
Abstract— Intelligent transportation systems (ITS) with
surveillance cameras capture traffic images or videos. However,
images or videos in ITS often encounter blurs due to various rea-
sons. Considering resource limitations, although recent technolo-
gies make progress in image-deblurring, there are still challenges
in applying image-deblurring models in practical transportation
systems: the model size and the running time. This work proposes
an artful variant-depth network (VDN) to address the challenges.
We design variant-depth sub-networks in a coarse-to-fine manner
to improve the deblurring effect. We also adopt a new connection
namely stack connection to connect all sub-networks to reduce the
running time and model size while maintaining high deblurring
quality. We evaluate the proposed VDN with the state-of-the-
art (SOTA) methods on several typical datasets. Results on Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity Index
Measure (SSIM) show that the VDN outperforms SOTA image-
deblurring methods. Furthermore, the VDN also has the shortest
running time and the smallest model size.

Index Terms— Intelligent transportation systems (ITS), traffic
image processing, image deblurring, variant-depth neural
networks.

I. INTRODUCTION

THERE are growing interests in intelligent transportation
systems (ITS), which play an important role in fostering

smart cities and industrial systems [1], [2], [3]. Meanwhile,
the recent advances in the Internet of Things, surveillance
cameras, artificial i ntelligence, a nd 5 G c ommunications have
also promoted the development of ITS and connected
vehicles [4], [5]. Take surveillance cameras as an example.
Various surveillance cameras, e.g., traffic e nforcement cam-
eras, bayonet cameras, skynet monitoring cameras, have been
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Fig. 1. Image-deblurring scenarios in intelligent transportation systems:
(I) license-plate recognition, (II) traffic-accident identification, (III) traffic-sign
recognition.

widely applied in many scenarios in ITS, such as recognizing
license plates of vehicles, tracing the trajectory of vehicles,
identifying traffic signs, monitoring lanes, and detecting
vehicles [6], [7], [8]. After analyzing images and videos
collected by cameras via computer vision and deep learning
algorithms, traffic characteristics (e.g., density, trajectory, and
the speed of vehicles) can be extracted so that intelligent
decisions can be made at vehicles or at ITS.

However, images and videos taken by the cameras often
encounter blurs due to complex conditions such as vehicles
moving, shaking cameras, or adverse weather conditions (e.g.,
fog, rain, and snow) [9], [10]. Blurry images are harmful to
the development of ITS and autonomous vehicles. Take Fig. 1
as an example. In Scenario I, it is necessary to recognize
the license plate of a vehicle in a parking management
system while the blurry image of a license plate (due to the
movement of a vehicle) often causes difficulty in obtaining
accurate information about the vehicle. Scenario II shows that
it is important to capture and identify images of vehicles or
pedestrians in traffic accidents. However, the images taken by
the camera are also blurry owing to multiple complex factors
such as moving objects and shaking cameras. Scenario III
depicts that autonomous vehicles need to recognize traffic
signs while the blurry images often lead to challenges in
traffic-sign recognition especially when the vehicle is moving
at a high speed.

There are a line of researches on image deblurring. For
example, conventional image-deblurring methods such as blind
deblurring and non-blind deblurring approaches demonstrate
excellent performance [11], [12], [13] while they often suffer
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from huge time consumption. As a result, they may not
be feasible in ITS which has high real-time requirements.
Although recent advances of convolutional neural networks
(CNNs) utilized for image-deblurring [14], [15], [16], [17],
[18], [19], [20] also show the superior performance while
most of them still require a substantial running time and a
large model size. Most of the SOTA image-deblurring models
suffer from bulky model size and high running time.

In this paper, we propose a new variant-depth sub-network
(namely VDN) for image deblurring in ITS. The proposed
VDN model can well address the above challenges owning to
the following characteristics.

A. Variant Depth

The VDN leverages several variant-depth sub-networks
to achieve the coarse-to-fine deblurring effect. Particularly,
the VDN uses the varied convolution kernels and different
numbers of Residual Blocks (ResBlocks) in these sub-
networks to process different-level deblurring information.
In other words, the shallow sub-network processes the coarse
deblurring features and the deep sub-network processes the
fine-grained deblurring features. Therefore, these different
depth sub-networks are concatenated together to make
full use of the deblurring information. This design of
variant-depth sub-networks can improve the image-deblurring
effect.

B. Stack Connection

We name the concatenation among all sub-networks as
Stack Connection. Inspired by the dense connection in the
work of [21], we design this connection that connects each
sub-network to every other sub-network in a feed-forward
fashion. In order to simplify the whole network, we set
the channel number of the output of the input layer of
each sub-network uniformly. Since each sub-network has a
direct connection, the vanishing-gradient problem is alleviated,
and the deblurring information propagation is enhanced and
reused. In particular, Stack connection connecting the sub-
network exploits deblurring information from every sub-
network to improve the quality of deblurred images.

C. No Image Pre-Processing Procedure Required

Since the VDN feeds in the original blurry image at each
sub-network, the network has no need to slice an input image
into multiple patches or transform the image into multi-
scale inputs. Consequently, the VDN model achieves the
outstanding coarse-to-fine image-deblurring effect. No image
pre-processing procedure makes the VDN succinct and
suitable for ITS applications.

We highlight the major contributions as follows.
• We present a new coarse-to-fine image-deblurring model

composed of variant-depth sub-networks to accomplish
deblurring traffic images. This new variant-depth network
makes the deblurring model more compact and more
effective than SOTA methods. The experiment results
indicate the proposed coarse-to-fine deblurring model

outperforms SOTA methods in terms of deblurring effect,
running time, and model size.

• We design stack connections to connect sub-networks
so as to effectively reduce the running time and model
size by reusing information flows across different sub-
networks. Both the small model size and short running
time benefit ITS applications.

• The overall architecture is concise and effective due to the
artful design and no image pre-processing procedure. This
advantage makes the VDN feasible in ITS applications.

• The experiments demonstrate that the VDN model
outperforms SOTA methods in terms of PSNR (31.17)
and SSIM (0.9453) with the smallest model size and the
shortest running time.

We organize the rest of the paper as follows. We briefly
introduce related work in Section II. We then explain the
detailed method of the proposed VDN model for image
deblurring in ITS in Section III. Experimental results are
shown in Section IV to demonstrate the effectiveness and
advantages of the proposed approach. In the end, a conclusion
on the proposed method and a discussion about the possible
future directions are presented in Section VI.

II. RELATED WORK

This section briefly surveys the related studies on
image/video surveillance in ITS and image-deblurring
approaches.

A. Video-Surveillance in Its

Video-surveillance systems have been widely used in urban
ITS. Diverse video cameras are deployed at transportation
infrastructures to obtain images or videos for further
analysis [22]. The images and videos obtained in intelligent
surveillance systems can be used for analyzing pedestrian
behaviors [23], [24], [25], vehicle-trajectory prediction [26],
the road safety [27], real-time traffic surveillance [28], urban
traffic congestion [29] and reasoning as well as decision-
making [30]. Moreover, the analysis of images and videos is
also important in parking management systems [31], [32]. It is
critical to obtain the sharp images or videos for lane or road
recognition for autonomous vehicles and parking management
systems. However, the transmitted images or videos often
encounter blurry owing to many reasons, e.g., bad weathers
(fog, rainy, and snowy) and the moving objects [10], [33].

B. Conventional Image Deblurring

There are a number of studies on deblurring images.
Conventional image-deblurring methods can be categorized
into blind deblurring and non-blind deblurring approaches.
Blind-deblurring methods that are often based on the
unknown blur kernels try to estimate sharp latent images
and blur kernels. Non-blind deblurring methods are based
on the spatial-invariance deblurring kernel. The authors
in [12] propose a unified probabilistic model of both
blind and non-blind deconvolution to separate the errors
that arise during image-noise estimation and blur-kernel



Fig. 2. The VDN consists of four variant-depth sub-networks in Fig. 2(a).
The dotted frame denotes the sub-network. The sub-networks are built
by different depths of encoders and decoders. The VDN connects all the
sub-networks by Stack Connection. Two adjacent sub-networks are connected
by concatenations noted by a solid line with a hollow arrow. At the same
time, outputs of the shallower sub-networks are also fed into the deeper
sub-networks. Fig. 2(b) depicts the structure of the encoder and the decoder.

estimation. As indicated in [11], the blur kernels can be
recovered by using transparency maps to get cues for
object motion and performing blind-deconvolution with a
prior on the alpha matte. But these methods cannot avoid
using complex parameters. Considering the camera rotation-
motion during exposure, the authors in [13] present a
parameterized geometric model of the blurring process. They
explain the spatially-varying blur according to the motion
of 3-Dimensional (3D) rotational camera. Another similar
framework is proposed in [34], in which the authors present
a Motion Density Function for single image deblurring to
estimate spatially non-uniform blur caused by camera shake.
Despite the excellent performance on deblurring, their model
is pretty time-consuming.

C. CNN-Based Image Deblurring

Recently, the research interests in utilizing deep CNNs
to the image or video deblurring issues are increasing,
where “deep” means multiple CNN layers [35], [36]. It is
shown in [14], [15], [16], [17], [18], [19], [37], and [20]
that deep CNNs can achieve superior performance in image
deblurring than conventional methods. One of recent important
breakthroughs in deep networks is the deep residual networks
proposed in [37]. Many evolved models based on deep residual
networks have been widely devised and applied in many
fields of computer vision and image processing, including
object detection, image segmentation, image deblurring, and
single-image super-resolution. The work of [38] stacks several
residual units in their network as the feature mapping
to achieve enhanced reconstruction. With respect to image
deblurring, several recent studies devise image-deblurring
methods based on deep residual networks. In particular, the
authors in [15] use a small end-to-end regression block to
build a deep network. Their model consisting of an auto-
encoder and a generative network can remove the space-
invariant and space-variant blur caused by camera motion.
Meanwhile, a deep multi-scale CNN is devised in [16] to
remove non-uniform blur for the realistic blurry images.
In their model, a multi-scale loss function is designed to
mimic the convolutional coarse-to-fine method to enhance
convergence. Moreover, a simplified building block (namely

Fig. 3. Each sub-network of VDN consists of an encoder and a decoder,
as shown in Fig. 3(a). In the encoder, there are 3 convolution layers (Conv.)
and multiple variant modules. As shown in Fig. 3(b), each variant model
consists of n ResBlocks, where n can be adjustable to fulfill different levels
of feature processing. Fig. 3(c) shows the internal structure of a ResBlock.
The decoder is a sandwiched structure consisting of two deconvolution layers
(Deconv.), two variant modules and a convolution layer.

ResBlock) is devised to boost the convergence speed at
training time. However, there are too many ResBlocks stacked
between two convolution layers, thereby leading to a quite
deep network, through which some important features are lost.

D. RNN-Based Image Deblurring

Besides deep CNNs, Recurrent Neural Networks (RNNs)
also show their merits in sequential-information processing.
Recently, RNNs are becoming an effective tool for image
deblurring [17], [39]. In [17], the authors simplify the
network structure presented in prior work [16] and propose
a Scale-Recurrent Network (SRN) which can reduce training
parameters. SRN can reduce the training difficulty and improve
network stability through sharing network weights across
scales in the network. Moreover, Convolutional Long Short-
Term Memory cells are used to aggregate feature maps from
coarse-to-fine scales. Later, the authors in [39] use RNNs for
video deblurring. They propose to improve the accuracy of
recurrent models by adapting the hidden states transferred
from past frames to the current frame being processed.

E. GAN-Based Image Deblurring

Recently, Generative Adversarial Networks (GANs) which
show their advantages in preserving texture details and
generating photo-realistic images [40], [41] have also been
employed in image deblurring or dehazing [42], [43], [44].
In particular, the work [42] presents DeblurGAN based on
GAN to image deblurring via restoring perceptually pleasing
and sharp images, from both synthetic and real-world blurry
images. On the basis of DeblurGAN, the authors in [43] devise
an improved version of motion deblurring. GANs have
also been utilized in image dehazing proposed by authors
in [44]. In their work, the generator network is designed in
dense connection combined with fine-scale and coarse-scale
information.

Although existing approaches have made great progress in
image deblurring, there still exist several challenges: 1) input
images have to be transformed to achieve different levels
of deblurring effects ascribed to the same sub-networks in
their models, which usually leads to unsatisfactory deblurring
effects for some kind blurry images; 2) expensive running
times are required for the state-of-art deblurring models; 3) the
model sizes are bulky due to complex models. All the above
three challenges lead to the difficulty of widely deploying
image/video surveillance systems in ITS.



III. IMAGE DEBLURRING MODEL FOR ITS

This section presents the technical details about the VDN
model which can be applied in ITS. Section III-A first
overviews the VDN, and Section III-B then presents the details
of the VDN. Section III-C next introduces the loss functions
and Section III-D investigates the variant-depth effects.

A. Overview of Variant-Depth Method

We present the proposed VDN for image deblurring applied
in ITS. Inspired by the coarse-to-fine concept, we design
the VND with a multi-level network to achieve the coarse-
to-fine deblurring effect. In particular, the VDN model is
built with four sub-networks, each becoming deeper from the
first (the shallowest) sub-network to the fourth (the deepest)
one. In this artful design, the shallow sub-network processes
coarse features while the deep sub-network processes fine-
grained features. Different from multi-scale networks [16],
scale-recurrent networks [17], and hierarchical multi-patch
networks [45], the proposed network has no pre-processing
procedure, e.g., multi-scale transformation or multi-patch
fragmenting for the original inputs. As a result, the proposed
model can preserve main features of the original input
images at each sub-network. To improve the effectiveness
of the coarse-to-fine method, the VDN artfully uses a Stack
Connection to connect sub-networks. This connection allows
a deeper sub-network continuously utilize the processed
information from a shallower sub-network. In other words,
the deblurring information flows are reused effectively.
Furthermore, this connection will not significantly increase the
number of parameters and running time. Thus, the VDN not
only has a small model size and short computing time, but
also outputs high-quality deblurring images. These advantages
make the VDN be suitable for ITS.

In summary, there are three important novelties in the
proposed VDN different from recent studies. First, the VDN
is simpler than others owing to the depth of the whole
network being shallower than others. Meanwhile, the VDN has
no requirement for image-pre-processing (unlike multi-scale
and multi-patch methods, which require partitioning images
into patches or downscaling images). In other words, the
VDN uses a simple and effective framework to address a
complicated motion deblurring task. Second, the VDN has
variant modules in each sub-network to control the depth of
each sub-network so as to progressively enhance the deblurring
effect with the increased depth of the sub-networks. Third, the
VDN connects all its sub-network with stack connections. The
stack connection can make the deeper sub-networks reuse the
deblurring information of the shallower sub-networks so as to
improve the deblurring effect progressively. As a result, the
deblurred image is sharply close to the ground truth.

Fig. 2(a) depicts the concise architecture of the proposed
ITS image deblurring model, VDN. It consists of the encoder-
and-decoder structure in each sub-network (i.e., the red and
blue blocks denote the encoder and the decoder, respectively)
sandwiching a representation mapper (i.e., the purple block).
The depth of each encoder and each decoder is different in
each sub-network. Therefore, the depths of all sub-networks

are becoming deeper from the first sub-network (i.e., the
shallowest) to the fourth one (i.e., the deepest). Fig. 2(b)
depicts the detailed structure of the sub-network. The encoder
contains three convolutional layers staggering two variant
modules. The representation mapper is a variant module. The
decoder consists of two pairs of staggered deconvolutional
layers and variant modules followed by a convolutional layer.
The variant module (explained in Section III-B.1) consists
of ResBlocks. The number of ResBlocks in each variant
module is adjustable, thereby the depth of each sub-network
controllable. The VDN connects all the sub-networks by the
Stack Connection. Two adjacent sub-networks are connected
by concatenations denoted as the solid line with a hollow
arrow in Fig. 2(a). At the same time, outputs of the shallower
sub-networks are also fed into the deeper sub-networks.
Thus, the deblurring information of each sub-network is
effectively reused without significantly increasing parameters.
The deepest sub-network gains enough deblurring information
to ensure the output vehicle image is quite close to the sharp
vehicle image.

B. VDN Details

1) Encoder and Decoder: We build the sub-network with an
encoder-decoder structure indicated in Fig. 3(a). The encoder
contains three pairs of staggered convolutional layers and
variant modules. The decoder consists of a convolutional layer
and two pairs of staggered deconvolutional layers with variant
modules. The details of a variant module are exhibited in
Fig. 3(b). As a core component of VDN, each variant module
contains n ResBlocks. And n is adjustable to achieve different
levels of processing the deblurring features. When the value
of n is increasing, the depth of the sub-network is growing.
The shallow sub-network processes the coarse features and
the deep sub-network processes the fine features. In other
words, the processed deblurring features are delivered from
the shallowest sub-network to the deepest sub-network in an
accumulative form to achieve coarse-to-fine deblurring effect.
In this coarse-to-fine manner, the VDN gets the restored sharp
vehicle or traffic images. Fig. 3(c) expresses the detailed
structure of the ResBlock used in the proposed variant module.

In a variant module consisting of n ResBlocks, let xm
and ym denote the input and output of the m-th ResBlock,
respectively (where m = 1, . . . , n). Let w1

m and b1
m denote the

weight and the bias of the first layer in the m-th ResBlock,
respectively. For the second layer in the m-th ResBlock, let
w2

m and b2
m denote its weight and bias, respectively. Thus, the

output of the m-th ResBlock is shown as follow,

ym = xm + w2
mG(w1

m xm + b1
m) + b2

m, (1)

where G is an activation function (we choose the rectified
linear unit (ReLU) as the activation function).

The input of the (m + 1)-th ResBlock is the output of
the m-th ResBlock, i.e., xm+1 = ym . Deriving this principle
recursively, the relationship between the m-th ResBlock’s
output and the l-th ResBlock’s input is expressed as

xm+1 = xl +

m∑
i=l

(w2
i G(w1

i xi + b1
i ) + b2

i ). (2)



We then derive the difference value (D-value) between the
input and output of n ResBlocks. Let Rm denote the residual
function of the m-th ResBlock. In particular, the D-value is
equal to the sum of outputs of all previous residual function.
Then the D-value from the input (the first ResBlock) to the
output (the last ResBlock) is written as follows,

yn − x1 =

n∑
i=1

Ri (xi ). (3)

The higher value of n increases the order of residual
mapping function

∑n
i=1Ri (xi ). The higher-order function

with a more complex representation capability is easier to
optimize.

The proposed VDN model uses the variant module to
accomplish the coarse-to-fine deblurring effect. In the same
sub-network of the VDN, n of the variant module has the same
value to achieve the same-level nonlinear transformation. The
increased depths of the sub-networks increase n.

2) Stack Connection: Each depth-variant sub-network is
stack-connected with another sub-network. Such connection is
named as Stack Connection. Each sub-network is essentially
a variant of the basic model of VDN as described in
Section III-B.1 with the output fed into another sub-network.
Therefore, in the delicate design, the deepest sub-network (i.e.,
the fourth sub-network) takes all other sub-networks outputs
as its input. And each deeper sub-network takes all shallower
sub-networks outputs as their inputs. In addition to unifying
the channel numbers of the output of the input layer of each
sub-network, we also added an intermediate skip connection
between the sub-networks. Stack Connections are denoted by
concatenation operations, each of which is the solid line with
a hollow arrow pointing to the next sub-network as shown in
Fig. 2.

The derivation of the basic Stack Connection. Let NetEi ,
NetDi , and NetRi denote the encoder, the decoder, and the
representation mapper at i-th sub-network, respectively, and
B denote the input blurry image for the encoder. For the first
sub-network (the bottom row in Fig. 2), the equation is written
as:

Ei = NetE_i (B)

ri = NetR_i (Ei ), when i = 1,

Di = NetD_i (ri ) (4)

where the output of the encoder Ei is used as the input of
NetRi , ri is the output of the representation mapper, and Di
is the output of the decoder in the first sub-network.

For next sub-networks (from the second to the fourth sub-
networks), the input of the representation mapper is the output
of NetRi of the last sub-network with the addition with
NetEi of the current sub-network (in Fig. 2). This basic Stack
Connection can be extended to a general one with i > 1.

Ei = NetE_i
(
cat[B, D1, . . . , Di−1]

)
ri = NetR_i (Ei + ri−1), when i > 1,

Di = NetD_i (ri ) (5)

where cat[·] denotes the concatenation operation. Thus, the
input of the i-th sub-network (i.e., the argument of Ei ) is

Fig. 4. Variant Depth Effect. The top-row images are the outputs of the
four sub-networks of the VDN model. The first image on the leftmost is the
blurry image, and Di indicates the outputs of each sub-network of VDN.
The bottom-row pictures (in red boxes) are the magnified views of images.
The output images become sharper, less sparse, and richer in color after the
level-by-level processing.

essentially the concatenation of blurry image B with all the
outputs from other shallower sub-networks. At the same time,
the output of the (i − 1)-th representation mapper and the
output of the i-th encoder are added as the input of the i-th
representation mapper.

As shown in Fig. 2(a), the stack connection denoted as the
hollow-arrow line can be illustrated in an intuitive manner
as follows. The output of the first sub-network is “inserted”
into the second sub-network, and the outputs of both the first
and the second sub-networks are “inserted” into the third sub-
network, and so on. These four sub-networks evolve from
the basic structure with different values n of the variant
module at each sub-network. Among the four sub-networks,
the coarse-to-fine information from the shallower sub-network
is delivered to all the rest deeper sub-network. The features
learned by each shallower sub-network can be directly utilized
by all the rest deeper sub-networks. In this manner, the
key features are well preserved without significant increment
of computing complexity. The information flows (including
the key features) can be effectively reused across all sub-
networks so that the deblurring effect can be improved while
maintaining a short running time and a small model size.

C. Loss Function

Different from other coarse-to-fine approaches, we design
different depth networks to process the coarse-to-fine features.
Instead of evaluating the Mean Square Error (MSE) loss at
each sub-network, since all shallower sub-networks directly
connect the deepest sub-network, the put-forth approach
evaluates the MSE loss only at the deepest sub-network. The
design of MSE loss in this approach is to measure the averaged
squared errors of all pixels on the deblurred image and the
ground truth. The smaller value of MSE means the closer
deblurred-image to the ground truth image. Since the images
are true color images that contain the red, green, and blue
three channels, we need to compute the MSE of the deblurred
image and the ground truth on these three channels. We then
take the average of the results of the MSEs on three channels
to obtain the final loss of an entire image. We denote the output
of deblurred image and the ground truth (i.e., the sharp image)
by D and S, respectively. The red, green, and blue channels
of D and S are denoted by r , g and b, respectively. Then, the
MSE loss values of each channel denoted by Lr , Lg and Lb



are defined as follows,

Lr =
1

H×W

H×W∑
i=1

(Di
r − Si

r )
2, (6)

Lg =
1

H×W

H×W∑
i=1

(Di
g − Si

g)
2, (7)

Lb =
1

H×W

H×W∑
i=1

(Di
b − Si

b)
2, (8)

where Lr , Lg and Lb are the square values of the L2 norm of
each channel error. The MSE Loss denoted by Lrgb form is
the average of the MSE losses of the three channels as follows,

Lrbg =
1
3
(Lr + Lg + Lb). (9)

The loss function of VDN denoted by LVDN is an average
of the loss values of all the samples, expressed as follows,

LVDN =
1
N

N∑
i=1

Li
rgb, (10)

where N is the number of samples in one training. Thus,
we need to evaluate the loss function only at the deepest sub-
network. The VDN follows the principle of residual learning,
and the intermediate output captures image statistics at
different depth sub-networks. Thanks to the Stack Connection
among sub-networks, the original information in the first sub-
network can be utilized in all other sub-networks repeatedly.
Therefore, multi-level MSE loss is not applicable in the VDN
model. Moreover, computing MSE loss only at the last sub-
network can reduce the computing cost.

D. Variant Depth Effect

The deblurring effect becomes better with the increased
depth of sub-networks. Fig. 4 illustrates the variant depth effect
of the VDN, where Di indicates the output result of each
sub-network of VDN. The output image of each sub-network
becomes sharper, less sparse, and richer in color with the
increased depth after the level-by-level processing, especially
when observing the magnified views.

The network contains finer information when its depth is
deeper. As explained in the early parts, the VDN model uses
several ResBlocks in the four-level structure. The depth of
each sub-network becomes deeper with the increased number
of ResBlocks. With the increased number of ResBlocks, the
depth of each sub-network becomes deeper so as to achieve
the coarse-to-fine deblurring effect via the variant depth sub-
networks. In particular, we develop a four-level VDN-2345,
where n = 2 in the first sub-network, n = 3 in the second
sub-network, n = 4 in the third sub-network, n = 5 in
the fourth sub-network. Fig. 4 shows the intermediate results
(i.e., the outputs) of the four sub-networks of VDN-2345. The
deblurring effects of deeper sub-networks become sharper in
comparison to the shallower sub-networks. Thus, the final sub-
network outputs the deblurred image.

IV. EXPERIMENTAL RESULTS

This section evaluates the effectiveness of the proposed
VDN for the traffic (vehicle)-image deblurring. We provide a
detailed performance comparison between the VDN models
and SOTA methods in both quantitative and qualitative
evaluations. The experiments are performed on a workstation
with an i7-7700k CPU and an NVIDIA RTX 2080TI GPU.
For a fair comparison, experiments are performed in the
benchmark datasets with the same training configurations, and
all tests are conducted on the same machine (unless noted
otherwise).

A. Datasets

We mainly evaluate the put-forth model on three represen-
tative datasets in the experiments:

1) GoPro dataset [16] contains 3,214 sharp-blurry-image
(SBI) pairs extracted from 33 sequences at the resolution
of 720×1280. For a fair comparison, we follow similar settings
to [16], which used the training dataset (containing 2,103 SBI
pairs) and the testing dataset (containing 1,111 SBI pairs) for
the experiment.

2) HIDE dataset [46] contains 8,422 SBI pairs, extensively
annotated with 65,784 bounding boxes. The images selected
from 31 high-fps (frames per second) videos consist of realistic
outdoor scenes with various numbers, poses, and human
appearances at various distances. The images are divided into
two categories: 1) the objects with the long-shot depth (i.e.,
HIDE I) and 2) objects with the close-ups depth (i.e., HIDE II).
In HIDE II, the foreground images of people have undergone
more significant motions than HIDE I. Thus, it will be more
challenging to process blurred images in HIDE II than HIDE I.
The experiments use 2,025 SBI pairs for the testing, where
1,063 SBI pairs are from HIDE I dataset and 962 SBI pairs
are from HIDE II dataset.

3) Need for Speed (NFS) dataset [47] consists of 100 pairs
of videos captured with a high frame rate. We use NFS mainly
for qualitative evaluation.

We implement the VDN model on the PyTorch platform.
We preprocess the training datasets with several data-
augmentation techniques to mitigate the effects of overfitting.
In particular, we first rotate the images in the range of [90◦,
360◦) randomly. Secondly, we gamma-correct the images
and adjust the saturation of the image color with a random
saturation factor ranging in (0.5, 1.5]. Thirdly, we crop the
processed images by 256×256 pixels randomly. Last but not
the least, we use Adaptive Moment Estimation Optimizer for
the optimization, where the size of the mini-batch is 8. The
initial learning rate is 0.0001 degrading a half per 500 epochs.
All the training parameters are initialized with the Xavier
method [48]. Thereafter, the above parameters are fixed for
all experiments.

B. Quantitative Evaluation

To evaluate the deblurring effect of the put-forth VDN,
the experiments compare the VDN on the GoPro dataset
with SOTA deblurring methods, including scale-recurrent



deblurring (SRNDeblur) [17], DeblurGAN-v2 [43], dynamic
scene deblurring (DSDeblur) [49], hierarchical multi-patch
deblurring (Stack(4)-DMPHN) [45], and multi-temporal recur-
rent neural networks for progressive non-uniform single image
deblurring (MTRNN) [50]. We consider the following main
comparison metrics:

1) Peak Signal-to-Noise Ratio (PSNR),
2) Structural Similarity Index Measure (SSIM),
3) model size,
4) running time.
1) Definition of PSNR & SSIM: In particular, both higher

PSNR scores and higher SSIM scores mean the model
performing better in the image deblurring task. The equations
of PSNR and SSIM are given as Eq. (12) and Eq. (13),
respectively.

Given a reference image R and a test image T , both of size
m × n, we get MSE of R and T as:

MSE(R, T ) =
1

mn

m−1∑
i=0

n−1∑
j=0

[R(i, j) − T (i, j)]2, (11)

Then, the equation of PSNR follows,

PSNR(R, T ) = 10log10
(
MAXR

2/MSE(R, T )
)
, (12)

where MAXR is the biggest pixel value of the reference image
R. For the 8-bit binary images, MAXR = 255. Thus, a higher
score of PSNR indicates a higher image quality [51]. For the
image deblurring task, a higher score of PSNR means a better
deblurring effect.

The SSIM is calculated according to the comparison of three
factors between the reference image R and the test image
T : 1) luminance denoted by l(R, T ), 2) contrast denoted by
c(R, T ), 3) structure denoted by s(R, T ). Let µr , µt denote
the mean values of R and T , respectively, and σr , σt denote the
variance values of R and T , respectively, and σr t denotes the
covariance of R and T . Let c1, c2 be two constants, where
c3 = c2/2. Then, we have c1 = (k1 P)2, c2 = (k2 P)2, where
k1 = 0.01, k2 = 0.03, and P = 255 for the 8-bit binary
images. The term SSIM is defined as follows:

SSIM(R, T ) = l(R, T )c(R, T )s(R, T ),

l(R, T ) =
2µrµt + c1

µr 2 + µt 2 + c1
,

c(R, T ) =
2σrσt + c2

σr 2 + σt 2 + c2
,

s(R, T ) =
σr t + c3

σrσt + c3
. (13)

The SSIM is used to measure the similarity between two
images [51] so that the higher score of SSIM means a better
deblurring effect in the image deblurring task.

For a fair comparison, we run all compared methods on
the same platform. Experimental results are obtained after
running SOTA models (executing their source codes or pre-
trained models). Note that the running time is the average time
of deblurring 1,111 SBI pairs from the test set of the GoPro
dataset.

TABLE I
QUANTITATIVE RESULTS OF VDNS AND SOTA

MODELS ON GOPRO DATASET

2) SOTA Comparison on GoPro and HIDE: TABLE I
and TABLE II show the quantitative results on the GoPro
dataset and HIDE dataset, respectively. TABLE I lists the
scores of PSNR, SSIM, model size, and running time among
SRNDeblur, DeblurGAN-v2, DSDeblur, Stack(4)-DMPHN,
MTRNN, and two representatives of the VDN (VDN-2345 and
VDN-1234), on GoPro dataset. TABLE II lists the scores of
PSNR and SSIM among these five methods and the proposed
VDN-2345, on the HIDE dataset. It is obvious that the
proposed VDN-1234 and VDN-2345 outperform the compared
deblurring methods on both the GoPro dataset and the HIDE
dataset.

In TABLE I, the highest scores are highlighted in bold. It is
obvious that the put-forth model of VDN-2345 obtains the best
scores 31.53 in the term of PSNR and 0.9487 in the term of
SSIM, respectively. The second best one is Stack(4)-DMPHN,
however, its model size is more than twice the VDN-2345.
In addition, the VDN-1234 has the second smallest size, only
28.8 MB, which is nearly 10% of that of DeblurGAN-v2.
Meanwhile, the VDN-1234 achieves even higher PSNR and
SSIM values than DeblurGAN-v2. Although MTRNN [50]
has the smallest model size, its running time is much higher
than ours. Moreover, the VDN-1234 also achieves a good
performance in terms of running time, i.e., the running time
of VDN-1234 is 265 ms, much smaller than those of other
models except DeblurGAN-v2 [43]. Although DeblurGAN-v2
achieves 142 ms (i.e., the best) on running time, its model size
is nearly ten times of the VDN-1234. It is worth mentioning
that DeblurGAN-v2 [43] costs a shorter time but a larger
model size while MTRNN [50] costs a longer time with a
smaller size on the contrary. In contrast, the VDN-1234 has
obvious advantages over the SOTA models since its running
time is only 265 ms and its model size is only 28.8 MB. The
methods in [17] and [49] use multi-scale inputs to increase
the receptive field to restore blurry images and spend more
computing time than DeblurGAN-v2 [43].

Although the VDN-2345 ranks the third place (VDN-
1234 ranks the second place) on the model size and the
running time, its model size and running time are still very
small. It implies that VDN models can achieve superior
performance, i.e., the best deblurring effects with small model
size and a short running time. The superior performance of the
VDN model mainly owes to the coarse-to-fine architecture



TABLE II
QUANTITATIVE RESULTS OF PSNR AND SSIM ON HIDE DATASET

TABLE III
COMPARISON WITH SOTA METHODS ON TRAFFIC

IMAGES IN TERMS OF PSNR AND SSIM

to achieve the outstanding deblurring effect and the stack
connection to reduce the running time and model size via
reusing information flows across different levels of networks.

TABLE II shows results on HIDE dataset. We only
choose the VDN-2345 for the comparison because it has
excellent performance on GoPro dataset. The highest scores
are highlighted in bold. The best results are all from the VDN-
2345. All the models perform worse on HIDE dataset than
those on GoPro. In particular, PSNR values of the SOTA
models are less than 30.0 though the VDN-2345 achieves
the best among all the models. Moreover, Stack(4)-DMPHN
performs the second best on GoPro and performs not the same
well on HIDE datasets in terms of PSNR and SSIM. For
example, the PSNR value is 29.80 less than 29.98 obtained
by DSDeblur and MTRNN. The smallest model size achieved
by MTRNN [50] performs not well as its performance of
SSIM on the HIDE II dataset, i.e., less than 0.9099 achieved
by Stack(4)-DMPHN [45]. Meanwhile, the best running time
achieved by DeblurGAN-v2 [43] performs worst among all
methods as its PSNR and SSIM values are both the lowest.
However, the VDN-2345 always performs the best on both
HIDE I and HIDE II datasets. The quantitative results on the
GoPro dataset and HIDE dataset demonstrate that the VDN
can achieve superior performances, i.e., restoring the high-
quality deblurring images with a small model size and a short
running time.

3) SOTA Comparison on Traffic Images: In order to further
evaluate the deblurring effect of the proposed VDN being
applied in ITS, we delicately select some traffic scenario
images from GoPro and HIDE datasets for further comparison.

Fig. 5. Results of deblurred images in city traffic scenarios. The top and
bottom rows show the blurred images and ground truth images, respectively.
From left to right the first three images are from the GoPro dataset and
the fourth image is from the HIDE dataset. The rest rows from top to
bottom show the deblurred results by SRNDeblur [17], DeblurGAN-v2 [43],
DSDeblur [49], Stack(4)-DMPHN [45], MTRNN [50], and the VDN-2345,
respectively.

Fig. 6. Results of deblurred images in highway traffic scenarios. The first
column shows the blurry images in NFS dataset, and the second and third
columns show the deblurred images processed by the put-forth VDN and the
ground truth, respectively.

In particular, we pick up 309 SBI pairs of traffic images from
the GoPro dataset and 1,177 SBI pairs about traffic images
from the HIDE dataset. TABLE III shows the quantitative



results compared with the SOTA deblurring methods. Most
of the models perform better on traffic images than those
on the whole GoPro dataset when comparing the values of
PSNR of the GoPro column in TABLE I and TABLE III.
Moreover, the VDN-2345 obtains the best performance in
both datasets. In particular, the PSNR value of the VDN-2345
reaches 31.65 which is the best among all models. On the other
hand, the PSNR and SSIM of the VDN-2345 are 26.34 and
0.8824, respectively. The proposed VDN model achieves the
best scores when processing blurry traffic images. The results
imply that the VDN is well suitable for ITS applications,
especially considering the resource limitation of ITS facilities
(e.g., cameras, sensors, and IoT nodes).

C. Qualitative Evaluation

1) SOTA Comparison in City Traffic Scenarios: We further
conduct a qualitative evaluation of the VDN model with
a comparison of other SOTA models. Fig. 5 shows the
visual comparison results. In particular, Fig. 5 shows the
deblurring effect for processing the traffic images in city
traffic scenarios. The bottom and top rows indicate sharp and
blurry images, respectively. From top to bottom, the rest rows
show the deblurred images processed by SRNDeblur [17],
DeblurGAN-v2 [43], DSDeblur [49], Stack(4)-DMPHN [45],
MTRNN [50], and the proposed model of VDN-2345. The
first three-columns images, from left to right, are images of
the GoPro dataset and the fourth-column images are from
HIDE dataset. It is obvious that license plates at the top
row are too blurry to be recognized. After processing by the
VDN-2345 and the SOTA methods, the texts on license plates
become clearer than the original blurry images. However,
only the deblurred images done by the VDN-2345 are the
closest to the ground-truth images among all the methods.
Especially, “T” is difficult to recognize in the images deblurred
by SRNDeblur [17], DeblurGAN-v2 [43], and MTRNN [50],
at the first column. Moreover, in the third column, the
deblurred result of the VDN clearly shows the two driving
persons (the closest to the ground truth image), though it
is difficult to recognize that there are two persons in the
images deblurred by SRNDeblur [17], DeblurGAN-v2 [43],
DSDeblur [49], Stack(4)-DMPHN [45], MTRNN [50]. In the
fourth column, there are still ghost effects in the images
deblurred by DSDeblur [49] and Stack(4)-DMPHN [45].
By contrast, the result of the VDN is closer to the ground
truth than those deblurred by SRNDeblur [17], DeblurGAN-
v2 [43], and MTRNN [50].

This promising result implies that the VDN model is quite
feasible for ITS scenarios such as smart parking systems.
The third column shows a scenario of motorcycle drivers and
passengers moving at a high speed when the face image of
the person is too blurred to be recognized. The deblurred
image by the VDN-2345 is also quite close to the ground-truth
image. It is helpful to recognize the facial image of the person
when applying the deblurring model in ITS applications, such
as autonomous vehicles and transportation safety. The fourth
column shows the scenario of pedestrians, when a pedestrian
runs the red light, it is necessary to gain information from the

TABLE IV
QUANTITATIVE RESULTS OF VDNS AND SOTA METHODS

ON GOPRO DATASET TESTED ON MEC PLATFORM

facial image of the pedestrian. The blurred image taken by the
camera is difficult to recognize. However, the deblurred image
processed by the VDN-2345 model is quite close to the sharp
image (i.e., the ground-truth image), thereby being used for
further analysis, such as face recognition.

2) SOTA Comparison in Highway Scenarios: Fig. 6 shows
the traffic conditions in highway scenarios. The first column
shows the blurry images chosen from NFS dataset [47].
The second and third columns show the deblurred images
processed by the VDN and the ground truths, respectively.
Traffic signs are blurred in the first column. The blurry images
may bring challenges in ITS applications, such as autonomous
vehicles. For example, it may cause danger if a blurred traffic
sign cannot be recognized by an autonomous vehicle that
is moving at a high speed on a highway. The traffic signs
in the deblurred images by the VDN-1234 can be clearly
recognized (quite close to the ground-truth images), as shown
in the second column of Fig. 6. Moreover, it is also critical
for an image-processing time as well as the model size in the
autonomous-vehicle scenario while the VDN model can well
fulfill the critical requirement due to the lowest running time
and the compacted model size.

V. DISCUSSION

Mobile Edge Computing (MEC) has been increasingly
applied in ITS [52], [53], [54]. We deploy the VDN to an
MEC platform, NVIDIA Jetson Xavier NX Developer Kit
(NJXDK), to evaluate its deblurring effect. NJXDK is one of
the smallest Artificial Intelligence supercomputers of the MEC
systems [55]. In particular, featuring an integrated GPU of
384-CORE NVIDIA Volta, CPU of 6-CORE NVIDIA Carmel
ARM, and the memory of 8 GB 128-bit LPDDR4x, this MEC
platform provides a high-performance accelerated software
stack of NVIDIA CUDA-XTM and supports PyTorch library.

We test the VDN-1234 and VDN-2345 and SOTA
methods including SRNDeblur [17], DSDeblur [49], Stack(4)-
DMPHN [45] on the NJXDK MEC platform. Since
MTRNN [50] needs a large memory and DeblurGAN-v2 [43]
needs other plug-ins, they cannot be directly executed on the
MEC platform. Thus, MTRNN and DeblurGAN-v2 are not
considered in this experiment. We use the trained models
for the comparison since the trained models can run on the
MEC platform. We test images from GoPro dataset [16]
and NFS dataset [47]. Since the values of PSNR and SSIM



are not variant with different platforms, experiments only
need to compare the running time. The results are shown in
TABLE IV. In particular, we evaluate two power models of
MEC, i.e., 15W (6-CORE) power model and 10W (2-CORE)
power model. It is obvious that two VDN models outperform
other compared methods in the running time on both two
power models. The VDN-1234 only spends 3.920 seconds
and 4.399 seconds in terms of average running time on 15W
(6-CORE) power model and 10W (2-CORE) power model,
respectively. Moreover, the running time is increased from
15W (6-CORE) model to 10W (2-CORE) power model for the
compared three methods, especially Stack(4)-DMPHN [45],
while the running time of two VDN models is only slightly
increased.

VI. CONCLUSION

To address the challenges of the image-deblurring model
applied in ITS applications, we designed a VDN model in a
coarse-to-fine manner. The VDN model has a small model
size and short computing time, thereby being beneficial for
ITS applications. The proposed variant-depth sub-networks
use residual modules with different depths in the four-
level network. From the first (the shallowest) sub-network
to the fourth (the deepest) one, the depth of the sub-
networks becomes deeper, and the deblurring information
processed by each sub-network becomes richer. In this coarse-
to-fine way, the VDN processed fine-grained feature maps,
consequently obtaining sharper restored images. Therefore,
the VDN outperformed SOTA methods on deblurring quality.
It is worth mentioning that we also devised a new
connection (namely Stack Connection) connecting all sub-
networks to fully use the deblurring information from each
sub-network to reduce parameters and computing time.
Moreover, we conducted several experiments to evaluate
the VDN framework. Experimental results demonstrated that
the proposed VDNs outperformed SOTA image-deblurring
methods on several representative datasets. In particular, the
proposed model performed the best PSNR and SSIM scores
while maintaining the shortest running time and the smallest
model size.
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