
Math. Proc. Camb. Phil. Soc. (1996), 120, 697 6 9 7

Printed in Great Britain

2-convexity and 2-concavity in Schatten ideals

BY G. J. 0 . JAMESON

Department of Mathematics and Statistics, Lancaster University, Lancaster LAI iYF

(Received 7 August 1995)

Introduction

The properties p-convexity and g-concavity are fundamental in the study of
Banach sequence spaces (see [L-TzII]), and in recent years have been shown to be
of great significance in the theory of the corresponding Schatten ideals ([G-TJ], [LP-
P] and many other papers). In particular, the notions 2-convex and 2-concave are
meaningful in Schatten ideals. It seems to have been noted only recently [LP-P] that
a Schatten ideal has either of these properties if the underlying sequence space has.
One way of establishing this is to use the fact that if (E, || ||B) is 2-convex, then there
is another Banach sequence space (F, \\ \\F) such that ||a;||| = ||a;2||F for all xeE. The
2-concave case can then be deduced using duality, though this raises some
difficulties, for example when E is inseparable.

In this note, we present an alternative approach which proceeds directly from the
Markus-Mityagin lemma in the spirit of [GK] and [Si], by way of a quadratic
variant of the well-known Ky Fan Lemma. As well as being (arguably) a natural
route to the result just stated, this approach also delivers a theorem characterizing
the norm of an operator A as the supremum (in the 2-convex case) or the infimum
(in the 2-concave case) of the norms (in E) of the sequences (||^4eJ) for orthonormal
bases (e )̂.

Notation and definitions

We denote by x( j) the j th term of a numerical sequence x, and by et the j th unit
vector. For sequences x, y, the product xy and the modulus \x\ are defined pointwise
in the obvious way. We write Pn for the operator (on any sequence space) that
replaces all terms after the first n by 0, so that Pn(x) = Ijf=1x(j)e}. By a symmetric
Banach sequence space we mean a Banach lattice (E, \\ \\ E) of real null sequences with
a symmetric norm satisfying further:

(i) e^eE and | | e j £ = 1 for all j ,
(ii) IMI* = l im^r o \\Pn(x)\\E for all xeE.

(We do not exclude the case where E is finite-dimensional.)
Let (H, || ||) be a separable Hilbert space (of finite or infinite dimension). For a

compact operator A on H, let Sj(A)(j = 1,2,...) be the singular numbers of A. We
denote by SE(H) the Schatten ideal corresponding to the Banach sequence space E,
with norm o~E defined by o-E(A) = \\(s}(A))\\E.

Let A1 An be self-adjoint elements ofSE{H), and let Ao = (Lf^Aj)1'2. Then Ao

eSE(H) (this is most easily seen by considering the operator on / / " with first column
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AY,... ,An, cf. [LP-P]). Hence one can define (as for sequences spaces) SE(H) to be 2-
convex if for all such Ax,..., An, we have for some M

1/2

tf-1
and 2-concave if we have

\l/2(i * (A ).Y
The least such constant M is, respectively, the 2-convexity or 2-concavity constant
of SE(H). We say that E, or SE(H), is strictly 2-convex or 2-concave if the constant
is 1. Note that in the above definition it is clearly sufficient to consider positive
operators Ay

The results

We will use the two following well-known theorems.

PROPOSITION 1. Let A be compact, and let (et), (ft) be any two orthonormal sets. Then
for each n,

(i) £l<^,/i>l<S«^),

(ii) Simil'^S^)2-

Statement (i) is essentially [GK, II-4-1]; it also follows in elegant style from [Si,
propositions I ' l l and 1-12], although it is not stated explicitly there. Statement (ii)
follows by applying (i) to A*A.

For the next result, we denote by Dn the dyadic group { — 1,1}". Elements of
Dn belong to Un, so act on Un by multiplication. Also, if neSn, the group
of permutations of {1,2,.. . , n) and xe Un, then xn is the element of U" defined by

*n(j) = ^IXJ)]-

PROPOSITION 2. Let x,y be decreasing, non-negative members of R". Define X(k) =
"5->f-ixU)> ana" Y(k) similarly. Suppose that X(k) < Y(k) for each k. Then

y € conv {exn: e e Dn, n e Sn}.

If, further, X(n) = Y(n), then
yeconv{xn:neSn}.

Proof. The first statement is the standard Markus-Mityagin lemma (see, for
example, [GK, 111-3]). The second statement is surely well known: it is stated
without proof in [Sch, lemma 4-2], where it is observed that something like it already
appears in [HLP]. For completeness, we mention how the proof of [GK] can be
adapted for this case. Suppose the statement is false. Then there is a linear functional
<f> such that <j)(y) > <j)(xn) for all neSn. Let <f>(u) = SjLiffl^O')- Since X(n) = Y(n), we
can add a constant c to each ajt and hence we may assume that ai ̂  0 for each j . The
proof now proceeds as before, but without the need for terms e}e{— 1,1} to convert
negative a^'s to \a^\.
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We deduce a quadratic variant of the Ky Fan lemma.

PROPOSITION 3. Let E beaBanach sequence space. Let x, y be decreasing, non-negative
null sequences such that 2*_!2/0)2 < 2*=1 x(j)2 for all k. Then:

(i) if E is strictly 2-convex and xeE, then yeE and \\y\\E ^ \\x\\E;
(ii) if E is strictly 2-concave, yeE and also H^yij)2 = Tif^x^j)2, then xeE and

Proof. It is clearly enough to prove both statements for finitely non-zero sequences
x, y: the statement is then obtained by considering limits (with a small adjustment
to the nth term to ensure the required equality in case (ii)).

(i) By the first statement in Proposition 2, there exist rearrangements zr of x (for
1 ^ r < -R, say), Ar > 0 and ereDn such that 2f=1 Ar = 1 and y2 = Sf_x Xrerz

2
T, hence

y2 < Sf_xAr2r- By 2-convexity and the fact that ||zr||£ = \x\E for each r, we have

2 J ^r \\ZT\\E
r-1

(ii) By the second statement in Proposition 2, there exist zr and Ar > 0 such that
2f_jAr = 1 and y2 = H^_1Arz

2. 2-concavity gives the stated inequality.

LEMMA 1. If the Banach sequence space E is strictly 2-concave, then E is contained in
l2 and \\x\\2 ^ ||*||£ for all xeE.

Proof. Take xeE. Since (E, || \\E) is a Banach lattice, ||-Pn£||£ < \\%\\E f°r ©ach n.
Write x} = x(j)e}. Then (Pnx)2 = SjLi^O')2^ = Y^_xx

2, so by 2-concavity,

j i E n \
j-\ 1-1

The statement follows.
In the same way, if E is 2-convex, then E contains l2 and \\x\\E < \\x\\2.
It is now easy to characterize the Schatten ideal norm of an operator in the way

stated in the introduction. The following result is well known for the classical ideals
Sp(H) given by E = lp (see, for example, [GK], p. 95).

THEOREM 1. Let A be an element of SE(H).
(i) If E is strictly 2-convex, then for any orthonormal set (e^),

(ii) If E is strictly 2-concave, then for any orthonormal basis (e}),

whenever the right-hand side is finite.
In both cases, equality occurs for the (et) appearing in the spectral representation of A.

Proof. We maj' assume that (ê ) is ordered so that (||vlej) is decreasing. Statement
(i) follows at once from Proposition 1 (ii) and Proposition 3(i). If E is 2-concave, then
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by Lemma 1, E^l2, so AeS2(B) (the Hilbert^Schmidt operators) and for any
orthonormal basis (e;),

Proposition 3(ii) now gives statement (ii).
We remark that elementary examples (e.g. with E = lx) show that the right-hand

side in statement (ii) is not always finite.
A further application of 2-convexity or 2-concavity now yields the result stated at

the beginning.

THEOREM 2. If E is strictly 2-convex or 2-concave, then so is SE(H).

Proof. Let A±,... ,An be positive elements of SE(H), and let A = (IJ^A2)112. Let
the spectral representation of A be H^fij e} ® ep so that /i} = s}{A) and Ae} = fi} e},
hence

/if = <A%,ejy = S (A\epe^ = i \\Ate}\\
2.

Define scalar sequences a, at by:

at(j) =

Then a2 = S"_iaf and ||a||£ = (TE(A).
If E is 2-convex, then | |a | | | < 2"_x \\af\\\ and Theorem 1 (i) gives \\at\\E

hence

as required. If E is 2-concave, the same applies with both inequalities reversed.
2-convexity and 2-concavity constants. There are plenty of examples of Banach

sequence spaces that are 2-convex or 2-concave, but not with constant 1, for
example: (i) finite-dimensional spaces in general, (ii) certain Lorentz sequence spaces
(see [R], [J]). If E has 2-convexity or 2-concavity constant J f (+ 1), then clearly
Proposition 3 and Theorem 1 hold with the constantM inserted. Owing to the second
use of 2-convexity or 2-concavity in Theorem 2, the above method requires the
insertion of M2 in this Theorem. Actually, SE{H) has the same 2-convexity or 2-
concavity constant as E. To show this, we amend the method as follows. With
a(j) = Sj(A) as above, Proposition 1 gives

t)*S «(i)2 = S S l l^l i 2 ^ S s Sj(At

Write bt(j) = Sj(A(). The stated result is now given by the following variant of
Proposition 3:

PROPOSITION 4. Let E be a Banach sequence space. Let a,b1,... ,bn be decreasing
non-negative sequences belonging to E, and let b2 = S f . j b\. Suppose that 2J*LJ a(j)2 <
I,*=1b(j)2 for all k. Then:

(i) if E has 2-convexity constant M, then \\a\\\ ^M2^^ \\bt\\%;
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(ii) if E has 2-concavity constant M and also 2 ^ a(j)2 = 2 ^ b(j)2, then

l
Proof. Again it is enough to consider the finite-dimensional case. As in Proposition

3, there exist Ar > 0 (for r = 1,... ,R) and nreSn such that Xf^A,. = 1 and

r-1 r-1 i - 1

with the ̂  replaced by equality in case (ii). Both statements now follow.
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