
SlowCoach: Mutating Code to Simulate Performance
Bugs

Yiqun Chen∗, Oliver Schwahn†, Roberto Natella‡, Matthew Bradbury∗ and Neeraj Suri∗
∗School of Computing and Communications, Lancaster University, United Kingdom

†TU Darmstadt, Germany
‡University of Naples Federico II, Italy

y.chen101@lancs.ac.uk, os@cs.tu-darmstadt.de, roberto.natella@unina.it, m.s.bradbury@lancs.ac.uk, neeraj.suri@lancs.ac.uk

Index Terms—performance bugs, mutation testing, fault injec-
tion

Abstract—Performance bugs are unnecessarily inefficient code
chunks in software codebases that cause prolonged execution
times and degraded computational resource utilization. For
performance bug diagnostics, tools that aid in the identification
of said bugs, such as benchmarks and profilers, are commonly
employed. However, due to factors such as insufficient workloads
or ineffective benchmarks, software defects related to code
inefficiencies are inherently difficult to diagnose. Hence, the
capabilities of performance bug diagnostic tools are limited
and performance bug instances may be missed. Traditional
mutation testing (MT) is a technique for quantifying a test
suite’s ability to find functional bugs by mutating the code of the
test subject. Similarly, we adopt performance mutation testing
(PMT) to evaluate performance bug diagnostic tools and identify
where improvements need to be made to a performance testing
methodology. We carefully investigate the different performance
bug fault models and how synthesized performance bugs based on
these models can evaluate benchmarks and workload selection to
help improve performance diagnostics. In this paper, we present
the design of our PMT framework, SLOWCOACH, and evaluate
it with over 1600 mutants from 4 real-world software projects.

I. INTRODUCTION

A program’s performance is a software attribute that de-
scribes how quickly it can complete tasks or process inputs [1].
Performance is important when input sizes increase but program
throughput does not scale accordingly. One of the causes of
scalability issues is the presence of unnecessarily inefficient
code within a program’s codebase, which wastes computational
resources when executed. For example, some function may
not save the frequently needed result of an expensive com-
putation, but instead recomputes it each time when needed,
thereby wasting CPU cycles. Or, in a lock contention scenario,
inefficient synchronization code may causes a program to wait
unnecessarily for off-CPU events. Inefficient code chunks that
could be optimized to increase program performance are often
referred to as performance bugs [2]–[4].

An essential part of code optimization is to identify the
inefficient code. The identification is usually carried out in two
steps: 1) detection, i.e., determining whether performance issues
exist in the first place, and 2) localization, i.e., pinpointing
the code chunks causing the issues. Several approaches and
diagnostic tools exist that assist in the detection or localization
of performance bugs to guide performance diagnostics and

optimization [3], [5]–[8]. Some syntax checkers [1], for exam-
ple, find simple performance anti-patterns in code statically
and thus help to avoid them. However, most performance
bugs are too complicated for simple syntax rules to detect
and must be analyzed with runtime information [3], [9], [10].
Given suitable workloads, benchmarks provide performance
metrics that can be used as a comparison basis, while profilers
provide runtime information that helps developers localize
performance bugs. Still, neither benchmarks nor profilers can
ascertain whether there are performance bugs without a proper
specification or performance measurements from previous
versions for comparison [11].

More sophisticated approaches [5], [12] aim to detect
performance bugs by symptomatic analysis, e.g., tracing hard-
ware/software events or memory accesses. Such approaches,
however, lack a ground truth to be evaluated against. The
symptoms on which they depend are not guaranteed to
have observable performance degradation. This observability
problems can be caused by many factors, such as insufficient
workloads. For example, a vector in C++ reallocates memory
when new elements are added and no memory is available to
hold them. Such reallocation has a very small performance
overhead, making it challenging to measure with profilers. But
reallocation would cause significant performance degradation
if it occurs often [9]. Thus, it is not always clear that
the symptoms identified by such approaches are actually
performance bugs, as the given workload may not be able
to exercise the problematic code frequently enough.

Moreover, there is no simple way to evaluate performance
diagnostic approaches beyond the small set of a priori known
and reproducible performance bugs [10], [12], [13]. The lack
of a standardized corpus of performance bugs and the lack of
rules for synthetically creating performance bug instances to
evaluate performance bug detection and localization approaches,
motivate our interests in the synthesis of performance bugs.

Inspired by the idea of software fault injection, we adopt
techniques from mutation testing (MT) [14], [15] to inject per-
formance bugs to evaluate the quality of existing performance
bug detection and localization approaches. MT intentionally
injects synthetic faults, using code mutation, into the test
subject’s code to check if its test suite can find them. The
ultimate goal is to quantify and improve the quality of test
suites. The rules controlling how and where the source code is

1

mutated are known as fault models. After mutation, the source
code is expected to produce functional deviations compared
to the original code. A high-quality test suite is supposed to
capture these deviations. In this paper, we employ performance
mutation testing (PMT) to synthetically create performance
bugs as an assessment for the performance testing. In stark
contrast to MT, PMT requires that code mutations do not
introduce functional deviations since performance bugs should
be considered separately from functional bugs. Therefore, PMT
requires the preservation of functional equivalence (FE). This
makes PMT different from traditional MT techniques, which
have the exact opposite requirement.

In this paper, we introduce SLOWCOACH, our novel PMT
framework. We demonstrate its practical utility and show
how PMT can help to improve performance bug diagnosis
approaches. Particularly, we address the following research
questions in this paper:

1) How does PMT relate to MT?
2) What are the different dimensions to consider for PMT

fault models?
3) Can PMT produce enough useful mutants in practice?
4) How useful are synthetic performance bugs in practice?

II. RELATED WORK

The term performance bug was coined by Jin et al. [1],
who investigated more than 100 performance bugs in real-
world C/C++ projects and developed a tool for detecting these
bugs. Chen et al. [16] surveyed and semantically categorized
more than 700 performance bugs from real-world developer
commits from 13 popular C/C++ projects. Sánchez et al. [17]
investigated the performance bugs across multiple publications
in the research community and Tizpaz-Niari et al. [18] surveyed
performance bugs in machine learning libraries.

Many approaches based on the symptoms of performance
bugs have been proposed. Su et al. [5], Chabbi et al. [12],
and Wen et al. [13] detect performance bugs by processor
event based sampling (PEBS), which samples hardware events,
such as memory or cache accesses, on modern processors.
This facility can be used to identify 1) dead store, where data
are stored to memory but never loaded later, 2) redundant
load, where data are loaded but never stored back to memory,
and 3) false sharing, where memory accesses from different
threads are close together, resulting in cache thrashing. To detect
these bugs with PEBS, performance tests are needed so that
dynamic memory accesses can be analyzed. Dynamic memory
access patterns are also helpful to detect and localize redundant
computation in loops [3]. Moreover, performance bottlenecks
caused by off-CPU events [19] and lock contention [6], [10],
[20] can be detected using dynamic runtime information.
Attariyan et al. [4] propose a more generic state-of-the-art
performance profiler to localize performance bugs. State-of-
the-practice performance diagnostic tools, e.g., perf [7] and
lttng [8], are capable of profiling both on-cpu and off-cpu
events, as well as numerous additional kernel events.

Besides various performance bug diagnostic approaches in
different domains, many researchers also consider computa-

tional redundancy as a significant indicator for performance
bugs. Wen et al. [21] define the same return value being
computed by repeatedly calling a function as a source of
performance bugs. Song and Lu [3] propose a more generic
approach to detect whether the results of each iteration are
redundant in a loop. Besides logical approaches to detect
computational redundancies, Della Toffola et al. [22] aim
to find locations where the computational results can be
cached by deep learning. The fixing strategies often applied
to mitigate redundancy are to either skip the computation,
e.g., by introducing a fast path, or cache the results of
computation for future usage. Interestingly, these two strategies
are among the dominating performance bug fixing patterns
in real-world scenarios [16]. Despite many variants of PMT
fault models, we carefully adopt the computational redundancy
anti-patterns from the aforementioned works in this paper
since computational redundancies are a stronger indicator for
performance bugs in comparison to other metrics.

MT techniques are also well studied across the research
communities. Papadakis et al. [14] as well as Jia and Harman
[15] review the development of MT techniques covering various
programming languages from 1970 to 2017. Chekam et al. [23]
implement and evaluate an early mutation testing framework.
Chekam et al. [24] develop a symbolic execution approach to
search for the input to kill hard-to-kill mutants (please refer
to Table I for definitions). Devroey et al. [25] propose an
approach to identify equivalent mutants by NFA simulation.
Recent research [26] also confirmed the efficacy of mutation
testing in industry practices.

Natella et al. [27] provide an overview of mutation testing
techniques in the context of assessing systems against software
failures. Research in this area has been focused on the
representativeness of injected faults, which is a indicator
of whether artificial bugs are hard-to-kill, and thus subtle
enough to cause realistic software failures [28]. However,
simulating failures through code mutation can be cumbersome,
as the mutated program may need to be recompiled, and the
mutants have often no effect on the program (i.e., equivalent
and hard-to-kill mutants, see Table I). Thus, previous studies
have investigated how to efficiently perform mutations on
binary code [29], and whether faults injected inside a software
component (i.e., through code mutation) can be replaced by
more convenient injections at software interface level (i.e.,
by corrupting data returned from a component) [30]. Other
work has also developed a PMT framework with many MT
operators [31]. As will be demonstrated in Sections IV and V,
SLOWCOACH shows better results in terms of evaluating a
performance testing environment by careful implementation
of mutation operators and better interpretation of mutation
scores. In this paper, we also investigate efficiency and
representativeness issues in the context of performance bug
injection, by exploring different approaches from the design
space of PMT techniques.

2

III. BACKGROUND

A. Performance Mutation Testing

Mutation testing (MT) is a technique to evaluate test suite
quality [14], [15]. In MT, faults are injected through code
mutations, commonly at the source code level. The code
transformation rules that govern how to mutate the original
source code are called mutation operators. The resulting copies
of mutated code are termed mutants. A fault model describes
what, where, when, and how to inject the buggy code. An
example MT fault model could match all binary and operators
(&&) in if statements and change them to binary or operators
(||). If a software’s test suite is not able to distinguish the
generated mutants from the original software, then the test
suite needs improvement as it fails to detect the injected faults.
We compare MT and PMT in Table I and provide further
definitions of MT concepts.

In the context of performance evaluation, a test suite is
typically represented by benchmarks and workloads, which
exercise the software under test with input data to reveal
performance regressions and to diagnose bottlenecks. Similar
to MT evaluating test suites, we adopt PMT as technique to
evaluate performance benchmarks and performance diagnostics
approaches. However, MT fault models aim to change the
functional behavior of the original code, since these are the
faults that test suites should detect. In practice, mutants that do
not change functional behavior (equivalent mutants) are avoided
or filtered out if possible. In contrast, PMT filters out mutants
that do change functional behavior as it is only meaningful to
compare the performance of functionally identical programs.
Thus, an important requirement for PMT fault models is to
retain the functional behavior for all mutants while introducing
performance overheads. These concepts are detailed in Table I.
As such, P-mutants are different from traditional mutants in
terms of key MT concepts. To better distinguish these mutant
types, we refer to such performance mutants as P-mutants.

The functional equivalence (FE) of P-mutants is defined as:
given a set of inputs, all P-mutants should produce the same
set of outputs as the unmutated code, i.e., all P-mutants should
adhere to the same functional specification as the original
code. Despite much proposed work addressing the program
equivalence problem in the research community (e.g., [32],
[33]), the preservation of FE in PMT cannot be trivially
solved. The proposed formal equivalence checkers verify if
two programs execute the same steps, while performance
optimization in general involves two versions of a program
that produce the same output by executing correspondingly
fewer steps. Conversely, PMT fault models would lead to more
steps being executed in a program. So, formal FE checkers
cannot be used to effectively verify FE for PMT. An alternative
approach proposed by Devroey et al. [25] detects equivalent
P-mutants by the simulation of non-deterministic automata.
However, none of these approaches can generally solve the FE
problem in acceptable time for potentially thousands of mutants.
As a practical compromise, we carefully select PMT mutation

operators that are unlikely to affect functional behavior and
check FE using classical functional tests.

B. PMT Fault Models

Performance bugs are often believed to be fixed by “relatively
simple source code changes” [1]. However, they usually involve
more complicated semantic changes in the real world [16], [17].

Jin et al. [1] identified performance bugs via detectors which
relied on the contextual information of the code. For example,
given function A invoked before function B would cause
performance degradation, a detector finds all invocation pairs
of function A before function B. The contextual information in
this example is the relative invocation ordering of functions A
and B. Some PMT fault models inject performance antipatterns
derived from the detection strategies, which also requires
domain knowledge. As an example, the code shown in Listing 1
demonstrates a performance optimization scenario in the real
world [16]. The code snippet matches a string against a pattern1,
this algorithm uses Deterministic Finite Automata (DFA) or
keywords searching to perform the matching. DFA usually
matches patterns with wildcards faster than the keywords
searching algorithm, if the inputs are unibyte and do not contain
any back references. Hence in Listing 1 we search by the DFA
if the condition dfafast is satisfied (line 9 and 19). This
example will be the first case study discussed in Section V-D1.

The fault models derived from this example could be either
to remove the else if block or to change the value of
dfafast. Unfortunately, neither model can be described by
simple syntactic rules without contextual knowledge about what
the affected code blocks or variables are used for. Such fault
models suffer from several drawbacks. Firstly, large human-in-
the-loop efforts are required to understand the entire software
project and to implement these mutation operators. Secondly,
these fault models generate only a limited number of P-mutants.
In our experiments on grep (discussed in Section V-D1), each
mutation operator instance2 generates about 1 to 2 P-mutants.
PMT fault models that do not rely on domain knowledge
are more generic than their counterparts that use contextual
information. We classify the space of possible PMT fault
models along two dimensions: how representative and how
context dependent fault models are. Representativeness can be
categorized as the fault models simulating performance bug
effects and developers’ errors. The other dimension specifies
if a fault model is context dependent or independent. This is
visualized in Fig. 1. Since the Listing 1 simulates developer
errors, the described fault models fall into quadrant 2, or Q2 in
short, as they depend on contextual information. The context-
independent fault models fall into Q4 as they do not rely on
contextual information when injecting faults.

An alternative to the simulation of developer errors is to
simulate the effects of performance bugs. All performance
bugs have a performance impact either on-CPU or off-CPU.
For example, an on-CPU performance issue can be caused by

1The code is simplified for the discussion.
2SLOWCOACH embeds the contextual information into mutation operators.

Each operator with the contextual information is an instance. (c.f. Section IV-A)

3

TABLE I
PERFORMANCE MUTATION TESTING VS. MUTATION TESTING [27]

Concept Performance Mutation Testing Mutation Testing

Test Suite A fixed set of benchmarks and workloads yielding various perfor-
mance metrics (e.g., execution time, memory usage, and execution
paths) to be compared against. The workload carried out by the
benchmark aims to identify those tests that have worse performance
metrics than the unmutated baseline.

A test suite (test programs and inputs) to determine
whether a program complies with its (functional)
specification. Tests should kill (i.e., detect) mutants
to demonstrate their fault detection capability.

Equivalent
Mutants

All performance mutants must be functionally equivalent to the
original version. Performance equivalent mutants are those whose
performance results are statistically close to the original.

If a mutant is functionally equivalent to the original
software, this mutant will never be killed by the
test suite.

Hard-
to-kill
Mutants

Functionally equivalent mutants that can be killed only if mutated
code is executed sufficiently frequently. We hypothesize that all code
changes introduce performance overheads if not optimized out, while
the overheads need repetitive execution to be observable.

Some mutants can only be killed by few, very
specific test cases. These mutants help identify
possible improvements of test suites.

Mutation
Score

Identical to the mutation score by mutation testing. But since there
are multiple performance metrics, there are correspondingly multiple
mutation scores for the different perspectives of the metrics.

The mutation score grades the quality of a test suite.
It is the percentage of nonequivalent mutants that
can be killed by the test suite.

1 +bool dfaisfast (struct dfa *d) {
2 + return !d->multibyte &&
3 + d->has_no_backref();
4 +}
5
6 size_t EGexecute (char const *buf,
7 size_t size, size_t *match_size,
8 char const *start_ptr) {
9 + bool dfafast = dfaisfast (dfa);

10 /* ... */
11 for (beg = end = buf; end < buflim; beg = end){
12 if (!start_ptr) {
13 if (kwset) { /* Slow path */
14 do_kwset_search();
15 /* ... */
16 if (matched) return;
17 }
18 - else
19 + if (!kwset || dfafast) {
20 /* Fast path */
21 do_dfa();

Listing 1. Fast Path

inefficient algorithms that waste CPU cycles, and an off-CPU
issue can be related to unnecessary file IO operations that
cause wait times. The on-CPU overheads can be simulated
by inserting useless operations into the code, while off-CPU
overheads can be emulated by inserting useless sleep()
operations. Although these simulations do not hamper the
FE and potentially generate more P-mutants, the introduced
code mutations do not resemble performance bugs found in real
world software. The resemblance of synthesized bugs to those
that occur in the real world is called the representativeness
of software faults [28]. The simulation of performance bug
impacts is less representative when compared to the simulation
of developer errors as indicated on the y-axis in Fig. 1.
The representativeness of MT fault models is a significant
indicator for the efficacy of MT. Performance bug detection and

localization approaches, however, are only concerned with the
symptoms of performance bugs. In other words, a performance
bug may itself be trivial, but it is not trivial to evaluate whether
a particular benchmark or workload is capable of showing
observable performance degradation.

Like other PMT fault models, the effect simulation may also
be dependent on domain knowledge. For example, as there
are no consistent interfaces among C/C++ software projects
for low-level system operations, the function names of these
operations are required for fault models. In the case of heap
memory, allocations are performed with malloc() in standard
C and with new/new[] in C++, but many projects adopt
custom allocators, e.g., kmalloc() in the Linux kernel, and
ALLOC() or xmalloc() in gnulib. We label the simulation
of performance bug effects as Q1 and Q3 in Fig. 1 with
and without context dependency correspondingly. In spite of
the context dependency, the difference between Q1 and Q3
is often negligible in terms of simulating performance bug
causalities, which is why we usually discuss Q1 and Q3 fault
models together. As SLOWCOACH allows developers to encode
contextual information in the fault models, this means there
are limited differences between Q1 and Q3. Therefore, we use
Q3 to represent Q1/3 mutants in the following discussions.

IV. SLOWCOACH: A PMT FRAMEWORK

A. Overview and Workflow

A general overview of SLOWCOACH’s workflow is provided
in Fig. 2. SLOWCOACH’s primary inputs are the source code
of the target software project and project specific configuration
which must be provided by the user. The configuration allows
customizing the PMT process for a specific project, such as
function ignore or include lists, required for some mutations
operators to work correctly. Listing 2 shows a configuration
example to replace all local variables in the main function
named dfafast (in Listing 1) with a value of false. One
or more optional caller elements can be provided to limit

4

cxt-dep cxt-indep

ef
fe

ct
de

v-
er

r
Q1

Q2

Q3

Q4

More generic

M
or

e
re

pr
es

en
ta

tiv
e

Fig. 1. PMT Fault Models

the scope of replace operations to a specific set of functions.
The tool mutates the original source code to generate different
mutants (as modified source code files), which are then applied
to unique copies of the project. Both the original project
and the mutated versions are then compiled to generate the
executable programs. The programs are then executed with
benchmarks using various workloads, or other performance
diagnostic approaches are applied to the executables. The
performance metrics the user is interested in are measured
and recorded for the original and all mutated versions. Based
on these metrics or their comparison across versions, the user
can assess the quality of the used benchmarks, workloads, or
performance diagnostic tools.

B. Mutation Operators

In this section, we take the operators from Table III in
Section III to illustrate how PMT mutates the code.

1) Q4 Operators (developer errors, context-independent):
a) Q4-A – Loop Unbreaker: As discussed in Section III,

our fault models simulate developer errors without contextual
information. For SLOWCOACH, we select 2 representative
mutation operators to demonstrate the concepts of Q4 fault
models and discuss two of them in this section. The first
operator is called loop unbreaker and derives from a common
performance optimization pattern found in many real-world
projects [3], [16] that we call loop breaker. This pattern is
similar to the fast path pattern in Listing 1. We consider that
early termination (break) of a loop is a fast path, stopping the
loop early when possible. Listing 3 shows an example for the
loop breaker pattern. The if statement containing the break
in Line 2 is the fast path that terminates the loop early. Our
loop unbreaker mutation operator removes these if statements.

The main drawback of loop unbreaker is that semantics
cannot be asserted from the syntactic if statement. It is possible
that the if break is necessary for functional behavior, e.g., a
loop returning the first occurrence of an item in a list. Moreover,
loops may rely on such an if break to terminate, so the removal
of it may cause the program to hang. Although loop hangs
can be detected by runtime monitoring [34], [35], it is hard or
even impossible to predict statically during code mutation. To
minimize the probability that the loop unbreaker operator causes
program hangs, we adopt a naive heuristic to exclude loops

without a terminating condition, e.g., for(;;) or while(1),
because these loops rely on a break statement to terminate.

b) Q4-B – Oblivion: Our second mutation operator
is called oblivion. It is derived from another performance
optimization pattern called cache memoization [22].In this
pattern the code records the result of some heavy computation
and reuses it later without re-doing the computation again.
A simple example is shown in Listing 4 at Lines 1 to 2,
where the results of foo() are cached in variable a and re-
used in bar(a). To simulate performance bugs where cache
memoization was omitted, our oblivion operator substitutes all
variable references with their initializers, so that the result of
the initializing function is redundantly computed. In Listing 4,
the oblivion operator matches all occurrences of variable a and
substitutes them with a function call to its initializing function
foo() as shown on Line 3.

The oblivion operator, however, may alter the functional
behavior if the relevant function updates or depends on the
global state of the program. A notorious example is memory
allocation, whose results depend on the global state and
repeated calls to memory allocation functions lead to different
results. To mitigate this, we adopt a straightforward function
blacklisting approach, i.e., the code is mutated only if a local
variable is declared with an initializer and the initializing
function is not blacklisted. As a result, given a presumably
side-effect free initializer, the oblivion operator adds a ternary
operator as shown in Line 4 in Listing 4, where the local
variable a is replaced with an expression of the form: (a
== foo()) ? foo() : a. If the initializer function (foo())
returns a different value, variable a was changed since its
initialization and we fall back to using variable a directly to
not affect the original program semantics. While this approach
amplifies the performance impact by calling foo() twice in the
ternary operator, it increases the probability that the original
functional behavior is retained if foo() is side-effect free.
Despite these efforts, it is still possible that the functional
behavior is changed, for example, if the initializer function is
not side-effect free or takes arguments that change over time.

2) Q2 Operators (developer errors, context-dependent):
The performance bug dataset provided by Chen et al. [16]
shows that almost all real-world performance bugs and opti-
mizations depend on project specific context, which has been
confirmed by other works on real-world performance bugs [3],
[17].Therefore, additional contextual information is usually
needed to synthesize representative performance bugs since
semantic fault injection is not possible with purely syntactic
rules in most MT approaches [14], [15], [23]. SLOWCOACH
encodes the contextual information in the configuration as
described in Section IV-A and shown in Fig. 2. Considering
the fast path example in Listing 1, occurrences of the dfafast
variable can be replaced with a false so that the fast path
will never be taken. A mutation operator that removes fast
paths can then match the variable reference with this name,
its parent if statement, and its enclosing function foo(), and
safely remove this particular fast path as defined by the user.

To demonstrate how context dependency is encoded into

5

Source CodeSource CodeSource Code

Configuration

Original
Project

Executable

Mutation Tool

Clang
Library

Source
Mutant

Mutated
Project

Mutated
Project
Mutated
Project
Mutated
Project

Mutant
Executable

BenchmarkBenchmarkBenchmark

Original
Performance

Metrics

Mutant
Performance

Metrics
Mutant

Performance
Metrics
Mutant

Performance
Metrics

Compare
Kill mutants
Etc.

Fig. 2. SLOWCOACH Workflow

1 <local-var>
2 <var-name>dfafast</var-name>
3 <value>false</value>
4 <caller>main</caller>
5 </local-var>

Listing 2. Configuration Example

1 for (int i = 0; i < 1024; i++) {
2 if (some_cond(i)) break;
3 do_something();
4 }

Listing 3. Loop Breaker optimization pattern (Q4-A in Table III)

PMT operators, we take two examples of code optimizations
from the GNU grep project (one of the most popular text
search utilities) and show how they can be reversed to
produce performance bugs. Both examples are typical fast
path performance bug fixes. In the first case3, developers
introduce a new function dfaisfast() (described in Listing 1)
as the switch between the fast path and the slow path. In the
second case4, fgrep_icase_available() is added to the
code, which functions like some_cond as well. SLOWCOACH
provides a mutation operator that replaces a call to a given
function with some other function, a variable, or a concrete
value. This operator can replace the call to dfaisfast() with
a fixed value of 0 to change the fast path condition, thereby
permanently preventing the fast path from being executed.
For both cases, Q2-A and Q2-B operators Table III are
instantiated to replace occurrences of all calls to dfaisfast()
and fgrep_icase_available() with a value of 0.

3) Q1 & Q3 Operators (performance effects, context-
dependent and -independent): As discussed earlier, mutating
for performance while retaining the functional behavior of
programs is generally a hard problem. Q4 operators require
expensive static or dynamic analysis if unchanged functional
behavior must be guaranteed. Q2 operators compromise on
generality for a more accurate reincarnation of previously
known performance bugs. Since most real-world performance
bug fixes involve specific inputs, the lack of generality limits

3GNU grep repository [36] Git commit ID 3255bc
4GNU grep repository [36] Git commit ID 960ad3

1 int a = foo();
2 bar(a);
3 bar(foo());
4 bar((a == foo()) ? foo() : a);

Listing 4. Cache Memoization optimization pattern (Q4-B in Table III)

1 volatile int sum = 0, foo[ARR_LEN];
2 for(int i = 0; i < foo_len; i++) {
3 sum += foo[i];
4 }

Listing 5. 1* Loop (Q3). Produces useless results in each iteration.

the usefulness of Q2 operators for evaluating larger sets of
workloads. An alternative to Q4 and Q2 operators is to simulate
the observable effects of performance bugs rather than the bugs
themselves. A naive mutation operator could insert sleep()
operations into the code, to extend the wall clock time of the
execution. But inserting sleep() does not aid in improving
performance benchmark design workload selection, because
sleeping does not affect the CPU time, hence can be easily
detected by checking the CPU utilization.

Loops are often considered as one of the main sources of
performance bottlenecks [2], [3], [37], [38], but reversing loop-
related performance optimizations may introduce functional
behavior deviation. To simulate the effects of loop-related
performance bugs, we develop mutation operators to synthesize
inefficient loops. We derive the Q3 fault models from the
inefficient loops classified by Song and Lu [3]. There are many
types of inefficient loops, e.g. 1*, 0*1? or 0*1?. Since we are
simulating the effects of performance bugs by Q3 operators,
we do not discuss all types of loops in detail. We pick a
typical inefficient loop known as the 1* loop for our PMT
study and evaluation. 1* loops produce results (side effects)
in each iteration, where these results are useless. A simplified
example is the loop in Listing 5 which computes the sum
of an integer array. Since the variable sum is written by the
incremented value of foo[i], there is a result in every loop
iteration. However, these results (accumulated as sum) are
not used after the loop, i.e., they are unnecessarily computed.
Although most 1* loops are semantically related to the loop
context and much more complicated, Q3 mutation operators

6

http://git.savannah.gnu.org/cgit/grep.git/commit/?id=3255bc58e8fb2d98145dbb2dd17bae0a5e47a85e
http://git.savannah.gnu.org/cgit/grep.git/commit/?id=960ad317db21e781b04010f4128bb149273a3327

TABLE II
EVALUATION SOFTWARE PROJECTS

Project Application Area PL LoC Mutants Tm
* OH†

astar Path-finding Algorithms C++ 3959 514 0.77 36.41
bzip2 Compression C 7292 892 0.40 17.58
mcf Combinatorial Optim. C 2044 239 0.40 19.36
grep ‡ GNU Text Utility C 357 520 1532

* Time in seconds to generate all source code P-mutants.
† Total time in seconds to generate, sample, compile sampled P-mutants.
‡ grep has 1532 Q3 and Q4 operators and 2 extra case study P-mutants.

Overheads not applicable.

could use a simple form (e.g., summing integer) to simulate the
performance bug effects. Other loops like 0*1? and [0|1]* with
different memory access patterns can be easily implemented
and encoded in SLOWCOACH. Due to high similarity in terms
of introducing performance impacts for PMT, we only evaluate
the mutation operators derived from 1* loops in this paper, and
apply various array lengths (ARR_LEN) to simulate different
performance impacts. The foo array is allocated on stack to
avoid randomness caused by dynamic allocators (line 1 in
Listing 5). Since static arrays will be optimized by compilers,
volatile was used on foo to prevent the compiler removing
injected loops.

V. EVALUATION

In this section we evaluate SLOWCOACH by applying it to
4 real-word software projects. Our evaluation is driven by the
following research questions.
RQ 1 What is SLOWCOACH’s runtime overhead and how many

P-mutants does it generate?
RQ 2 Which fraction of the generated P-mutants preserve the

functional equivalence to the original version?
RQ 3 Does PMT assist in identifying issues with performance

testing tools and the testing environment?

A. Experimental Setup

1) Implementation & Mutation Operators: We use our
SLOWCOACH prototype implementation to conduct the ex-
periments for this evaluation. The prototype targets C and C++
software as performance critical software is often implemented
with these languages. The prototype itself is realized using C++
and Python. For its code mutation functionality, it builds upon
the Clang C/C++ frontend in version 10.0.1. The currently
supported mutation operators (cf. Section IV-B) that we apply
in our experiments are described in Table III. Note that the Q2
operators are only used in our grep case study in Section V-D
due to their program specificity and the manual effort involved.

2) Evaluation Targets: Since our prototype targets C and
C++ software, we select evaluation targets implemented in
these languages. Additionally, the selected targets should be
sensitive to performance issues, i.e., good performance should
matter to their users. For example, the performance of a
compression program such as bzip2 is important to its users
as excessive processing time wastes resources. Targets should

TABLE III
MUTATION OPERATORS.

Operator Description MPOO0* MPOO3

Q2-A Replace dfaisfast() calls with
0

Q2-B Replace fgrep_icase_avail()
calls with 0

Q3-A Prepend sleep(1) statement to
loop bodies

1000000 1000000

Q3-B Prepend 1* loop (10 000 iterations)
to loop bodies

51.47 4.82

Q3-C Prepend 1* loop (100 000 itera-
tions) to loop bodies

514.55 48.25

Q3-D Prepend 1* loop (1 000 000 itera-
tions) to loop bodies

5137.72 479.16

Q4-A Apply loop unbreaker, remove
early break from loops

Q4-B Apply Oblivion, remove cache
memoization

* Time measured by Google microbenchmark, in microseconds.

also be selected from diverse application domains to avoid
domain specific bias. Considering these aspects, we choose
the SPEC CPU 2006 benchmark suites [39] as our primary
source of evaluation targets. Table II provides an overview of
the selected target programs along with a size estimation as
number of lines of code (LoC). The target programs for our
case study are astar, bzip2, and mcf from SPECint 2006,
as well as grep, which is a well known real-world utility.

3) Workloads: To exercise the evaluation targets, we use
workloads of different sizes. For the programs from SPEC, we
use the standard workloads (inputs) that come with SPEC. For
grep, we use the developer test suite.

4) Experiment Execution: We generate and build the mutants
and run all experiments inside Docker containers on 4 identical
machines, which are equipped with Intel® Core™ i7-4790
CPUs (3.60GHz), 12GiB RAM, and 256GiB SSDs. The
host runs Ubuntu 21.10 with Linux 5.13.0. Inside the Docker
containers, we run an Ubuntu 20.04.3 LTS user-space.

Our workflow consists of the following steps: (1) we generate
and store all P-mutants for all evaluation targets as source code,
(2) we compile both the original programs (for the baseline)
and the P-mutants using Clang with O0 and O3 optimization
and store the resulting binaries, (3) we repeatedly execute
both the original (baseline) and mutated binaries with their
workloads and collect time measurements using GNU time. As
shown in Table II and discussed in Section V-B, SLOWCOACH
generates hundreds of P-mutants for our evaluation targets. To
reduce these numbers to a manageable level for experiment
execution, we randomly sample 50 Q4 P-mutants5, and 30
random locations on which four Q3 operators (Q3-A to Q3-
D in Table III) inject performance bugs. For each project in
Table II, there are a total of 170 P-mutants being sampled. Since

5If Q4 operators produce less than 50 P-mutants, all generated P-mutants
will be used.

7

https://github.com/google/benchmark

astar_q3 astar_q4 bzip2_q3 bzip2_q4 mcf_q3 mcf_q4
0%

20%

40%

60%

80%

100%
Pe

rc
en

ta
ge

 o
f P

-m
ut

an
ts

fne tmout normal

Fig. 3. Functional Equivalence by Operators and Programs

performance measurements are affected by external factors [39],
we repeat each execution 30 times and report median values if
not stated otherwise. The median values are used because they
are robust against outliers. To mitigate potential experiment
stalls, we assign a time budget of 30 minutes for each execution,
which is twice as long as the longest baseline execution needs.

B. RQ 1: Mutant Generation and Overheads

We analyze the amount of P-mutants SLOWCOACH generates
for our evaluation targets when we apply four different Q3
(effect simulation) and Q4 (dev errors, no context) mutation
operators (cf. Table III). We omit Q2 operators as they are
reserved for our grep case study in Section V-D. For Q3
operators, Table III provides the minimal performance overhead
(MPO), which is the performance effect introduced in an
individual execution of the mutated code, as measured with a
microbenchmark on the mutated code chunks. The MPOs are
given for both unoptimized (MPOO0) and optimized (MPOO3)
compilation.

In total, SLOWCOACH produces 1645 Q3 and Q4 P-mutants
for the three programs (astar, bzip2 and mcf), as shown the
Mutants column in Table II. The Tm column shows the time
SLOWCOACH takes to produce all source code P-mutants. The
OH column is the total time SLOWCOACH takes to generate all
source code files for P-mutants, inject sampled P-mutant source
code files into the original project copies (cf. Section V-A4)
and build sampled P-mutants. The time to produce P-mutants
is measured with the debug version of SLOWCOACH without
compiler optimization. SLOWCOACH produces source code P-
mutants in less than a second and builds all sampled P-mutants
within one minute. This shows the scalability of SLOWCOACH,
where it generates 1645 P-mutants in 1.57 seconds and builds
491 P-mutants in 73.35 seconds. In summary, SLOWCOACH
produces large amounts of P-mutants, where the exact number
and distribution depends on the target program’s code structure
and the presence of performance optimization patterns in the
code.

C. RQ 2: Functional Equivalence

In this section, we analyze the proportion of P-mutants which
preserve FE compared to the original program as only those
preserving FE are suitable for PMT. Since FE is undecidable for
arbitrary programs, we resort to comparing the standard output
(stdout) and the standard error (stderr) streams of baseline
(original program) and P-mutant executions. If the outputs
from both stdout and stderr of a P-mutant are identical to
those of the baseline, this P-mutant is considered functionally
equivalent. Otherwise the P-mutant is not considered to preserve
FE and will not be used further as part of the mutation score
computation in Section V-D. Also, if a P-mutant terminates
abnormally (exit with signals), this P-mutant is removed from
further experiments. If a P-mutant does not finish within the
assigned time budget, we consider it a timeout.

Fig. 3 summarizes the results of our FE analysis based on O0
binaries. Among all 483 sampled P-mutants, we observe a total
of 12 functional deviations (fne), 101 timeouts (tmout), and
370 P-mutants without functional deviation (normal). All 12
functional deviations are captured by signal 11 (segmentation
fault), while none of them have caused output deviation. 4
instances of the segmentation faults are caused by the Q3-C
and Q3-D operators that perform 1×105 and 1×106 iterations.
They are all located at pbeampp in mcf, where large numbers of
stack allocations (1×105 and 1×106 integers) lead to memory
errors. Another 3 FE cases are caused by Q4-A operators, and
Q4-B triggers the last 5 cases.

Timeouts can be seen as the fuzzy part between functional
and performance bugs [40]. Timeouts can be caused either by
a program hang, e.g., infinite loops from removing break
statements (cf. Section IV-B1), or by an excessively slow
program. Without dedicated monitoring [34], [35], these cases
are hard or impossible to distinguish.

In our experiments, about 20.9% of P-mutants yield timeouts,
most notably by Q3 operators. 94 out of 101 timeouts are fully
optimized Q3 P-mutants (O3), which do not timeout when
unoptimized. From an example P-mutant in bzip2, we found
that the unoptimized P-mutant finishes processing inputs in
(144.65± 0.12) s, while the fully optimized P-mutant binary
takes 40 hours to finish. Further investigation with Linux perf
shows that 27.15% of the CPU time of the unoptimized (O0)
P-mutant is spent on the function where the redundant loop is
injected, which is already the second slowest function according
to perf reports. The fully optimized P-mutant, on the other
hand, has spent 83.78% CPU time on the same function in the
first hour of execution. By analyzing the assembly code of the
affected O3 binary, we see that the injected redundant loop is
causing 76.91% of all CPU time. This finding demonstrates the
potential of PMT techniques to be extended to identify compiler
optimization anomalies because we observed optimized binaries
to run longer than unoptimized binaries. The mutation operators
in SLOWCOACH could be applied as mutation approaches of
compiler fuzzers [41], to facilitate the detection of compiler
bugs or undefined behaviors.

We discard both P-mutants that functionally deviated or

8

astar_ 3_O0

astar_ 3_O3

astar_ 4_O0

astar_ 4_O3

bzip2_ 3_O0

bzip2_ 3_O3

bzip2_ 4_O0

bzip2_ 4_O3

mcf_
3_O0

mcf_
3_O3

mcf_
4_O0

mcf_
4_O3

0.0

0.2

0.4

0.6

0.8

1.0
M

ut
at

io
n

Sc
or

e
(s

ec
on

ds
)

H0(0.01)
H0(0.05)
H0(0.1)

Fig. 4. Mutation Scores by H0

timed out for mutation score analysis, but keep the O0 P-mutants
whose O3 counterparts timed out due to the anomaly where
unoptimized binaries finish execution earlier than optimized
binaries. In summary, SLOWCOACH is capable of generating
76.6% valid mutants for mutation score analysis.

D. RQ 3: Mutation Score and Discussion

In this section, we evaluate SLOWCOACH by grading the
performance testing setup (cf. Section V-A3) to help improve
the quality of performance testing environments. The grade is
defined to be the mutation score (as in classic MT) which is the
number of P-mutants that can be killed. The wall clock time is
used as metric to determine the performance of a mutant. As
the wall clock time is susceptible to external noise, we repeat
the execution 30 times and apply one-sided statistical testing
to determine if a P-mutant can be killed.

There are many statistical approaches to compare the
performance metric (wall clock time) results for a P-mutant
Pm and for the baseline Pb, e.g., by arithmetic means or
medians. But both means and medians are not robust enough
to tolerate external noises. Delgado-Pérez et al. [31] used
Mann-Whitney U tests to compare Pm and Pb, by rejecting
the null hypothesis that Pm and Pb are drawn from the same
distribution. More specifically, the null hypothesis states that
the cumulative distribution function (CDF) F (x) of Pm is the
same as the CDF G(x) of Pb (F (x) = G(x)). If we can reject
H0 that Pm is drawn from the same distribution as the baseline
Pb, a P-mutant is killed when its Mann-Whitney U test p-value
is lower than the significance level α (0.01, 0.05 and 0.1). As
we are interested in results when the mutants perform slower
than the baseline, this null-hypothesis could potentially be
incorrectly rejected if we observe Pm which execute faster than
Pb. Therefore, we adopt the one-sided KS-test [42] with the
null hypothesis H0, which states F (x) ≤ G(x). By rejecting
H0, we can assert that Pm is stochastically larger than Pb. If
the Pm by any workload of a P-mutant is larger than Pb by
the corresponding workload, then the P-mutant is killed.

Fig. 4 shows the mutation scores of the three programs
by Q3 and Q4 operators and different optimization levels.
The mutation score is computed as the percentage of killed
P-mutants among all normal FE P-mutants without timeouts,
defined as

scoremut =
number of killed P-mutants

number of normal P-mutants
. (1)

In Fig. 4, there are three mutation scores for each significance
level (0.01, 0.05 and 0.1). The mutation score is measured in
the interval of [0, 1], where 1 means all P-mutants are killed
and 0 means no P-mutants are killed.

Among all unoptimized cases, 65% P-mutants are killed,
while 11% optimized P-mutants are killed (α = 0.1). Q3 P-
mutants, those in astar for example, show a large discrepancy
of mutation scores by different optimization levels, where
unoptimized P-mutants have a score of 0.9 and optimized ones
have 0.05 (the first two bars in Fig. 4). It is expected as the
MPO values of unoptimized Q3 operators are 10 times slower
than unoptimized ones (Table III). Q4 P-mutants are less likely
to be killed and are more likely to be killed when unoptimized
as well, except those by mcf.

We argue that PMT differs from classic MT in that PMT
assesses the performance testing as a whole, rather than a
particular workload or a profiler. Performance testing has many
facets, including compiler optimizations, workload selection,
selected performance diagnostic tools, or the repetition of the
profiling, etc. The performance impacts by Q3 and Q4 P-
mutants are believed to be small, unless repeated enough. The
relatively higher mutation scores by unoptimized P-mutants
(0.42) show that the P-mutants produced by SLOWCOACH do
introduce performance overheads. Since software development
is usually carried out with compiler optimization disabled,
this also demontrates the capability of SLOWCOACH to assess
the quality of the performance testing during the software’s
evolution.

The low mutation scores (overall 0.05%) by fully optimized
P-mutants convey potential limitations of our performance
testing enviornment. Firstly, the default workloads do not
exercise the injected code frequently enough. This may be a
scalability issue for production software as the release version
of software is usually fully optimized, as the existing workloads
cannot exhibit the performance bugs injected. Secondly, broader
range of profilers with finer granularity need to be used
in performance testing. The generic performance tool we
use (time) to compute the mutation score suffers from too
much noise and is not precise enough to measure millisecond
performance impacts. As the MPO values in Table III illustrate,
a single run of the injected code yields merely several
milliseconds (sometimes even hundreds of microseconds) of
performance overheads. Given external noises, small overheads
are challenging to detect and profilers like Linux perf could
be used to detect such overheads by sampling CPU [7].

1) Case Study on Context-dependent Q2 Operators: SLOW-
COACH also supports Q2 operators to simulate real-world
performance bugs given contextual information. We investigate

9

orig_O0 mut_O0 orig_O3 mut_O3

1

2

3

4

5

6
Ex

ec
ut

io
n

tim
e

(s
ec

on
ds

)

Fig. 5. Case 1 (Q2-A): The performance of the P-mutant whose dfafast is
replaced by false.

the performance impact of such operators (cf. Section IV-B2)
in a case study on grep. They each produces a P-mutant which
reproduces the scenarios involving performance bugs [16] and
preserves FE. The performance impacts of the P-mutants are
shown in Figs. 5 and 6. The y-axis is the execution wall clock
time of the testing program reported in seconds. Experiments
are repeated 50 times, and Figs. 5 and 6 are the box plots of
the performance values and their corresponding setup. Due to
the small performance deviation, some boxes are overlapped
with the median bar, and outliers are depicted as circles.
Original program executions are labeled with orig and P-mutant
executions with mut.

Since most real-world performance bugs involve performance
bottlenecks for certain workloads, we use dedicated workloads
for each mutant. In the first case (Q2-A), a 50MiB file
containing repeated “abcdabc” is searched for the pattern
’abcd.bd’. The performance impact of the mutant in the O0
case is with 3.45 s median difference. With O3 optimization, the
absolute impact is about 2.8 times smaller with 1.72 s. For the
Q2-B case, a file with 600 capitalized strings is matched with
its uncapitalized strings in a multibyte locale. The developer
who originally fixed the bug that Q2-B re-introduces claims
an overhead as large as 104 s6. However, we observe median
runtimes of only 0.21 s for O0 and 0.08 s for O3.

In summary, although Q2 operators produce representative
mutants derived from real-world bugs, their specificity leads
to limited applicability and the required domain knowledge
entails manual effort.

E. Internal and External Validity

The validity of the conclusions we draw in this work may
be affected by several factors. Our PMT operator selection
could be biased as we focus our approach and evaluation
on PMT operators derived from performance bugs that are
widely discussed in the research community [3], [43], but there
could be further classes of performance bugs that should be

6https://www.mail-archive.com/bug-grep@gnu.org/msg06334.html

orig_O0 mut_O0 orig_O3 mut_O3
0.00

0.05

0.10

0.15

0.20

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Fig. 6. Case 2 (Q2-B): The performance of the P-mutant whose function call
to fgrep_icase_available is replaced by false.

considered. Our random sample of P-mutants and mutation
score based on statistical testing could be statistically biased.
Our assessment of functional equivalence is based on program
outputs, which assumes that the FE P-mutants yield identical
outputs, which could be less robust. Bugs and mistakes in
the implementation and data processing could also affect our
conclusions. This is why we carefully tested and debugged
our prototype implementation and all involved scripts and
performed sanity checks on our collected data. We plan to
make our implementation and data publicly available for review
upon publication.

VI. CONCLUSION

In this paper, we presented and evaluated SLOWCOACH, a
PMT framework. We subdivided the design space of PMT
operators into four quadrants depending on whether they
simulate effects of performance bugs or actual developer
errors and identify functional equivalence as an key issue.
We discuss concrete PMT operators from these quadrants
and demonstrate how they can be derived from real-world
performance optimizations and bugs. We demonstrate the
applicability of our approach using 4 real-world software
projects and show that our PMT operators can produce
P-mutants that preserve functional equivalence and assess
performance testing. We find that the mutation score based on
one-sided statistical testing can provide reliable assessments
of the quality of the performance testing, which could help
provide suggestions on improving performance testing.

ACKNOWLEDGMENT

This paper is supported by EC H2020 CONCORDIA GA
No. 830927 and by EPSRC grant EP/V026763/1.

DATA STATEMENT

The code used to generate the data analysed in this pa-
per are both available at https://anonymous.4open.science/r/
PMT-423A.

10

https://www.mail-archive.com/bug-grep@gnu.org/msg06334.html
https://anonymous.4open.science/r/PMT-423A
https://anonymous.4open.science/r/PMT-423A

REFERENCES

[1] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu,
“Understanding and detecting real-world performance
bugs,” SIGPLAN Not., vol. 47, no. 6, pp. 77–88, Jun.
2012, ISSN: 0362-1340. DOI: 10.1145/2345156.2254075.

[2] A. Nistor, P.-C. Chang, C. Radoi, and S. Lu, “Caramel:
Detecting and fixing performance problems that have
non-intrusive fixes,” in Proceedings of the 37th Inter-
national Conference on Software Engineering - Volume
1, ser. ICSE ’15, Florence, Italy: IEEE Press, 2015,
pp. 902–912, ISBN: 9781479919345.

[3] L. Song and S. Lu, “Performance diagnosis for inef-
ficient loops,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE), 2017,
pp. 370–380.

[4] M. Attariyan, M. Chow, and J. Flinn, “X-ray: Au-
tomating root-cause diagnosis of performance anomalies
in production software,” in Proceedings of the 10th
USENIX Conference on Operating Systems Design
and Implementation, ser. OSDI’12, Hollywood, CA,
USA: USENIX Association, 2012, pp. 307–320, ISBN:
9781931971966.

[5] P. Su, S. Wen, H. Yang, M. Chabbi, and X. Liu,
“Redundant loads: A software inefficiency indicator,”
in Proceedings of the 41st International Conference on
Software Engineering, ser. ICSE ’19, Montreal, Quebec,
Canada: IEEE Press, 2019, pp. 982–993. DOI: 10.1109/
ICSE.2019.00103.

[6] N. R. Tallent, J. M. Mellor-Crummey, and A. Porterfield,
“Analyzing lock contention in multithreaded applica-
tions,” SIGPLAN Not., vol. 45, no. 5, pp. 269–280, Jan.
2010, ISSN: 0362-1340. DOI: 10.1145/1837853.1693489.

[7] Perf Maintainers, Perf Wiki, Online: https://perf.wiki.
kernel.org, Accessed on 2022-04-22.

[8] The LTTng Project, LTTng: an open source tracing
framework for Linux, Online: https://lttng.org, Accessed
on 2022-04-22.

[9] N. Rotem, L. Howes, and D. Goldblatt, Warrior1: A
performance sanitizer for c++, 2020. arXiv: 2010.09583
[cs.SE].

[10] T. Yu and M. Pradel, “Syncprof: Detecting, localizing,
and optimizing synchronization bottlenecks,” in Proceed-
ings of the 25th International Symposium on Software
Testing and Analysis, ser. ISSTA 2016, Saarbrücken, Ger-
many: ACM, 2016, pp. 389–400, ISBN: 9781450343909.
DOI: 10.1145/2931037.2931070.

[11] J. Chen, “Performance regression detection in devops,” in
Proceedings of the ACM/IEEE 42nd International Con-
ference on Software Engineering: Companion Proceed-
ings. New York, NY, USA: ACM, 2020, pp. 206–209,
ISBN: 9781450371223. DOI: 10.1145/3377812.3381386.

[12] M. Chabbi, S. Wen, and X. Liu, “Featherlight on-the-
fly false-sharing detection,” in Proceedings of the 23rd
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, ser. PPoPP ’18, Vienna, Austria:

ACM, 2018, pp. 152–167, ISBN: 9781450349826. DOI:
10.1145/3178487.3178499.

[13] S. Wen, X. Liu, J. Byrne, and M. Chabbi, “Watching for
software inefficiencies with witch,” in Proceedings of the
Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating
Systems, ser. ASPLOS ’18, Williamsburg, VA, USA:
ACM, 2018, pp. 332–347, ISBN: 9781450349116. DOI:
10.1145/3173162.3177159.

[14] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon,
and M. Harman, “Mutation testing advances: An analysis
and survey,” Advances in Computers, 2018.

[15] Y. Jia and M. Harman, “An analysis and survey of the
development of mutation testing,” IEEE Transactions
of Software Engineering, vol. 37, no. 5, pp. 649–678,
2011. DOI: 10.1109/TSE.2010.62.

[16] Y. Chen, S. Winter, and N. Suri, “Inferring performance
bug patterns from developer commits,” in 2019 IEEE
30th International Symposium on Software Reliability
Engineering (ISSRE), 2019, pp. 70–81.

[17] A. B. Sánchez, P. Delgado-Pérez, I. Medina-Bulo, and
S. Segura, “Tandem: A taxonomy and a dataset of
real-world performance bugs,” IEEE Access, vol. 8,
pp. 107 214–107 228, 2020.

[18] S. Tizpaz-Niari, P. Černý, and A. Trivedi, “Detecting and
understanding real-world differential performance bugs
in machine learning libraries,” in Proceedings of the 29th
ACM SIGSOFT International Symposium on Software
Testing and Analysis, ser. ISSTA 2020, Virtual Event,
USA: ACM, 2020, pp. 189–199, ISBN: 9781450380089.
DOI: 10.1145/3395363.3404540.

[19] F. Zhou, Y. Gan, S. Ma, and Y. Wang, “Wperf:
Generic off-cpu analysis to identify bottleneck waiting
events,” in Proceedings of the 13th USENIX Conference
on Operating Systems Design and Implementation,
ser. OSDI’18, Carlsbad, CA, USA: USENIX Association,
2018, pp. 527–543, ISBN: 9781931971478.

[20] M. M. u. Alam, T. Liu, G. Zeng, and A. Muzahid,
“Syncperf: Categorizing, detecting, and diagnosing syn-
chronization performance bugs,” in Proceedings of the
Twelfth European Conference on Computer Systems,
ser. EuroSys ’17, Belgrade, Serbia: ACM, 2017, pp. 298–
313, ISBN: 9781450349383. DOI: 10 .1145/3064176.
3064186.

[21] S. Wen, X. Liu, and M. Chabbi, “Runtime value
numbering: A profiling technique to pinpoint redundant
computations,” in 2015 International Conference on
Parallel Architecture and Compilation (PACT), 2015,
pp. 254–265. DOI: 10.1109/PACT.2015.29.

[22] L. Della Toffola, M. Pradel, and T. R. Gross, “Perfor-
mance problems you can fix: A dynamic analysis of
memoization opportunities,” SIGPLAN Not., vol. 50,
no. 10, pp. 607–622, Oct. 2015, ISSN: 0362-1340. DOI:
10.1145/2858965.2814290.

[23] T. T. Chekam, M. Papadakis, and Y. Le Traon, “Mart:
A mutant generation tool for llvm,” in Proceedings

11

https://doi.org/10.1145/2345156.2254075
https://doi.org/10.1109/ICSE.2019.00103
https://doi.org/10.1109/ICSE.2019.00103
https://doi.org/10.1145/1837853.1693489
https://perf.wiki.kernel.org
https://perf.wiki.kernel.org
https://lttng.org
https://arxiv.org/abs/2010.09583
https://arxiv.org/abs/2010.09583
https://doi.org/10.1145/2931037.2931070
https://doi.org/10.1145/3377812.3381386
https://doi.org/10.1145/3178487.3178499
https://doi.org/10.1145/3173162.3177159
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1145/3395363.3404540
https://doi.org/10.1145/3064176.3064186
https://doi.org/10.1145/3064176.3064186
https://doi.org/10.1109/PACT.2015.29
https://doi.org/10.1145/2858965.2814290

of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE
2019, Tallinn, Estonia: ACM, 2019, pp. 1080–1084,
ISBN: 9781450355728. DOI: 10.1145/3338906.3341180.

[24] T. T. Chekam, M. Papadakis, M. Cordy, and Y. L. Traon,
“Killing stubborn mutants with symbolic execution,”
ACM Trans. Softw. Eng. Methodol., vol. 30, no. 2, Jan.
2021, ISSN: 1049-331X. DOI: 10.1145/3425497.

[25] X. Devroey, G. Perrouin, M. Papadakis, A. Legay,
P.-Y. Schobbens, and P. Heymans, “Model-based mutant
equivalence detection using automata language equiva-
lence and simulations,” Journal of Systems and Software,
vol. 141, pp. 1–15, 2018, ISSN: 0164-1212. DOI: 10.
1016/j.jss.2018.03.010.

[26] G. Petrović, M. Ivanković, G. Fraser, and R. Just,
“Does mutation testing improve testing practices?” In
Proceedings of the 43rd International Conference on
Software Engineering. IEEE Press, 2021, pp. 910–921,
ISBN: 9781450390859. DOI: 10.1109/ICSE43902.2021.
00087.

[27] R. Natella, D. Cotroneo, and H. S. Madeira, “Assessing
dependability with software fault injection: A survey,”
ACM Comput. Surv., vol. 48, no. 3, Feb. 2016, ISSN:
0360-0300. DOI: 10.1145/2841425.

[28] R. Natella, D. Cotroneo, J. A. Duraes, and H. S. Madeira,
“On fault representativeness of software fault injection,”
IEEE Transactions on Software Engineering, vol. 39,
no. 1, pp. 80–96, 2013.

[29] D. Cotroneo, A. Lanzaro, and R. Natella, “Faultprog:
Testing the accuracy of binary-level software fault
injection,” IEEE Transactions on Dependable and Secure
Computing, vol. 15, no. 1, pp. 40–53, 2018. DOI: 10.
1109/TDSC.2016.2522968.

[30] R. Natella, S. Winter, D. Cotroneo, and N. Suri, “Ana-
lyzing the effects of bugs on software interfaces,” IEEE
Transactions on Software Engineering, vol. 46, no. 3,
pp. 280–301, 2020. DOI: 10.1109/TSE.2018.2850755.

[31] P. Delgado-Pérez, A. B. Sánchez, S. Segura, and I.
Medina-Bulo, “Performance mutation testing,” Software
Testing, Verification and Reliability, Jan. 2020. DOI:
10.1002/stvr.1728.

[32] S. Gupta, A. Saxena, A. Mahajan, and S. Bansal, “Effec-
tive use of smt solvers for program equivalence checking
through invariant-sketching and query-decomposition,”
in Theory and Applications of Satisfiability Testing –
SAT 2018, O. Beyersdorff and C. M. Wintersteiger,
Eds., Cham: Springer International Publishing, 2018,
pp. 365–382, ISBN: 978-3-319-94144-8.

[33] N. P. Lopes and J. Monteiro, “Automatic equivalence
checking of programs with uninterpreted functions and
integer arithmetic,” International Journal on Software
Tools for Technology Transfer, vol. 18, no. 4, pp. 359–
374, Feb. 2015. DOI: 10.1007/s10009-015-0366-1.

[34] D. Cotroneo, R. Natella, and S. Russo, “Assessment and
improvement of hang detection in the linux operating

system,” in 2009 28th IEEE International Symposium on
Reliable Distributed Systems, 2009, pp. 288–294. DOI:
10.1109/SRDS.2009.26.

[35] Y. Zhu, Y. Li, J. Xue, et al., “What is system hang
and how to handle it,” in 2012 IEEE 23rd International
Symposium on Software Reliability Engineering, 2012,
pp. 141–150. DOI: 10.1109/ISSRE.2012.12.

[36] The GNU Project, Savannah Git Hosting - grep.git,
Online: https : / / git . savannah . gnu . org / cgit / grep . git,
Accessed on 2022-04-20.

[37] C. Lemieux, R. Padhye, K. Sen, and D. Song, “Perf-
fuzz: Automatically generating pathological inputs,” in
Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA
2018, Amsterdam, Netherlands: ACM, 2018, pp. 254–
265, ISBN: 9781450356992. DOI: 10 .1145/3213846.
3213874.

[38] T. Petsios, J. Zhao, A. D. Keromytis, and S. Jana,
“Slowfuzz: Automated domain-independent detection of
algorithmic complexity vulnerabilities,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’17, Dal-
las, Texas, USA: ACM, 2017, pp. 2155–2168, ISBN:
9781450349468. DOI: 10.1145/3133956.3134073.

[39] J. L. Henning, “Spec cpu2006 benchmark descriptions,”
SIGARCH Comput. Archit. News, vol. 34, no. 4, pp. 1–17,
Sep. 2006, ISSN: 0163-5964. DOI: 10.1145/1186736.
1186737.

[40] R. Atachiants, G. Doherty, and D. Gregg, “Parallel
performance problems on shared-memory multicore
systems: Taxonomy and observation,” IEEE Transactions
on Software Engineering, vol. 42, no. 8, pp. 764–785,
2016. DOI: 10.1109/TSE.2016.2519346.

[41] C. Cummins, P. Petoumenos, A. Murray, and H. Leather,
“Compiler fuzzing through deep learning,” in Proceed-
ings of the 27th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ser. ISSTA 2018,
Amsterdam, Netherlands: ACM, 2018, pp. 95–105, ISBN:
9781450356992. DOI: 10.1145/3213846.3213848.

[42] “Kolmogorov–smirnov test,” in The Concise Encyclope-
dia of Statistics. New York, NY: Springer New York,
2008, pp. 283–287, ISBN: 978-0-387-32833-1. DOI: 10.
1007/978-0-387-32833-1_214.

[43] S. Tsakiltsidis, A. Miranskyy, and E. Mazzawi, “On
automatic detection of performance bugs,” in 2016
IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), IEEE, 2016. DOI:
10 . 1109 / issrew. 2016 . 43. [Online]. Available: https :
//doi.org/10.1109\%2Fissrew.2016.43.

12

https://doi.org/10.1145/3338906.3341180
https://doi.org/10.1145/3425497
https://doi.org/10.1016/j.jss.2018.03.010
https://doi.org/10.1016/j.jss.2018.03.010
https://doi.org/10.1109/ICSE43902.2021.00087
https://doi.org/10.1109/ICSE43902.2021.00087
https://doi.org/10.1145/2841425
https://doi.org/10.1109/TDSC.2016.2522968
https://doi.org/10.1109/TDSC.2016.2522968
https://doi.org/10.1109/TSE.2018.2850755
https://doi.org/10.1002/stvr.1728
https://doi.org/10.1007/s10009-015-0366-1
https://doi.org/10.1109/SRDS.2009.26
https://doi.org/10.1109/ISSRE.2012.12
https://git.savannah.gnu.org/cgit/grep.git
https://doi.org/10.1145/3213846.3213874
https://doi.org/10.1145/3213846.3213874
https://doi.org/10.1145/3133956.3134073
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1109/TSE.2016.2519346
https://doi.org/10.1145/3213846.3213848
https://doi.org/10.1007/978-0-387-32833-1_214
https://doi.org/10.1007/978-0-387-32833-1_214
https://doi.org/10.1109/issrew.2016.43
https://doi.org/10.1109\%2Fissrew.2016.43
https://doi.org/10.1109\%2Fissrew.2016.43

	I Introduction
	II Related Work
	III Background
	III-A Performance Mutation Testing
	III-B PMT Fault Models

	IV SlowCoach: A PMT Framework
	IV-A Overview and Workflow
	IV-B Mutation Operators
	IV-B1 Q4 Operators (developer errors, context-independent)
	IV-B2 Q2 Operators (developer errors, context-dependent)
	IV-B3 Q1 & Q3 Operators (performance effects, context-dependent and -independent)

	V Evaluation
	V-A Experimental Setup
	V-A1 Implementation & Mutation Operators
	V-A2 Evaluation Targets
	V-A3 Workloads
	V-A4 Experiment Execution

	V-B RQ1: Mutant Generation and Overheads
	V-C RQ2: Functional Equivalence
	V-D RQ3: Mutation Score and Discussion
	V-D1 Case Study on Context-dependent Q2 Operators

	V-E Internal and External Validity

	VI Conclusion

