

pruning rates based on the frequency band’s importance.

After comparing the model accuracy of large-sparse and small-dense networks,

Zhu et al. [20] observed that the performance of large-sparse networks is better than

that of small-dense networks. Therefore, they proposed a gradual pruning method,

incorporating pruning into the training process to get a large-sparse network. To be

specific, they introduced a binary mask matrix to the convolution layer, where “0”

signifies pruning and “1” implies preservation. The weights with low absolute values

are deemed unimportant, and their corresponding values in the mask matrix are zero.

Consequently, these weights will not participate in forward propagation and also will

not be updated in back propagation. The model finally reaches the predetermined

sparse requirement by removing a portion of the weight with the least absolute value

at each iteration. Chen et al. [100] employed a low-cost hash function to group weights

into hash buckets for parameter sharing. In addition, Ullrich et al. [101] proposed

a soft weight-sharing method to prune redundant weights. Wen et al. [102] reduced

network complexity by making the network more sparse. However, the pruned model

obtained by weight pruning is unstructured, which cannot fit in the software and

hardware architecture to make the acceleration.

2.4.2 Filter Pruning

By observing the acceleration of AlexNet in the actual hardware architectures, Wen

et al. [102] found that even though the sparsity of unstructured pruning is very high

(greater than 95%), the actual acceleration effect of the model after weighted prun-

ing is still minimal. Besides, existing software libraries [30] and hardware architec-

tures [31] usually cannot help accelerate weight pruning methods because of the un-

structured sparsity weight matrix generated by weight pruning methods. To address

this problem, more works focus on filter-wise pruning. For example, the structured

sparsity learning strategy is used for filter pruning to prune the whole filters rather

than weights.
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Figure 2.6: Comparison of weight and filter pruning methods based on sparsity con-
straints.

Since Group Lasso [103,104] could push a set of parameters close to 0 to generate

structured sparsity, doing so can obtain a structured compact model by adding spar-

sity penalty items to the whole filter, which can achieve significant acceleration in

hardware architecture. Fig.2.6 illustrates the difference between weight pruning and

filter pruning using sparsity regularization. Liu et al. [35] proposed channel pruning

focusing on batch normalization layers rather than convolutional ones. To be spe-

cific, they employed sparsity regularization to make the values of scaling factors in

the batch normalization layer sparser. The fact that the scaling factors in the BN

layer are either 0 or very close to zero indicates that the associated convolutional

channels are insignificant and could be safely removed. In addition, they established

a fine-tuning stage to restore network performance following the pruning stage.

Huang et al. [105] argued that the previous pruning approach [35] might be con-

strained by the structure of the networks and thus lose its effectiveness and versatility

since some networks do not have the BN layers. As a result, as a continuation of

sparsity-based filter pruning, Therefore, as a continuation of filter pruning that uses

sparsity constraints, they proposed a novel filter pruning method that leverages the

sparsity regularizations to generate a compact network. Specifically, they added a

scaling factor to each output channel of the convolutional layer, making the different

output channels more sparse in the learning process by using sparsity regularizations.

Finally, the less significant filters were removed based on their contributions, and a

compact network was obtained without the need for a step of fine-tuning. Besides,
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Tartaglione et al. [106] analyzed the sensitivity of the final network output to the

network weights. They then proposed a network pruning method that incorporates a

regularization term to progressively reduce the absolute value of the network weight

with low sensitivity. In this method, a large number of weights will be gradually

pushed to zero and can be safely removed from the network.

Compared with weight pruning, filter pruning has a coarse-grained pruning effect.

Xu et al. [107] proposed a hybrid pruning approach by combining the weight pruning

and filter pruning to further compress the redundant network. In particular, he first

obtained a coarse-grained pruned network through filter pruning, and then achieved a

fine-grained compact network through adding the group Lasso regularizer to remove

weights smaller than the set threshold during the weight pruning stage. In addition,

Ding et al. [108] proposed auto-balanced filter pruning to remove redundant filters

from the pre-trained network. During the network training phase, an auto-balance

regularizer is utilized to enhance the value of some filters while decreasing the value

of others to near zero. After several training iterations, it is easy to remove the filters

with zero values without significant performance loss.

He et al. [109] leveraged LASSO regression to remove redundant filters. To be

specific, they added an L1 norm penalty term to the loss function to make filters

more sparse after the training stage and then pruned the channels that are zero or

close to zero in the pruning stage. Finally, the linear least squares technique was

required to restore the performance of the pruned network. Li et al. [110] applied

the structure regularization to the corresponding out-channels and in-channels in the

continuous network layer to achieve a sparse and compact network.

Zhuang et al. [111] argued that network slimming [35] employed L1 regularization

to put all scaling factors in the BN layer close to zero during sparsity training, resulting

in a significant performance loss. Consequently, they presented a novel strategy for

channel pruning that leverages polarization regularization to force the updated scaling

factors in the direction of polarization during sparsity training. Doing so can make

some scaling factors in the BN layer small enough while others still remain large

after the sparsity training. As a result, it is simple to determine that some channels

with small scaling factors are unimportant and remove them without significantly

degrading performance. Wang et al. [112] designed a growing L2 regularization for

network sparsity. They could use the Hessian information provided by the proposed

regularization to prune redundant filters more accurately, resulting in high accuracy

while maintaining the same level of compression.
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Despite the fact that sparsity-based filter pruning algorithms could generate a

structured compact network, such methods normally encounter a dilemma of per-

formance and compression effect during sparse training. In particular, if a strong

sparse penalty term is imposed during network training, the generation of a highly

compressed pruning network is often accompanied by a severe performance decrease.

This is because, under the strong penalty, all the weight parameters are pushed toward

zero, resulting in pruned network parameters that are relatively smaller than those of

the original network. On the contrary, if the sparsity penalty term is moderate, very

few weight parameters will be zeroed out. Therefore, the effect of network compres-

sion is greatly reduced even though it can achieve satisfactory network performance.

In this case, many filter pruning methods are proposed to remove redundant filters

based on their importance while some approaches try to combine other research areas

such as network architecture search, tensor decomposition and reinforcement learning

to produce compact networks.

Lin et al. [113] used Markov decision making processes and reinforcement learning

to dynamically prune unimportant filters. Ding et al. [114] implemented a Centripetal

SGD for network training to drive the values of the updated filters closer together.

After the training stage, the filters with similar values were grouped into the same

cluster. Each cluster only retains one filter, while others can be pruned safely to

compress the network. Liu et al. [115] proposed a meta-learning based pruning method

to generate optimal sub-networks. Dong et al. [116] proposed a network pruning that

minimizes the computational costs rather than finding the optimal sub-networks by

transformable architecture search (TAS).

[117–120] employed the network architecture search (NAS) technique to the prun-

ing method to explore the optimal compact networks. To be specific, Lin et al. [117]

proposed a channel pruning method based on an artifical bee colony (ABC) to effi-

ciently find the optimal number of channels in each layer rather than selecting im-

portant channels. Guo et al. [118] argued that the substructure obtained by net-

work pruning is more important than the inherited weight, and then they proposed

differentiable Markov channel pruning to explore optimal sub-structures efficiently.

AutoCompress [119] leveraged alternating direction methods of multipliers (ADMM)

to achieve the structured optimal compact network.

In addition, DSA [121] and DHP [122] pruned reduntant filters in differentiable

way to accelerate networks. [123] combined filter pruning and knowledge distil-

lation technique to compress while [124–126] added the tensor decomposition to

filter pruning to accelerate networks. N2N [127] utilized reinforcement learning to

31



learn two separate policies to remove and shrink layers respectively in tiny datasets.

PCAS [128] used attention modules as the criterion to evaluate the importance of

channels and prune channels with low correlations to accelerate networks. Tang et

al. [129] proposed a filter pruning method that adds counterpart features to reduce the

interference of various irrelevant factors in the pruning process and improve the reli-

ability of the pruning results. Chen et al. [130] proposed a one-shot pruning method

to compress network without the requirement of fine-tuning stage.

Li et al. [131] proposed an adaptive BN technology for filter pruning to solve the

network performance degradation caused by the mismatching of BN layer parameters

druing the pruning process. [132–134] compressed the network by using reinforcement

learning technique. Pahwa et al. [132] trained the reinforcement learning agent to

predict actions like whether to remove one layer in the network and uses a reward

function to update their agent. Chen et al. [133] proposed a dynamic channel pruning,

which leverages deep reinforcement learning techniques to search for optimal pruning

schemes based on the input data. He et al. [134] leveraged deep reinforcement learning

techniques to determine the specific pruning rate for each layer.Zhuang et al. [135]

assessed the channels by introducing additional discrimination-aware losses to increase

the discriminative power of the intermediate layers.

Li et al. [33] proposed to prune parameters at the filter level, which evaluates a

filter by calculating its absolute weights sum and removes unimportant filters sequen-

tially. Molchanov et al. [36] presented a filter pruning method that determines the

importance of the filter by the change of loss function before and after pruning. More-

over, they provided a pruning criterion based on Taylor expansion to approximate the

change of loss function caused by pruning network parameters to improve pruning

efficiency. ThiNet [38] considered filter pruning to be an optimization problem and

proposes a greedy method to prune filters using their statistics information in the

next layer.

GDP [21] empirically removed the unimportant filters from the entire network

through the global discriminative function during the pruning stage. Then they

leveraged the recovery mechanism to recover the pruned filter with high saliency.

Finally, the fine-tuning stage was required to restore network accuracy. Ding et

al. [136] presented the filter pruning that evaluates the importance of filters by the

degree of change of feature maps in the next convolutional layer rather than that of

the loss from the final output. Inspired by SENet [137], Gao et al. [138] proposed

a channel pruning method that evaluates the importance of channels by generated

feature maps. To be specific, they first extracted and subsample feature maps to
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generate the saliency of channels. Then some channels with low saliency are zeroed

out while others with high saliency are enhanced.

Molchanov et al. [139] proposed the filter pruning approach that estimates the

importance of filters by Taylor expansions rather than their intrinsic properties. You

et al. [140] suggested a method for filter pruning that adds a gate decorator to each

channel and removes channels whose corresponding gates are zero. Liebenwein et

al. [141] proposed a data-driven pruning method to remove redundant filters. The

saliency of filters can be determined by a small portion of the input dataset. The

filters with high saliency can be deemed important and need to be retained in the

pruning stage. He et al. [142] argued that it was inappropriate for all layers to share

the same pruning criteria during the pruning process. Consequently, they employed

the differentiable network architecture search (NAS) technique to explore the suitable

pruning criteria for each layer, resulting in a more accurate filter pruning effect.

In contrast to the prior importance-based pruning methods, Gao et al. [40] intro-

duced a data-driven pruning strategy to dynamically prune unimportant channels.

They added a discrete gate on each channel and remove some channels that close

for the given dataset. Chin et al. [34] proposed the filter pruning method to prune

unimportant filters in a global view. To be specific, all filters in the entire network are

ranked globally according to the magnitude-based ranking after the training stage,

and some of them with lower ranks will be pruned. DropNet [143] reduced network

complexity by iteratively removing filters with the lowest mean values after processing

all training samples.

Tang et al. [144] argued that the redundant filters depend on the input data.

Therefore, they proposed filter pruning to dynamically prune redundant filters ac-

cording to the given dataset. Wang et al. [145] believed that pruning filters in the

most redundant layer can achieve better than removing the least important filters in

all layers. As a result, they presented a filter pruning method that estimates the re-

dundancy score for each layer and removes filters in the layers with high redundancy

scores.

Unlike previous research works that utilized hard filter pruning technology, He

et al. [30] proposed the soft pruning method, where the pruned convolution filters

are recovered and involved in the next training iteration rather than being deleted

once and gone permanently. Therefore, there is no need to go through the fine-

tuning process on the pre-trained model to compensate for the accuracy drop after

the pruning. Since the importance of filters in this method was measured by their
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norm value but failed to consider the correlations between them, it was still easy to

get a sub-optimal pruned model after pruning.

2.5 Attention Mechanism

Several approaches were proposed to obtain excellent network performance in many

applications. For example, Mnih et al. [146] utilized an attention module in the net-

work training that pays more attention to the local areas with high-correlated weights

from the whole target areas, which simulates the human’s visual attention behavior

when observing images. Following previous works [147–149], they adopted a self-

attention module that calculates the response at a specific position as a weighted sum

of the features at all positions [150–153]. In this case, the weights or attention vec-

tors were calculated with low computational costs, while a good balance between the

long-range dependency modeling ability and computational efficiency was achieved.

As a result, the attention mechanism is applied to generate the correlations between

filters to better determine and choose redundant filters.

2.6 Network Architecture Search

In order to reduce labor costs, automatic design/search of the network structure by

machine has received worldwide attention in both academia and industry [154–159].

For instance, evolutionary techniques [154–156] discovered target models from trivial

initial architectures by setting up the vast search space, which requires enormous

computing resources. Alternatively, [157, 158] utilized the reinforcement learning

mechanism to train the recurrent neural network (RNN) controller to generate the

neural networks automatically, which has achieved good results on various datasets.

To reduce the search space, Nasnet [159] searched for an architectural building block

on a small dataset and then transfered it to a larger one.

2.7 Frequency Information Utilization

Frequency information has recently attracted attention in the computer vision com-

munity due to its unique data representation. For example, Gueguen et al. [160]

incorporated frequency information into the decoding stage to accelerate the model

training. Besides, Ehrlich and Davis [161] ran ResNet in the frequency domain to

improve the inference speed. Xu et al. [162] employed DCT transformation to replace
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the original spatial sub-sampling approach to better preserve the image information

in the pre-processing stage. In addition to better performance, these works reveal that

low-frequency feature channels are usually more informative than high-frequency ones

in visual reasoning tasks.

The following works further extend the advantages of the frequency information

to multiple applications. To be specific, Qin et al. [163] proposed channel attention

based on the features in the frequency domain and achieve excellent performance

in classification, detection, and segmentation tasks. Jiang et al. [164] developed a

frequency-domain loss for image reconstruction and synthesis, optimized by weighting

different frequencies. Cai et al. [165] used frequency information to enhance the image

generation process. For model compression, Chen et al. [166] first observed that the

trained weights are usually low-frequency and they prune the filters containing high-

frequency components using hashing techniques. Differently, Liu et al. [99] pruned

filters dynamically by converting convolution operations into DCT multiplications.

Although the above methods employ frequency to refine pruning, they ignore the

properties and correlations of filters and corresponding feature maps in the frequency

domain. However, this work finds they are valuable for pruning and bring superior

performance to our proposed method.

2.8 Chapter Summary

In this chapter, we have reviewed the research background of network compression

technology and its four hot research areas. More importantly, we have reviewed weight

pruning and filter pruning, which are the two most important research branches in

network pruning technology. Besides, in dealing with the challenge, several works in

other fields gave us great inspiration, which helped us solve the issues successfully.

Our works in this thesis are greatly inspired by the related works discussed in previous

sections. In the main chapters, we further analyze some of these works and use them

as state-of-the-art baselines for our experiments.

In the following chapters, we focus on detailing our proposed methods regarding

different challenges in filter pruning and testing the system performance on public

datasets. In particular, Chapter 3 presents a novel soft filter pruning method to select

and prune redundant filters based on their correlations rather than their intrinsic

properties. This work is inspired by the idea of an attention mechanism, which

can effectively capture the long-range dependencies between layers. In Chapter 4,

we combine the LSTM and attention module to propose a new data-dependent soft
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pruning strategy that can generate the specific pruning strategy for each layer and

prune filters guided by input data. In Chapter 5, we view the pruning strategy with

the vision of feature maps rather than the perspective of filters. Besides, we improve

our pruning efficiency by introducing the feature map from the spatial domain to the

frequency domain.
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Chapter 3

Pruning Convolutional Neural
Networks with an Attention
Mechanism

3.1 Introduction

In recent years, Convolutional Neural Networks (CNNs) have shown appealing per-

formance on various computer vision tasks [5, 167–171]. However, large amounts of

computational resources from high-performance GPUs are required to run the compli-

cated CNNs. Moreover, traditional CNNs usually contain many network parameters,

even millions, which indicates that embedded equipment suffers from high demands

for large memory storage space. Most embedded devices, such as traffic cameras,

prefer to conduct real-time data collection and analysis on themselves rather than

deciding on a workshop. In this context, the computing power in existing embed-

ded devices is quite limited due to the embedded low-level Central Processing Units

(CPUs) and GPUs, thus making it infeasible to deploy deep learning techniques on

those machines directly. Consequently, the aforementioned research issues inspired

us to develop a lightweight CNN model for embedded systems, which significantly re-

duces the required hardware resources, such as memory costs and FLOPs (Floating-

Point Operations), so that real-time images can be processed in the smart sensor

without sending them back to the data center for additional processing.

Many approaches have been proposed for deep network compression and acceler-

ation, where some mainstream categories are discussed: network quantization, com-

pact block, and filter pruning. In network quantization, deep networks [172, 173]

were compressed by employing binarized weights and activations to reduce memory

space while obtaining relatively good performance. This contradicts the conclusion
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of prior work [174] that a model with high binarization may achieve inferior perfor-

mance at an early time. After that, BinaryConnect [67] constrained the full precision

weights of the neural network filters to the discrete values (+1 or -1) during propaga-

tions. BinaryNet [82] extended the work of BinaryConnect by binarizing both weights

and activations. However, arbitrary binarization significantly impairs the capacity of

deep neural networks to represent features, resulting in subpar performance. XNOR-

Net [69] employed a single scaling factor with binary filters to decrease quantization

errors due to binarization, whereas Modular Convolutional Networks (MCN) [71]

combined a real-valued matrix with binary filters to reconstruct unbinarized filters.

When conducting image classification tasks, both methods compress the models while

retaining a high degree of accuracy. Beyond this, several studies are devoted to de-

ploying compact blocks (e.g., convolutional filters with small receptive fields) in deep

network structures to reduce computational costs while avoiding excessive quantiza-

tion errors that diminish the expressiveness of the original network. For instance,

Network in Network [175] employed 1 × 1 convolution kernels to reduce network

parameters. ResNet [9] reduced a significant number of network parameters by in-

corporating residue modules. In addition, ShuffleNet [176] proposed point-wise group

convolution and channel shuffle to build an efficient network structure that can oper-

ate on mobile devices with limited Computational resources. MobileNet [177] utilized

depth-wise and point-wise convolution instead of normal convolution to construct

light, deep neural networks. However, a small receptive field focuses unduly on local

details without taking global information into account, hence impairing classification

performance.

Apart from these above methods, some prior works adopted filter pruning (i.e.,

channel pruning or network slimming), which is also the focus of this work, to com-

press the deep network. The core idea behind filter pruning is that the small-valued

(i.e., unimportant) activation and connection can be pruned during the iterative train-

ing processes to obtain more compact and efficient models [22,25,26,83,178–180]. For

example, in [180], they compressed the deep neural networks by simply discarding un-

necessary connections that were less than the default threshold. However, it was still

required to retrain the sparse network model to compensate for the accuracy decline

caused by the pruning. Instead of merely discarding the network parameters, re-

cent works [33, 35, 38,109,110,181,182] compressed the complicated deep models via

pruning the less important filters, thus reducing the computation costs dramatically

due to fewer feature maps involved in the subsequent calculations. Subsequently, the

work in [33] proposed a filter pruning method to remove the filters with the smallest
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absolute values and their corresponding feature maps in the following convolutional

process for a compact network model. Nevertheless, most of the previous filter prun-

ing works compressed the deep CNNs based on the pre-trained models. They removed

those filters permanently and then fine-tuned the pruned models to recover the huge

accuracy drop, which was computationally expensive and inefficient. He et al. [30]

adopted a soft pruning method to dynamically remove redundant filters, where the

significance of a filter was evaluated by calculating the norm value of each filter and

making a comparison among them. However, they only focused on the importance of

individual filters without considering the correlation/dependency among filters, which

made the filter selection less discriminative. Moreover, they evaluated the filter signif-

icance based on shallow strategies like thresholding, absolute, or norm values, which

affected the classification performance considerably because of mistaken pruning.

In this work, we propose a novel filter pruning method, termed Pruning Filter with

Attention Mechanism (PFAM), which integrates the attention module with softly

pruning the less correlated filters to obtain a compact deep network model for im-

age classification. Specifically, by employing the attention module, target filters with

lower correlation values than others are removed at the current pruning stage. The

pruned filters from the previous pruning step are retrieved and updated in the subse-

quent training epoch to prevent accuracy loss due to the pruning process. Through

such iterative training steps, a compact deep network model with satisfactory perfor-

mance can be generated. The contributions of our work are illustrated in the following

two aspects:

• A novel deep network compression method termed Pruning Filter with Atten-

tion Mechanism (PFAM) is proposed for efficient remote sensing image classi-

fication. The compact network model is obtained by integrating the attention-

based filter pruning strategy into a unified end-to-end training process.

• A novel correlation-based filter selection criterion is proposed in the filter prun-

ing, where the correlation value of each filter is calculated through the attention

module, and then, the less correlated filters are pruned to reduce the network

complexity. By using the proposed attention module, it models the correlation

among filters efficiently via exploring their long-range dependencies, which is

more likely to make wise decisions in selecting the to-be-pruned filters without

compromising the network performance.

The rest of this work is organized as follows. In Section 3.2, the proposed method

is elaborated along with the comprehensive analysis. Extensive experimental results
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are provided and analyzed in Section 3.3. Finally, the conclusion is given in Section

3.4.

3.2 Methodology

3.2.1 Motivation

As stated previously, early filtering pruning work [33, 35, 38] typically compresses

deep CNNs in a hard manner. To implement pruning strategies, these algorithms

require pre-trained models. Specifically, they first load the pre-trained model, then

directly evaluate the significance of each filter by computing its norm value from the

loaded model parameters, and afterward eliminate the filters in each convolutional

layer deemed unnecessary. The pruned model must undergo a fine-tuning stage to

compensate for the severe performance loss. However, since there is only one chance

to keep or remove a filter, the important evaluation of a single filter is frequently not

appropriately judged. Once the filter has been selected, these to-be-pruned filters are

permanently deleted throughout the pruning process and are never recovered dur-

ing the subsequent fine-tuning phase. Although the size of the model is drastically

decreased when the filters are removed, this type of hard pruning method is more

likely to result in inadequate performance due to the diminished model capacity. In

addition, it is important to note that these algorithms will require expensive compu-

tational resources and training time during the fine-tuning step, as they have to spend

a substantial amount of additional time on the training data to regain a portion of

the performance.

In contrast to hard pruning approaches, Reference [30] proposes dynamically re-

moving filters in a soft way by individually computing the norm value of each filter.

Although it employs the soft pruning mode to eliminate dependence on the fine-

tuning stage and thereby reduce model training time, this pruning mechanism, which

only evaluates the individual performance of a single filter in a single convolutional

layer without considering their global relationship, is still considered suboptimal. In

other words, a filter that is deemed unimportant based solely on the calculation of

its norm is not necessarily unimportant from a global perspective of all filters. From

another perspective, it might be useful if we investigate the long-range dependency

of filters and involve these dedicated dependencies/relationships among filters in the

to-be-pruned filter selection. In traditional CNNs, however, the long-range depen-

dency among layers can only be obtained by repeatedly backpropagating through the

stacking convolutional layers. That is to say, the current deep networks are usually
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inefficient at capturing such long-range dependencies, and it is difficult to operate

locally when the information needs to be passed back and forth between relatively

distant locations [183]. To tackle the above problems, the attention mechanism was

applied in many applications to obtain better network performance. For example,

Mnih et al. [146] utilized an attention module in the network training that pays more

attention to the local areas with high-correlated weights from the whole target ar-

eas, which simulates the human’s visual attention behavior when observing images.

Following previous works [147–149], they adopted a self-attention module that cal-

culates the response at a specific position as a weighted sum of the features at all

positions [150–153]. In this case, the weights or attention vectors were calculated with

low computational costs, while a good balance between the long-range dependency

modeling ability and computational efficiency was achieved. Inspired by the above

approach, if the long-distance dependence relationship in CNN is integrated into the

filter level, the established dependence/relationship between filters can be leveraged

to enhance the information transmission efficiency between them, allowing filters at

each layer to generate correlation effectively.

Motivated by prior research, we present a novel approach for filter pruning called

Filter Pruning with Attention Mechanism (PFAM), which incorporates an attention

mechanism into the filter pruning. To be specific, the attention module is employed

to enumerate and collect the correlation value of each filter. Then it selects the least

correlated filters based on these values; consequently, the overall correlations among

all filters in one convolutional layer are considered to achieve minimal accuracy loss

globally. In the pruning stage, the values of those deemed to be less correlated are set

to zero, indicating that these filters are removed. In the subsequent training epoch,

the values of pruned filters are recovered from zero to non-zero and then updated

by forward-backward operations. Doing so allows the training data to be processed

by the original training strategy without compromising performance. At the same

time, the compressed network model can be obtained in the end with no need for the

pre-trained model. Fig.3.1 demonstrates the general process of the proposed filter

pruning method.

3.2.2 Filter Selection with Attention-Based Correlation

Fig.3.2 demonstrates the workflows of the proposed attention module for computing

the correlation values between filters in one convolutional layer, which shares a sim-

ilar structure to many computer vision tasks. In particular, these filters are treated

as feature maps since flattening a filter into a one-dimensional vector is similar to
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Figure 3.1: The overview of PFAM. A: Filter selection based on the correlation cri-
terion. The filters with less correlation values will be pruned based on the pre-set
pruning ratio. B: An example of filter pruning in convolutional layers. The pruned
filters are allowed to be updated to non-zero during each training epoch prior to the
next pruning stage to maintain the model capacity.

flattening a feature map into a one-dimensional vector, but the vector length is differ-

ent. In our work, as opposed to finding the most attractive feature maps as was done

in prior research, our target is to choose the least correlated filters from a certain

number of candidates and prune these filters to build a compact model.

Without loss of generality, we first define some mathematical symbols follow-

ing [30] to ease the explanation. To be specific, the dimension of filter tensor with

k × k filter size in the i -th convolutional layer is defined as W (i) ∈ RCi+1×Ci×k×k,

where 1 ≤ i ≤ L. Ci+1 and Ci mean the number of output and input channels sep-

arately for the i -th convolutional layer and L is the number of layers. Then all the

filters are flattened in the i -th layer as W (i) ∈ RCi+1×V , where V denotes the shape of

each filter in the i -th convolutional layer and equals to Ci × k × k. The filters in the

i -th layer are first transformed into two weight spaces F (w) = W
(i)
f and G(w) = W

(i)
g

to calculate the attention map, which can be formulated as below:
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Figure 3.2: The proposed attention module for the PFAM. ⊗ denotes the matrix
multiplication. The softmax operation is performed on each row.

θj,k =
esjk∑M
k=1 esjk

, where sjk = F (wj)G(wk)
T

. (3.1)

F (wj) and G(wk) represent the values of j -th filter in W
(i)
f and k -th filter in W

(i)
g

weight spaces, respectively. θj,k represents the correlative extent between the j -th

and k -th filter. M is the number of filters in i -th convolutional layer. Therefore, the

output of the attention value is ∂ = (∂1, ∂2, ...∂k, ...∂M) ∈ R1×M, where

∂k =
∑M

j=1
θj,k. (3.2)

As discussed above, the attention module is used to evaluate the correlation of

each filter based on Eq.(3.2) in the pruning stage. The filters with smaller attention

values can be pruned, because it turns out that they have less impact on the network

performance, as opposed to other high-correlated filters.

3.2.3 Filter Pruning and Reconstruction

In the pruning stage, all the candidate convolution layers with the same pruning rate

Pi = P are pruned at the same time, which saves a large amount of computations,

compared to the hard pruning methods. Particularly, a pruning rate Pi is set to select

a total number of Ci+1Pi less-correlated filters in the i -th convolution layer [30, 37].

After pruning the filters in each convolution layer, existing methods always require

extra training to converge the network [178, 179]. During the training process, these
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selected filters are first zeroed out that means they have no contribution to the network

output in the current pruning stage.

In most filter pruning methods, however, the pruned filters and their associated

feature maps are removed permanently during the pruning process, which could affect

the performance significantly. To deal with this problem, these pruning methods

usually are conducted based on the pretrained model and they also need to spend extra

finetuning time to make accuracy compensation. To get rid of the heavy dependences

on the pretrained model and the time-consuming finetune process, we follow the

same reconstruction strategy as [181] at this stage, where the pruned filters in the

previous pruning process will be reconstructed during one epoch of retraining. To be

specific, these pruned filter values are updated from the zero to non-zero after the

backpropagation [30,37]. By doing so, the pruned model still has the same capacity as

the original model during the training process. More importantly, each of those filters

can still contribute to the final prediction. As a result, we can train our network from

either scratch or the pretrained model and obtain competitive results even without

the need for the finetuning stage.

3.2.4 Compact Network Creation

In Fig.3.3, it illustrates the flowchart of the proposed PFAM, in which iterative train-

ing is continued until the accuracy loss converges following several training epochs.

When the model converges, a sparse model with several zeroes filters can be obtained.

Since the iteration has concluded, these selected filters will remain unchanged. Given

that each filter corresponds to a single feature map, the feature maps corresponding

to these zeroes filters will always be zero during the inference operation. Removing

these zeroed filters and their corresponding feature maps will have no impact. Fol-

lowing the iteration of the preceding processes, the compact model is formed. The

entire procedure is explained concisely in Algorithm 1.

Compact 
network 

Initialize 
network 

Select filters with small 
correlation scores 

Reconstruct the  
pruned filters 

Prune selected  
filters 

Calculate 
correlation scores 

Figure 3.3: The flow chart of the proposed filter pruning. The dotted line means the
iterative training scheme.
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Algorithm 1 Algorithm Description of PFAM

Input: Training data X; Pruning rate Pi; Training epoch number epoch;
Output: The compact model W ∗ from W ;
1: Randomly initialize the network parameters W = {W (i), 0 ≤ i ≤ L};
2: for epoch = 1; epoch ≤ epochmax; epoch+ + do
3: Update the model parameter W based on data X;
4: for i = 1; i ≤ L; i+ + do
5: Obtain the attention values of filters based on Equation 3.2;
6: Find Ni+1Pi filters with lowest attention values;
7: Zeroize selected filters;
8: end for
9: end for
10: return the compact model W ∗ from W .

3.3 Experiments and Analysis

In this section, we provide extensive experimental results and analysis to illustrate

the network performance of our algorithm on three general image classification bench-

marks: CIFAR-10, CIFAR-100 [184] and ImageNet [185] and three remote sensing im-

age classification benchmarks: NWPU-RESISC45 [186], AID [187] and RSSCN7 [188].

3.3.1 Benchmark Datasets

3.3.1.1 General Image Datasets

Two CIFAR datasets contain 50000 training images and 10000 test images. On

CIFAR, all images are cropped randomly into 32× 32 with four paddings during the

training process. Horizontal flip is also adopted. In ImageNet, there are over 1.28

million training images and 50K validation images of 1,000 classes.

3.3.1.2 Remote Sensing Image Datasets

In this section, we provide extensive experimental results and analysis to illustrate the

system performance of our algorithm, which outperforms the state-of-the-art methods

dramatically on three popular remote sensing benchmarks: NWPU-RESISC45 [186],

AID [187] and RSSCN7 [188].

NWPU-RESISC451 [186] is a popular public dataset for the remote sensing image

scene classification, which is extracted from Google Earth by experts in Northwestern

Polytechnical University (NWPU). This dataset is made up of a total of 31, 500

1http://www.escience.cn/people/JunweiHan/NWPU-RESISC45.html
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images, which are categorized into 45 scene classes as shown in Figure 3.4. Each class

includes 700 images with a size of 256× 256 pixels in the RGB color space.

(1)                 (2)                 (3)                 (4)                  (5)                (6)                 (7)                 (8)                 (9)            

(10)               (11)               (12)               (13)               (14)              (15)               (16)        (17)               (18)            

(19)               (20)               (21)               (22)             (23)         (24)            (25)         (26)           (27)            

(28)         (29)           (30)          (31)          (32)           (33)           (34)           (35)            (36)            

(37)        (38)        (39)            (40)         (41)            (42)           (43)         (44)           (45)            

Figure 3.4: Example images of the NWPU-RESISC45 dataset: (1) airplane; (2) air-
port; (3) baseball diamond; (4) basketball court; (5) beach; (6) bridge; (7) chaparral;
(8) church; (9) circular farmland; (10) cloud; (11) commercial area; (12) dense res-
idential; (13) desert; (14) forest; (15) freeway; (16) golf course; (17) ground track
field; (18) harbor; (19) industrial area; (20) intersection; (21) island; (22) lake; (23)
meadow; (24) medium residential; (25) mobile home park; (26) mountain; (27) over-
pass; (28) palace; (29) parking lot; (30) railway; (31) railway station; (32) rectangular
farmland; (33) river; (34) roundabout; (35) runway; (36) sea ice; (37) ship; (38) snow
berg; (39) sparse residential; (40) stadium; (41) storage tank; (42) tennis court; (43)
terrace; (44) thermal power station; (45) wetland.

AID2 [187] is large-scale aerial image dataset, which is selected from Google Earth

imagery. This dataset contains in total 10, 000 images with a fixed size of 600× 600

pixels within 30 classes as shown in Figure 3.5. Comparing to other classic datasets,

the number of images for each category is not equal and different scene types range

from 220 to 420, which makes it more challenging in the image classification. Although

images in this dataset are acquired at different times with different imaging conditions,

some classes are quite similar and therefore make the differences between classes

smaller.

2https://captain-whu.github.io/AID/
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(1)                  (2)                 (3)         (4)                  (5)              (6)            

(7)                   (8)                (9)          (10)                (11)             (12)            

(13)                (14)                 (15)            (16)         (17)              (18)            

(19)                           (20)                            (21)                          (22)                            (23)                         (24)            

(25)                           (26)                            (27)                          (28)                            (29)                         (30)            

Figure 3.5: Example images of the AID dataset: (1) airport; (2) bare land; (3)
baseball field; (4) beach; (5) bridge; (6) centre; (7) church; (8) commercial; (9) dense
residential; (10) desert; (11) farmland; (12) forest; (13) industrial; (14) meadow; (15)
medium residential; (16) mountain; (17) park; (18) parking; (19) playground; (20)
pond; (21) port; (22) railway station; (23) resort; (24) river; (25) school; (26) sparse
residential; (27) square; (28) stadium; (29) storage tanks; (30) viaduct.

RSSCN73 [188] dataset is released in 2015 by Wuhan University, China, which

contains 2,800 remote sensing images in total from seven typical scene categories:

grasslands, forests, farmland, car parks, residential areas, industrial areas and rivers

and lakes, as shown in Figure 3.6. For each category, there are 400 images with the

size 400 × 400 collected from Google earth and these pictures are sampled at four

different scales. It is also a challenging dataset because the remote images were taken

in different seasons and weather conditions with various sampling scales.

3https://github.com/palewitout/RSSCN7
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(A)                (B)                  (C)                 (D)            (E)               (F)         (G)            

Figure 3.6: Example images of the RSSCN7dataset: (A) Grass; (B) Field; (C) Indus-
try; (E) River Lake; (E) Forest; (F) Resident; (G) Parking.

3.3.2 Experimental Settings

We conducted experiments on the VGG models to show our performance compared to

the state-of-the-art methods. To further demonstrate the superiority of our method,

ResNet [9] was also chosen as the backbone network in the experiment due to its more

complicated and less redundant structure compared to VGG models [8].

3.3.3 Implementation Details

The proposed approach was implemented using the PyTorch framework in this work.

We followed the PyTorch instructions [189] to perform data argumentation during

dataset preprocessing. The hardware configurations were the Linux Ubuntu 14.04

operating system with i7-5960X CPU, 64GB RAMs, and one NVIDIA GTX1080Ti

GPU. After completing each training epoch, just one hyper-parameter Pi = P was

used to prune all convolutional layers during the pruning stage. During the entire

pruning process, the pruning rate strikes a balance between compression and accu-

racy [30]. Notably, projection shortcuts do not need to be pruned for compression

due to their negligible impact on total costs when evaluated with ResNet.

3.3.3.1 Implementation Details on General Image Datasets

For the general image datasets, all images in the CIFAR-10 dataset were randomly

resized to 32×32 pixels, which follows the same image size in the CIFAR-100 dataset.

Regarding the ImageNet dataset, we resized all images from various pixels to 224×224

pixels for the same reason.

Stochastic Gradient Descent (SGD) was employed as the optimizer during network

training, with the weight decay and momentum set to 0.0001 and 0.90, respectively.

The total number of training epochs for small-scale datasets (CIFAR-10 and CIFAR-

100) is 300, and our technique was evaluated on VGG-16 and ResNet-20, -32, -56,

and -110, respectively. The learning rate is initially set as 0.01. Then it will be
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changed to 0.001 after the 150 epochs and 0.0001 for the last 75 epochs. As soon as

the training losses converged, the training processes for all network models ended. In

addition, ResNet-18 and ResNet-50 were trained for 100 epochs with the batch size of

256, weight decay of 1e-4, and momentum of 0.9 on the ImageNet dataset to evaluate

their performance. Our strategy eliminates the requirement for fine-tuning following

scratch-wise model training, in contrast to many earlier approaches that utilized the

hard pruning method.

3.3.3.2 Implementation Details on Remote Sensing Image Datasets

For the remote sensing datasets, all images in the AID dataset were resized to 256×256

pixels from the original 600×600 pixels, which follows the same image size in NWPU-

RESISC45 dataset. Regarding RSSCN7 dataset, we resized all images from 400×400

pixels to 256×256 pixels for the same reason. We applied the same training ratio (80%

to make fair comparisons of the experiments and all three datasets were randomly

divided into training and testing sets based on the pre-set ratios to calculate the

overall classification accuracy. All the experiments were conducted in three times to

get fair and reliable results.

In the network training, we used SGD as the optimizer with weight decay and

momentum as 0.0005 and 0.9, respectively. The learning rates were set separately for

two training phases: 0.01 in the first 50 epochs and 0.002 for the last 50 epochs. The

training processes for all network models were terminated when the training losses

converged. Moreover, the batch-size was set to 64 for NWPU-RESISC45 dataset, 32

for AID dataset and RSSCN7 dataset to balance the requirements of the computer

memory and the image number contained in the training and test sets.

3.3.4 Evaluation Metrics

For image classification tasks, we tested the pruned models on CIFAR-10, CIFAR-100,

NWPU-RESISC45, RSSCN7 and AID and calculated the Top-1 accuracy. Experi-

ments utilized four distinct evaluation metrics, namely Accuracy (Acc.), Accuracy

Drop (Acc.Drop), FLOPs, and pruning ratio (Pruning(%)), where the symbols in the

tables are denoted in italics. Pruning ratio (Pruning(%)) means the FLOPs reduction

of pruned model. If the result in Accuracy Drop (Acc.Drop) is negative, it indicates

that the model accuracy after pruning exceeds the baseline accuracy. Pruning ratio

and model accuracy are two most common evaluation metrics for almost all network

pruning approaches. The global pruning rate of each algorithm is adjusted in the
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comparison so that the model sizes of all models pruned by different approaches are

roughly equivalent, e.g., 40%. Moreover, we measure the Top-1 and Top-5 accu-

racies on the large-scale dataset ImageNet. Specifically, Top-1(%) and ∆Top-5(%)

demonstrate the classification Top-1 and Top-5 accuracy produced by the given ap-

proach, which is expressed as accuracy after running the experiments. ∆Top-1(%)

and ∆Top-5(%) are calculated by subtracting the Top-1 and Top-5 accuracy of the

pruned model from that of the baseline model, with a negative value indicating that

the pruned model achieves an even greater level of accuracy than the baseline model.

If the Acc. Drop or ∆Top(%) is smaller, it means the pruned model obtains better

performance. The pruning rate represents the actual compression ratio of the network

model. Large pruning rate indicates that the pruned model is more compact. The

total number of floating-point operations (FLOPs) is utilized as a reference metric

when assessing the pruning method. FLOPs(%)↓ means the FLOPs reduction of

pruned model.
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3.3.5 Experiments Results on General Image Datasets

3.3.5.1 Results on CIFAR-10

Table 3.1: Comparison of pruning various networks on the CIFAR-10 dataset.

Method model Acc.(%) Acc. Drop(%) FLOPs Pruning (%)

SFP [30] 92.20→ 90.83 1.37 2.43× 107 42.2
PFAM(ours) 20 92.20→ 91.32 0.88 2.43× 107 42.2
FPGM [37] 92.20→ 90.44 1.76 1.87× 107 54.0

PFAM(ours) 92.20→ 90.52 1.68 1.87× 107 54.0
MIL [190] 92.33→ 90.74 1.59 4.70× 107 31.2
SFP [30] 92.63→ 92.08 0.55 4.03× 107 41.5

FPGM [37] 32 92.63→ 91.93 0.70 3.23× 107 53.2
TAS [116] N/A 0.73 3.50× 107 49.4

PFAM(ours) 92.63→ 92.22 0.41 3.23× 107 53.2
PFEC [33] 93.04→ 91.31 1.73 9.09× 107 27.6
CP [109] 92.80→ 90.90 1.90 N/A 50.0
SFP [30] 93.59→ 92.26 1.33 5.94× 107 52.6

Rethink [191] 56 93.80→ 92.80 1.00 5.94× 107 52.6
FPGM [37] 93.59→ 92.93 0.66 5.94× 107 52.6
TAS [116] N/A 0.77 5.95× 107 52.7

PFAM(Ours) 93.59→ 93.30 0.29 5.94× 107 52.6
MIL [190] 93.63→ 93.44 0.19 N/A 34.2
PFEC [33] 93.53→ 92.94 0.59 1.55× 108 38.6
GAL [192] 93.26→ 92.74 0.52 N/A 40.5

Rethink [191] 110 93.77→ 93.70 0.07 1.50× 108 40.8
SFP [30] 93.68→ 93.38 0.30 1.50× 108 40.8

PFAM(Ours) 93.68→ 93.90 -0.22 1.21× 108 52.3
FPGM [37] 93.68→ 93.73 -0.05 1.21× 108 52.3
TAS [116] N/A 0.64 1.19× 108 53.0

PFAM(Ours) 93.68→ 93.66 0.02 9.40× 107 62.8
PFEC [33] 93.58→ 93.28 0.30 2.06× 108 34.2
FPGM [37] VGG-16 93.58→ 93.23 0.35 2.01× 108 35.9

PFAM(Ours) 93.58→ 93.66 -0.09 2.01× 108 35.9

Table 3.1 shows the results on the CIFAR-10 dataset when applying ResNet-20, -32,

-56, and -110 respectively for image classification. For ResNet-20, PFAM yields a

greater classification accuracy (91.32% as opposed to 90.83%) with the same FLOPs

reduction as SFP [30]. Similarly, our method also obtains a better performance

(90.52%) than FPGM (90.44%) while keeping the same FLOPs reduction [37].On

ResNet-32, PFAM establishes the best compromise between model compression and

image classification precision than MIL [190], SFP [30], FPGM [37] and TAS [116].

For ResNet-56, compared to the classical hard pruning approach PFEC [33], PFAM

achieves a considerable top-1 accuracy improvement and decreases FLOPs by a large
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margin. Besides, although the FLOPs reduction of PFAM is similar as that of

CP [109], SFP [30], Rethink [191], FPGM [37], and TAS [116], it results in a smallest

accuracy drop (0.29% versus 1.90%, 1.33%, 1.00%, 0.66%, and 0.77%). Similar results

happen on ResNet-110. PFAM is superior than MIL [190], PFEC [33], GAL [192],

SFP [30], and Rethink [191] in both Top-1 accuracy and FLOPs reduction. To be

specific, PFAM yields greater accuracy than the baseline while getting the most sig-

nificant reduction in FLOPs. However, the other approaches lose accuracy to varying

degrees when attaining a small model compression ratio. Besides, PFAM obtains the

highest accuracy with similar FLOPs reduction compared to FPGM [37] and TA [116].

Notably, our method obtains the highest model compression ratio and achieves al-

most the same accuracy as the baseline. Lastly, we utilize the VGG-16 model to run

experiments on the CIFAR-10 dataset. It can be seen that PFAM achieves supe-

rior performance compared to the other state-of-the-art filter pruning methods under

similar FLOPs reduction.

3.3.5.2 Results on CIFAR-100

Table 3.2: Comparison of pruning various networks on the CIFAR-100 dataset.

Method model Acc. Drop(%) Pruning (%)

MIL [190] 2.96 39.3
SFP [30] 56 2.61 52.6

FPGM [37] 1.75 52.6
PFAM(ours) 0.32 52.6
FPGM [37] VGG-16 -0.20 35.9

PFAM(ours) -0.44 35.9

Similarly, as demonstrated in Table 3.2, our proposed method consistently outper-

formed the other state-of-the-art methods on the CIFAR-100 dataset. In particular,

the FLOPs reduction of PFAM on ResNet56 is over 52%, while its accuracy decreases

by just 0.32%. MIL [190] reduces the model’s FLOPs by 39.3% but results in a nearly

3% performance decrease. Although SFP [30] and FPGM [37] also achieved a sig-

nificant reduction in FLOPs, their accuracy decreased more than ours (0.32 versus

2.61% and 1.75%). For VGG-16, PFAM achieves the same pruning rate but improves

performance more than FPGM [37].

52



3.3.5.3 Results on ImageNet

Table 3.3: Comparison of pruning ResNet on the ImageNet dataset.
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For the ImageNet dataset, we evaluated the performance of our PFAM on ResNet-18

and ResNet-50. In Table 3.3, PFAM has the best result on ResNet-18 compared to
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the other three approaches. PFAM significantly outperforms MIL [190] in terms of

Top-1 accuracy,Top-5 accuracy, and FLOP reduction. In addition, in comparison

to SFP [30] and FPGM [37], which similarly prune filters in a soft-manner, PFAM

achieves the greatest Top1 accuracy (2.36% vs. 2.50% and 3.18%) and the biggest

FLOPs reduction (53.3% vs. 41.8%). Besides, PFAM delivers the best performance

on ResNet50 in terms of both Top–1 and Top–5 accuracy with an elevated model

compression rate. Even if the Top-1 accuracy of SFP [30] is comparable to that

of PFAM, it is unable to achieve a FLOPs reduction as high as ours. GDP [21] and

FPGM [37] can accelerate ResNet50 to a similar level to PFAM, while TOP1 accuracy

and Top-5 accuracy loss are not yet at our level. Therefore, It can be seen that our

proposed method also showed a high effect on selecting and pruning redundant filters

both on ResNet-18 and ResNet-50.

3.3.6 Experiments Results on Remote Sensing Image Datasets

In this section, the comparison results for the proposed method and the baselines

on three datasets are discussed. We trained the original models of VGG [8] and

ResNet [9] from scratch and set their results as the baseline and three state-of-the-

arts: PFEC [33], SFP [30] and FPGM [37], are further applied in the performance

comparison.

3.3.6.1 Results on NWPU-RESISC45

Table 3.4-3.7 show the results on NWPU-RESISC45 dataset when applied ResNet-18,

34, 50 and 101 respectively for remote sensing image classification, where our pro-

posed method achieves superior performance compared to the other state-of-the-art

filter pruning methods. Particularly, in Table 3.4 and Table 3.5, PFEC [33] used the

hard pruning manner in pruning ResNet-18 and 34 with the accuracies of 89.78% and

90.75% independently whereas the figures from SFP [30] are 0.29% and 0.42% lower

than them. However, the soft manner methods such as FPGM [37] and PFAM obtain

better results than these hard pruning ones, where PFAM achieves the highest accu-

racies (92.56% and 93.46%) among them with the second biggest compression ratios

of 42.3% and 40.6%. As shown in Table 3.6 and Table 3.7, the soft pruning meth-

ods consistently outperform the hard pruning ones, where PFAM achieves the lowest

accuracy drops of 0.27% and 0.5% on ResNet-34 and 50, respectively. FPGM [37]

achieves the best accuracy (92.64%) between four methods when pruning ResNet-

101, which is slightly better than our PFAM (92.52%). It is noted that, in this case,
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the pruning ratio of our PFAM (39.6%) is larger than that of FPGM [37] (38.1%).

To sum up the above experimental results, our PFAM obtains a highly compressed

network model with competitive performance, given the NWPU-RESISC45 dataset.

Table 3.4: Comparison of pruning ResNet-18 on the NWPU-RESISC45 dataset.

Method Acc.(%) Acc. Drop(%) FLOPs Pruning (%)

Baseline 93.40(±0.32) 0 6.05E8 0
PFEC [33] 89.78(±0.15) 3.62 3.78E8 37.5
SFP [30] 89.49(±0.27) 3.91 3.41E8 43.6

FPGM [37] 92.28(±0.18) 1.12 3.68E8 39.2
PFAM(ours) 92.56(±0.23) 0.84 3.49E8 42.3

Table 3.5: Comparison of pruning ResNet-34 on the NWPU-RESISC45 dataset.

Method Acc.(%) Acc. Drop(%) FLOPs Pruning (%)

Baseline 93.73(±0.11) 0 1.22E9 0
PFEC [33] 90.75(±0.24) 2.98 7.47E8 38.8
SFP [30] 90.33(±0.17) 3.40 6.81E8 44.2

FPGM [37] 93.24(±0.08) 0.49 7.39E8 39.4
PFAM(ours) 93.46(±0.14) 0.27 7.25E8 40.6

Table 3.6: Comparison of pruning ResNet-50 on the NWPU-RESISC45 dataset.

Method Acc.(%) Acc. Drop(%) FLOPs Pruning (%)

Baseline 93.37(±0.21) 0 1.36E9 0
PFEC [33] 90.65(±0.33) 2.72 8.50E8 37.5
SFP [30] 91.35(±0.23) 2.02 8.49E8 37.6

FPGM [37] 92.57(±0.12) 0.80 8.69E8 36.1
PFAM(ours) 92.87(±0.25) 0.50 8.44E8 37.9

Table 3.7: Comparison of pruning ResNet-101 on the NWPU-RESISC45 dataset.

Method Acc.(%) Acc. Drop(%) FLOPs Pruning (%)

Baseline 93.17(±0.13) 0 2.60E9 0
PFEC [33] 88.49(±0.35) 4.68 1.43E9 45.0
SFP [30] 91.90(±0.28) 1.27 1.58E9 39.2

FPGM [37] 92.64(±0.06) 0.53 1.61E9 38.1
PFAM(ours) 92.52(±0.14) 0.65 1.57E9 39.6
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3.3.6.2 ResNet on AID Dataset

Similarly, our proposed method consistently outperforms the other state-of-the-arts

on AID dataset as shown in Table 3.8, 3.9, 3.10, 3.11. Although SFP [30] achieves

the largest pruning ratios on ResNet-18, 34, 50 and 101, much higher accuracies are

achieved by our proposed PFAM, where the gaps are 4.01%, 4.26%, 3% and 3.17%,

respectively. FPGM [37] obtains the second-best results in these experiments and

the accuracy is at least 0.19% (on ResNet-18: 85.08% vs. 85.27%) lower than that

of PFAM. It is worth mentioning that our filter pruning method even outperforms

the original model when pruning Resnet-101 in terms of accuracy, which is 84.17%

and 84.10% separately. That indicates the powerful ability of PFAM in producing a

highly compressed model while maintaining competitive performance.

To provide more comprehensive performance verification of our method, we also

tested our method in pruning VGG-16 with training from scratch (Table 3.12) and

ResNet based on the pretrained model (Table 3.13) on AID dataset. The results in

Table 3.12 describe the effectiveness of the soft pruning methods compared to the

hard ones on VGG-16 model, where PFAM still achieves the best accuracy (86.03%)

under the same compression ratio among four pruning methods. The performance

degradation is inevitable for the hard filter pruning method like PFEC [33] while

the soft filter pruning methods enable to keep the strong network expressive ability

after the reconstruction stage on the pruned filters to obtain better performance. In

Table 3.13, the proposed PFAM achieves the best accuracies in pruning ResNet-18

(89.86%), 34 (89.77%) and 101 (90.57%), which demonstrate the effectiveness of our

method in pruning ResNet with the pretrained model.

Table 3.8: Comparison of pruning ResNet-18 on the AID dataset.

Method Acc.(%) Acc. Drop(%) FLOPs Pruning (%)

Baseline 85.56(±0.12) 0 6.05E8 0
PFEC [33] 81.95(±0.23) 3.61 3.79E8 37.4
SFP [30] 81.26(±0.27) 4.30 3.38E8 44.1

FPGM [37] 85.08(±0.13) 0.48 3.68E8 39.2
PFAM(ours) 85.27(±0.11) 0.29 3.60E8 40.5
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Table 3.9: Comparison of pruning ResNet-34 on the AID dataset.

Method Acc.(%) Acc. Drop(%) FLOPs Pruning (%)

Baseline 85.83(±0.11) 0 1.22E9 0
PFEC [33] 81.63(±0.22) 4.20 7.47E8 38.8
SFP [30] 79.96(±0.25) 5.87 6.78E8 44.4

FPGM [37] 83.55(±0.07) 2.28 7.39E8 39.4
PFAM(ours) 84.22(±0.16) 1.61 7.32E8 40.0

Table 3.10: Comparison of pruning ResNet-50 on the AID dataset.

Method Acc.(%) Acc. Drop(%) FLOPs Pruning (%)

Baseline 84.86(±0.27) 0 1.36E9 0
PFEC [33] 81.60(±0.19) 3.26 8.50E8 37.5
SFP [30] 81.43(±0.33) 3.43 8.44E8 37.9

FPGM [37] 83.76(±0.15) 1.10 8.69E8 36.1
PFAM(ours) 84.43(±0.22) 0.43 8.54E8 37.2

Table 3.11: Comparison of pruning ResNet-101 on the AID dataset.

Method Acc.(%) Acc. Drop(%) FLOPs Pruning (%)

Baseline 84.10(±0.19) 0 2.60E9 0
PFEC [33] 83.27(±0.11) 0.83 1.69E9 35.0
SFP [30] 81.00(±0.32) 3.10 1.57E9 39.6

FPGM [37] 83.87(±0.07) 0.23 1.61E9 38.1
PFAM(ours) 84.17(±0.13) -0.07 1.59E9 38.8

Table 3.12: Comparison of pruning VGG-16 on the AID dataset.

Method Acc.(%) Acc. Drop(%) FLOPs Pruning (%)

Baseline 86.55(±0.11) 0 5.12E9 0
PFEC [33] 82.31(±0.35) 4.24 3.26E9 36.3
SFP [30] 85.58(±0.23) 0.97 3.08E9 39.8

FPGM [37] 85.88(±0.11) 0.67 3.08E9 39.8
PFAM(ours) 86.03(±0.14) 0.52 3.08E9 39.8
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Table 3.13: Accuracies (%) of pruning ResNet based on pretrained model on the AID
dataset

Method ResNet-18 (%) ResNet-34 (%) ResNet-50(%) ResNet-101 (%)

Baseline 90.07(±0.11) 90.53(±0.28)) 90.73(±0.33) 90.84(±0.27)
PFEC [33] 88.10(±0.35) 88.34(±0.25) 88.49(±0.26) 89.76(±0.15)
SFP [30] 89.03(±0.23) 89.15(±0.32) 89.57(±0.44) 90.13(±0.35)

FPGM [37] 89.44(±0.11) 89.71(±0.19) 90.53(±0.21) 90.55(±0.17)
PFAM(ours) 89.86(±0.14) 89.77(±0.23) 90.32(±0.28) 90.57(±0.29)

3.3.6.3 Results on RSSCN7

For the RSSCN7dataset, we tested our PFAM on ResNet-18, 34, 50 and 101 and VGG-

16 with 40% pruning ratio to provide comprehensive insights on the performance.

From Table 3.14 to Table 3.18, unlike previous results on NWPU-RESISC45 and

AID datasets, SFP [30] obtains the worse performances in ResNet experiments even

though it gets the highest compression ratios. However, FPGM [37] and our proposed

method generally achieve better experimental results than the norm-criterion methods

like PFEC [33] and SFP [30]. The reason for the worse performance is that the norm-

criterion methods only focus on pruning each individual filter without considering the

global correlation among all filters. Therefore, it leads to the suboptimal performance.

Except for the result in pruning ResNet-50, PFAM achieves the best performances

in the rest experiments on all ResNet models. Compared to the methods selecting

filters based on the norm-based criterion and the geometric median, the proposed

attention module is utilized in PFAM to find the correlation between filters globally,

which enables to yield superior performance because of advanced pruning strategy.

Table 3.14: Comparison of pruning ResNet-18 on the RSSCN7 dataset.

Method Acc.(%) Acc. Drop(%) FLOPs Pruning (%)

Baseline 86.43(±0.23) 0 6.05E8 0
PFEC [33] 83.57(±0.13) 2.68 3.79E8 37.4
SFP [30] 82.86(±0.16) 3.57 3.35E8 44.6

FPGM [37] 85.00(±0.22) 1.43 3.68E8 39.2
PFAM(ours) 85.51(±0.17) 0.92 3.63E8 40.0
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Table 3.15: Comparison of pruning ResNet-34 on the RSSCN7 dataset.

Method Acc.(%) Acc. Drop(%) FLOPs Pruning (%)

Baseline 86.07(±0.14) 0 1.22E9 0
PFEC [33] 83.39(±0.28) 2.68 7.47E8 38.8
SFP [30] 81.83(±0.22) 4.24 6.66E8 45.4

FPGM [37] 85.37(±0.18) 0.70 7.39E8 39.4
PFAM(ours) 85.71(±0.25) 0.36 7.36E8 39.7

Table 3.16: Comparison of pruning ResNet-50 on the RSSCN7 dataset.

Method Acc.(%) Acc. Drop(%) FLOPs Pruning (%)

Baseline 85.28(±0.21) 0 1.36E9 0
PFEC [33] 80.71(±0.17) 4.57 8.50E8 37.5
SFP [30] 80.36(±0.31) 4.92 8.42E8 38.1

FPGM [37] 84.64(±0.25) 0.64 8.69E8 36.1
PFAM(ours) 83.93(±0.28) 1.35 8.66E8 36.3

Table 3.17: Comparison of pruning ResNet-101 on the RSSCN7 dataset.

Method Acc.(%) Acc. Drop(%) FLOPs Pruning (%)

Baseline 85.35(±0.15) 0 2.60E9 0
PFEC [33] 83.39(±0.24) 1.96 1.69E9 35.0
SFP [30] 82.93(±0.41) 2.42 1.56E9 40.0

FPGM [37] 83.92(±0.22) 1.43 1.61E9 38.1
PFAM(ours) 83.93(±0.26) 1.42 1.61E9 38.1

Table 3.18: Comparison of pruning VGG-16 on the RSSCN7 dataset.

Method Acc.(%) Acc. Drop(%) FLOPs Pruning (%)

Baseline 90.00(±0.17) 0 5.12E9 0
PFEC [33] 85.18(±0.33) 4.82 3.26E9 36.3
SFP [30] 85.18(±0.13) 4.82 3.08E9 39.8

FPGM [37] 87.68(±0.21) 2.32 3.08E9 39.8
PFAM(ours) 88.04(±0.22) 1.96 3.08E9 39.8
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3.3.7 Ablation Study

3.3.7.1 Impact of Differentiated Pruned FLOPs

In this section, we first conduct experiments on CIFAR-10 using ResNet-56 at various

filter pruning ratios (0.1, 0.2, 0.3, 0.4, and 0.5) to explore the effect of different pruning

rates on the performance of the model. Since our method belongs to the soft pruning

methods, we verified two other soft pruning methods for a fair comparison. Hence,

three soft filter pruning methods, SFP [30], FPGM [37], and PFAM (ours), were

tested to verify the effectiveness of our method.
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Figure 3.7: Influence of varied pruned FLOPs on pruning.

From Fig. 3.7, it is clear that our method generally yields competitive performance

throughout five different evaluations, even if performance is generally trending worse

for all three models as the pruning ratios rise. Despite the fact that we all prune

filters in a soft manner, it can also demonstrate that our strategy for selecting to-be-

pruned filters is superior to the alternatives. The essential advantage of the proposed

method is that it takes into account the overall correlation between filters in a single

convolutional layer, as opposed to focusing just on the value of each individual filter.
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In addition, we conducted extensive experiments on remote sensing image datasets

regarding the performance variations by applying different pruning ratios on ResNet-

18, 34, 50 and 100. The corresponding results are shown from Figure 3.8 to Figure

3.13. Here we only verified soft pruning methods for a fair comparison. Hence, three

soft filter pruning methods: SFP [30], FPGM [37] and PFAM(ours) were tested on

NWPU-RESISC45 and RSSCN7 datasets respectively. It is worth mentioning that

the performance of SFP [30] becomes far worse than the other two methods with the

increasing pruning ratio on both RSSCN7 dataset and NWPU-RESISC45 dataset,

where the bottom parts of its curves are omitted in the following figures to analyze

in greater detail the performance differences between FPGM [37] and our method

within a limited range of accuracy.
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Figure 3.8: The comparisons of SFP(blue), FPGM(red) and PFAM(green) that prun-
ing ResNet-18 on RSSCN7 dataset with pruning ratios 0.2, 0.4, 0.6 and 0.8.

For RSSCN7 dataset, our method achieves the best performances at most pruning

ratios(20%, 40% and 60%) in pruning ResNet-18, while the accuracy of FPGM [37]

is the highest at the largest compression ratio of 80% in Figure 3.8 and a similar

situation happened in the experiment results of pruning ResNet-34, which can be

seen in Figure 3.9. It can be illustrated that in addition to an extreme pruning

setting, our method can obtain competitive performance at various pruning rates in

pruning ResNet-18 and ResNet-34. In Figure 3.10, however, PFAM obtains higher

accuracies than those of FPGM [37] at the three different pruning ratios of 20%,
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60% and 80% separately while FPGM [37] only gets better performance than ours

in one purning rate. Finally, from Figure 3.11 we can see that our method obtains

the overall best performance than the other two methods in pruning ResNet-101 and

FPGM [37] only gets similar performance as ours in pruning ratios of 40%. Above all,

compared to the state-of-the-art baselines, PFAM can achieve superior performance

in pruning various models on the remote sensing datasets at different pruning ratios.

On NWPU-RESISC45 dataset, SFP [30] continues the poor performance with the

increasing pruning ratio. PFAM (green line) outperforms the other two methods

throughout the whole pruning ratios, which is shown in Figure 3.12. In Figure 3.13,

PFAM achieves the best performance under all settings on ResNet-34, except for

FPGM [37] at the pruning rate of 60%.
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Figure 3.9: The comparisons of three soft pruning methods that pruning ResNet
on RSSCN7 dataset with four different pruning ratios. The blue line, red line and
green line represent the accuracy of SFP, FPGM and PFAM on pruning ResNet-34
respectively.
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Figure 3.10: The comparisons of SFP, FPGM and PFAM that pruning ResNet on
RSSCN7 dataset with four different pruning ratios. Three different color(blue, red and
green ) lines indicate the accuracy of SFP, FPGM and PFAM on pruning ResNet-50
respectively.
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Figure 3.11: The comparisons of three soft pruning methods such as SFP(blue),
FPGM(red) and PFAM(gree) that pruning ResNet-101 on RSSCN7 dataset with
four different pruning ratios(20%, 40%, 60% and 80%).
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Figure 3.12: The comparisons among three methods on pruning ResNet-18 with 7
different pruning ratios.
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Figure 3.13: The comparisons among three methods on pruning ResNet-34 for 20%,
40%, 60% and 80% pruning rates.
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3.3.8 Ablation Study on Remote Sensing Image Datasets

3.3.8.1 Influence of Adding Fine-Tuning Stage

As previously stated, one of the benefits of soft pruning is the ability to eliminate the

time-consuming stage of fine-tuning without suffering significant performance losses.

Nevertheless, even though the model’s performance is excellent after the training and

pruning stages, we still wonder how much the performance might be enhanced by

adding a fine-tuning step. Therefore, in this part, we employ various models on the

CIFAR10 dataset to investigate the impact of adding a fine-tuning stage on model

performance. Our experiment is separated into two distinct sections: pruning filters

without fine-tuning stage and pruning filters with fine-tuning stage. As seen in Fig.

3.14, all models’ performance is enhanced to varying degrees with the addition of

the fine-tuning step. This further demonstrates the influence and relevance of the

fine-tuning phase. However, the performance achieved with soft pruning is so good

that it is a tradeoff whether it is worth spending much extra time on fine-tuning.
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Figure 3.14: Influence of fine-tuning on pruning.

3.4 Chapter Summary

In this chapter, a novel method termed Pruning Filter with Attention Mechanism

(PFAM) is proposed for image classification tasks. Specifically, a correlation-based
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filter pruning criterion is implemented, with the attention mechanism determining

the correlation between filters. In contrast to prior pruning approaches, we remove

filters with the lowest correlation scores, which has a negligible effect on the total

correlation between filters in each layer. These less correlated filters are first pruned

during the pruning step of the current training epoch, then recovered and updated

during the subsequent training epoch. Consequently, the training data is processed

by the original model during the training stage. Therefore, the compressed network

model can be created without requiring an additional fine-tuning stage. The proposed

method is extensively evaluated on three different-scale public image datasets, and the

experimental results demonstrate that our method outperforms the state-of-the-art

methods.

In this method, the attention mechanism is introduced to obtain the correlation

between the filters. Then the redundant filters in each layer are pruned by setting

the global pruning rate. In the next chapter, we focus on measuring the importance

of the convolutional layers and exploring which layers are important and need to be

preserved. After obtaining the importance information of layers, we then retain the

filters of layers with high importance while removing the filters of layers with low

importance in the pruning stage. Compared to traditional filter pruning methods,

doing so can reduce performance loss under similar model compression. The details

of the proposed method will be revealed in the following chapter.
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Chapter 4

Data-Dependent Soft Pruning
Guided by LSTM

4.1 Introduction

Deep convolutional neural networks (CNNs) have recently demonstrated tremendous

success in a variety of computer vision applications, including image classification

[8, 9, 86], semantic segmentation [193], image captioning [194–196], object detection

[197–199] and recognition [200–202]. However, its success in terms of accuracy has

necessitated a large number of model parameters for storage and costly training on

GPUs. These factors hinder the application of CNN on resource-restricted devices,

such as mobile and embedded devices. To remedy this situation, it is desired that

CNN be small and rapid enough while maintaining sufficient precision. Consequently,

deep model compression has become a popular research topic.

Currently, the CNN compression techniques can be categorized into four groups.

The first category takes advantage of the quantization technique, which often em-

ploys a model binarization approach [69]. Although this technique can achieve a

high compression rate, binary networks still suffer from a large performance drop and

less robustness since it changes the parameter storage types. The second category

is network sparsity [24, 25], which is accomplished by pruning irrelevant weights or

setting them to zero. However, neither existing software nor hardware libraries can

accelerate sparse matrix calculations [30]. The third category makes use of the tensor

factorization algorithm [42], which approximates large and complicated tensors by

combining small tensors and simple operations. Although it could produce smaller,

faster networks, the performance of networks after the operation is dramatically de-

creased, especially when dealing with classification tasks on large-scale datasets such

as ImageNet. The last category is referred to as “filter-wise pruning” [33, 36], which
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directly removes unnecessary convolutional filters. The filter pruning method effec-

tively maintains the network’s structure, leading to smaller, faster models with slight

or no performance loss. Therefore, the filter pruning technique has gained the most

attention in recent years.

Network compression is essentially a systematic effort, and the pruning choice

should be based on a trade-off between all factors from the model. However, it

appears that the majority of existing pruning methods [33, 35, 38, 203] simply take

into account the information of individual filters and ignore the correlation among

layers and filters. Particularly, they concentrate on evaluating the importance of

each filter separately at each layer, pruning the filters from top to bottom or bottom

to top, layer by layer. In other words, they regard each layer identically, which is

antithetical to the phenomenon that the layers differ in terms of importance. If many

filters are removed from a critical layer, the performance of the entire system may

drop dramatically. In contrast, pruning the number of filters in an unimportant

layer might drastically reduce the model’s complexity while having no effect on its

precision. To illustrate this, we take ResNet-56 as an example. Here, we conduct the

filter pruning experiment three times, referred to as three stages, each of which three

layers are selected for filter pruning. There is no interaction between stages, meaning

each stage’s experiments are independent. At each stage, the same number of filters

are pruned from each layer, resulting in the same model complexity after pruning.

Specifically, we randomly remove the same number of filters from layer 10, layer 12,

and layer 18 during our stage two experiment. Then we display the accuracy of the

model after pruning at different layers (e.g., L10, L12, or L18 at stage 2) in Fig.4.1,

demonstrating that the importance of each layer varies, as the performance difference

in accuracy is quite noticeable. Therefore, determining a suitable pruning strategy for

each layer is critical. If we select to prune the layers with a more negligible influence

on classification accuracy, it will result in a greater reduction in complexity with a

smaller performance drop. It turns out that our method achieves a higher pruning

rate while maintaining sufficient accuracy.

The aforementioned phenomenon motivates us to investigate the problem that

prunes filters in the important layers while removing more filters in some redundant

layers. In this work, we propose a novel method for evaluating the importance of each

layer and pruning the less significant ones. Specifically, considering that CNNs usually

exploit a hierarchical structure that can be represented as a string, we employ long

short-term memory (LSTM) [204] as an evaluation metric to generate the pruning

decision for each layer. The entire algorithm is carried out in two steps: unimportant
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Figure 4.1: The accuracy of ResNet-56 after one layer is pruned. The same number
of filters are removed in different layers at the same stage. Lm in x-axis denotes the
mth residual block.

layer-finding and unimportant filter-finding. To detect the unimportant layers in a

deep CNN, the LSTM is trained using reinforcement learning with model performance

and complexity considered in the reward function. In the subsequent unimportant

filter-finding step, we employ a channel-based method to go over each filter of a

certain neural network layer. Finally, a number of filters with the least importance are

pruned. Through several pruning iterations, the slimmer model is generated, which

preserves the performance of deep CNN while significantly reducing the complexity

of the model. In addition, the new slimmer network usually has a compact structure

because the training process of LSTM aids in generating a more efficient architecture.

Existing pruning approaches often employ a hard pruning strategy to remove

unimportant filters from the network directly, where the importance evaluation of

the filter is generally inaccurate due to unclear calculations. Specifically, when a

filter is deemed unimportant for the majority of image data, it can be treated as

unimportant, even if it plays a relatively important role for a small portion of image

data. In this situation, feature extraction and classification performance on these few

images are degraded. Therefore applying a hard pruning method will undoubtedly

result in a reduction in overall accuracy. On the contrary, a soft pruning strategy
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allows the pruned filters in the previous epoch to be updated in the next epoch

during the training procedure. In this way, no filters are physically removed, and the

model capacity can be recovered from the pruned model.

In this work, we propose a novel soft pruning method named Squeeze-Excitation-

Pruning (SEP). Referring to the lightweight structure generated by LSTM, the SEP

module is applied to rebuild the baseline network. Besides, we use the SEP module to

generate the importance scores of all filters for each given image. In our soft pruning,

all filters of the baseline network are preserved, but for each input image, only a por-

tion of important ones are involved in the forward and backward calculations. When

it comes to different image data, different filters might be softly pruned depending

on the selection results of SEP. This data-dependent soft pruning method retains

the capacity and knowledge of the baseline model, thus ensuring better performance.

Specifically, the entire framework is depicted in Fig.4.2, and our major contributions

are summarized as follows:

• We argue that where to prune is actually a critical issue for CNN model com-

pression, which has long been unfortunately neglected. To this end, we propose

an end-to-end framework to prune networks in the correct order. Concretely,

considering the hierarchical structure of CNN, we employ LSTM as an evalu-

ation model to find the least important layers and thus generate the pruning

decision for a given network. LSTM is updated using the policy gradient method

with both model performance and complexity as the reward.

• Rather than adopting a hard pruning strategy, we propose the SEP pruning

method. SEP is a data-dependent soft pruning method, which preserves all the

filter parameters, but for each image data, only some important ones participate

in calculating forward and backward propagations. When the given image is

changed, different filters may be softly pruned according to the SEP selection.

The rest of this chapter is organized as follows: Section 4.2 introduces the proposed

filter pruning method. The experimental results are given and analyzed comprehen-

sively in Section 4.3. The work is concluded with detail summary and introduction

of future work in Section 4.4.
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Figure 4.2: The framework of our end-to-end pruning method. The first step is to
make pruning decisions based on LSTM evaluation model. After several epochs, a
more efficient and slimmer network structure is finally generated. LSTM is updated
in the policy gradient method with both model performance and complexity as the
reward. In the second step, we rebuild the baseline network by deploying the SEP
module for each layer and train it from scratch. The SEP attention module is com-
posed of feature extraction and selection, which generates the weight vector, selects
and sets some weights to zero according to the pruning structure generated in the
first step. Then, the feature map in the next convolution layer is scaled by this weight
vector to achieve dynamic and data-dependent soft pruning.

4.2 Methodology

In this work, we present our end-to-end pruning method. Before going into further

details, we briefly explain the basic idea. We first use LSTM to generate the pruning

decisions by evaluating the importance of each layer, where the most unimportant lay-

ers will be selected to be pruned. Once we have collected such guidance information,

the SEP attention mechanism is employed to rebuild the baseline network. Basically,

we train a SEP from scratch by deploying the pruning information, e.g., which layers

will be pruned and how many filters in each layer need to be pruned, estimated by the

preceding LSTM. The SEP module consists of two parts: the pre-SE module includes

squeeze and excitation used for feature extraction and weight vector generation; the

selective-pruning module selects and sets some weights to zero. Therefore, the SEP
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module can automatically predict the importance of each feature map and set some

weights to zero based on the information of feature extraction. The details of the

end-to-end pruning framework in Fig.4.2 are elaborated as follows.

1. Pruning guidance. An initial or intermediate network representation is fed

into LSTM, and LSTM generates a strategy indicating which layers should be

pruned.

2. Filter selection and fine-tuning. We evaluate the importance of each fil-

ter in the layers chosen by LSTM with a channel-based method, then prune

those unimportant filters. Afterwards, we fine-tune the pruned model using the

distillation method.

3. Updating LSTM. We update LSTM in a reinforcement learning way with

both performance and complexity of the pruned model as the reward signal.

4. Repeat from (1) to (3).

5. Data-dependent soft pruning. Referring to the slimmer architecture gener-

ated by LSTM, the baseline network is rebuilt with SEP modules and trained

from scratch to achieve data-dependent soft pruning.

4.2.1 Where to Prune

The basic idea can be interpreted as follows: LSTM generates the pruning probability

for each layer. The output of each layer is associated with two real values, indicating

the probabilities of “Pruning” and “Not Pruning”, respectively. Suppose the number

of all candidate convolution layers is defined as L, we can get one matrix P ∈ RL×2

, corresponding to the pruning probabilities of L conv layers. If the probability of

“Not Pruning” is larger than that of “Pruning” in one row, we treat this row as “0”,

meaning we do nothing for this layer. Otherwise, it is a to-be-pruned layer. In this

way, we can obtain a map, indicating which layers in the network need to be pruned.

4.2.1.1 Input and Output of LSTM

A neural network is a hierarchical sequence from input to output connected by oper-

ation nodes, which can be convolution, pooling and fully-connected operation. For a

common CNN here, the ith node ξi is denoted as (mi, ni), where the operation type m

is in {0, 1, 2} corresponding to convolution, pooling, and fully-connected block respec-

tively, operation attribute n equals to filter number, pooling stride or unit number.
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Convolution and fully-connected nodes (final classifier layer is not included) are called

the primary nodes, while pooling and final classifier are seen as the secondary nodes

because they cannot be pruned but supply auxiliary information instead.

Since LSTM is good at time series prediction, we use a 2-layer LSTM in Fig.4.2

to learn the network structure and produce reasonable pruning decisions. At each

timestep, the current primary node as well as its next primary or secondary node

[ξi, ξi+1] are fed into LSTM equivalent to [mi, ni,mi+1, ni+1] and the pruning decision

whether to prune the first primary node is generated by a softmax layer. For a

network with N primary nodes, LSTM repeats the above step N times and N distinct

softmax layers predict whether to prune these nodes or not. Pooling nodes and the

final classifier, taken as the secondary nodes, cannot get pruning predicted but play

a key role in helping LSTM to understand a complete network structure.

4.2.1.2 Training LSTM with Policy Gradient Method

After LSTM generates pruning decisions, we prune some filters in the chosen layers

such that a slimmer model can be obtained. Both performance and complexity of this

new model contribute to the reward signal R for assessing the performance of LSTM.

The trade-off is shown in Eq. 4.1, where we use the training loss or accuracy on the

validation set to measure the performance, and use model FLOPs or the number

of PARAM to measure the complexity. Let λ be a trade-off hyperparameter, whose

optimal value can be obtained empirically via experiments:

R = performance− λ× complexity. (4.1)

We use the policy gradient algorithm [205] (Eq. 4.2) here, enabling LSTM to

generate better pruning strategies. Concretely, we define αt, st and Rk as Action,

State and Reward at time step t of one trajectory respectively. m is the number

of rollouts for a single gradient update. In order to reduce the variance cuased by

sampled trajectories, the reward of the current input network is taken as our baseline

b:

∇θJ(θ) =
1

m

m∑
k=1

T∑
t=1

∇θ logP (αt|st; θ)(Rk − b). (4.2)
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4.2.2 Filter Selection and Fine-tuning Strategy

4.2.2.1 Filter Selection

LSTM generates a decision about which layers should be pruned. Given an input

network, a convolution node in layer i can be denoted by a triplet 〈Ii,Wi,Oi〉, where

Ii ∈ Rxi−1×h×w same as Oi−1 is the input tensor with channels xi−1, height hi and

width wi. The filter tensorWi ∈ Rxi×xi−1×k×k with k×k filter size convolutes with Ii
and generates an output tensor Oi with xi channels. From the perspective of filters,

Wi consists of xi filters Fi ∈ Rxi−1×k×k, while from the perspective of channels, Wi

consists of xi−1 channel sets Ci ∈ Rxi×k×k.

Filter(i, j)

Channel set(i+1, j)Channel(j)

...

. ..

... ...

Output tensor in layer i Output tensor in layer i+1Output tensor in layer i-1 Filters in layer i Filters in layer i+1

Figure 4.3: Pruning a convolution filter requires removing its corresponding convolu-
tion channel set in next layer.

After the jth filter in layer i Fi,j has been pruned, its corresponding jth channel

set Ci+1,j becomes useless and should be removed at the same time. Convolution

structures in other layers are not affected and remain unchanged as shown in Fig. 4.3.

It is the output tensor deviation in layer i + 1 that transfers errors to the final

loss and directly leads to worse performance. Therefore we remove less important

filters in layer i and channel sets in layer i+ 1 to minimize the output value deviation

∆Oi+1. Since there often exists an activation, pooling or batchnorm layer between two

convolution layers, the channel sets Ci+1 affect the output value Oi+1 more directly

than convolution filters Fi. We follow Eq. 4.3 to measure the importance of each

channel set in layer i + 1 by L2-norm, because L2-norm gives an expectation of

the magnitude of the output feature map and reflects the weight diversity. Then

(Rprune × xi) channel sets with smallest score sj and their responding filters in layer

i are selected and removed.

sj = ‖(Ci+1,j)‖2, s.t. j ∈ [1, xi]. (4.3)
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4.2.2.2 Accelerated Fine-tuning

In the LSTM training process, there are many intermediate models produced, then

they are fine-tuned to calculate reward signals and update LSTM. In order to improve

the algorithm efficiency, we use the distillation method [206] to accelerate fine-tuning

procedure. Specifically, the input model of LSTM is regarded as a teacher network,

and the pruned model based on the teacher is taken as a student network. During

fine-tuning, we use the loss function g (Eq. 4.4) to make student’s probabilities logit

f approximate to teacher’s logit z.

g(x, z, θ) =
∑
x

‖ f(x, θ), z ‖22 . (4.4)

4.2.3 Data-dependent Soft Pruning

4.2.3.1 SEP attention module

The slimmer network architecture with the highest reward can be found from the in-

termediate models generated by LSTM, which becomes the reference of the baseline

network rebuilding. The key to the baseline network rebuilding lies in the Squeeze-

Excitation-Pruning (SEP) attention mechanism in Fig. 4.4, on which the left part is a

normal CNN structure with a few convolution layers while the right part is SEP mod-

ule. The SEP module consists of two parts: the pre-SE module similar to SENet [137]

includes squeeze and excitation used for feature extraction and weight vector genera-

tion, the selective-pruning module selects and sets some weights to zero. We apply the

SEP operation to the previous conv layer i, then it generates a weight vector to scale

the feature map Oi+1 in layer i + 1. There are two differences between SENet [137]

and our pre-SE module. Firstly, we perform the SEP operation on the previous conv

layer to predict the weight vector in the next conv layer. Secondly, after squeezing

and dimensionality-reduction to xi/r with the reduction ratio r, the dimensionality

is increased to xi+1 for sake of keeping consistency with the dimensionality of Oi+1.

We denote the output of the sigmoid function as Vi+1 , which is the weight vector

in the layer i + 1 , and denote the number of filters to prune as mi+1. The slimmer

architecture generated by LSTM determines the value of mi. If the slimmer module

has pruned 36 kernels in the third layer, we set m3 to 36. Regarding the meaning of

the attention mechanism, the larger the weight, the more important it will be. We

set some weights with minimum values to zero in Eq. 4.5, because the corresponding

feature maps of these weights are of the lowest importance. In Eq. 4.5, the function

Fs is a way of using a sorting method to find the mi+1-th minimum weight in Vi+1.
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1 x 1 x xi /r

1 x 1 x xi+1

1 x 1 x xi+1

sigmoid

1 x 1 x xi+1

Figure 4.4: The schema of the SEP attention module.

For instance, if the slimmer module decided to prune mi+1 kernels in the layer i+ 1,

76



we sort the values of Vi+1 in ascending order. Then we get the mi+1-th smallest value

represented by Fs(mi+1). The activation function ReLU sets all weights smaller than

Fs(mi+1) to zero. After the activation operation, we get the sparser vector V̂i+1, which

would scale the feature map xi+1.

V̂i+1 = ReLU(Vi+1 − Fs(mi+1)). (4.5)

4.2.3.2 Architecture Rebuilding

Given the slimmer network architecture generated from LSTM, we deploy the SEP

modules on the baseline network to rebuild it. At the core of the SEP module is an

attention mechanism, which automatically predicts the importance of each feature

map. When the SEP sets some feature maps to zero, it is equivalent to pruning their

corresponding kernels. Therefore, when it comes to different image data, different

kernels might be utilized according to the SEP selection. All of the kernel parame-

ters are preserved, but only some of which participate in calculating the forward and

backward propagations. During the model training, SEP selection strategy is con-

stantly updated, thus indicating this is a dynamic and data-dependent soft pruning

procedure. We do not prune the kernels physically, but we preserve all the feature

knowledge hierarchy and predict which kernels would be utilized for a specific image

data. Although the SEP module introduces extra model complexities, the FLOPs of

SEP is negligible because of the fully-connected operation.

In the training process of LSTM, the slimmer model with smaller size and com-

plexity is generated, which can be compared with other hard pruning methods. The

SEP algorithm, which is a soft pruning method on the basis of the slimmer archi-

tecture generated by LSTM, can also be applied independently, given a predefined

slimmer architecture.

4.3 Experiments

We evaluate our method on four benchmark datasets: MNIST [207], CIFAR-10,

CIFAR-100 [184] and ImageNet [185]. Two CIFAR datasets contain 50000 train-

ing images and 10000 test images. The MNIST contains 60000 and 10000 images

for training and testing respectively. In all the datasets, 10% of the images are split

from the training set as a validation set used for evaluating new network structures

and calculating their reward signals to LSTM. On CIFAR, all images are cropped

randomly into 32 × 32 with four paddings during the training process. Horizontal
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flip is also adopted. On MNIST, there is no data augmentation preprocessing. In

ImageNet, there are over 1.28 million training images and 50k validation images of

1,000 classes.

Three networks: VGGNet [8], ResNet [9] and a 3-layer fully-connected network

in [102] are used to validate our method. We employ a 2-layer LSTM with 100 hidden

units to make pruning decisions. All the experiments are implemented with PyTorch

on one NVIDIA TITAN X GPU.

4.3.1 Implementation Details

We train initial models from scratch and calculate their accuracies as baselines. In

the first step for training the LSTM, the pruning rate Rprune is set to 0.2, and the

teacher instructs the student to fine-tune 30 epochs on CIFAR and 10 epochs on

MNIST dataset. LSTM training is terminated when LSTM no longer produces a

better network structure within 10 epochs. We retrain the network with the best

reward for 250 epochs on CIFAR and 100 epochs on MNIST. For ImageNet, the

pruning rate Rprune is set to 0.1, and the teacher instructs the student to fine-tune

20 epochs. LSTM training is terminated when LSTM no longer produces a better

network structure within 10 epochs. We then retrain the network with the best

reward for 40 epochs. Both training and validation datasets are used for retraining

the network with the fixed learning rate of 0.001 for ultimate accuracy.

The new parent structure is created based on the combination of current parent

structure and the pruning information for each layer generated by LSTM. Then it

is added into the list of parent structure for next training epoch. In each epoch of

LSTM training, 5 parent structures with the largest rewards in the list are picked up

and fed into the LSTM successively for next training epoch. Their rewards are taken

as baselines b in policy gradient method. If there are no more than 5 local structures,

all local networks are taken as inputs. In the first epoch, the input is the pre-trained

network. We use FLOPs to measure the complexity of CNN and PARAM to measure

fully-connected networks in order to keep in line with the existing methods.

After getting the slimmer model from LSTM, we rebuild the baseline network to

deploy the SEP attention modules. The network redeployed is trained from scratch

for 90 epochs on ImageNet and 200 epochs on the rest of datasets to get its final

accuracy.
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4.3.2 Filter Selection

Our channel-based method is compared with the filter-based methods [35], which

evaluate a filter by calculating its absolute weights sum. We prune some filters from a

pre-trained VGG-16 on CIFAR-10. Different layers are pruned with the same pruning

rate. Then we fine-tune the pruned model for 1 epoch. The experiment is repeated 5

times to eliminate the influence of random disturbance, and we report the averaged

accuracy on the test set. Fig. 4.5 shows the pruning results with pruning rate ranging

from 0.1 to 0.9 while both methods are set with the same configuration. The results

reveal that our channel-based filter selection outperforms the filter-based selection

method.

Figure 4.5: Comparison between two methods.

4.3.3 Results

Our layer-selection method based on LSTM is compared to both orderly and global

hard filter pruning method. Specifically, on the fully-connected network and VGG,

we report the pruning results compared with two global pruning methods [35, 102].

On the ResNet-56, we compare our pruning method with a series of existing pruning

methods, including an orderly pruning method [33], CP [109], NISP-56 [208], and

FPGM [37]. We also give SEP results to reveal the performance of data-dependent

soft pruning.
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Table 4.1: Results of VGG-19 on CIFAR-10.

Model FLOPs Pruned Rate% Params Acc.%
Baseline 3.9× 108 − 20.04M 93.66

Slimming-4 [35] 8.89× 107 77.2 3.76M -0.25
Slimming-5 [35] 4.41× 107 88.7 2.84M -1.39

Ours-LSTM 5.98× 107 84.7 2.92M -0.36
Ours-scratch 5.98× 107 84.7 2.92M -1.74
LSTM-SEP 5.98× 107 84.7 4.01M -0.26

“Slimming-N” denotes repeating the slimming method [35] N times.
“Ours-scratch” denotes training the slimmer network generated by LSTM from
scratch for 200 epochs.

4.3.3.1 VGG-19 on CIFAR-10

We prune the VGG-19 [8] on the CIFAR-10 dataset. Each convolution layer is followed

by a batch normalization layer [209] and we prune its FC layer, which is the last layer

before classification .

FLOPs is used as an indicator of model complexity. One multiply-add here is

regarded as a floating-point operation unit. We calculate the reward R according to

Eq. 4.1 where network’s accuracy in validation set represents performance, FLOPs

represents complexity and λ is set to 4×10−10. We summarize the results in Table 4.1

comparing our layer-selective method and SEP method with the global slimming

method [35], which selects unimportant filters in all the layers first and then prune

all of them simultaneously. “Slimming-N” denotes repeating the slimming method N

times. After LSTM is trained for 150 epochs, the optimal structure emerges, whose

FLOPs is reduced by 84.7% with only 0.36% accuracy decreased.

We use SEP modules to rebuild the baseline network referring the optimal slimmer

structure generated by LSTM, which gets the better performance with only 0.26%

accuracy declined. We also train the slimmer network from scratch for 200 epochs,

which is equivalent to a hard filter pruning model, and compare it with the SEP re-

building model. The results show that our soft pruning can maintain higher precision

than the hard pruning.

It is worth noting that [35] takes one multiply-add as two floating-point opera-

tions, so their calculated FLOPs is two times as much as ours. For a fair and clear

comparison, we convert their FLOPs such that it can be in line with ours. It can be

observed that our pruned model is more accurate than the pruned model generated
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by [35](-0.26% vs -1.39%) when the FLOPs are comparable (84.7% vs 88.7%).

Moreover, the number of parameters (Params) is an indication of the memory

costs for storing a trained deep model, which is a widely used criterion for evaluating

model pruning algorithms. Since extra FC layers are added into the proposed SEP

modules, additional parameters are inevitably produced. As a result, though our

LSTM-SEP obtains the best accuracy, the model parameters are increased a little

bit, compared to Ours-LSTM method without SEP modules. However, from Table

I, we still can see that the accuracy of Ours-LSTM is over 1% higher than that of

Slimming-5 [35] when the numbers of the parameters of these two trimmed models

are similar (2.92M vs 2.84M).

For further investigation, we plot the sensitivity of each layer in the pre-trained

VGG-19 in Fig. 4.6. Specifically, at each time we prune one layer while keeping the

other layers unchanged, then calculate the accuracy. The results depict that the

overall sensitivity distribution keeps the same under different pruning rates and the

most sensitive four layers are layer 2, 3, 4, 5. Fig. 4.7, Fig. 4.8 and Fig. 4.9 represent

the practical pruning rates of each layer for the optimal network after training LSTM

for 50, 150 and 250 epochs respectively. With more training, the real pruning rate

from layer 2 to 5 becomes lower and the other layers are pruned more, which is

consistent with the observation from Fig. 4.6. The results demonstrate that our

method could make reasonable pruning decisions and learn the network sensitivity

effectively.

81



Figure 4.6: Sensitivity of VGG-19 for layers.

Figure 4.7: Pruning rate within 50 epochs.
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Figure 4.8: Pruning rate within 150 epochs.

Figure 4.9: Pruning rate within 250 epochs.
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4.3.3.2 VGG-19 on CIFAR-100

Table 4.2: Results of VGG-19 on CIFAR-100.

Model FLOPs Pruned Rate% Params Acc.%
Baseline 3.9× 108 − 20.04M 73.26

Slimming-3 [35] 1.27× 108 67.3 5.48M -2.34
Slimming-4 [35] 6.63× 107 83 3.27M -3.85

Ours-LSTM 1.17× 108 70.1 4.86M +0.0
Ours-scratch 1.17× 108 70.1 4.86M -3.5
LSTM-SEP 1.17× 108 70.1 5.95M +0.31

We use the same VGG-19 network to evaluate our method on CIFAR-100. Due to

more categories, CIFAR-100 is much more difficult to train than CIFAR-10. Thus, the

training and validation set are both used to fine-tune the pruned model. Here we use

the training loss to evaluate performance, and set λ to 2 × 10−11 in Eq. 4.1. After

training LSTM for 123 epochs, we get the best network whose FLOPs is reduced

by 70.1% with no accuracy drop. The SEP rebuilding model even improves the

accuracy by 0.31%, which indicates the superiority of the SEP module. The attention

mechanism improves the model performance. In the meantime, the soft pruning

manner retains the capacity of the baseline network, thus maintaining the accuracy

to the fullest. As can be seen from Table 4.2, our method outperforms the slimming

method significantly (above 3%), even though the number of parameters is a little bit

higher than that of Slimming-4 [35].

4.3.3.3 ResNet-56 on CIFAR-10

In this section, we verify the feasibility of our method on ResNet-56 [9]. Due to

the particularity of ResNet structure, we only prune the first convolution layer of

each ResNet block and keep the second convolution layer unchanged. The parameter

configuration of Eq. 4.1 is the same as the VGG-19 experiment on CIFAR-10.

Table. 4.3 reports our results compared to [33, 37, 109, 208], which analyze the

sensitivity of each ResNet block first, then prune filters referring to the analysis re-

sults. Note that all the results of existing algorithms are collected from their original

publications. We do not make any analysis in advance because our method is ca-

pable of automatically learning the network sensitivity. After LSTM is trained for

32 epochs, the best network emerges with 47.5% FLOPs reduction and comparable

accuracy. Compared to [33], more filters are pruned with acceptable accuracy de-

crease of 0.11% so that we get the model with the minimum number of parameters,
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which is only 0.49M. For further comparison, we select the second-best structure

with less FLOPs reduction, and it achieves a notable 0.56% accuracy promotion.

The SEP models based on these two slimmer architectures present more significant

performance. Even if compared to a recent method [37], we still obtain the promising

results - the accuracy of our best slimmer model exceeds that of their slimmer model

by 1.47% when the FLOPs of both models are equivalent.

In Fig.4.10, we draw the maps of soft-pruned filters distribution in the last and

second-to-last residual block respectively to show the data dependence of the SEP

method. We run the CIFAR-10 testset on LSTM-SEP-2 model to check which filters

are discarded for different image data in a specific layer. The x-axis represents the

filter index, while the y-axis represents the number of images on which this filter is

discarded. The last and the second-to-last residual block both consist of 64 filters. The

CIFAR-10 testset concludes 10000 images. As can be seen in Fig.4.10, some filters(red

bar) are always discarded on all the images but some (green bar) are discarded on

specific images. Some filters are always utilized because they play a significant role

for all data. SEP selects different filters for different images, which results reveal that

the SEP has data-dependent nature, and has the ability to select different filters for

different images.

Table 4.3: Results of ResNet-56 on CIFAR-10.

Model FLOPs Pruned Rate% Params Acc.%
Baseline 1.25× 108 − 0.86M 93.04

PFEC-A [33] 1.12× 108 10.4 0.77M +0.06
PFEC-B [33] 9.09× 107 27.6 0.61M +0.02

CP [109] − 50.6 − -1.00
NISP-56 [208] − 43.6 − -0.03

SFP [30] 5.94× 107 52.6 0.51M -1.33
FPGM [37] 5.94× 107 52.6 0.51M -0.66

Ours-LSTM-1 8.24× 107 34.1 0.56M +0.56
Ours-scratch-1 8.24× 107 34.1 0.56M -0.85
LSTM-SEP-1 8.24× 107 34.1 0.62M +1.01
Ours-LSTM-2 6.56× 107 47.5 0.49M -0.11
Ours-scratch-2 6.56× 107 47.5 0.49M -0.87
LSTM-SEP-2 6.56× 107 47.5 0.62M +0.81

4.3.3.4 A Fully-connected Network on MNIST

We further validate the effect of our method on multi-layer perceptrons. We prune a

3-layer fully-connected network compared with two global pruning methods [35, 102]
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Figure 4.10: The soft-pruned filters distribution of the last (a) and the second-to-last
(b) residual block in LSTM-SEP-2 model based on ResNet-56 on CIFAR-10 testset.
Some filters(red bar) are always discarded on all the images but some (green bar) are
discarded on specific images. 86



as shown in Table 4.4. Similar to CNN, the evaluation of neurons in the current FC

layer depends on its next FC layer. Here we use the accuracy on the validation set to

measure performance. We set λ to 1× 10−7. After 20 epochs, the optimal network

structure emerges with 87% neurons pruned and 0.03% accuracy drop.

Table 4.4: Results of a Fully-connected Network on MNIST.

Model Pruned% Acc.% #Neurons
Baseline − 98.57 784-500-300-10

Structured sparsity [102] 83.5 -0.11 434-174-78-10
Slimming-1 [35] 84.4 -0.06 784-100-60-10

Ours-LSTM 87.26 -0.03 784-83-48-10

4.3.3.5 ResNet-50 on Imagenet

Table 4.5: Results of ResNet-50 on ImageNet.
Model baseline Top-1 Acc.% baseline Top-5 Acc.% Pruned Rate% Params Top-1 Acc.% Top-5 Acc. %

SFP [30] 76.15 92.87 41.8 16.96M -1.54 -0.81
FPGM [37] 76.15 92.87 42.2 16.96M -1.12 -0.47
CFP [210] 75.30 92.20 49.6 − -1.90 -0.80
CP [109] − 92.20 50.0 − − -1.40
GDP [21] 75.13 92.30 51.3 − -3.24 -1.59

Ours-LSTM 76.12 93.00 43.0 15.96M -1.12 -0.33
LSTM-SEP 76.12 93.00 43.0 17.18M -0.90 -0.27

In this section, we verify the performance of our method on ImageNet, which is a

large-scale dataset. Since ResNet-50 [9] structure is commonly used by many pruning

methods such as SFP [30], CP [109], GDP [21], we choose it to conduct the pruning

experiments for a fair comparison. Specifically, we prune the first and second convo-

lution layers of each ResNet block and keep the third convolution layer unchanged.

The parameter configuration of Eq. 4.1 is the same as the VGG-19 and ResNet-56

experiments on CIFAR-10.

Table. 4.5 shows that our methods can achieve competitive performance, compared

to state-of-the-art methods including SFP [30], FPGM [37], CFP [210], CP [109],

GDP [21]. Note that we collect their results from the original publications, and no

pre-trained models are used. Seen from the results, the performance of LSTM-SEP

is better than that of Ours-LSTM, which shows that our soft pruning can maintain

higher accuracy than the hard pruning. Although the pruning rate of our methods

is slightly lower than that of CFP [210], CP [109] and GDP [21], the accuracies of

Ours-LSTM and LSTM-SEP are much higher than them. Particularly, the accuracy of

LSTM-SEP exceeds CFP [210] and GDP [21] models by 1.00% and 2.34% respectively
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and the Top5 accuracies of our two methods are 1.00% higher than that of CP [109]

and GDP [21]. Besides, in comparison to SFP [30] and FPGM [37] that also prune

filters in a soft manner, LSTM-SEP reduces more FLOPs of the model with even less

accuracy drops. Overall, it is clear that our method outperforms the state-of-the-art

soft pruning methods.

4.4 Chapter Summary

In this chapter, a novel filter pruning framework is presented to evaluate the im-

portance of each network layer and thus generate the specific pruning decision for

each one. Besides, we propose the SEP pruning method rather than adopting a hard

pruning strategy to prune redundant filters accurately. SEP is a data-dependent soft

pruning method, which preserves all the filter parameters, but for each image data,

only some important ones participate in calculating forward and backward propa-

gations. Different filters may be softly pruned when the given image is changed

according to the SEP selection. Experiment results show that our pruning method

is capable of compressing a variety of network structures with comparable accuracy

and works well on both convolutional and fully-connected networks. It also reveals

that our method learns the sensitivity of each network layer.

In the next chapter, we transfer our view from the filters to the feature maps.

Feature maps contain more comprehensive information than filters since they are gen-

erated after the convolution operation by filters and input data. We further transform

the encoded features into the frequency domain by DCT to efficiently extract valuable

and concentrated information from the feature maps. This way, the proposed method

can effectively select redundant filters to reduce network complexity while maintain-

ing its performance to the largest extent. The details of the proposed method will be

revealed in the following chapter.
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Chapter 5

Filter Pruning with Uniqueness
Mechanism in the Frequency
Domain

5.1 Introduction

The rapid progress in Convolutional Neural Networks (CNNs) has revolutionalized

various computer vision tasks, e.g., image classification [86,211], object detection [212–

214], and segmentation [193, 215, 216]. To pursue better performance, most methods

resort to complex network architectures. However, such implementations require

heavy computations and memory footprints, limiting their applications in resource-

limited systems (e.g., embedded or mobile devices). Therefore, how to compress

complex networks while preserving competitive performance has recently drawn much

attention.

The existing techniques for network compression can be mainly grouped into four

categories: knowledge distillation [54, 217], parameter binarization [69, 71], compact

network design [177, 218], and network pruning [118, 131]. Unlike the former three

techniques, which build lightweight networks from scratch or change the parameter

storage types, network pruning methods achieve compactness by finding and remov-

ing redundant parameters from the off-the-shelf networks. By doing so, the pruned

networks can retain the most knowledge from the original networks while reducing

the requirements for memory and computation resources. In general, there are two

techniques to achieve network pruning: weight pruning [88, 92, 95] and filter prun-

ing [30, 33, 41]. Weight pruning methods reduce network parameters by seeking a

sparse weight matrix. However, the network slimmed down by those methods is un-

structured as each parameter is likely to be removed, which disorders the integrity
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Figure 5.1: Four different pruning methods.

of the network components and makes it unable to achieve optimal efficiency via the

Basic Linear Algebra Subprograms (BLAS) library [30]. By contrast, the latter meth-

ods prune all the related parameters once one filter is unimportant. Therefore, the

pruned network still consists of integral components and can fully leverage the BLAS

library for accelerated training and inference.

Due to its excellent efficiency, filter pruning has become prevalent in network

compression. One intuitive attempt is to prune filters based on their importance

measured by their intrinsic properties. For example, the method shown in Figure 5.1

(a) only considers the norm value to determine its importance. Specifically, it removes

the filters whose norms are below a threshold. However, since the correlation between

filters is ignored, one type of redundancy still exists in the pruned network: the

filters that are prone to be replaced by others, even though their norm values are

high enough. To address this issue, some methods [37, 41] take the correlation into

account, as shown in Figure 5.1 (b). Despite achieving better performance, these

methods mainly focus on filter weights but ignore more comprehensive information

generated by the filters: feature maps.

Unlike the filter-based pruning methods, Lin et al. [39] considered the rank of

each feature map to measure the corresponding filter’s importance. As shown in

Figure 5.1 (c), the method performs pruning with the properties derived from feature

maps. With more comprehensive guidance, the feature-based methods outperform

the filter-based ones. However, there is still room to improve them further: (1)
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For each feature map, current methods only compute the rank based on its intrinsic

properties, ignoring the correlation between maps; (2) For visual tasks, low-frequency

channels are generally more informative than high-frequency ones [162], and almost

all the energy in spatial features is concentrated in the low-frequency spectrum after

DCT. Therefore, in contrast to the spatial domain, it seems easier and more efficient

to find unimportant filters in the frequency domain.

Inspired by the above observations, we measure the filter importance based on the

frequency-domain correlation between features. Fig. 5.1 (d) illustrates the basic idea

of our method. For each feature map, we compute the uniqueness to indicate whether

it consists of unique enough information which is not easily replaced by others. Since

the uniqueness comes from the interaction between feature maps, our method is more

robust against the interference from intrinsic properties, e.g., norm values. With the

uniqueness and the effective convergence of DCT, our proposed method can prune

various networks with complex architectures. Specifically, we first transform the

feature maps into the frequency domain by DCT. Then, we compute the uniqueness

for each feature map and remove the filters corresponding to the low-uniqueness maps.

The remaining filters form the final network with less complexity and performance

preserved. Fig. 5.2 illustrates the framework of our proposed method, and our main

contributions are summarized as follows:

1) We propose uniqueness, a novel criterion for filter pruning. Unlike intrinsic

properties of filters, uniqueness is measured from the correlation between feature

maps. It implicitly indicates how much and how unique a feature map embeds

the critical information. Therefore, a more comprehensive pruning strategy can

be achieved.

2) We propose to determine to-be-pruned filters in the frequency domain. With

the advantages of the frequency-domain operations, our proposed method can

find and prune unimportant filters more efficiently, without much interference

as in the spatial domain.

3) The extensive experiments involving various network architectures and two dif-

ferent scales of image datasets demonstrate that our proposed method outper-

forms the state-of-the-art in accuracy and model compression.

We elaborate the proposed FPUM in Section 5.2. Experimental results along with

ablation study are provided in Section 5.3. Finally, the proposed method is concluded

in Section 5.4.
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5.2 Methodology

5.2.1 Preliminaries

Given a CNN model with L layers, let W l ∈ Rcl×cl−1×k×k be the filter tensor of the l-th

convolutional layer, where k, cl, and cl−1 represent the kernel size, output channel, and

input channel of the filter, respectively. The filter-based pruning methods generally

formulate the objective function as follows:

min
kl

=
L∑
l=1

cl∑
j=1

klE(W l
j )

s.t. 0 < ‖kl‖0 ≤ (1− αl)cl,

, (5.1)

where kl is a list of indices, indicating the filters to prune in the l-th layer. The

amount of the pruned filters ‖kl‖0 is limited by both the compression ratio αl and

the initial number cl. E(·) estimates the intrinsic property of each filter W l
j , which

implicitly measures the importance of the filter and, therefore, can serve as a criterion

for pruning. In more recent pruning methods, however, feature maps have gradually

dominated the criterion measurement since they embed more comprehensive infor-

mation regarding filters and input data. In this case, the above objective function

can be rewritten as the following form:

min
kl

=
L∑
l=1

cl∑
j=1

klE(I l ∗W l
j )

s.t. 0 < ‖kl‖0 ≤ (1− αl)cl,

, (5.2)

where I l is the input tensor to the l-th layer and ∗ denotes the convolution operation.

So far, several prior works [30, 37, 39] have been implemented to prune unimportant

filters through the above optimization processes. The main focus of these methods

usually lies in designing the function E(·) for importance measurement.

5.2.2 Uniqueness Calculation in the Image Domain

Unlike the previous works, which focus on spatial operations and prune unimportant

filters using their intrinsic properties or feature maps, we perform pruning from a

novel view: the frequency domain. Specifically, we design an effective mechanism to

measure the uniqueness of each filter, based on the correlation between its correspond-

ing feature map and others in the frequency domain. With the uniqueness, we can
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infer if one filter can be replaced by others. Compared with intrinsic properties (e.g.,

norm values), it better reflects the filter redundancy. Therefore, the over-pruning or

under-pruning due to inaccurate redundancy measurement can be effectively allevi-

ated.

We first introduce the uniqueness in the spatial domain. For simplicity, we assume

Ol = I l ∗W l ∈ Rcl×hl×wl
as the feature maps generated by the l-th convolutional

layer, ignoring the activations and biases. cl, hl, and wl indicate the channel, height,

and width dimensions, respectively. For each feature map Ol
j ∈ Rhl×wl

, its uniqueness

can be defined as:

E(Ol
j) = ‖Ol‖f − ‖Ol

j∗‖f , (5.3)

where ‖ · ‖f computes the Frobenius norm. We reshape feature maps Ol and Ol
j∗ to
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cl × hlwl to meet the requirement for the input dimensions. Ol
j∗ is initialized from

Ol and all its values in the j-th row are set to zero after dimension transformation.

5.2.3 Uniqueness Calculation in the Frequency Domain

Given the efficient energy convergence of DCT, it is easier to determine the unique-

ness of each feature map in the frequency domain than in the spatial domain since

almost all the essential energy in spatial features is concentrated in the low-frequency

spectrum after DCT. Doing so can eliminate noise interference in the space domain

and extract more useful information from the original feature map. Besides, we only

need to process a small-size of feature map rather than the entire one to obtain an ac-

curate pruning strategy, thus reducing the computational complexity. Therefore, we

transform the feature maps into the frequency domain through DCT for uniqueness

computation, which is defined by reformulating Eq. 5.3 as the following form:

E(D(Ol
j)) = ‖D(Ol)‖f − ‖D(Ol

j∗)‖f , (5.4)

where D(·) denotes the DCT operation. For each position (x, y) in the j-th feature

map Ol
j, its counterpart in the frequency domain is obtained as below:

D(Ol
j(x, y)) =

s√
hlwl

hl−1∑
x=0

v−1∑
y=0

Ol
j(x, y) cos(

π

hl
u(x+

1

2
)) cos(

π

wl
v(y +

1

2
)), (5.5)

where (u, v) indicates the location in the frequency domain. s is a scaling factor and

conditioned on (u, v): {
s = 1, if (u, v) = (0, 0)
s = 2, if (u, v) 6= (0, 0).

(5.6)

After DCT, most low-frequency information will be concentrated in a local re-

gion in the frequency domain, which comprises the most informative knowledge of

the input data. Therefore, such a local area can support robust and more efficient

data processing compared with the whole region. We further reformulate Eq. 5.4 to

measure the uniqueness of the j-th filter in the l-th layer:

E(Ds(Ol
j)) = ‖Ds(Ol)‖f − ‖Ds(Ol

j∗)‖f , (5.7)

whereDs(·) only focuses on the frequency-domain features from the concentrated local

region after DCT. For the j-th filter in the l-th layer, its importance is evaluated

by E(Ds(Ol
j)), the correlation of its corresponding feature map with others in the

frequency domain. In this way, we can prune filters more accurately and efficiently if
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we replace the original criterion (E(W l
j )) in Eq. 5.1 with E(Ds(Ol

j)). After obtaining

the uniqueness score of each filter, the number of removable filters is determined

based on the pruning rate for each layer. Therefore, we prune the filter according to

its uniqueness score, from small to large, until the number of pruning requirements

is reached.

5.3 Experiments

In this section, we provide extensive experimental results and analysis to illustrate

the superior performance of our algorithm on two different scales of datasets: CIFAR-

10 [184] and ImageNet [219].

5.3.1 Experimental Settings

5.3.1.1 Baselines and Datasets

To evaluate our proposed method comprehensively, we apply it to various CNN ar-

chitectures and compare the pruning performance with state-of-the-art methods on

different datasets. Specifically, we first consider two ResNet architectures [9] (ResNet-

56 and ResNet-110) and VGG-16 [8] on a small benchmark dataset: CIFAR-10 [184].

Then, we conduct experiments with ResNet-50 on a larger dataset (ImageNet [219])

for further analysis.

5.3.1.2 Evaluation Metrics

Similar to existing methods, we utilize the number of floating-point operations (FLOPs)

and parameters (Params) to measure the complexity and size of the pruned CNN mod-

els, respectively. As for the accuracy evaluation, we compute models’ Top-1 accuracy

on CIFAR-10 and Top-1 and Top-5 accuracy on ImageNet. It is worth noting that

∆Top-1(%) and ∆Top-5(%) represent the difference in Top-1 and Top-5 accuracies

before and after pruning. Params(%)↓ and FLOPs(%)↓ indicate the drops (percent-

age) in parameters and FLOPs between the pruned and baseline models. The results

of competitors shown in Tables 5.1, 5.2, 5.3, and 5.4 are reported from their original

publications.

5.3.1.3 Implementation Details

During the fine-tuning stage on CIFAR-10, we set the number of epochs as 300 and

batch size as 128, as employed by the competitors, to make a fair comparison. We also
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consider Stochastic Gradient Descent (SGD) as the optimizer with an initial learning

rate, weight decay, and momentum of 0.01, 0.05, and 0.9, respectively. As for the

experiment setting on ImageNet, we retrain the pruned network for 180 epochs with

a batch size of 256. The initial learning rate, weight decay, and momentum are set as

0.1, 0.0001, and 0.9, respectively. All the experiments are implemented with PyTorch

on 4 NVIDIA GTX1080Ti GPUs.

5.3.2 Results and Analysis

5.3.2.1 Results on CIFAR-10

Table 5.1: Comparison of pruned ResNet-56 on CIFAR-10.

Method Top1(%) ∆Top1(%) Params(%)↓ FLOPs(%)↓

DNAL [220] 94.15→ 93.76 -0.39 22.3 25.1
DNAL [220] 94.15→ 93.75 -0.40 33.8 30.6
NISP [208] 94.15→ 93.01 -0.14 42.4 35.5
GAL [192] 93.26→ 93.38 +0.12 11.8 37.6

Ours 93.26→ 93.88 +0.62 42.8 47.4
LSTM [221] 93.04→ 92.93 -0.11 N/A 47.5

CP [109] 92.80→ 90.90 -1.90 N/A 50.0
FPSST [222] 93.57→ 93.28 -0.29 N/A 51.1

SFP [30] 93.59→ 92.26 -1.33 N/A 52.6
FPGM [37] 93.59→ 92.93 -0.66 N/A 52.6
GAL [192] 93.26→ 91.58 -1.68 65.9 60.2

DNAL [220] 94.15→ 93.20 -0.95 70.5 70.5
Hrank [39] 93.26→ 90.72 -2.54 68.1 74.1

Ours 93.26→ 92.48 -0.78 71.8 72.3

In this section, we firstly deploy ResNet-56 to verify the performance of our proposed

method on CIFAR-10. As shown in Table 5.1, our method obtains the best perfor-

mance compared to state-of-the-art methods on both moderate and deep compression.

Specifically, the Top-1 accuracy of our method is 0.49% higher than LSTM [221] with

almost the same FLOPs reduction. Moreover, our results are even better than the

baseline model (93.88% vs. 93.26%). Compared with NISP [208], DNAL [220], and

GAL [192], we obtain a better performance in Top-1 accuracy, parameter reduction,

and FLOPs reduction. Although CP [109], SEP [30], and FPGM [37] reduce more

FLOPs than ours, their Top-1 accuracy is much lower than ours (−2.52%, −1.95%,

−1.28%). For deep compression, our method achieves the best Top-1 accuracy while
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obtaining the maximum parameter reduction and FLOPs reduction compared with

GAL [192] and DNAL [220]. Besides, our method achieves better quantitative re-

sults (92.48% vs. 90.72%) even though we share a similar model compression with

Hrank [39].

Table 5.2: Comparison of pruned ResNet-110 on CIFAR-10.

Method Top1(%) ∆Top1(%) Params(%)↓ FLOPs(%)↓

SFP [30] 93.68→ 93.38 -0.30 N/A 40.8
Rethink [191] 93.77→ 93.70 -0.07 N/A 40.8

Hrank [39] 93.50→ 94.23 +0.73 39.4 41.2
GAL [192] 93.50→ 92.55 -0.95 44.8 48.5

FPSST [222] 93.70→ 93.62 -0.08 N/A 50.6
Ours 93.50→ 94.51 +1.01 48.3 52.1

FPGM [37] 93.68→ 93.74 +0.06 N/A 52.3
FalCon [223] 93.68→ 93.79 +0.11 N/A 60.3
FalCon [223] 93.68→ 93.63 -0.05 N/A 62.3

CCPrune [224] 94.11→ 93.36 -0.75 N/A 68.0
Hrank [39] 93.50→ 92.65 -0.85 68.7 68.6

Ours 93.50→ 93.73 +0.23 68.3 71.6

Analogous to ResNet-56, our method achieves excellent performance on ResNet-

110. From Table 5.2, it can be seen that we obtain the best accuracy improvement

with the most significant parameter and FLOPs reductions, compared to SEP [30],

Rethink [191], HRank [39] and GAL [192]. Although FPGM [37] obtains a similar

FLOPs reduction as ours, it refines the accuracy by +0.06% only, which is much

lower than ours (+1.01%). In addition to moderate compression, we observe that our

method with deep compression outperforms the existing competitors in both Top-1

accuracy and FLOPs reduction, further illustrating the consistent superiority of our

proposed method.

Finally, we employ VGG-16 to verify the performance of our proposed method

on CIFAR-10, as shown in Table 5.3. Not surprisingly, our method achieves better

performance with deep compression. Compared to PEFC [33], FPMG [37], SSS [105],

GAL [192], and Hrank [39], our method has apparent advantages in Top-1 accuracy

and FLOPs compression ratio. To be specific, our method achieves up to 73.7%

FLOPs reduction with only a 0.2% accuracy loss (from 93.96% to 93.76%). Although

RL-MCTS [225] and FalCon [223] further improve the Top-1 accuracy, their FLOPs

reductions (45.5% and 50.0%) are much lower than ours (73.7%). Moreover, our

method achieves fewer Top-1 accuracy loss than HRank [39](−0.35% vs.−2.73%) even
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though we yield approximately the same FLOPs reduction. These results illustrate

the effectiveness of our proposed method.

Table 5.3: Comparison of pruned VGG-16 on CIFAR-10.

Method Top1(%) ∆Top1(%) Params(%)↓ FLOPs(%)↓

PFEC [33] 93.58→ 93.28 -0.30 N/A 34.2
FPGM [37] 93.58→ 93.23 -0.35 N/A 35.9
SSS [105] 93.96→ 93.02 -0.94 73.8 41.6
GAL [192] 93.96→ 93.42 -0.54 82.2 45.2

RL-MCTS [225] 93.51→ 93.90 +0.39 N/A 45.5
FalCon [223] 93.32→ 93.63 +0.31 N/A 50.0
Hrank [39] 93.96→ 93.43 -0.53 82.9 53.5

FalCon [223] 93.32→ 91.92 -1.40 N/A 67.3
Ours 93.96→ 93.76 -0.20 80.8 73.7

Hrank [39] 93.96→ 91.23 -2.73 92.0 76.5
Ours 93.96→ 93.61 -0.35 84.8 76.7

5.3.2.2 Results on ImageNet

In this section, we verify the performance of our method on a large-scale dataset

(ImageNet). Table 5.4 shows that our method achieves competitive performance

compared to state-of-the-art methods. For moderate compression, our approach out-

performs HRank [39], LSTM [221], BNFI [226], and SFP [30] in parameter reduction,

FLOPs reduction, and Top-1 accuracy. Besides, our method shares similar FLOPs

reduction with Hinge [124] and RL-MCTS [225] but obtains less accuracy degradation

(both in Top-1 and Top-5). Although the pruning rate of our method is slightly lower

than CFP [210], DSA [121], Autopruner [227], GDP [21], BNFI [226], FalCon [223],

and FPGM [37], it can retain much more performance of the original model than

them.

For deep compression, the Top-1 accuracy of our method exceeds Hrank [39] and

FalCon [223] by 2.82% and 0.93% respectively under similar FLOPs reduction. No-

tably, compared to Hrank [39], which reduces the FLOPs up to 76%, our method

achieves slightly more parameters and FLOPs drop but with much less accuracy

degradation (−2.97% vs.−7.05%). From the quantitative results, our pruning method

can not only outperform the state-of-the-art methods in moderate compression but

also maintain higher accuracy even in deep compression.
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Table 5.4: Comparison of pruned ResNet-50 on ImageNet.
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5.3.3 Ablation Study

5.3.3.1 The Comparison of High and Low Representations

Frequency information is able to measure the pixel value change in images. Specifi-

cally, low-frequency and high-frequency signals reflect the image regions with smooth

and sharp differences, respectively. In general, low-frequency features are more in-

formative than high-frequency ones in visual tasks [162]. To analyze the impact of

different frequencies of information in pruning, we conduct experiments with various

networks and compare the results on CIFAR-10. Fig. 5.3 shows the Top-1 accuracy

achieved by different networks and different frequencies of features. Under the same

pruning rate, it is observed that pruning with low-frequency features is better than

with high-frequency ones, which means the low-frequency components can effectively

measure the uniqueness of feature maps. In addition, we follow Eq. 5.3 to prune

filters based on their spatial uniqueness scores, whose Top-1 accuracy is in-between

the methods with low-frequency and high-frequency features. The comparison re-

sults show that the low-frequency components in our method indeed consist of more

valuable information than others, validating the effectiveness of our frequency-based

strategy.
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Figure 5.3: Top-1 accuracy of various models pruned with different frequen-
cies/domains of features.
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5.3.3.2 The Effectiveness between Various Pruning Methods

To further evaluate the effectiveness of our proposed method, we study the accuracy-

pruning rate trade-off curve for the ResNet-50 model on ImageNet dataset. The

results are shown in Figure 5.4:
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Figure 5.4: The comparison of the accuracy-pruning rate trade-off curve for various
pruning methods using the ResNet-50 model on the ImageNet dataset. Note that the
blue stars indicate the results of our method while the green dots and pruple curves
show the results of Hrank [39] and FalCon [223],respectively.

In this figure, the blue star represents the accuracy of our method under the

specific FLOPs reduction, whereas the green circle and purple triangle indicate the

accuracy of HRank and FalCon with given FLOPs reduction, respectively. As we

can see that our proposed method achieves the best performance throughout various

pruning rates.
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5.3.3.3 Feature Map Visualization

Figure 5.5: The visualization of feature maps, generated by ResNet-50 (block1,
conv1), where red boxes highlight the pruned feature maps by our method, orange
boxes indicate the feature maps (retained) which can replace the pruned ones.

To explore the effectiveness of our uniqueness computation, we visualize one layer of

feature maps before and after pruning, as shown in Fig. 5.5. Specifically, we select

the features generated by the first convolution layer in the first block of ResNet-50,

trained on ImageNet. Under the pruning rate of 0.15, our method removes the feature

maps with indices 12, 19, 24, 39, 48, 57, 58, 61, and 64 (marked by red boxes) due
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to their low uniqueness scores. Although the removed maps cannot contribute to the

subsequent computation, it will not degrade the final results considerably since the

remaining maps can easily replace them. From Fig. 5.5, we can find the substitute

for each removed map and show them as a pair with the format (removed map index

- substitute map index with bold text): (12-18), (19-46), (24-28), (39-25), (48-

1), (57-59), (58-63), (61-63), and (64-34). These substitutes are marked by orange

boxes in Fig. 5.5 to highlight their relationships to the removed ones. To sum up,

the visualized results show that the feature maps pruned by our method are indeed

replaceable and unimportant, further validating our uniqueness-based strategy.

5.4 Chapter Summary

This work presented a novel pruning method, which operates mainly in the frequency

domain and computes uniqueness as the critical criteria for removing filters. Unlike

the previous spatial methods, we further transform the encoded features into the fre-

quency domain by DCT to mine more valuable and concentrated information from

the input data. After this, we compute uniqueness scores from each feature map,

considering both the properties within and across maps. The network pruning is

achieved by removing the filters corresponding to the low-uniqueness maps, which

can be easily replaced by others. This way, the proposed method can effectively re-

duce the network complexity while maintaining its performance to the largest extent.

We evaluated our method with various network architectures on two different scales

of datasets. The experimental results showed that our method achieves superior

performance compared to the state-of-the-art approaches.

The proposed method selects redundant filters based on the correlations of feature

maps rather than that of filters. In the next chapter, we will summarize this thesis

and discuss several possible research directions in the future.
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Chapter 6

Conclusions and Future Work

6.1 Thesis Summary

This thesis mainly focuses on reducing the memory usage and computation cost while

maintaining the network performance in network pruning. Particularly, three different

challenging tasks are explored: filter pruning with an attention mechanism (Chapter

3), data-dependent filter pruning guided by LSTM (Chapter 4) and filter pruning with

uniqueness mechanism in the frequency domain (Chapter 5). In each chapter, a novel

learning framework is proposed to handle the target challenge in network pruning and

the superior performance has been achieved against state-of-the-art baselines. Each

chapter is briefly concluded and discussed in the following subsections.

6.1.1 Filter Pruning with an Attention Mechanism

To speed up the classical CNNs, a new filter pruning method named Pruning Fil-

ter with an Attention Mechanism (PFAM) is presented. Different from the previous

pruning methods that evaluate the importance of filters by their intrinsic proper-

ties, a novel correlation-based filter pruning criterion that explores the long-range

dependencies among filters via an attention module is employed to select and remove

redundant filters. Our proposed method is evaluated on three general public datasets

to demonstrate its superiority compared to state-of-the-art baselines. Moreover, it

is also verified on three public remote sensing image datasets, and the experimental

results show it can also be applied to particular tasks in computer vision.

We apply the attention mechanism to evaluate the redundancy of filters by calcu-

lating their correlation values among each other. The filters with the least correlation

values can be deemed redundant and pruned with little degradation in performance.

However, in our method, we select and prune the redundant filters in each layer yet
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treat all layers equally during the pruning stage, which may still have a non-negligible

negative impact on overall performance if it happens to prune many filters from a

critical layer. Hence, we are aware of this potential issue and plan to design a new

pruning strategy in the following work that could determine the importance of layers

before pruning redundant filters in each layer. Doing so can effectively differentiate

the importance of different layers so as to preserve more filters in some important

layers that have a positive impact on the final performance while removing more re-

dundant filters in some less important layers. As a consequence, it can achieve the

same model reduction while losing less performance than the previous method. The

details of this subsequent work are presented in Chapter 4.

6.1.2 Data-Dependent Filter Pruning Guided by LSTM

In this chapter, we present a novel filter pruning framework to evaluate the importance

of each network layer and thus generate the specific pruning decision for each one.

Considering the hierarchical structure of CNN, we employ LSTM as an evaluation

model to generate pruning decisions. Besides, based on the slimmer architecture

generated from LSTM, we further propose the SEP attention mechanism to rebuild

the baseline network, which realizes the data-dependent soft pruning. Experimental

results show the superiority of our methods compared to both orderly and global

pruning methods and reveal the ability to learn the sensitivity of each network layer.

Although LSTM can generate the pruning decision for a given network, training

the LSTM to approximate the slimmer architectures usually takes a long time, which

might be a bottleneck for our algorithm. Concretely, it requires several epochs to train

each student model before the reward gets maximized. The computational cost of this

step can be high, given a large-scale dataset such as ImageNet. In addition, both the

previous pruning method in Chapter 3 and the proposed method in this Chapter still

make the filter pruning decision under the filter view. In other words, we choose and

prune redundant filters by calculating the intrinsic properties or correlation of filters.

However, feature maps can be shown to have more merit than filters in the pruning

stage since they embed more comprehensive information regarding filters and input

data. Therefore, designing a novel pruning method that can extract information from

feature maps rather than filters to make the filter pruning decision could select and

prune redundant filters more accurately. Chapter 5 will illustrate the details of the

follow-up improvement work.
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6.1.3 Filter Pruning with Uniqueness Mechanism in the Fre-
quency Domain

In this chapter, a novel filter pruning method is presented, which operates mainly in

the frequency domain and computes uniqueness as the critical criterion for remov-

ing filters. We further transform the encoded features into the frequency domain

by DCT to mine more valuable and concentrated information from the input data.

After this, we compute uniqueness scores from each feature map, considering the

properties within and across maps. The network pruning is achieved by removing

the filters corresponding to the low-uniqueness maps, which can be easily replaced

by others. This way, the proposed method can effectively reduce network complexity

while maintaining its performance to the largest extent. We evaluated our method

with various network architectures on two different scales of datasets. The experi-

mental results showed that our method achieves superior performance compared to

the state-of-the-art approaches.

Nevertheless, filter pruning only maintains accuracy under moderate sparsity

rates because it reduces network complexity at a coarse-grained level by removing

all weights in a filter. Moreover, since the granularity of filter pruning is much larger

than that of weight pruning, with the degree of compression increasing, filter pruning

suffers more significant performance degradation than weight pruning. Therefore, in

our future work, we will propose an intermediate granular level for network prun-

ing, which is coarser as compared to the fine-grained weight but finer as compared

to the coarse-grained filter. By doing this, the issue of keeping the model accurate

while achieving general CPU speedups can be solved, which enables practical model

deployment on CPU-based platforms.

6.2 Future Research Topics

In this section, we briefly discuss several possible research directions in the future,

which are strictly related to the research topic in this thesis.

Currently, some novel branches of network pruning methods [229–231] have been

proposed to achieve deep model compression while maintaining excellent performance.

For example, [229, 230] explore the possibility of hybrid pruning granularity for the

pruning method. Generally, weight pruning is named the fine-grained level network

pruning since it removes a single weight, while filter pruning, which prunes all weights

in a filter can be deemed the coarse-grained level network pruning. Unlike the previous

network pruning methods that prune unimportant weights based on the fine-grained
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or coarse-grained levels, [229, 230] remove unimportant weights using an interme-

diate granular level. The experimental results show that they can obtain the deep

compression ratio as weight pruning while achieving the same performance as filter

pruning.

Another interesting and promising network pruning method [231] uses the struc-

tural re-parameterization technique [232, 233]. To be specific, a set of structural

parameters with powerful performance is trained during the training stage. Then,

they convert multiple well-trained parameter modules into the parameters of a single

module for the inference stage by means of an equivalent transformation. Doing so

can use the parameters of a single module to achieve the same performance as the

parameters of multiple modules. These two types of network pruning methods are

different from ours, and combining them with the following two new applications

would be a good direction for the following research stage.

6.2.1 Model Compression for Efficient Object Detection of
Autonomous Vehicles

Autonomous driving technology is gradually changing people’s lives in fundamental

ways. As one of the key technologies of autonomous navigation, object detection

has received much attention and developed rapidly in computer vision. Specially, 2D

object detection receives two-dimensional image information from cameras to detect

multiple environmental objects, such as pedestrians and cars. In addition, 3D object

detection uses the 3D LiDAR signal (point clouds) to identify objects.

Although some powerful models, such as YOLO [234] and PointPillars [235] are

designed to improve the accuracy of objects significantly, deploying and running these

models requires huge memory and computing resources. Therefore, only the expensive

and powerful GPUs rather than the embedded chips can fully release their perfor-

mance, which cannot be employed on cars due to their space and cost. Consequently,

how to detect objects accurately and efficiently under the constraints of memory and

computation resources has become a hot research topic.

6.2.2 Network Pruning for Transformers

Inspired by the attention mechanism [146], [236, 237] were proposed by applying it

in the field of natural language processing (NLP), which achieved astounding perfor-

mance for machine translation. Afterward, some attention-based works [137,238–241]

were proposed to achieve excellent performance in various tasks in computer vision
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compared to the traditional convolutional neural networks (CNNs). Unlike the pre-

vious traditional CNNs, transformers [57,65,242–244] that adopt the attention-based

structure also showed their powerful performance on various tasks in both natural

speech processing and computer vision fields.

However, similarly to the limitations of traditional CNNs, such powerful models

still require large memory spaces and high computing resources, which means they

can only be employed on large servers with expensive and energy-consuming GPUs.

As one of the main methods of model compression, network pruning can effectively

reduce the parameters of models while maintaining their high performance. Therefore,

how to apply the new pruning techniques for the transformers that can be employed

in the embedded systems has attracted much attention for researchers.
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V. Glukhov, I. Oseledets, and A. Cichocki, “Stable low-rank tensor decomposi-

tion for compression of convolutional neural network,” in European Conference

on Computer Vision. Springer, 2020, pp. 522–539.

[51] M. Yin, Y. Sui, S. Liao, and B. Yuan, “Towards efficient tensor decomposition-

based dnn model compression with optimization framework,” in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021,

pp. 10 674–10 683.

[52] G. Hinton, O. Vinyals, J. Dean et al., “Distilling the knowledge in a neural

network,” arXiv preprint arXiv:1503.02531, vol. 2, no. 7, 2015.

[53] T. Fukuda, M. Suzuki, G. Kurata, S. Thomas, J. Cui, and B. Ramabhadran,

“Efficient knowledge distillation from an ensemble of teachers.” in Interspeech,

2017, pp. 3697–3701.

[54] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via distillation

and quantization,” arXiv preprint arXiv:1802.05668, 2018.

[55] G. K. Nayak, K. R. Mopuri, V. Shaj, V. B. Radhakrishnan, and A. Chakraborty,

“Zero-shot knowledge distillation in deep networks,” in International Confer-

ence on Machine Learning. PMLR, 2019, pp. 4743–4751.

[56] R. Tang, Y. Lu, L. Liu, L. Mou, O. Vechtomova, and J. Lin, “Distilling

task-specific knowledge from bert into simple neural networks,” arXiv preprint

arXiv:1903.12136, 2019.

[57] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled version

of bert: smaller, faster, cheaper and lighter,” arXiv preprint arXiv:1910.01108,

2019.

[58] X. Jin, B. Peng, Y. Wu, Y. Liu, J. Liu, D. Liang, J. Yan, and X. Hu, “Knowl-

edge distillation via route constrained optimization,” in Proceedings of the

IEEE/CVF International Conference on Computer Vision, 2019, pp. 1345–

1354.

[59] Q. Guo, X. Wang, Y. Wu, Z. Yu, D. Liang, X. Hu, and P. Luo, “Online knowl-

edge distillation via collaborative learning,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2020, pp. 11 020–

11 029.

114



[60] D. Walawalkar, Z. Shen, and M. Savvides, “Online ensemble model compression

using knowledge distillation,” in European Conference on Computer Vision.

Springer, 2020, pp. 18–35.

[61] Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu, “Deep mutual learning,” in

Proceedings of the IEEE conference on computer vision and pattern recognition,

2018, pp. 4320–4328.

[62] J. H. Cho and B. Hariharan, “On the efficacy of knowledge distillation,” in Pro-

ceedings of the IEEE/CVF international conference on computer vision, 2019,

pp. 4794–4802.

[63] C. Yang, L. Xie, S. Qiao, and A. L. Yuille, “Training deep neural networks in

generations: A more tolerant teacher educates better students,” in Proceedings

of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp.

5628–5635.

[64] M. Phuong and C. H. Lampert, “Distillation-based training for multi-exit archi-

tectures,” in Proceedings of the IEEE/CVF International Conference on Com-

puter Vision, 2019, pp. 1355–1364.

[65] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio,

“Fitnets: Hints for thin deep nets,” arXiv preprint arXiv:1412.6550, 2014.

[66] S. Zagoruyko and N. Komodakis, “Paying more attention to attention: Improv-

ing the performance of convolutional neural networks via attention transfer,”

arXiv preprint arXiv:1612.03928, 2016.

[67] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training deep

neural networks with binary weights during propagations,” in Advances in Neu-

ral Information Processing Systems, 2015, pp. 3123–3131.

[68] M. Kim and P. Smaragdis, “Bitwise neural networks,” arXiv preprint

arXiv:1601.06071, 2016.

[69] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet

classification using binary convolutional neural networks,” in European Confer-

ence on Computer Vision. Springer, 2016, pp. 525–542.

115



[70] Z. Li, B. Ni, W. Zhang, X. Yang, and W. Gao, “Performance guaranteed net-

work acceleration via high-order residual quantization,” in Proceedings of the

IEEE international conference on computer vision, 2017, pp. 2584–2592.

[71] X. Wang, B. Zhang, C. Li, R. Ji, J. Han, X. Cao, and J. Liu, “Modulated

convolutional networks,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2018, pp. 840–848.

[72] P. Wang, Q. Hu, Y. Zhang, C. Zhang, Y. Liu, and J. Cheng, “Two-step quanti-

zation for low-bit neural networks,” in Proceedings of the IEEE Conference on

computer vision and pattern recognition, 2018, pp. 4376–4384.

[73] A. Mishra, E. Nurvitadhi, J. J. Cook, and D. Marr, “Wrpn: Wide reduced-

precision networks,” arXiv preprint arXiv:1709.01134, 2017.

[74] A. Bulat and G. Tzimiropoulos, “Xnor-net++: Improved binary neural net-

works,” arXiv preprint arXiv:1909.13863, 2019.

[75] J. Faraone, N. Fraser, M. Blott, and P. H. Leong, “Syq: Learning symmetric

quantization for efficient deep neural networks,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2018, pp. 4300–4309.

[76] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network quan-

tization: Towards lossless cnns with low-precision weights,” arXiv preprint

arXiv:1702.03044, 2017.

[77] A. Mishra and D. Marr, “Apprentice: Using knowledge distillation techniques

to improve low-precision network accuracy,” arXiv preprint arXiv:1711.05852,

2017.

[78] Y. Xu, X. Dong, Y. Li, and H. Su, “A main/subsidiary network framework for

simplifying binary neural networks,” in Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition, 2019, pp. 7154–7162.

[79] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of neural

networks on cpus,” 2011.

[80] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep convolutional

networks using vector quantization,” arXiv preprint arXiv:1412.6115, 2014.

116



[81] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional

neural networks for mobile devices,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2016, pp. 4820–4828.

[82] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized

neural networks: Training deep neural networks with weights and activations

constrained to+ 1 or-1,” arXiv preprint arXiv:1602.02830, 2016.

[83] S. J. Hanson and L. Y. Pratt, “Comparing biases for minimal network con-

struction with back-propagation,” in Advances in Neural Information Process-

ing Systems, 1989, pp. 177–185.

[84] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations

by back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[85] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and

L. Jackel, “Handwritten digit recognition with a back-propagation network,”

Advances in neural information processing systems, vol. 2, 1989.

[86] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” Advances in neural information processing

systems, vol. 25, 2012.

[87] S. Srinivas and R. V. Babu, “Data-free parameter pruning for deep neural

networks,” arXiv preprint arXiv:1507.06149, 2015.

[88] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neu-

ral networks with pruning, trained quantization and huffman coding,” arXiv

preprint arXiv:1510.00149, 2015.

[89] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient dnns,”

in Advances In Neural Information Processing Systems, 2016, pp. 1379–1387.

[90] J. Park, S. Li, W. Wen, P. T. P. Tang, H. Li, Y. Chen, and P. Dubey, “Faster

cnns with direct sparse convolutions and guided pruning,” arXiv preprint

arXiv:1608.01409, 2016.

[91] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient convolutional

neural networks using energy-aware pruning,” in Proceedings of the IEEE con-

ference on computer vision and pattern recognition, 2017, pp. 5687–5695.

117



[92] X. Dong, S. Chen, and S. Pan, “Learning to prune deep neural networks via

layer-wise optimal brain surgeon,” Advances in Neural Information Processing

Systems, vol. 30, 2017.

[93] X. Xiao, Z. Wang, and S. Rajasekaran, “Autoprune: Automatic network prun-

ing by regularizing auxiliary parameters,” Advances in neural information pro-

cessing systems, vol. 32, 2019.

[94] X. Ding, X. Zhou, Y. Guo, J. Han, J. Liu et al., “Global sparse momentum

sgd for pruning very deep neural networks,” Advances in Neural Information

Processing Systems, vol. 32, 2019.

[95] V. Sanh, T. Wolf, and A. Rush, “Movement pruning: Adaptive sparsity by

fine-tuning,” Advances in Neural Information Processing Systems, vol. 33, pp.

20 378–20 389, 2020.

[96] J. Lee, S. Park, S. Mo, S. Ahn, and J. Shin, “Layer-adaptive sparsity for the

magnitude-based pruning,” arXiv preprint arXiv:2010.07611, 2020.

[97] A. Aghasi, A. Abdi, N. Nguyen, and J. Romberg, “Net-trim: Convex prun-

ing of deep neural networks with performance guarantee,” Advances in neural

information processing systems, vol. 30, 2017.

[98] C. Chen, F. Tung, N. Vedula, and G. Mori, “Constraint-aware deep neural

network compression,” in Proceedings of the European Conference on Computer

Vision (ECCV), 2018, pp. 400–415.

[99] Z. Liu, J. Xu, X. Peng, and R. Xiong, “Frequency-domain dynamic pruning

for convolutional neural networks,” Advances in neural information processing

systems, vol. 31, 2018.

[100] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen, “Compressing

neural networks with the hashing trick,” in International conference on machine

learning. PMLR, 2015, pp. 2285–2294.

[101] K. Ullrich, E. Meeds, and M. Welling, “Soft weight-sharing for neural network

compression,” arXiv preprint arXiv:1702.04008, 2017.

[102] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity

in deep neural networks,” Advances in neural information processing systems,

vol. 29, 2016.

118



[103] V. Roth and B. Fischer, “The group-lasso for generalized linear models: unique-

ness of solutions and efficient algorithms,” in Proceedings of the 25th interna-

tional conference on Machine learning, 2008, pp. 848–855.

[104] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani, “A sparse-group lasso,”

Journal of computational and graphical statistics, vol. 22, no. 2, pp. 231–245,

2013.

[105] Z. Huang and N. Wang, “Data-driven sparse structure selection for deep neu-

ral networks,” in Proceedings of the European conference on computer vision

(ECCV), 2018, pp. 304–320.

[106] E. Tartaglione, S. Lepsøy, A. Fiandrotti, and G. Francini, “Learning sparse

neural networks via sensitivity-driven regularization,” Advances in neural in-

formation processing systems, vol. 31, 2018.

[107] X. Xu, M. S. Park, and C. Brick, “Hybrid pruning: Thinner sparse networks

for fast inference on edge devices,” arXiv preprint arXiv:1811.00482, 2018.

[108] X. Ding, G. Ding, J. Han, and S. Tang, “Auto-balanced filter pruning for ef-

ficient convolutional neural networks,” in Proceedings of the AAAI Conference

on Artificial Intelligence, vol. 32, no. 1, 2018.

[109] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep neural

networks,” in Proceedings of the IEEE international conference on computer

vision, 2017, pp. 1389–1397.

[110] J. Li, Q. Qi, J. Wang, C. Ge, Y. Li, Z. Yue, and H. Sun, “Oicsr: Out-in-channel

sparsity regularization for compact deep neural networks,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp.

7046–7055.

[111] T. Zhuang, Z. Zhang, Y. Huang, X. Zeng, K. Shuang, and X. Li, “Neuron-level

structured pruning using polarization regularizer,” Advances in neural infor-

mation processing systems, vol. 33, pp. 9865–9877, 2020.

[112] H. Wang, C. Qin, Y. Zhang, and Y. Fu, “Neural pruning via growing regular-

ization,” arXiv preprint arXiv:2012.09243, 2020.

[113] J. Lin, Y. Rao, J. Lu, and J. Zhou, “Runtime neural pruning,” Advances in

neural information processing systems, vol. 30, 2017.

119



[114] X. Ding, G. Ding, Y. Guo, and J. Han, “Centripetal sgd for pruning very

deep convolutional networks with complicated structure,” in Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition, 2019, pp.

4943–4953.

[115] Z. Liu, H. Mu, X. Zhang, Z. Guo, X. Yang, K.-T. Cheng, and J. Sun,

“Metapruning: Meta learning for automatic neural network channel pruning,”

in Proceedings of the IEEE/CVF international conference on computer vision,

2019, pp. 3296–3305.

[116] X. Dong and Y. Yang, “Network pruning via transformable architecture search,”

Advances in Neural Information Processing Systems, vol. 32, 2019.

[117] M. Lin, R. Ji, Y. Zhang, B. Zhang, Y. Wu, and Y. Tian, “Channel pruning via

automatic structure search,” arXiv preprint arXiv:2001.08565, 2020.

[118] S. Guo, Y. Wang, Q. Li, and J. Yan, “Dmcp: Differentiable markov channel

pruning for neural networks,” in Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, 2020, pp. 1539–1547.

[119] N. Liu, X. Ma, Z. Xu, Y. Wang, J. Tang, and J. Ye, “Autocompress: An

automatic dnn structured pruning framework for ultra-high compression rates,”

in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04,

2020, pp. 4876–4883.

[120] Z. Zhan, Y. Gong, P. Zhao, G. Yuan, W. Niu, Y. Wu, T. Zhang, M. Jayaweera,

D. Kaeli, B. Ren et al., “Achieving on-mobile real-time super-resolution with

neural architecture and pruning search,” in Proceedings of the IEEE/CVF In-

ternational Conference on Computer Vision, 2021, pp. 4821–4831.

[121] X. Ning, T. Zhao, W. Li, P. Lei, Y. Wang, and H. Yang, “Dsa: More efficient

budgeted pruning via differentiable sparsity allocation,” in European Conference

on Computer Vision. Springer, 2020, pp. 592–607.

[122] Y. Li, S. Gu, K. Zhang, L. V. Gool, and R. Timofte, “Dhp: Differentiable

meta pruning via hypernetworks,” in European Conference on Computer Vision.

Springer, 2020, pp. 608–624.

[123] T. Li, J. Li, Z. Liu, and C. Zhang, “Few sample knowledge distillation for

efficient network compression,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2020, pp. 14 639–14 647.

120



[124] Y. Li, S. Gu, C. Mayer, L. V. Gool, and R. Timofte, “Group sparsity: The hinge

between filter pruning and decomposition for network compression,” in Proceed-

ings of the IEEE/CVF conference on computer vision and pattern recognition,

2020, pp. 8018–8027.

[125] Y. Li, S. Lin, J. Liu, Q. Ye, M. Wang, F. Chao, F. Yang, J. Ma, Q. Tian, and

R. Ji, “Towards compact cnns via collaborative compression,” in Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2021, pp. 6438–6447.

[126] A. Dubey, M. Chatterjee, and N. Ahuja, “Coreset-based neural network com-

pression,” in Proceedings of the European Conference on Computer Vision

(ECCV), 2018, pp. 454–470.

[127] A. Ashok, N. Rhinehart, F. Beainy, and K. M. Kitani, “N2n learning: Net-

work to network compression via policy gradient reinforcement learning,” arXiv

preprint arXiv:1709.06030, 2017.

[128] K. Yamamoto and K. Maeno, “Pcas: Pruning channels with attention statistics

for deep network compression,” arXiv preprint arXiv:1806.05382, 2018.

[129] Y. Tang, Y. Wang, Y. Xu, D. Tao, C. Xu, C. Xu, and C. Xu, “Scop: Scientific

control for reliable neural network pruning,” Advances in Neural Information

Processing Systems, vol. 33, pp. 10 936–10 947, 2020.

[130] T. Chen, B. Ji, T. Ding, B. Fang, G. Wang, Z. Zhu, L. Liang, Y. Shi, S. Yi,

and X. Tu, “Only train once: A one-shot neural network training and pruning

framework,” Advances in Neural Information Processing Systems, vol. 34, pp.

19 637–19 651, 2021.

[131] B. Li, B. Wu, J. Su, and G. Wang, “Eagleeye: Fast sub-net evaluation for

efficient neural network pruning,” in European conference on computer vision.

Springer, 2020, pp. 639–654.

[132] R. Pahwa, M. G. Arivazhagan, A. Garg, S. Krishnamoorthy, R. Saxena, and

S. Choudhary, “Data-driven compression of convolutional neural networks,”

arXiv preprint arXiv:1911.12740, 2019.

[133] J. Chen, S. Chen, and S. J. Pan, “Storage efficient and dynamic flexible runtime

channel pruning via deep reinforcement learning,” Advances in Neural Informa-

tion Processing Systems, vol. 33, pp. 14 747–14 758, 2020.

121



[134] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “Amc: Automl for model

compression and acceleration on mobile devices,” in Proceedings of the European

conference on computer vision (ECCV), 2018, pp. 784–800.

[135] Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu, J. Huang, and J. Zhu,

“Discrimination-aware channel pruning for deep neural networks,” Advances in

neural information processing systems, vol. 31, 2018.

[136] X. Ding, G. Ding, Y. Guo, J. Han, and C. Yan, “Approximated oracle filter

pruning for destructive cnn width optimization,” in International Conference

on Machine Learning. PMLR, 2019, pp. 1607–1616.

[137] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings

of the IEEE conference on computer vision and pattern recognition, 2018, pp.

7132–7141.

[138] X. Gao, Y. Zhao,  L. Dudziak, R. Mullins, and C.-z. Xu, “Dynamic channel

pruning: Feature boosting and suppression,” arXiv preprint arXiv:1810.05331,

2018.

[139] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz, “Importance estima-

tion for neural network pruning,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2019, pp. 11 264–11 272.

[140] Z. You, K. Yan, J. Ye, M. Ma, and P. Wang, “Gate decorator: Global filter

pruning method for accelerating deep convolutional neural networks,” Advances

in neural information processing systems, vol. 32, 2019.

[141] L. Liebenwein, C. Baykal, H. Lang, D. Feldman, and D. Rus, “Provable filter

pruning for efficient neural networks,” arXiv preprint arXiv:1911.07412, 2019.

[142] Y. He, Y. Ding, P. Liu, L. Zhu, H. Zhang, and Y. Yang, “Learning filter pruning

criteria for deep convolutional neural networks acceleration,” in Proceedings of

the IEEE/CVF conference on computer vision and pattern recognition, 2020,

pp. 2009–2018.

[143] C. M. J. Tan and M. Motani, “Dropnet: Reducing neural network complex-

ity via iterative pruning,” in International Conference on Machine Learning.

PMLR, 2020, pp. 9356–9366.

122



[144] Y. Tang, Y. Wang, Y. Xu, Y. Deng, C. Xu, D. Tao, and C. Xu, “Manifold regu-

larized dynamic network pruning,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2021, pp. 5018–5028.

[145] Z. Wang, C. Li, and X. Wang, “Convolutional neural network pruning with

structural redundancy reduction,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2021, pp. 14 913–14 922.

[146] V. Mnih, N. Heess, A. Graves, and k. kavukcuoglu, “Recurrent models of visual

attention,” in Advances in Neural Information Processing Systems, 2014, pp.

2204–2212.

[147] J. Ba, V. Mnih, and K. Kavukcuoglu, “Multiple object recognition with visual

attention,” arXiv preprint arXiv:1412.7755, 2014.

[148] M. Jaderberg, K. Simonyan, A. Zisserman, and k. kavukcuoglu, “Spatial trans-

former networks,” in Advances in Neural Information Processing Systems, 2015,

pp. 2017–2025.

[149] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, and X. Tang,

“Residual attention network for image classification,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 3156–

3164.
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