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Abstract. The natural lexicographic semigroupoids associated with Cantor product
spaces indexed by countable linear orders are classified. Applications are given to the
classification of triangular operator algebras which are direct limits of upper-triangular
matrix algebras.

0. Introduction
Consider a Cantor space which is presented explicitly as an infinite product of finite
topological spaces. The product presentation provides an equivalence relation R
consisting of the pairs (x,y) of points x and y which disagree in at most finitely
many coordinates. This equivalence relation supports a natural locally compact totally
disconnected topology which makes R a principal groupoid. It is well-known that
in the case of countable products such topological equivalence relations are classified
by the generalised integer obtained from the formal product of the cardinalities of the
component spaces. Furthermore, this classification is closely related to the classification
of C*-algebras that are infinite tensor products of matrix algebras, the so-called UHF
C*-algebras. See, for example, Renault [10] and Power [7].

In the present paper we consider antisymmetric topological binary relations which
are the lexicographic topological subrelations arising from infinite products indexed by
general countable linear orderings. These natural semigroupoids are classified and their
automorphism groups determined. This and related results enable us to give applications
to the classification of triangular operator algebras which are themselves lexicographic
products in an algebraic sense.

The binary relations may also be viewed as the (semigroupoid) lexicographic products
of total orderings on finite sets, and in fact our methods are applicable to lexicographic
products of connected antisymmetric finite partial orders. Although applications to
approximately finite operator algebras provide our primary motivation, it seems clear
that lexicographic subrelations are interesting in their own right.

In § 1 we recall how the generalised integer associated with the presentation of the
Cantor space gives a complete invariant for the associated approximately finite groupoid.
In §2 we classify the lexicographic products in the case of indexing by a countable dense
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order. It is interesting that the proof here is much more elementary than the case of
indexing by Z which is taken up in §3. Indeed, the classification in the former case is
less subtle and suggests, a posteriori, that the component coordinates must be accessible
in purely order-topological terms. The proof in §3 follows the order-topological methods
in Power [8] where automorphisms of the associated triangular algebras were studied.
These algebras—the so-called alternation algebras—have been considered by a number
of authors, namely Poon [6], Hopenwasser and Power [4], and most recently, as part of a
wider analysis, by Donsig and Hopenwasser [3]. Also in §3 we identify the automorphism
group of a lexicographic product over Z. In §4 we obtain the classification for the case
of general countable linear orders and in the last section we give applications to operator
algebras.

1. Preliminaries
Let (JL be a positive integer-valued function defined on a countable linear ordering Q.
For notational convenience we denote the discrete finite topological space { 1 , . . . , n) by
[«]. Associate with \i the Cantor space

where rw = fi(w). Write /?M for the equivalence relation described §0. Let /?M be
the antisymmetric subrelation of points (x,y) e R^, for which x preceeds y in the
lexicographic ordering. Thus (y, x) e R^ if and only if x = (xw) and y = (yw), the
coordinates (xw) and (yw) are equal except in at most a finite number of coordinates,
and yw < xw for the first index w where x and y differ.

The basic open-closed sets for the Cantor space X^ are provided by the cylinder sets
arising from the specification of a finite number of coordinates. The topology on /?M

arises in the following similar way. Let F c £2 be a finite subset, let x'w, y'w be specified
coordinates for w e F, and let

E = {(x, y):xw= yw for w i F, xw = x'w and yw = y'w for w e F}.

The totality of these sets gives a base for the groupoid topology on R^ and the subrelation
Rp carries the relative topology.

Notice that if 717, nr : /?M —> X^ are the natural coordinate projections then n\ and
nr are continuous and are one-to-one when restricted to a basic open-closed set E.
General open-closed sets with this property are called G-sets and these are important
in the following two ways. Firstly they provide a class of sets which are invariant
under groupoid isomorphism, that is, a binary relation isomorphism that is also a
homeomorphism. Secondly they are used in the formulation of invariant measures on
the underlying space. As a consequence groupoid isomorphisms conserve the invariant
measures.

An invariant measure for a principal groupoid R is a Borel measure A. for the
underlying topological space such that X(iTi(G)) — X{nr{G)) for every G-set G. It is a
simple matter to check that /?M possesses a unique invariant probability measure, namely
the infinite product of the probability measures Xw on [rw] which assign equal mass r~x to
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each singleton set. At this stage we can deduce that if R^ is isomorphic to the topological
equivalence relation Rv, associated with v : A ->• N, then the generalised integers for /x
and v agree. Indeed, the hypothesised isomorphism is a bijection a : X^ -*• Xv such
that the map a(2) : R^ -*• Rv is a bijection and a topological isomorphism. Since the
invariant probability measures for R^ and Rv are unique they must correspond under a,
and from this it follows that they have the same range on open-closed sets. Thus the set
of rationals k/r, with i t e Z and r = rWlrW2 • • • rWn for some n e N, coincides with the
corresponding set of rationals for v. Equivalently

as generalised integers.
In the antisymmetric context we shall use the argument given above in a local way

(with various restrictions of R^ in place of R^) to obtain local comparisons of the data
for two given lexicographic binary relations.

For x in X^ the (one-sided) orbit of x is the set O(x) of points y with (y, x) e R^,
and the closed orbit of x is O(x) the closure of this set. Note that if x = (xw) with
xw = 1 for all w < w\ and xw = /x(u>) for all w > w\, for some w\ in £2, then O(x) is
the set of points y = (yw) with yw = 1 for w < w\. This will be indicated by setting
>„,, = 1 and writing

O(x) = (.A..\yWl\..*..).

A similar such shorthand is used in the next section to indicate basic open-closed sets
in Xn. Note that for the particular point x above the restriction R^ | O(x) is isomorphic
to a lexicographic ordering.

2. Countable dense orders
In this section we classify the topological binary relations /?M in the cases when Q is a
dense linear ordering and \i : Si —*• N satisfies n(w) > 2 for all w in Q. There are only
four such linear orderings and these correspond to the presence and absence of maximal
and minimal elements.

THEOREM I. Let H : Q ->• N\{1} and v : £2' ->• N\{1} be functions on the countable
dense linear orderings Q and £2'. Then the lexicographic semigroupoids R^ and Rv

are isomorphic if and only if there is an order bijection n : Q. —> £2' such that
v(n(w)) = fjt-(w) for all w in £2.

Proof. Assume first that £2 and £2' have no minimal elements.
Observe that a point x = (xw) in XM has a closed orbit O(x) which is a proper subset

of X^ if and only if there exists an index of t in £2 such that xw — 1 for all w <t. Indeed,
assume that this does not hold and consider an arbitrary point y in X^. For an index
s e £2, with xs > 1, let zs = (zw) where zw = yw for w < s, zs = xs — 1, and zw — xw

for w > s. If A is a basic open neighbourhood of y then, from the assumption, it follows
that there exists an element zs in A. Since (zs,x) e R^ the observation follows.
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Divide the set of points with proper closed orbit into two types. A point X is of type 1
if there exists a first index w\ such that *„,, / I , and is of type 2 otherwise. We claim
that x is type 1 if and only if O(x) contains a closed orbit O(y) which is a relatively
open-closed proper subset. This property identifies the indexing in order topological
terms and is the basis of the proof.

If x is a type 2 point then there is an order interval decompositions ft = ft] + ft2,
where ft2 has no first element, such that y belongs to the closed orbit of x if and only if
y = (yw) with yw = 1 for w e fti. To see this let ft] be the largest order ideal in ft of
indices w with xw — 1. Thus ft = fti + ft2, where ft2 has no first element and for any
index u in ft2 there is a smaller index v with xv > 1. In particular O{x) contains the set

( . . 1 . . | x B - l | . . * . . ) •

The union of all such sets is dense in the set

O{x) = {..\.. | ..*..)

associated with the decomposition of ft. It follows that O(x) is precisely this latter set,
as required.

A relatively open-closed subset of O{x) contains a basic relatively open-closed
neighbourhood of the form

( . . l . . | . . * ..\Zwi\- * -\Zwi\- * . . , . . . , . . * -\ZwJ- * ••)

with w\ < W2 < • • • < wn. Such a set contains points z = (zw) with z, = 2 for all t
in ft2 with t < w\. Since O(z) = O(x) for such a point it follows that O(x) cannot
contain, properly, a relatively open-closed closed orbit.

We now identify the integers A4 (to) in order-topological terms.
Let E c XM be an intersection of closed orbits of type 2 points which is not itself

a closed orbit of a type 2 point. Then, in view of the description above of the closed
orbits of type 2 points, E has the form

for some q in ft. From this set and the relation R^ we can discover /x(q) in order-
topological terms as follows. There is a unique R^-invariant probability measure, X say,
on the set E(9). The sets

are the only closed orbits contained in £( 9 ) with positive A. measure, and the reciprocal
of the measure of the smallest such set is /i-(^).

Suppose now that a(2) : R^ -*• Rv is a semigroupoid isomorphism implemented by
a : X^ —> Xv. In particular a is a homeomorphism. If p e ft' then write £ ( p ) for
the sets in Xv that are analogous to the subsets £ ( ? ) . Then from the paragraph above
it follows that a{E^q)) = En(q) for some element n{q) in ft'. The map n is an order
isomorphism and from the characterisation of the numbers ii(q) above it follows that
v(it(q)) = /x(q) for all q in ft.
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Suppose, finally, that Q has a minimal element XVQ. Then all points of XM except the
unique maximal point x^^. = (/i,(tu)) have proper closed orbits. Also, the converse is
true. Note that there exist open-closed orbits and a smallest open-closed orbit, namely

Since this set is determined in order-topological terms we can restrict considerations to
this subset of X^ and deduce the theorem in this case from the one already considered. •

3. The case Q = a* +co
A classification is now given for the lexicographic semigroupoids R^ in the case where,
in the standard notation, £2 has order type of + co. This order (integer) type is quite a bit
more subtle than that of the dense orders in that semigroupoid isomorphisms may have
to be effected by homeomorphisms defined in terms of a recoding.

Throughout this section assume that £2 = Z\{0} and that fx, v are maps from £2 to
Z+ with

= rk, (J,(-k) = sk, v(k) = tk, v(-k) = uk.

for k = 1, 2 , . . . . Associate with /x the pair (r, s) of generalised integers

Define an equivalence relation ~ on pairs of generalised (or finite) integers by (r_, s) ~
(f, u) if and only if rs = tu_ and there exist coprime natural numbers a,b such that
£>r = at_ and as_ = bu.

THEOREM 2. Let /z., v : £2 —»• N, with associated pairs of generalised integers (possibly
finite) (r, s) and (if, u) respectively. Then the lexicographic semigroupoids R^ and Rv are
isomorphic if and only if (r, s) ~ (±, u).

Proof. We prove the necessity of the condition for isomorphism. The sufficiency direction
is relatively straightforward and is left to the reader. (See also [4] and [6].)

Let a : X^ —*• Xv be a bijection such that a(2' : R^ —*• Rv is a topological
isomorphism. The inversion map 6 : X^ x XM ->• XM x X^ given by 6{(x, x')) = (x', x)
is an automorphism of the equivalence relation R^, and R^ = /?M U S ( ^ ) . It follows
that a(2) maps R^ homeomorphically onto Rv. In particular, by the discussion in §1, it
follows that the generalised integer for R^ coincides with that for Rv. That is, r s_ = t_u_.

Let XMo Q Xn be the set of points x = (xk) with xk = 1 for sufficiently small k.
If XMo is a proper subset of XM then it is precisely the set of points in XM with proper
closed orbits, and so a(XM>0) = Xv$. The set XM,o contains the special points for which,
in addition, xk = rk for all sufficiently large k. These special points can be characterised
order topologically. Indeed they are precisely the points x for which there exists a point
x+ whose closed orbit O(x+) is the union of {x+} and O(x). These so-called gap points
are discussed in [4] and [7]. Thus, if x« = ( . . . , 1,1, rit r2,...), where the symbol
indicates the coordinate position k = 1, then a{x*) may be written as

( . . . . 1, 1, t o -y+ i , w ; _ ; , . . . , Wj-U Uj,
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for some positive integer j . We have

O(xt) = ( . . . , 1 , 1 , * , * , . . . ) .

and
O(a{x,)) = { ( . . . , 1, w', yJt y j + 1 , ...):w'e Uj, w]}

where yk < w* for k > j , and where w' is any word of length 2y — 2 which preceeds, or
is equal to, the word w = (w-j+\,..., Wj-i). That is, w' belongs to the lexicographic
order interval [ly, w] where 17- is the word with 2j — 2 coordinates all equal to 1. Let
n be the number of words in this order interval and note that the restricted topological
equivalence relation Rv | O(a(x*)) has generalised integer ntjtj+i • • •. Since a induces an
isomorphism between this relation and the topological equivalence relation R^ \ O{xt)
then, once again, by the discussion in §1, we have ntjtj+i • • • = r\r2--, and hence
mr_ = nt_ where m = t\t2- • • tj_\. Although rs_ = tu_ we cannot yet conclude that

Def ine dM : X M i 0 ->• R by

i oo
h Y^iX-k - 1)-S-O-Sl • • • Sk-i,

• / • *

where SQ = 1, and define dv : Xv$ —> R similarly. If x e O(xt) then we can interpret
d^(x) as the measure of O{x) with respect to the unique normalised /?M-invariant Borel
measure on O(x*). Call this measure X^, and note that there is a unique ^-invariant
extension to XKi0 which we also denote by X^.

Because of the uniqueness of normalised invariant measures it follows that Xv oa —
cX^ and dv(a(x)) = cd^x) for some positive constant c. Since <iM(*,) = 1 we have
c — dv(a(x*)). To see that c = n/m note that there are precisely m points in the product
[t]] x • • • x [f/_i]. Thus, from the definition of n and the product measure Xv we see that
Xv(O(a(xt))) = n/m.

We now use the connection dv(a(x)) = cdv(x) to show that us = mu_. We can assume
that s_ and u_ are not finite.

Let n/m = a/b where (a, b) — 1 and suppose, by way of contradiction, that as_ does
not divide bu_. Then, there exists a prime number p and a positive integer g such that

ps | as_, pg~x | bu_, and ps J(bu_.

Choose / large enough so that as\ • • • si = k\p8 for some integer k\. Then

b U\u2- • -ui u'.ui, • • -U'I
'-• = b-

a sxs2---Si p

and
(p, bu\ « 2 •••u',u,+i •••uv) = 1

for all v > /, where « ' , , . . . , u\ are factors of « ] , . . . , « / respectively. Note that by

increasing /, if necessary, and compensating with a multiple of k\, we can arrange that

the product s = s\s2- • -s\ satisfies p~l < 1 — s~x. These numerical relations lead to the

contradiction that oc{E) = Xv where E is the proper open-closed subset

E = \ J ( . . . * . . . , w , . . . * . . . )
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where W is the set of words (s1,,..., s\) which are strictly less than 0 ; , s ( _ i , . . . , S\) in

the lexicographic ordering.

To see this let y be an arbitrary point of Xv and let Fv(y) be the closed set

Fv(y) = { / eXv:y' = (y'k), y'k = yk for k > -v]

for v — 1, 2, The range of dv on Fu(y) n Xy,o is an arithmetic progression, namely,

dv(Fv(y) n X v , 0 ) = { k u x u 2 • • - u v + $ : k e Z+}

where £ = dv(y
+), and where y+ agrees with y in coordinates indexed by Z + and is

equal to 1 in the remaining coordinates.
On the other hand we have

oo

dyXE n Xv,0) = (Jlks, ks + (s- 1)]
k=i

and so
oo

dv(u{E) n XM,0) = |J[cikj, c^i + c{s - 1)].

In particular, since c = a/b, the set du(/
7
l)(;y) n Xv0) meets dv(a(E) n XUi0) if and only

if the sets #„ and A meet, where

*=1

and

By our earlier remarks, and our choice of /, if v > I then Bv contains the set

f bu\u'2.

I
By the coprimality of p and bu[u'2---uv this set contains certain positive integral
translates of the points

- + - , fori = l , . . . , p .
P s

Since p~x < (1 — s~l) it follows that B'v meets the set A. We have thus shown that

dv(Fv(y) n XVi0) n dv(a(E) D Xw,0) ^ 0

and hence, by the openness of a(E), that

4 0, for v= 1,2,. . . .

Since y is the unique point in the intersection of the sets Fv(y), it follows that y e ce(E)
and hence that oc(E) = Xv, the desired contradiction.

We have shown that as_ divides bu. Since aT1 is also an automorphism we conclude
that bu_ divides as and hence that bu_ = as_, and (r, 5) ~ (̂ , M). D
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Remark 1. Note that from the proof above it follows that the restrictions R^ \ X^Q and
Rv | Xv<0 are isomorphic topological binary relatations if and only if R^ and Rv are
isomorphic topological binary relations. We use this fact in the next section.

Remark 2. As we mention later, there is a close association between approximately
finite topological binary relations and approximately finite triangular operator algebras.
The algebras associated with the Z-ordered relations above correspond to the so-
called alternation algebras considered by Hopenwasser and Power [4] and by Poon
[6]. Their classification is also given, as part of a more general study, by Donsig
and Hopenwasser [3]. The argument we give above follows very closely the method
of [8], which was restricted to the case fi = v. (There is an inadequacy in the arithmetic
progression argument of [8] which is corrected in the somewhat more general argument
above.)

Remark 3. In principle it should be possible to reformulate the arguments of Poon [6]
and Donsig and Hopenwasser [3] in terms of binary relations to give alternative proofs
of Theorem 2. The arguments we have given are also suited to other situations and
in particular to the generalised alternation algebras associated with Markov chains and
subshifts. (See [7].) We intend to report more fully on this elsewhere. However, let us
note the following example from [7].

Let R^ be the lexicographic topological binary relation for Q. = Z with the function
ix(w) = 2 for all w. Let R\ (resp. R2) be the topological subrelation defined on the
symbol subspace Xi (resp. X2) of X^ for which the pair 00 (resp. 11) is forbidden.
Then, in contrast to their generated equivalence relations, R\ and R2 are not isomorphic.
Similarly the one-sided subrelations are not isomorphic.

Automorphisms. Fix /i, : £2 —> N as above with lexicographic semigroupoid R^ and
generalised integer pair (r,, s). Let d be the number of primes p such that both r and s_
are divisible by p°°.

THEOREM 3. [8] The semigroupoid automorphism group A«f(/?M) is isomorphic to the
restricted direct product 7Ld.

Proof. An element a(2) e A«f (/?M) is a topological isomorphism induced by a bijection
a : XM -*• XK. By the argument in the proof of Theorem 2, specialized to the case
ix = v, we have

d^aix)) = cd^x)

for x e X^o, where c = a/b with (a, b) = 1, ar_ = br_, and bs_ = as_. Furthermore,
if c = 1 then a is trivial. These conditions imply that a°° and b°° divide r and s_. It
follows that c has the form p\] pe

2
2 • • • pe

k
k where e, e Z and each pi divides r and £ with

infinite multiplicity. The mapping a ->• c gives the desired isomorphism. •

Suppose that p is a prime such that p°° divides r_ and s_. We note one way in which
the order-preserving homeomorphism a corresponding to p~x may be identified.
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Write r_ = pr\pr2prj, • • • and s_ = S\ps2ps^ • • • and obtain the identification

X» = (•••[s2] x [p] x [ j , ] ) x {[p] x [n] x [p] x • • • )

^ x X + .

This is natural ly i somorph ic to

Xx = (•••[p]x[si]x[p])x([ri]x[p]x[r2]x--)
X{x X+

by a map /3 = j6~ x f}+ which respects the factors and which induces the natural
semigroupoid isomorphism R^ —> R^. Let y : X), —> X^ be the right shift
homeomorphism. Then y o ft is an automorphism of X^ and its associated constant
is p~\

4. Countable linear orderings
Let £1 be a countable linear ordering and define an equivalence relation « on £2 such that
IU % D if the order intervals [to, i>] and [i», w] are finite. Then the set £2/ « of equivalence
classes is linearly ordered and each equivalence class (x) is itself a linearly ordered set
which is isomorphic to a finite set or to one of Z + , Z_ and Z. Let fi : £2 —• (2, 3 , . . . } .
Then to each class (JC> we can associate a pair p^Hx)) = (r, s), as in §3, consisting of
finite or generalized integers.

THEOREM 4. Let £2, A be countable linear orderings with maps /x : €1 -*• {2, 3 , . . .} ,
v : A -» {2, 3 , . . .} . Then the lexicographic semigroupoids R^ and Rv are isomorphic
if and only if there is an order preserving bijection it : £1/ & —> A/ & such that

Pn({w)) for all classes (w) in Q/ « .

Proof. As in the proof of Theorem 1, declare a point x = (xw) in X^ to be a type 1
point if there exists a first coordinate w for which xw ^ 1. Once again, as in the proof
of Theorem 1, these points are identifiable in order-topological terms as those for which
the closed (half) orbit O{x) properly contains relatively open-closed closed orbits. If
u>2 > u>\ then say that w\ and w2 are finitely equivalent if there exist type 1 points
x, y with first non-unit coordinates xWl and yW2 respectively such that O(y) has positive
measure with respect to the unique invariant probability Borel measure on O(x).

Note that W] and w2 are finitely equivalent if and only if w\ « w2. In view of
this it follows that if a(2) : R^ ->• Rv is a topological isomorphism induced by the
homeomorphism a then a induces a map n : Q/ ~ —*• A/ s». Indeed, if x is a type 1
point associated with w in Q then a(jt) is a type 1 point associated with u in A and
we may define n({w)) = («). Since the equivalence relation «* coincides with finite
equivalence this is a well-defined bijection.

Fix a class (tu), for some w e fi, and define the set

= |J
where the union is taken over the set T(w) of type 1 points x associated with the class
(w). Then a restricts to a homeomorphism
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By considering the restriction of a(2) to the set

we shall show that the lexicographic semigroupoid R({w), n) associated with the linear
order (w) and the function /x is isomorphic to R(n({w)), v). In view of the result in §3
this will complete the proof.

To this end define the equivalence relation £M on XM((iu)) as the set of pairs (x, y)
for which xu = yu for all u in (w), and similarly define Ev on Xv(n((w))). Thus, the
set of equivalence classes X^w^/E^ is isomorphic to the set

Furthermore, R^ and £M induce a binary relation, R^/E^ say, on the set XM({
That is (x,y) e R^/E^ if and only if there exist*', y'inXM((w» with (x', y') e R,t,x' e
x and y' e y. Also, under the natural identification above R^/E^ is the lexicographic
semigroupoid R((w), /A) on X(w).

In view of these identifications it will be enough to show that the equivalence relation
E^ can be defined in an order-topological fashion and that the restriction of a to XM((u>))
induces a semigroupoid isomorphism from R((w), fi) to R(n((w)), fi).

In §2 we saw that, up to a constant multiplier, the set XM({tt>)) carries a unique
^-invariant measure, A.M say. If x, y e X^dw)) and XM(0(;c)) = A-M(O(y)) then there
are two possibilities; either xu = yu for all u in (w), or xu and yu correspond to 'rational
points' in the sense that the symmetric difference O(x)AO(y) is a singleton, namely [x]
or {y}. It follows that E^ can be defined purely in order-topological terms and hence
that a maps the is^-equivalence classes to £u-equivalence classes.

Since the given map a : XM -*• Xv is continuous and since the basic open-closed
sets of X^ and XH generate the topology of X^ and XM, respectively, it follows that the
induced map

a,- : XM((u;»/£M -+ Xv(n((w)))/Ev

is bicontinuous. Indeed a maps an ^-saturated basic open-closed set to an £y-saturated
open-closed set and this is necessarily a finite union of £p-saturated basic open-closed
sets. Similarly, it follows that aj2) induces a semigroupoid isomorphism from R((w), /x)
to R(n({w)), fi). a

The arguments given above and in the previous section are also effective in the
setting of infinite lexicographic products of partially ordered sets. This is illustrated in
the following theorem in the case £1 = Q for which the proof in §2 is applicable with
little change.

For each rational q e Q let <q be a connected partial ordering on the finite set
{I,..., fi(q)}. Then the product space XM carries a natural semigroupoid

R = R({<q: q e Q}),

which is the subset of R^ associated with the given partial orderings. That is, (x, y) e R
if and only if (x, y) e R^ and xWo <q yWo for the smallest index wQ such that xw ^ yw.
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THEOREM 5. The semigroupoids R{{<q: q € Q}) and R({<q: q e Q}) are isomorphic if
and only if there is an order bijection n : Q —*• Q such that the partial orderings <q and
<n(q) are isomorphic for all q 6 Q.

5. Applications to operator algebras
The operator algebra Tn is the subalgebra of the complex matrix algebra Mn consisting
of upper-triangular complex matrices and endowed with the usual operator norm. These
algebras A are triangular in the sense that A C\ A* is a maximal abelian self-adjoint
subalgebra. Recently there has been considerable interest in classifying the many diverse
families of triangular operator algebras arising as direct limits of these finite-dimensional
algebras and their direct sums (see [7]). These algebras can also be viewed as triangular
subalgebras of groupoid C*-algebras (see Renault [10] or Muhly and Solel [5]).

The following construction is given in [9].
Let £l,fj, be as above, with nw = fi{w). Let F c £2 be a finite subset, say

u>\ < u>2 < • • • < wit.-* a nd let w, < w < wt+\, for some t. Set G = F U {w},
nf = nWlnW2 • • • nWk, and « c = n^np. Define a unital algebra injection 4>F,G '• TnF -*• Tnc

as follows. View TnF as the (maximal triangular) subalgebra of Mnw <S> • • • <3) Mnw which

is spanned by the matrix units

where the multi-index i = (i\,..., i*) precedes j = ( j i , . . . , jk) in the lexicographic

ordering. Thus either i = j or the first ip differing from j p is strictly less than j p .

Similarly identify Tna for the ordered subset G and set cj>Fa to be the linear extension

of the correspondence

. v = l

In a similar way, or by composing maps of the above type, define 4>F,G f°r F c G,
general finite subsets. These maps are isometric and so determine the Banach algebra

TnF,

where the direct limit is taken over the directed set T of finite subsets of Q. Each 4>F,G

has an extension to a C*-algebra injection from MnF to Mnc and so it follows that we may
view A(Q, v) as a closed unital subalgebra of the UHF C*-algebra fi(fi, v) = UmMnF.

THEOREM 6. The following statements are equivalent.
(i) A(Q, /A) and A(A, v) are isometrically isomorphic Banach algebras.
(ii) /?M and Rv are isomorphic lexicographic semigroupoids.
(iii) There is an order preserving bijection n : Q/ ^—>• A/ « such that

for all classes (w) in £1/
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Proof. The semigroupoids are readily identifiable with the topological fundamental
relations of the operator algebras. (See, for example, the discussions of [4] and [7].) The
equivalence of (i) and (ii) is now immediate from Theorem 7.5 of [7] and so Theorem 4
completes the equivalences. •

An immediate corollary of the last theorem is that there are uncountably many
triangular algebras A of the form A (ft, /z) with C*{A) equal to the 2°° UHF C*-
algebra. On the other hand there are only three such (infinite-dimensional) algebras
of the form A(Z, p.), namely the pure refinement algebra, the standard limit algebra and
the alternation algebra with invariant (2°°, 200). We remark that if ft fails to have a first
element then the operator algebras A (ft, n) have trivial Jacobson radical (see [2] and
[9]).

We now explain how the algebras above can also be interpreted in term of a
lexicographic product operation at the algebraic level, as described in [9].

Let A be an operator algebra admitting a subdiagonal decomposition in the sense that

A = A n A* + A0,

where AHA* is a maximal abelian subalgebra of A , and A0 is the kernel of a contractive
homomorphism A -»• A D A*. In particular, this holds if A is a regular triangular
subalgebra of an AF C*-algebra ([7] or, more generally, if A is a subdiagonal algebra
in the sense of Arveson [1]). If A and B are triangular operator algebras admitting such
decompositions then define their lexicographic product A • B to be the closed subalgebra
of the injective tensor product C*{A) <g> C"{B) given by

A • B = (A n A*) ® B + A0 <g> C*(B).

One can verify that the inclusions 4>F,G defined above coincide with the natural
inclusions

• • • • • Tnwi • Tnw * Tnwi+i * - - - * T n
wt.

In fact the lexicographic product is an associative operation and the algebras A (ft, fi) can
be viewed (unambiguously) as infinite lexicographic products of upper-triangular matrix
algebras over the ordering ft. The following theorem is a corollary of Theorem 5.

THEOREM 7. Let Gq and Hq for q in Q be connected transitive antisymmetric digraphs
with triangular digraph algebras A{Gq) and A(Hq). Then the lexicographic products

\\*A{Gq) and f]*A(fl',)
96«2 qeQ

are isometrically isomorphic triangular operator algebras if and only if there is an order
bijection n such that the digraphs Gq and Hn(q) are isomorphic for all rationals q.
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