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Abstract

We present a study of combinatorial constructions that are related to understanding the

structure of bar-joint frameworks.

The primary objects of study in Chapters 2 and 3 of this thesis are connected (k, l)-sparsity

matroids. Taking inspiration from [22], where connected (2, 3)-sparsity matroids are

considered, we provide a method of constructing graphs with a connected (2, 2)-sparsity

matroid. Throughout these chapters we work in as a purely combinatorial a setting as is

practical, minimising invocations to theoretic machinery involving frameworks.

In Chapter 4 we show that the aforementioned method of construction is pertinent to

characterising globally rigid frameworks in two-dimensional spaces endowed with non-

Euclidean norms. This “natural avenue of research” [8, p.181] builds on the character-

isation of rigid graphs in such spaces by Dewar. However, when compared to Dewar’s

characterisation, we make use of an additional constraint in order to link these combina-

torial methods to the structure of frameworks in these spaces. Specifically, we demand

that the norms we consider are analytic.

We then turn our attention, in Chapter 5, away from (k, l)-sparsity matroids and towards

labelled graphs. More precisely, we provide a method of constructing a family of labelled

graphs designed to satisfy sparsity conditions relevant to the rigidity of frameworks realised

on not necessarily concentric spheres. A precise connection between this family of graphs

this notion of rigidity is not provided. Such a description would extend work characterising

rigid frameworks on concentric spheres [32], [33].

To conclude there is a short chapter suggesting ways this research may be built upon.
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Chapter 1

Graphs, Frameworks, and Rigidity

We begin with a chapter outlining some required background material. More specifically,

we briefly cover concepts from graph theory, matroid theory, the theory of normed spaces,

and rigidity theory.

1.1 Graph Theory

1.1.1 Structure of Graphs

Definition 1.1.1.1. A graph is an ordered pair (V,E) where V is a non-empty finite

set and E is a set of unordered pairs of distinct elements of V .

This section proceeds by providing terminology and notation that allows us to more easily

discuss graphs in a meaningful way. Much of this is standard, but it is preferable to be

precise to avoid ambiguity. Whilst true of mathematics in general, this need is perhaps

exacerbated by the various competing notions of what it means to be a graph.

Given a graph G, G = (V (G), E(G)). We say v ∈ V (G) is a vertex of G and {u, v} ∈
E(G) is an edge of G. We denote the edge {u, v} by uv or vu. For e = uv ∈ E(G)

we say vertices u and v are adjacent in G, while u and e (and v and e) are incident

in G. In most instances within this thesis, the graph that these properties are occurring

1



1.1. Graph Theory

‘in’ should be clear and hence we may refrain from stating ‘in G’ without excessive risk

of causing confusion.

Take k ∈ Z such that k ≥ 2 and for all 1 ≤ i ≤ k let Gi = (Vi, Ei) be a graph. We say

that the union of these graphs is the graph
⋃k
i=1Gi := (

⋃k
i=1 Vi,

⋃k
i=1Ei).

Definition 1.1.1.2. Graphs G and H are isomorphic, which we denote by G ∼= H, if

there exists a function f : V (G) → V (H) such that f is bijective and uv ∈ E(G) if and

only if f(u)f(v) ∈ E(H); we call f a graph isomorphism (from G to H).

A graph is complete if every pair of vertices is an edge. A trivial observation is that if

G ∼= H then |V (G)| = |V (H)|. If G and H are complete then the converse is also true.

So, ifG andH are complete thenG ∼= H if and only if |V (G)| = |V (H)|. For this reason,
we write G ∼= Kn to demonstrate that G is a (up to isomorphism, the) complete graph

with |V (G)| = n. Similarly, if |E(G)| = |E(K|V (G)|)|−1 and |E(H)| = |E(K|V (H)|)|−1

then G ∼= H if and only if |V (G)| = |V (H)|. Therefore, we write G ∼= K−
n to indicate

that G is a (up to isomorphism, the) graph with |V (G)| = n and |E(G)| = |E(Kn)|−1.

Definition 1.1.1.3. Let G be a graph. A subgraph of G is a graph H such that

V (H) ⊆ V (G) and E(H) ⊆ E(G). For all ∅ ≠ U ⊆ V (G), the graphG[U ] := (U, {xy ∈
E(G) : {x, y} ⊆ U}) is the subgraph of G induced by U . Similarly, for all ∅ ̸= F ⊆
E(G), the graph G[F ] := ({v ∈ V (G) : ∃e ∈ F such that v and e are incident}, F ) is

the subgraph of G induced by F .

Given a graph G and X, Y ⊆ V (G) we set dG(X, Y ) := |{xy ∈ E(G) : x ∈ X \
Y and y ∈ Y \X}| and we set iG(X) := |{x1x2 ∈ E(G) : {x1, x2} ⊆ X}|.

Remark 1. In their 2005 paper, Jackson and Jordán use iG(X) to denote |E(G[X])|
[22, p.3]. As we do not allow ∅ to induce a subgraph of G, our rephrasing of this

definition allows us to consider iG(∅) rather than having to specify that X ̸= ∅. Indeed,
if X ̸= ∅ then |E(G[X])| = iG(X) and if X = ∅ then iG(X) = 0. The decision

to give a definition of dG(X, Y ) which is (superficially) different to that of Jackson

and Jordán [22, p.5] is made for a similar reason. Note that if X ̸= ∅ ̸= Y then

E(G[X ∪ Y ]) \ (E(G[X]) ∪ E(G[Y ])) = {xy ∈ E(G) : x ∈ X \ Y and y ∈ Y \X}.

2



Chapter 1. Graphs, Frameworks, and Rigidity

Lemma 1.1.1.4. [22, Lemma 2.1] Let G be a graph and take X, Y ⊆ V (G).

iG(X) + iG(Y ) + dG(X, Y ) = iG(X ∪ Y ) + iG(X ∩ Y ).

Definition 1.1.1.5. Let G be a graph and take v ∈ V (G). The degree of v in G is

dG(v) := |{e ∈ E(G) : v and e are incident}|.

Given a graph G and v ∈ V (G), the neighbourhood of v in G is NG(v) := {u ∈
V (G) : uv ∈ E(G)}. We note that |NG(v)| = dG(v). The closed neighbourhood of v

in G is NG[v] := NG(v)∪{v}. Two values associated with G are the minimum degree in

G and the maximum degree in G, which we denote by δ(G) := min{dG(v) : v ∈ V (G)}
and ∆(G) := max{dG(v) : v ∈ V (G)} respectively. The concept of degree allows us to

state the following result, originally due to Euler [15], (see [16] for an English translation)

which is often referred to as The First Theorem of Graph Theory. One can find a proof

in various places; we refer the reader to Gould’s introductory text.

Theorem 1.1.1.6. [18, Theorem 1.1.1] Let G be a graph, then
∑

v∈V (G) dG(v) =

2|E(G)|.

The remainder of this subsection is primarily concerned with ‘connectivity’ properties of

graphs, namely connectedness, vertex-connectivity, and edge-connectivity. Before consid-

ering these connectivity concepts we require terminology to reduce reliance on repetition.

Let G be a graph. A walk in G is a non-empty finite sequence (a1, . . . , an) such that

for all 1 ≤ i ≤ n, ai ∈ V (G) and for all 1 ≤ i ≤ n − 1, aiai+1 ∈ E(G). A path in G

is a walk (a1, . . . , an) such that for all 1 ≤ i < j ≤ n, ai ̸= aj. A cycle in G is a walk

(a1, . . . , an) such that n ≥ 4, a1 = an, and for all 1 ≤ i < j ≤ n− 1.

Given a graph G we may consider the relation on V (G) whereby vertices u and v are

related if and only if there exists a path (a1, . . . , an) in G such that a1 = u and an = v.

We note that this is an equivalence relation on V (G) and hence this relation induces a

partition of V (G). A component of G is a graph G[U ] such that U is an element of

this partition.
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1.1. Graph Theory

Definition 1.1.1.7. A graph is connected if it has exactly one component, otherwise

it is disconnected.

Before defining vertex-connectivity and edge-connectivity, notions which offer the ability

to consider connectedness of graphs in finer detail, we describe some species of graph.

A graph, G, is a cycle graph if there exists a cycle (a1, . . . , an) in G such that G =

({a1, . . . , an−1}, {aiai+1 : 1 ≤ i ≤ n − 1}). Similarly to complete graphs (see above),

if G and H are cycle graphs then G ∼= H if and only if |V (G)| = |V (H)|. Therefore

we write G ∼= Cn to indicate that G is a (up to isomorphism, the) cycle graph with

|V (G)| = n.

Definition 1.1.1.8. A graph is a forest if there do not exist any cycles in it, and it is a

tree if it is a connected forest.

Definition 1.1.1.9. Let G be a graph. The vertex-connectivity of G is κ(G) :=

min{|U | : U ⊊ V (G), and |V (G)\U | = 1 or G[V (G)\U ] is disconnected}. The edge-
connectivity ofG is κ1(G) := min{|F | : F ⊆ E(G), and |V (G)| = 1 or (V (G), E(G)\
F ) is disconnected}. For all k ∈ N, we say G is k-vertex-connected if κ(G) ≥ k, and

we say that G is k-edge-connected if κ1(G) ≥ k.

In Section 2.2 and Section 2.3 we will study graphs with particular structural properties.

These properties relate to vertex-connectivity and edge-connectivity, in as much as their

presence provides an upper bound on the vertex-connectivity or edge-connectivity of a

graph. We this future relevance in mind, for now we have the following definitions. Note

that given some U ⊆ R we set U+ := {u ∈ U : u > 0}. A typical example of this is that

N+ = N \ {0}.

Definition 1.1.1.10. Let G = (V,E) be a graph and take k ∈ N+. A k-vertex-

separation of G is an ordered pair, (G1, G2), of subgraphs of G where for i ∈ {1, 2},
Gi = G[Vi] = (Vi, Ei) for some Vi ⊆ V such that V1 \ V2 ̸= ∅ ≠ V2 \ V1, V = V1 ∪ V2,
E = E1 ∪ E2, and |V1 ∩ V2| = k.

Definition 1.1.1.11. Let G = (V,E) be a graph and take k ∈ N+. A k-edge-

separation of G is an ordered pair, (G1, G2), of subgraphs of G where for i ∈ {1, 2},
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Gi = G[Vi] = (Vi, Ei) for some Vi ⊆ V such that V1 ∩ V2 = ∅, V = V1 ∪ V2, and

|E \ (E1 ∪ E2)| = k.

We conclude this subsection by commenting on the extent to which fixing any one of

the vertex-connectivity, edge-connectivity, or minimum degree, of a graph constrains the

possible values of the others.

Theorem 1.1.1.12. [20, Theorem 5.1], [18, Theorem 2.2.2] Let G be a graph, then

κ(G) ≤ κ1(G) ≤ δ(G).

Theorem 1.1.1.13. [3, Theorem 3] For all b, c, d ∈ N+, if b ≤ c ≤ d then there exists

a graph G such that κ(G) = b, κ1(G) = c, and δ(G) = d.

Remark 2. Before the statement of [20, Theorem 5.1], Harary credits the result to Whit-

ney via a reference to [40]. The terminology used in Whitney’s paper is quite different

from current terminology, hence our reference to the proofs of Harary and of Gould. We

note that in his paper, Whitney considers vertex-connectivity and edge-connectivity in a

more general context than that of graphs (to be precise, he works with objects referred to

by Harary as “pseudographs” [20, p.10]). However, the caveats provided by Whitney (“In

this section, we allow the graphs to contain 2-circuits, but no 1-circuits.” [40, p.158] and

“A necessary and sufficient condition that a graph containing no 2-circuit” [40, p.160,

Theorem 7]) mean that [40, Theorem 7] is a statement about graphs (in our sense) from

which it follows that if a graph is k-vertex-connected then it is also k-edge-connected.

1.1.2 Graph Operations

The idea of a ’graph operation’ will appear repeatedly throughout this thesis, and we

provide a formal account of such operations here. Rather than speaking of graph op-

erations in a somewhat nebulous way we choose to say that for a graph G, a [name of

operation] of G is a graph G′ such that G′ is related to G in some way. One benefit

of this approach is that the connection between one operation and an ‘inverse’ of that

operation can be stated unambiguously. We proceed to define a number of operation and

‘inverse’ operation pairs. Two of the more involved such pairs are illustrated in Figure

1.1 and Figure 1.2 respectively.
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Definition 1.1.2.1. Let G = (V,E) be a graph such that |V | ≥ 2 and G is not complete.

An edge-addition of G is a graph (V,E ∪ {xy}) where xy /∈ E. We say (V,E ∪ {xy})
is the edge-addition of G adding xy.

Let H be a graph such that E(H) ̸= ∅. An edge-deletion of H is a graph H ′ such that

H is an edge-addition of H ′. If E(H)\E(H ′) = {e}, then we say H ′ is the edge-deletion

of H at e.

Definition 1.1.2.2. Take k ∈ N+. Let G = (V,E) be a graph such that |V | ≥ k. A

(k,0)-extension of G is a graph (V ∪ {v}, E ∪ {vu1, . . . , vuk}) where v /∈ V . We say

(V ∪ {v}, E ∪ {vu1, . . . , vuk}) is the (k, 0)-extension of G adding v to {u1, . . . , uk}.

Let H be a graph such that {u ∈ V (H) : dH(u) = k} ≠ ∅. A (k,0)-reduction of H

is a graph H ′ such that H is a (k, 0)-extension of H ′. If V (H) \ V (H ′) = {v} then we

say H ′ is the (k, 0)-reduction of H at v.

Definition 1.1.2.3. Take k ∈ N+. Let G = (V,E) be a graph such that |V | ≥ k+1 and

|E| ≥ 1. A (k,1)-extension of G is a graph (V ∪ {v}, (E \ {uiuj})∪ {vu1 . . . vuk+1})
where v /∈ V , 1 ≤ i < j ≤ k + 1, and uiuj ∈ E. We say (V ∪ {v}, (E \ {uiuj}) ∪
{vu1 . . . vuk+1}) is a (k, 1)-extension of G adding v to {u1, . . . , uk+1}, or the (k, 1)-

extension of G adding v to {u1, . . . , uk+1} and deleting uiuj.

Let H be a graph such that {u ∈ V (H) : dH(u) = k + 1 and H[NH(u)] ≇ Kk+1} ̸= ∅.
A (k,1)-reduction of H is a graph H ′ such that H is a (k, 1)-extension of H ′. If

V (H) \ V (H ′) = {v} and E(H ′) \E(H) = {e} then we say H ′ is a (k, 1)-reduction of

H at v, or the (k, 1)-reduction of H at v adding e.

Definition 1.1.2.4. Let G = (V,E) be a graph such that |E| ≥ 1. A generalised

vertex split of G is a graph ((V \ {v}) ∪ {v1, v2}, (E \ {vu : u ∈ NG(v)}) ∪ {v1u : u ∈
N1}∪ {v2u : u ∈ N2}∪ {v1v2, v1x}) where dG(v) ≥ 1, N1 ∪N2 = NG(v), N1 ∩N2 = ∅,
and x ∈ V \(N1∪{v}). We say ((V \{v})∪{v1, v2}, (E\{vu : u ∈ NG(v)})∪{v1u : u ∈
N1}∪{v2u : u ∈ N2}∪{v1v2, v1x}) is the generalised vertex split of G at v on (N1, N2)

adding {v1, v2, v1x}.

Let H be a graph such that there exists v1v2 ∈ E(H) with dH(v1) ≥ 2 or dH(v2) ≥ 2.

6
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A generalised edge-reduction of H is a graph H ′ such that H is a generalised vertex

split of H ′. If V (H ′)\V (H) = {v}, and V (H)\V (H ′) = {v1, v2}, and |NH(x)∩{v}| =
|NH′∩{v1, v2}|−1, then we say H ′ is a generalised edge-reduction of H contracting v1v2

and deleting vix, for some i ∈ {1, 2}, or the generalised edge-reduction of H contracting

v1v2 to v and deleting vix, for some i ∈ {1, 2}.

GH1 H2

N1 N2 N1 N2N1 N2

. . . . . . . . . . . .. . . . . .

g.e.r.

g.v.s.

g.e.r.

g.v.s.

v

x1 x2

v1 v2

x1 x2

v1 v2

x1 x2

Figure 1.1: Illustration of the generalised vertex split and generalised edge-reduction op-
erations.
For i ∈ {1, 2}, Hi is the generalised vertex split of G at v on (N1, N2) adding
{v1, v2, v1xi}. For i ∈ {1, 2}, G is the generalised edge-reduction of Hi contracting
v1v2 to v and deleting v1xi.

G

K−
4 -extension

K−
4 -reduction

H

e

w1

w2

Figure 1.2: Illustration of the K−
4 -extension and K−

4 -reduction operations. G is the K−
4 -

reduction of H deleting e and adding {w1, w2} and H is the K−
4 -reduction of G deleting

{w1, w2}.

Definition 1.1.2.5. Let G = (V,E) be a graph such that |E| ≥ 1. A K−
4 -extension of

G is a graph (V ∪{w1, w2}, (E \{xy})∪{xw1, xw2, yw1, yw2, w1w2}) where w1, w2 /∈ V

and xy ∈ E. We say (V ∪ {w1, w2}, (E \ {xy}) ∪ {xw1, xw2, yw1, yw2, w1w2}) is the
K−

4 -extension of G deleting xy and adding {w1, w2}.
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Let H be a graph such that there exists U ⊆ V (H) where H[U ] ∼= K−
4 and {u ∈

U : dH[U ](u) = 3} ⊆ {u ∈ U : dH(u) = 3}. A K−
4 -reduction of H is a graph H ′

such that H is a K−
4 -extension of H ′. If V (H) \ V (H ′) = {a, b} then we say H ′ is the

K−
4 -reduction of H deleting {a, b}.

1.2 Matroid Theory

In a 1935 paper Whitney showed that various possible definitions of an object, called a

matroid, were in fact equivalent [41]. The remainder of Whitney’s paper considered how

matroids relate to both graphs and matrices. In particular, Whitney introduced a notion

of connectivity (which he referred to as non-separability) in the context of matroids.

Whitney’s definition of a matroid and of what it means for a matroid to be connected

are both based on the ‘rank function’ of a matroid. We choose to define a matroid via

properties satisfied by the ‘independent sets’ of a matroid, and to define a connected

matroid in terms of properties satisfied by the ‘circuits’ of a matroid.

Note that while one can define a matroid using some concept, e.g. ‘independent sets’,

‘circuits’, ‘rank function’, by demanding that this concept satisfies certain conditions,

these conditions are by no means unique. Indeed, it is possible to rephrase the require-

ments placed on, say, ‘circuits’ in a way that is ostensibly weaker. An example of this

can be seen with the weak circuit elimination axiom and its strong counterpart.

We denote the power set of a set E by P(E) := {F ⊆ E}.

Definition 1.2.0.1. A matroid is an ordered pair (E, I) where E is a finite set, I ⊆
P(E), and the following conditions are satisfied:

(I1) ∅ ∈ I;

(I2) If X ∈ I and Y ⊆ X then Y ∈ I;

(I3) If X, Y ∈ I and |Y | = |X|+1 then there exists y ∈ Y \X such that X∪{y} ∈ I.

If X ∈ I we say that X is an independent set of (E, I), otherwise we say that X is a
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dependent set of (E, I).

Remark 3. Definition 1.2.0.1 (taken from [39, p.7]) invites a demonstration of the earlier

point about how conditions can be replaced. Oxley [34] replaced condition (I3) with

a more powerful axiom that only requires |Y | ≥ |X| + 1 rather than |Y | = |X| + 1.

Moreover, a further strengthening of condition (I3), where the union of X and some

subset (not necessarily a subset with single element) of Y is considered, was given by

Welsh [39, Theorem 1.5.1 (The Augmentation Theorem)].

In what follows we do not show the equivalence of various potential definitions but rather

consider the behaviour of objects such as independent sets or ‘circuits’ to be properties

of a matroid as defined above.

Given a matroid M = (E, I) we say that E is the ground set of M. Equivalently,

we say that M is a matroid on E. If C /∈ I and for all b ∈ C, C \ {b} ∈ I then we

say that C is a circuit of M. That is, a circuit of M is a minimally dependent set of

M. The rank function of M is the function ρ : P(E) → Z+ such that for F ∈ P(E),

ρ(F ) = max{|X| : X ⊆ F and X ∈ I}. The closure function of M is the function

σ : P(E) → P(E) such that for F ∈ P(E), σ(F ) = {x ∈ E : ρ(F ∪ {x}) = ρ(F )}.

Definition 1.2.0.2. The matroids M1 = (E1, I1) and M2 = (E2, I2) are isomorphic,

which we denote by M1
∼= M2, if there exists a function f : E1 → E2 such that f

is bijective and X ∈ I1 if and only if {f(x) : x ∈ X} ∈ I2; we call f a matroid

isomorphism (from M1 to M2).

Lemma 1.2.0.3. [34, Lemma 1.1.3] Let M be a matroid. If C is the set of circuits of

M then

(C1) ∅ /∈ C;

(C2) if C1, C2 ∈ C and C1 ⊆ C2 then C1 = C2; and

(C3) if C1, C2 ∈ C and C1 ̸= C2 and e ∈ C1 ∩ C2 then there exists C3 ∈ C such that

C3 ⊆ (C1 ∪ C2) \ {e}.

Lemma 1.2.0.4. [39, Theorem 1.9.2] Let M be a matroid. If C is the set of circuits of
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M then

(C3)’ if C1, C2 ∈ C and C1 ̸= C2 and e ∈ C1 ∩ C2 and f ∈ C1 \ C2 then there exists

C3 ∈ C such that f ∈ C3 ⊆ (C1 ∪ C2) \ {e}.

Remark 4. We refer to (C3) as the weak circuit elimination axiom and refer to (C3)’

as the strong circuit elimination axiom. Our reason for referring the reader to Welsh

for a proof that condition (C3)’ is satisfied is that the proof given by Welsh only involves

applying the properties in Lemma 1.2.0.3. This is in contrast to the proof given by Oxley

[34, Proposition 1.4.11] which proceeds by considering the closure function of M.

Lemma 1.2.0.5. [34, Lemma 1.3.1] Let M = (E, I) be a matroid. If ρ is the rank

function of M then

(R1) if X ⊆ E then 0 ≤ ρ(X) ≤ |X|;

(R2) if X ⊆ Y ⊆ E then ρ(X) ≤ ρ(Y ); and

(R3) if X, Y ⊆ E then ρ(X ∪ Y ) + ρ(X ∩ Y ) ≤ ρ(X) + ρ(Y ).

To conclude this section we echo Subsection 1.1.1 and introduce a notion of connect-

edness for matroids. The importance of matroid connectedness to this thesis can be

inferred from the fact that connected matroids are the eponymous subject of Chapter 2.

Definition 1.2.0.6. Let M = (E, I) be a matroid, and let C be the set of circuits of

M. M is connected if for all {e, f} ⊆ E (that is, e, f ∈ E and e ̸= f) there exists

C ∈ C such that {e, f} ⊆ C, otherwise M is disconnected.

Lemma 1.2.0.7. [39, Theorem 5.1.2] Let M = (E, I) be a matroid, let C be the

set of circuits of M, and suppose {x, y, z} ⊆ E. If there exist C1, C2 ∈ C such that

{x, y} ⊆ C1 and {y, z} ⊆ C2 then there exists C3 ∈ C such that {x, z} ⊆ C3.

The previous result can be interpreted as stating that for a matroid M on E, with a

set of circuits C, the relation ∼ on E, where e ∼ f if and only if e = f or there exists

C ∈ C such that {e, f} ∈ C, is transitive and consequently ∼ is an equivalence relation

(see [34, Proposition 4.1.2]). Rather than dwell on this we state a simple consequence

of Lemma 1.2.0.7 that we will make repeated use of in due course.
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Lemma 1.2.0.8. Let M = (E, I) be a matroid and let C be the set of circuits of M. If

there exists e ∈ E such that for all f ∈ E \ {e} there exists C ∈ C such that {e, f} ⊆ C

then M is connected.

Proof. If |E| = 1 then M (vacuously) satisfies the condition of being connected. So

we may suppose instead that |E| ≥ 2 and take {f1, f2} ⊆ E. If e ∈ {f1, f2} then by

assumption there exists C ∈ C such that {f1, f2} ⊆ C. On the other hand, if e /∈ {f1, f2}
then by assumption there exist C1, C2 ∈ C such that {e, f1} ⊆ C1 and {e, f2} ⊆ C2.

Then Lemma 1.2.0.7 implies there exists C3 ∈ C such that {f1, f2} ⊆ C3. Therefore for

all {f1, f2} ⊆ E there exists a circuit containing f1 and f2, so M is connected.

Remark 5. The proof of the previous result highlights the fact that matroids can be

connected by vacuously satisfying the relevant condition. In particular, any matroid on a

ground set containing at most one element will always be connected. There is a unique

matroid on the empty set and there are, up to isomorphism, two matroids on a set

containing one element. Therefore this vacuous satisfaction is only really relevant for

three matroids. We mention this now as it impacts on a later definition (see Definition

2.1.0.6) relating graphs and matroids on the edge sets of these graphs.

Definition 1.2.0.9. Let M = (E, I) be a matroid and let C be the set of circuits of

M. A partial ear decomposition of M is a non-empty sequence C1, . . . , Ck, where

Ci ∈ C for all 1 ≤ i ≤ k, such that for all 2 ≤ i ≤ k the following conditions hold:

(ED1) Ci ∩ (
⋃i−1
j=1Cj) ̸= ∅;

(ED2) Ci \ (
⋃i−1
j=1Cj) ̸= ∅; and

(ED3) for all C ′ ∈ C such that C ′ ∩ (
⋃i−1
j=1Cj) ̸= ∅ ≠ C ′ \ (

⋃i−1
j=1Cj), C

′ \ (
⋃i−1
j=1Cj) is

not a proper subset of Ci \ (
⋃i−1
j=1Cj).

An ear decomposition of M is a partial ear decomposition of M such that
⋃k
i=1Ci =

E.

The concept of ear decomposition generalises the graph-theoretic notion of the same

name, and the following result describes how the presence of an ear decomposition relates
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to the connectedness of certain matroids.

Theorem 1.2.0.10. [7] Let M = (E, I) be a matroid and let r be the rank function of

M. If |E| ≥ 2 then:

(i) M is connected if and only if there exists an ear decomposition of M;

(ii) if M is connected then any partial ear decomposition of M can be extended to

an ear decomposition of M1; and

(iii) if C1, . . . , Ct is an ear decomposition of M then for all 2 ≤ i ≤ t,

r

(
i⋃

j=1

Ci

)
− r

(
i−1⋃
j=1

Ci

)
=

∣∣∣∣∣Ci \
(
i−1⋃
j=1

Cj

)∣∣∣∣∣− 1.

1.3 Normed Spaces

1.3.1 Topological Vector Spaces

We begin this section with some basic definitions, and we assume the reader is familiar

with ‘vector spaces’2 as well as ‘topological spaces’. The structures gained by combining

vector spaces and topological spaces play a key role in what follows. This section is based

on work by Dewar [8, 9, 10] which extends initial research by Kitson and Power [27].

For the sake of completeness and clarity we provide various additional information to

supplement Dewar’s comprehensive translation of various concepts from the setting of

‘Euclidean’ spaces to that of general ‘normed’ spaces. Much of this process is detailed and

technical, so we aim to strike a balance between providing enough information to allow

the reader to readily access Dewar’s work and avoiding this section becoming bloated.

Definition 1.3.1.1. A topological vector space is an ordered pair (X, τ), where X

is a real, finite-dimensional, vector space and τ is a topology on X such that the vector

1That is, for any partial ear decomposition, C1, . . . , Cs, of M there exists t ≥ s such that
C1, . . . , Cs, . . . , Ct is an ear decomposition of M.

2Vector spaces are sometimes referred to in the literature as ‘linear spaces’
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space operations are continuous (with respect to τ).

Given a topological vector space, X, and some x ∈ X, a set U is a neighbourhood of

x if there exists an open set U ′ such that x ∈ U ′ ⊆ U ⊆ X. We note that some authors

(e.g. [36, p.7] and [37, p.96]) instead demand that a ‘neighbourhood’ of x is itself an

open set (i.e. in our definition U ′ would be a ’neighbourhood’ but U need not be). Our

approach is consistent with that in [38, p.2] and, importantly for us, that of Dewar [10].

Definition 1.3.1.2. Let X be a real, finite-dimensional, vector space. A metric on X

is a function d : X ×X → R such that for all x, y, z ∈ X,

(i) d(x, y) = d(y, x);

(ii) d(x, z) ≤ d(x, y) + d(y, z); and

(iii) if d(x, y) = 0 then x = y.

The ordered pair (X, d) is a metric space.

Given a metric space (X, d), x ∈ X, and r ∈ R+ we employ the following notation.

Br(x) = {y ∈ X : d(x, y) < r} denotes the open ball with centre x and radius r, while

Sr[x] = {y ∈ X : d(x, y) = r} denotes the sphere with centre x and radius r.

Definition 1.3.1.3. Let X be a real, finite-dimensional, vector space. A seminorm on

X is a function ∥ · ∥ : X → R such that for all x, y ∈ X and for all a ∈ R,

(i) ∥ax∥ = |a|∥x∥, and

(ii) ∥x+ y∥ ≤ ∥x∥+ ∥y∥

The ordered pair (X, ∥ · ∥) is a seminormed space.

A norm on X is a seminorm on X such that if ∥x∥ = 0 then x = 0. If ∥ · ∥ is a norm

on X then the ordered pair (X, ∥ · ∥) is a normed space.

Note that in much of what follows we will perform a standard abuse of notation and refer

to a normed space X rather than (X, ∥ · ∥).

Remark 6. The three objects we have just defined form a hierarchy. To be precise, given
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a normed space (X, ∥ ·∥) there exists a corresponding metric space, namely (X, d) where

d : X × X → R is defined by d(x1, x2) = ∥x1 + (−x2)∥. Similarly, given a metric

space (X, d) there exists a corresponding topological vector space, namely (X, τ) where

τ = {U ⊆ P(X) : U is a union of open balls}. In particular, we note that the vector

space operations are continuous with respect to τ [38, p.52-53].

A consequence of the previous remark is that any normed space induces a corresponding

topological vector space (via the norm-induced metric space). This allows us to discuss

notions such as ‘continuity’ and ‘open’ in the context of arbitrary normed spaces. We

also note that, for a given vector space X, while various norms on X may induce different

metrics on X these all result in the same topology, the norm topology, on X [8, p.11].

Definition 1.3.1.4. Let X be a finite-dimensional real vector space. An inner product

on X is a function ⟨·, ·⟩ : X ×X → R such that for all x, y, z ∈ X and for all a, b ∈ R,

(i) ⟨x, y⟩ = ⟨y, x⟩;

(ii) ⟨ax+ by, z⟩ = a⟨x, z⟩+ b⟨y, z⟩; and

(iii) if x ̸= 0 then ⟨x, x⟩ > 0.

The ordered pair (X, ⟨·, ·⟩) is a inner product space.

Inner product spaces join the hierarchy outlined in Remark 6. To be precise, given an

inner product space (X, ⟨·⟩) there exists a corresponding normed space, namely (X, ∥ ·∥)
where ∥·∥ : X → R is defined by ∥x∥ =

√
⟨x, x⟩. For a proof that ∥·∥ is a norm see [38,

Theorem II.6.2]. The dichotomy between those normed spaces that can be associated

with an inner product in this way and those that can not is crucial to much of what

follows. For that reason we say that a normed space is Euclidean if the norm is induced

by an inner product as above and we say that it is non-Euclidean otherwise.

1.3.2 Linear Functionals, Smoothness, and Strict Convexity

Given real, finite-dimensional, vector spaces X and Y , the set of all linear functions

from X to Y underlies a (real, finite-dimensional) vector space where addition and scalar
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multiplication are defined pointwise [38, p.32]. We denote this vector space by L(X, Y ).

Of more relevance to us is the situation where X and Y are not just vector spaces but

are in fact normed spaces. For clarity, let us denote these (X, ∥ · ∥1) and (Y, ∥ · ∥2).
Then consider the space (L(X, Y ), ∥ · ∥3), where ∥ · ∥3 : L(X, Y ) → R is defined by

∥f∥3 = sup{∥f(z)∥2 : ∥z∥1 ≤ 1}. We refer to ∥ · ∥3 as the operator norm on L(X, Y ),

and we shall denote this by ∥ · ∥op. Given a normed space X we have a particular interest

in working with L(X,R), where the norm on R is the standard Euclidean norm (see [8,

Remark 1.1.4]). With this in mind we introduce some additional terminology.

Definition 1.3.2.1. Let X be a real, finite-dimensional, vector space. A linear func-

tional of X is a linear map from X to R. That is, a map f : X → R such that for all

x1, x2 ∈ X and for all a1, a2 ∈ R, f(a1x1 + a2x2) = a1f(x1) + a2f(x2).

For a real, finite-dimensional, normed space X we denote the corresponding normed

space (L(X,R), ∥ · ∥op) by X∗ and refer to this as the dual (space) of X.

The following result is often referred to as the Hahn-Banach theorem and while we rarely,

if ever, make explicit use of it we note that it is fundamental statement concerning linear

functionals. Various authors (e.g. [36, p.56] and [29, Chapter 7]) have commented on the

fact that multiple statements are referred to as the Hahn-Banach Theorem, so in pursuit

of clarity we provide one such statement here. Firstly we need an additional definition.

Definition 1.3.2.2. Let X be a real, finite-dimensional, vector space. A sublinear

functional of X is a map f : X → R+ ∪ {0} such that for all x, y ∈ X and for all

a ∈ R+ ∪ {0},

(i) f(ax) = af(x), and

(ii) f(x+ y) ≤ f(x) + f(y).

Theorem 1.3.2.3. [29, Theorem 7.3.2] Let X be a real vector space, M a subspace

of X, p a sublinear functional on X, and f a linear functional on M . If f(x) ≤ p(x)

for all x ∈ M , then f extends to a linear functional F on X such that for all x ∈ X,

F (x) ≤ p(x). Moreover, if p is a seminorm on X then |F (x)| ≤ p(x).

Definition 1.3.2.4. Let X be a normed space and take x ∈ X. A support functional
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of x is a linear functional f such that ∥f∥op = ∥x∥ and f(x) = ∥x∥2.

Lemma 1.3.2.5. [8, Proposition 1.1.8] Every point in a normed space has a support

functional.3

Given a normed space X and x ∈ X, the set of all support functionals of x is

Φ[x] := {f ∈ X∗ : ∥f∥op = ∥x∥ and f(x) = ∥x∥2}.

Lemma 1.3.2.5 informs us that for all x ∈ X, Φ[x] ̸= ∅. Two properties of normed

spaces, which one can relate to support functionals, are of particular interest to us.

Definition 1.3.2.6. Let X be a normed space. For all x ∈ X \ {0}, x is smooth if

|Φ[x]| = 1. X is smooth if {x ∈ X \ {0} : x is smooth} = X \ {0}. X is strictly

convex if for all x1, x2 ∈ S1[0] and all t ∈ (0, 1), ∥tx+ (1− t)y∥ < 1.

Let X be a normed space and take x ∈ X\{0}. If x is smooth then we denote the unique

support functional of x by φx. For examples of normed spaces, including normed spaces

that are smooth and/or strictly convex, we direct the reader to [8, Example 1.1.1.12,

Example 1.1.1.13, Example 1.1.1.14, Example 1.1.1.15].

Lemma 1.3.2.7. [8, Proposition 1.1.20] Let X be a normed space. X is strictly convex

if and only if for all x, y ∈ X such that x ̸= y, Φ[x] ∩ Φ[y] = ∅.

Lemma 1.3.2.8. [9, Lemma 2.3] Let X be a normed space. If X is strictly convex then

for all x, y ∈ X such that x and y are smooth and linearly independent, φx and φy are

linearly independent.

The relevance of these concepts to what follows can be seen as a consequence of their

use in recent work by Dewar [9, p.1214], who separated their analysis of two-dimensional

normed spaces using the following trichotomy. A normed space is either

(i) strictly convex and smooth; or

(ii) strictly convex and not smooth; or

3This is an example of a result with a proof that invokes the Hahn-Banach Theorem.
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(iii) not strictly convex.

Using this trichotomy, Dewar was able to systematically characterise which graphs are

‘(infinitesimally) rigid’ in any two-dimensional normed space. We aim to build on Dewar’s

work by understanding which graphs are ‘globally rigid’ in two-dimensional normed spaces.

However for technical reasons we restrict our attention to ‘analytic’ normed spaces. The

final result of this section shows that ‘analytic’ normed spaces are a subset of one of the

three types of normed space outlined above.

Definition 1.3.2.9. Let (X, ∥ · ∥) be a normed space. X is analytic if ∥ · ∥|X\{0} is

analytic.

Lemma 1.3.2.10. [14, Lemma 3.1] Let X be a normed space. If X is analytic then X

is smooth and strictly convex.

1.4 Rigidity Theory

1.4.1 Motivation

It is worth mentioning here that ‘rigidity’ is an intuitive concept which lends itself to

being thought of in various ways. There are collections of structures which one may

think of as existing in, and potentially moving around within, some ambient space and

at that point it is reasonable to ask whether these structures can move, or be moved, in

some meaningful way. That is, there are three aspects to bear in mind when considering

the question of whether something is rigid.

Firstly, what is the thing we are considering? The objects that will be the focus of

this thesis are so-called ‘bar-joint frameworks’, specifically finite ones, but various other

possibilities such as ‘body-bar frameworks’ and infinite versions have also been considered.

Secondly, what ambient space does the object live within and what, if any, additional

constraints are placed on how it lives there. A simple illustration of this point is the idea

of taking the same object but realising it in a space of different dimension, or a space

with a different notion of distance. Another possibility would be to constrain the object
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to live on some surface. It seems natural to suppose that how an object can move should

be impacted by the space in which it lives. Finally, what does it mean to be ‘rigid’? The

word rigid is suggestive of restricting the motion of an object in some way, but there

are various reasonable restrictions that one could impose. The equivalence, or lack of

equivalence, of different versions of rigidity gives rise to a number of interesting questions

and highlights some of the nuance hiding behind intuition.

Having commented on the fact that various different objects have been granted the

moniker of ‘framework’, we now clarify which frameworks we shall work with. The objects

that we are interested in are often referred to in the literature as ‘bar-joint’ frameworks.

As these are the only types of frameworks that we shall consider, we drop the bar-joint

qualifier. Note that given sets A and B, BA := {f : A→ B}.

1.4.2 Frameworks and Rigidity

Definition 1.4.2.1. Let V be a set and let X be a normed space. A realisation of V

in X is a map p ∈ XV . If V is the vertex set of some graph, G, then we also say p is a

realisation of G. The ordered pair (G, p) is a framework in X.

We are now in a position to decide what it means for a framework to be ‘rigid’. Firstly

we introduce a couple of terms that describe possible relationships between different

frameworks (with the same underlying graph). These terms will simplify the process of

defining what it means for a framework to be rigid.

Given a graph G = (V,E) and a normed space (X, ∥ · ∥) we may define a rigidity map

for G in X as

fG : X
V → RE, fG(p) =

(
∥p(u)− p(v)∥2

2

)
uv∈E

Note that taking the square of the norm allows us to differentiate this function at 0.

Moreover, having taken the square, we note that halving ∥p(u)− p(v)∥2 means that the

derivative of fG at p is the support functional of p.
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Definition 1.4.2.2. Let X be a normed space, let G be a graph, and let p and q be

realisations of G in X. We say that (G, p) and (G, q) are equivalent if fG(p) = fG(q).

We say that (G, p) and (G, q) are congruent if there exists an isometry, g, of X such

that q = g ◦ p.

Remark 7. We say that two frameworks in X, (G, p) and (G, q) are quasi-congruent if

for all {v1, v2} ⊆ V (G), ∥p(v1)− p(v2)∥ = ∥q(v1)− q(v2)∥. Clearly, if (G, p) and (G, q)

are congruent then they are quasi-congruent, but the converse need not be true.

The distinction between congruence and quasi-congruence is a subtle one. Asimow and

Roth noted that for frameworks in Euclidean spaces, congruence and quasi-congruence are

equivalent notions [1, p.280-281]. The fact that there exist contexts where congruence

and quasi-congruence are not equivalent notions [8, Proposition 1.1.34]) necessitates a

careful approach to considering issues of congruence and equivalence.

Let us now provide two notions of rigidity that bear a clear resemblance to one another.

Definition 1.4.2.3. Let X be a normed space and let (G, p) be a framework in X.

(G, p) is locally rigid (in X) if there exists ϵ > 0 such that for all q ∈ XV (G) such that

(G, p) and (G, q) are equivalent and ∥p(v) − q(v)∥ < ϵ for all v ∈ V (G), (G, p) and

(G, q) are congruent.

Definition 1.4.2.4. Let X be a normed space and let (G, p) be a framework in X.

(G, p) is globally rigid (in X) if for all q ∈ XV (G) such that (G, p) and (G, q) are

equivalent, (G, p) and (G, q) are congruent.

The similarities and differences between these notions of rigidity are fairly clear, and we

note that globally rigidity is a stronger property than local rigidity (i.e. if (G, p) is globally

rigid then (G, p) is locally rigid). Note that determining whether or not two frameworks

are equivalent boils down to a solving a collection of simultaneous quadratic equations.

Because of the inherent difficulty involved in such a process, a common technique in

rigidity theory is to consider an alternative conception of rigidity that involves linear

equations instead. In order to access this technique we need some additional ideas.
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1.4.3 Graphs and Rigidity

Having settled on what it means for a framework to be rigid in some context, a nat-

ural question is whether those frameworks that are rigid can be characterised in some

interesting way. A common technique when attempting to answer this sort of question

is to translate the problem from being about frameworks to being about the underlying

graph. There are two key issues which must be taken into consideration when trying to

transition from a problem about frameworks to a problem concerning graphs:

(i) Given a graph G and a normed space X, we wish to find some property such that

for all realisations of G that satisfy this property the corresponding frameworks are

either all rigid or all not rigid.

(ii) Given a graph G and a normed space X, we wish to find some property such that

the realisations satisfying that property are, in some sense, typical. That is, we

want ‘almost all’ realisations of G to satisfy this property.

In the context of frameworks in d-dimensional Euclidean spaces, a significant amount of

research has been dedicated to frameworks where the realisation is ‘generic’. That is,

where the multiset of coordinates given by p is ‘algebraically independent over Q’. In the

more general context of (not necessarily Euclidean) normed spaces, various properties of

realisations have been considered. As a starting point let (G, p) be a framework in a

normed space X, then p is well-positioned if for all uv ∈ E(G), p(u)− p(v) is smooth.

Recall that x ∈ X \ {0} is smooth if it has a unique support functional, and we denote

this support functional by φx.

Let X be a normed space and let G be a graph. If p is a well-positioned realisation of G

in X then we can define the rigidity operator of (G, p); the rigidity operator of (G, p) is

derivative of fG at p. That is,

dfG|p : XV → RE, dfG|p(q) =
(
φp(u)−p(v)(q(u)− q(v))

)
uv∈E .

Now, if p is well-positioned then p is:

(i) regular if for all well-positioned realisations q of G in X, rank dfG|p ≥ rank dfG|q;
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(ii) strongly regular if for all q such that (G, q) is equivalent to (G, p), q is regular;

(iii) completely regular if for all H such that V (H) = V (G), p is regular; and

(iv) completely strongly regular if for all H such that V (H) = V (G), p is strongly

regular.

These properties of a realisation will aid us in translating problems from being about

frameworks to being about graphs. More details on the different flavours of regularity

can be found in [14, Fig. 1., Remark 2.9.] For now we note two useful technical results.

Lemma 1.4.3.1. [10, Lemma 4.1, Lemma 4.4] Let X be a normed space and let G

be a graph. The set of well-positioned realisations of G in X is a conull subset (i.e.

the complement of a set with Lebesgue measure zero) of XV (G), and the set of regular

realisations of G inX is a non-empty open subset of the set of well-positioned realisations.

Proposition 1.4.3.2. [14, Proposition 3.2, Proposition 3.6] Let X be a normed space

and let G be a graph. IfX is analytic then the sets of regular, strongly regular, completely

regular, and completely strongly regular realisations of G in X are all open conull subsets

of XV (G).

Now that we have access to well-positioned realisations we are able to discuss the alter-

native version of rigidity mentioned at the end of the previous subsection. Recall that we

consider normed spaces to have finite dimension.

Definition 1.4.3.3. Let X be a normed space, let G be a graph, and let p be a well-

positioned realisation of G in X. An infinitesimal flex of (G, p) is an element of the

kernel of dfG|p. An infinitesimal flex u is trivial if there exists a linear map T : X → X

and x ∈ X such that u(v) = T (p(v)) + x for all v ∈ V , and for all y ∈ X, with support

functional fy, fy(T (y)) = 04. (G, p) is infinitesimally rigid if every infinitesimal flex of

(G, p) is trivial.

The following result shows that, for certain frameworks, there is a relationship between

infinitesimal rigidity and the more natural notion of local rigidity.

4For additional details regarding this definition see [11, Subsection 1.2] and [10, Subsection 2.3].
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Theorem 1.4.3.4. Let X be a normed space and let (G, p) be a framework in X.

(i) [11, Observation 3.4, Theorem 3.7] If p is well-positioned and (G, p) is infinitesi-

mally rigid then (G, p) is locally rigid.

(ii) [10, Theorem 1.1, Lemma 4.4] If p is regular and {x ∈ X : x is smooth} is open

and (G, p) is locally rigid then (G, p) is infinitesimally rigid.

We are now in a position to introduce the machinery needed to discuss rigidity as a

property of the graph underlying a framework.

Definition 1.4.3.5. LetX be a normed space and let (G, p) be a framework inX. (G, p)

is independent if p is well-positioned and |E(G)| = rank dfG|p. (G, p) is minimally

(infinitesimally) rigid if (G, p) is independent and infinitesimally rigid.

For a d-dimensional normed space X, a well-positioned framework (G, p) in X, and a

fixed basis b1, . . . , bd of X, we can define the rigidity matrix to be the |E|×d|V | matrix

R(G, p), where for every e ∈ E, x ∈ V , and i ∈ {1, . . . , d} we have

R(G, p)e,(x,i) =

φp(x)−p(y)(bi) if e = xy;

0 otherwise.

As p is well-positioned and xy ∈ E, p(x) − p(y) is smooth. Hence p(x) − p(y) has a

unique support functional which we denote by φp(x)−p(y). Therefore φp(x)−p(y)(bi) maps

bi to some real number. The choice of basis used to define R(G, p) can be arbitrary as

we are only interested in the sets of linearly independent rows of the matrix.

Let X be a normed space and let G be a graph. We say that G is infinitesimally rigid

in X if there exists a realisation, p, of G in X such that (G, p) is infinitesimally rigid.

Similarly, we say that G is independent in X if there exists a realisation, q, of G in X

such that (G, q) is independent. Slightly differently, we say that G is globally rigid in X

if the set GRig(G;X) := {p ∈ XV (G) : (G, p) is globally rigid} has a non-empty interior.

The following results, the first of which is folklore, show that for a space with sufficiently

low dimension, whether a graph is infinitesimally rigid or independent in that space can

be determined by simple counting conditions.
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Theorem 1.4.3.6. Let X be a one-dimensional normed space5 and let G be a graph.

The following are equivalent:

(i) G is minimally rigid in X;

(ii) |E(G)| = |V (G)| − 1 and for all ∅ ≠ U ⊆ V (G), iG(U) ≤ |U | − 1;

(iii) There exists t ∈ N+ and a sequence a1, . . . , at, with a1 ∼= K1 and at = G, such

that for all 2 ≤ j ≤ t, aj is a (1, 0)-extension of aj−1; and

(iv) G is a tree.

Theorem 1.4.3.7. [35, 28] 6 Let X be a two-dimensional Euclidean space and let G be

a graph. The following are equivalent:

(i) G is minimally rigid in X;

(ii) G ∼= K1, or |E(G)| = 2|V (G)| − 3 and for all U ⊆ V (G) such that |U | ≥ 2,

iG(U) ≤ 2|U | − 3; and

(iii) G ∼= K1 or there exists t ∈ N+ and a sequence a1, . . . , at, with a1 ∼= K2 and

at = G, such that for all 2 ≤ j ≤ t, aj is a (2, 0)-extension or a (2, 1)-extension

of aj−1.

Theorem 1.4.3.8. [9] Let X be a two-dimensional non-Euclidean space and let G be a

graph. The following are equivalent:

(i) G is minimally rigid in X; and

(ii) |E(G)| = 2|V (G)| − 2 and for all ∅ ≠ U ⊆ V (G), iG(U) ≤ 2|U | − 2.

The previous results are examples of the type of goal that one may have in mind when

embarking on an attempt to solve a local rigidity problem. We conclude this section, and

chapter, with similarly comprehensive results about global rigidity in Euclidean spaces.

To do that we first introduce the concept of redundant rigidity.

5Every one-dimensional normed space is Euclidean.
6This result is often referred to in the literature as ‘Laman’s Theorem’ due to the proof of Laman [28].

However, the rigidity community has recently discovered that an earlier proof was given by Pollaczek-
Geiringer [35].
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Definition 1.4.3.9. LetX be a normed space and let (G, p) be a framework inX. (G, p)

is redundantly (infinitesimally) rigid if for all e ∈ E(G), ((V (G), E(G) \ {e}), p) is
infinitesimally rigid.

As with independence and infinitesimal rigidity we say that a graph, G, is redundantly

(infinitesimally) rigid if there exists a realisation, p, of G in X such that (G, p) is

redundantly rigid.

Theorem 1.4.3.10. [21, Theorem 3.1, Theorem 5.9] LetX be a d-dimensional Euclidean

space and let G be a graph. If G is globally rigid in X then

(i) there exists n ≤ d+ 1 such that G ∼= Kn; or

(ii) G is (d+ 1)-vertex-connected and G is redundantly rigid in Ed.

Theorem 1.4.3.11. [22, Theorem 7.1] Let X be a two-dimensional Euclidean space and

let G be a graph. The following are equivalent:

(i) G is globally rigid in X; and

(ii) there exists n ≤ 3 such that G ∼= Kn, or G is 3-vertex-connected and G is

redundantly rigid in X.

Jackson and Jordán showed that in the two-dimensional setting Hendrickson’s necessary

conditions were also sufficient. Their proof involved finding a method of constructing all

3-vertex-connected and redundantly rigid graphs and applying a result of Connelly [5] to

guarantee that the graph operations that they made use of would preserve the property

of being globally rigid.

A graph (V,E) is bipartite if there exists a partition {V1, V2} of V such that for all

{u, v} ∈ E and for all i ∈ {1, 2}, {u, v} ⊈ Vi. A graph is complete bipartite if it is

bipartite, with partition {V1, V2} of V , and every pair of vertices that is not contained

within an element of the partition is an edge. Recall that if graphs G and H are complete

then G ∼= H if and only if |V (G)| = |V (H)|. Similarly, if G and H are complete

bipartite, with partitions {V1, V2} and {W1,W2} respectively, then G ∼= H if and only if

{|V1|, |V2|} = {|W1|, |W2|}. For this reason we write G ∼= Ka,b to demonstrate that G
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is a (up to isomorphism, the) complete bipartite graph with partition {A,B} of V (G)

such that {|A|, |B|} = {a, b}.

The equivalence exhibited in Theorem 1.4.3.11 does not generalise to d-dimensional

Euclidean spaces where d ≥ 3. Connelly [4] showed that for all d ≥ 3 there exist

complete bipartite graphs, with
(
d+2
2

)
vertices, that are (d + 1)-vertex-connected and

redundantly rigid in (d + 1)-dimensional Euclidean space but are not globally rigid in

(d + 1)-dimensional Euclidean space (e.g. K5,5 when d = 3). In fact, given a complete

bipartite graph G, the following result gives a method of determining whether or not G

is globally rigid in d-dimensional Euclidean space.

Theorem 1.4.3.12. [25, Theorem 63.2.2], [6, Theorem 1.1, Section 5] Take d,m, n ∈
N+. Km,n is globally rigid in d-dimensional Euclidean space if and only if m,n ≥ d + 1

and m+ n ≥
(
d+2
2

)
+ 1.

The next three chapters of the thesis shall culminate with similar results through an

exploration of global rigidity in non-Euclidean spaces. To begin this process we turn

our attention to the method of constructing all 3-vertex-connected and redundantly rigid

graphs used by Jackson and Jordán.
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Connected Matroids

The focus of this chapter is the study of a particular genre of matroid. These matroids

are on the edge sets of some graph, and independence within them is determined by a

simple counting condition. We begin by considering these matroids in a relatively general

setting, and we gradually narrow our focus until we settle on working with those graphs

for which the corresponding ‘(2, 2)-sparsity’ matroid is connected.

2.1 (k, l)-Sparsity of Graphs and Matroids

We begin with some results that allow us to introduce the matroids that we shall be

working with in this chapter and in Chapter 3.

Lemma 2.1.0.1. Let G = (V,E) be a graph, take k, l ∈ Z, and let I = {F ⊆
E : for all ∅ ̸= F ′ ⊆ F, |F ′| ≤ k|V (G[F ′])| − l}. I ̸= {∅} if and only if E ̸= ∅ and

l ≤ 2k − 1.

Proof. If I ≠ {∅} then clearly E ̸= ∅, and there exists F ∈ I such that |F | = 1. Hence

1 = |F | ≤ k|V (G[F ])| − l = 2k − l and so l ≤ 2k − 1. On the other hand, suppose

that E ̸= ∅ and l ≤ 2k − 1. As E ̸= ∅ there exists F ⊆ E such that |F | = 1 and hence
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|V (G[F ])| = 2. As l ≤ 2k − 1, 1 = |F | ≤ 2k − l = k|V (G[F ])| − l and hence F ∈ I.
Therefore I ≠ ∅.

The notation of the previous result, namely the use of I, is suggestive of a connection

to (the independent sets of) matroids. In order to show that such a connection exists we

require some additional theory.

Definition 2.1.0.2. Let E be a finite set and let f : P(E) → R. f is submodular if

for all X, Y ⊆ E, f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ). f is increasing if for all

X ⊆ Y ⊆ E, f(X) ≤ f(Y ).

Lemma 2.1.0.3. [34, Proposition 12.1.1, Corollary 12.1.2] Let E be a finite set, let

f : P(E) → Z, and let I = {F ⊆ E : for all ∅ ≠ F ′ ⊆ F, |F ′| ≤ f(F ′)}. If f is an

increasing submodular function then (E, I) is a matroid.

Lemma 2.1.0.4. Let G = (V,E) be a graph, take k, l ∈ Z, and let I = {F ⊆
E : for all ∅ ≠ F ′ ⊆ F, |F ′| ≤ k|V (G[F ′])| − l}. If k ≥ 0 then (E, I) is a matroid.

Proof. We consider the following function.

f : P(E) → Z, f(F ) =

−l if F = ∅;

k|V (G[F ])| − l if F ̸= ∅.

Then I = {F ⊆ E : for all ∅ ̸= F ′ ⊆ F, |F ′| ≤ f(F ′)}. Take F1, F2 ⊆ E. If F1 = ∅ or

F2 = ∅ then f(F1)+f(F2) = f(F1∪F2)+f(F1∩F2). If F1 ̸= ∅ ≠ F2 then F1∪F2 ̸= ∅
and f(F1 ∪ F2) = k|V (G[F1 ∪ F2])| − l. So,

f(F1) + f(F2) = (k|V (G[F1])| − l) + (k|V (G[F2])| − l)

= k(|V (G[F1]) ∪ V (G[F2])|+ |V (G[F1]) ∩ V (G[F2])|)− 2l

= k(|V (G[F1 ∪ F2])|+ |V (G[F1]) ∩ V (G[F2])|)− 2l

= f(F1 ∪ F2) + k|V (G[F1]) ∩ V (G[F2])| − l.

If F1 ∩ F2 = ∅ then f(F1 ∩ F2) = −l. If F1 ∩ F2 ̸= ∅ then f(F1) ∩ F2) = k|V (G[F1 ∩
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F2])| − l. Either way, as k ≥ 0 we see that f(F1 ∩ F2) ≤ k|V (G[F1]) ∩ V (G[F2])| − l.

Therefore

f(F1) + f(F2) = f(F1 ∪F2) + k|V (G[F1])∩ V (G[F2])| − l ≥ f(F1 ∪F2) + f(F1 ∩F2),

and so f is a submodular function.

Now, take F1 ⊆ F2 ⊆ E. Since k ≥ 0, f(∅) = −l ≤ k|V (G[F ])| − l = f(F ) for all

∅ ≠ F ⊆ E. So, if F1 = ∅ then f(F1) ≤ f(F2). If F1 ̸= ∅ then V (G[F1]) ≤ V (G[F2])

and so, as k ≥ 0, f(F1) = k|V (G[F1])| − l ≤ k|V (G[F2])| − l = f(F2). Therefore f is

an increasing function. Lemma 2.1.0.3 implies that (E, I) is a matroid.

In light of the previous result the following definition is a sensible one.

Definition 2.1.0.5. Let G = (V,E) be a graph, take k, l ∈ Z such that k ≥ 0, and

let I = {F ⊆ E : for all ∅ ̸= F ′ ⊆ F, |F ′| ≤ k|V (G[F ′])| − l}. The (k, l)-sparsity

matroid of G, denoted M(k,l)(G), is the ordered pair (E, I). We say that G is (k, l)-

sparse if E is independent in M(k,l)(G).

Definition 2.1.0.6. Let G = (V,E) be a graph and take k, l ∈ Z such that k ≥ 0. G

is a (k, l)-circuit if E is a circuit of M(k,l)(G) and G = G[E]. G is (k, l)-connected

if M(k,l)(G) is connected and G = G[E] and |E| ≥ 2.

Remark 8. The definition of what it means for a graph to be (k, l)-connected is what

Remark 5 was alluding to. Recall that if |E| ≤ 1 then M(k,l)(G) is connected. We also

infer from Lemma 2.1.0.1, in an informal sense, that for a graph G, the values of k and

l such that M(k,l)(G) is ‘interesting’ are those where l ≤ 2k − 1.

G1 G2 G3

Figure 2.1: Illustrations of some (k, l)-circuits. G1 is a (1, 0)-circuit, G2 is a (2, 2)-circuit,
and G3 is a (3, 5)-circuit.
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Our next result characterises (k, l)-circuits in a purely graph-theoretic manner. Some

examples of (k, l)-circuits are illustrated in Figure 2.1.

Lemma 2.1.0.7. Let G = (V,E) be a graph, take k ∈ N+, and take l ∈ Z such that

l ≤ 2k − 1. The following are equivalent:

(i) G is a (k, l)-circuit;

(ii) 3 ≤ |E| = k|V | − (l − 1) and for all ∅ ≠ F ⊊ E, |F | ≤ k|V (G[F ])| − l; and

(iii) 3 ≤ |E| = k|V | − (l− 1) and for all U ⊊ V such that |U | ≥ 2, iG(U) ≤ k|U | − l.

Proof. Firstly suppose that (ii) holds. By definition, E is a circuit of M(k,l)(G). As

E ̸= ∅ we may take e ∈ E. As |E| ≥ 3, E \ {e} ≠ ∅ and hence

k|V | − l = (k|V | − (l− 1))− 1 = |E \ {e}| ≤ k|V (G[E \ {e}])| − l ≤ k|V (G[E])| − l.

As k ∈ N+ and V (G[E]) ⊆ V it follows that |V | ≤ |V (G[E])| ≤ |V |, and hence

V = V (G[E]). Therefore G = G[E] and G is a (k, l)-circuit. Moreover, take U ⊊ V

such that |U | ≥ 2 and let F = E(G[U ]). As U ⊊ V = V (G[E]) we have that F ⊊ E.

If F = ∅ then iG(U) = 0 ≤ 2k− (2k− 1). As |U | ≥ 2 and l ≤ 2k− 1, this implies that

iG(U) ≤ k|U | − l. If F ̸= ∅ then iG(U) = |F | ≤ k|V (G[F ])| − l = k|U | − l. Therefore

(ii) implies (i) and (iii).

On the other hand, suppose that (i) holds. Then E is a circuit of M(k,l)(G) and

G = G[E]. Then E ̸= ∅, |E| ≥ k|V (G[E])| − (l − 1), and for all ∅ ̸= F ⊊ E,

|F | ≤ k|V (G[F ])| − l. As l ≤ 2k − 1 and |E| ≥ k|V (G[E])| − (l − 1), |E| ≥ 2.

However, since |E| ≥ 2 we now have that |V (G[E])| ≥ 3 and so

|E| ≥ k|V (G[E])| − (l − 1) ≥ 3k − (2k − 2) = k + 2 ≥ 3.

As |E| ≥ 3, we may take f ∈ E such that ∅ ≠ E \ {f} ⊊ E. So,

k|V | − l = k|V (G[E])| − l ≤ |E| − 1 = |E \ {f}| ≤ k|V (G[E \ {f}])| − l.
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As k ∈ N+ and V (G[E \ {f}]) ⊆ V it follows that |V | ≤ |V (G[E \ {f}])| ≤ |V | and
hence V = V (G[E \ {f}]). Therefore (i) implies (ii).

Finally, suppose that (iii) holds. Take ∅ ̸= F ⊊ E and let U = V (G[F ]). As F ̸= ∅,
|U | ≥ 2. If U = V then, as F ⊊ E, it follows that |F | ≤ iG(U)−1 = |E|−1 = k|U |−l.
If U ⊊ V then |F | ≤ iG(U) ≤ k|U | − l. Therefore (iii) implies (ii).

Lemma 2.1.0.8. Let G be a graph, take k ∈ N+, and take l ∈ Z such that l ≤ 2k− 1.

If G is a (k, l)-circuit then G is (k, l)-connected.

Proof. As G is a (k, l)-circuit, E(G) is a circuit of M(k,l)(G) and hence M(k,l)(G) is

connected. Moreover, G = G[E(G)] and, by Lemma 2.1.0.7, |E(G)| ≥ 3. Therefore G

is (k, l)-connected.

The next few results in this section consider how placing restrictions on k and l allow

us to guarantee that (k, l)-connected graphs satisfy certain graph-theoretic properties.

To be more specific we show that if the values of k and l that we allow are sufficiently

restricted, then for a (k, l)-circuit G the values δ(G), κ(G), and κ1(G) have sharp lower

bounds. Having provided these bounds for (k, l)-circuits we then use the relationship

between (k, l)-circuits and (k, l)-connected graphs to show that the same values act as

lower bounds in the context of (k, l)-connected graphs. Figure 2.2 illustrates that these

lower bounds are the best possible. The same figure also highlights the importance of the

restrictions placed on k and l in order to give these lower bounds by showcasing (k, l)-

circuits such that k and l are not allowed by the relevant restrictions and the minimum

degree, vertex-connectivity, or edge-connectivity is less than the lower bound.

Lemma 2.1.0.9. Let G be a graph, take k ∈ N+, and take l ∈ Z such that l ≤ 2k− 1.

If G is a (k, l)-circuit then δ(G) ≥ k + 1.

Proof. Let G = (V,E), take v ∈ V such that dG(v) = δ(G), and let F = {vw : w ∈
NG(v)}. Note that |F | = dG(v). Lemma 2.1.0.7 implies that G = G[E] and 3 ≤ |E| =
k|V | − (l − 1). As G = G[E], δ(G) ≥ 1.
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If there exists u ∈ NG(v) such that dG(u) = 1 then, as dG(v) = δ(G), it follows that

NG(v) = {u}. As |E| ≥ 3 we have that {u, v} ⊊ V and F = {uv} ⊊ E. Let

G[E \F ] = (V ′, E ′) = G[V \ {u, v}]. As G is a (k, l)-circuit and ∅ ≠ E ′ ⊊ E, it follows

that

k|V ′| − l ≥ |E ′| = |E| − |F | = (k|V | − (l − 1))− dG(v) = (k|V ′| − l) + 2k.

However, this implies that 0 ≥ 2k which contradicts the fact that k ∈ N+.

Therefore dG(u) ≥ 2 for all u ∈ NG(v). Hence V (G[E \F ]) = V \{v} and ∅ ≠ E \F ⊊
E. Let G[E \ F ] = (V ′, E ′) = G[V \ {v}]. As G is a (k, l)-circuit and ∅ ≠ E ′ ⊊ E, it

follows that

k|V ′| − l ≥ |E ′| = |E| − |F | = (k|V | − (l− 1))− dG(v) = (k|V ′| − l) + k+ 1− dG(v).

Therefore 0 ≥ k + 1− dG(v), and so δ(G) = dG(v) ≥ k + 1.

Lemma 2.1.0.10. Let G be a graph, take k ∈ N+, and take l ∈ Z such that l ≤ 2k−1.

If G is (k, l)-connected then δ(G) ≥ k + 1.

Proof. Let G = (V,E) and take v ∈ V such that dG(v) = δ(G). As G is (k, l)-

connected, M(k,l)(G) is connected, G = G[E], and |E| ≥ 2. Therefore there exists

e ∈ E such that e is incident to v, there exists f ∈ E \ {e}, and there exists C, a

circuit in M(k,l)(G), such that {e, f} ⊆ C. Then G[C] is a (k, l)-circuit. Lemma 2.1.0.9

implies that δ(G) = dG(v) ≥ dG[C](v) ≥ δ(G[C]) ≥ k + 1.

Lemma 2.1.0.11. Let G be a graph, take k ∈ N+, and take l ∈ Z such that l ≤ 2k−1.

If l ≥ 0 and G is a (k, l)-circuit then κ(G) ≥ 1.

Proof. Let G = (V,E). Lemma 2.1.0.7 implies that 3 ≤ |E| = k|V | − (l − 1) and

for all ∅ ̸= F ⊊ E, |F | ≤ k|V (G[F ])| − l. As |E| ≥ 3, |V | ≥ 3. Let G1, . . . , Gn be

the components of G and for all 1 ≤ i ≤ n let Gi = (Vi, Ei). Then V =
⋃n
i=1 Vi and

E =
⋃n
i=1Ei. As each Gi is a component of G we have that for all 1 ≤ i < j ≤ n,
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Vi ∩ Vj = ∅ = Ei ∩ Ej. Therefore |V | =
∑n

i=1 |Vi| and |E| =
∑n

i=1 |Ei|. As G is a

(k, l)-circuit, 1 ≤ |Ei| ≤ k|V (G[Ei])| − (l − 1) = k|Vi| − (l − 1) for all 1 ≤ i ≤ n. So,

k|V | − (l − 1) = |E| =
n∑
i=1

|Ei| ≤
n∑
i=1

(k|Vi| − (l − 1)) = k|V | − n(l − 1).

Therefore l − 1 ≥ n(l − 1).

If l ≥ 2 then 1 ≥ n ≥ 1, so n = 1 and hence G is connected. Otherwise l ∈ {0, 1}.
If l = 1 then we have that k|V | =

∑n
i=1 |Ei| ≤

∑n
i=1(k|Vi|) = k|V |. Hence for all

1 ≤ i ≤ n, |Ei| = k|Vi| = k|Vi| − (l − 1). As G is a (k, l)-circuit this implies that

1 = i = n and G is connected. If l = 0 then we have that k|V | + 1 =
∑n

i=1 |Ei| ≤∑n
i=1(k|Vi|+1) = k|V |+n and hence there exists 1 ≤ i ≤ n such that |Ei| = k|Vi|+1.

As G is a (k, l)-circuit this implies that 1 = i = n and G is connected. So for all U ⊊ V

such that |U | ≤ 0, |V \ U | = |V | ≥ 3 and G[V \ U ] = G is connected. Therefore

κ(G) ≥ 1.

Lemma 2.1.0.12. Let G be a graph, take k ∈ N+, and take l ∈ Z such that l ≤ 2k−1.

If l ≥ 0 and G is (k, l)-connected then κ(G) ≥ 1.

Proof. Let G = (V,E). As G is (k, l)-connected, G = G[E] and |E| ≥ 2. As |E| ≥ 2,

|V | ≥ 3. Let G1, . . . , Gn be the components of G and for all 1 ≤ i ≤ n let Gi = (Vi, Ei).

Then V =
⋃n
i=1 Vi and E =

⋃n
i=1Ei. As each Gi is a component of G we have that for

all 1 ≤ i < j ≤ n, Vi ∩ Vj = ∅ = Ei ∩ Ej. Moreover, as G = G[E] we have that for all

1 ≤ i ≤ n, Ei ̸= ∅.

Take {e, f} ⊆ E and let G[C] be a (k, l)-circuit such that {e, f} ⊆ C, which exists

since M(k,l)(G) is connected. As k ∈ N+ and 0 ≤ l ≤ 2k − 1, Lemma 2.1.0.11 implies

that κ(G[C]) ≥ 1 and so G[C] is connected. Hence there exists 1 ≤ i ≤ n such that

{e, f} ⊆ Ei. Note that e and f were chosen arbitrarily, so for all {e, f} ⊆ E there

exists 1 ≤ i ≤ n such that {e, f} ⊆ Ei. As, for all 1 ≤ i < j ≤ n, Ei ̸= ∅ = Ei ∩ Ej
this implies that n = 1 and so G is connected. So for all U ⊊ V such that |U | ≤ 0,

|V \ U | = |V | ≥ 3 and G[V \ U ] = G is connected. Therefore κ(G) ≥ 1.
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G1 G2 G3 G4

Figure 2.2: G1 is a (2, 1)-circuit, G2 is a (1,−1)-circuit, G3 is a (3, 5)-circuit, and G4 is
a (1, 0)-circuit.
G1 demonstrates that the lower bounds of Lemma 2.1.0.9 and Lemma 2.1.0.11 are the
best possible, and G3 demonstrates that the lower bounds of Lemma 2.1.0.13 and Lemma
2.1.0.15 are the best possible. G2 highlights the importance of the condition that l ≥ 0
in Lemma 2.1.0.11, G1 highlights the importance of the condition that l ≥ k in Lemma
2.1.0.13, andG4 highlights the importance of the condition that l ≥ k in Lemma 2.1.0.15.

Lemma 2.1.0.13. Let G be a graph, take k ∈ N+, and take l ∈ Z such that l ≤ 2k−1.

If l ≥ k and G is a (k, l)-circuit then κ(G) ≥ 2.

Proof. Let G = (V,E). Lemma 2.1.0.7 implies that 3 ≤ |E| = k|V | − (l − 1) and for

all ∅ ̸= F ⊊ E, |F | ≤ k|V (G[F ])| − l. As |E| ≥ 3, |V | ≥ 3. Take u ∈ V and let

H1, . . . , Hn be the components of G[V \ {u}] = H = (W,F ). As |V | ≥ 3, |W | ≥ 2.

For all 1 ≤ i ≤ n let Hi = (Wi, Fi). Then W =
⋃n
i=1Wi and F =

⋃n
i=1 Fi. As each

Hi is a component of H we have that for all 1 ≤ i < j ≤ n, Wi ∩Wj = ∅ = Fi ∩ Fj.
Therefore |W | =

∑n
i=1 |Wi| and |F | =

∑n
i=1 |Fi|.

As G is a (k, l)-circuit, Lemma 2.1.0.9 implies that δ(G) ≥ k + 1 ≥ 2. So for all

1 ≤ i ≤ n, ∅ ̸= Fi ⊊ E. Therefore, for all 1 ≤ i ≤ n there exists ai ≥ l such that

|Fi| = k|Wi| − ai. So for all 1 ≤ i ≤ n,

k|Wi ∪ {u}| − (l− 1) ≥ |Fi|+ |NG(u)∩Wi| = k|Wi ∪ {u}|+ |NG(u)∩Wi| − (ai + k).

Therefore for all 1 ≤ i ≤ n, −(l − 1) ≥ |NG(u) ∩Wi| − (ai + k). Let l = k + x. Then
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for all 1 ≤ i ≤ n, |NG(u) ∩Wi| ≤ 1 + ai − x. Moreover,

k|W |+ k − ((l − 1) + dG(u)) = k|V | − ((l − 1) + dG(u))

= |E| − dG(u)

= |F |

=
n∑
i=1

(k|Wi| − ai)

= k|W | −
n∑
i=1

ai.

It follows that 1 + (k − l) − dG(u) = −
∑n

i=1 ai, and consequently dG(u) = (1 − x) +∑n
i=1 ai. Combining the information we have so far we see that

n∑
i=1

(1 + ai − x) ≥
n∑
i=1

|NG(u) ∩Wi| = dG(u) = (1− x) +
n∑
i=1

ai.

So n(1 − x) ≥ 1 − x. As l ≥ k, x ≥ 0 and hence n(1 − x) ≤ 1 − x. Therefore

n(1− x) = (1− x) which implies that n = 1 or x = 1.

Recall that for all 1 ≤ i ≤ n, |NG(u) ∩Wi| ≤ 1 + ai − x. If x = 1 then l = k + 1

and
∑n

i=1 ai = dG(u) =
∑n

i=1 |NG(u) ∩Wi| ≤
∑n

i=1 ai. So |NG(u) ∩Wi| = ai for all

1 ≤ i ≤ n, and hence

k|Wi ∪ {u}| − k = k|Wi ∪ {u}| − (l − 1)

≥ |Fi|+ |NG(u) ∩Wi|

= (k|Wi| − ai) + ai

= k|Wi ∪ {u}| − k.

Therefore for all 1 ≤ i ≤ n, k|Wi∪{u}|−(l−1) = |Fi|+ |NG(u)∩Wi| = |Fi∪{uv : v ∈
NG(u) ∩Wi}|. As G is a (k, l)-circuit this implies Fi ∪ {uv : v ∈ NG(u) ∩Wi} = E, so

1 = i = n. Therefore n = 1 and H = G[V \ U ] is connected. Lemma 2.1.0.11 implies

that κ(G) ≥ 1 and so for all U ⊆ V such that |U | ≤ 1, we have |V \ U | ≥ 2 and
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G[V \ U ] is connected. Therefore κ(G) ≥ 2.

Lemma 2.1.0.14. Let G be a graph, take k ∈ N+, and take l ∈ Z such that l ≤ 2k−1.

If l ≥ k and G is (k, l)-connected then κ(G) ≥ 2.

Proof. Let G = (V,E). As G is (k, l)-connected, G = G[E] and |E| ≥ 2. As |E| ≥ 2,

|V | ≥ 3. Take u ∈ V and let H1, . . . , Hn be the components of G[V \ {u}] = H =

(W,F ). As |V | ≥ 3, |W | ≥ 2. For all 1 ≤ i ≤ n let Hi = (Wi, Fi). Then W =
⋃n
i=1Wi

and F =
⋃n
i=1 Fi. As each Hi is a component of H we have that for all 1 ≤ i < j ≤ n,

Wi ∩ Wj = ∅ = Fi ∩ Fj. As G is (k, l)-connected, Lemma 2.1.0.10 implies that

δ(G) ≥ k + 1 ≥ 2. So for all 1 ≤ i ≤ n, ∅ ̸= Fi ⊊ E. If |F | = 1 then it follows that

n = 1 and so H is connected.

Suppose instead that |F | ≥ 2. Take {e, f} ⊆ F and let G[C] be a (k, l)-circuit such

that {e, f} ⊆ C, which exists since M(k,l)(G) is connected. As l ≥ k, Lemma 2.1.0.13

implies that κ(G[C]) ≥ 2. So, as H = G[V \{u}] and C∩F ̸= ∅, κ(H[C∩F ]) ≥ 1 and

so H[C ∩F ] is connected. Therefore there exists 1 ≤ i ≤ n such that {e, f} ⊆ Fi. Note

that e and f were chosen arbitrarily, so for all {e, f} ⊆ F there exists 1 ≤ i ≤ n such

that {e, f} ⊆ Fi. As, for all 1 ≤ i < j ≤ n, Fi ̸= ∅ = Fi ∩ Fj this implies that n = 1

and so H is connected. Lemma 2.1.0.12 implies that κ(G) ≥ 1 and so for all U ⊊ V

such that |U | ≤ 1, |V \ U | ≥ 2 and G[V \ U ] is connected. Therefore κ(G) ≥ 2.

Lemma 2.1.0.15. Let G be a graph, take k ∈ N+, and take l ∈ Z such that l ≤ 2k−1.

If l ≥ k and G is a (k, l)-circuit then κ1(G) ≥ k + 1.

Proof. Let G = (V,E). Lemma 2.1.0.7 implies that 3 ≤ |E| = k|V | − (l − 1) and

for all ∅ ≠ F ⊊ E, |F | ≤ k|V (G[F ])| − l. As |E| ≥ 3, |V | ≥ 3. Lemma 2.1.0.9

implies that δ(G) ≥ k + 1 and hence |E| ≥ k + 1. As k ∈ N+ and |E| ≥ k + 1,

we can take F ⊊ E such that 1 ≤ |F | ≤ k. Let G1, . . . , Gn be the components of

G[E \ F ] and for all 1 ≤ i ≤ n let Gi = (Vi, Ei). As |F | ≤ k and δ(G) ≥ k + 1,

V (G[E \ F ]) = V =
⋃n
i=1 Vi. As each Gi is a component of (V,E \ F ) we have

that for all 1 ≤ i < j ≤ n, Vi ∩ Vj = ∅ = Ei ∩ Ej. Therefore |V | =
∑n

i=1 |Vi| and
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|E \ F | =
∑n

i=1 |Ei|. As δ(G) ≥ k + 1 and 1 ≤ |F | ≤ k, for all 1 ≤ i ≤ n we have

∅ ≠ Ei ⊊ E. As G is a (k, l)-circuit, |Ei| ≤ k|V (G[Ei])|− l = k|Vi|− l for all 1 ≤ i ≤ n.

So,

k|V | − (l − 1) = |F |+
n∑
i=1

|Ei|

≤ |F |+
n∑
i=1

(k|Vi| − l)

≤ k|V | − (nl − k).

Therefore −(l − 1) ≤ −(nl − k), so k − 1 ≥ l(n − 1). As l ≥ k ∈ N+, this implies

that n = 1 and so (V,E \ F ) is connected. Lemma 2.1.0.11 implies that κ(G) ≥ 1, so

Theorem 1.1.1.12 implies that κ1(G) ≥ 1. So for all F ⊆ E such that |F | ≤ k, |V | ≥ 3

and (V,E \ F ) is connected. Therefore κ1(G) ≥ k + 1.

Lemma 2.1.0.16. Let G be a graph, take k ∈ N+, and take l ∈ Z such that l ≤ 2k−1.

If l ≥ k and G is (k, l)-connected then κ1(G) ≥ k + 1.

Proof. Let G = (V,E). As G is (k, l)-connected, G = G[E] and |E| ≥ 2. As |E| ≥ 2,

|V | ≥ 3. Lemma 2.1.0.10 implies that δ(G) ≥ k+1 and hence |E| ≥ k+1. As k ∈ N+

and |E| ≥ k + 1, we can take F ⊊ E such that 1 ≤ |F | ≤ k. Let G1, . . . , Gn be the

components of G[E \ F ] and for all 1 ≤ i ≤ n let Gi = (Vi, Ei). As |F | ≤ k and

δ(G) ≥ k + 1, V (G[E \ F ]) = V =
⋃n
i=1 Vi. As each Gi is a component of (V,E \ F )

we have that for all 1 ≤ i < j ≤ n, Vi ∩ Vj = ∅ = Ei ∩ Ej. As δ(G) ≥ k + 1 and

1 ≤ |F | ≤ k, for all 1 ≤ i ≤ n we have ∅ ̸= Ei ⊊ E. If |E \ F | = 1 then it follows that

n = 1 and so (V,E \ F ) is connected.

Suppose instead that |E \ F | ≥ 2. Take {e, f} ⊆ E \ F and let G[C] be a (k, l)-circuit

such that {e, f} ⊆ C, which exists since M(k,l)(G) is connected. As l ≥ k, Lemma

2.1.0.15 implies that κ1(G[C]) ≥ k + 1. So, as C \ F ̸= ∅, κ1(G[C \ F ]) ≥ 1 and so

G[C \ F ] is connected. Therefore there exists 1 ≤ i ≤ n such that {e, f} ⊆ Ei. Note

that e and f were chosen arbitrarily, so for all {e, f} ⊆ E \F there exists 1 ≤ i ≤ n such
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that {e, f} ⊆ Ei. As, for all 1 ≤ i < j ≤ n, Ei ̸= ∅ = Ei ∩ Ej this implies that n = 1

and so (V,E \ F ) is connected. Lemma 2.1.0.12 implies that κ(G) ≥ 1, so Theorem

1.1.1.12 implies that κ1(G) ≥ 1. So for all F ⊆ E such that |F | ≤ k, |V | ≥ 3 and

(V,E \ F ) is connected. Therefore κ1(G) ≥ k + 1.

The remainder of this section considers how (k, l)-connected graphs interact with some

of the graph operations introduced in Subsection 1.1.2. In particular, we consider the

edge-addition and (k, 1)-extension operations. The final result of this section, Lemma

2.1.0.20, is of a different flavour. We use a special case of this result (Lemma 2.3.0.3)

in the context of (2, 2)-connected graphs in order to better understand how these graphs

interact with certain graph operations that we introduce in Section 2.3.

There are a couple of compelling reasons to prove Lemma 2.1.0.20, rather than a more

specific result that specifically deals with (2, 2)-connected graphs. Firstly, it is interesting

to note that this proof requires that l ̸= 2k − 1. Secondly, as Lemma 2.1.0.14 implies

that κ(G) ≥ 2, and the (3, 5)-circuit G3 in Figure 2.2 has κ(G3) = 2, it is plausible that

this result could prove to be useful in the study of (k, l)-connected graphs where k ≥ 3.

Lemma 2.1.0.17. Let G be a graph, take k ∈ N+, take l ∈ Z such that l ≤ 2k−1, and

suppose G′ is an edge-addition of G. If G is (k, l)-connected then G′ is (k, l)-connected.

Proof. Let G = (V,E) and let G′ = (V ′, E ′). As G′ is an edge-addition of G there

exists e′ /∈ E such that G′ = (V,E ∪ {e′}). As G is (k, l)-connected, G = G[E] and

|E| ≥ 2. Therefore V ′ = V , G′ = G′[E ′], and |E ′| = |E| + 1 ≥ 3. All that remains is

to show that M(k,l)(G
′) is connected.

Let e′ = v1v2. As G = G[E] we may take {f1, f2} ⊆ E such that, for i ∈ {1, 2}, fi is
incident to vi. As G is (k, l)-connected there exists C, a circuit of M(k,l)(G), such that

{f1, f2} ⊆ C. Then G[C] is a (k, l)-circuit, so |C| = k|V (G[C])| − (l − 1) by Lemma

2.1.0.7. Let C ′ = (C \ {f2}) ∪ {e′}. As G[C] is a (k, l)-circuit, Lemma 2.1.0.9 implies

that δ(G[C]) ≥ k + 1 ≥ 2 and hence V (G′[C ′]) = V (G[C]) and |C ′| = |C|. Therefore
|C ′| = |C| = k|V (G[C])| − (l − 1) = k|V (G′[C ′])| − (l − 1), so C ′ is a dependent set

of M(k,l)(G
′) and hence there exists C ′′ ⊆ C ′ such that C ′′ is a circuit of M(k,l)(G

′).
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If e′ /∈ C ′′ then C ′′ ⊆ C ′ \ {e′} ⊊ C, which contradicts Lemma 1.2.0.3. Hence e′ ∈ C ′′

and G′[C ′′] is a (k, l)-circuit. Lemma 2.1.0.7 implies that |C ′′| ≥ 3, so we may take

f ∈ C ′′ \ {e′}. Then f ∈ E and so, as G is (k, l)-connected, for all e ∈ E \ {f} there

exists C̃, a circuit of M(k,l)(G), such that {e, f} ⊆ C̃. As G is a subgraph of G′, C̃

is also a circuit of M(k,l)(G
′). Therefore, for all e ∈ E ′ \ {f} there exists a circuit of

M(k,l)(G
′) containing e and f . Lemma 1.2.0.8 implies G′ is (k, l)-connected.

Lemma 2.1.0.18. Let G be a graph, take k ∈ N+, take l ∈ Z such that l ≤ 2k−1, and

suppose G′ is a (k, 1)-extension of G. If G is a (k, l)-circuit then G′ is a (k, l)-circuit.

Proof. Let G = (V,E) and let G′ = (V ′, E ′). Set V ′ \ V = {v}, E \ E ′ = {u1uk+1},
and E ′ \E = {vu1, . . . , vuk+1}. Then NG′(v) = {u1, . . . , uk+1}. Lemma 2.1.0.7 implies

that 3 ≤ |E| = k|V | − (l − 1) and for all ∅ ≠ F ⊊ E, |F | ≤ k|V (G[F ])| − l. We note

that |E ′| = |E|+ k ≥ 3 + k ≥ 4.

Take ∅ ≠ F ′ ⊆ E ′. If F ′ ⊆ E then F ′ ⊊ E and V (G[F ]) = V (G′[F ]). Hence |F ′| ≤
k|V (G[F ])|−l = k|V (G′[F ])|−l. If F ′ ⊆ {vu1, . . . , vuk+1} then |F ′| = |V (G′[F ′])|−1.

So, as k ∈ N+ and |V (G′[F ′])| ≥ 2,

l ≤ 2k − 1 = 2(k − 1) + 1 ≤ (k − 1)|V (G′[F ′])|+ 1 = k|V (G′[F ′])| − |F ′|.

Therefore |F ′| ≤ k|V (G′[F ′])| − l.

So we may suppose that F ′ ∩ E ̸= ∅ ̸= F ′ ∩ {vu1, . . . , vuk+1}. Note that we took

∅ ̸= F ′ ⊆ E ′, so we are including the case F ′ = E’. Let F ′ ∩ E = F and let

F ′ ∩ {vu1 . . . , vuk+1} = F ′′, so F ′ = F ∪ F ′′ and F ∩ F ′′ = ∅. Then

|F ′| = |F |+ |F ′′| and V (G′[F ′]) = V (G′[F ∪ F ′′]) = V (G[F ]) ∪ V (G′[F ′′]),

so |V (G′[F ′])| = |V (G[F ])|+ |V (G′[F ′′])| − |V (G[F ]) ∩ V (G′[F ′′])|.

As ∅ ̸= F ′′ = F ′ ∩ {vu1, . . . , vuk+1}, we have that |V (G[F ]) ∩ V (G′[F ′′])| + 1 =
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|V (G′[F ′′])| = |F ′′|+ 1 ≤ k + 2. Therefore, as k ∈ N+,

1 ≥ |V (G′[F ′′])| − (k + 1)

= (|V (G[F ]) ∩ V (G′[F ′′])| − 1)− (k − 1)

= |V (G[F ]) ∩ V (G′[F ′′])| − k

= (|V (G[F ]) ∩ V (G′[F ′′])| − |V (G′[F ′′])|) + (|V (G′[F ′′])| − k)

= k(|V (G[F ]) ∩ V (G′[F ′′])| − |V (G′[F ′′])|) + |V (G′[F ′′])| − 1.

As u1uk+1 /∈ E ′ it follows that F ⊊ E and hence there exists a ≥ l such that |F | =
k|V (G[F ])| − a. Combining all of this information we see that

|F ′| = |F |+ |F ′′| = (k|V (G[F ])| − a) + (|V (G′[F ′′])| − 1)

= k(|V (G[F ])|+ |V (G′[F ′′])|)− (a+ 1 + (k − 1)|V (G′[F ′′])|)

= k(|V (G′[F ′])|+ |V (G[F ]) ∩ V (G′[F ′′])|)− (k − 1)|V (G′[F ′′])|

− (a+ 1)

≤ (k|V (G′[F ′])| − a) + 1

≤ k|V (G′[F ′])| − (l − 1).

Therefore, |F ′| = k|V (G′[F ′])| − (l − 1) if and only if |V (G′[F ′′])| = k + 2 and |F | =
k|V (G[F ])| − l. As G is a (k, l)-circuit it follows that |F ′| = k|V (G′[F ′])| − (l − 1)

if and only if F ′ = E ′. So 4 ≤ |E ′| = k|V ′| − (l − 1) and for all ∅ ̸= F ′ ⊊ E ′,

|F ′| ≤ k|V (G′[F ′])| − l. Lemma 2.1.0.7 implies that G′ is a (k, l)-circuit.

Lemma 2.1.0.19. Let G be a graph, take k ∈ N+, take l ∈ Z such that l ≤ 2k − 1,

and suppose G′ is a (k, 1)-extension of G. If k ∈ {1, 2} and G is (k, l)-connected then

G′ is (k, l)-connected.

Proof. Let G = (V,E) and let G′ = (V ′, E ′). As G′ is a (k, 1)-extension of a (k, l)-

connected graph, G′ = G′[E ′] and |E ′| = |E| + k ≥ 3. All that remains is to show

that M(k,l)(G
′) is connected. Set V ′ \ V = {v}, E \ E ′ = {u1uk+1}, and E ′ \ E =
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{vu1, . . . , vuk+1}. Then NG′(v) = {u1, . . . , uk+1}. We consider the cases k = 1 and

k = 2 separately.

Case 1: Suppose k = 1, so NG′(v) = {u1, u2} and E \E ′ = {u1u2}. As |E| ≥ 2 we may

take e ∈ E ∩ E ′. As G is (1, l)-connected there exists C1, a circuit of M(1,l)(G), such

that {e, u1u2} ⊆ C1. G[C1] is a (1, l)-circuit. Lemma 2.1.0.18 implies that the (1, 1)-

extension of G[C1] adding v and deleting u1u2 is a (1, l)-circuit. This (1, 1)-extension of

G[C1] is a subgraph of G′ so there exists a circuit of M(1,l)(G
′) containing e, vu1, and

vu2.

Note that as G[C1] is a (1, l)-circuit, |E| ≥ |C1| ≥ 3 and hence |E ∩ E ′| ≥ 2. Take

f ∈ (E∩E ′)\{e}. As G is (1, l)-connected there exists C2, a circuit of M(1,l)(G), such

that {e, f} ⊆ C2. G[C2] is a (1, l)-circuit. If u1u2 /∈ C2 then C2 is a circuit of M(1,l)(G
′)

containing e and f . If u1u2 ∈ C2 then Lemma 2.1.0.18 implies that the (1, 1)-extension

of G[C2] adding v and deleting u1u2 is a (1, l)-circuit. This (1, 1)-extension of G[C2] is a

subgraph of G′ so there exists a circuit of M(1,l)(G
′) containing e and f . Therefore, for

all f ′ ∈ E ′ \ {e} there exists C ′, a circuit of M(1,l)(G
′), such that {e, f ′} ⊆ C ′. Lemma

1.2.0.8 implies that G′ is M(1,l)-connected.

Case 2: Suppose k = 2, so NG′(v) = {u1, u2, u3} and E \ E ′ = {u1u3}. As G = G[E]

we may take e ∈ E ∩ E ′ such that e is incident to u2. As G is (2, l)-connected there

exists C1, a circuit of M(2,l)(G), such that {e, u1u3} ⊆ C1. G[C1] is a (2, l)-circuit.

Lemma 2.1.0.18 implies that the (2, 1)-extension of G[C1] adding v and deleting u1u3 is

a (2, l)-circuit. This (2, 1)-extension of G[C1] is a subgraph of G′ so there exists a circuit

of M(2,l)(G
′) containing e, vu1, vu2, and vu3.

Note that as G[C1] is a (2, l)-circuit, |E| ≥ |C1| ≥ 3 and hence |E ∩ E ′| ≥ 2. Take

f ∈ (E∩E ′)\{e}. As G is (2, l)-connected there exists C2, a circuit of M(2,l)(G), such

that {e, f} ⊆ C2. G[C2] is a (2, l)-circuit. If u1u3 /∈ C2 then C2 is a circuit of M(2,l)(G
′)

containing e and f . If u1u3 ∈ C2 then Lemma 2.1.0.18 implies that the (2, 1)-extension

of G[C2] adding v and deleting u1u3 is a (2, l)-circuit. This (2, 1)-extension of G[C2] is a

subgraph of G′ so there exists a circuit of M(2,l)(G
′) containing e and f . Therefore, for

all f ′ ∈ E ′ \ {e} there exists C ′, a circuit of M(2,l)(G
′), such that {e, f ′} ⊆ C ′. Lemma
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1.2.0.8 implies that G′ is M(2,l)-connected.

Remark 9. In the previous result we had to considerably restrict which values of k we

consider. The reason for doing this is suggested in the second sentence of case 2. When

k ≤ 1 we are able to choose e ∈ E ∩ E ′ in such a way that the existence of C1, a

circuit of M(k,l)(G), such that {e, u1u3} ⊆ C1 implies that G[C1] is a (k, l)-circuit and

NG(v) ⊆ V (G[C1]). However, when k ≥ 3 it is no longer possible, a priori, to guarantee

that there exists a (k, l)-circuit (V ′, E ′) such that NG(v) ⊆ V ′. If no such (k, l)-circuit

exists then we are unable to consider the relevant (k, 1)-extension of a circuit and so the

rest of the proof technique breaks down. In other words, if it can be shown that such

a circuit must exist for values of k ≥ 3 then the previous result could be extended to

include these values of k.

Lemma 2.1.0.20. Let G = (V,E) be a graph, take k ∈ N+, and take l ∈ Z. Suppose
there exists a 2-vertex-separation (G1, G2) of G, where Gi = (Vi, Ei) for i ∈ {1, 2}, and
E1∩E2 ̸= ∅. If k ≤ l ≤ 2k−2 and G is (k, l)-connected then for all e1 ∈ E1 \E2 and all

e2 ∈ E2 \E1 there exists C
′, a circuit of M(k,l)(G), such that (E1∩E2)∪{e1, e2} ⊆ C ′.

Proof. As |V1 ∩ V2| = 2 and E1 ∩ E2 ̸= ∅, |E1 ∩ E2| = 1. Let E1 ∩ E2 = {f}, take
e1 ∈ E1 \E2, and take e2 ∈ E2 \E1. As G is (k, l)-connected there exists C, a circuit of

M(k,l)(G), such that {e1, e2} ⊆ C. G[C] is a (k, l)-circuit. If f ∈ C then we are done,

so suppose instead that f /∈ C.

As k ≤ l ≤ 2k − 1, Lemma 2.1.0.13 implies that κ(G[C]) ≥ 2 and hence V1 ∩ V2 ⊆
V (G[C]). Let G′ = G[C ∪ {f}]. As V1 ∩ V2 ⊆ V (G[C]) and f /∈ C, G′ is the edge-

addition of G[C] adding f . We note that, as G[C] is a subgraph of G′, C is also a circuit

of M(k,l)(G
′). Lemma 2.1.0.8 and Lemma 2.1.0.17 together imply that G′ is (k, l)-

connected. Therefore there exist C1, C2, circuits of M(k,l)(G
′), such that {ei, f} ⊆ Ci

for i ∈ {1, 2}. If e2 ∈ C1 or e1 ∈ C2 then we are done, so suppose instead that e2 /∈ C1

and e1 /∈ C2.

As G′ is (k, l)-connected there exists C ′
1, a circuit of M(k,l)(G

′), such that f ∈ C ′
1.

If C ′
1 ̸= C1 then Lemma 1.2.0.3 (C3) (the weak circuit exchange axiom) implies there
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exists D, a circuit of M(k,l)(G
′), such that D ⊆ (C1 ∪ C ′

1) \ {f} ⊆ C. Lemma 1.2.0.3

(C2) implies that D = (C1 ∪ C ′
1) \ {f} = C, so e2 ∈ D and hence e2 ∈ C ′

1. That

is, C ′
1 = C1 or e2 ∈ C ′

1. Therefore C1 is the unique circuit of M(k,l)(G
′) containing f

and not containing e2. Similarly, C2 is the unique circuit of M(k,l)(G
′) containing f and

not containing e1. Therefore C1 ̸= C2 and f ∈ C1 ∩ C2. Lemma 1.2.0.3 (C3) implies

there exists C̃, a circuit of M(k,l)(G
′), such that C̃ ⊆ (C1 ∪ C2) \ {f} ⊆ C. Then

C̃ = (C1 ∪ C2) \ {f} = C by Lemma 1.2.0.3 (C2). Consequently,

|C1 ∪ C2| = |C|+ 1 = (k|V (G[C])| − (l − 1)) + 1 = k|V (G[C])| − (l − 2).

If C1 ∩ C2 = {f} then

k|V (G[C])| − (l − 2) = |C1 ∪ C2|

= |C1|+ |C2| − |C1 ∩ C2|

= (k|V (G′[C1])| − (l − 1)) + (k|V (G′[C2])| − (l − 1))− 1

= k|V (G[C])|+ A− (2l − 1),

where A = k(|V (G′[C1])|+ |V (G′[C2])| − |V (G[C])|). Therefore

k(|V (G′[C1])|+ |V (G′[C2])| − |V (G[C])|) = (l + 1).

However, as k ≤ l ≤ 2k− 2 we observe that l+ 1 is not an integer multiple of k and so

we have a contradiction. Hence (C1 ∩ C2) \ {f} ≠ ∅.

Take e ∈ (C1 ∩C2) \ {f} ⊆ C. Lemma 1.2.0.3 (C3) implies there exists C ′, a circuit of

M(k,l)(G
′), such that C ′ ⊆ (C ∪ C1) \ {e}. Lemma 1.2.0.3 (C2) implies that C ′ ⊈ C.

As e /∈ C ′, C ′ ̸= C,C1, C2. Hence, as C ′ ⊆ C ∪ {f}, f ∈ C ′. Now the uniqueness of

C1 and C2 implies that {e1, e2, f} ⊆ C ′. As G′ = G[C ∪ {f}] is a subgraph of G, C ′ is

a circuit of M(k,l)(G) such that (E1 ∩ E2) ∪ {e1, e2} ⊆ C ′.
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2.2 (k, 2k − 1)-Connected Graphs

This section acts as a brief aside before proceeding with the bulk of the chapter where

our attention turns to (2, 2)-connected graphs. The overall aim of this chapter is to

extend earlier work on (2, 2)-circuits (see [30, 24]) to the setting of (2, 2)-connected

graphs. This is broadly the same process as employed by Jackson and Jordán [22] who

extended Berg and Jordán’s [2] study of (3-vertex-connected) (2, 3)-circuits in order to

characterise (3-vertex-connected) (2, 3)-connected graphs. The content of this section

is based on the observation that various results from these two papers can be shown to

hold true for (k, 2k − 1)-circuits for arbitrary k ∈ N+.

In earlier work on (2, 3)-circuits and (2, 3)-connected graphs, particular attention was paid

to those graphs that were 3-vertex-connected. It should be noted that alongside consid-

ering those graphs with sufficient vertex-connectivity, characterisations of (2, 3)-circuits

and (2, 3)-connected graphs, with no additional vertex-connectivity requirements, were

provided in [2] and [22] respectively. These characterisations without the requirement of

3-vertex-connectivity laid the foundation for the characterisations with the requirement

of 3-vertex-connectivity.1 Note that even when k ≥ 3 there may exist a (k, 2k − 1)-

connected graph, G, such that κ(G) = 2 (see Figure 2.1). Therefore, it is reasonable to

suppose that extending [2, Theorem 4.4] and [22, Corollary 5.9] to consider (k, 2k − 1)-

circuits or (k, 2k − 1)-connected graphs, for arbitrary k ∈ N+, could be an important

first step in characterising (k, 2k − 1)-connected graphs.

Lemma 2.2.0.1. Let G = (V,E) be a graph and take k ∈ N+. Suppose there exists

a 2-vertex-separation (G1, G2) of G, where Gi = (Vi, Ei) for i ∈ {1, 2}. If G is a

(k, 2k− 1)-circuit then E1 ∩E2 = ∅ and |Ei| = iG(Vi) = k|Vi| − (2k− 1) for i ∈ {1, 2}.
1Berg and Jordán comment on the fact that their characterisation without a vertex-connectivity re-

quirement is not used in their characterisation of 3-vertex-connectivity (2, 3)-circuits [2, p.88]. However,
graph operations specifically related to (2, 3)-circuits that are not 3-vertex-connected (see Figure 2.3)
are crucial to their characterisation of 3-vertex-connected (2, 3)-circuits.
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Proof. As G is a (k, 2k − 1)-circuit, |E| = k|V | − (2k − 2). Therefore,

k|V | − (2k − 2) = |E|

= |E1|+ |E2| − |E1 ∩ E2|

≤ (k|V1| − (2k − 1)) + (k|V2| − (2k − 1))

= k|V |+ k|V1 ∩ V2|+ 2− 4k

= k|V | − (2k − 2).

Hence |E1|+ |E2| − |E1 ∩E2| = (k|V1| − (2k − 1)) + (k|V2| − (2k − 1)), which implies

that E1 ∩ E2 = ∅ and |Ei| = iG(Vi) = k|Vi| − (2k − 1) for i ∈ {1, 2}.

Lemma 2.2.0.2. Let G = (V,E) be a graph and take k ∈ N+. Suppose there exists a

2-vertex-separation (G1, G2) of G, where Gi = (Vi, Ei) for i ∈ {1, 2}, and E1 ∩E2 ̸= ∅.
G is (k, 2k − 1)-connected if and only if G[E \ (E1 ∩ E2)] is (k, 2k − 1)-connected.

Proof. As |V1 ∩ V2| = 2 and E1 ∩ E2 ̸= ∅, |E1 ∩ E2| = 1. Let E1 ∩ E2 = {f}
and let G′ = G[E \ {f}]. If G′ is (k, 2k − 1)-connected then G is the edge-addition

of G′ adding f and so Lemma 2.1.0.17 implies G is (k, 2k − 1)-connected. On the

other hand, suppose that G is (k, 2k − 1)-connected and take e ∈ E1 \ {f}. Take

f ′ ∈ E \ {e, f} = E(G′) \ {e}. As G is (k, 2k− 1)-connected there exists C, a circuit of

M(k,2k−1)(G), such that {e, f ′} ∈ C. G[C] is a (k, 2k − 1)-circuit. Now, f ′ ∈ E1 \ E2

or f ′ ∈ E2 \ E1.

If f ′ ∈ E2 \E1 then Lemma 2.1.0.13 implies that V1∩V2 ⊆ V (G[C]) and Lemma 2.2.0.1

implies that f /∈ C. Therefore C is a circuit of M(k,2k−1)(G
′). If f ′ ∈ E1 \E2 then take

f ′′ ∈ E2 \E1. As G is (k, 2k−1)-connected there exist C1, C2, circuits of M(k,2k−1)(G),

such that {e, f ′′} ⊆ C1 and {f ′, f ′′} ⊆ C2. As above, f /∈ C1, C2 and so C1 and C2

are circuits of M(k,2k−1)(G
′). Lemma 1.2.0.7 implies that there exists C ′, a circuit of

M(k,2k−1)(G
′), such that {e, f ′} ⊆ C ′.

Therefore, for all f ′ ∈ E(G′) \ {e} there exists a (k, 2k − 1)-circuit of M(k,2k−1)(G
′)

containing e and f ′. Lemma 1.2.0.8 implies that G′ = G[E \ (E1 ∩ E2)] is (k, 2k − 1)-
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connected.

The following graph operations (see Figure 2.3) were introduced by Berg and Jordán in

[2], where it was shown that they preserve the property of being a (2, 3)-circuit. This fact

was extended by Jackson and Jordán in [22], who show that these operations also preserve

the property of being (2, 3)-connected. In Section 2.3 we introduce similar operations and

consider how they interact with (2, 2)-circuits and (2, 2)-connected graphs. Beforehand,

we generalise the aforementioned results in [2, 22] and show that the operations of Berg

and Jordán interact nicely with (k, 2k− 1)-circuits and (k, 2k− 1)-connected graphs for

arbitrary k ∈ N+. Note that we refer to one of these operations as a ‘2-cleave’ rather

than a ‘2-separation’ in order to avoid confusing this operation with one of the operations

introduced in Section 2.3.

G

2-sum

2-cleave

G1 G2

Figure 2.3: Illustration of the 2-cleave and 2-sum operations. (G1, G2) is the 2-cleave of
G on (G[V (G1)], G[V (G2)]) and G is the 2-sum of (G1, G2).

Definition 2.2.0.3. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs such that there

exists a proper subgraph ({u, v}, {uv}) of both G1 and G2, and V1 ∩ V2 = {u, v}. The
2-sum of the ordered pair (G1, G2) is the graph G = (V1 ∪ V2, (E1 ∪ E2) \ {uv}).

Let G be a graph such that there exists a 2-vertex-separation (H1, H2) of G, where

Hi = (Ui, Fi) for i ∈ {1, 2}, and F1 ∩ F2 = ∅. A 2-cleave of G is an ordered pair

(G1, G2) such that G is the 2-sum of (G1, G2). If (G1, G2) is a 2-cleave of G, then

(G[V (G1)], G[V (G2)]) is a 2-vertex-separation of G and (G1, G2) is the 2-cleave of G

on (G[V (G1)], G[V (G2)]).
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Lemma 2.2.0.4. Let G1 and G2 be graphs, take k ∈ N+, and suppose G is the 2-sum

of (G1, G2). If G1 and G2 are (k, 2k − 1)-circuits then G is a (k, 2k − 1)-circuit.

Proof. Let G = (V,E), G1 = (V1, E1), G2 = (V2, E2), and let E1 ∩ E2 = {uv}. As

G is the 2-sum of (G1, G2), E = (E1 ∪ E2) \ {uv}. As G1 and G2 are (k, l)-circuits,

|E1|, |E2| ≥ 3 and so |E| = (|E1| − 1) + (|E2| − 1) ≥ 4. Take ∅ ̸= F ⊆ E. We

can set F = F1 ∪ F2 where Fi = F ∩ Ei. Since uv /∈ E, Fi ⊊ Ei for i ∈ {1, 2}. If

there exists i ∈ {1, 2} such that Fi = ∅ then for j ∈ {1, 2} such that j ̸= i we have

|F | = |Fj| ≤ k|V (Gj[Fj])| − (2k − 1) = k|V (G[Fj])| − (2k − 1).

On the other hand, suppose that F1 ̸= ∅ ≠ F2. Then, as F1 ∩ F2 = ∅,

|F | = |F1|+ |F2|

≤ (k|V (G1[F1])| − (2k − 1)) + (k|V (G2[F2])| − (2k − 1))

= k(|V (G[F1])|+ |V (G[F2])|)− 2(2k − 1)

= k|V (G[F ])|+ k|V (G[F1]) ∩ V (G[F2])| − (4k − 2)

≤ k|V (G[F ])| − (2k − 2).

So, for all ∅ ≠ F ⊆ E we have |F | ≤ k|V (G[F ])| − (2k − 2). Moreover, |F | =

k|V (G[F ])| − (2k − 2) if and only if |F1| = k|V (G1[F1])| − (2k − 1) and |F2| =

k|V (G2[F2])|− (2k− 1) and |V (G[F1])∩V (G[F2])| = 2. As G1 and G2 are (k, 2k− 1)-

circuits, it follows that |F | = k|V (G[F ])| − (2k − 2) if and only if Fi = Ei \ {uv}
for i ∈ {1, 2} if and only if F = E. Therefore, 3 ≤ |E| = k|V | − (2k − 2) and for

all ∅ ≠ F ⊊ E, |F | ≤ k|V (G[F ])| − (2k − 1). Lemma 2.1.0.7 implies that G is a

(k, 2k − 1)-circuit.

Lemma 2.2.0.5. Let G be a graph, take k ∈ N+, and suppose that (G1, G2) is a

2-cleave of G. If G is a (k, 2k − 1)-circuit then G1 and G2 are (k, 2k − 1)-circuits.

Proof. Let G = (V,E), G1 = (V1, E1), and G2 = (V2, E2). Set E1 ∩ E2 = {uv}. As

G is a (k, 2k − 1)-circuit, Lemma 2.1.0.9 implies that δ(G) ≥ k + 1 and hence, for

i ∈ {1, 2}, |Ei| ≥ (k + 1) + 1 ≥ 3. Now, take i ∈ {1, 2} and take ∅ ≠ F ⊆ Ei. If
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uv /∈ F then F ⊊ E and hence |F | ≤ k|V (G[F ])|− (2k− 1) = k|V (Gi[F ])|− (2k− 1).

If F = {uv} then 1 = |F | = 2k − (2k − 1) = k|V (Gi[F ])| − (2k − 1).

Alternatively, suppose that {uv} ⊊ F . Then,

|F | = |F \ {uv}|+ 1

≤ (k|V (G[F \ {uv}])| − (2k − 1)) + 1

= (k|V (Gi[F ])| − (2k − 2))− k|{u, v} \ V (G[F \ {uv}])|

≤ k|V (Gi[F ])| − (2k − 2).

So, for all ∅ ≠ F ⊆ Fi we have |F | ≤ k|V (Gi[F ])| − (2k − 2). Moreover, |F | =

k|V (Gi[F ])| − (2k− 2) if and only if {uv} ⊊ F and |F \ {uv}| = k|V (G[F \ {uv}])| −
(2k − 1) and |{u, v} \ V (G[F \ {uv}])| = 0. As G is a (k, 2k − 1)-circuit, it follows

that |F | = k|V (Gi[F ])| − (2k − 2) if and only if F \ {uv} = E ∩ Ei if and only if

F = Ei. Therefore, for i ∈ {1, 2}, 3 ≤ |Ei| = k|Vi| − (2k − 2) and for all ∅ ̸= F ⊊ Ei,

|F | ≤ k|V (Gi[F ])| − (2k − 1). Lemma 2.1.0.7 implies that G1 and G2 are (k, 2k − 1)-

circuits.

Before considering how these operations interact with (k, 2k − 1)-connected graphs we

first note that Lemma 2.1.0.13 implies that if G is a (k, 2k − 1)-circuit then κ(G) ≥ 2.

Figure 2.1 (specifically G3) illustrates that if k = 3 then this lower bound is sharp. We

now show that there is nothing special, in this regard, that follows from demanding k = 3.

Proposition 2.2.0.6. For all k ∈ N+ there exists a (k, 2k − 1)-circuit G such that

κ(G) = 2.

Proof. Let G′ = (V ′, E ′) be a complete graph such that |V ′| ≥ max{4, 2k}. We observe

that

k|V ′| − (2k − 2) ≤
(
|V ′|
2

)
⇐⇒ |V ′|2 − (2k + 1)|V ′|+ (4k − 4) ≥ 0

⇐⇒ (|V ′| − 2)(|V ′| − (2k − 1)) ≥ 2.
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Hence |E ′| ≥ k|V ′| − (2k − 2). Therefore E ′ is a dependent set in M(k,2k−1)(G
′),

and hence there exists F ′ ⊆ E ′ such that F ′ is a circuit of M(k,2k−1)(G
′). Let H ′ =

G′[F ′] and let H ′′ be a graph isomorphic to H ′ such that |V (H ′) ∩ V (H ′′)| = 2 and

|E(H ′)∩E(H ′′)| = 1. Note that H ′ and H ′′ are (k, 2k−1)-circuits. Let H be the 2-sum

of (H ′, H ′′), so κ(H) = 2. Lemma 2.2.0.4 implies that H is a (k, 2k − 1)-circuit.

Lemma 2.2.0.7. Let G1 and G2 be graphs, take k ∈ N+, and suppose G is the 2-sum

of (G1, G2). If G1 and G2 are (k, 2k − 1)-connected then G is (k, 2k − 1)-connected.

Proof. Let G = (V,E), G1 = (V1, E1), and let G2 = (V2, E2). As G1 and G2 are

(k, 2k − 1)-connected, G1 = G1[E1] and G2 = G2[E2] and |E1|, |E2| ≥ 2. By the

definition of 2-sum it follows that G = G[E] and |E| ≥ 2. All that remains is to show

that M(k,2k−1)(G) is connected. Let E1 ∩ E2 = {e′} and take e ∈ E ∩ E1 = E1 \ {e′}.
Take f ∈ E \ {e}.

If f ∈ E1 then as G1 is (k, 2k−1)-connected there exists C1, a circuit of M(k,2k−1)(G1),

such that {e, f} ⊆ C1. If e
′ /∈ C1 then C1 is a circuit of M(k,2k−1)(G). Alternatively, if

e′ ∈ C1 then since G2 is (k, 2k−1)-connected there exists C2, a circuit of M(k,2k−1)(G2),

such that {e′} ⊊ C2. Then Lemma 2.2.0.4 implies the 2-sum of (G1[C1], G2[C2]), say

G′, is a (k, 2k − 1)-circuit. Let E(G′) = C ′, then C ′ is a circuit of M(k,2k−1)(G) such

that {e, f} ⊆ C ′.

If f /∈ E1 then f ∈ E2 \ {e′}. As G1 and G2 are (k, l)-connected there exist C ′
1, a

circuit of M(k,2k−1)(G1), and C
′
2, a circuit of M(k,2k−1)(G2), such that {e, e′} ⊆ C ′

1 and

{f, e′} ⊆ C ′
2. Then Lemma 2.2.0.4 implies the 2-sum of (G1[C

′
1], G2[C

′
2]), say G

′′, is

a (k, 2k − 1)-circuit. Let E(G′′) = C ′′, then C ′′ is a circuit of M(k,2k−1)(G) such that

{e, f} ⊆ C ′′. Therefore, for all f ∈ E \ {e} there exists C, a circuit of M(k,2k−1)(G),

such that {e, f} ⊆ C and so Lemma 1.2.0.8 implies G is (k, 2k − 1)-connected.

Lemma 2.2.0.8. Let G be a graph, take k ∈ N+, and suppose (G1, G2) is a 2-cleave

of G. If G is (k, 2k − 1)-connected then G1 and G2 are (k, 2k − 1)-connected.
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Proof. Let G = (V,E), G1 = (V1, E1), and G2 = (V2, E2). As G is (k, 2k − 1)-

connected, G = G[E] and |E| ≥ 2. By the definition of 2-cleave it follows that for

i ∈ {1, 2}, Gi = Gi[Ei] and |Ei| ≥ 2. All that remains is to show that for i ∈ {1, 2},
M(k,2k−1)(Gi) is connected. Let E1∩E2 = {uv} and for i ∈ {1, 2} take fi ∈ Ei\{uv} =

Ei ∩ E. As G is (k, 2k − 1)-connected there exists C, a circuit of M(k,l)(G), such that

{f1, f2} ⊆ C. Lemma 2.1.0.13 implies that κ(G[C]) ≥ 2, so {u, v} ⊆ V (G[C]), and

Lemma 2.2.0.1 implies that uv /∈ C. Hence G[C] is a (k, 2k− 1)-circuit and there exists

a 2-cleave of G[C].

Let (G′
1, G

′
2) be the 2-cleave of G[C] on (G[C ∩E1], G[C ∩E2]). Lemma 2.2.0.5 implies

that G′
1 and G′

2 are both (k, 2k − 1)-circuits. Let E(G′
i) = C ′

i, then C
′
i is a circuit of

M(k,2k−1)(Gi) such that {uv, fi} ⊆ C ′
i. Therefore, for i ∈ {1, 2}, for all f ′

i ∈ Ei \ {uv}
there exists Ci, a circuit of M(k,2k−1)(Gi), such that {uv, f ′

i} ⊆ Ci. Lemma 1.2.0.8

implies G1 and G2 are (k, 2k − 1)-connected.

2.3 (2, 2)-Connected Graphs

For the remainder of this chapter we turn our attention from the general setting of (k, l)-

connected graphs to the specific case of (2, 2)-connected graphs. We begin by examining

the structure of (2, 2)-circuits, where many of the results are taken or extended from [30].

In particular, we consider three graph operations that were introduced by Nixon in [30]

and that were shown to preserve, in some sense, the property of being a (2, 2)-circuit. We

build on this to conclude the section, and chapter, by showing that they preserve being

(2, 2)-connected in the same sense. Let us begin by stating some basic consequences of

our earlier results on (k, l)-circuits.

Lemma 2.3.0.1. Let G be a graph. If G is (2, 2)-connected then |V (G)| ≥ 5 and

|E(G)| ≥ 9.

Proof. As G is (2, 2)-connected, |E(G)| ≥ 2 and M(2,2)(G) is connected. Therefore,

there exists C ⊆ E(G) such that C is a circuit of M(2,2)(G). That is, G[C] is a (2, 2)-

circuit. Let V (G[C]) = V ′. Lemma 2.1.0.7 implies that |C| = 2|V ′| − 1. Therefore
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2|V ′| − 1 ≤
(|V ′|

2

)
. We observe that

2|V ′| − 1 ≤
(
|V ′|
2

)
⇐⇒ |V ′|2 − 5|V ′|+ 2 ≥ 0 ⇐⇒ (|V ′| − 2)(|V ′| − 3) ≥ 4.

Hence |V (G)| ≥ |V ′| ≥ 5 and |E(G)| ≥ |C| = 2|V ′| − 1 ≥ 9.

K−
5 B1 B2

Figure 2.4: Illustration of three (2, 2)-circuits with fewer than eight vertices. We shall
regularly refer to a graph as being isomorphic to K−

5 , B1, or B2.

Lemma 2.3.0.2. Let G be a graph. If G is a (2, 2)-circuit then δ(G) = 3.

Proof. Let G = (V,E). As G is a (2, 2)-circuit, Lemma 2.1.0.7 implies that 2 ≤ |E| =
2|V | − 1. Now, by Theorem 1.1.1.6 we have that 4|V | − 2 ≥ δ(G)|V | and hence

δ(G) ≤ 3. Lemma 2.1.0.9 implies that δ(G) ≥ 3 and therefore δ(G) = 3.

The following result, that we shall make repeated use of, was alluded to in the paragraphs

just before Lemma 2.1.0.17. The proof is a simple application of Lemma 2.3.0.2 to

Lemma 2.1.0.20 in the context of (2, 2)-connected graphs.

Lemma 2.3.0.3. Let G = (V,E) be a graph and suppose there exists a 2-vertex-

separation (G1, G2) of G, where Gi = (Vi, Ei) for i ∈ {1, 2}, and E1 ∩ E2 ̸= ∅. If

G2
∼= K4 and G is (2, 2)-connected then for all e ∈ E1 \ E2 there exists C ′, a circuit of

M(2,2)(G), such that E2 ∪ {e} ⊆ C ′.

Proof. Lemma 2.1.0.20 implies that for all e1 ∈ E1 \ E2 and for all e2 ∈ E2 \ E1 there

exists C, a circuit of M(2,2)(G) such that (E1 ∩ E2) ∪ {e1, e2} ⊆ C. Then G[C] is

a (2, 2)-circuit, so Lemma 2.3.0.2 implies that δ(G[C]) = 3. As G2
∼= K4, it follows
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that E2 ⊆ C. So, for all e ∈ E1 \ E2 there exists C ′, a circuit of M(2,2)(G), such that

E2 ∪ {e} ⊆ C ′.

Let G be a (2, 2)-connected graph. A set X is critical in G if ∅ ≠ X ⊆ V (G) and

iG(X) = 2|X|−2. Note that this is equivalent to saying that X is critical in G if |X| = 1

or X = V (G[F ]) for some some ∅ ≠ F ⊆ E such that |F | = 2|V (G[F ])| − 2.

Lemma 2.3.0.4. [30, Lemma 2.4] Let G = (V,E) be a (2, 2)-circuit and take X ⊆ V .

If X is critical in G then

(i) G[X] is connected;

(ii) δ(G[X]) ≥ 2 if and only if |X| > 1; and

(iii) there exists v ∈ V \X such that dG(v) = 3.

Proof. As X is a critical set X ̸= ∅, so G[X] is defined. We now prove each statement

in turn.

(i) Firstly, let us consider G[X]. As G is a (2, 2)-circuit, Lemma 2.1.0.7 implies that

2 ≤ |E| = 2|V |−1 and for all ∅ ≠ F ⊊ E, |F | ≤ 2|V (G[F ])|−2. Let H1, . . . , Hn

be the components of G[X] = (X,F ) and for all 1 ≤ i ≤ n let Hi = (Xi, Fi).

Then X =
⋃n
i=1Xi and F =

⋃n
i=1 Fi. As each Hi is a component of G[X] we have

that for all 1 ≤ i < j ≤ n, Xi ∩Xj = ∅ = Fi ∩ Fj. Therefore |X| =
∑n

i=1 |Xi|
and |F | =

∑n
i=1 |Fi|. As X is critical in G, |F | = 2|X| − 2 and either F = ∅ or

∅ ≠ F ⊊ E. If F = ∅ then |X| = 1 and G[X] is connected. If ∅ ≠ F ⊊ E then

2|X| − 2 = |F | =
n∑
i=1

|Fi| ≤
n∑
i=1

(2|Xi| − 2) = 2|X| − 2n.

As n ≥ 1 this implies that n = 1 and hence G[X] is connected.

(ii) If δ(G[X]) ≥ 2 then |X| > 1. On the other hand, suppose that |X| > 1. As X

is critical in G we have that 4|X| − 4 = 2iG(X) = 2|E(G[X])| =
∑

v∈X dG[X](v),

where the final equality follows from Theorem 1.1.1.6. Take v ∈ X such that
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dG[X](v) = δ(G[X]). As |X| > 1, G[X\{v}] is defined and iG(X) = 2|X|−2 > 2.

So, as G is a (2, 2)-circuit, ∅ ≠ E(G[X \ {v}]) ⊊ E(G) and hence

2|X \ {v}| − 2 ≥ E(G[X \ {v}])|

= iG(X)− δ(G[X])

= 2|X| − (2 + δ(G[X]))

= 2|X \ {v}| − δ(G[X]).

Therefore δ(G[X]) ≥ 2.

(iii) Finally let us consider V \ X, and set Y = V \ X.2 As G is a (2, 2)-circuit

and X is critical in G, X and Y are non-empty. We note that
∑

v∈Y dG(v) =∑
v∈Y dG[Y ](v)+ dG(Y,X) = 2iG(Y )+ dG(Y,X). As G is a (2, 2)-circuit, Lemma

2.1.0.16 implies that κ1(G) ≥ 3 and hence dG(Y,X) ≥ 3. Hence,∑
v∈Y

dG(v) = 2iG(Y ) + dG(Y,X)

= 2(|E| − iG(X)− dG(Y,X)) + dG(Y,X)

= 2|E| − (2iG(X) + dG(Y,X))

= 4(|V | − |X|) + 2− dG(Y,X)

= 4|Y | − (dG(Y,X)− 2)

≤ 4|Y | − 1.

So there exists v ∈ Y such that dG(v) < 4. Lemma 2.1.0.10 implies that δ(G) ≥ 3,

so there exists v ∈ Y such that dG(v) = 3.

Lemma 2.3.0.5. [30, Lemma 2.2] LetG = (V,E) be a (2, 2)-circuit and takeX, Y ⊆ V .

If X and Y are critical in G and ∅ ≠ X ∩ Y ⊆ X ∪ Y ⊊ V then X ∩ Y and X ∪ Y are

critical in G and dG(X, Y ) = 0.

2This part of the proof is analogous to the proof of [2, Lemma 2.5].
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Proof. 3 As X and Y are critical in G, iG(X) = 2|X| − 2 and iG(Y ) = 2|Y | − 2.

As G is a (2, 2)-circuit, G = G[E]. So, as ∅ ̸= X ∩ Y ⊆ X ∪ Y ⊊ V it follows

that ∅ ≠ E(G[X ∩ Y ]) ⊆ E(G[X ∪ Y ]) ⊊ E. Therefore, as G is a (2, 2)-circuit,

iG(X ∩Y ) ≤ 2|X ∩Y | − 2 and iG(X ∪Y ) ≤ 2|X ∪Y | − 2.Then Lemma 1.1.1.4 implies

that

(2|X| − 2) + (2|Y | − 2) + d(X, Y ) = iG(X ∪ Y ) + iG(X ∩ Y )

≤ (2|X ∩ Y | − 2) + (2|X ∪ Y | − 2)

= (2|X| − 2) + (2|Y | − 2).

Therefore d(X, Y ) = 0 and iG(X ∩Y )+ iG(X ∩Y ) = (2|X ∩Y |− 2)+ (2|X ∪Y |− 2).

Hence iG(X ∪Y ) = 2|X ∪Y |− 2 and iG(X ∩Y ) = 2|X ∩Y |− 2, so X ∩Y and X ∪Y
are critical in G.

Lemma 2.1.0.18 implies that a (2, 1)-extension of a (2, 2)-circuit is another (2, 2)-circuit.

The following result shows that (2, 1)-reductions of (2, 2)-circuits are less well-behaved.

This is a consequence of the fact that if G′ is a (2, 1)-extension of G adding v then there

may be as many as three graphs that are (2, 1)-reductions of G′ at v.

Lemma 2.3.0.6. [30, Lemma 2.5] Let G = (V,E) be a (2, 2)-circuit and take v ∈ V

such that dG(v) = 3, say NG(v) = {x, y, z}. There does not exist a (2, 1)-reduction of

G at v adding xy that is a (2, 2)-circuit if and only if xy ∈ E or there exists Z ⊆ V such

that Z is critical in G and Z ∩NG[v] = {x, y}.

An important technique that we use in characterising (2, 2)-connected graphs is to con-

sider a subgraph of a (2, 2)-connected graph that is a (2, 2)-circuit, and then to investigate

the local structure at the vertices of degree three in the (2, 2)-circuit. With this in mind

we introduce some additional notation and terminology.

Let G = (V,E) be a graph. We denote the set of vertices of degree three in G by V3(G),

and we refer to these vertices as nodes of G. That is, V3(G) := {v ∈ V : dG(v) = 3} =

{nodes of G}. If G is a (2, 2)-circuit then Lemma 2.3.0.2 tells us that V3(G) ̸= ∅. It

3This proof is analogous to the proof of [2, Lemma 2.3].
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follows from our definition of a (2, 1)-reduction that if there exists v ∈ V3(G) such that

G[NG(v)] ∼= K3 then there does not exist a (2, 1)-reduction of G at v. For this reason

we are particularly interested in those nodes of G where there exists a pair of neighbours

of the node that are not adjacent. We set V ∗
3 (G) := {v ∈ V3(G) : G[NG(v)] ≇ K3}.

Given a (2, 2)-connected graph G and v ∈ V3(G) we say that v is a plausible node if

v ∈ V ∗
3 (G) and we say that v is an implausible node if v /∈ V ∗

3 (G). The graph G2 in

Figure 2.1 demonstrates that a (2, 2)-circuit need not contain any plausible nodes. Note

that if v is a plausible node of G and u ∈ NG(v) then u is a node of G if and only if u

is a plausible node of G. That is, for all v ∈ V ∗
3 (G), NG(v) ∩ V3(G) = NG(v) ∩ V ∗

3 (G).

Our next three results provide some details about the structure of V ∗
3 (G).

Lemma 2.3.0.7. 4 Let G be a graph. If G is a (2, 2)-circuit then G[V3(G)] is a forest.

Proof. Let G = (V,E). As G is a (2, 2)-circuit, V3(G) ̸= ∅ by Lemma 2.3.0.2. If

G[V3(G)] is not a forest then there exists a subgraph C = (W,F ) of G[V3(G)] such that

C is a cycle graph and no proper subgraph of C is a cycle graph. By the definition of

V3(G), V \W ̸= ∅ and d(V \W,W ) = |W |. So,

iG(V \W ) = |E| − (iG(W )+ d(V \W,W )) = 2|V | − 1− (|W |+ |W |) = 2|V \W | − 1.

However, then ∅ ≠ E(G[V \W ]) ⊊ E which contradicts the fact that G is a (2, 2)-circuit.

Therefore G[V3(G)] is a forest.

For our next result we introduce some additional terminology related to critical sets and

nodes. Let G = (V,E) be a (2, 2)-connected graph and let U be a set. We say that

U is v-critical (in G, on {x, y}) if U is critical in G and there exists v ∈ V3(G) with

{x, y} ⊆ NG(v) such that U ∩ NG[v] = {x, y}. We say that U is node-critical (in

G) if there exists v ∈ V3(G) with NG(v) = {x, y, z} such that U is v-critical in G

on {x, y} and dG(z) ≥ 4. We say that v is a leaf node (in G) if v ∈ V ∗
3 (G) and

|NG(v) ∩ V ∗
3 (G)| ≤ 1, and we say that v is a series node (in G) if v ∈ V ∗

3 (G) and

|NG(v)∩V ∗
3 (G)| = 2. That is, a plausible node v is a leaf node if at most one neighbour

4This result and proof are similar to the statement and proof of [30, Lemma 2.7].
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of v is a (plausible) node whereas v is a series node if exactly two neighbours of v are

(plausible) nodes. Recall that a neighbour of a plausible node is a node if and only if it

is a plausible node.

Lemma 2.3.0.8. 5 Let G = (V,E) be a (2, 2)-circuit and let v be a node of G with

NG(v) = {x, y, z}. If there exists a node-critical set, Z, that is v-critical on {x, y} in

G and there exists a plausible node u ∈ V \ (Z ∪ {v}) such that there does not exist a

(2, 1)-reduction of G at u that is a (2, 2)-circuit and either

(i) u is a series node and Z ∩NG(u) = {w} and w ∈ V3(G); or

(ii) u is a leaf node and E(G[NG(u)]) = ∅,

then there exists a node-critical set Z ′ in G such that Z ⊊ Z ′.

Proof. Firstly, suppose that u is a series node and Z ∩ NG(u) = {w} and w ∈ V3(G).

Let NG(u) = {a, b, w}. As u is a series node we may suppose without loss of generality

that dG(a) = 3 and dG(b) ≥ 4. By Lemma 2.3.0.7 G[V3] is a forest, so wa /∈ E. As there

does not exist a (2, 1)-reduction of G at u that is a (2, 2)-circuit and wa /∈ E, Lemma

2.3.0.6 implies that there exists a u-critical set, B, in G on {w, a}. As w ∈ Z ∩ B and

u, b /∈ Z ∪B and dG(b) ≥ 4, Lemma 2.3.0.5 implies that Z ∪B is a node-critical set in

G. As a ∈ B \ Z, Z ⊊ Z ∪B.

Alternatively, suppose that u is a leaf node and E(G[NG(u)]) = ∅. LetNG(u) = {a, b, c}.
As v /∈ Z ∪ {u} and G is a (2, 2)-circuit,

2|Z ∪ {u}| − 2 ≥ iG(Z ∪ {u})

= iG(Z) + |NG(u) ∩ Z|

= 2|Z| − 2 + |NG(u) ∩ Z|

= (2|Z ∪ {u}| − 2) + (|NG(u) ∩ Z| − 2).

Hence |NG(u) ∩ Z| ≤ 2. If |NG(u) ∩ Z| = 2 then it follows that 2|Z ∪ {u}| − 2 =

5This result, as stated, is an extension of [30, Lemma 2.10]. However, by replacing [30, Lemma 2.7]
with 2.3.0.7 we are able to follow Nixon’s proof to obtain this ‘extension’.
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iG(Z ∪ {u}) and hence Z ∪ {u} is a critical set in G. As u ∈ V3(G) and u /∈ Z ∪ {v},
u /∈ Z ∪ {v, z} and hence Z ∪ {u} is a node-critical v-critical set in G such that

Z ⊊ Z ∪ {u} and we are done. So we may suppose instead that |NG(u) ∩ Z| ≤ 1.

As u is a leaf node we may suppose without loss of generality that dG(b), dG(c) ≥ 4.

As E(G[NG(u)]) = ∅ and there does not exist a (2, 1)-reduction of G at u that is a

(2, 2)-circuit, Lemma 2.3.0.6 implies there exists a u-critical set in G on {a, c}, say B,

and there exists a u-critical set in G on {a, b}, say C. As a ∈ B ∩ C and u /∈ B ∪ C,
Lemma 2.3.0.5 implies that B ∪ C is a critical set in G. As NG(u) ⊆ B ∪ C, similar

reasoning as to why |NG(u)∩Z| ≤ 2 gives that V \ {u} = B ∪C. Therefore Z ∩B ̸= ∅
or Z ∩ C ̸= ∅.

We may suppose without loss of generality that Z ∩B ̸= ∅. So, as {a, c} ⊆ Z ∪B and

|NG(u) ∩ Z| ≤ 1, Z ⊊ Z ∪ B. Moreover, as u /∈ Z ∪ B, Lemma 2.3.0.5 implies that

Z ∪B is critical in G. If b /∈ Z then Z ∪B is a u-critical set in G on {a, c}. Hence, as
dG(b) ≥ 4, Z ∪ B is a node-critical set in G such that Z ⊊ Z ∪ B and we are done. If

b ∈ Z then Z ∩ C ̸= ∅ and c /∈ Z. Therefore, by similar reasoning to above, we have

that Z ∪ C is a node-critical set in G such that Z ⊊ Z ∪ C.

The following operations are similar to the 2-sum and 2-cleave operations discussed in

Section 2.2. Figures 2.5, 2.6, and 2.7 demonstrate how these operations behave. These

operations will consider graphs which have a 2-vertex-separation or 3-edge-separation

(see Definition 1.1.1.10 and Definition 1.1.1.11).

Definition 2.3.0.9. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs such that there

exists a proper subgraph H2
∼= K4 of G2, H1 = G1[V1 ∩ V2] ∼= K2 is a proper subgraph

of G1 and H2, and dG2(u) = 3 for all u ∈ V (H2) \ V (H1). A 1-join of the ordered

pair (G1, G2) is a graph G = (V1 ∪ (V2 \U2), (E1 ∪E2) \ F2), where (U2, F2) ∼= K4 is a

proper subgraph of G2, V1 ∩ V2 ⊊ U2, and dG2(u) = 3 for all u ∈ U2 \ (V1 ∩ V2). If G is

a 1-join of (G1, G2) and V2 \ V (G) = {u1, u2} then G is the 1-join of (G1, G2) deleting

{u1, u2}.

Let G = (V,E) be a graph such that there exists a 2-vertex-separation (H1, H2) of G,
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where Hi = (Ui, Fi) for i ∈ {1, 2}, and F1 ∩ F2 = ∅. A 1-separation of G is an

ordered pair (G1, G2) such that G is the 1-join of (G1, G2). If (G1, G2) is a 1-separation

of G then (G[V (G1)], G[V ∩ V (G2)]) is a 2-vertex-separation of G and (G1, G2) is the

1-separation of G on (G[V (G1)], G[V ∩ V (G2)]) adding V (G2) \ V .

G′
2 G′

1

1-separation

1-join

G

1-separation

1-join

G1 G2

v1

v2

v3

v4

v1

v2

v1

v2

v3

v4

v1

v2

v1

v2

Figure 2.5: Illustration of the 1-separation and 1-join operations.
(G1, G2) is the 1-separation of G on (G[V (G1)], G[V (G) ∩ V (G2)]) adding {v3, v4}
whereas (G′

2, G
′
1) is the 1-separation of G on (G[V (G) ∩ V (G2)], G[V (G1)]) adding

{v3, v4}. G is the 1-join of (G1, G2) deleting {v3, v4}, and G is also the 1-join of
(G′

2, G
′
1) deleting {v3, v4}.

G

2-separation

2-join

G1 G2

v1

v2

v1

v2

v3

v4

v1

v2

v3

v4

Figure 2.6: Illustration of the 2-separation and 2-join operations.
(G1, G2) is the 2-separation of G on (G[V (G) ∩ V (G1)], G[V (G) ∩ V (G2)]) adding
{v3, v4} and G is the 2-join of (G1, G2).

Definition 2.3.0.10. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs such that there

exists a proper subgraph (U, F ), equal to the complete graph on {v1, v2, v3, v4}, of both
G1 and G2, dGi

(v3) = 3 = dGi
(v4) for i ∈ {1, 2}, and V1 ∩ V2 = U . The 2-join of the

ordered pair (G1, G2) is the graph G = ((V1 ∪ V2) \ {v3, v4}, ((E1 ∪E2) \ F )∪ {v1v2}).

Let G = (V,E) be a graph such that there exists a 2-vertex-separation (H1, H2) of G,

where Hi = (Ui, Fi) for i ∈ {1, 2}, and F1 ∩F2 ̸= ∅. A 2-separation of G is an ordered
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pair (G1, G2) such that G is the 2-join of (G1, G2). If (G1, G2) is a 2-separation of G

then (G[V ∩ V (G1)], G[V ∩ V (G2)]) is a 2-vertex-separation of G and (G1, G2) is the

2-separation of G on (G[V ∩ V (G1)], G[V ∩ V (G2)]) adding (V (G1) ∩ V (G2)) \ V .

Definition 2.3.0.11. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs such that V1 ∩
V2 = {v} = V3(G1) ∩ V3(G2) and, for i ∈ {1, 2}, dGi

(v) = 3. A 3-join of the ordered

pair (G1, G2) is a graph G = ((V1 ∪ V2) \ {v}, E(G1[V1 \ {v}])∪E(G2[V2 \ {v}])∪ F ),
where F ⊆ {u1u2 : ui ∈ NGi

(v)} and |F | = 3 = |V (G[F ])|
2

. If G is a 3-join of (G1, G2)

and F = E(G) \ (E1 ∪ E2) then G is the 3-join of (G1, G2) adding F .

Let G = (V,E) be a graph such that there exists a 3-edge-separation (H1, H2) of G,

where Hi = (Ui, Fi) for i ∈ {1, 2}, F = E \ (F1 ∪ F2), and |F | = 3 = |V (G[F ])|
2

.

A 3-separation of G deleting F is an ordered pair (G1, G2) such that G is the 3-

join of (G1, G2) adding F . If (G1, G2) is a 3-separation of G deleting F then (G[V ∩
V (G1)], G[V ∩ V (G2)]) is a 3-edge-separation of G and (G1, G2) is the 3-separation of

G deleting F on (G[V ∩ V (G1)], G[V ∩ V (G2)]) adding V (G1) ∩ V (G2).

G

3-separation

3-join

G1 G2

a1

b1

c1

a2

b2

c2

a1

b1

c1

v

a2

b2

c2

v

Figure 2.7: Illustration of the 3-separation and 3-join operations. (G1, G2) is the 3-
separation of G deleting F = {a1a2, b1b2, c1c2} on (G[V (G1) \ {v}], G[V (G2) \ {v}])
adding {v} and G is the 3-join of (G1, G2) adding F .

Remark 10. Observe that given an appropriate ordered pair of graphs, (G1, G2), there

is a unique 2-join of (G1, G2). This is due to the constraints placed on the relationship

between the vertex sets of G1 and G2. A similar uniqueness is present with the 2-sum of

Berg and Jordán, however there may be multiple 1-joins of 3-joins of (G1, G2).

Now that we have defined this collection of operations we proceed to state a number
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of results, originally proved in [30], analogous to Lemma 2.2.0.4 and Lemma 2.2.0.5. In

Section 2.2 these results explaining how (k, 2k− 1)-circuit behave with respect to 2-sum

and 2-cleave operations were applied to prove corresponding results (Lemma 2.2.0.7 and

Lemma 2.2.0.8) about (k, 2k − 1)-connected graphs. We take the same approach by

extending Nixon’s results to show how (2, 2)-connected graphs behave with respect to

i-join and i-separation operations.

Lemma 2.3.0.12. [30, Lemma 3.1] Let G1 and G2 be graphs and suppose G is a 1-join

of (G1, G2). If G1 and G2 are (2, 2)-circuits then G is a (2, 2)-circuit.

Lemma 2.3.0.13. [30, Lemma 3.1] Let G be a graph and suppose (G1, G2) is the 1-

separation of G on (G[V (G1)], G[V (G) ∩ V (G2)]) adding V (G2) \ V (G) and (G′
2, G

′
1)

is the 1-separation of G on (G[V (G2) ∩ V (G)], G[V (G1)]) adding V (G2) \ V (G). If G

is a (2, 2)-circuit then either:

(i) G1 and G2 are (2, 2)-circuits, and G′
1 and G′

2 are not (2, 2)-circuits; or

(ii) G′
1 and G′

2 are (2, 2)-circuits, and G1 and G2 are not (2, 2)-circuits.

Lemma 2.3.0.14. [30, Lemma 3.2] Let G1 and G2 be graphs and suppose G is the

2-join of (G1, G2). If G1 and G2 are (2, 2)-circuits then G is a (2, 2)-circuit.

Lemma 2.3.0.15. [30, Lemma 3.2] Let G be a graph and suppose (G1, G2) is a 2-

separation of G. If G is a (2, 2)-circuit then G1 and G2 are (2, 2)-circuits.

Lemma 2.3.0.16. [30, Lemma 3.3] Let G1 and G2 be graphs and suppose G is a 3-join

of (G1, G2). If G1 and G2 are (2, 2)-circuits then G is a (2, 2)-circuit.

Lemma 2.3.0.17. [30, Lemma 3.3] Let G be a graph and suppose (G1, G2) is a 3-

separation of G. If G is a (2, 2)-circuit then G1 and G2 are (2, 2)-circuits.

Note that, in what follows, we deal with the 2-join/separation and 3-join/separation

operations before the 1-join/separation operations. We order the results in this way

because our proof of the extension to Lemma 2.3.0.13 will make use of the extension to

Lemma 2.3.0.15.

Lemma 2.3.0.18. Let G1 and G2 be graphs and suppose G is a 2-join of (G1, G2). If
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G1 and G2 are (2, 2)-connected then G is (2, 2)-connected.

Proof. Let G = (V,E), G1 = (V1, E1), and G2 = (V2, E2). Let H denote the subgraph

of both G1 and G2 that is isomorphic to K4. As G1 and G2 are (2, 2)-connected

G1 = G1[E1] and G2 = G2[E2] and, by Lemma 2.3.0.1, |E1|, |E2| ≥ 9. By the definition

of 2-join it follows that G = G[E] and |E| ≥ 2. All that remains is to show that

M(2,2)(G) is connected.

Let E ∩E(H) = {e} and take f ∈ E \ {e}. We may suppose without loss of generality

that f ∈ E1. As G1 and G2 are (2, 2)-connected, Lemma 2.3.0.3 implies that for

i ∈ {1, 2} there exists Ci, a circuit of M(2,2)(Gi), such that E(H) ∪ {f} ⊆ C1 and

E(H) ⊊ C2. Lemma 2.3.0.14 implies the 2-join of (G1[C1], G2[C2]), say G
′, is a (2, 2)-

circuit. Let E(G′) = C ′, then C ′ is a circuit of M(2,2)(G) such that {e, f} ⊆ C ′.

Therefore, for all f ∈ E\{e} there exists C, a circuit ofM(2,2)(G), such that {e, f} ⊆ C

and so Lemma 1.2.0.8 implies that G is (2, 2)-connected.

Lemma 2.3.0.19. Let G be a graph and suppose (G1, G2) is a 2-separation of G. If G

is (2, 2)-connected then G1 and G2 are (2, 2)-connected.

Proof. Let G = (V,E), and for i ∈ {1, 2} let Gi = (Vi, Ei) and Hi = (Ui, Fi) =

G[V ∩Vi]. Then (G1, G2) is the 2-separation of G on (H1, H2) adding (V1∩V2)\V . As

G is (2, 2)-connected G = G[E] and, by Lemma 2.3.0.1, |E| ≥ 9. By the definition of

2-separation it follows that, for i ∈ {1, 2}, Gi = Gi[Ei] and |Ei| ≥ 2. All that remains

is to show that for i ∈ {1, 2}, M(2,2)(Gi) is connected.

Let F1∩F2 = {e} and for i ∈ {1, 2} take fi ∈ Fi\{e}. As G is (2, 2)-connected, Lemma

2.1.0.20 implies there exists C, a circuit of M(2,2)(G), such that {e, f1, f2} ⊆ C. Let

(G′
1, G

′
2) be the 2-separation of G[C] on (H1[C ∩F1], H2[C ∩F2]) adding (V1 ∩V2) \V .

Lemma 2.3.0.15 implies that G′
1 and G′

2 are both (2, 2)-circuits. For i ∈ {1, 2} let

E(G′
i) = C ′

i, then C ′
i is a circuit of M(2,2)(Gi) such that {fi} ∪ (E1 ∩ E2) ⊆ C ′

i.

Therefore, for i ∈ {1, 2}, for all fi ∈ Ei\{e} there exists Ci, a circuit ofM(2,2)(Gi), such

that {e, fi} ⊆ Ci and so Lemma 1.2.0.8 implies that G1 and G2 are (2, 2)-connected.
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Lemma 2.3.0.20. Let G1 and G2 be graphs and suppose G is a 3-join of (G1, G2). If

G1 and G2 are (2, 2)-connected then G is (2, 2)-connected.

Proof. Let G = (V,E), G1 = (V1, E1), and G2 = (V2, E2). Let V1 ∩ V2 = {v} and let

G be the 3-join of (G1, G2) adding F . Let F = {a1a2, b1b2, c1c2} where, for i ∈ {1, 2},
{ai, bi, ci} ⊆ Vi. As G1 and G2 are (2, 2)-connected G1 = G1[E1] and G2 = G2[E2] and,

by Lemma 2.3.0.1, |E1|, |E2| ≥ 9. By the definition of 3-join it follows that G = G[E]

and |E| ≥ 2. All that remains is to show that M(2,2)(G) is connected.

Take e ∈ F , take f1 ∈ E ∩ E1, and take f2 ∈ E ∩ E2. As G1 and G2 are (2, 2)-

connected, for i ∈ {1, 2} there exists Ci, a circuit ofM(2,2)(Gi) such that {vai, fi} ⊆ Ci.

Gi[Ci] is a (2, 2)-circuit for i ∈ {1, 2}. Lemma 2.3.0.2 implies that for i ∈ {1, 2},
δ(Gi[Ci]) = 3 and hence {vai, vbi, vci, fi} ⊆ Ci. Then Lemma 2.3.0.16 implies the

3-join of (G1[C1], G2[C2]) adding F , say G
′, is a (2, 2)-circuit. Let E(G′) = C ′, then C ′

is a circuit of M(2,2)(G) such that F ∪{f1, f2} ⊆ C ′. Therefore, for all f ∈ E\{e} there

exists C, a circuit of M(2,2)(G), such that {e, f} ⊆ C and so Lemma 1.2.0.8 implies

that G is (2, 2)-connected.

Lemma 2.3.0.21. Let G be a graph and suppose (G1, G2) is a 3-separation of G. If G

is (2, 2)-connected then G1 and G2 are (2, 2)-connected.

Proof. Let G = (V,E), let (G1, G2) be a 3-separation of G deleting F , and for i ∈ {1, 2}
let Gi = (Vi, Ei) and Hi = (Ui, Fi) = G[V ∩ Vi]. Then (G1, G2) is the 3-separation of

G deleting F on (H1, H2) adding V1 ∩ V2. As G is (2, 2)-connected G = G[E] and, by

Lemma 2.3.0.1, |E| ≥ 9. By the definition of 3-separation it follows that, for i ∈ {1, 2},
Gi = Gi[Ei] and |Ei| ≥ 2. All that remains is to show that for i ∈ {1, 2}, M(2,2)(Gi) is

connected.

Let F = {a1a2, b1b2, c1c2} and let V1 ∩ V2 = {v}. For i ∈ {1, 2}, let ei = vai and

take fi ∈ Fi. As G is (2, 2)-connected there exists C, a circuit of M(2,2)(G), such

that {f1, f2} ⊆ C. G[C] is a (2, 2)-circuit. Lemma 2.1.0.16 implies that κ1(G[C]) ≥ 3

and hence F ∪ {f1, f2} ⊆ C. Let (G′
1, G

′
2) be the 3-separation of G[C] deleting F on

(H1[C ∩F1], H2[C ∩F2]) adding {v}. Lemma 2.3.0.17 implies that G′
1 and G

′
2 are both

61



2.3. (2, 2)-Connected Graphs

(2, 2)-circuits. For i ∈ {1, 2} let E(G′
i) = C ′

i, then C
′
i is a circuit of M(2,2)(Gi) such

that {fi, vai, vbi, vci} ⊆ Ci. Therefore, for i ∈ {1, 2}, for all fi ∈ Ei \ ei there exists Ci,
a circuit of M(2,2)(Gi), such that {ei, fi} ⊆ Ci and so Lemma 1.2.0.8 implies that G1

and G2 are (2, 2)-connected.

Lemma 2.3.0.22. Let G1 and G2 be graphs and suppose G is a 1-join of (G1, G2). If

G1 and G2 are (2, 2)-connected then G is (2, 2)-connected.

Proof. Let G = (V,E), G1 = (V1, E1), and G2 = (V2, E2). Let V1 ∩ V2 = {v1, v2}
and let V2 \ V = {v3, v4}. As G1 and G2 are (2, 2)-connected G1 = G1[E1] and

G2 = G2[E2] and, by Lemma 2.3.0.1, |E1|, |E2| ≥ 9. By the definition of 1-join it

follows that G = G[E] and |E| ≥ 2. All that remains is to show that M(2,2)(G) is

connected. Take e ∈ E1 ∩ E, and take f ∈ E \ {e}.

Suppose f ∈ E1. As G1 is (2, 2)-connected there exists C1, a circuit of M(2,2)(G1), such

that {e, f} ⊆ C1. If v1v2 /∈ C1 then C1 is a circuit of M(2,2)(G). Alternatively, suppose

v1v2 ∈ C1. Lemma 2.3.0.3 implies there exists C2, a circuit of M(2,2)(G2), such that

(E2 \E) ⊊ C2. Lemma 2.3.0.12 implies the 1-join of (G1[C1], G2[C2]) deleting {v3, v4},
say G′, is a (2, 2)-circuit. Let E(G′) = C ′, then C ′ is a circuit of M(2,2)(G) such that

{e, f} ⊆ C ′. So, for all f ∈ (E ∩E1) \ {e} there exists C ′, a circuit of M(2,2)(G), such

that {e, f} ⊆ C ′.

On the other hand, suppose f ∈ E2. As G1 is (2, 2)-connected there exists C ′
1, a circuit

of M(2,2)(G1), such that {e, v1v2} ⊆ C ′
1. Moreover, Lemma 2.3.0.3 implies there exists

C ′
2, a circuit of M(2,2)(G2), such that (E2 \E)∪{f} ⊆ C ′

2. Lemma 2.3.0.12 implies the

1-join of (G1[C
′
1], G2[C

′
2]) deleting {v3, v4}, say G′′, is a (2, 2)-circuit. Let E(G′′) = C ′′,

then C ′′ is a circuit of M(2,2)(G) such that {e, f} ⊆ C ′. So, for all f ∈ E ∩ E2 there

exists C ′, a circuit of M(2,2)(G), such that {e, f} ⊆ C ′. Therefore, for all f ∈ E \ {e}
there exists C, a circuit of M(2,2)(G), such that {e, f} ⊆ C and so Lemma 1.2.0.8

implies that G is (2, 2)-connected.

The proof of the following result boils down to the observation that a K−
4 -extension of

a graph can be thought of as arising from a particular 1-join involving the same graph.
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Lemma 2.3.0.23. Let G be a graph and let G′ be a K−
4 -extension of G. If G is

(2, 2)-connected then G′ is (2, 2)-connected.

Proof. Take e ∈ E(G), and let G′ be the K−
4 -extension of G deleting e and adding

{v1, v2}. Let e = xy and set

G̃ = ({v1, v2, v3, v4, x, y}, {v1x, v2x, v3x, v4x, v1y, v2y, v3y, v4y, v1v2, v3v4, xy}),

where V (G̃) ∩ V (G) = {x, y}. Observe that G̃ ∼= B1 (see Figure 2.4). Then G′ is the

1-join of (G, G̃) deleting {v3, v4}). As G is (2, 2)-connected and B1 is (2, 2)-connected,

Lemma 2.3.0.22 implies G′ is (2, 2)-connected.

Lemma 2.3.0.24. Let G be a graph and suppose (H1, H2) is a 2-vertex-separation of G,

where Hi = (Ui, Fi) for i ∈ {1, 2}, and F1∩F2 = ∅. Let (G1, G2) be the 1-separation of

G on (H1, H2) adding U , and let (G′
2, G

′
1) be the 1-separation of G on (H2, H1) adding

U . If G is (2, 2)-connected then:

(i) G2 and G′
1 are (2, 2)-connected; and

(ii) G1 is (2, 2)-connected or G′
2 is (2, 2)-connected.

Proof. Let G = (V,E), and for i ∈ {1, 2} let Gi = (Vi, Ei) and G
′
i = (V ′

i , E
′
i). Then

V1 = U1, V2 = U2 ∪ U , V ′
1 = U1 ∪ U , and V ′

2 = U2. Let U1 ∩ U2 = {v1, v2} and let

U = {v3, v4}. We prove parts (i) and (ii) in turn.

(i) As v1v2 /∈ E, let G′ denote the edge-addition of G adding v1v2. Lemma 2.1.0.17

implies that G′ is (2, 2)-connected. Observe that (G′
1, G2) is the 2-separation of G

on (G′[U1], G
′[U2]) adding {v3, v4}. Lemma 2.3.0.19 implies that G′

1 and G2 are

(2, 2)-connected.

(ii) As G is (2, 2)-connected G = G[E] and, by Lemma 2.3.0.1, |E| ≥ 9. By the defini-

tion of 1-separation it follows that G1 = G1[E1], G
′
2 = G′

2[E
′
2], and |E1|, |E ′

2| ≥ 2.

All that remains is to show that M(2,2)(G1) is (2, 2)-connected or M(2,2)(G
′
2) is

(2, 2)-connected.
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Let us suppose, in pursuit of a contradiction, that both M(2,2)(G1) and M(2,2)(G
′
2)

are not connected. As M(2,2)(G1) is not connected Lemma 1.2.0.8 implies that for

all e ∈ E1 there exists f ∈ E1 \ {e} such that no circuit in M(2,2)(G1) contains

e and f . In particular, we can take f ∈ E1 \ {v1v2} such that no circuit in

M(2,2)(G
′
2) contains f and v1v2. Similarly, as M(2,2)(G

′
2) is not connected Lemma

1.2.0.8 implies that for all e′ ∈ E ′
2 there exists f ′ ∈ E ′

2 \ {e′} such that no circuit

in M(2,2)(G
′
2) contains e

′ and f ′. In particular, we can take f ′ ∈ E ′
2 \ {v1v2} such

that no circuit in M(2,2)(G
′
2) contains f ′ and v1v2. Now, {f, f ′} ⊆ E. Since G

is (2, 2)-connected there exists C̃, a circuit of M(2,2)(G), such that {f, f ′} ⊆ C̃.

Lemma 2.1.0.14 implies that κ(G[C̃]) ≥ 2 and so {v1, v2} ⊆ V (G[C̃]).

Let (G̃1, G̃2) be the 1-separation of G[C̃] on (G[C̃∩E1], G[C̃∩E ′
2]) adding {v3, v4}

and let (G′′
2, G

′′
1) be the 1-separation of G[C̃] on (G[C̃ ∩ E ′

2], G[C̃ ∩ E1]) adding

{v3, v4}. Lemma 2.3.0.13 implies that G̃1 is a (2, 2)-circuit or G′′
2 is a (2, 2)-

circuit. It follows that E(G̃1) is a circuit of M(2,2)(G1) or E(G′′
2) is a circuit of

M(2,2)(G
′
2). However, {f, v1v2} ⊆ E(G̃1) and {f ′, v1v2} ⊆ E(G′′

2) which provides

a contradiction. Therefore our supposition that both M(2,2)(G1) and M(2,2)(G
′
2)

are not connected must be false, soG1 is (2, 2)-connected orG
′
2 is (2, 2)-connected.

We conclude this chapter with a result which shows that if there exists a plausible node

of a (2, 2)-circuit such that some neighbours of the node are adjacent then there is some

reduction of our (2, 2)-circuit that gives another (2, 2)-circuit.

Lemma 2.3.0.25. 6 Let G = (V,E) be a (2, 2)-circuit and let v be a node of G with

NG(v) = {x, y, z}. If xz ∈ E and yz /∈ E then we have the following trichotomy:

(i) xy ∈ E, dG(x) ≥ 4, and the (2, 1)-reduction of G at v adding yz is a (2, 2)-circuit;

or

(ii) xy ∈ E, dG(x) = 3, and the K−
4 -reduction of G deleting {v, x} is a (2, 2)-circuit;

or

6This result is a minor extension of [30, Lemma 2.8].
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(iii) xy /∈ E and there exists a (2, 1)-reduction, G′, of G at v such that G′ is a (2, 2)-

circuit.

Proof. Firstly, suppose that xy ∈ E and dG(x) ≥ 4. Then we may take u ∈ NG(x) \
{v, y, z}. Take X ⊆ V such that X ∩NG[v] = {y, z}, then there exists a ∈ Z such that

iG(X) = 2|X| − a. If u ∈ X then X ∪ {v, x} ⊆ V and so

2|X∪{v, x}|−1 ≥ iG(X∪{v, x}) ≥ iG(X)+6 = 2|X|−a+6 = 2|X∪{v, x}|−(a−2).

This implies that a ≥ 3, so X is not critical in G. If u /∈ X then X ∪{v, x} ⊊ V and so

2|X∪{v, x}|−2 ≥ iG(X∪{v, x}) ≥ iG(X)+5 = 2|X|−a+5 = 2|X∪{v, x}|−(a−1).

This implies that a ≥ 3, so X is not critical in G. So for all X ⊆ V such that

X ∩ NG[v] = {y, z}, X is not critical in G. Lemma 2.3.0.6 implies that the (2, 1)-

reduction of G at v adding yz is a (2, 2)-circuit.

Next, suppose that xy ∈ E and dG(x) = 3. Let H1 = (U1, F1) = G[V \ {v, x}] and
H2 = (U2, F2) = ({v, x, y, z}, {vx, vy, vz, xy, xz}). Then (H1, H2) and (H2, H1) are

both 2-vertex-separations of G such that E(H1) ∩ E(H2) = ∅. Let (G1, G2) be a 1-

separation of G on (H1, H2) and let (G′
2, G

′
1) be a 1-separation of G on (H2, H1). We

observe that G1 is the K−
4 -reduction of G deleting {v, x}. As G′

2
∼= K4 which is not a

(2, 2)-circuit, Lemma 2.3.0.13 implies that G1 is a (2, 2)-circuit.

Finally, suppose that xy /∈ E. That there exists a (2, 1)-reduction of G at v that is a

(2, 2)-circuit follows from [30, Lemma 2.8].
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Chapter 3

A Construction of (2, 2)-Connected

Graphs

Our third chapter picks up directly from where the previous chapter left off and is the

most combinatorially technical part of the thesis. The results in this chapter can often

be seen as analogous to results in [22]. In that paper, Jackson and Jordán built on earlier

work in [2] studying (2, 3)-circuits. This chapter proceeds similarly by building on an

understanding of (2, 2)-circuits, gained from Section 2.3, [30], and [24], and culminating

with a method of constructing all (2, 2)-connected graphs.

3.1 Ear Decompositions

The first section of this chapter sees us repeatedly invoke the relationship (recall Theorem

1.2.0.10) between ear decompositions of matroids and connected matroids in order to

understand when there exists some graph operation of a (2, 2)-connected graph that is

a (2, 2)-connected graph with fewer edges.

Lemma 3.1.0.1. Let G be a (2, 2)-connected graph and let C1, . . . , Ct be an ear decom-

position of M(2,2)(G). For 1 ≤ i ≤ t let G[Ci] = Hi = (Vi, Ci). Let Y = Vt \
⋃t−1
i=1 Vi

and let X = Vt \ Y . If t ≥ 2 then:
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(i) either Y = ∅ and |Ct \ (
⋃t−1
j=1Cj)| = 1, or Y ̸= ∅ and Ct \ (

⋃t−1
j=1Cj) = {e ∈

E(G) : there exists y ∈ Y such that e is incident to y};

(ii) |Ct \ (
⋃t−1
j=1Cj)| = 2|Y |+ 1;

(iii) if Y ̸= ∅ then X is critical in Ht;

(iv) if Y ̸= ∅ then Ht[Y ] = G[Y ], dHt(y) = dG(y) for all y ∈ Y , and Y ∩ V3(G) ̸= ∅;

(v) if Y ̸= ∅ then G[Y ] is connected;

(vi) |X| ≥ 4.

Proof. We prove each statement in turn.

(i) If Y = ∅ then Definition 1.2.0.9 (ED3) implies that |Ct \ (
⋃t−1
j=1Cj)| = 1. If Y ̸= ∅

then Definition 1.2.0.9 (ED3) implies Ct\(
⋃t−1
j=1Cj) ⊆ {e ∈ E(G) : there exists y ∈

Y that is incident to e}. As C1, . . . , Ct is an ear decomposition ofM(2,2)(G), {e ∈
E(G) : there exists y ∈ Y that is incident to e} ⊆ Ct \ (

⋃t−1
j=1Cj). So, if Y ̸= ∅

then Ct\(
⋃t−1
j=1Cj) = {e ∈ E(G) : there exists y ∈ Y such that e is incident to y}.

(ii) Theorem 1.2.0.10 (i) gives us that G[
⋃t−1
j=1Cj] is a (2, 2)-connected graph, and

so Theorem 1.2.0.10 (iii) implies that |Ct \ (
⋃t−1
j=1Cj)| − 1 = r(E)− r(

⋃t−1
j=1Cj),

where r is the rank function of M(2,2)(G). Now, by Theorem 1.4.3.8 we note that

(2, 2)-connected graphs are rigid in any two-dimensional non-Euclidean normed

space and hence r(E) = 2|V | − 2 and r(
⋃t−1
j=1Cj) = 2|V \ Y | − 2. Therefore

|Ct \ (
t−1⋃
j=1

Cj)| = 1 + (2|V | − 2)− (2|V \ Y | − 2) = 2|Y |+ 1.

(iii) Note that as t ≥ 2, X ̸= ∅. As Y ̸= ∅ it follows from (i) that iHt(Y )+dHt(X, Y ) =

|Ct \ (
⋃t−1
j=1Cj)|. Then (ii) implies that iHt(Y ) + dHt(X, Y ) = 2|Y |+ 1, and so

iHt(X) = |Ct| − (iHt(Y ) + dHt(X, Y )) = (2|Vt| − 1)− (2|Y |+ 1) = 2|X| − 2.
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Hence X is critical in Ht.

(iv) As Y ̸= ∅, we can consider Ht[Y ] and G[Y ]. That Ht[Y ] = G[Y ] follows from the

definition of Y . That dHt(y) = dG(y) for all y ∈ Y follow from (i). Lastly, as X is

critical in Ht by (iii), Lemma 2.3.0.4 (iii) implies that Y ∩ V3(Ht) ̸= ∅ and hence

by the previous sentence we have that Y ∩ V3(G) ̸= ∅.

(v) As Y ̸= ∅ we can consider G[Y ]. Let G1, . . . , Gn be the components of G[Y ] and

for all 1 ≤ i ≤ n let Gi = (Yi, Fi). Then Y =
⋃n
i=1 Yi and F =

⋃n
i=1 Fi. As each

Gi is a component ofG[Y ] we have that for all 1 ≤ i < j ≤ n, Yi∩Yj = ∅ = Fi∩Fj.
Therefore |Y | =

∑n
i=1 |Yi| and |F | =

∑n
i=1 |Fi|. Moreover, for all 1 ≤ i ≤ n we

have that Ht[Yi] = G[Yi] and so iHt(Yi) = |Fi|.

As Ht is a (2, 2)-circuit and X is critical in Ht by (iii), it follows that for all

1 ≤ i ≤ n there exists ai ≥ 1 such that,

|Fi|+ dHt(X, Yi) = iHt(X ∪ Yi)− iHt(X)

= (2|X ∪ Yi| − ai)− (2|X| − 2)

= 2(1 + |X|+ |Yi| − |X ∩ Yi|)− (2|X|+ ai)

= 2|Yi|+ (2− ai).

Now, by (ii) and (i) we have

2|Y |+ 1 =

∣∣∣∣∣Ct \
(
t−1⋃
j=1

Cj

)∣∣∣∣∣ = iHt(Y ) + dHt(X, Y )

=
n∑
i=1

(|Fi|+ dHt(X, Yi))

=
n∑
i=1

(2|Yi|+ 2− ai)

= 2|Y |+ 2n−
n∑
i=1

ai.
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Therefore
∑n

i=1 ai = 2n − 1 and so, as ai ≥ 1 for all 1 ≤ i ≤ n, there exists

1 ≤ i ≤ n such that ai = 1. As Ht is a (2, 2)-circuit it follows that X ∪ Yi = Vt,

so i = 1 = n and Ht[Y ] = G[Y ] is connected.

(vi) If Y = ∅ then |X| = |Vt| so, as Ht is (2, 2)-circuit, |X| = |Vt| ≥ 5. If Y ̸= ∅
then X is critical in Ht by (iii), so |X| = 1 or |X| ≥ 4. As C1, . . . , Ct is an

ear decomposition of M(2,2)(G), Ct ∩ (
⋃t−1
i=1 Ci) ̸= ∅ and hence E(Ht[X]) ̸= ∅.

Therefore |X| ≠ 1 and so |X| ≥ 4.

Remark 11. We note that in the proof of parts (i) and (v) of Lemma 3.1.0.1 no use

is made of the fact that t ≥ 2. Indeed, if t = 1 then we see that Y = Vt ̸= ∅ and

G[Y ] = G = Ht is connected by Lemma 2.1.0.12. Also, although the proof of part (iv)

invokes part (iii), and so uses the fact that t ≥ 2, Lemma 2.3.0.2 implies that part (iv)

also holds in the case that t = 1. However, the condition that t ≥ 2 is necessary for

parts (ii), (iii), and (vi) of Lemma 3.1.0.1.

Lemma 3.1.0.2. Let G be a (2, 2)-circuit, take v ∈ V3(G), and let NG(v) = {x, y, z}. If
xy /∈ E(G) then the (2, 1)-reduction of G at v adding xy, G′, has exactly one subgraph,

J , that is a (2, 2)-circuit. Moreover, V (J) is the unique minimal v-critical set in G on

{x, y} (i.e. no proper subset of V (J) is v-critical set in G on {x, y}) if and only if

J ̸= G′.

Proof. Lemma 2.3.0.2 gives us that V3(G) ̸= ∅, so we may take v ∈ V3(G). Let

Z = {Z : Z is v-critical in G on {x, y}}. If Z = ∅ then Lemma 2.3.0.6 implies G′ is a

(2, 2)-circuit, so J = G′. Then V (J) = V (G) \ {v} so V (J) is not v-critical in G on

{x, y}.

If Z ̸= ∅ then let Z ′ =
⋂
Z∈Z Z. As x ∈ Z ′ and v /∈ Z ′, Lemma 2.3.0.5 implies that

Z ′ ∈ Z. As z /∈ Z ′, G′[Z ′] ̸= G′. By definition, Z ′ is the unique minimal v-critical set in

G on {x, y}. Let J ′ = G′[Z ′]. As G′ is a (2, 1)-reduction of G, J ′ must be a subgraph

of any subgraph of G′ that is a (2, 2)-circuit. Moreover, by the definition of Z ′, J ′ is a

(2, 2)-circuit and so J ′ is the unique subgraph of G′ that is a (2, 2)-circuit.
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Lemma 3.1.0.3. Let G be a (2, 2)-connected graph and let C1, . . . , Ct be an ear decom-

position of M(2,2)(G). For 1 ≤ i ≤ t let G[Ci] = Hi = (Vi, Ci). Let Y = Vt \
⋃t−1
i=1 Vi

and let X = Vt \ Y . Suppose that t ≥ 2 and Y ̸= ∅. Take v ∈ Y ∩ V3(G) and suppose

there exists {x, y} ⊆ NG(v) such that xy /∈ E(G). Let H ′
t be the (2, 1)-reduction of

Ht at v adding xy, and let J be the unique subgraph of H ′
t that is a (2, 2)-circuit. If

E(H ′
t) \ E(Ht[X]) ⊊ E(J) then the (2, 1)-reduction of G at v adding xy is (2, 2)-

connected.

Proof. Let G = (V,E). As t ≥ 2 and Y ̸= ∅, Lemma 3.1.0.1 (v) implies that Y ∩
V3(G) ̸= ∅. Hence we can take v ∈ Y ∩ V3(G) = Y ∩ V3(Ht). Let NG(v) = {x, y, z}
and suppose xy /∈ E(G). Then xy /∈ Ct and there exists a (2, 1)-reduction of Ht at v

adding xy, which we call H ′
t. Lemma 3.1.0.2 implies there exists a unique subgraph, J ,

of H ′
t such that J is a (2, 2)-circuit. As xy /∈ E(G), there exists a (2, 1)-reduction of

G at v adding xy, which we call G′. Let G′ = (V ′, E ′). As G′ is a (2, 1)-reduction of

G, G′ = G′[E ′] and |E ′| = |E| − 2 ≥ 7. All that remains is to show that M(2,2)(G
′) is

connected.

Now,

E ′ = (E \ {vx, vy, vz}) ∪ {xy}

=

((
t⋃
i=1

Ci

)
\ {vx, vy, vz}

)
∪ {xy}

=
t−1⋃
i=1

Ci ∪ (Ct \ {vx, vy, vz}) ∪ {xy}

=

(
t−1⋃
i=1

Ci

)
∪ E(H ′

t).

Lemma 3.1.0.1 (i) implies that E(Ht[X]) ⊆
⋃t−1
i=1 Ci. So, as E(H

′
t)\E(Ht[X]) ⊊ E(J),

E ′ =

(
t−1⋃
i=1

Ci

)
∪ (E(H ′

t) \ E(Ht[X])) ⊆

(
t−1⋃
i=1

Ci

)
∪ E(J) ⊆ E ′.
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Therefore (
⋃t−1
i=1 Ci) ∪ E(J) = E ′. As |

⋃t−1
i=1 Ci| ≥ 2 and

⋃t−1
i=1 Ci is an ear decompo-

sition of G[
⋃t−1
i=1 Ci] = G′[

⋃t−1
i=1 Ci], Theorem 1.2.0.10 implies that M(2,2)(G

′[
⋃t−1
i=1 Ci])

is connected and hence G′[
⋃t−1
i=1 Ci] is (2, 2)-connected. As J is a (2, 2)-circuit, Lemma

2.1.0.8 implies that J is (2, 2)-connected.

As E(H ′
t) \ E(Ht[X]) ⊊ E(J) ⊆ E(H ′

t), E(J) ∩ E(Ht[X]) ̸= ∅. Recall that E(J) ∩
E(Ht[X]) ⊆ E ′ = E(J)∪ (

⋃t−1
i=1 Ci) and take e ∈ E(J)∩ (

⋃t−1
i=1 Ci). Take f ∈ E ′ \{e}.

As both G′[
⋃t−1
i=1 Ci] and J are (2, 2)-connected there exists C, a circuit of M(2,2)(G

′),

such that {e, f} ⊆ C. So for all f ∈ E ′\{e} there exists C, a circuit of M(2,2)(G
′), such

that {e, f} ⊆ C. Therefore Lemma 1.2.0.8 implies that is M(2,2)(G
′)-connected.

Our next result is a consequence of Lemma 3.1.0.3 that we will make repeated use of.

Lemma 3.1.0.4. Let G be a (2, 2)-connected graph and let C1, . . . , Ct be an ear decom-

position of M(2,2)(G). For 1 ≤ i ≤ t let G[Ci] = Hi = (Vi, Ci). Let Y = Vt \
⋃t−1
i=1 Vi

and let X = Vt \ Y . Suppose that t ≥ 2 and Y ̸= ∅. Take v ∈ Y ∩ V3(G) and suppose

there exists {x, y} ⊆ NG(v) such that xy /∈ Ct. If the (2, 1)-reduction of Ht at v adding

xy is a (2, 2)-circuit and xy /∈ E(G) then the (2, 1)-reduction of G at v adding xy is

(2, 2)-connected.

Proof. Let H ′
t = (V ′

t , C
′
t) denote the (2, 1)-reduction of Ht at v adding xy. By Lemma

3.1.0.1 (iii) and (vi), E(Ht[X]) ̸= ∅. Hence C ′
t \ E(Ht[X]) ⊊ C ′

t and so, as xy /∈
E(G), Lemma 3.1.0.3 implies that the (2, 1)-reduction of G at v adding xy is (2, 2)-

connected.

Lemma 3.1.0.5. Let G be a (2, 2)-connected graph and let C1, . . . , Ct be an ear decom-

position of M(2,2)(G). For 1 ≤ i ≤ t let G[Ci] = Hi = (Vi, Ci). Let Y = Vt \
⋃t−1
i=1 Vi

and let X = Vt \ Y . Suppose that t ≥ 2 and Y ̸= ∅. Take v ∈ Y ∩ V3(G), let

NG(v) = {x, y, z}, and suppose that dHt(x) = 3 and {xy, xz, yz} ∩ Ct = {xy, xz}. If

|NHt(v) ∩X| ≤ 2 then

(i) there exists a K−
4 -reduction of G deleting {v, x} if and only if yz /∈ E(G); and

(ii) if there exists a K−
4 -reduction of G deleting {v, x}, G′, then G′ is (2, 2)-connected.
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Proof. As t ≥ 2 and Y ̸= ∅, Lemma 3.1.0.1 (iv) implies that Y ∩ V3(G) ̸= ∅. Hence

we can take v ∈ Y ∩ V3(G) = Y ∩ V3(Ht) and let NG(v) = {x, y, z}. If there exists a

K−
4 -reduction of G deleting {v, x} then yz /∈ E(G). On the other hand, suppose that

yz /∈ E(G). Then {xy, xz, yz} ∩ E(G) = {xy, xz}. Note that Lemma 3.1.0.1 (iii)

and (vi) together give us that X is critical in Ht and |X| ≥ 4. Therefore, if x ∈ X

then dHt[X](x) ≥ 2 by Lemma 2.3.0.4 (ii), and so y, z ∈ X. However this implies that

|NHt(v) ∩ X| ≥ 3, a contradiction. Therefore x ∈ Y and so dG(x) = 3 by Lemma

3.1.0.1 (iv). Therefore there exists a K−
4 -reduction of G deleting {v, x}, and we denote

this graph by G′.

Take v1, v2 /∈ V , let H ′
1 = G[V \ {v, x}], and let H ′

2 = G[NG[v]]. Observe that

G = (V (H ′
1)∪ V (H ′

2), E(H
′
1)∪E(H ′

2)), |V (H ′
1)∩ V (H ′

2)| = 2, V (H ′
1) \ V (H ′

2) ̸= ∅ ≠

V (H ′
2) \ V (H ′

1), and E(G[V (H ′
1) ∩ V (H ′

2)]) = ∅. Let (G1, G2) be the 1-separation of

G on (H ′
1, H

′
2) adding {v1, v2}, and let (G′

2, G
′
1) be the 1-separation of G on (H2, H1)

adding {v1, v2}. Then G′ = G1. We see that G′
2
∼= K4, so Lemma 2.3.0.24 implies that

G1 = G′ is (2, 2)-connected.

The inspiration for our next result is [30, Lemma 2.6], although our result is not quite

a direct analogue. Nixon proves that if a (2, 2)-circuit has sufficiently large vertex-

connectivity and edge-connectivity then this circuit contains nodes which do not lie in any

critical set in the circuit. Instead of size, we consider structure. That is, we consider those

(2, 2)-connected graphs that have, or rather do not have, a particular structure which

is related to vertex-connectivity and edge-connectivity. Nixon’s result also considers a

condition relating to K4 subgraphs, and while this idea is absent here it does appear in

the proof of Lemma 3.2.0.1.

Lemma 3.1.0.6. Let G be a (2, 2)-connected graph and let C1, . . . , Ct be an ear decom-

position of M(2,2)(G). For 1 ≤ i ≤ t let G[Ci] = Hi = (Vi, Ci). Let Y = Vt \
⋃t−1
i=1 Vi

and let X = Vt \ Y . Suppose Y ̸= ∅ and there does not exist a 3-edge-separation

(H ′
1, H

′
2) of Ht such that |V (H ′

1)|, |V (H ′
2)| ≥ 2 and H ′

i is a subgraph of Ht[Y ] for some

i ∈ {1, 2}. Let U = {U ⊆ Vt : |U | ≥ 2 and U is critical in Ht}. Take ∅ ≠ X ⊆ U such

that there exists X0 ∈ X such that X ⊆ X0. Let Y = Vt \ (
⋃
U∈X U). If |Y| ≥ 2 or
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⋃
U∈X Ht[U ] is disconnected then |Y ∩ V3(G)| ≥ 2.

Proof. We begin by showing that U ̸= ∅ and that there existsX0 ∈ U such thatX ⊆ X0.

If t = 1 then G = (Vt, Ct) = (Y,Ct) is a (2, 2)-circuit and X = ∅. It follows from Lemma

2.3.0.2 that δ(G) = 3, so we may take v ∈ V3(G). Lemma 2.3.0.1 implies that |Vt| ≥ 5

and so Vt \ {v} ̸= ∅ and iG(Vt \ {v}) = |Ct| − 3 = (2|Vt| − 1) − 3 = 2|Vt \ {v}| − 2.

Therefore Vt \ {v} ∈ U and for all U ∈ U , X ⊆ U . Alternatively, if t ≥ 2 then as Y ̸= ∅
Lemma 3.1.0.1 (iii) and (vi) together imply that X is critical in Ht and |X| ≥ 4. Hence

X ∈ U . Therefore U ̸= ∅ and there exists U ∈ U such that X ⊆ U . Therefore we may

take ∅ ≠ X ⊆ U and X0 ∈ X such that X ⊆ X0.

Let X = {X0, . . . , Xk} for some k ≥ 0. Then Y = Vt \ (
⋃k
j=0Xj). Let G1, . . . , Gn be

the components of
⋃k
j=0Ht[Xj], and for all 1 ≤ i ≤ n let Gi = (Zi, Fi). As |Y| ≥ 2 or⋃k

j=0Ht[Xj] is disconnected, we have that for all 1 ≤ i ≤ n, Zi ̸= Vt. Hence Lemma

2.3.0.5 implies that for all 1 ≤ i ≤ n, Zi is critical in Ht. That is, iHt(Zi) = 2|Zi| − 2.

Now, Theorem 1.1.1.6 implies that for all 1 ≤ i ≤ n,∑
u∈Zi

dHt[Zi](u) = 2iHt(Zi) = 4|Zi| − 4.

So for all 1 ≤ i ≤ n,
∑

u∈Zi
(4 − dHt[Zi](u)) = 4. As |Zi| ≥ 2 for all 1 ≤ i ≤ n,

and |Y| ≥ 2 or
⋃k
j=0Ht[Xj] is disconnected, it follows that for all 1 ≤ i ≤ n we have

|Vt \ Zi| ≥ 2.

We supposed that there there does not exist a 3-edge-separation (H ′
1, H

′
2) of Ht such

that |V (H ′
1)|, |V (H ′

2)| ≥ 2 and H ′
i is a subgraph of Ht[Y ] for some i ∈ {1, 2}. So since

there exists 1 ≤ i ≤ n such that X ⊆ X0 ⊆ Zi and since for all 1 ≤ i ≤ n, Zi ̸= Vt, it
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follows that dHt(Zi, Vt \ Zi) ≥ 4 for all 1 ≤ i ≤ n. This implies that for all 1 ≤ i ≤ n,∑
u∈Zi

(4− dHt(u)) =
∑
u∈Zi

(4− (dHt[Zi](u) + dHt({u}, Vt \ Zi)))

=
∑
u∈Zi

(4− dHt[Zi](u))−
∑
u∈Zi

dHt({u}, Vt \ Zi)

= 4− dHt(Zi, Vt \ Zi)

≤ 0.

Therefore, ∑
u∈Vt\Y

(4− dHt(u)) =
n∑
i=1

∑
u∈Zi

(4− dHt(u)) ≤ 0.

Now, as Ht is a (2, 2)-circuit we have that |Ct| = 2|Vt| − 1. So Theorem 1.1.1.6 implies

that
∑

v∈Vt dHt(v) = 2|Ct| = 4|Vt| − 2. That is,

2 =
∑
v∈Vt

(4− dHt(v)) =
∑
v∈Y

(4− dHt(v)) +
∑

v∈Vt\Y

(4− dHt(v)) ≤
∑
v∈Y

(4− dHt(v)).

Therefore, |{v ∈ Y : dHt(v) ≤ 3}| ≥ 2. If t = 1 then G = Ht and if t ≥ 2 then Lemma

3.1.0.1 (iv) implies dHt(y) = dG(y) for all y ∈ Y . Either way, {v ∈ Y : dHt(v) ≤ 3} =

{v ∈ Y : dG(v) ≤ 3}. Lemma 2.1.0.10 implies that δ(G) ≥ 3 and hence we conclude

that |Y ∩ V3(G)| ≥ 3.

Z Z

a

w

b a

w

v

b

Figure 3.1: Possible structures of Ht discussed in the proof of Lemma 3.1.0.7.

Lemma 3.1.0.7. Let G be a (2, 2)-connected graph and let C1, . . . , Ct be an ear decom-

position of M(2,2)(G). For 1 ≤ i ≤ t let G[Ci] = Hi = (Vi, Ci). Let Y = Vt \
⋃t−1
i=1 Vi

and let X = Vt \Y . Suppose t ≥ 2 and Y ̸= ∅. Let X = {X}∪{U ⊆ Vt : Ht[U ] ∼= K4}
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and let Y = Vt \ (
⋃
U∈X U). Suppose that |Y| ≤ 1 and

⋃
U∈X Ht[U ] is connected. If⋃

U∈X U ̸= X and |NHt(v)∩X| ≤ 1 for all v ∈ Y ∩V3(Ht), then there exists a generalised

edge-reduction, an edge-deletion, or a K−
4 -reduction of G that is (2, 2)-connected.

Proof. Let X = X0 and set X = {X0, . . . , Xk} for some k ≥ 0, so
⋃
U∈X U =

⋃k
j=0Xj.

As
⋃
U∈X U ̸= X, k ≥ 1. As

⋃k
j=0Ht[Xj] is connected and k ≥ 1 we may, by reordering

X1, . . . , Xk if necessary, suppose without loss of generality that Xj ∩ (
⋃j−1
i=0 Xi) ̸= ∅

for all 1 ≤ j ≤ k. Let s = min{j :
⋃j
i=0Xi =

⋃k
i=0Xi}. As

⋃
U∈X U ̸= X, s ≥ 1.

Therefore, for all 0 ≤ j ≤ s−1, ∅ ≠
⋃j
i=0Xj ⊊ Vt. As we have that Xj∩(

⋃j−1
i=0 Xi) ̸= ∅

for all 1 ≤ j ≤ k, Lemma 2.3.0.5 now implies that for all 1 ≤ j ≤ s − 1,
⋃j
i=0Xi is

critical in Ht and dHt

((⋃j−1
i=0 Xi

)
\Xj, Xj \

⋃j−1
i=0 Xi

)
= 0.

If |(
⋃s−1
i=0 Xi) ∩ Xs| ≥ 2 then, as Ht[Xs] ∼= K4, |E(Ht[(

⋃s−1
i=0 Xi) ∩ Xs])| ≥ 1. As we

have that dHt

((⋃j−1
i=0 Xi

)
\Xj, Xj \

⋃j−1
i=0 Xi

)
= 0 for all 1 ≤ j ≤ s − 1, it follows

that there exists 0 ≤ j ≤ s− 1 such that |Xj ∩Xs| ≥ 2. By the definition of s we then

have that |Xj ∩Xs| ∈ {2, 3}. Hence Xj ∩Xs is not critical in Ht and so Lemma 2.3.0.5

implies that Xj ∪ Xs = Vt. Hence Xj = X0 = X and Y = Xs \ X. However, then

there exists y ∈ Y ∩ V3(Ht) such that |NHt(y) ∩ X| ≥ 2 which gives a contradiction.

Therefore |(
⋃s−1
i=0 Xi) ∩Xs| = 1.

Let Z =
⋃s−1
i=0 Xi, let Z ∩ Xs = {w}, and recall that Z is critical in Ht. We consider

the cases Y = ∅ and |Y| = 1 separately. We observe that if Y = ∅ then Ht has a

particular structure (see the left of Figure 3.1), whereas if |Y| = 1 then Ht has one of

three possible structures (see the right of Figure 3.1).

Firstly, suppose that Y = ∅. Then Z ∪Xs = Vt. As Ht is a (2, 2)-circuit it follows that

iHt(Z) + iHt(Xs) + dHt(Z,Xs)− iHt(Z ∩Xs) = |Ct|

= 2|Vt| − 1

= 2|Z|+ 2|Xs| − (2 + 1)

= iHt(Z) + iHt(Xs) + 1.

As |Z ∩Xs| = 1, iHt(Z ∩Xs) = 0 and hence dHt(Z,Xs) = 1. Let ab denote the unique
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edge of Ht such that a ∈ Z \Xs and b ∈ Xs\Z = Xs\{w}. Let H ′
1 = G[V \(Xs\{w})]

and let H ′
2 = G[Xs ∪ {a}]. As Xs \ {w} ⊆ Y we have that (H ′

1, H
′
2) is a 2-vertex-

separation of G and E(G[V (H ′
1) ∩ V (H ′

2)]) = E(G[{a, w}]). Hence we have two cases

to consider depending on whether aw ∈ E(G) or aw /∈ E(G). Take v1, v2 /∈ V (G) and

let G′ be a generalised edge-reduction of G that contracts the edge ab and deletes the

edge bw.

If aw ∈ E(G) then let (G1, G2) be the 2-separation of G on (H ′
1, H

′
2) adding {v1, v2}.

Lemma 2.3.0.19 implies that G1 is (2, 2)-connected. Then G′ ∼= G1 and so G′ is (2, 2)-

connected. If aw /∈ E(G) then aw /∈ E(H ′
i) for i ∈ {1, 2}. Let (G1, G2) be the

1-separation of G on (H ′
1, H

′
2) adding {v1, v2} and let (G′

2, G
′
1) be the 1-separation of

G on (H ′
2, H

′
1) adding {v1, v2}. As δ(G′

2) = 2, Lemma 2.1.0.10 implies G′
2 is not (2, 2)-

connected. Hence Lemma 2.3.0.24 implies that G1 is (2, 2)-connected. Then G′ is a

K−
4 -extension of G1 and so Lemma 2.3.0.23 implies G′ is (2, 2)-connected.

On the other hand suppose that |Y| = 1 and let Y = {v}. Then ∅ ≠ Z ∪Xs = Vt \ {v}
and so, by Lemma 2.3.0.5, Z ∪Xs is critical in Ht and dHt(Z,Xs) = 0. Lemma 2.3.0.4

(iii) then implies that dHt(v) = 3. Let NHt(v) = {a, b, c}. As κ(Ht) ≥ 2 by Lemma

2.1.0.13, we may suppose without loss of generality that a ∈ Z \ {w} and b ∈ Xs \ {w}.
Then either c ∈ Z \ {w}, c ∈ Xs \ {w}, or c = w. Let H ′

1 = G[V \ (Xs \ {w})] and
let H ′

2 = G[Xs ∪ {v}]. As (Xs \ {w}) ∪ {v} ⊆ Y we have that (H ′
1, H

′
2) is a 2-vertex-

separation of G and E(G[V (H ′
1) ∩ V (H ′

2)]) = E(G[{v, w}]). Hence we have two cases

to consider depending on whether vw ∈ E(G) or vw /∈ E(G). That is, depending on

whether c = w or c ̸= w. Take v1, v2 /∈ V (G).

If c = w (see the middle of Figure 3.2) then let G′ be a generalised edge-reduction of G

that contracts the edge vb and deletes the edge bw. Let (G1, G2) be the 2-separation of

G on (H ′
1, H

′
2) adding {v1, v2} and note that G′ ∼= G1. Lemma 2.3.0.19 implies that G1

is (2, 2)-connected, so G′ is (2, 2)-connected.

If c ∈ Z\{w} (see the left of Figure 3.2) then let G′ be a generalised edge-reduction of G

that contracts the edge vb and deletes the edge vc. Let (G1, G2) be the 1-separation of

G on (H ′
1, H

′
2) adding {v1, v2}, let (G′

2, G
′
1) be the 1-separation of G on (H ′

2, H
′
1) adding
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{v1, v2}, and note that G′ ∼= G′
1. Lemma 2.3.0.24 implies that G′

1 is (2, 2)-connected,

so G′ is (2, 2)-connected.

If c ∈ Xs\{w} (see the right of Figure 3.2) then let G′ be a generalised edge-reduction of

G that contracts the edge vb and deletes the edge bw. Let (G1, G2) be the 1-separation

of G on (H ′
1, H

′
2) adding {v1, v2} and let (G′

2, G
′
1) be the 1-separation of G on (H ′

2, H
′
1)

adding {v1, v2}. As δ(G′
2) = 2, Lemma 2.1.0.10 implies that G′

2 is not (2, 2)-connected.

Hence Lemma 2.3.0.24 implies that G1 is (2, 2)-connected. Then G′ is a K−
4 -extension

of G1 and so Lemma 2.3.0.23 implies G′ is (2, 2)-connected.

Z Z Z

a
c w

v

b a

c = w

v

b a

w

v

b c

Figure 3.2: Possible structures of Ht when |Y| = 1 discussed in the proof of Lemma
3.1.0.7.

Lemma 3.1.0.8. Let G be a (2, 2)-connected graph and let C1, . . . , Ct be an ear decom-

position of M(2,2)(G). For 1 ≤ i ≤ t let G[Ci] = Hi = (Vi, Ci). Let Y = Vt \
⋃t−1
i=1 Vi

and let X = Vt \ Y . Suppose that t ≥ 2 and that for all v ∈ Y ∩ V ∗
3 (Ht) the following

hold:

(a) |NHt(v) ∩X| ≤ 1;

(b) for all w ∈ NHt(v), there does not exist a K
−
4 -reduction of G deleting {v, w}; and

(c) there does not exist a (2, 1)-reduction of G at v that is (2, 2)-connected.

If Y ∩ V ∗
3 (Ht) ̸= ∅ then Ht[Y ∩ V ∗

3 (Ht)] is a forest, and for all u ∈ Y ∩ V ∗
3 (Ht) such

that u is a leaf of Ht[Y ∩ V ∗
3 (Ht)] the following hold:

(i) E(Ht[NHt(u)]) = ∅ = E(G[NHt(u)]); and

(ii) there exists a u-critical set, X∗, in Ht such that X∗ is node-critical in Ht and

X ⊊ X∗.
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Proof. As Y ∩ V ∗
3 (Ht) ̸= ∅, Ht[Y ∩ V ∗

3 (Ht)] is a subgraph of Ht[V3(Ht)] and hence is a

forest by Lemma 2.3.0.7. So we may take u ∈ Y ∩V ∗
3 (Ht) such that u is a leaf of Ht[Y ∩

V ∗
3 (Ht)]. Let NHt(u) = {x, y, z}. By condition (a) we have that E(Ht[{x, y, z}]) =

E(G[{x, y, z}]), and we may suppose without loss of generality that y, z /∈ X so y, z ∈ Y .

Recall that as u is a plausible node of Ht, NHt(u)∩ V ∗
3 (Ht) = NHt(u)∩ V3(Ht). So, as

u is a leaf of Ht[Y ∩ V ∗
3 (Ht)], dHt(y) ≥ 4 or dHt(z) ≥ 4.

By conditions (a) and (b), and the fact that E(Ht[{x, y, z}]) = E(G[{x, y, z}]), Lemma

3.1.0.5 implies that, for all w ∈ NHt(u), there does not exist a K−
4 -reduction of Ht

deleting {u,w}. By condition (c) and the fact that E(Ht[{x, y, z}]) = E(G[{x, y, z}]),
Lemma 3.1.0.4 implies there does not exist a (2, 1)-reduction of Ht at v that is a

(2, 2)-circuit. Consequently, Lemma 2.3.0.25 implies that E(Ht[NHt(u)]) = ∅. As

E(Ht[NHt(u)]) = ∅ and there does not exist a (2, 1)-reduction of Ht at u that is a

(2, 2)-circuit, Lemma 2.3.0.6 implies there exist minimal u-critical sets (i.e. no proper

subset is a u-critical set) X1, X2, and X3 in Ht on {x, y}, {x, z}, and {y, z} respectively.

As Y ̸= ∅, Lemma 3.1.0.1 (iii) implies that X is critical in Ht.

If x ∈ X then, as u /∈ X ∪X1∪X2, Lemma 2.3.0.5 implies that X ∪X1 and X ∪X2 are

critical in Ht. As y, z /∈ X, X ⊊ X∪X1 and X ⊊ X∪X2. As dHt(y) ≥ 4 or dHt(z) ≥ 4

it follows that X ∪X1 is a node-critical in Ht or X ∪X2 is node-critical in Ht. If x /∈ X

then {x, y, z} ⊆ Y and so, as u is a leaf of Ht[Y ∩ V ∗
3 (Ht)], we may suppose without

loss of generality that dHt(y), dHt(z) ≥ 4. As u /∈ X1 ∪X2, Lemma 2.3.0.5 implies that

X1 ∪X2 is critical in Ht. So as Ht is a (2, 2)-circuit and NHt(u) ⊆ X1 ∪X2 it follows

that X1∪X2 = Vt \{u}. Hence there exists i ∈ {1, 2} such that X ∩Xi ̸= ∅ and so , by

Lemma 2.3.0.5, X ∪Xi is a node-critical u-critical set in Ht. Moreover, as z ∈ X1 \X
and y ∈ X2 \X we have that X ⊊ X ∪Xi. As u was chosen to be an arbitrary leaf of

Ht[Y ∩ V ∗
3 (Ht)] the result follows.

3.2 Recursive Constructions

In this section we provide a characterisation of (2, 2)-connected graphs (see Theorem

3.2.0.6). This characterisation may be considered the culmination of all our work on
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(2, 2)-connected graphs thus far. Before stating a full characterisation, Theorem 3.2.0.1

gives a useful partial characterisation of (2, 2)-connected graphs. In particular, we show

that any (2, 2)-connected graph that is not a (2, 2)-circuit and does not contain a very

specific structure may be reduced to a smaller (2, 2)-connected graph by one of three

graph operations. The proof we present is quite involved, and makes use of many of the

technical lemmas above, so we give an outline here.

We begin by setting up a (2, 2)-connected graph G, an ear decomposition of M(2,2)(G),

and sets X and Y as in, for example, Lemma 3.1.0.6. We then show that if Y = ∅ then

G can be reduced. Then we suppose that Y ̸= ∅ and proceed to show that there exists a

node of G in Y and that any such node must have at most one neighbour in X. We then

combine Lemma 3.1.0.7 and Lemma 3.1.0.6 to show that there exists a node of G in Y

that is not contained in a subgraph of G isomorphic to K4. Finally, we apply Lemma

3.1.0.8 to guarantee the existence of a particular node-critical set which we use to show

that G must have a certain structure. This allows us to show that G can be reduced.

X0

x
y

a

v

z

w

b

Figure 3.3: Structure of Ht considered towards the end of the proof of Theorem 3.2.0.1.

Theorem 3.2.0.1. Let G be a (2, 2)-connected graph and let C1, . . . , Ct be an ear

decomposition of M(2,2)(G). For 1 ≤ i ≤ t let G[Ci] = Hi = (Vi, Ci). Let Y =

Vt \
⋃t−1
i=1 Vi and let X = Vt \ Y . Suppose t ≥ 2. If there does not exist a 3-edge-

separation (H ′
1, H

′
2) of Ht such that |V (H ′

1)|, |V (H ′
2)| ≥ 2 and H ′

i is a subgraph of Ht[Y ]

for some i ∈ {1, 2} then there exists a generalised edge-reduction, an edge-deletion, or

a K−
4 -reduction of G that is (2, 2)-connected.

Proof. Let G = (V,E). First suppose that Y = ∅. Lemma 3.1.0.1 (i) implies that |Ct \
(
⋃t−1
j=1Cj)| = 1, say Ct\(

⋃t−1
j=1Cj) = {e}. Then C1, . . . , Ct−1 is an ear decomposition of
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M(2,2)(G[E \ {e}]). Lemma 2.3.0.1 implies that |E \ {e}| ≥ 2 and so Theorem 1.2.0.10

implies that M(2,2)(G[E \ {e}]) is connected. Therefore G[E \ {e}] is an edge-deletion

of G that is (2, 2)-connected. Hence we may suppose instead that Y ̸= ∅.

As Y ̸= ∅, Lemma 3.1.0.1 (iii), (iv), (v), and (vi) together give us that X is critical in

Ht, Y ∩V3(G) = Y ∩V3(Ht) ̸= ∅, G[Y ] is connected, and |X| ≥ 4. We now proceed by

considering the various possible values of max{|NHt(u) ∩ X| : u ∈ Y ∩ V3(Ht)}. Note

that 0 ≤ max{|NHt(u) ∩X| : u ∈ Y ∩ V3(Ht)} ≤ 3.

Suppose that max{|NHt(u) ∩X| : u ∈ Y ∩ V3(Ht)} = 3. That is, suppose there exists

v ∈ Y ∩V3(Ht) such that |NHt(v)∩X| = 3. Then NHt(v) ⊆ X, let NHt(v) = {x, y, z}.
Since G[Y ] is connected, Y = {v}. Moreover, Lemma 3.1.0.1 (i) implies that

⋃t−1
i=1 Ci =

E \ {vx, vy, vz} and hence C1, . . . , Ct−1 is an ear decomposition of M(2,2)(G[V \ {v}]).
Lemma 2.3.0.1 implies that |E(G[V \ {v}])| ≥ 2 and so Theorem 1.2.0.10 implies that

M(2,2)(G[V \ {v}]) is connected. Therefore G[V \ {v}] is (2, 2)-connected.

If xy /∈ E then Lemma 2.1.0.17 implies that the edge-addition of G[V \ {v}] adding
xy, which is equal to the (2, 1)-reduction of G at v adding xy, is (2, 2)-connected.

Alternatively, if xy ∈ E then G[E \ {xy}], the edge-deletion of G at xy, is the (2, 1)-

extension of G[V \ {v}] adding v and deleting xy. Lemma 2.1.0.19 implies that G[E \
{xy}] is (2, 2)-connected. Therefore we have that for all u ∈ Y ∩ V3(Ht), if |NHt(u) ∩
X| = 3 then there exists a generalised edge-reduction or an edge-deletion of G that is

(2, 2)-connected. So we may suppose that 0 ≤ max{|NHt(u)∩X| : u ∈ Y ∩V3(Ht)} ≤ 2.

Next suppose that max{|NHt(u) ∩ X| : u ∈ Y ∩ V3(Ht)} = 2. So there exists v ∈
Y ∩ V3(Ht) such that |NHt(v) ∩ X| = 2. Let NHt(v) = {x, y, z}. We may suppose

without loss of generality that {y, z} ⊆ X and x ∈ Y . We now consider which edges

are present between the neighbours of v. If {xy, xz} ⊆ E then {xy, xz} ⊆ Ct and so,

as X is critical in Ht,

iHt(X ∪ {v, x}) = (2|X| − 2) + 1 + dHt(X, {v, x}) ≥ 2|X|+ 3 = 2|X ∪ {v, x}| − 1.

As Ht is a (2, 2)-circuit we have that Vt = X∪{v, x} and dHt(X, {v, x}) = 4. Hence, as
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{v, x} ⊆ Y , Y = {v, x} and dHt(x) = 3 = dG(x). So (G[V \ {v, x}], G[{v, x, y, z}]) is
a 2-vertex-separation of G. Lemma 2.3.0.1 implies that |E(G[V \ {v, x}])| ≥ 2. Lemma

3.1.0.1 (i) implies that C1 . . . , Ct−1 is an ear decomposition of M(2,2)(G[V \ {v, x}]), so
Theorem 1.2.0.10 implies thatM(2,2)(G[V \{v, x}]) is connected and hence G[V \{v, x}]
is (2, 2)-connected. If yz /∈ E then the K−

4 -reduction of G deleting {v, x} equals the

edge-addition of G[V \{v, x}] adding yz, and so this graph is (2, 2)-connected by Lemma

2.1.0.17. If yz ∈ E then the edge-deletion of G at yz is a K−
4 -extension of G[V \{v, x}]

and so is (2, 2)-connected by Lemma 2.3.0.23. So if {xy, xz} ⊆ E then there exists a

K−
4 -reduction or edge-deletion of G that is (2, 2)-connected.

Suppose instead that |{xy, xz} ∩ E| ≤ 1. We may suppose without loss of generality

that xz /∈ E. As xz /∈ E, xz /∈ Ct and so we may consider the (2, 1)-reduction of Ht at

v adding the edge xz. Denote this graph by H ′
t and let J1 be the unique subgraph of H ′

t

that is a (2, 2)-circuit, which exists by Lemma 3.1.0.2. If J1 = H ′
t then Lemma 3.1.0.4

implies that the (2, 1)-reduction of G at v adding xz is (2, 2)-connected. Alternatively,

if J1 ̸= H ′
t then Lemma 3.1.0.2 implies that V (J1) is the minimal v-critical set in Ht

on {x, z}. As z ∈ X ∩ V (J1) and v /∈ X ∪ V (J1), Lemma 2.3.0.5 implies that both

V (J1) ∩ X and V (J1) ∪ X are critical in Ht, and that dHt(X, V (J1)) = 0. Therefore

xy /∈ Ct and so, as x ∈ Y , xy /∈ E. Let H ′′
t denote the (2, 1)-reduction of Ht at v

adding xy and let J2 be the unique subgraph of H ′′
t that is a (2, 2)-circuit, which exists

by Lemma 3.1.0.2. By a similar argument as with J1, we may suppose that J2 ̸= H ′
t and

so V (J2) is the minimal v-critical set in Ht on {x, y}. As NHt(v) ⊆ V (J1) ∪X,

iHt(V (J1) ∪X ∪ {v}) = (2|V (J1) ∪X| − 2) + 3 = 2|V (J1) ∪X ∪ {v}| − 1.

As Ht is a (2, 2)-circuit it follows that V (J1) ∪X = Vt \ {v}, and hence

V (J1) ∩ Y = V (J1) \X = Vt \ (X ∪ {v}) = Y \ {v}.

Let F1 = {ab ∈ Ct : a ∈ V (J1)∩X, b ∈ V (J1)∩Y }, so |F1| = dHt(V (J1)∩X, V (J1)∩Y ).
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Then, as V (J1) is the minimal v-critical set in Ht on {x, z},

E(J1) = E(Ht[V (J1)]) ∪ {xz}

= E(Ht[V (J1) ∩X]) ∪ E(Ht[V (J1) ∩ Y ]) ∪ F1 ∪ {xz}

= E(Ht[V (J1) ∩X]) ∪ E(Ht[Y \ {v}]) ∪ F1 ∪ {xz}.

Moreover,

0 = dHt(X, V (J1)) = dHt(X \ V (J1), V (J1) \X) = dHt(X \ V (J1), V (J1) ∩ Y ).

So,

dHt(X, Y \ {v}) = dHt(X \ V (J1), V (J1) ∩ Y ) + dHt(V (J1) ∩X, V (J1) ∩ Y ) = |F1|.

Consequently, F1 = {ab ∈ Ct : a ∈ X, b ∈ Y \ {v}}. Now,

E(H ′
t) = E(Ht[V \ {v}]) ∪ {xz}

= E(Ht[X]) ∪ E(Ht[Y \ {v}]) ∪ {ab ∈ Ct : a ∈ X, b ∈ Y \ {v}} ∪ {xz}

= E(Ht[X]) ∪ E(Ht[Y \ {v}]) ∪ F1 ∪ {x}.

Therefore,

E(H ′
t) \ E(Ht[X]) = E(Ht[Y \ {v}]) ∪ F1 ∪ {xz} = E(J1) \ E(Ht[V (J1) ∩X]).

By a similar argument, considering J2 rather than J1, we see that

E(H ′
t) \ E(Ht[X]) = E(Ht[Y \ {v}]) ∪ F2 ∪ {xy} = E(J2) \ E(Ht[V (J2) ∩X]).

Now as V (J1) and V (J2) are both critical in Ht and x ∈ V (J1) ∩ V (J2) and v /∈
V (J1)∪V (J2), Lemma 2.3.0.5 implies that V (J1)∪V (J2) is critical in Ht. As NHt(v) ⊆
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V (J1) ∪ V (J2),

iHt(V (J1) ∪ V (J2) ∪ {v}) = iHt(V (J1) ∪ V (J2)) + 3

= (2|V (J1) ∪ V (J2)| − 2) + 3

= 2|V (J1) ∪ V (J2) ∪ {v}| − 1.

AsHt is a (2, 2)-circuit it follows that V (J1)∪V (J2) = Vt\{v}. So, as |X| ≥ 4 by Lemma

3.1.0.1 (vi), we observe that there exists i ∈ {1, 2} such that V (Ji)∩X is critical in Ht

and |V (Ji) ∩ X| ≥ 2. Therefore E(Ht[V (Ji) ∩ X]) ̸= ∅ and so E(H ′
t) \ E(Ht[X]) ⊊

E(Ji). Then Lemma 3.1.0.3 implies that the (2, 1)-reduction of G at v adding xz is

(2, 2)-connected (if i = 1) or the (2, 1)-reduction of G at v adding xy is (2, 2)-connected

(if i = 2). Therefore we have that for all u ∈ Y ∩V3(Ht), if |NHt(u)∩X| ≤ 2 then there

exists a generalised edge-reduction or an edge-deletion of G that is (2, 2)-connected. So

we may suppose that 0 ≤ max{|NHt(u) ∩X| : u ∈ Y ∩ V3(Ht)} ≤ 1.

So we have now shown that Y ∩ V3(Ht) ̸= ∅ and that for all u ∈ Y ∩ V3(Ht), |NHt(u)∩
X| ≤ 1. Let X = {X} ∪ {U ⊆ Vt : Ht[U ] ∼= K4} and let Y = Vt \ (

⋃
U∈X U). Lemma

3.1.0.7 implies that if |Y| ≤ 1 and
⋃
U∈X Ht[U ] is connected then either

⋃
U∈X U = X or

there exists a generalised edge-reduction, an edge-deletion, or a K−
4 -reduction of G that

is (2, 2)-connected. If
⋃
U∈X U = X then Y ∩V3(Ht) = Y ∩V ∗

3 (Ht), so Y ∩V ∗
3 (Ht) ̸= ∅.

Alternatively, if |Y| ≥ 2 or
⋃
U∈X Ht[U ] is disconnected then, since there does not exist a

3-edge-separation (H ′
1, H

′
2) of Ht such that |V (H ′

1)|, |V (H ′
2)| ≥ 2 and H ′

i is a subgraph

of Ht[Y ] for some i ∈ {1, 2}, Lemma 3.1.0.6 implies that |Y ∩ V3(G)| ≥ 2 and hence

|Y ∩ V ∗
3 (Ht)| ≥ 2. Moreover, as |NHt(u)∩X| ≤ 1 for all u ∈ Y ∩ V3(Ht) we have that

∅ ≠ Y ∩ V ∗
3 (Ht) = Y ∩ V ∗

3 (G). That is, the set of plausible nodes of G is non-empty.

Take v ∈ Y ∩ V ∗
3 (Ht). As |NHt(v) ∩X| ≤ 1, E(Ht[NHt(v)]) = E(G[NHt(v)]). If there

exists a (2, 1)-reduction of Ht at v that is a (2, 2)-circuit then, as E(Ht[NHt(v)]) =

E(G[NHt(v)]), Lemma 3.1.0.4 implies there exists a (2, 1)-reduction of G at v that

is (2, 2)-connected. If there exists a K−
4 -reduction of Ht deleting {v, w}, for some

w ∈ NHt(v), then, as |NHt(v) ∩X| ≤ 1 and E(Ht[NHt(v)]) = E(G[NHt(v)]), Lemma

3.1.0.5 implies there exists a K−
4 -reduction of G deleting {v, w} that is (2, 2)-connected.
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Therefore we may suppose that no such (2, 1)-reductions or K−
4 -reductions of Ht exist,

and so Lemma 2.3.0.25 implies that E(Ht[NHt(v)]) = ∅. As v was chosen arbitrarily

from Y ∩ V ∗
3 (Ht) it follows that for all u ∈ Y ∩ V ∗

3 (Ht), |NHt(u) ∩ X| ≤ 1 and

E(Ht[NHt(u)]) = ∅ = E(G[NHt(u)]).

As Y ∩V ∗
3 (Ht) ̸= ∅, Lemma 3.1.0.8 implies that if there does not exist a (2, 1)-reduction

of G that is (2, 2)-connected, and there does not exist aK−
4 -reduction of G (that is (2, 2)-

connected by Lemma 3.1.0.5), then Ht[Y ∩V ∗
3 (Ht)] is a forest and for all u ∈ Y ∩V ∗

3 (Ht)

such that u is a leaf of Ht[Y ∩ V ∗
3 (Ht)] we have E(Ht[NHt(u)]) = ∅ = E(G[NHt(u)])

and there exists a node-critical u-critical set in Ht that contains X as a proper subset.

As Y ∩ V ∗
3 (Ht) is finite, we may choose v ∈ Y ∩ V ∗

3 (Ht) (not necessarily a leaf of

Ht[Y ∩ V ∗
3 (Ht)]) and a node-critical v-critical set in Ht, X

∗, such that X ⊊ X∗ and if

u ∈ Y ∩ V ∗
3 (Ht) and Y

∗ is a node-critical u-critical set in Ht such that X ⊆ Y ∗ then

|X∗| ≥ |Y ∗|. Let NHt(v) \X∗ = {z}, so dHt(z) ≥ 4.

Let Z = Vt \ (X∗ ∪ {v}). As |NHt(v) ∩ X∗| = 2, X∗ ∪ {v} is critical in Ht and so

Lemma 2.3.0.4 (iii) implies that Z ∩ V3(Ht) ̸= ∅. Then Ht[Z ∩ V3(Ht)] is a subgraph of

Ht[V3(Ht)] and so is a forest by Lemma 2.3.0.7. Therefore we can take w ∈ Z ∩ V3(Ht)

such that w is a leaf of Ht[Z ∩ V3(Ht)]. As dHt(z) ≥ 4, w ̸= z. If |NHt(w) ∩X∗| = 3

then iHt(X
∗ ∪ {w}) = 2|X∗ ∪ {w}| − 1, but as v /∈ X∗ ∪ {w} this contradicts the fact

that Ht is a (2, 2)-circuit. So |NHt(w)∩X∗| ≤ 2. If |NHt(w)∩X∗| = 2 then X∗ ∪{w}
is a node-critical v-critical set such that X ⊊ X∗ ∪ {w} and |X∗ ∪ {w}| > |X∗|, which
contradicts the maximality of |X∗|. Therefore |NHt(w) ∩X∗| ≤ 1. Hence, either w is a

leaf node of Ht or w is a series node of Ht and |NHt(w) ∩X∗| = 1 and the neighbour

of w in X∗ is a node, or Ht[NHt [w]]
∼= K4.

If Ht[NHt [w]] ≇ K4 then recall that E(Ht[NHt(w)]) = ∅, and hence Lemma 2.3.0.8

implies that there exists Z ′, a w-critical node-critical set in Ht, such that X ⊊ X∗ ⊊ Z ⊊
Z ′. This contradicts the maximality of |X∗|, so instead we must have that Ht[NHt [w]]

∼=
K4. Now suppose that Z contains a node of Ht that is not a leaf of Ht[Z ∩ V3(Ht)].

Then there exists w′ ∈ Z ∩ V ∗
3 (Ht) such that w′ is not a leaf of Ht[Z ∩ V3(Ht)] with

a, b ∈ NHt(w)∩Z ∩V3(Ht) where a is a leaf of Ht[Z ∩V3(Ht)]. Then Ht[NHt [a]]
∼= K4,

and so as a, w′ ∈ V3(Ht) it follows that ab ∈ Ct. However, as b ∈ V3(Ht) this contradicts
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the fact that Ht[Z ∩ V3] is a forest. Therefore, for all w ∈ Z ∩ V3(Ht) we have that w

is a leaf of Ht[Z ∩ V3(Ht)] and Ht[NHt(w)]
∼= K4.

Let X0 = X∗ and let X = {X0} ∪ {U ⊆ Vt : U ⊈ X0 and Ht[U ] ∼= K4}. As Z ∩
V3(Ht) ̸= ∅ we have that X ̸= X0, so let X = {X0, . . . , Xk} for some k ≥ 1. If

|Vt \ (
⋃k
i=0Xi)| ≥ 2 or

⋃k
i=0Ht[Xi] is disconnected then Lemma 3.1.0.6 implies that

|(Vt \ (
⋃k
i=0Xi)) ∩ V3(G)| ≥ 2. As Vt \ (

⋃k
i=0Xi) ⊆ Vt \X ⊆ Y , it follows that there

exists v′ ∈ Y \ {v} ⊆ Z such that dHt(v
′) = 3. However as v′ /∈

⋃k
i=1Xi we see that

Ht[NHt(v
′)] ≇ K4, which is a contradiction. Therefore we have |Vt \ (

⋃k
i=0Xi)| ≤ 2 and⋃k

i=0Ht[Xi] is connected. As v ∈ Vt \ (
⋃k
i=0Xi), Vt \ (

⋃k
i=0Xi) = {v}.

Take w ∈ Z ∩ V3(Ht). As
⋃k
i=0Ht[Xi] is connected and k ≥ 1 we may, by reordering

X1, . . . , Xk if necessary, suppose without loss of generality that Xj ∩ (
⋃j−1
i=0 Xi) ̸= ∅ for

all 1 ≤ j ≤ k. As v /∈
⋃k
i=0Xi and X0 ∩X1 ̸= ∅, Lemma 2.3.0.5 implies that X0 ∪X1

and X0 ∩X1 are critical in Ht, and dHt(X0, X1) = 0. As X1 ⊈ X0, the maximality of

X∗ = X0 implies that z ∈ X1. As Ht is a (2, 2)-circuit and NHt(v) ⊆ X0∪X1, it follows

that k = 1 and so X0∪X1 = Vt \{v}. Hence w ∈ X1 \X0 and z ∈ NHt(w)∩ (X1 \X0).

Let NHt(w) = {a, b, z}. As X0∩X1 is critical in Ht and X1 ⊈ X0, |X0∩X1| = 1. So we

may suppose without loss of generality that NHt(w) ∩X0 = {a}. As dHt(X0, X1) = 0,

NHt(z) = {v, a, b, w} and dHt(b) = 3 (see Figure 3.3).

Let H ′
1 = G[V \ {b, w, z}] and let H ′

2 = G[{v, a, b, w, z}]. As {v, b, w, z} ⊆ Y , va /∈ E

and (H ′
1, H

′
2) is a 2-vertex-separation of G. Take v1, v2 /∈ V . Let (G1, G2) be the

1-separation of G on (H ′
1, H

′
2) adding {v1, v2}, and let (G′

2, G
′
1) be the 1-separation

of G on (H ′
2, H

′
1) adding {v1, v2}. As δ(G′

2) = 2, Lemma 2.1.0.10 implies that G′
2 is

not (2, 2)-connected. Then Lemma 2.3.0.24 implies that G1 is (2, 2)-connected. Let

G′ be a generalised edge-reduction of G that contracts vz and deletes za. Then G′

is isomorphic to a K−
4 -extension of G1 and so Lemma 2.3.0.23 implies G′ is (2, 2)-

connected. Therefore we have shown that there exists a generalised edge-reduction, an

edge-deletion, or a K−
4 -reduction of G that is (2, 2)-connected.

In order to extend the previous result to apply to (2, 2)-connected graphs without the

condition on 3-edge-separations we introduce some additional terminology and results
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H ′
1

(i)

H ′
2 H ′

1

(ii)

H ′
2 H ′

1

(iii)

H ′
2 H ′

1

(iv)

H ′
2

v1

v2 v1

v2 v1

v2

Figure 3.4: Possible structures of G with respect to a 3-edge-separation (H ′
1, H

′
2) of G

such that |V (H ′
1)|, |V (H ′

2)| ≥ 2 and H ′
2 is a subgraph of Ht[Y ], discussed in the proof

of Theorem 3.2.0.4.

from [24]. In particular, their concept of an ‘atom’ of a graph G will be central to

our proof of Theorem 3.2.0.4. Let (H1, H2) and (H3, H4) be a 2-vertex-separation and

a 3-edge-separation respectively of some graph G. We say (H1, H2) is a trivial 2-

vertex-separation of G if Hi
∼= K4 for some i ∈ {1, 2}, and (H1, H2) is a non-trivial

2-vertex-separation of G otherwise. Similarly, we say (H3, H4) is a non-trivial 3-edge-

separation of G if |V (G[E(G) \ (E(H3) ∪ E(H4))])| = 6, and (H3, H4) is a trivial

3-edge-separation of G otherwise. An atom of G is a subgraph, H, of G such that H

is part of a non-trivial 2-vertex-separation or non-trivial 3-edge-separation of G and no

proper subgraph of H is. Note that there exists an atom of G if and only if there exists

a non-trivial 2-vertex-separation or non-trivial 3-edge-separation of G.

Theorem 3.2.0.2. [24, Theorem 2.2] Let G be a (2, 2)-circuit and suppose that G ≇
K−

5 , B1, B2. If G has no non-trivial 2-vertex-separations and no non-trivial 3-edge-

separations then there exists {u, v} ⊆ V3(G) such that there exist (2, 1)-reductions

of G at u and at v that are (2, 2)-circuits.

G G′ G3 B

y1

y2

y3

x1

x2

x3

w1

w2

y2

y3

x2

x3

w1

w2

y1

y2

y3

v

z1

z2

y3

v

x3

w1

w2

Figure 3.5: The relevant graphs when G2
∼= B1 in Case 1 in the proof of Theorem

3.2.0.4.
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Theorem 3.2.0.3. [24, Theorem 2.3] Let G be a (2, 2)-circuit. If G ≇ K−
5 , B1, then

there exists G′, a K−
4 -reduction or a generalised edge-reduction of G, such that G′ is a

(2, 2)-circuit.

G G′ ∼= G3

x

y

a

c

b

x a

c

Figure 3.6: The relevant graphs when G′
2
∼= K−

5 in Subcase 3b in the proof of Theorem
3.2.0.4.

Theorem 3.2.0.4. Let G be a graph. If G is (2, 2)-connected then there exists G′, an

edge-deletion or a K−
4 -reduction or a generalised edge-reduction of G, such that G′ is

(2, 2)-connected if and only if G ≇ K−
5 , B1.

Proof. Let G = (V,E) and let C1, . . . , Ct be an ear decomposition of M(2,2)(G). For

1 ≤ i ≤ t let G[Ci] = Hi = (Vi, Ci), let Y = Vt \
⋃t−1
i=1 Vi and let X = Vt \ Y . If

t = 1 then G is a (2, 2)-circuit and Theorem 3.2.0.3 implies we are done. If t ≥ 2 and

there does not exist a 3-edge-separation (A1, A2) of Ht such that |V (A1)|, |V (A2)| ≥ 2

and Ai is a subgraph of Ht[Y ] for some i ∈ {1, 2} then Theorem 3.2.0.1 implies we

are done. Therefore we may suppose that t ≥ 2 and there exists a 3-edge-separation

(A1, A2) of Ht such that |V (A1)|, |V (A2)| ≥ 2 and A2 is a subgraph of Ht[Y ]. Let

F = E \ (E(A1) ∪ E(A2)).

As G is (2, 2)-connected, Lemma 2.1.0.14 implies that κ(G) ≥ 2 and so G has one of four

possible structures. To be more precise, either (A1, A2) is a non-trivial 3-edge-separation

of G or (A1, A2) is a 2-vertex-separation of G and we have three possibilities to consider

regarding the three edges between V (A1) and V (A2). See Figure 3.4 for an illustration

of this. We proceed to show that there exists a subgraph of A2 that is an atom of Ht.

If (A1, A2) is a non-trivial 3-edge-separation ofHt (see Figure 3.4 (i)) then some subgraph

87



3.2. Recursive Constructions

of A2 is an atom of Ht. If (A1, A2) is a trivial 3-edge-separation of G (see Figure 3.4 (ii),

(iii), or (iv)) then in case (ii) let v2 be the vertex of A2 with two neighbours in V (A1) and

let v1 be the vertex of A1 that is not adjacent to v2 and has a neighbour in V (A2), in case

(iii) let v1 be the vertex of A1 with two neighbours in V (A2) and let v2 be the vertex of A2

that is not adjacent to v1 and has a neighbour in V (A2), in case (iv) let vi be the vertex

of Ai with exactly two neighbours in V (Aj) for i, j ∈ {1, 2} and i ̸= j. Then in each of

cases (ii), (iii), and (iv) we have that (Ht[V (A1)∪{v2}], Ht[V (A2)∪{v1}]) is a non-trivial
2-vertex-separation of Ht and so some subgraph of Ht[V (A2) ∪ {v1}] is an atom of Ht.

Let A′
2 denote a subgraph of A2 (in case (i)) or Ht[V (A2)∪{v1}] (in cases (ii), (iii), and

(iv)) that is an atom of Ht, and let (A
′
1, A

′
2) denote the corresponding 2-vertex-separation

or 3-edge-separation of Ht. We split the remainder of the proof into three cases based

on whether (A′
1, A

′
2) is a 3-edge-separation or a 2-vertex-separation of Ht, and if it is a

2-vertex-separation then on whether E(A′
1) ∩ E(A′

2) = ∅ or E(A′
1) ∩ E(A′

2) ̸= ∅.

Case 1. (A′
1, A

′
2) is a non-trivial 3-edge-separation of Ht.

Let A′
3 = G[V \ V (A′

2)]. As (A
′
1, A

′
2) is a non-trivial 3-edge-separation of Ht, V (A′

2) ⊆
V (A2) ⊆ Y . Therefore, (A′

3, A
′
2) is a non-trivial 3-edge-separation of G. Let F =

E \ (E(A′
2) ∪ E(A′

3)) = {x1y1, x2y2, x3y3}, where xi ∈ V (A′
2) for 1 ≤ i ≤ 3. Take

v /∈ V . Let (G1, G2) be the 3-separation of Ht on (A′
1, A

′
2) adding {v} and let (G3, G2)

be the 3-separation of G adding on (A′
3, A

′
2) adding {v}. Lemma 2.3.0.17 implies that

G2 is a (2, 2)-circuit and Lemma 2.3.0.21 implies that G3 is (2, 2)-connected. As A′
2

is an atom of Ht, there do not exist any non-trivial 2-vertex-separations or non-trivial

3-edge-separations of G2 and G2 ≇ B2. Hence Theorem 3.2.0.2 implies that G2
∼= K−

5

or G2
∼= B1 or there exist two nodes of G2 such that there exist (2, 1)-reductions of G2

at these nodes that are (2, 2)-circuits.

If G2
∼= K−

5 then A′
2
∼= K4. Let G

′ be a generalised edge-reduction of G that contracts

x1y1 and deletes x1x2. Then there exists a (2, 1)-extension of a (2, 1)-extension ofG2 that

is isomorphic to G′, and so G′ is (2, 2)-connected by Lemma 2.1.0.19. If G2
∼= B1 then

we may suppose without loss of generality that dG2(x1) = 3 and dG2(x2), dG2(x3) ≥ 5

(see Figure 3.5). Therefore dA′
2
(x1) = 2. Let G′ be a generalised edge-reduction of

G that contracts x1y1 and deletes x1x3. Then let B be a graph such that B ∼= B2,
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with V (B) = {v, x3, y3, w1, w2, z1, z2} where {w1, w2} = V (A′
2) \ {x1, x2, x3}, and

z1, z2 /∈ V , where B[{v, y3, z1, z2}] ∼= K4
∼= B[{v, x3, w1, w2}]. Then G′ is isomorphic

to the 1-join of (G3, B) and hence G′ is (2, 2)-connected by Lemma 2.3.0.22.

Alternatively, suppose there exist two nodes of G2 such that there exist (2, 1)-reductions

of G2 at these nodes that are (2, 2)-circuits. Then there exists u ∈ V3(G2) \ {v} =

V3(G2)∩V (A′
2) such that there exists a (2, 1)-reduction of G2 at u that is a (2, 2)-circuit.

Let NG2(u) = {r, s, t} and suppose without loss of generality that the (2, 1)-reduction

of G2 at u adding rs is a (2, 2)-circuit. Denote this graph by G′
2. Note that G′

2 is

isomorphic to a generalised edge-reduction of G2 that contracts ur (or us) and deletes

ut. As G′
2 is a (2, 2)-circuit, t ̸= v. Without loss of generality we may also suppose that

s ̸= v. Let NG(u) = {r′, s, t}, where r′ = r if r ̸= v and r′ ∈ {y1, y2, y3} if r = v (i.e.,

if u ∈ {x1, x2, x3}). Let G′ be generalised edge-reduction of G that contracts ur′ and

deletes ut. Then G′ is isomorphic to a 3-join of (G3, G
′
2), so Lemma 2.3.0.20 implies G′

is (2, 2)-connected.

Case 2. (A′
1, A

′
2) is a non-trivial 2-vertex-separation of Ht and E(A

′
1) ∩ E(A′

2) ̸= ∅.

Let V (A′
1)∩V (A′

2) = {x, y} and let A′
3 = G[V \V (A′

2)]. As (A
′
1, A

′
2) is a non-trivial 2-

vertex-separation ofHt and V (A′
2) ⊆ V (A2)∪{v1}, |V (A′

2)∩X| ≤ 1. Therefore (A′
3, A

′
2)

is a non-trivial 2-vertex-separation of G and E(A′
2) ∩E(A′

3) = {xy}. Take w1, w2 /∈ V .

Let (G1, G2) be the 2-separation of Ht on (A′
1, A

′
2) adding {w1, w2} and let (G3, G2)

be the 2-separation of G on (A′
3, A

′
2) adding {v1, v2}. Lemma 2.3.0.15 implies that G2

is a (2, 2)-circuit and Lemma 2.3.0.19 implies that G3 is (2, 2)-connected. As A′
2 is an

atom of Ht, there do not exist any non-trivial 3-edge-separations of G2. If there exists

a non-trivial 2-vertex-separation, (Z1, Z2), of G2 such that V (Z1) ∩ V (Z2) = {z1, z2}
then as A′

2 is an atom of Ht it follows that {z1, z2} = {x, y} and there exists i ∈ {1, 2}
such that Zi ∼= K4. However, this contradicts the fact that (Z1, Z2) is a non-trivial

2-vertex-separation. So, there do not exist any non-trivial 2-vertex-separations or non-

trivial 3-edge-separations of G2. As A
′
2 is an atom of Ht we see that G2 ≇ B1. Also, as

κ(G2) ≤ 2, G2 ≇ K−
5 . Consequently, Theorem 3.2.0.2 implies that G2

∼= B2 or there

exist two nodes of G2 such that there exist (2, 1)-reductions of G2 at these nodes that

are (2, 2)-circuits.
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If G2
∼= B2 then we may suppose without loss of generality that dA′

2
(x) = 2 and set

NA′
2
(x) = {y, a}. Let G′ be a generalised edge-reduction of G that contracts xa and

deletes xy. Then G′ ∼= G3, so G
′ is (2, 2)-connected. Alternatively, suppose there exist

two nodes of G2 such that there exist (2, 1)-reductions of G2 at these nodes that are

(2, 2)-circuits. Then there exists u ∈ V3(G2) ∩ V (A′
2) such that u /∈ {x, y} and there

exists a (2, 1)-reduction of G2 at u that is a (2, 2)-circuit. Take e ∈ E(K[NG2(u)]) and

suppose without loss of generality that the (2, 1)-reduction of G2 at u adding e is a (2, 2)-

circuit. Denote this graph by G′
2. Note that u /∈ {w1, w2, x, y}, and so u ∈ V (A′

2) ∩ Y
and hence u ∈ V3(G) and e /∈ E. Let G′ be the (2, 1)-reduction of G at u adding e.

Then G′ is the 2-join of (G3, G
′
2) and so G′ is (2, 2)-connected by Lemma 2.3.0.18.

Case 3. (A′
1, A

′
2) is a non-trivial 2-vertex-separation of Ht and E(A

′
1) ∩ E(A′

2) = ∅.

Let V (A′
1)∩V (A′

2) = {x, y} and let A′
3 = G[V \V (A′

2)]. As (A
′
1, A

′
2) is a non-trivial 2-

vertex-separation ofHt and V (A′
2) ⊆ V (A2)∪{v1}, |V (A′

2)∩X| ≤ 1. Therefore (A′
3, A

′
2)

is a non-trivial 2-vertex-separation of G and E(A′
2)∩E(A′

3) = ∅. Take w1, w2 /∈ V . Let

(G1, G2) be the 1-separation of Ht on (A′
1, A

′
2) adding {w1, w2}, and let (G3, G2) be

the 1-separation of G on (A′
3, A

′
2) adding {w1, w2}. Let (G′

2, G
′
1) be the 1-separation of

Ht on (A′
2, A

′
1) adding {w1, w2} and let (G′

2, G
′
3) be the 1-separation of G on (A′

2, A
′
3)

adding {w1, w2}. Lemma 2.3.0.13 implies that G2 is a (2, 2)-circuit and G′
2 is not a

(2, 2)-circuit, or vice versa. We consider these possibilities as separate subcases.

Subcase 3a. G2 is a (2, 2)-circuit.

As G′
2 is a proper subgraph of G2, G

′
2 is not (2, 2)-connected. Therefore Lemma 2.3.0.24

implies that G3 is (2, 2)-connected. As A
′
2 is an atom of Ht, there do not exist any non-

trivial 3-edge-separations of G2. If there exists a non-trivial 2-vertex-separation, (Z1, Z2),

of G2 such that V (Z1) ∩ V (Z2) = {z1, z2} then as A′
2 is an atom of Ht it follows

that {z1, z2} = {x, y} and there exists i ∈ {1, 2} such that Zi ∼= K4. However, this

contradicts the fact that (Z1, Z2) is a non-trivial 2-vertex-separation. So, there do not

exist any non-trivial 2-vertex-separations or non-trivial 3-edge-separations of G2. Also,

as κ(G2) ≤ 2, G2 ≇ K−
5 . Consequently, Theorem 3.2.0.2 implies that G2

∼= B1 or

G2
∼= B2 or there exist two nodes of G2 such that there exist (2, 1)-reductions of G2 at
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Chapter 3. A Construction of (2, 2)-Connected Graphs

these nodes that are (2, 2)-circuits.

If G2
∼= B1 then A′

2
∼= K−

4 . Let V (A′
2) \ {x, y} = {r, s} and let G′ denote the K−

4 -

reduction of G deleting {r, s}. Then G′ = G3 and so G′ is (2, 2)-connected. If G2
∼= B2

then let V (A′
2) \ {x, y} = {a, b, c}. We may suppose without loss of generality that

NG2(x)∩{a, b, c} = {a}. Let G′ be a generalised edge-reduction of G that contracts ax

and deletes ay. Then G′ is isomorphic to a K−
4 -reduction of G3 and so Lemma 2.3.0.23

implies G′ is (2, 2)-connected.

Alternatively, suppose there exist two nodes of G2 such that there exist (2, 1)-reductions

of G2 at these nodes that are (2, 2)-circuits. Then there exists u ∈ V3(G2)∩V (A′
2) such

that u /∈ {x, y} and there exists a (2, 1)-reduction of G2 at u that is a (2, 2)-circuit. Take

e ∈ E(K[NG2(u)]) and suppose without loss of generality that the (2, 1)-reduction of G2

at u adding e is a (2, 2)-circuit. Denote this graph by G̃2. Note that u /∈ {w1, w2, x, y},
and so u ∈ V (A′

2) ∩ Y and hence u ∈ V3(G) and e /∈ E. Let G′ be the (2, 1)-reduction

of G at u adding e. Then G′ is the 1-join of (G3, G̃2) and so G′ is (2, 2)-connected by

Lemma 2.3.0.22.

Subcase 3b. G′
2 is a (2, 2)-circuit.

Lemma 2.3.0.24 implies that G′
3 is (2, 2)-connected. As A′

2 is an atom of Ht, there

do not exist any non-trivial 2-vertex-separations or non-trivial 3-edge-separations of G′
2.

Hence Theorem 3.2.0.2 implies that G′
2
∼= K−

5 or G′
2
∼= B1 or G′

2
∼= B2 or there exist

two nodes of G′
2 such that there exist (2, 1)-reductions of G′

2 at these nodes that are

(2, 2)-circuits.

If G′
2
∼= K−

5 then let {a, b, c} = V (A′
2) \ {x, y}. We may suppose without loss of

generality that dG′
2
(c) = 4 and that E(K[V (A′

2)]) \ E(G′
2) ∈ {ab, ay} (see Figure 3.6).

Let G′ be a generalised edge-reduction of G that contracts by and deletes bc. Then

G′ ∼= G′
3 and so G′ is (2, 2)-connected.

If G′
2
∼= B1 then let {a, b, c, d} = V (A′

2) \ {x, y}. As A′
2 is an atom of Ht we may

suppose without loss of generality that 3 = dG′
2
(x) ≤ dG′

2
(y), NG′

2
(x) = {a, b, y}, and

dG′
2
(a) ≤ dG′

2
(b) (see Figure 3.7). Let G′ be the generalised edge-reduction of G that
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contracts ay (to u) and deletes ab. Then let B be a graph such that B ∼= B2, with

V (B) = {y, b, c, d, x, w1, w2} where {w1, w2} = V (G′
3) \ V (G), where B[{y, b, c, d}] ∼=

K4
∼= B[{y, x, w1, w2}]. Then G′ is isomorphic to the 2-join of (G′

3, B) and hence G′ is

(2, 2)-connected by Lemma 2.3.0.18.

Alternatively, suppose there exist two nodes of G′
2 such that there exist (2, 1)-reductions

of G′
2 at these nodes that are (2, 2)-circuits. Then either there exists u ∈ V (A′

2)\{x, y}
such that there exists a (2, 1)-reduction of G′

2 at u that is a (2, 2)-circuit or the set of

nodes of G′
2 such that there exist (2, 1)-reductions of G′

2 at these nodes that are (2, 2)-

circuits is {x, y}. Firstly, suppose there exists u ∈ V (A′
2)\{x, y} and e ∈ E(K[NG′

2
(u)])

such that the (2, 1)-reduction of G′
2 at u adding e is a (2, 2)-circuit. Denote this graph

G̃′
2. As e /∈ E(G′

2), e ̸= xy. As u /∈ {x, y}, u ∈ V (A′
2) ∩ Y and hence u ∈ V3(G)

and e /∈ E. Let G′ be the (2, 1)-reduction of G at u adding e. Then G′ is the 1-

join of (G′
3, G̃

′
2) and hence G′ is (2, 2)-connected by Lemma 2.3.0.22. On the other

hand, suppose that the set of nodes of G′
2 such that there exist (2, 1)-reductions of

G′
2 at these nodes that are (2, 2)-circuits is {x, y}. Let NG′

2
(x) = {a, b, y} and take

e ∈ E(K[{a, b, y}]) such that the (2, 1)-reduction of G′
2 at x adding e is a (2, 2)-circuit

(see Figure 3.8). Denote this graph by G̃′
2. As G̃′

2 is a (2, 2)-circuit and dG′
2
(y) = 3,

Lemma 2.3.0.2 implies e ∈ {ay, by}. We may suppose without loss of generality that

e = ay. So, as a ∈ V (A′
2) ∩ Y , ay /∈ E. Let G′ be the generalised edge-reduction

of G that contracts xa (to u) and deletes xb, and let G̃′
3 be the graph given by the

isomorphism of G′
3 that maps every vertex except x to itself, and maps x to a. Then

G′ is isomorphic to the 1-join of (G̃′
3, G̃

′
2) and hence G′ is (2, 2)-connected by Lemma

2.3.0.22.

Finally, suppose that G′
2
∼= B2. Then, as A′

2 is an atom of Ht, we must have that

dG′
2
(x) = 4 = dG′

2
(y). Let {z} = NG′

2
(x) ∩NG′

2
(y). We now turn out attention to G′

3.

As dG′
3
(x) = 3 = dG′

3
(y), G′

3 ≇ K−
5 . At this point we invoke an induction argument.

We may suppose that our result holds for all (2, 2)-connected graphs with sufficiently

few vertices, say at most n, and that |V (G)| = n + 1. Note also that the result holds

(trivially) when n = 5. Now, as |V (G′
3)| < |V (G)| and G′

3 ≇ K−
5 , it follows from our

induction hypothesis that that G′
3
∼= B1, or there exists a generalised edge-reduction, an
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edge-deletion, or a K−
4 -reduction of G′

3 that is (2, 2)-connected. If G′
3
∼= B1, then G is

the 1-join of (G′
2, G

′
3), and hence G′

2 is a K
−
4 -reduction of G and so we are done. So we

may instead suppose that there exists a generalised edge-reduction, an edge-deletion, or

a K−
4 -reduction of G′

3 that is (2, 2)-connected.

If there exists a K−
4 -reduction of G′

3, say deleting {u1, u2}, that is (2, 2)-connected then

denote this graph by G̃′
3. As xy ∈ E(G′

3), u1, u2 /∈ {x, y, w1, w2}. Hence we can consider
the K−

4 -reduction of G deleting {u1, u2}. Denote this graph by G′, then G′ is the 1-join

of (G′
2, G̃

′
3) and hence G′ is (2, 2)-connected by Lemma 2.3.0.22.

If there exists a generalised edge-reduction of G′
3, say contracting e to u and deleting

f , that is (2, 2)-connected then denote this graph by G̃′
3. As G′

3 is (2, 2)-connected

e /∈ {xy, xw1, xw2, yw1, yw2, w1w2}, so e ∈ E, and f /∈ {xw1, xw2, yw1, yw2, w1w2}.
If f ̸= xy then f ∈ E. Let G′ denote a generalised edge-reduction of G contracting

e and deleting f . If e is incident to x, then say that e contracts to u and let G̃′
2

denote the graph given by the isomorphism that maps every vertex of G′
2 except x to

itself, and maps x to u. If e is not incident to x then let G̃′
2 = G′

2. Then, G′ is the

1-join of (G̃′
2, G̃

′
3) and hence G′ is (2, 2)-connected by Lemma 2.3.0.22. If f = xy

then f /∈ E. We may suppose without loss of generality that e is incident to x, say

e = xa for some a ∈ V (A′
3) \ {y}. Let G′ denote the generalised edge-reduction of G

contracting e to u and deleting xz (see Figure 3.9). Let G̃2 denote the isomorphism

of the edge-deletion of G2 at xz that maps every vertex of G2 except x to itself and

maps x to u. We observe that G̃2 is isomorphic to a K−
4 -extension of the subgraph

G2[NG2(y)]
∼= B2, and hence G̃2 is (2, 2)-connected by Lemma 2.3.0.23. If ay ∈ E

then uy ∈ E(G′), so G′ is the 2-join of (G̃′
3, G̃2) and hence G′ is (2, 2)-connected by

Lemma 2.3.0.18. If ay /∈ E then uy /∈ E(G′). Let (G4, G5) denote a 1-separation

of G̃′
3 on (G̃′

3[V (A′
3)], G̃

′
3[{u, y, w1, w2}]), and let (G′

5, G
′
4) denote a 1-separation of G̃′

3

on (G̃′
3[{u, y, w1, w2}], G̃′

3[V (A′
3)]). Then G′ is the 1-join of (G4, G̃2). As G′

5
∼= K4,

Lemma 2.3.0.24 implies that G4 is (2, 2)-connected and hence G′ is (2, 2)-connected by

Lemma 2.3.0.22.

Finally, if there exists an edge-deletion of G′
3, say at e, that is (2, 2)-connected then

denote this graph by G̃′
3. Lemma 2.1.0.10 implies e /∈ {xw1, xw2, yw1, yw2, w1w2}. If
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e ̸= xy then e ∈ E and we can denote the edge-deletion of G at e by G′. Then G′ is

the 1-join of (G′
2, G̃

′
3) and hence G′ is (2, 2)-connected by Lemma 2.3.0.22.If e = xy

then let G′ be the edge-deletion of G at xu. Let (G4, G5) denote a 1-separation of

G̃′
3 on (G̃′

3[V (A′
3)], G̃

′
3[{x, y, w1, w2}]) and let (G′

5, G
′
4) denote a 1-separation of G̃′

3 on

(G̃′
3[{x, y, w1, w2}], G̃′

3[V (A′
3)]). Let G̃2 denote the edge-deletion of G2 at xu. Then

G′ is the 1-join of (G4, G̃2). As G′
5
∼= K4, Lemma 2.3.0.24 implies that G4 is (2, 2)-

connected and hence G′ is (2, 2)-connected by Lemma 2.3.0.22.

G G G′

x

y

a

b

c d

x

y

a

b

c

d

x

u b

c d

Figure 3.7: The relevant graphs when G′
2
∼= B1 in Subcase 3b in the proof of Theorem

3.2.0.4.

G G′ G̃′
3 G̃′

2

x

y

a

b

u

y

b

a

y

w1

w2

a

y

b

Figure 3.8: The relevant graphs when the set of nodes of G′
2 such that there exist (2, 1)-

reductions of G′
2 at these nodes that are (2, 2)-circuits is {x, y} in Subcase 3b in the

proof of Theorem 3.2.0.4.

Theorem 3.2.0.5. [24, Theorem 2.1] Let G be a graph. The following are equivalent:
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(i) G is a (2, 2)-circuit; and

(ii) there exists t ∈ N+ and a sequence a1, . . . , at, with a1 ∼= K−
5 or a1 ∼= B1, and

at = G, such that for all 2 ≤ j ≤ t,

(a) aj is a K
−
4 -extension or a generalised vertex split of aj−1; and

(b) if aj is a generalised vertex split of aj−1 then aj is a (2, 2)-circuit.

G′
3 G̃′

3
G′

2 G̃′
2

x

y

a

w1

w2

u

y

w1

w2

x

y

z

w1

w2

u

y

z

Figure 3.9: The relevant graphs when G′
2
∼= B2 and there exists a generalised edge-

reduction of G′
3, contracting e and deleting xy, that is a (2, 2)-circuit in Subcase 3b in

the proof of Theorem 3.2.0.4.

Theorem 3.2.0.6. Let G be a graph. The following are equivalent:

(i) G is (2, 2)-connected; and

(ii) there exists t ∈ N+ and a sequence a1, . . . , at, with a1 ∼= K−
5 or a1 ∼= B1, at = G,

such that for all 2 ≤ j ≤ t,

(a) aj is a K−
4 -extension, or an edge-addition, or a generalised vertex split of

aj−1; and

(b) if aj is a generalised vertex split of aj−1 then aj is (2, 2)-connected.

Proof. Suppose (i) holds. We proceed by induction on |V |, and note that clearly if

G ∼= K−
5 or G ∼= B1 then there exists a sequence of the form claimed. By Lemma

2.1.0.19, for all s ∈ N such that s ≥ 5, there exists a (2, 2)-connected graph with s

vertices. Take n ∈ N such that n ≥ 6 and suppose that (ii) holds for all (2, 2)-connected

95



3.2. Recursive Constructions

graphs with at most n vertices. Now suppose that |V | = n + 1 ≥ 7. Theorem 3.2.0.4

implies there exists a K−
4 -reduction or an edge-deletion or a generalised edge-reduction

of G that is (2, 2)-connected. Let this graph be G′. As |V (G′)| ≤ n, it follows from our

induction hypothesis that there exists t ∈ N+ and a sequence a1, . . . , at, with a1 ∼= K−
5

or a1 ∼= B1, at = G′, such that for all 2 ≤ j ≤ t,

(a) aj is a K
−
4 -extension, or an edge-addition, or a generalised vertex split of aj−1; and

(b) if aj is a generalised vertex split of aj−1 then aj is (2, 2)-connected.

Therefore, a1, . . . , at, G is a sequence of the form claimed.

On the other hand, if (ii) holds then, as K−
5 and B1 are (2, 2)-circuits and hence (2, 2)-

connected by Lemma 2.1.0.8, repeated applications of Lemma 2.1.0.17, Lemma 2.3.0.23,

and condition (b) together imply that G is (2, 2)-connected.
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Chapter 4

Frameworks in Normed Spaces

In this chapter we provide a geometric companion to the combinatorics of the previous

two chapters. We begin by providing some background on the study of frameworks and

rigidity in normed spaces and proceed to consider global rigidity of frameworks in normed

planes. This chapter concludes by combining this study with the results of Chapter 3 in

order to give an appropriately ‘generic’ characterisation of globally rigid graphs in analytic

normed planes.

4.1 Rigidity of Graphs in Normed Spaces

4.1.1 uv-Coincident Rigidity and uv-Sparse Graphs

In 2005, a characterisation of global rigidity in two-dimensional Euclidean space arose

from a combination of Jackson and Jordán’s combinatorial result [22, Theorem 6.15]

with Connelly’s geometric result [5, Theorem 1.5]. So, in order to characterise global

rigidity in (a family of) non-Euclidean normed spaces we look to combine Theorem

3.2.0.6 with geometric results outlined in this chapter. To that end we spend the first

two sections of this chapter considering a particular type of framework. These frameworks

are certainly not well-positioned, but they fail to be well-positioned in a very specific way
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and are in some sense ‘close enough’ to being well-positioned to them to be useful.

These frameworks have previously been used to study rigidity [23] and global rigidity [24]

of frameworks realised on cylinders.

Let G = (V,E) be a graph with distinct vertices u, v ∈ V , and let X be a normed space.

A realisation, p, of V in X is uv-coincident if p(u) = p(v); then the framework (G, p)

is also uv-coincident1. We say that a uv-coincident realisation, p, of a graph (V,E) is

well-positioned if p is a well-positioned realisation of (V,E \ {uv}).

Let (V,E) be a graph and let X be a normed space. Then we denote the set of uv-

coincident realisations of (V,E) in X by XV /uv := {p ∈ XV : p(u) = p(v)}. Now, if p
is a well-positioned uv-coincident realisation of (V,E) in X then:

(i) p is regular if for all q ∈ XV /uv,

rank R((V,E \ {uv}), p) ≥ rank R((V,E \ {uv}), q); and

(ii) (G, p) is independent if uv /∈ E and (G, p) is independent in X.

Definition 4.1.1.1. Let X be a normed space, let (V,E) be a graph, and let p be a

well-positioned uv-coincident realisation of (V,E) in X. The uv-coincident framework

((V,E), p) is infinitesimally rigid in X if ((V,E \ {uv}), p) is infinitesimally rigid in X.

Let p be a well-positioned uv-coincident realisation of a graph G in a normed space X.

(G, p) is minimally (infinitesimally) rigid if (G, p) is independent and infinitesimally

rigid. We say that G is (minimally) uv-rigid in X if there exists a uv-coincident

realisation, p, of G in X such that (G, p) is (minimally) infinitesimally rigid. Similarly,

we say that G is uv-independent in X if there exists a uv-coincident framework (G, q)

that is independent.

Lemma 4.1.1.2. [12, Lemma 2.5]2 Let X be a normed space and let G be a graph.

The set of well-positioned uv-coincident realisations of G in X is a conull subset (i.e.

1For the remainder of this chapter, while discussing uv-coincidence we nay not repeat that the graphs
in question have distinct vertices u and v.

2The proof is analogous to that of Lemma 1.4.3.1.
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the complement of a set with Lebesgue measure zero) of XV (G)/uv, and the set of

regular uv-coincident realisations of G in X is a non-empty open subset of the set of

well-positioned uv-coincident realisations.

If a normed space X is two-dimensional then we say X is a normed plane. As we

shall see, uv-rigidity in normed planes is closely related to the following sparsity property

of graphs. Let G = (V,E) be a graph and let u, v be two distinct vertices of G. Let

X = {X1, X2, . . . , Xk} be a family of sets such that for all 1 ≤ i ≤ k, Xi ⊆ V . We say

that X is a uv-compatible family of G if, for all 1 ≤ i ≤ k, {u, v} ⊊ Xi.

Let G = (V,E) be a graph with distinct vertices u, v ∈ V . Then we introduce a function,

tG, that assigns a value to non-empty subsets of V . That is, tG : V → Z is the function

defined by

tG(U) =


4 if U = {u, v};

3 if U ̸= {u, v} and |U | ∈ {2, 3};

2 otherwise.

With tG in hand we can assign value to both non-empty subsets of G and also to uv-

compatible families of G. Given ∅ ≠ U ⊆ V , (respectively, a uv-compatible family

X = {X1, . . . , Xk}) the value of U (respectively, X ) is

val(U) := 2|U | − tG(u) (respectively, val(X ) :=

(
k∑
i=1

val(Xi)

)
− 2(k − 1)).

Note that val(X ) = 2+
∑k

i=1(2|Xi|− (tG(Xi)+2)). Also, if |X | = 1, say X = X, then

val(X ) = val(X).

Let G = (V,E) be a graph. G is uv-sparse if iG(U) ≤ val(U) for all U ⊆ V such

that |U | ≥ 2, and iG(X ) :=
∣∣∣⋃k

i=1E(G[Xi])
∣∣∣ ≤ val(X ) for all uv-compatible families

X . G is uv-tight if G is uv-sparse and |E| = 2|V | − 2. Figure 4.1 illustrates a

graph that is (2, 2)-sparse and not uv-sparse. Note that if G is uv-sparse then uv /∈ E.

Jackson, Kaszanitzky, and Nixon, showed that the edge sets of the uv-sparse subgraphs

of G form the independent sets of a matroid [23, Lemma 7], and when |V | ≥ 5 the
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maximally independent sets (i.e. independent sets such that no superset of them is also

independent) of this matroid matroid has rank 2|V | − 2.

u

v

w1 w2 w3

G

Figure 4.1: Illustration of a (2, 2)-sparse graph, G ∼= K2,3, that is not uv-sparse. If
X = {{u, v, w1}, {u, v, w2}, {u, v, w3}} then X is a uv-compatible family of G and
iG(X ) = 6 > 5 = 9− 2(2) = val(X ).

4.1.2 uv-Coincident Graph Operations

Definition 4.1.2.1. Let G = (V,E) andH = (W,F ) be graphs such that V ∩W = {u}.
A vertex-to-H operation of G is a graph G′ = (V ∪W, (E\{uv : v ∈ NG(u)})∪F∪F ′),

where F ′ ⊆ {vw : v ∈ NG(u) and w ∈ W} such that for all v ∈ NG(u), dG′({v},W ) =

1.

u
uvertex-to-H

G G′

Figure 4.2: Illustration of a vertex-to-H operation, where H ∼= K4. G
′ is a vertex-to-H

operation of G.

Definition 4.1.2.2. Let G = (V,E) such that ∆(G) ≥ 2. A vertex-to-4-cycle opera-

tion of G is a graph (V ∪ {w′}, (E \ {wvi : 1 ≤ i ≤ k}) ∪ {wv1, wv2, w′v1, w
′v2} ∪ F ′),

where there exists k ≥ 2 such that NG(w) = {v1, . . . , vk}, and F ′ ⊆ {wvi : 3 ≤ i ≤
k} ∪ {w′vi : 3 ≤ i ≤ k} such that for all 3 ≤ i ≤ k, |F ′ ∩ {wvi, w′vi}| = 1. We say
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(V ∪ {w′}, (E \ {wvi : 1 ≤ i ≤ k}) ∪ {wv1, wv2, w′v1, w
′v2} ∪ F ′) is a vertex-to-4-cycle

operation of G at w.

w

v1 v2

w

v1 v2

w′

vertex-to-4-cycle

G G′

Figure 4.3: Illustration of a vertex-to-4-cycle operation. G′ is a vertex-to-4-cycle opera-
tion of G.

A graph G = (V,E) is (2,2)-sparse if iG(U) ≤ 2|U | − 2 for all ∅ ̸= U ⊆ V ; and G

is (2,2)-tight if G is (2, 2)-sparse and |E| = 2|V | − 2. All (2, 2)-tight graphs can be

constructed from a single vertex by a sequence of (2, 0)- and (2, 1)-extensions, vertex-

to-4-cycle operations, and vertex-to-H operations where H ∼= K4 (see [33, Theorem

3.1] for details). Figure 4.2 illustrates vertex-to-H operations, while Figure 4.3 illustrates

vertex-to-4-cycle operations. We shall make use of various specialised versions of (2, 0)-

extensions, (2, 1)-extensions, vertex-to-4-cycle operations, and vertex-to-H operations.

Let G = (V,E) be a graph and suppose that V ∩ {u, v} = {u}. A (2,0)-extension

that adds v, of G, is a (2, 0)-extension of G, say G′, such that V (G′) \ V = {v} and

u /∈ NG′(v). A vertex-to-4-cycle operation that adds v, of G, is a vertex-to-4-cycle

operation of G at u, say G′, such that V (G′)\V = {v} A vertex-to-H operation that

adds v, of G, is a vertex-to-H operation of G where V ∩V (H) = {u} and v ∈ V (H)\V .

Let G = (V,E) be a graph and suppose that {u, v} ⊆ V . A uv − (2,0)-extension of

G is a (2, 0)-extension of G, say G′, such that {w ∈ V : dG(w) ̸= dG′(w)} ≠ {u, v}. A
uv− (2,1)-extension of G is a (2, 1)-extension of G, say G′ where V (G′) \ V = {w}
and E \ E(G′) = {a, b}, such that {u, v} ⊈ {a, b, w}.

As at most one of u or v is ‘involved’ in a uv− (2, 0)-extension or a uv− (2, 1)-extension

of a graph, the techniques used to prove [9, Lemma 5.1, Lemma 5.2] can be applied to

prove the following result.
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Lemma 4.1.2.3. Let X be a normed plane, let G be a graph such that {u, v} ⊆ V (G),

and let G′ be either a uv − (2, 0)-extension or a uv − (2, 1)-extension of G. If G is

uv-independent in X then G′ is uv-independent in X.

Lemma 4.1.2.4. Let X be a normed plane, let G be a graph such that {u, v}∩V (G) =

{u}, and let G′ be a (2, 0)-extension that adds v, of G. If X is strictly convex then G′

is uv-independent in X if and only if G is independent in X.

Proof. We note that as G′ contains G as a subgraph, if G′ is uv-independent then G

will be independent. Suppose there exists an independent realisation, p, of G in X. By

applying translations, we may suppose that p(u) = 0. Let NG′(v) = {v1, v2}. We may

also assume that p(v1) and p(v2) are linearly independent and smooth, as if not then

we could apply Lemma 1.4.3.1 to find a realisation, q, of G in X such that q(v1) and

q(v2) are linearly independent. Define p′ to be the well-positioned realisation of G′ in X

such that p′(x) = p(x) for all x ∈ V (G), and p′(v) = p(u). We see that there exist

1× 2|V (G)| matrices A and B such that

R(G′, p′) =

 R(G, p) 0|E(G)|×2

A −φp(v1)
B −φp(v2)

 .
Since p(v1) and p(v2) are linearly independent and X is strictly convex, Lemma 1.3.2.8

implies φp(v1) and φp(v2) are linearly independent. Therefore (G′, p′) is independent and

so G′ is uv-independent.

Observe that Lemma 4.1.2.4 specified that our non-Euclidean normed plane was strictly

convex, and that this condition was used in the penultimate sentence of the proof. For

vertex-to-4-cycle operations we use a technique from [23, Lemma 11] to show that a

vertex-to-4-cycle operation that has two coincident vertices preserves independence. As

with the previous result our proof requires that the normed plane in question is strictly

convex.

Lemma 4.1.2.5. Let X be a strictly convex normed plane and let G and G′ be graphs.
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(i) If V (G)∩{u, v} = {u}, G is independent inX, andG′ a vertex-to-4-cycle operation

that adds v, of G, then G′ is uv-independent in X.

(ii) If {u, v} ⊆ V (G), G is uv-independent inX, andG′ is a vertex-to-4-cycle operation

of G, then G′ is uv-independent in X.

Proof. Let w be the vertex of G such that G′ is a vertex-to-4-cycle operation of G at w,

letNG(w) = {v1, . . . , vk} for some k ≥ 2, and let V (G′)\V (G) = {w′}. Suppose that G
is uv-independent (respectively, independent). By Lemma 4.1.1.2 (respectively, Lemma

1.4.3.1) we may choose a uv-independent (respectively, independent) realisation, p, of G

in X such that p(w), p(v1), and p(v2) are not collinear. By applying translations to p, we

may assume that p(w) = 0. Define p′ to be the realisation of G′ such that p′(x) = p(x)

for all x ∈ V (G), and p(w′) = p(w). Then p′ is a well-positioned uv-coincident realisation

of G′. Let G′′ = (V (G′), (E(G′) \ {w′vi : 3 ≤ i ≤ k}) ∪ {wvi : 3 ≤ i ≤ k}). We see

that there exist 1× 2|V (G)| matrices A and B such that

R(G′′, p′) =

 R(G, p) 0|E(G)|×2

A φp′(w′)−p′(v1)

B φp′(w′)−p′(v2)

 =

 R(G, p) 0|E(G)|×2

A −φp(v1)
B −φp(v2)

 .
Since p(v1) and p(v2) are linearly independent and X is strictly convex, Lemma 1.3.2.8

implies φp(v1), φp(v2) are linearly independent. Hence R(G′′, p′) has linearly independent

rows.

We proceed to describe a sequence of rank-preserving row operations that will take

R(G′′, p′) to R(G′, p′). As φp(v1) and φp(v2) are linearly independent, for all 3 ≤ i ≤ k

there exist a unique αi and βi such that

αiφp(v1) + βiφp(v2) = φp(vi) = φp′(vi)−p′(z),

where z ∈ {w,w′} is chosen such that viz ∈ E(G′). For all 1 ≤ i ≤ k, let (wvi) denote

the row of R(G′′, p′) corresponding to the edge wvi, and similarly let (w′v1) and (w′v2)

denote the rows of R(G′′, p′) corresponding to edges w′v1 and w′v2 respectively. For
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vi ∈ NG′(w′), let [w′vi] denote the row of R(G′, p′) corresponding to the edge w′vi.

Now, for all vi ∈ NG′(w′)\{v1, v2}, we have

[w′vi] = (wvi)− αi(wv1)− βi(wv2) + αi(w
′v1) + βi(w

′v2).

Applying these row operations to R(G′′, p′), preserves linear independence and results in

the matrix R(G′, p′). Therefore the rows of R(G′, p′) are linearly independent, and so G′

is uv-independent in X.

Our next result shows that vertex-to-H operations, where H is some (2, 2)-tight graph,

that has two coincident vertices preserves independence.

Lemma 4.1.2.6. Let X be a non-Euclidean normed plane, and let G, G′, and H be

graphs.

(i) Suppose V (G) ∩ {u, v} = {v}, G is independent in X, H is uv-tight, and G′ is a

vertex-to-H operation that adds v, of G. If H is minimally uv-rigid in X then G′

is uv-independent in X.

(ii) Suppose {u, v} ⊆ V (G), G is uv-independent in X, H is (2, 2)-tight, and G′ is a

vertex-to-H operation of G. IfH is minimally rigid inX, then G′ is uv-independent

in X.

Proof. Let w be the vertex of G such that V (G) ∩ V (H) = {w}. If (i) holds then let

(G, p) be an independent framework inX and let (H, q) be a minimally rigid uv-coincident

framework in X. If (ii) holds then let (G, p) be an independent uv-coincident framework

in X and let (H, q) be a minimally rigid framework in X. By applying translations to p

and q we may assume p(w) = q(w) = 0. For a matrix A with columns corresponding to

a subset of V (G) ∪ V (H), define Aw to be the submatrix of A created by deleting all

columns of A corresponding to w. Given a fixed basis b1, b2 of X used to define rigidity
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matrices in X, we define the matrix

M :=

[
R(H, q)w 0|E(H)|×(2|V (G)|−2)

A R(G, p)w

]

where A is the |E(G)| × (2|V (H)| − 2) matrix with entries

Ae,(x,i) =

φp(x)−p(y)(bi) if e = xy;

0 otherwise.

By our choice of p and q, the rows of M are linearly independent.

By Lemma 4.1.1.2 we may choose, for all n ∈ N, well-positioned uv-coincident realisa-
tions, pn, of G′ such that pn(x) = q(x) for all x ∈ V (H), and ∥pn(x)−p(x)∥ < 1

n
for all

x ∈ V (G). For all n ∈ N define Mn to be the matrix created by multiplying each row of

R(G′, pn)w that corresponds to an edge of H by n. As the map x→ φx is continuous on

the set of smooth points of X it follows that for all xy ∈ E, the limit as n tends to infinity

of (φpn(x)−pn(y))n∈N is φp(x)−p(y), and so the limit as n tends to infinity of (Mn)n∈N isM .

Hence, for sufficiently large N ∈ N, the matrix MN (and hence R(G′, pN)w) will have

linearly independent rows. Then p′ = pN is a an independent uv-coincident realisation

of G′ in X, and so G′ is uv-independent.

4.2 Characterising Coincident-Point Independence

With the geometric results of the previous section in hand, we consider some combinatorial

ideas from [23]. In particular, combining these combinatorial ideas with the results from

the previous section allows us to state a sufficient condition for a graph G to be uv-rigid

in a strictly convex normed plane. We begin with the following result which can be

extracted from the proof of [23, Theorem 4].

Proposition 4.2.0.1. [23] If G is a uv-tight graph and |V (G)| ≥ 5 then there exists

t ∈ N+ and a sequence a1 . . . at, with a1 a (2, 2)-tight graph such that |V (a1)| ≥ 4 and

V (a1) ∩ {u, v} = {u}, or a1 ∼= H̃ (see the right of Figure 4.4) and da1(u) = 3 = da2(v)
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and uv /∈ E(a1), and at ∼= G, such that for all 2 ≤ i ≤ t, aj is a (2, 0)-extension that

adds v or, a vertex-to-4-cycle operation that adds v, or a vertex-to-H operation that adds

v where H is a uv-tight graph, or a uv − (2, 0)-extension, or a uv − (2, 1)-extension, or

a vertex-to-4-cycle operation or a vertex-to-H operation where H is a (2, 2)-tight graph.

We will also require the following lemmas.

Lemma 4.2.0.2. Let X be a non-Euclidean normed plane and let G be a graph such

that {u, v} ⊆ V (G) and |V (G)| ≤ 4. If X is strictly convex then G is uv-independent

in X if and only if G is uv-sparse.

Proof. As |V (G)| ≤ 4, if G is not uv-sparse then uv ∈ E(G) and so G is not uv-

independent. Alternatively, suppose that G is uv-sparse so uv /∈ E. Note that G is a

subgraph of some graph isomorphic to K−
4 and so it is sufficient to consider the case

where |V (G)| = 4 and G = (V (G), E(K[V (G)] \ {uv})). As G is a (2, 0)-extension

that adds v, of G[V (G) \ {v}], G is uv-independent by Theorem 1.4.3.8 and Lemma

4.1.2.4.

Lemma 4.2.0.3. Let X be a non-Euclidean normed plane. If G is a graph such that

G ∼= H̃ (see the right of Figure 4.4), and dG(u) = 3 = dG(v), and uv /∈ E(G), then G

is minimally uv-rigid in X.

Proof. Let G = (V,E), let NG(u) = {x, a1, a2}, and let NG(v) = {x, b1, b2}. By

Theorem 1.4.3.8 there exists a realisation, p1, of NG[u] in X such that the framework

(K[NG[u]], p1) is minimally rigid in X. Let p : V → X be the realisation of V in X such

that p(b1) = p1(a1), p(b2) = p1(a2), p(v) = p1(u), and p(w) = p1(w) for all w ∈ NG[u].

Note that (G, p) is a minimally rigid uv-coincident framework; this follows from the fact

that joining two minimally rigid frameworks in a non-Euclidean normed plane produces a

minimally rigid framework, since the trivial infinitesimal flexes in a non-Euclidean normed

plane correspond to translations. Therefore G is minimally uv-rigid.

Let G = (V,E) be a graph and take F ⊆ E. For a family S = {S1, S2, . . . , Sk},
where Si ⊆ V for all 1 ≤ i ≤ k, we say that S is a cover of F if F ⊆ {xy ∈
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E : there exists 1 ≤ i ≤ k such that {x, y} ⊆ Si}. By combining Theorem 1.4.3.8 with

[23, Subsection 3.1] we obtain the following result.

B1 H̃

u
x

v

Figure 4.4: B1 is rigid in any normed plane, and it is globally rigid in all analytic non-
Euclidean normed planes [14] (see Lemma 4.4.0.1). However, B1 is not globally rigid in
the Euclidean plane since for almost all realisations, the left two vertices may be reflected
across the dashed line to obtain an equivalent but non-congruent framework. H̃ is
minimally rigid in any non-Euclidean normed plane, however it is flexible in the Euclidean
plane. H̃ is not globally rigid in any normed space as it is not 2-vertex-connected (see
Theorem 1.4.3.10 and Theorem 4.3.0.1). It is also uv-tight and and appears in the
statement of Proposition 4.2.0.1

.

Lemma 4.2.0.4. Let X be a non-Euclidean normed plane and let G be a graph. Let p be

a well-positioned realisation of G in X. Let S be the set of all covers X := {X1, . . . , Xk}
of E(G). Let s : N → {0, 1} be the function such that s(x) = 1 if x = 2 and s(x) = 0

otherwise. Then,

rank R(G, p) ≤ min
X∈S

k∑
i=1

(2|Xi| − (2 + s(|Xi|))) ,

with equality if and only if p is regular. Moreover, it suffices to minimise over all covers

Y := {Y1, . . . , Yk′} of E(G) such that |Yi| ≥ 2 for all 1 ≤ i ≤ k′ and |Yi ∩ Yj| ≤ 1 for

all 1 ≤ i < j ≤ k′, with equality only if min{|Yi|, |Yj|} = 2.

We are now able to remove the condition on |V (G)| from Lemma 4.2.0.2. Given a graph

G = (V,E) such that {u, v} ⊆ V , set G/uv := ((V \{u, v})∪{z}, (E(G[V \{u, v}])∪
{zw : w ∈ (NG(u)∪NG(v))\{u, v})), where z /∈ V . We say that G/uv is a contraction
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of G at {u, v}, or the contraction of G at {u, v} adding z3.

Theorem 4.2.0.5. Let X be a non-Euclidean normed plane and let G be a graph such

that {u, v} ⊆ V (G). If X is strictly convex then G is uv-independent in X if and only

if G is uv-sparse.

Proof. Let G = (V,E). Firstly, suppose G is uv-independent in X. Let p be a regu-

lar (and hence independent) uv-coincident realisation of G in X and let G/uv be the

contraction of G at {u, v} adding z. Let p′ be the realisation of G/uv in X such that

p′(z) = p(u) = p(v) and p′(x) = p(x) for all x ∈ V \ {u, v}. For all ∅ ̸= U ⊆ V , the

(possibly uv-coincident) framework (G[U ], p|U) is independent. Hence, if {u, v} ⊈ U

then iG(U) ≤ val(U) by Theorem 1.4.3.8. Since the case when U = {u, v} is trivial, it

remains to show that iG(X ) ≤ val(X ) for all uv-compatible families X of G. (Note that

the case when U ⊆ V and {u, v} ⊆ U will be included by taking X = {U}).

Let X = {X1, . . . , Xk} be a uv-compatible family of G and consider the subgraph H =

(U, F ) be the subgraph of G such that U =
⋃k
i=1Xi and F =

⋃k
i=1E(G[Xi]). Let H/uv

be the contraction ofH at {u, v} adding z. Let q = p|U and let q′ = p′|(U\{u,v})∪{z}. Note

that if, for all 1 ≤ i ≤ k, Xi/uv = (Xi \ {u, v}) ∪ {z} then X ′ = {X1/uv, . . . , Xk/uv}
is a cover of E(H/uv) By Lemma 4.2.0.4 we have

rank R(H/uv, q′) ≤
k∑
i=1

(2|Xi/uv| − (2 + s(|Xi/uv|)))

=
k∑
i=1

(2|Xi| − 2− t(Xi)

= val(X )− 2.

Every µ′ in the kernel of R(H/uv, q′) determines a unique vector µ in the kernel of

R(H, q) via setting µ(u) = µ(v) = µ′(z) and µ(x) = µ′(x) for all for all x ∈ U \
{u, v}. Theorem dimkerR(H, q) ≥ dimkerR(H/uv, q′). The rigidity matrix R(H, q)

3For us, a contraction will always be the more general vertex-contraction (which does not require u
and v be adjacent) not the stricter edge-contraction (which does require u and v be adjacent).
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has linearly independent rows, since R(G, p) has linearly independent rows, and so

iG(X ) = rank R(H, q) ≤ rank R(H/uv, q′) + 2 ≤ val(X ).

Therefore G is uv-sparse.

On the other hand, suppose that G is uv-sparse. If |V | ≤ 4 then G is uv-independent

in X by Lemma 4.2.0.2. Therefore we may suppose that |V | ≥ 5. By adding addi-

tional edges, if necessary, we may assume that G is uv-tight4. Proposition 4.2.0.1 now

gives a method of constructing G. Furthermore, as X is strictly convex the geometric

processes corresponding to this method of construction geometric operations preserve

minimal rigidity in X (see Subsection 4.1.2). So, as any graph that begins the process of

constructing G is uv-independent in X by Theorem 1.4.3.8 (i.e., every (2, 2)-tight graph

is independent in X) and Lemma 4.2.0.3, it follows that G is uv-independent in X.

To conclude this section we use Theorem 4.2.0.5 result to provide a following delete-

contract characterisation of uv-rigidity in (strictly convex) non-Euclidean normed planes.

This bears comparison to a delete-characterisation of uv-rigidity in Euclidean normed

planes [17, Theorem 15].

Theorem 4.2.0.6. Let X be a non-Euclidean normed plane and let G be a graph such

that {u, v} ⊆ V (G). If X is strictly convex, then G is uv-rigid in X if and only if

(V (G), E(G) \ {uv}) and G/uv are both rigid in X.

Proof. LetG = (V,E) and letG/uv be the contraction ofG at {u, v} adding z. Suppose
that G is uv-rigid. It is immediate from the definition that (V (G), E(G)\{uv}) is rigid.
Let p be a regular uv-coincident realisation of G in X, and define p′ to be the realisation

of G/uv in X such that p′(x) = p(x) for all x ∈ V \ {u, v} and p′(z) = p(u) = p(v).

Given an infinitesimal flex µ′ of (G/uv, p′) we can form an infinitesimal flex µ of (G, p)

via setting µ(x) = µ′(x) for all x ∈ V \ {u, v} and µ(u) = µ(v) = µ′(z). Since (G, p)

is an infinitesimally rigid uv-coincident framework, there exists λ ∈ X such that µ must

4Recall that the edge sets of uv-sparse graphs are the independent sets of a matroid, and when
|V | ≥ 5 the maximally independent sets of this matroid have rank 2|V | − 2.
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have that µ = λ|x∈V (and hence µ′ = λ|x∈V (G/uv)) for some λ ∈ X (i.e. mu is a

restriction of a translation to the vertices of G). Hence (G/uv, p′) is infinitesimally rigid

and G/uv is rigid. In a similar manner to the proof of [23, Theorem 1], the converse

follows from Theorem 4.2.0.5.

4.3 Necessary Conditions for Global Rigidity

In this section we develop Hendrickson-type conditions [21] necessary for graphs to be

globally rigid; we work in the generality of normed spaces, although we will occasionally

require the additional assumption that the normed space contains only finitely many

linear isometries. After this section we will focus on non-Euclidean normed planes, which

do have finitely many linear isometries. Before that though, we prove that all globally

rigid graphs are 2-vertex-connected by extending Theorem 1.4.3.10 to the context of

non-Euclidean normed spaces.

Theorem 4.3.0.1. Take d ∈ N+, let X be a d-dimensional non-Euclidean normed space,

and let G be a graph. If |V (G)| ≥ 2 and G is globally rigid in X then G is 2-vertex-

connected.

Proof. Let G = (V,E) and suppose for in pursuit of a contradiction that G is not 2-

vertex-connected and is globally rigid in X. Firstly, suppose that G = K[{v, w}] and let

p be a realisation of G in X such that (G, p) is globally rigid. By applying translations to

p, if necessary, we may suppose that p(w) = 0 and hence there exists r ∈ R+ such that

p(v) ∈ {x ∈ X : ∥x∥ = r}. For all y ∈ {x ∈ X : ∥x∥ = r}, note that the framework

(G, q), where q(w) = 0 and q(v) = y, is equivalent to (G, p). As (G, p) is globally rigid

there exists a linear isometry of X that maps p(v) to y. Hence linear isometries of X act

transitively on {x ∈ X : ∥x∥ = r}. However this implies X is Euclidean, a contradiction.

So we may suppose thatG ≇ K2, so there exists u ∈ V and a partition {V1, V2} of V \{u}
such that {xy ∈ E : x ∈ V1, y ∈ V2} = ∅. As G is globally rigid in X there exists a well-

positioned realisation, p, ofG inX such that p is in the interior of GRig(G;X) and p(u) =

0. By perturbing, if necessary, we may also assume that p(v) ̸= p(w) for all {v, w} ⊆ V ,
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and, for i ∈ {1, 2}, there exists vi ∈ Vi such that ∥p(v1) − p(v2)∥ ̸= ∥p(v1) + p(v2)∥5.
Let p′ be the realisation of G in X such that p′(v) = p(v) for all v ∈ V1 \ {u} and

p′(v) = −p(v) for all v ∈ V2. Then (G, p) and (G, p′) are equivalent. However (G, p)

and (G, p′) are not congruent, since ∥p′(v1)−p′(v2)∥ = ∥p(v1)+p(v2)∥ ≠ ∥p(v1)−p(v2)∥.
Therefore (G, p) is not globally rigid, a contradiction.

Let G be a graph and take d ∈ N+. Recall from Theorem 1.4.3.10 that if |V (G)| ≥ d+2

and G is globally rigid in a d-dimensional Euclidean space then G is (d + 1)-vertex-

connected. Therefore the vertex-connectivity requirement that it is necessary for a graph

to have in order to be rigid in d-dimensional normed spaces is far more relaxed in the

non-Euclidean setting. One may wonder whether Theorem 4.3.0.1 could be strengthened

to give a statement more akin to Theorem 1.4.3.10, however our next result shows that

if X is a normed space with finitely many linear isometries then this bound on the vertex-

connectivity of globally rigid graphs in X can not be improved.

Proposition 4.3.0.2. Take d ∈ N+ and let X be a d-dimensional normed space with

finitely many linear isometries. If there exists a graph, G, with |V (G)| ≥ 2 that is globally

rigid in X then there exists a graph, G′, with κ(G′) = 2 that is globally rigid in X.

Proof. Let G = (V,E). By Theorem 4.3.0.1, G is 2-vertex-connected and so |E(G)| ≥
3. Take v1v2 ∈ E, and let G1 and G2 be graphs such that G1

∼= G ∼= G2 and

V (G1) ∩ V = {v1, v2} = V (G2) ∩ V and E(G1) ∩ E = {v1v2} = E(G2) ∩ E. Let

G′ = (V (G1) ∪ V (G2), E(G1) ∪ E(G2)), so κ(G
′) = 2. As X has finitely many linear

isometries, there exists an open dense set of points that are not invariant under any

non-trivial linear isometry of X. Hence we may choose an open set U ⊆ GRig(G;X)

such that, for each p ∈ U , p(v1) − p(v2) is not invariant under any non-trivial linear

isometry of X. Let U ′ = {p ∈ XV (G′) : for i ∈ {1, 2}, p|Vi ∈ U}. Since U is an open

set, it follows that U ′ is an open set.

5To see why we may assume this, note that if ∥p(v1) − p(v2)∥ = ∥p(v1) + p(v2)∥ then for all
δ > 0 we may take q in the interior of GRig(G;X) such that q(v1) = p(v1) + δ(p(v1) + p(v2)),
q(v2) = p(v2) + δ(p(v1) + p(v2)), and q(v) = p(v) for all v ∈ V \ {v1, v2}. Then ∥q(v1) − q(v2)∥ =
∥p(v1) − p(v2)∥ and ∥q(v1) + q(v2)∥ = (1 + δ)(∥p(v1) + p(v2)∥. As p is injective this implies that
∥q(v1)− q(v2)∥ ≠ ∥q(v1) + q(v2)∥.
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Take p′ ∈ U ′ take q′ ∈ XV (G′) such that (G′, p′) is equivalent to (G′, q′) and p′(v1) =

q′(v1). By applying translations, if necessary, we may assume p(v1) = 0. Since both

(G1, p
′|V1) and (G2, p

′|V2) are globally rigid, there exist linear isometries T1 and T2 of

X such that, for i ∈ {1, 2}, Ti(p′(v)) = q′(v) for all v ∈ Vi. Note that T1(p
′(v2)) =

T2(p
′(v2)) = q′(v2). As p′(v2) − p′(v1) = p′(v2) is invariant under linear isometries,

and p(v2) = T−1
2 (T1(p(v2))), we have that T1 = T2. Therefore (G′, p′) and (G′, q′) are

congruent and so (G, p) is globally rigid. Hence G is globally rigid in X.

Having extended Theorem 1.4.3.10 to the context of non-Euclidean normed spaces, from

the point of view of vertex-connectivity, our next step is to extend Theorem 1.4.3.10

from the point of view of redundant rigidity. A proof of the following result can be

found in [13], however due to the technical details related to normed spaces that are

used in that proof we omit the details here. We remark that the following result concerns

non-Euclidean normed spaces that are smooth and have finitely many linear isometries.

Theorem 4.3.0.3. [13, Theorem 3.7] Take d ∈ N+, let X be a d-dimensional non-

Euclidean normed space, let G be a graph, and let p be a realisation of G in X. If X

is smooth and has finitely many linear isometries, p is completely strongly regular, and

(G, p) is globally rigid in X then (G, p) is redundantly rigid in X6.

It remains to show that these necessary conditions for frameworks to be globally rigid

correspond to necessary conditions for graphs to be globally rigid. To show this we restrict

our attention to analytic normed spaces. While any realisation, p, of a graph, G, such

that (G, p) is globally and infinitesimally rigid must be strongly regular, p need not be

completely strongly regular. In fact, we do not know if such a realisation would exist

in a given normed space (see [13, Remark 2.4, Subsection 3.3] and [26]). Fortunately,

Proposition 1.4.3.2 informs us that this is not the case for analytic normed spaces and

so we can obtain the main result of this section.

Theorem 4.3.0.4. Take d ∈ N+, let X be a d-dimensional analytic non-Euclidean

normed space, and let G be a graph. If X has finitely many linear isometries, |V (G)| ≥ 2,

6Note that, as stated in [13], the proof of this result also uses the condition that |V (G)| ≥ 2.
However if |V (G)| < 2 then G ∼= K1 and so (G, p) is, trivially, redundantly rigid in X.
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and G is globally rigid in X then G is 2-vertex-connected and redundantly rigid in X.

Proof. By Theorem 4.3.0.1, G is 2-vertex-connected. As G is globally rigid in X there

exists an open set U ⊆ XV such that for all q ∈ U , (G, q) is globally rigid in X. By

Proposition 1.4.3.2, we may choose a completely strongly regular realisation p ∈ U . Since

analytic normed spaces are smooth, Theorem 4.3.0.3 implies that (G, p) is redundantly

rigid in X, and hence G is redundantly rigid in X.

4.4 Global Rigidity in Analytic non-Euclidean Normed

Planes

We now bring our study of globally rigid frameworks in non-Euclidean normed spaces

to a close by gathering together various results that allow us, in Theorem 4.4.0.6 to

characterise those graphs that are rigid in analytic non-Euclidean normed planes.

Lemma 4.4.0.1. [14, Theorem 5.3, Theorem 5.4] Let X be a non-Euclidean normed

plane and G be a graph. If X is analytic and G ∼= K−
5 or G ∼= B1, then G is globally

rigid in X.

The previous result informs us that the graphs that begin our construction in Theorem

4.4.0.6 are globally rigid in analytic non-Euclidean normed planes. Our next result informs

us that one of the graph operations we will use in our construction behaves well with

respect to global rigidity. Similarly to Theorem 4.3.0.3 a proof can be found in [13]

but we omit it here due to the technical details involved; we refer the reader to [13,

Subsection 7.1] for more information. We remark that while the fact that the normed

plane in question is analytic is not explicitly commented on in the proof of [13, Theorem

7.5], it is required in order to apply [13, Lemma 7.4].

Lemma 4.4.0.2. [13, Theorem 7.5] Let X be a non-Euclidean normed plane, let G be

a graph, and let G′ be a K−
4 -extension of G. If X is analytic and G is globally rigid in

X then G′ is globally rigid in X.
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The next two results are concerned with showing that another graph operation used in

the construction in Theorem 4.4.0.6 behaves well with respect to global rigidity.

Lemma 4.4.0.3. [12, Lemma 5.3], [14, Theorem 3.10]7 Take d ∈ N+, let X be a d-

dimensional non-Euclidean normed space, let G be a graph, and let p be a uv-coincident

realisation of G in X. If X is smooth, and has finitely many linear isometries, and (G, p)

is infinitesimally rigid in X, and (G, p) is globally rigid in X then there exists an open

neighbourhood, U ⊆ XV (G), of p such that (G, q) is globally rigid in X for all q ∈ U .

Lemma 4.4.0.4. [12, Theorem 5.4] Let X be a non-Euclidean normed plane and let G

be a graph such that |E(G)| ≥ 1. Take z ∈ X such that dG(z) ≥ 1, NG(z) = N1 ∪N2,

and N1 ∩ N2 = 0. Let G′ be the generalised vertex split of G at z on (N1, N2) adding

{u, v}. If X is analytic, G is globally rigid in X, and (V (G′), E(G′) \ {uv}) is rigid in

X then G′ is globally rigid in X.

Proof. Let G′/uv be the contraction of G′ at {u, v} adding z, so G′/uv = G. As G is

globally rigid in X, G′/uv is rigid in X by Theorem 1.4.3.4. As (V (G′), E(G′) \ {uv})
is rigid in X, Theorem 4.2.0.6 implies G′ is uv-rigid in X. Now, [13, Lemma 5.1] implies

we may take a realisation, p, of G in X such that (G, p) is infinitesimally rigid in X,

(G, p) is globally rigid in X, and the realisation, p′, of G′ given by setting p′(x) = p(x)

for all x ∈ V (G) and p′(u) = p(z) = p′(v) is a uv-coincident realisation of G′ such that

(G′, p′) is infinitesimally rigid in X and (G′, p′) is globally rigid in X. So, Lemma 4.4.0.3

gives us that there exists a neighbourhood, U ⊆ XV (G′), of p such that (G′, q) is globally

rigid in X for all q ∈ U . Therefore G′ is globally rigid in X.

We give one more result before providing our characterisation of globally rigid graphs in

analytic non-Euclidean normed planes. This next result acts as a bridge between this

chapter and Chapter 3. In particular, it opens the door for Theorem 3.2.0.6 to be applied

to aid understanding of global rigidity in analytic non-Euclidean normed planes.

7See [12, Section 5] and [14, Subsection 3.2] for additional details. Note that [12, Lemma 5.3] is
analogous to [14, Theorem 3.7] and so we have added the condition that X must have finitely many
linear isometries to the result as stated in [12].
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Lemma 4.4.0.5. Let X be a non-Euclidean normed plane, let G be a graph, and let p

be a completely regular realisation of G in X. If X is analytic then G is (2, 2)-connected

if and only if G is 2-vertex-connected and (G, p) is redundantly rigid in X.

Proof. Since p is a completely regular realisation of G in X, (G, p) is redundantly rigid

in X if and only if G− e is rigid in X for all e ∈ E(G). When combined with Theorem

1.4.3.8 this implies that (G, p) is redundantly rigid in X if and only if G contains a

spanning (2, 2)-tight subgraph and every edge of G is contained in a (2, 2)-circuit.

Now, G contains a spanning (2, 2)-tight subgraph and every edge of G is contained in a

(2, 2)-circuit if and only if G is redundantly rigid on the cylinder (see [32, Theorem 5.4]).

Also, G is redundantly rigid on the cylinder and 2-vertex-connected if and only if G is

(2, 2)-connected (see [30, Theorem 5.4]). Therefore, combining all these equivalences

gives us that G is (2, 2)-connected if and only if G is 2-vertex-connected and (G, p) is

redundantly rigid in X.

We are now able to present the main result of this chapter.

Theorem 4.4.0.6. Let X be a non-Euclidean normed plane and let G be a graph. If X

is analytic then the following are equivalent:

(i) G is globally rigid in X;

(ii) G ∼= K1, or G is 2-vertex-connected and G is redundantly rigid in X;

(iii) G ∼= K1, or G is (2, 2)-connected; and

(iv) G ∼= K1, or there exists t ∈ N+ and a sequence a1, . . . , at, with a1 ∼= K−
5 or

a1 ∼= B1, at = G, such that for all 2 ≤ j ≤ t,

(a) aj is a K−
4 -extension, or an edge-addition, or a generalised vertex split of

aj−1; and

(b) if aj is a generalised vertex split of aj−1 then aj is (2, 2)-connected.

Proof. By Theorem 4.3.0.4, (i) implies (ii). Theorem 4.4.0.5 gives that (ii) holds if and
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only if (iii) holds. Theorem 3.2.0.6 gives that (iii) holds if and only if (iv) holds. Finally,

the combination of Lemma 4.4.0.1, the fact that edge-addition clearly preserves global

rigidity of a graph in X, Lemma 4.4.0.2, and Lemma 4.4.0.4 together with fact that (ii)

holds if and only if (iii) holds, shows that (iv) implies (i).
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Chapter 5

Vertex-Labelled Graphs

The penultimate chapter of this thesis a combinatorial analysis of structures that one

hopes will aid understanding of which graphs are rigid when realised on some collection

of non-concentric spheres. The rigidity of frameworks on spheres was studied by Nixon,

Owen, and Power [32, 33], and in particular these authors considered frameworks realised

on a family of concentric spheres, or a family of concentric cylinders. In these situations,

the relevant graphs were shown to be (2, 3)-tight and (2, 2)-tight respectively. We look to

extend this study by considering the graphs likely to be relevant to the rigidity of frame-

works realised on a family of non-concentric spheres. To that end we consider labelled

graphs, where the labelling of vertices can be thought of as corresponding to the sphere

that a vertex may be realised on. By removing the hypothesis of concentricity, additional

geometric complications arise. In particular, the constraints placed on a subgraph may

not be as restrictive as those placed on the graph it is contained within. While we refrain

from providing an analysis of these geometric issues, this chapter proceeds to introduce

and work with a notion of sparsity that appears appropriate to consider this problem.

117



5.1. Motivation

5.1 Motivation

Let us begin this chapter by discussing the motivation for combinatorial analysis that

follows. We do not provide formal terminology and machinery for this discussion, take a

heuristic approach.

The frameworks considered earlier in this thesis have been graphs realised in some normed

space. One may restrict the possible locations that vertices may be mapped to by a

realisation in various ways; this is the idea behind generic frameworks for example. One

idea that has been widely researched [32, 33, 23, 24] is to restrict the possible locations

that vertices are mapped to such that the framework can be thought of as living on some

surface.

If we have a framework on some surface, then it is natural to consider what it means for

a framework to be rigid. Three possibilities spring to mind. The first is to simply rigidity

with respect to the ambient space that the surface is living in. However, this somehow

ignores the fact that the framework is living on a surface and so is not particularly

interesting. Secondly, one could require that if two frameworks are equivalent then there

is an isometry of the surface that takes one framework to the other (i.e. the frameworks

are congruent). This definitely captures the fact that a framework is living on some

surface, but we argue that in some settings (e.g. non-concentric spheres).

The third possibility, and the one inspires the upcoming combinatorical analysis, is to

require that if two frameworks are equivalent then they are quasi-congruent (recall Remark

7). We argue for this formulation of rigidity of frameworks on surfaces by means of

examples. Let G be a graph with at least five vertices, and let p be a realisation of

G such that (G, p) lives on a pair of non-concentric spheres, S1 and S2. There is one

isometry of the surface S1 ∪ S2, namely the rotation about the line through the centres

of S1 and S2.

If no vertices of G are mapped to S2 by p then any of the three isometries of S1 will

take (G, p) to an equivalent and quasi-congruent framework that is non-congruent. The

previous example may seem contrived, as S2 is somehow irrelevant, but it is indicative of

118



Chapter 5. Vertex-Labelled Graphs

the situation with more interesting examples. If that exactly one vertex of G is mapped

to S2 then either applying either the isometry of S1 ∪S2 to (G, p), or rotating about the

line through the centre of S1 and p(v), where v is the unique vertex of G mapped to S2,

will take (G, p) to an equivalent and quasi-congruent framework that is non-congruent.

These examples, as well as the fact that there is one isometry of S1∪S2 (and no isometry

of three pairwise non-concentric spheres such that centres of these three spheres are not

collinear) provide an explanation for the rationale behind Definition 5.3.1.2. Similar

reasoning applied to circles motivations Definition 5.3.1.1.

Before turning out attention back to combinatorial matters we pre-empt an additional

quirk of frameworks on non-concentric spheres that motivates the change of direction in

Subsection 5.5.3. Consider the graph H̃ illustrated in Figure 4.4, and suppose this graph

is realised on a pair of non-concentric spheres, S1 and S2, such that x is the unique vertex

of H̃ realised on S2. If one fixes either of the subgraphs of H̃ isomorphic to K4 and

rotates the other about the line through the centre of S1 and p(x) then this results in an

equivalent non-quasi-congruent framework. Therefore, despite satisfying the conditions

of Definition 5.3.1.2, this graph would not be rigid on S1 ∪ S2. A similar issue can be

seen in Figure 5.4. The existence of these graphs prompts us to give Definition 5.5.3.1.

5.2 Vertex-Labelling and Vertex-Labelled Graph Op-

erations

We begin this section by formalising the key objects that we work with in this chapter.

Definition 5.2.0.1. Let G = (V,E) be a graph and let X be a finite non-empty set.

An (X-) vertex-labelling of G is a map χ : V → X. The ordered pair (G,χ), which

we often denote Gχ, is an (X-) vertex-labelled graph.

We shall borrow much of the terminology that we use in this chapter from graph theory.

For example, concepts such as connectivity are not meaningfully impacted by labelling

vertices. However, notions such as subgraphs and isomorphisms require additional detail

in the context of vertex-labelled graphs. Throughout this chapter the only labellings
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of graphs that we consider are vertex-labellings and so for sake of brevity we will often

dispense with the qualifier ‘vertex’. Similarly, we will only make reference to a graph

being X-labelled in those rare cases where the particular set X is relevant.

Definition 5.2.0.2. Let X and Y be finite non-empty sets, let Gχ be an X-labelled

graph, and let Hψ be a Y -labelled graph. Gχ and Hψ are vertex-labelled isomorphic,

which we denote by Gχ
∼= Hψ, if |X| = |Y | and there exists a graph isomorphism

f : V (G) → V (H) such that χ(u) = χ(v) if and only if ψ(f(u)) = ψ(f(v)).

A vertex-labelled subgraph of Gχ is a vertex-labelled graph G′
χ′ such that G′ is a

subgraph of G and χ′ = χ|V (G′).

Let Gχ = (V,E)χ be an X-vertex-labelled graph. Given ∅ ̸= U ⊆ V , Gχ[U ] :=

(G[U ], χ|U) is the vertex-labelled subgraph of Gχ induced by U . Similarly, give ∅ ̸=
F ⊆ E, Gχ[F ] := (G[F ], χ|V (G[F ])) is the vertex-labelled subgraph of G induced by F .

Consider the relation on V where two vertices are related if and only if they are mapped

to the same element of X by χ. We note that this is an equivalence relation on V and

hence this relation induces a partition of V . We denote this partition by V(Gχ).

We complete this preliminary section by translating some additional concepts from the

world of graphs to that of labelled graphs. Specifically we consider some operations,

originally introduced in Subsection 1.1.2, in a labelled-graph context.

Definition 5.2.0.3. Take d ∈ N+ and let Gχ = (V,E)χ be a labelled graph such

that |V | ≥ d. A (d,0)-VL-extension1 of Gχ is a labelled graph G′
χ′ where G′ is a

(d, 0)-extension of G and χ′|V = χ.

Let Hψ be a labelled graph such that {u ∈ V (H) : dH(u) = d} ̸= ∅. A (d,0)-VL-

reduction of Hψ is a labelled graph H ′
ψ′ such that Hψ is a (d, 0)-VL-extension of H ′.

Definition 5.2.0.4. Take d ∈ N+ and let Gχ = (V,E)χ be a labelled graph such that

|V | ≥ d+ 1 and |E| ≥ 1. A (d,1)-VL-extension of Gχ is a labelled graph G′
χ′ where

1Despite choosing to refer to vertex-labelled graphs as labelled graphs, we continue to use VL, rather
than L, to discuss these graph operations. This is less of an encumbrance than repeatedly stating
“vertex” and acts as a reminder of what is being labelled.
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G′ is a (d, 1)-extension of G and χ′|V = χ.

Let Hψ be a labelled graph such that there exists u ∈ V (H) with dH(u) = d + 1 and

IH(NH(v)) <
(
d+1
2

)
. A (d,1)-VL-reduction of H is a labelled graph H ′

ψ′ such that

Hψ is a (d, 1)-VL-extension of H ′
ψ′ .

5.3 Vertex-Labelled Count Sparsity

The purpose of this section is to introduce a vertex-labelling of graphs pertinent to

studying the rigidity of graphs realised on collections of spheres living in d-dimensional

Euclidean space. To that end we consider graphs which satisfy a condition similar to the

one given in Definition 2.1.0.5. Our definition of what it means for a labelled graph to

be ‘sparse’ is subtly different in that no reference is made to an intermediate matroid.

However, the labelled graphs that we call sparse satisfy similar properties to sparse graphs

in the literature and, indeed, those seen in Definition 2.1.0.5.

5.3.1 σd-Sparse Graphs

Definition 5.3.1.1. Let Gχ be a labelled graph. The σ1-count of Gχ is the function

σ1 : P(V (Gχ)) \ ∅ → Z defined by

σ1(U) =

1 if there exists W ∈ V(Gχ) : U ⊆ W ;

0 otherwise.

Definition 5.3.1.2. Let Gχ be a labelled graph. The σ2-count of Gχ is the function
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σ2 : P(V (Gχ)) \ ∅ → Z defined by

σ2(U) =



3 if there exists W ∈ V(Gχ) : U ⊆ W ;

2 if |{W ∈ V(Gχ) : U ∩W ̸= ∅}| = 2 and

∃W ∈ V(Gχ) such that |U ∩W | = 1;

1 if |{W ∈ V(Gχ) : U ∩W ̸= ∅}| = 2 and ∀W ∈ V(Gχ), |U ∩W | ≠ 1;

0 otherwise.

Take d ∈ {1, 2} and let Gχ = (V,E)χ be a labelled graph. Then

S(Gχ, σd) :=

min
{
d|V | − σd(V ), (d+ 1)|V | −

(
d+2
2

)}
if |V | ≥ d+ 2;(|V |

2

)
if |V | ≤ d+ 1.

Definition 5.3.1.3. Take d ∈ {1, 2} and let Gχ be a labelled graph. Gχ is σd-sparse

if for all labelled subgraphs G′
χ′ of Gχ, |E(G′)| ≤ S(G′

χ′ , σd|V (G′)). Gχ is σd-tight if it

is σd-sparse and |E(G)| = S(Gχ, σd) = d|V | − σd(V ).

Lemma 5.3.1.4. Take d ∈ {1, 2} and let Gχ = (V,E)χ be a labelled graph. Then,

(i)
(|V |

2

)
= (d+ 1)|V | −

(
d+2
2

)
⇐⇒ |V | ∈ {d+ 1, d+ 2}; and

(ii)
(|V |

2

)
> (d+ 1)|V | −

(
d+2
2

)
⇐⇒ |V | < d+ 1 or |V | > d+ 2.

Proof. Take ∼∈ {=, >}. Then,(
|V |
2

)
∼ (d+ 1)|V | −

(
d+ 2

2

)
⇐⇒ |V |2 − |V | ∼ 2(d+ 1)|V | − (d+ 2)(d+ 1)

⇐⇒ |V |2 + (−3− 2d)|V |+ (d+ 2)(d+ 1) ∼ 0

⇐⇒ (|V | − (d+ 1))(|V | − (d+ 2)) ∼ 0.
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Lemma 5.3.1.5. Take d ∈ {1, 2} and let Gχ = (V,E)χ be a labelled graph. For all

∼∈ {<,≤,=,≥, >},(
|V |
2

)
∼ d|V | − σd(V ) ⇐⇒ (|V | − d)(|V | − (d+ 1)) ∼ d(d+ 1)− 2σd(V ).

Proof.(
|V |
2

)
∼ d|V | − σd(V ) ⇐⇒ |V |2 − |V | ∼ 2d|V | − 2σd(V )

⇐⇒ |V |2 + (−1− 2d)|V |+ 2σd(V ) ∼ 0

⇐⇒ (|V | − d)(|V | − (d+ 1)) ∼ d(d+ 1)− 2σd(V ).

Our next result is similar to, but arguably more illuminating than, the previous pair of lem-

mas. In particular, it highlights the nuances that arise when studying the labelled graphs

that are relevant to the study of rigidity of frameworks realised on higher dimensional

spaces.

Lemma 5.3.1.6. Take d ∈ {1, 2} and let Gχ = (V,E)χ be a labelled graph. Suppose

|V | ≥ d+ 2.

(i) If d = 1 then min{d|V | − σd(V ), (d+ 1)|V | −
(
d+2
2

)
} = d|V | − σd(V ).

(ii) If d = 2 then min{d|V | − σd(V ), (d+ 1)|V | −
(
d+2
2

)
} ≠ d|V | − σd(V ) if and only

if

(a) |V | = 4 and σ2(V ) ∈ {0, 1}; or

(b) |V | = 5 and σ2(V ) = 0.

Proof. For all ∼∈ {<,≤,=,≥, >},

(d+ 1)|V | −
(
d+ 2

2

)
∼ d|V | − σd(V ) ⇐⇒ |V | ∼

(
d+ 2

2

)
− σd(V ).
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If d = 1 then |V | ≥ d+2 = 3 ≥
(
d+2
2

)
− σd(V ), so d|V | − σd(V ) ≤ (d+1)|V | −

(
d+2
2

)
.

If d = 2 then min{d|V | − σd(V ), (d + 1)|V | −
(
d+2
2

)
} ≠ d|V | − σd(V ) if and only if

d|V | − σd(V ) > (d + 1)|V | −
(
d+2
2

)
if and only if 4 ≤ |V | < 6 − σd(V ) if and only if

either |V | = 4 and σd(V ) ∈ {0, 1}, or |V | = 5 and σd(V ) = 0.

Suppose that Gχ is a σd-sparse labelled graph, with |V | ≥ d+2, where d ∈ {1, 2}. The
previous result says that if d = 1 then Gχ is σ1-tight if and only if |E| = S(Gχ, σ1),

whereas if d = 2 then it is possible for |E| = S(Gχ, σ2) to hold but for Gχ to not be

σ2-tight. Examples of this phenomena are illustrated in Figure 5.1.

(G1, χ1) (G1, χ2) (G2, χ3)

Figure 5.1: Illustrations of some (the, up to vertex-labelled isomorphism) labelled graphs
that satisfy |E| = S(Gχ, σ2) but are not σ2-tight.

We conclude this subsection by proving some basic properties of σd-sparse labelled graphs.

Lemma 5.3.1.7. Take d ∈ {1, 2} and let Gχ = (V,E)χ be a labelled graph. For all

∅ ≠ X ⊆ Y ⊆ V , σd(X) ≥ σd(Y ).

Proof. Firstly suppose that d = 1, so σ1(X), σ1(Y ) ∈ {0, 1}. If σ1(Y ) = 0 then trivially

σ1(X) ≥ σ1(Y ). If σ1(Y ) = 1 then there exists W ∈ V(Gχ) such that Y ⊆ W . Hence

X ⊆ Y ⊆ W and σ1(X) = 1 = σ1(Y ).

Now suppose that d = 2, so σ2(X), σ2(Y ) ∈ {0, 1, 2, 3}. If σ2(Y ) = 0 then trivially

σ2(X) ≥ σ2(Y ). If σ2(Y ) = 1 then |{W ∈ V(Gχ) : Y ∩ W ̸= ∅}| = 2. Hence

|{W ∈ V(Gχ) : X ∩ W ̸= ∅}| ≤ 2 and so σ2(X) ≥ σ2(Y ). If σ2(Y ) = 2 then

|{W ∈ V(Gχ) : Y ∩W ̸= ∅}| = 2 and there exists U ∈ V(Gχ) such that |Y ∩U | = 1. It

follows that |{W ∈ V(Gχ) : X ∩W ̸= ∅}| ≤ 2, and if |{W ∈ V(Gχ) : X ∩W ̸= ∅}| = 2

then |X ∩ U | = 1. Therefore σ2(X) ≥ 2. If σd(Y ) = 3 then there exists W ∈ V(Gχ)

such that Y ⊆ W . Hence X ⊆ Y ⊆ W and σ2(X) = 3 = σ2(Y ).
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Lemma 5.3.1.8. Take d ∈ {1, 2} and let Gχ = (V,E)χ be a labelled graph. If Gχ is

σd-sparse then δ(G) ≤ 2d−min{1, σ2(V )}. If Gχ is σd-tight then δ(G) ≥ d if and only

if G ≇ Kd.

Proof. By Theorem 1.1.1.6, δ(G)|V | ≤
∑

v∈V dG(v) = 2|E|. Suppose that Gχ is σd-

sparse. If |V | ≤ d + 1 then |E| ≤
(|V |

2

)
and so δ(G) ≤ d ≤ 2d − min{1, σ2(V )}. If

|V | ≥ d + 2 then 2|E| ≤ 2(d|V | − σd(V )) and so δ(G) ≤ 2d −
(

2
|V |

)
σd(V ), and as

δ(G) ∈ Z it follows that δ(G) ≤ 2d−min{1, σ2(V )}.

Suppose Gχ is σ2-tight, so |E| = S(Gχ, σd) = d|V | − σd(V ). If δ(G) ≥ d then clearly

G ≇ Kd. On the other hand, suppose G ≇ Kd. If |V | ≤ d+1 then d|V |−σd(V ) =
(|V |

2

)
and so Lemma 5.3.1.5 implies |V | ∈ {d, d + 1}. Then G ∼= K|V | and so, as G ≇ Kd,

G ∼= Kd+1 and δ(G) = d. If |V | ≥ d+2 then take v ∈ V such that dG(v) = δ(G), then

iG(V \{v}) = |E|−dG(v) = d|V |− (σd(V )+δ(G)) = d|V \{v}|+d− (σd(V )+δ(G)).

Now, let G′
χ′ = (V ′, E ′)χ′ denote the Gχ[V \ {v}]. As Gχ is σd-sparse, iG(V \ {v}) =

|E ′| ≤ S(G′
χ′ , σd|V (G′)). As |V | ≥ d+2, |V ′| ≥ d+1 and so Lemma 5.3.1.4 and Lemma

5.3.1.5 together imply that |E ′| ≤ |V ′|−σd(V ′). Lemma 5.3.1.7 implies σd(V
′) ≥ σd(V ).

So,

d|V ′|+ d− (σd(V ) + δ(G)) = |E ′| ≤ d|V ′| − σd(V
′) ≤ d|V ′| − σd(V ).

Therefore δ(G) ≥ d.

Lemma 5.3.1.9. Take d ∈ {1, 2} and let Gχ = (V,E)χ be a labelled graph. Suppose

Gχ is σd-tight and G ≇ K1.

(i) If σd(V ) > 0 then κ(G), κ1(G) ≥ 1.

(ii) If σd(V ) = 0 then for all labelled subgraphs Hψ of Gχ such that H is a component

of G, σd(V (H)) = 0 and Hψ is σd-tight.

Proof. As G ≇ K1, |V | ≥ 2. Let G1, . . . , Gn be the components of G and for all

1 ≤ i ≤ n let Gi = (Vi, Ei). Then V =
⋃n
i=1 Vi and E =

⋃n
i=1Ei. As each Gi is a
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component of G we have that for all 1 ≤ i < j ≤ n, Vi ∩ Vj = ∅ = Ei ∩ Ej. Therefore
|V | =

∑n
i=1 |Vi| and |E| =

∑n
i=1 |Ei|. As Gχ is σd-tight and |V | ≥ 2 ≥ d, Lemma

5.3.1.8 implies G ∼= K2 = Kd, and so κ(G) = 1, or δ(G) ≥ d. Suppose that δ(G) ≥ d

and hence for all 1 ≤ i ≤ n, d ≤ |Ei| and |Vi| ≥ d + 1. Therefore, as Gχ is σd-sparse,

Lemma 5.3.1.4 and Lemma 5.3.1.5 together imply that |Ei| ≤ d|Vi| − σd(Vi) for all

1 ≤ i ≤ n. So,

d|V | − σd(V ) = |E| =
n∑
i=1

|Ei| ≤
n∑
i=1

(d|Vi| − σd(Vi)) = d|V | −
n∑
i=1

σd(Vi).

Hence σd(V ) =
∑n

i=1 σd(Vi). Now, Lemma 5.3.1.7 implies that σ2(V ) ≤ σ2(Vi) for all

1 ≤ i ≤ n. So, as σd(V ) =
∑n

i=1 σd(Vi) we have that either n = 1 or σ2(V ) = 0 =

σ2(Vi) for all 1 ≤ i ≤ n. If n = 1 then κ(G) ≥ 1 and so Theorem 1.1.1.12 implies

κ1(G) ≥ 1. If σ2(V ) = 0 = σ2(Vi) for all 1 ≤ i ≤ n then Gχ[Vi] is σd-tight for all

1 ≤ i ≤ n.

Lemma 5.3.1.10. Let Gχ = (V,E)χ be a σ2-tight labelled graph. If σ2(V ) = 3 and

|V | ≥ 3 then κ(G) ≥ 2.

Proof. As Gχ is σ2-tight and σ2(V ) = 3, |E| = 2|V | − 3. As |V | ≥ 2 we can take

U ⊊ V such that |U | = 1, say U = {u}, and let H1, . . . , Hn be the components of

G[V \ {u}] = H = (W,F ). As |V | ≥ 3, |W | ≥ 2. For all 1 ≤ i ≤ n let Hi = (Wi, Fi).

Then W =
⋃n
i=1Wi and F =

⋃n
i=1 Fi. As each Hi is a component of H we have that

for all 1 ≤ i < j ≤ n, Wi ∩ Wj = ∅ = Fi ∩ Fj. Therefore |W | =
∑n

i=1 |Wi| and
|F | =

∑n
i=1 |Fi|. As Gχ is σ2-tight and |V | ≥ 3, Lemma 5.3.1.8 implies δ(G) ≥ 2. So

for all 1 ≤ i ≤ n, ∅ ≠ Fi ⊊ E. Therefore, for all 1 ≤ i ≤ n there exists ai ≥ 3 such that

|Fi| = 2|Wi| − ai. So for all 1 ≤ i ≤ n,

2|Wi ∪ {u}| − 3 ≥ |Fi|+ |NG(u) ∩Wi| = 2|Wi ∪ {u}|+ |NG(u) ∩Wi| − (ai + 2).

126



Chapter 5. Vertex-Labelled Graphs

Therefore, for all 1 ≤ i ≤ n, |NG(u) ∩Wi| ≤ ai − 1. Moreover,

2|W | − (1 + dG(u)) = 2|V | − (3 + dG(u))

= |E| − dG(u)

= |F |

=
n∑
i=1

(2|Wi| − ai)

= 2|W | −
n∑
i=1

ai.

It follows that 1+dG(u) =
∑n

i=1 ai and consequently dG(u) = (
∑n

i=1 ai)−1. Combining

the information we have so far we see that

n∑
i=1

(ai − 1) ≥
n∑
i=1

|NG(u) ∩Wi| = dG(u) =

(
n∑
i=1

ai

)
− 1.

So −n ≥ −1 and hence n = 1. Therefore H = G[V \ U ] is connected. Lemma 5.3.1.9

implies that κ(G) ≥ 1 and so for all U ⊆ V such that |U | ≤ 1, we have |V \U | ≥ 2 and

G[V \ U ] is connected. Therefore κ(G) ≥ 2.

Lemma 5.3.1.11. Let Gχ = (V,E)χ be a σ2-sparse labelled graph and take U ⊆ V .

Suppose that |U | ≥ 3 and κ(G[U ]) = 1. Take u ∈ U and let G1, . . . , Gn be the

components of G[U \ {u}]. If U is critical in Gχ and n ≥ 2 then for all 1 ≤ i ≤ n,

σ2(V (Gi) ∪ {u}) ≤ 2.

Proof. For all 1 ≤ i ≤ n, let Gi = (Ui, Fi). Now, for all 1 ≤ j ≤ n let Wj =

{u} ∪ (
⋃n
i=1(Ui \ Uj)). As Gχ is σ2-sparse and U is σ2-critical in Gχ we observe that,
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for all 1 ≤ j ≤ n,

2|U | − σ2(U) = iG(Uj ∪ {u}) + iG(Wj)

≤ (2|Uj ∪ {u}| − σ2(Uj ∪ {u})) + 2|Wj| − σ2(Wj)

= 2(|U |+ 1)− (σ2(Uj ∪ {u}) + σ2(Wj).

Therefore, σ2(Uj ∪ {u}) ≤ 2 + (σ2(U)− σ2(Wj)). As Wj ⊆ U , Lemma 5.3.1.7 implies

that σ2(Uj ∪ {u}) ≤ 2.

Lemma 5.3.1.12. Let Gχ = (V,E)χ be a σ2-tight labelled graph. If σ2(V ) ∈ {2, 3}
and |V | ≥ 3 then κ1(G) ≥ 2.

Proof. As |V | ≥ 3, Lemma 5.3.1.8 implies δ(G) ≥ 2. Hence |E| ≥ 2 and we may take

F ⊊ E such that |F | = 1. Let G1, . . . , Gn be the components of G[E \ F ] and for all

1 ≤ i ≤ n let Gi = (Vi, Ei). As |F | = 1 < δ(G), V (G[E \F ]) = V =
⋃n
i=1 Vi. As each

Gi is a component of (V,E\F ) we have that for all 1 ≤ i < j ≤ n, Vi∩Vj = ∅ = Ei∩Ej.
As δ(G) ≥ 2 and |F | = 1, |Vi| ≥ d for all 1 ≤ i ≤ n. As Gχ is σ2-sparse Lemma 5.3.1.5

implies that for all 1 ≤ i ≤ n, |Ei| ≤ S(Gχ[Vi], σ2|Vi) ≤ 2|Vi| − σ2(Vi). So as Gχ is

σ2-tight,

2|V | − σ2(V ) = |F |+
n∑
i=1

|Ei|

≤ 1 +
n∑
i=1

(2|Vi| − σ2(Vi)

= 2|V |+ 1− (
n∑
i=1

σ2(Vi).

Lemma 5.3.1.7 gives us that for all 1 ≤ i ≤ n, σ2(Vi) ≥ σ2(V ). So 1 + σ2(V ) ≥∑n
i=1 σ2(Vi) ≥ nσ2(V ). As σ2(V ) ∈ {2, 3} it follows that n = 1 and so (V,E \ F ) is

connected. Lemma 5.3.1.9 implies that κ1(G) ≥ 1. So for all F ⊊ E such that |F | ≤ 1,

|V | ≥ 3 and (V,E \ F ) is connected. Therefore κ1(G) ≥ 2.
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Lemma 5.3.1.13. Let Gχ = (V,E)χ be a labelled graph. Suppose Gχ is σ2-tight,

|V | ≥ 3, and κ1(G) = 1. Take e ∈ E and let G1, . . . , Gn be the components of

G[E \ {e}]. If n ≥ 2 then for all 1 ≤ i ≤ n, σ2(V (Gi)) ≤ 1.

Proof. As Gχ is σ2-tight and |V | ≥ 3 and κ1(G) = 1, Lemma 5.3.1.12 implies σ2(V ) ∈
{0, 1}. For all 1 ≤ i ≤ n let Gi = (Vi, Ei). As δ(G) ≥ 2, V (G[E \{e}]) = V =

⋃n
i=1 Vi.

As each Gi is a component of (V,E \ {e}) we have that for all 1 ≤ i < j ≤ n,

Vi∩Vj = ∅ = Ei∩Ej. As Gχ is σ2-sparse Lemma 5.3.1.5 implies that for all 1 ≤ i ≤ n,

|Ei| ≤ S(Gχ[Vi], σ2|Vi) ≤ 2|Vi| − σ2(Vi). So as Gχ is σ2-tight,

2|V | − σ2(V ) = 1 +
n∑
i=1

|Ei|

≤ 1 +
n∑
i=1

(2|Vi| − σ2(Vi))

= 2|V |+ 1−

(
n∑
i=1

σ2(Vi)

)
.

Lemma 5.3.1.7 gives us that for all 1 ≤ i ≤ n, σ2(Vi) ≥ σ2(V ). So
∑n

i=1 σ2(Vi) ≤
1+σ2(V ). As n ≥ 2 and σ2(V ) ∈ {0, 1} it follows that for all 1 ≤ i ≤ n, σ2(Vi) ≤ 1.

5.3.2 Vertex-Labelled Graph Operations and σd-Sparsity

The aim of this section is to understand the conditions under which certain labelled

graph operations preserve, or fail to preserve, the property of being σd-sparse (or σd-

tight). These results will, in due course, be used to construct families of labelled graphs.

Lemma 5.3.2.1. Take d ∈ {1, 2} and let Gχ = (V,E)χ be a labelled graph. Suppose

G′
χ′ is a (d, 0)-VL-reduction of Gχ. Gχ is σd-sparse if and only if G′

χ′ is σd-sparse.

Proof. Let V \ V (G′) = {v}. If Gχ is σd-sparse then, as G′
χ′ is a labelled subgraph of

Gχ, G
′
χ′ is σd-sparse. On the other hand, suppose that G′

χ′ is σd-sparse and let Hψ be a

labelled subgraph of Gχ. If |V (H)| ≤ d + 1 then |E(H)| ≤
(|V |

2

)
= S(Hψ, σd|V (H)). If
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|V (H)| ≥ d+ 2 then |V (H) \ {v}| ≥ d+ 1. Let V (H) \ {v} = U . Lemma 5.3.1.4 and

Lemma 5.3.1.5 together imply that

iG′(U) ≤ min

{
d|U | − σd(U), (d+ 1)|U | −

(
d+ 2

2

)}
.

So it follows from Lemma 5.3.1.7 that

|E(H)| ≤ iG(U) + (|NG(v) ∩ V (H)|)(|V (H) ∩ {v}|)

≤ iG′(U) + d|V (H) ∩ {v}|

≤ min

{
d|U | − σd(U), (d+ 1)|U | −

(
d+ 2

2

)}
+ d|V (H) ∩ {v}|

= min

{
d|V (H)| − σd(U), d|V (H)|+ |U | −

(
d+ 2

2

)}
≤ min

{
d|V (H)| − σd(V (H)), (d+ 1)|V (H)| −

(
d+ 2

2

)}
= S(Hψ, σd|V (H)).

As we chose an arbitrary labelled subgraph of Gχ, for every labelled subgraph, Hψ, of

Gχ we have |E(H)| ≤ S(Hψ, σd|V (H)) and therefore Gχ is σd-sparse.

Lemma 5.3.2.2. Take d ∈ {1, 2} and let Gχ = (V,E)χ be a labelled graph. Suppose

G′
χ′ is a (d, 0)-VL-reduction of Gχ. If Gχ is σd-tight then G′

χ′ is σd-tight. If G′
χ′ is

σd-tight then Gχ is σd-tight if and only if σd(V ) = σd(V
′).

Proof. Let V \ V (G′) = {v}. Firstly, suppose that Gχ is σd-tight. Then |E| =

S(Gχ, σd) = d|V | − σd(V ) and Lemma 5.3.2.1 implies that G′
χ′ is σd-sparse. As

|E| = d|V | − σd(V ), Lemma 5.3.1.7 implies that

|E(G′)| = |E| − d = d|V (G′)| − σd(V ) ≥ d|V ′| − σd(V (G′)).

Since G′
χ′ is σd-sparse this implies d|V (G′)| − σd(V (G′)) ≤ |E(G′)| ≤ S(G′

χ′ , σd|V (G′)).

If |V (G′)| ≥ d + 1 then S(G′
χ′ , σd|V (G′)) ≤ d|V ′| − σd(V (G′)), by Lemma 5.3.1.4 and
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Lemma 5.3.1.5, and so G′
χ′ is σd-tight. If |V (G′)| ≤ d then, as G′ is a (d, 0)-reduction of

G, |V (G′)| = d and so |V | = d. As Gχ is σd-sparse it follows that
(
d+1
2

)
≥ S(Gχ, σd) =

d|V | − σd(V ) = d(d + 1) − σd(V ) and hence σd(V ) ≥
(
d+1
2

)
. Therefore σd =

(
d+1
2

)
,

G ∼= Kd+1, G
′ ∼= Kd, and by Lemma 5.3.1.7 we have σd(V (G′)) =

(
d+1
2

)
. Consequently,

|E(G′)| = d|V (G′)| − σd(V (G′)) = d2 −
(
d+1
2

)
=
(
d
2

)
= S(G′

χ′ , σd|V (G′)) and so G′
χ′ is

σd-tight.

On the other hand, suppose that G′
χ′ is σd-tight. Then |E(G′)| = S(G′

χ′ , σd|V (G′)) =

d|V (G′)| − σd(V
′) and Lemma 5.3.2.1 implies that Gχ is σd-sparse. As |E(G′)| =

d|V (G′)| − σd(V (G′)), Lemma 5.3.1.7 implies that

|E| = |E(G′)|+ d = d|V | − σd(V (G′)) ≤ d|V | − σd(V ).

If Gχ is σd-tight then |E| = d|V | − σd(V ), so σd(V ) = σd(V
′). Alternatively, suppose

that σd(V ) = σd(V
′). As G is a (d, 0)-extension of G′ we have that |V | ≥ d + 1, so

Lemma 5.3.1.4 and Lemma 5.3.1.5 together imply that S(Gχ, σd) ≤ d|V | − σd(V ). So

as Gχ is σd-sparse we have that

d|V | − σd(V ) = |E| ≤ S(Gχ, σd) ≤ d|V | − σd(V ).

Hence |E| = S(Gχ, σd) = d|V | − σd(V ) and Gχ is σd-tight.

Lemma 5.3.2.3. Take d ∈ {1, 2} and let Gχ = (V,E)χ be a labelled graph. Suppose

G′
χ′ is a (d, 1)-VL-reduction of Gχ, with v ∈ V \ V (G′) and e ∈ E(G′) \ E. If Gχ is

σd-sparse then G′
χ′ is σd-sparse if and only if for all U ⊆ V (G′) such that the endpoints

of e are in U , iG(U) ≤ S(Gχ[U ], σd|U)− 1. If G′
χ′ is σd-sparse then Gχ is σd-sparse.

Proof. Let e = xy. Firstly, suppose that Gχ is σd-sparse. If G′
χ′ is σd-sparse then take

U ⊆ V (G′) such {x, y} ⊆ U and note that

S(Gχ[U ], σd|U)− 1 = S(G′
χ′ [U ], σd|U)− 1 ≥ iG′(U)− 1 = iG(U).

As U was chosen arbitrarily it follows that for all U ⊆ V (G′) such that {x, y} ⊆ U ,
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iG(U) ≤ S(Gχ[U ], σd|U) − 1. On the other hand suppose that for all U ⊆ V (G) such

that {x, y} ⊆ U , iG(U) ≤ S(Gχ[U ], σd|U)− 1. Take a labelled subgraph, Hψ, of G
′
χ′ . If

e /∈ E(H) then Hψ is a labelled subgraph of Gχ and so |E(H)| ≤ S(Hψ, σd|V (H)). If e ∈
E(H) then {x, y} ⊆ V (H) and so iG′(V (H)) = iG(V (H))+1 ≤ S(Gχ[V (H)], σd|V (H)) =

S(G′
χ′ [V (H)], σd|V (H)). As Hψ was chosen arbitrarily, G′

χ′ is σd-sparse.

Now suppose that G′
χ′ is σd-sparse and let Hψ be a labelled subgraph of Gχ. If |V (H)| ≤

d+1 then |E(H)| ≤
(|V (H)|

2

)
) = S(Hψ, σd|V (H)). If |V (H)| ≥ d+2 then |V (H)\{v}| ≥

d+ 1. Let V (H) \ {v} = W . Lemma 5.3.1.4 and Lemma 5.3.1.5 together imply that

iG′(W ) ≤ min

{
d|W | − σd(W ), (d+ 1)|W | −

(
d+ 2

2

)}
.

So it follows from Lemma 5.3.1.7 that

|E(H)| ≤ iG(W ) + (|NG(v) ∩ V (H)|)(|V (H) ∩ {v}|)

= (iG′(W )− |E(G′[W ]) ∩ {e}|) + (|NG(v) ∩ V (H)|)(|V (H) ∩ {v}|)

≤ iG′(W ) + d|V (H) ∩ {v}|

≤ min

{
d|W | − σd(W ), (d+ 1)|W | −

(
d+ 2

2

)}
+ d|V (H) ∩ {v}|

= min

{
d|V (H)| − σd(W ), d|V (H)|+ |V (H) \ {v}| −

(
d+ 2

2

)}
≤ min

{
d|V (H)| − σd(V (H)), (d+ 1)|V (H)| −

(
d+ 2

2

)}
= S(Hψ, σd|V (H)).

As we chose an arbitrary labelled subgraph of Gχ, for every labelled subgraph, Hψ, of

Gχ we have |E(H)| ≤ S(Hψ, σd|V (H)) and therefore Gχ is σd-sparse.

Lemma 5.3.2.4. Take d ∈ {1, 2} and let Gχ = (V,E)χ be a labelled graph. Suppose

G′
χ′ is a (d, 1)-VL-reduction of Gχ, with v ∈ V \ V (G′) and e ∈ E(G′) \ E. If Gχ is

σd-tight then G
′
χ′ is σd-tight if and only if G′

χ′ is σd-sparse. If G
′
χ′ is σd-tight then Gχ is

σd-tight if and only if σd(V ) = σd(V (G′)).
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Proof. Let e = xy. Firstly, suppose that Gχ is σd-tight. If G′
χ′ is σd-tight then |E| =

S(Gχ, σd) = d|V | − σd(V ). As G′ is a (d, 1)-reduction of G, |V (G′)| ≥ d + 1 and

so Lemma 5.3.1.4 and Lemma 5.3.1.5 together imply that S(G′
χ′ , σd|V (G′)) ≤ d|V ′| −

σd(V (G′)). So, Lemma 5.3.1.7 implies that

|E(G′)| = |E|+1−(d+1) = d|V (G′)|−σd(V ) ≥ d|V ′|−σd(V (G′)) ≥ S(G′
χ′ , σd|V (G′)).

Therefore, G′
χ′ is σd-tight if and only if G′

χ′ is σd-sparse.

On the other hand, suppose that G′
χ′ is σd-tight. Then |E(G′)| = S(G′

χ′ , σd|V (G′)) =

d|V (G′)| − σd(V (G′)). Lemma 5.3.2.3 implies that Gχ is σd-sparse. As G is a (d, 1)-

extension of G′, |V | ≥ d + 2 and so S(Gχ, σd) ≤ d|V | − σd(V (G)). So, as |E(G′)| =
d|V (G′)| − σd(V (G′)),

d|V | − σd(V ) ≥ S(Gχ, σd) ≥ |E| = (|E(G′)| − 1) + (d+ 1) = d|V | − σd(V (G′)).

Therefore, Gχ is σd-tight if and only if d|V | − σd(V ) = S(Gχ, σd) = |E| if and only if

d|V | − σd(V ) = d|V | − σd(V (G′)) if and only if σd(V ) = σd(V (G′)).

5.4 σ1-Tight Vertex-Labelled Graphs

In this short section we turn our focus to the σ1-count function. Our aim is to provide a

method of constructing all σ1-tight labelled graphs. Firstly we introduce some additional

notation. Recall that ifG1 . . . , Gk are graphs then
⋃k
i=1Gi = (

⋃k
i=1 V (Gi),

⋃k
i=1E(Gi)).

If V (Gi) ∩ V (Gj) = ∅ for all 1 ≤ i < j ≤ k, then ⊕k
i=1Gi :=

⋃k
i=1Gi.

Lemma 5.4.0.1. Let Gχ = (V,E)χ be a labelled graph. Suppose that Gχ is σ1-tight.

If G is 2-regular then there exists a (1, 1)-VL-reduction of Gχ that is σ1-tight if and only

if there does not exist m ∈ N+ such that G ∼= ⊕m
i=1K3.

Proof. Suppose there exists a (1, 1)-VL-reduction of Gχ that is σ1-tight, say at v adding

e. Then e /∈ E, so G[NG[v]] ≇ K3 and hence there does not exist m ∈ N+ such that

G ∼= ⊕m
i=1K3.
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Alternatively, suppose that there does not exist m ∈ N+ such that G ∼= ⊕m
i=1K3. Then

we may consider some component, H, of G such that H ≇ K3. As G is 2-regular

and H is a component of G, H is 2-regular. As H is 2-regular and H ≇ K3, there

exists n ∈ N such that n ≥ 4 and H ∼= Cn. As Gχ is σ1-sparse Lemma 5.3.1.7

implies σ1(V (H)) = 0 = σ1(V ). As |V (H)| ≥ 4 there exists v ∈ V (H) such that

σ1(V (H)) = σ1(V (H) \ {v}).

Let G′
χ′ denote the (1, 1)-VL-reduction of G at v, let NG(v) = {x, y}, and take U ⊆ (V \

{v}) such that {x, y} ⊆ U . If |U | = 2 then iG(U) = 0 =
(|U |

2

)
−1 = S(Gχ[U ], σ1|U)−1.

If |U | ≥ 3 then Lemma 5.3.1.6 implies that for all U ⊆ W ⊆ V , S(Gχ[W ], σ1|U) =

|W | − σ1(W ). Hence,

iG(U) = iG(U ∪ {v})− 2 ≤ S(Gχ[U ∪ {v}], σ1|U∪{v})− 2 = |U | − (σ1(U ∪ {v}) + 1).

If σ1(U ∪ {v}) = σ1(U) then iG(U) ≤ |U | − (σ1(U) + 1) = S(Gχ[U ], σ1|U) − 1. If

σ1(U ∪ {v}) ̸= σ1(U) then Lemma 5.3.1.7 implies σ1(U ∪ {v}) = 0 and σ1(U) = 1. As

σ1(V (H) \ {v}) = 0, it follows that G[U ] is not connected and so iG(U) ≤ |U | − 2 =

S(Gχ[U ], σ1|U) − 1. As U was chosen arbitrarily, for all U ⊆ (V \ {v}) such that

{x, y} ⊆ U we have iG(U) ≤ S(Gχ[U ], σ1|U)− 1. Consequently, Lemma 5.3.2.4 implies

that G′
χ′ is σ1-tight.

Lemma 5.4.0.2. Let Gχ = (V,E)χ be a labelled graph. Suppose that Gχ is σ1-tight.

There exists a (1, 0)-VL-reduction or a (1, 1)-VL-reduction of Gχ, that is σ1-tight, if and

only if |V | ≥ 2 and there does not exist m ∈ N+ such that G ∼= ⊕m
i=1K3.

Proof. Suppose there exists a (1, 0)-VL-reduction, or a (1, 1)-VL-reduction, of Gχ that is

σ1-tight. This implies that ∆(G) ≥ 1, so |V | ≥ 2. As Gχ is σ2-tight, either δ(G) = 1 or

G is 2-regular. If δ(G) = 1 then there does not exist m ∈ N+ such that G ∼= ⊕m
i=1K3. If

G is 2-regular then there does not exist a (1, 0)-VL-reduction of Gχ. Hence there exists

a (1, 1)-VL-reduction of Gχ that is σ1-tight and so Lemma 5.4.0.1 implies there does not

exist m ∈ N+ such that G ∼= ⊕m
i=1K3.

On the other hand suppose that |V | ≥ 2 and there does not exist m ∈ N+ such
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that G ∼= ⊕m
i=1K3. If δ(G) = 2 then, as Gχ is σ1-sparse, Lemma 5.3.1.8 implies

that σ1(V ) = 0. As Gχ is σ1-tight, |E| = S(Gχ, σ1) = |V |. Consequently, Theorem

1.1.1.6 implies that G is 2-regular and so Lemma 5.4.0.1 implies there exists a (1, 1)-VL-

reduction of Gχ that is σ1-tight. If δ(G) ̸= 2 then, as |V | ≥ 2, Lemma 5.3.1.8 implies

that δ(G) = 1. Then there exists a (1, 0)-VL-reduction of Gχ and Lemma 5.3.2.2 implies

this is σ1-tight.

Proposition 5.4.0.3. Let Gχ = (V,E)χ be a labelled graph. The following are equiva-

lent:

(i) Gχ is σ1-tight; and

(ii) there exists t ∈ N+ and a sequence a1, . . . , at, with a1 ∼= Hψ, where H ∼= K1

or there exists m ∈ N+ such that H ∼= ⊕m
i=1K3, σ1(V (a1)) = max{0, 2 − |V |},

at = Gχ, such that, for all 2 ≤ j ≤ t, aj is a (1, 0)-VL-extension or a (1, 1)-VL-

extension of aj−1 and σ1(V (aj)) = σ1(V (aj−1)).

Proof. Suppose (i) holds. We proceed by induction on |V |, and note that clearly if

G ∼= K1 then there exists a sequence of the form claimed. By Lemma 5.3.2.2, for all

s ∈ N+ there exists a σ1-tight graph with s vertices. Take n ∈ N+\{1} and suppose that

(ii) holds for all σ1-tight graphs with at most n vertices. Now suppose that |V | = n+1.

If there exists m ∈ N+ such that G ∼= ⊕m
i=1K3 then there exists a sequence of the

form claimed. If no such m exists then Lemma 5.4.0.2 implies there exists a (1, 0)-VL-

reduction or (1, 1)-VL-reduction of Gχ that is σ1-tight. Let this labelled graph be G′
χ′ .

As |V (G′)| ≤ n, it follows from our induction hypothesis that there exists t ∈ N+ and

a sequence a1, . . . , at with a1 ∼= Hψ, where H ∼= K1 or there exists m ∈ N+ such that

H ∼= ⊕m
i=1K3, σ1(V (a1)) = max{0, 2− |V |}, at = G′

χ′ , such that, for all 2 ≤ j ≤ t, aj

is a (1, 0)-VL-extension or a (1, 1)-VL-extension of aj−1 and σ1(V (aj)) = σ1(V (aj−1)).

As Hψ is σ1-tight, repeated applications of Lemma 5.3.2.2 and Lemma 5.3.2.4 imply that

G′
χ′ is σ1-tight. As Gχ is σ1-tight, one more application of Lemma 5.3.2.2 or Lemma

5.3.2.4 implies that σ1(V (G)) = σ1(V (G′)). Therefore, a1, . . . , at−1, Gχ is a sequence of

the form claimed. On the other hand, if (ii) holds then as σ1(V (a1)) = max{0, 2− |V |}
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we note that Hψ is σ1-tight. Hence repeated applications of Lemma 5.3.2.2 or Lemma

5.3.2.4 imply that Gχ is σ1-tight.

5.5 σ2-Tight Vertex-Labelled Graphs

The focus of the remainder of this chapter will be σ2-tight labelled graphs, although we

continue to state and prove results for d ∈ {1, 2} in places. In Section 2.3 we introduced

the notion of a vertex set being critical, and we make use of a similar idea in the context of

labelled graphs. Before getting to that we briefly consider, for d ∈ {1, 2}, the relationship
between σd-sparsity of a labelled graph Gχ and related sparsity condition on G. For

d ∈ {1, 2} and 0 ≤ k ≤
(
d+1
2

)
we say that G is (d, k)-sparse if iG(U) ≤ d|U | − k for

all U ⊆ V (G) such that |U | ≥ d+1. We say that G is (d, k)-tight if G is (d, k)-sparse

and |E(G)| = d|V (G)| − k.

5.5.1 σd-Critical Sets

Lemma 5.5.1.1. Take d ∈ {1, 2} and let Gχ = (V,E)χ be a labelled graph. If Gχ is

σd-sparse then G is (d, σd(V ))-sparse. Moreover, if Gχ is σd-tight then G is (d, σd(V ))-

tight.

Proof. Suppose that Gχ is σd-sparse. Then Lemma 5.3.1.4 and Lemma 5.3.1.5 together

imply that for all U ⊆ V such that |U | ≥ d+1, iG(U) ≤ S(Gχ[U ], σd|U) ≤ d|U |−σd(U).
Consequently, Lemma 5.3.1.7 implies that for all U ⊆ V such that |U | ≥ d+1, iG(U) ≤
d|U | − σd(V ). Therefore G is (d, σd(V ))-sparse. If Gχ is also σd-tight then it follows

that |E| = S(Gχ, σd) = d|V | − σd(V ) and hence Gχ is (d, σd(V ))-tight.

Our next result shows that, unsurprisingly, if we specify that the labelling of the vertex

set of a graph G = (V,E) is ‘trivial’2, then the converse of the previous result holds.

However, if we allow the vertices to be labelled in a non-trivial way then the converse is

no longer true. An example of this can be seen in Figure 5.2.

2That is, V(Gχ) = {V }. If one considers the labels to be colours then this is equivalent to the
resulting labelled graph being monochrome.
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Proposition 5.5.1.2. Take d ∈ {1, 2} and let Gχ = (V,E)χ be a labelled graph. If

σd(V ) =
(
d+1
2

)
then the following are equivalent:

(i) Gχ is σd-tight;

(ii) G is (d,
(
d+1
2

)
)-tight; and

(iii) there exists t ∈ N+ and a sequence a1, . . . , at, with a1 ∼= Hψ where H ∼= Kd, and

at = Gχ, such that for all 2 ≤ j ≤ t, aj is a (d, 0)-VL-extension or a (d, 1)-VL-

extension of aj−1 and σd(aj) = σd(aj−1) =
(
d+1
2

)
.

Proof. If (i) holds then Lemma 5.5.1.1 implies (ii) holds. Suppose that (ii) holds. Then

by Theorem 1.4.3.6 and Theorem 1.4.3.7 we have that there exists t ∈ N+ and a sequence

a′1, . . . , a
′
t, with a

′
1
∼= Kd, and a

′
t = G, such that for all 2 ≤ j ≤ t, a′j is a (d, 0)-extension

or a (d, 1)-extension of aj−1 and aj is (d,
(
d+1
2

)
)-tight. For all 1 ≤ j ≤ t, let aj = (a′j, χ

′
j),

where χ′
j = χ|V (a′j)

. Then for all 2 ≤ j ≤ t, aj is a (d, 0)-VL-extension or a (d, 1)-VL-

extension of aj−1. As σ2(V ) =
(
d+1
2

)
, Lemma 5.3.1.7 implies σ2(V (aj)) =

(
d+1
2

)
for all

1 ≤ j ≤ t. Therefore (iii) holds. Finally, if (iii) holds then as σ2(V (H)) =
(
d+1
2

)
we have

that Hψ is σd-tight. Repeated applications of Lemma 5.3.2.2 or Lemma 5.3.2.4 imply

that Gχ is σd-tight, so (i) holds.

(G,χ1) (G,χ2)

Figure 5.2: Two labelled graphs with the same underlying graph, G. (G,χ1) is σ2-tight
while (G,χ2) is not.

In the proof of Proposition 5.5.1.2 we made use of pre-existing methods for constructing

(1, 1)-tight or (2, 3)-tight graphs. Analogous methods exist for (2, 2)-tight graphs ([32,

Theorem 2.13], [31, Theorem 1.5]), (2, 1)-tight graphs [31, Theorem 1.4], and (2, 0)-tight

graphs such that no subgraph is isomorphic to K5 [19, Theorem 1.4.3].
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Given that there are pre-existing methods of constructing these different families of

graphs, it is reasonable to suppose that we may provide a similar method for σ2-tight

labelled graphs. There are two main reasons for not doing this. Firstly, the translation to

the labelled setting creates a lot of additional work. In particular, we are not dealing with

a single (2, k)-tightness condition but a hierarchy of such conditions. Secondly, our pri-

mary interest is in those graphs relevant to the rigidity of frameworks realised on spheres

and in this context additional constraints arise which make the resulting subfamily of

σ2-tight labelled graphs more complicated to work with.

Definition 5.5.1.3. Let Gχ be a labelled graph. A set X is σd-critical in Gχ if ∅ ̸=
X ⊆ V (G) and Gχ[X] is σd-tight.

With this concept in hand we are able to reconsider how, given a σ2-sparse labelled graph

Gχ, the existence of a (2, 1)-VL-reduction of Gχ that is σ2-sparse may be prevented.

Before doing so we conclude this section with some basic, but useful, results about

critical sets. We are particularly interested in σ2-critical sets.

Lemma 5.5.1.4. Take d ∈ {1, 2} and let Gχ = (V,E)χ be a labelled graph and suppose

there exists v ∈ V such that dG(v) ≥ d. If Gχ is σd-sparse then for all U ⊆ V \{v} such

that U is σd-critical in Gχ and |U∩NG(v)| ≥ d, σd(U∪{v}) ≤ σd(U)−(|U∩NG(v)|−d).

Proof. Suppose such a U exists, then

iG(U ∪ {v}) = iG(U) + |NG(v) ∩ U | = (d|U ∪ {v}| − σd(U)) + (|U ∩NG(v)| − d).

As |U ∩NG(v)| ≥ d and U ⊆ V \ {v}, |U ∪ {v}| ≥ d+1. As Gχ is σ2-sparse, it follows

from Lemma 5.3.1.4 and Lemma 5.3.1.5 that

iG(U ∪ {v}) ≤ S(G[U ∪ {v}], σd|U∪{v}) ≤ d|U ∪ {v}| − σd(U ∪ {v}).

Therefore, σd(U ∪ {v}) ≤ σd(U)− (|U ∩NG(v)| − d).

Lemma 5.5.1.5. Let Gχ = (V,E)χ be a labelled graph. Suppose that X, Y , and Z are

σ2-critical inGχ, then iG(X∪Y )+iG(X∩Y ) = (2|X∪Y |−min{σ2(X), σ2(Y )})+(2|X∩
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Y | −max{σ2(X), σ2(Y )}) + dG(X, Y ). Moreover, if |X ∩ Y | = |X ∩Z| = |Y ∩Z| = 1

then iG(X ∪ Y ∪ Z) = 2|X ∪ Y ∪ Z| + 6 + dG(X, Y ) + dG(X ∪ Y, Z) − (2|X ∩ Y ∩
Z|+ σ2(X) + σ2(Y ) + σ2(Z) + dG(X ∩ Z, Y ∩ Z)).

Proof. As X, Y , and Z are σ2-critical in Gχ, iG(X) = 2|X| − σ2(X), iG(Y ) = 2|Y | −
σ2(Y ), and iG(Z) = 2|Z| − σ2(Z). Lemma 1.1.1.4 implies

iG(X ∪ Y ) + iG(X ∩ Y ) = (2|X| − σ2(X)) + (2|Y | − σ2(Y )) + dG(X, Y )

= (2|X ∪ Y | −min{σ2(X), σ2(Y )})

+ (2|X ∩ Y | −max{σ2(X), σ2(Y )}) + dG(X, Y ).

Moreover, if |X ∩ Y | = |X ∩ Z| = |Y ∩ Z| = 1 then iG(X ∪ Y ) = (2|X ∪ Y | + 2) −
(σ2(X) + σ2(Y )) + dG(X, Y ) and

|X ∪ Y ∪ Z| = |X ∪ Y |+ |Z| − |(X ∪ Y ) ∩ Z|

= |X ∪ Y |+ |Z| − |(X ∩ Z) ∪ (Y ∩ Z)|

= |X ∪ Y |+ |Z| − (|X ∩ Z|+ |Y ∩ Z| − |X ∩ Y ∩ Z|)

= |X ∪ Y |+ |Z|+ |X ∩ Y ∩ Z| − 2.

So,

iG(X ∪ Y ∪ Z) = iG(X ∪ Y ) + iG(Z) + dG(X ∪ Y, Z)− iG((X ∪ Y ) ∩ Z)

= (2|X ∪ Y |+ 2)− (σ2(X) + σ2(Y )) + dG(X, Y ) + 2|Z| − σ2(Z)

+ dG(X ∪ Y, Z)− iG((X ∩ Z) ∪ (Y ∩ Z))

= 2(|X ∪ Y ∪ Z|+ 3− |X ∩ Y ∩ Z|)− (σ2(X) + σ2(Y ) + σ2(Z))

+ dG(X, Y ) + dG(X ∪ Y, Z)− dG(X ∩ Z, Y ∩ Z).

Lemma 5.5.1.6. Let Gχ = (V,E)χ be a labelled graph. Suppose that X and Y are

σ2-critical in Gχ. If σ2(V ) ≥ 1, Gχ is σ2-sparse, and |X ∩ Y | ≥ 2 then dG(X, Y ) = 0,
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X ∪ Y is σ2-critical in Gχ, and we have the following trichotomy. Either

(i) σ2(X ∪ Y ) = 1, σ2(X) = 2 = σ2(Y ), σ2(X ∩ Y ) = 3, and X ∩ Y is σ2-critical in

Gχ; or

(ii) σ2(X ∪ Y ) = 1, σ2(X) = 2 = σ2(Y ) = σ2(X ∩ Y ), and G[X ∩ Y ] ∼= K2; or

(iii) σ2(X ∪Y ) = min{σ2(X), σ2(Y )}, σ2(X ∩Y ) = max{σ2(X), σ2(Y )}, and X ∩Y
is σ2-critical in Gχ.

Proof. Note that for all U ⊆ V , if |U | ≥ 2 then S(Gχ[U ], σ2|U) = 1 ≤ 2|U | − σ2(U).

As Gχ is σ2-sparse, iG(X ∪ Y ) ≤ S(Gχ[X ∪ Y ], σ2|X∪Y ) ≤ 2|X ∪ Y | − σ2(X ∪ Y )

and iG(X ∩ Y ) ≤ S(Gχ[X ∩ Y ], σ2|X∩Y ) ≤ 2|X ∩ Y | − σ2(X ∩ Y ). So Lemma 5.5.1.5

implies

σ2(X) + σ2(Y ) ≥ σ2(X ∪ Y ) + σ2(X ∩ Y ) + dG(X, Y ). (5.1)

We proceed by considering the difference between min{σ2(X), σ2(Y )} and σ2(X ∪ Y ).

Let T = min{σ2(X), σ2(Y )} − σ2(X ∪ Y ) and observe that, as σ2(V ) ≥ 1, Lemma

5.3.1.7 implies T ∈ {0, 1, 2}. If T = 2 then σ2(X ∪ Y ) = 1 and σ2(X) = 3 = σ2(Y ).

As σ2(X) = 3 = σ2(Y ), it follows that there exist W1,W2 ∈ V(Gχ) such that X ⊆ W1

and Y ⊆ W2. As X ∩ Y ̸= ∅, W1 = W2. However this implies that σ2(X ∪ Y ) = 3, a

contradiction. Therefore T ∈ {0, 1}.

Suppose next that T = 1. If σ2(X ∪ Y ) = 2 then σ2(X) = 3 = σ2(Y ) and, similarly

to the case T = 2, it follows that σ2(X ∪ Y ) = 3, a contradiction. So σ2(X ∪ Y ) = 1,

min{σ2(X), σ2(Y )} = 2, andmax{σ2(X), σ2(Y )} ∈ {2, 3}. Ifmax{σ2(X), σ2(Y )} = 3

then we may suppose without loss of generality that σ2(X) = 2 and σ2(Y ) = 3. As

X∩Y ̸= ∅, Lemma 5.3.1.7 implies σ2(X∩Y ) = 3. Consequently there existsW ⊆ V(Gχ)

such that X ∩Y ⊆ Y ⊆ W . As |X ∩Y | ≥ 2 it follows that |{x ∈ X \W}| = 1 = |{x ∈
(X ∪ Y ) \W}| and so σ2(X ∪ Y ) = 2, a contradiction. Hence σ2(X) = 2 = σ2(Y ). As

X and Y are both σ2-critical in Gχ, |X|, |Y | ≥ 4 and so there exist W1,W2 ∈ V(Gχ)

such that X∪Y ⊆ W1∪W2, |X∩W1| ≥ 3, and |X∩W2| = 1. Now, either |Y ∩W1| ≥ 3

and |Y ∩W2| = 1, or |Y ∩W1| = 1 and |Y ∩W2| ≥ 3.
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If |Y ∩W1| ≥ 3 and |Y ∩W2| = 1 then |(X ∪Y )∩W2| ∈ {1, 2}. So, as σ2(X ∪Y ) = 1,

|(X∪Y )∩W2| = 2 and X∩Y ⊆ W1. So σ2(X∩Y ) = 3 and 5.1 implies dG(X, Y ) = 0.

Then it follows from Lemma 5.5.1.5 that

(2|X∪Y |−1)+(2|X∩Y |−3) ≥ iG(X∪Y )+iG(X∩Y ) = (2|X∪Y |−2)+(2|X∩Y |−2).

Therefore iG(X ∪ Y ) = 2|X ∪ Y | − 1 and iG(X ∩ Y ) = 2|X ∩ Y | − 3, so X ∪ Y and

X ∩ Y are σ2-critical in Gχ.

On the other hand, if |Y ∩W1| = 1 and |Y ∩W2| ≥ 3 then, as |X ∩ Y | ≥ 2, X ∩ Y =

(X ∩W2)∪ (Y ∩W1). So |X ∩Y | = 2, σ2(X ∩Y ) = 2, and iG(X ∩Y ) ≤ 2|X ∩Y |−3.

It follows from Lemma 5.5.1.5 that

(2|X∪Y |−1)+(2|X∩Y |−3) ≥ iG(X∪Y )+iG(X∩Y ) = (2|X∪Y |−2)+(2|X∩Y |−2).

Therefore iG(X ∪ Y ) = 2|X ∪ Y | − 1 and iG(X ∩ Y ) = 2|X ∩ Y | − 3, so X ∪ Y is

σ2-critical in Gχ and G[X ∩ Y ] ∼= K2.

Finally suppose that T = 0, so σ2(X ∪ Y ) = min{σ2(X), σ2(Y )}. Then Lemma 5.3.1.7

and 5.1 together imply that dG(X, Y ) = 0 and σ2(X ∩ Y ) = max{σ2(X), σ2(Y )}.
Consequently, Lemma 5.5.1.5 gives us that X ∪ Y and X ∩ Y are σ2-critical in Gχ.

Lemma 5.5.1.7. Let Gχ = (V,E)χ be a labelled graph. Suppose that X and Y are

σ2-critical in Gχ. If σ2(V ) ≥ 1, Gχ is σ2-sparse, |X ∩ Y | = 1, and dG(X, Y ) ≥ 1 then

one of the following holds:

(i) σ2(X ∪ Y ) = 1, min{σ2(X), σ2(Y )} = 2, max{σ2(X), σ2(Y )} = 3, σ2(X \ Y ) =

3 = σ2(Y \X), dG(X, Y ) = 1 and X ∪ Y is not σ2-critical in Gχ; or

(ii) σ2(X ∪ Y ) = 1, min{σ2(X), σ2(Y )} = 2, max{σ2(X), σ2(Y )} = 3, σ2(X \ Y ) =

3 = σ2(Y \X), dG(X, Y ) = 2 and X ∪ Y is σ2-critical in Gχ; or

(iii) σ2(X ∪ Y ) = 1, σ2(X) = 2 = σ2(Y ), dG(X, Y ) = 1, X ∪ Y is σ2-critical in Gχ,

min{σ2(X \ Y ), σ2(Y \X)} = 2, and max{σ2(X \ Y ), σ2(Y \X)} = 3; or
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(iv) σ2(X ∪ Y ) = 1, σ2(X) = 2 = σ2(Y ), dG(X, Y ) = 1, X ∪ Y is σ2-critical in Gχ,

and σ2(X \ Y ) = 2 = σ2(Y \X); or

(v) σ2(X ∪ Y ) = min{σ2(X), σ2(Y )}, dG(X, Y ) = 1, X ∪ Y is σ2-critical in Gχ, and

max{σ2(X), σ2(Y )} = 3.

Proof. As |X∩Y | = 1, iG(X∩Y ) = 0 = 2|X∩Y |−2. As Gχ is σ2-sparse, iG(X∪Y ) ≤
S(Gχ[X ∪ Y ], σ2|X∪Y ) ≤ 2|X ∪ Y | − σ2(X ∪ Y ). So Lemma 5.5.1.5 implies

σ2(X) + σ2(Y ) ≥ σ2(X ∪ Y ) + 2 + dG(X, Y ) ≥ σ2(X ∪ Y ) + 3. (5.2)

Let T = min{σ2(X), σ2(Y )} − σ2(X ∪ Y ) and observe that, as σ2(V ) ≥ 1, Lemma

5.3.1.7 implies T ∈ {0, 1, 2}. If T = 2 then σ2(X ∪ Y ) = 1 and σ2(X) = 3 = σ2(Y ).

As σ2(X) = 3 = σ2(Y ), it follows that there exist W1,W2 ∈ V(Gχ) such that X ⊆ W1

and Y ⊆ W2. As X ∩ Y ̸= ∅, W1 = W2. However this implies that σ2(X ∪ Y ) = 3, a

contradiction. Therefore T ∈ {0, 1}.

Suppose next that T = 1. If σ2(X ∪ Y ) = 2 then σ2(X) = 3 = σ2(Y ) and, similarly

to the case T = 2, it follows that σ2(X ∪ Y ) = 3, a contradiction. So σ2(X ∪ Y ) = 1,

min{σ2(X), σ2(Y )} = 2, andmax{σ2(X), σ2(Y )} ∈ {2, 3}. Ifmax{σ2(X), σ2(Y )} = 3

then we may suppose without loss of generality that σ2(X) = 2 and σ2(Y ) = 3. Now, as

σ2(X ∪ Y ) = 1 and σ2(X) = 2 and σ2(Y ) = 3 and |X ∩ Y | = 1 there exist W1,W2 ⊆
V(Gχ) such that Y ⊆ W2 and X \Y = X∩W1. Hence σ2(X \Y ) = 3 = σ2(Y \X). As

Gχ is σ2-sparse Lemma 5.5.1.5 implies that dG(U1, U2) ∈ {1, 2}. If dG(U1, U2) = 1 then

U1 ∪U2 is not σ2-critical in Gχ and (i) holds, whereas if dG(U1, U2) = 2 then U1 ∪U2 is

σ2-critical in Gχ and (ii) holds.

If max{σ2(X), σ2(Y )} = 2 then, as X and Y are both σ2-critical in Gχ, |X|, |Y | ≥ 4

and so there exist W1,W2 ∈ V(Gχ) such that X ∪ Y ⊆ W1 ∪W2, |X ∩W1| ≥ 3, and

|X ∩W2| = 1. Moreover, as dG(X, Y ) ≥ 1, 5.2 implies dG(X, Y ) = 1. Consequently,

Lemma 5.5.1.5 implies that iG(X∪Y )+iG(X∩Y ) = (2|X∪Y |−2)+(2|X∩Y |−2)+1.

Therefore X ∪ Y is σ2-critical in Gχ. Now, either |Y ∩W1| = 1 and |Y ∩W2| ≥ 3, or

|Y ∩W1| ≥ 3 and |Y ∩W2| = 1.
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If |Y ∩W1| = 1 and |Y ∩W2| ≥ 3 then X∩Y ∈ {X∩W2, Y ∩W1}. If X∩Y = X∩W2

then σ2(X \ Y ) = 3 and σ2(Y \X) = 2. If X ∩ Y = Y ∩W1 then σ2(Y \X) = 3 and

σ2(X \Y ) = 2. Therefore, min{σ2(X \Y ), σ2(Y \X)} = 2 and max{σ2(X \Y ), σ2(Y \
X)} = 3. That is, (ii) holds. On the other hand, if |Y ∩W1| ≥ 3 and |Y ∩W2| = 1

then |(X ∪ Y ) ∩W2| ∈ {1, 2}. So, as σ2(X ∪ Y ) = 1, |(X ∪ Y ) ∩W2| = 2 and hence

X ∩ Y ⊆ W1. Therefore σ2(X \ Y ) = 2 = σ2(Y \X). That is, (iii) holds.

Finally, suppose that T = 0. Then σ2(X ∪ Y ) = min{σ2(X), σ2(Y )} and, since

dG(X, Y ) ≥ 1, Lemma 5.3.1.7 and 5.2 together imply that dG(X, Y ) = 1, X ∪ Y

is σ2-critical in Gχ, and max{σ2(X), σ2(Y )} = 3. That is, (iv) holds.

Lemma 5.5.1.8. Let Gχ = (V,E)χ be a labelled graph. Suppose that X, Y , and Z are

σ2-critical in Gχ. If σ2(V ) ≥ 1, Gχ is σ2-sparse, |X ∩Y | = |X ∩Z| = |Y ∩Z| = 1, and

X ∩ Y ∩ Z = ∅ then dG(X ∪ Y, Z) = 0, dG(X ∩ Z, Y ∩ Z) = dG(X, Y ), X ∪ Y ∪ Z is

σ2-critical in Gχ, and we have the following dichotomy. Either

(i) σ2(X∪Y ∪Z) = 1, min{σ2(X), σ2(Y ), σ2(Z)} = 2 = |{A ∈ {X, Y, Z} : σ2(A) =
2}|, and max{σ2(X), σ2(Y ), σ2(Z)} = 3; or

(ii) σ2(X ∪ Y ∪ Z) = min{σ2(X), σ2(Y ), σ2(Z)}, and |{A ∈ {X, Y, Z} : σ2(A) =

3}| ≥ 2.

Proof. As Gχ is σ2-sparse and |X ∩ Y | = |X ∩ Z| = |Y ∩ Z| = 1 and X ∩ Y ∩ Z = ∅,
Lemma 5.5.1.5 implies that

σ2(X)+σ2(Y )+σ2(Z)+dG(X∩Z, Y ∩Z) ≥ σ2(X∪Y ∪Z)+6+dG(X, Y )+dG(X∪Y, Z).
(5.3)

Hence, as dG(X ∩ Z, Y ∩ Z) ≤ dG(X, Y ),

σ2(X) + σ2(Y ) + σ2(Z) ≥ σ2(X ∪ Y ∪ Z) + 6 + dG(X ∪ Y, Z). (5.4)

Let T = min{σ2(X), σ2(Y ), σ2(Z)} − σ2(X ∪ Y ∪ Z) and observe that, as σ2(V ) ≥ 1,

Lemma 5.3.1.7 implies T ∈ {0, 1, 2}. If T = 2 then it follows that σ2(X ∪ Y ∪ Z) = 1

and σ2(X) = σ2(Y ) = σ2(Z) = 3. As σ2(X) = σ2(Y ) = σ2(Z) = 3, it follows that
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there exist W1,W2,W3 ∈ V(Gχ) such that X ⊆ W1, Y ⊆ W2, and Z ⊆ W3. As

X ∩ Y ̸= ∅ ̸= Y ∩ Z, W1 = W2 = W3. However this implies that σ2(X ∪ Y ∪ Z) = 3,

a contradiction. Therefore T ∈ {0, 1}.

Suppose next that T = 1. If σ2(X ∪Y ∪Z) = 2 then σ2(X) = σ2(Y ) = σ2(Z) = 3 and,

similarly to the case T = 2, it follows that σ2(X∪Y ∪Z) = 3, a contradiction. So σ2(X∪
Y ∪ Z) = 1 and min{σ2(X), σ2(Y ), σ2(Z)} = 2. So max{σ2(X), σ2(Y ), σ2(Z)} = 3

by 5.4. We may suppose without loss of generality that σ2(X) = 2 and σ2(Z) = 3.

If σ2(Y ) = 3 then there exist W2,W3 ∈ V(Gχ) such that Y ⊆ W2 and Z ⊆ W3.

As Y ∩ Z ̸= ∅, W2 = W3. As X ∩ Y ∩ Z = ∅, |X ∩ (Y ∪ Z)| = 2 and so |{x ∈
X : x /∈ W2}| = 1. However this implies that σ2(X ∪ Y ∪ Z) = 2, a contradiction.

Therefore σ2(Y ) = 2 = |{A ∈ {X, Y, Z} : σ2(A) = 2}|. It follows from 5.4 that

dG(X ∪ Y, Z) = 0 and so, as dG(X ∩ Z, Y ∩ Z) ≤ dG(X, Y ), it follows from 5.3 that

dG(X ∩Z, Y ∩Z) = dG(X, Y ). Then Lemma 5.5.1.5 implies X ∪Y ∪Z is σ2-critical in

Gχ. Finally, suppose that T = 0. Then σ2(X ∪ Y ∪ Z) = min{σ2(X), σ2(Y ), σ2(Z)},
and Lemma 5.3.1.7 and 5.4 together imply that |{A ∈ {X, Y, Z} : σ2(A) = 3}| ≥ 2

and dG(X ∪ Y, Z) = 0. Moreover, as dG(X ∩ Z, Y ∩ Z) ≤ dG(X, Y ) 5.3 implies

dG(X ∩ Z, Y ∩ Z) = dG(X, Y ). Then Lemma 5.5.1.5 gives us that X ∪ Y ∪ Z is

σ2-critical in Gχ.

5.5.2 Vertices of Degree Three

Now that we have access to the idea of a σ2-critical set the remainder of this chapter

will see us use these sets to derive a method of constructing certain σ2-tight graphs. In

this short section we see how σ2-critical sets are, when we restrict the possible labellings

of the vertex set, precisely the correct concept to use in order to understand what may

prevent the existence of a σ2-tight (2, 1)-VL-reduction of a σ2-tight labelled graph. The

different ways that the local structure of a labelled graph, at a vertex of degree three,

can be impacted by the choice of labelling are illustrated in Figure 5.3 and Table 5.1.

Lemma 5.5.2.1. Let Gχ = (V,E)χ be a labelled graph and suppose there exists v ∈ V

such that dG(v) = 3. If Gχ is σ2-sparse then there does not exist a (2, 1)-VL-reduction
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of Gχ at v adding e that is σ2-sparse if and only if either e ∈ E, or e /∈ E and there

exists U ⊆ V \ {v} such that the endpoints of e are in U and

(i) U is σ2-critical in Gχ; or

(ii) G[U ] ∼= K−
5 and σ2(U) = 0 = σ2(V ).

Moreover, if Gχ is σ2-tight then there does not exist a (2, 1)-VL-reduction of Gχ at v

adding e that is σ2-tight if and only if there does not exist a (2, 1)-VL-reduction of Gχ

at v adding e that is σ2-sparse.

Proof. Let e = xy. We note that, by definition, there does not exist a (2, 1)-VL-reduction

of Gχ at v adding xy if and only if xy ∈ E. So we may suppose instead that there does

exist such a (2, 1)-VL-reduction of Gχ and denote this G′
χ′ = (V ′, E ′)χ′ . As Gχ is σ2-

sparse, Lemma 5.3.2.3 implies that G′
χ′ is not σ2-sparse if and only if there exists U ⊆ V ′

such that {x, y} ⊆ U and iG(U) = S(Gχ[U ], σ2|U). As xy /∈ E this implies that G′
χ′ is

not σ2-sparse if and only if there exists n ≥ 4 such that G[U ] ≇ Kn, and

(a) iG(U) = S(Gχ[U ], σ2|U) = 2|U | − σ2(U); or

(b) iG(U) = S(Gχ[U ], σ2|U) = 3|U | − 6 < 2|U | − σ2(U).

Consequently, Lemma 5.3.1.6 implies that G′
χ′ is not σ2-sparse if and only if U is σ2-

critical in Gχ, or G[U ] ∼= K−
5 and σ2(W ) = 0 = σ2(V ).

Suppose Gχ is σ2-tight. As G
′ is a (2, 1)-reduction of G, |V ′| ≥ 3 and so Lemma 5.3.1.4

and Lemma 5.3.1.5 together imply that S(G′
χ′ , σ2|V ′) ≤ 2|V ′| − σ2(V

′). Moreover,

Lemma 5.3.1.7 implies that σd(V ) ≤ σd(V
′). So, as Gχ is σd-tight,

|E ′| = (|E| − 3) + 1 = 2|V ′| − σ2(V ) ≥ 2|V ′| − σ2(V
′) ≥ S(G′

χ′ , σ2|V ′).

Therefore, |E ′| ≥ S(G′
χ′ , σ2|V ′) and |E ′| = 2|V ′| − σ2(V

′) = S(G′
χ′ , σ2|V ′) if and only if

|E ′| = S(G′
χ′ , σ2|V ′). Consequently, there does not exist a (2, 1)-VL-reduction of Gχ at

v adding xy that is σ2-tight if and only if there does not exist a (2, 1)-VL-reduction of

Gχ at v adding xy that is σ2-sparse.
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U1 U2 U3 U4 U5 U6 U7

v v v v v v v

Figure 5.3: Illustration of the possible labellings of NG[v] for a vertex, v, of degree three
in G where Gχ is a labelled graph.

For the remainder of this chapter we constrain ourselves to working with labelled graphs

Gχ such that σ2(V (G)) ≥ 1. Lemma 5.3.1.6 (ii) and, in particular, Lemma 5.5.2.1 show

that restricting our focus in this way will make it easier to discuss the structure around

those vertices of degree three at which there does not exist a (2, 1)-VL-reduction of Gχ

that is σ2-sparse.

Case U1 U2 U3 U4 U5 U6 U7

σ2(NG(v)) 3 2 3 2 2 0 0
σ2(NG[v]) 3 2 2 1 0 0 0
|V(Gχ)| ≥ 1 ≥ 2 ≥ 2 ≥ 2 ≥ 3 ≥ 3 ≥ 4

Table 5.1: Tabulation of the possible labellings of NG[v] for a vertex, v, of degree three
in G where Gχ is a labelled graph.

So far we have considered when a specific (2, 1)-VL-reduction of a σ2-sparse labelled

graph will be (2, 1)-sparse. Note that, given a labelled graph Gχ and v ∈ V (G) such

that dG(v) = 3, the number of (2, 1)-VL-reductions of Gχ at v is 3−E(G[NG(v)]). We

wish to understand when there exists any σ2-sparse (2, 1)-VL-reduction of Gχ at v.

Lemma 5.5.2.2. Let Gχ = (V,E)χ be a σ2-sparse labelled graph, and suppose that

σ2(V ) ≥ 1. If there exists v ∈ V such that dG(v) = 3 and σ2(NG[v]) = 3 then there

exists a (2, 1)-VL-reduction of Gχ at v that is σ2-sparse.

Proof. Let us define H to be the complete graph with vertex set NG(v) and let F =

E(H) \ E. We proceed by considering iG(NG(v)). As Gχ is σ2-sparse and |NG[v]| = 4

and σ2(NG[v]) = 3, iG(NG[v]) ≤ 2|NG[v]| − 3 = 5 and so iG(NG(v)) ≤ 2.
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If iG(NG(v)) = 2 then let F = {e}. Suppose there exists U ⊆ V \ {v} such that

the endpoints of e are in U and U is σ2-critical in Gχ. As σ2(NG[v]) = σ2(NG(v)),

Lemma 5.5.1.4 implies |NG(v) ∩ U | = 2. Moreover, as σ2(NG([v]) = 3 we note that

σ2(U) = σ2(U ∪NG[v]) and consequently

iG(U ∪NG[v]) ≥ iG(U)+5 = (2|U |−σ2(U))+5 = 2|U ∪NG[v]|− (σ2(U ∪NG[v])−1).

However this contradicts the fact that Gχ is σ2-sparse, so no such set U can exist and

hence there exists a (2, 1)-VL-reduction of Gχ at v that is σ2-sparse by Lemma 5.5.2.1.

If iG(NG(v)) = 1 then let F = {e1, e2}, so V (G[F ]) = NG(v). Suppose there exist

U1, U2 ⊆ V \ {v} such that, for i ∈ {1, 2}, the endpoints of ei are in Ui and Ui is

σ2-critical in Gχ. We observe that, since σ2(NG[v]) = σ2(NG(v)) and NG(v) ⊆ U1∪U2,

σ2(U1∪U2∪{v}) = σ2(U1∪U2). So Lemma 5.5.1.4 implies that U1∪U2 is not σ2-critical

in Gχ and hence, as U1∩U2 ̸= ∅, Lemma 5.5.1.6 implies that |U1∩U2| = 1. Therefore, for

i, j ∈ {1, 2} where i ̸= j, the endpoint of ei that is not an endpoint of ej is in Ui\Uj and
hence dG(U1, U2) ≥ 1. So, as U1∪U2 is not σ2-critical in Gχ, Lemma 5.5.1.7 implies that

σ2(U1∪U2) = 1, min{σ2(U1), σ2(U2)} = 2, and max{σ2(U1), σ2(U2)} = 3. However, as

NG(v) ⊆ U1∪U2 and σ2(NG(v)) = 3 it follows that that σ2(U1∪U2) = min{σ2(U1, U2)},
a contradiction. So such sets U1 and U2 can not both exist and hence there exists a

(2, 1)-VL-reduction of Gχ at v that is σ2-sparse by Lemma 5.5.2.1.

If iG(NG(v)) = 0 then let F = {e1, e2, e3}, so V (G[F ]) = NG(v). Suppose there exist

U1, U2, U3 ⊆ V \ {v} such that, for i ∈ {1, 2, 3}, the endpoints of ei are in Ui and Ui

is σ2-critical in Gχ. We observe that, since σ2(NG[v]) = 3 and NG(v) ⊆ Ui ∪ Uj for all
i, j ∈ {1, 2, 3} such that i ̸= j, for all i, j ∈ {1, 2, 3} such that i ̸= j, σ2(Ui∪Uj∪{v}) =
σ2(Ui ∪ Uj). Similarly, σ2(U1 ∪ U2 ∪ U3 ∪ {v}) = σ2(U1 ∪ U2 ∪ U3). Therefore, Lemma

5.5.1.4 implies that for all i, j ∈ {1, 2, 3} such that i ̸= j, Ui∪Uj is not σ2-critical in Gχ

and similarly that U1∪U2∪U3 is not σ2-critical in Gχ. Then, since for all i, j ∈ {1, 2, 3}
such that i ̸= j, Ui ∩ Uj ̸= ∅, Lemma 5.5.1.6 implies that for all i, j ∈ {1, 2, 3} such

that i ̸= j, |Ui ∩ Uj| = 1. However, as U1 ∩ U2 ∩ U3 = ∅, Lemma 5.5.1.8 implies that

U1 ∪ U2 ∪ U3 is σ2-critical in Gχ, a contradiction. So such sets U1, U2, and U3 can not
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exist and hence there exists a (2, 1)-VL-reduction of Gχ at v that is σ2-sparse by Lemma

5.5.2.1.

Lemma 5.5.2.3. Let Gχ = (V,E)χ be a σ2-sparse labelled graph and suppose that

σ2(V ) ≥ 1. If there exists v ∈ V such that dG(v) = 3 and σ2(NG[v]) = 2 = σ2(NG(v))

then there does not exist a (2, 1)-VL-reduction of Gχ at v that is σ2-sparse if and only

if either

(i) iG(NG(v)) = 3; or

(ii) iG(NG(v)) = 2 and there exists U ⊆ V \ {v} such that U ∩ NG(v) = {u ∈
NG(v) : dG[NG(v)](u) = 1}, U is σ2-critical in Gχ, σ2(U) = 2, and σ2(U∪{v}) = 1;

or

(iii) iG(NG(v)) = 2 and there exists U ⊆ V \ {v} such that U ∩ NG(v) = {u ∈
NG(v) : dG[NG(v)](u) = 1}, U is σ2-critical in Gχ, and σ2(U) = 3; or

(iv) iG(NG(v)) = 1 and there exist U1, U2 ⊆ V \ {v} such that U1 ∩ U2 = {u ∈
NG(v) : dG[NG(v)](u) = 0}, U1 and U2 are σ2-critical in Gχ, σ2(U1 ∪ U2) = 1,

min{σ2(U1), σ2(U2)} = 2, max{σ2(U1), σ2(U2)} = 3, and dG(U1, U2) = 1.

Proof. Lemma 5.5.2.1 implies that if any of (i), (ii), or (iii) hold then there does not exist

a (2, 1)-VL-reduction of Gχ at v that is σ2-sparse. On the other hand, let us suppose

there does not exist a (2, 1)-VL-reduction of Gχ at v that is σ2-sparse. Let us define H

to be the complete graph with vertex set NG(v) and let F = E(H) \E. We proceed by

considering iG(NG(v)).

If iG(NG(v)) = 2 then let F = {e}. As there does not exist a (2, 1)-VL-reduction of Gχ

at v that is σ2-sparse, Lemma 5.5.2.1 implies there exists U ⊆ V \ {v} such that the

endpoints of e are in U and U is σ2-critical in Gχ. As σ2(NG[v]) = σ2(NG(v)), Lemma

5.5.1.4 implies |NG(v)∩U | = 2. That is, U ∩NG(v) = {u ∈ NG(v) : dG[NG(v)](u) = 1}.
Consequently,

iG(U ∪NG[v]) ≥ iG(U) + 5 = (2|U | − σ2(U)) + 5 = 2|U ∪NG[v]| − (σ2(U)− 1).
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As Gχ is σ2-sparse it follows that σ2(U) ≥ σ2(U ∪NG[v]) + 1. As σ2(V ) ≥ 1, Lemma

5.3.1.7 implies σ2(U) ∈ {2, 3}. If σ2(U) = 2 then σ2(U ∪ NG[v]) = 1 = σ2(U ∪ {v}).
Therefore (ii) holds. If σ2(U) = 3 then (iii) holds.

If iG(NG(v)) = 1 then let F = {e1, e2}, so V (G[F ]) = NG(v). As there does not exist

a (2, 1)-VL-reduction of Gχ at v that is σ2-sparse, Lemma 5.5.2.1 implies there exist

U1, U2 ⊆ V \ {v} such that, for i ∈ {1, 2}, the endpoints of ei are in Ui and Ui is σ2-

critical in Gχ. We observe that, since σ2(NG[v]) = 2 = σ2(NG(v)) and NG(v) ⊆ U1∪U2,

σ2(U1∪U2∪{v}) = σ2(U1∪U2). So Lemma 5.5.1.4 implies that U1∪U2 is not σ2-critical

in Gχ and hence, as U1 ∩ U2 ̸= ∅, Lemma 5.5.1.6 implies that |U1 ∩ U2| = 1. That is,

U1 ∩ U2 = {u ∈ NG(v) : dG[NG(v)](u) = 0}. Therefore, for i, j ∈ {1, 2} where i ̸= j,

the endpoint of ei that is not an endpoint of ej is in Ui \ Uj and hence dG(U1, U2) ≥ 1.

So, as U1 ∪ U2 is not σ2-critical in Gχ, Lemma 5.5.1.7 implies that σ2(U1 ∪ U2) = 1,

min{σ2(U1), σ2(U2)} = 2, max{σ2(U1), σ2(U2)} = 3, and dG(U1, U2) = 1. That is, (iv)

holds. If iG(NG(v)) = 0 then let F = {e1, e2, e3}, so V (G[F ]) = NG(v). As there

does not exist a (2, 1)-VL-reduction of Gχ at v that is σ2-sparse, Lemma 5.5.2.1 implies

there exist U1, U2, U3 ⊆ V \ {v} such that, for i ∈ {1, 2, 3}, the endpoints of ei are

in Ui and Ui is σ2-critical in Gχ. We observe that, since σ2(NG[v]) = σ2(NG(v)) and

NG(v) ⊆ Ui ∪ Uj for all i, j ∈ {1, 2, 3} such that i ̸= j, for all i, j ∈ {1, 2, 3} such that

i ̸= j, σ2(Ui∪Uj∪{v}) = σ2(Ui∪Uj). Similarly, σ2(U1∪U2∪U3∪{v}) = σ2(U1∪U2∪U3).

Therefore, Lemma 5.5.1.4 implies that for all i, j ∈ {1, 2, 3} such that i ̸= j, Ui ∪ Uj is
not σ2-critical in Gχ and similarly that U1 ∪U2 ∪U3 is not σ2-critical in Gχ. Then, since

for all i, j ∈ {1, 2, 3} such that i ̸= j, Ui ∩ Uj ̸= ∅, Lemma 5.5.1.6 implies that for all

i, j ∈ {1, 2, 3} such that i ̸= j, |Ui ∩ Uj| = 1. However, as U1 ∩ U2 ∩ U3 = ∅, Lemma

5.5.1.8 implies that U1 ∪ U2 ∪ U3 is σ2-critical in Gχ, a contradiction. So such sets U1,

U2, and U3 can not all exist, a contradiction.

5.5.3 σ2-Cut-Tight Vertex-Labelled Graphs

While the study of general σ2-sparse labelled graphs may be of independent interest, our

primary goal is to study graphs related to the rigidity of graphs realised on non-concentric

spheres. It is for that reason that we introduce the following additional property of
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σ2-sparse labelled graphs and this chapter concludes with a method of constructing a

subfamily of those σ2-tight labelled graphs that have this property.

Definition 5.5.3.1. Let Gχ be a labelled graph. Gχ is σ2-cut-sparse if Gχ is σ2-

sparse and for all σ2-tight labelled subgraphs G′
χ′ of Gχ such that κ(G′) = 1, for all

v′ ∈ V (G′) such that G′[V (G′) \ {v′}] is not connected, with components H ′
1, . . . , H

′
n,

for all 1 ≤ i ≤ n, σ2(V (H ′
i)) ≤ 2. Gχ is σ2-cut-tight if Gχ is σ2-cut-sparse and

σ2-tight.

(G,χ1) (G,χ2)

Figure 5.4: Two σ2-tight labelled graphs with the same underlying graph, G. (G,χ1) is
σ2-cut-tight while (G,χ2) is not.

Our first step is to attempt to give the interaction between the operations introduced in

Section 5.2 and σ2-cut-sparsity the same treatment as we gave the interaction between

those operations and σ2-sparsity in Subsection 5.3.2. We shall see that when considering

(2, 0)-VL-extension, (2, 0)-VL-reduction, and (2, 1)-VL-extension operations the addition

of this ‘cut’ condition makes no difference. However, additional complications arise when

analysing the (2, 1)-VL-reduction operation which necessitate us taking a more global

view of the situation.

Lemma 5.5.3.2. Let Gχ = (V,E)χ be a labelled graph. Suppose G′
χ′ is a (2, 0)-VL-

reduction of Gχ. Gχ is σ2-cut-sparse if and only if G′
χ′ is σ2-cut-sparse.

Proof. Let V \V (G′) = {v}. If Gχ is σ2-cut-sparse then, as G
′
χ′ is a labelled subgraph of

Gχ, G
′
χ′ is σ2-cut-sparse. On the other hand, suppose that G′

χ′ is σ2-cut-sparse. Lemma

5.3.2.1 implies Gχ is σ2-sparse. If there does not exist a σ2-tight labelled subgraph,

G[W ]ψ, of Gχ such that |W | ≥ 3 and κ(G[W ]) = 1 then Gχ is σ2-cut-tight. Alterna-
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tively, suppose that such a subgraph exists and take w ∈ W such that G[W \{w}] is not
connected. Let W ′ = W \ {v} and let H1, . . . , Hn be the components of G[W \ {w}].

If v /∈ W then Gχ[W ] = G′
χ′ [W ]. As G′

χ′ is σ2-cut-sparse, σ2(V (Hi)) ≤ 2 for all

1 ≤ i ≤ n. If v ∈ W then, as G′
χ′ is a (2, 0)-VL-reduction of Gχ, Gχ[W

′] = G′
χ′ [W ′]. If

w = v then G[W ′] is not connected. As G[W ]ψ is σ2-tight, Lemma 5.3.1.9 implies that

σ2(V (Hi)) = 0 for all 1 ≤ i ≤ n.

If w ̸= v then v ∈ W ′ and, as G[W ]ψ is σ2-tight and |W | ≥ 3, Lemma 5.3.1.8 implies

dG[W ](v) ≥ 2. Therefore G′
χ′ [W ′] is a (2, 0)-VL-reduction of Gχ[W ] and so, by Lemma

5.3.2.2, G′
χ′ [W ′] = Gχ[W

′] is σ2-tight. As dG[W ](v) ≥ 2, G′[W ′ \{w}] is not connected.
Let H ′

1, . . . , H
′
m be the components of G′[W ′ \ {w}]. As G′

χ′ is σ2-cut-sparse it follows

that σ2(V (H ′
j)) ≤ 2 for all 1 ≤ j ≤ m. Now, for all 1 ≤ i ≤ n there exists 1 ≤ j ≤ m

such that V (H ′
j) ⊆ V (Hi). Therefore Lemma 5.3.1.7 implies that σ2(V (Hi)) ≤ 2 for all

1 ≤ i ≤ n.

Lemma 5.5.3.3. Let Gχ = (V,E)χ be a labelled graph. Suppose G′
χ′ is a (2, 0)-VL-

reduction of Gχ. If Gχ is σ2-cut-tight then G
′
χ′ is σ2-cut-tight. If G′

χ′ is σ2-cut-tight

then Gχ is σ2-cut-tight if and only if σ2(V ) = σ2(V (G′)).

Proof. Let V \ V (G′) = {v}. Firstly, suppose that Gχ is σ2-cut-tight. Lemma 5.5.3.2

implies that G′
χ′ is σ2-cut-sparse and Lemma 5.3.2.2 implies that G′

χ′ is σ2-tight. On

the other hand, suppose that G′
χ′ is σ2-cut-tight. Lemma 5.5.3.2 implies that Gχ is

σ2-cut-sparse. Therefore Lemma 5.3.2.2 implies Gχ is σ2-cut-tight if and only if Gχ is

σ2-tight if and only if and only if σ2(V ) = σ2(V (G′)).

Lemma 5.5.3.4. Let Gχ = (V,E)χ be a labelled graph. Suppose G′
χ′ is a (2, 1)-VL-

reduction of Gχ. If G
′
χ′ is σ2-cut-sparse then Gχ is σ2-cut-sparse. If G

′
χ′ is σ2-cut-tight

then Gχ is σ2-cut-tight if and only if σ2(V ) = σ2(V (G′)).

Proof. Let V \ V (G′) = {v}, let E(G′) \ E = {e}, and suppose that G′
χ′ is σ2-cut-

sparse. Lemma 5.3.2.3 implies Gχ is σ2-sparse. If there does not exist a σ2-tight labelled

subgraph, G[W ]ψ, of Gχ such that |W | ≥ 3 and κ(G[W ]) = 1 then Gχ is σ2-cut-sparse.
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Alternatively, suppose that such a subgraph exists. That is, there exists W ⊆ V such

that |W | ≥ 3, W is σ2-critical in Gχ, and κ(G[W ]) = 1. Let e = xy and take w ∈ W

such that G[W \ {w}] is not connected. Let W ′ = W \ {v}, let G1, . . . , Gn be the

components of G[W \ {w}], and for all 1 ≤ i ≤ n let V (Gi) = Vi. Firstly suppose

that |{x, y} ∩W | ≤ 1. Then Gχ[W
′] = G′

χ′ [W ′]. If v /∈ W then Gχ[W ] = G′
χ′ [W ]

and G1, . . . Gn are the components of G′[W \ {w}]. As G′
χ′ is σ2-cut-sparse, σ2(Vi) ≤ 2

for all 1 ≤ i ≤ n. If v ∈ W then dG[W ](v) = 2 by Lemma 5.3.1.8, and so Gχ[W ] is a

(2, 0)-VL-extension of G′
χ′ [W ′]. As G′

χ′ is σ2-cut-sparse, G
′
χ′ [W ] is σ2-cut-sparse and so

Lemma 5.5.3.2 implies Gχ[W ] is σ2-cut-sparse.

On the other hand, suppose that {x, y} ⊆ W . As W is σ2-critical in Gχ and G′
χ′ is

σ2-sparse,

2|W | − σ2(W ) = iG(W )

= (iG′(W ′)− 1) + (|W ∩ {v}| · |W ∩NG(v)|)

≤ 2|W ′| − (σ2(W
′) + 1) + (|W ∩ {v}| · |W ∩NG(v)|)

= 2|W | − (σ2(W
′) + 1 + 2|W ∩ {v}|) + (|W ∩ {v}| · |W ∩NG(v)|)

= 2|W | − (σ2(W
′) + 1 + |W ∩ {v}| · (2− |W ∩NG(v)|)).

So σ2(W ) ≥ σ2(W
′) + 1 + |W ∩ {v}| · (2− |NG(v) ∩W |). Lemma 5.3.1.7 implies that

σ2(W
′) ≥ σ2(W ) and hence NG[v] ⊆ W and σ2(W ) = σ2(W

′). Therefore G′
χ′ [W ′] is a

(2, 1)-VL-reduction of Gχ[W ]. As G′
χ′ is σ2-sparse, Lemma 5.3.2.3 and Lemma 5.3.2.4

together imply that G′
χ′ [W ′] is σ2-tight. As NG[v] ⊆ W , |W ′| ≥ 3. Let G′

1, . . . , G
′
m

denote the components of G′[W ′ \ {w}] and for all 1 ≤ j ≤ m let V (G′
j) = V ′

j .

Suppose that w = v. Then for all 1 ≤ i ≤ n there exists 1 ≤ j ≤ m such that Vi ⊆ V ′
j .

In particular, there exists 1 ≤ i ≤ n such that {x, y} ⊆ Vi if and only if for all 1 ≤ i ≤ n

there exists 1 ≤ j ≤ m such that Vi = V ′
j . Alternatively, there exist 1 ≤ a < b ≤ n such

that x ∈ Va and y ∈ Vb if and only if there exists 1 ≤ j ≤ m such that Va ∪ Vb = V ′
j

and for all 1 ≤ i ≤ n such that i /∈ {a, b} there exists 1 ≤ k ≤ m such that Vi = V ′
j .

Note that, by construction, Vi = Vj if and only if i = j and similarly V ′
i = V ′

j if and only

if i = j.
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If there exists 1 ≤ i ≤ n such that {x, y} ⊆ Vi then G
′[W ′] is not connected and so,

as W ′ is σ2-critical in G
′
χ′ , Lemma 5.3.1.9 implies that for all 1 ≤ j ≤ m, σ2(V

′
j ) = 0.

Therefore σ2(Vi) = 0 for all 1 ≤ i ≤ n. If there exist 1 ≤ a < b ≤ n such that

x ∈ Va and y ∈ Vb then, as W
′ is σ2-critical in G

′
χ′ , Lemma 5.3.1.9 implies that for all

1 ≤ j ≤ m such that V ′
j ̸= Va ∪ Vb, σ2(V ′

j ) = 0. We observe that either Va ∪ Vb = W ′,

and so is σ2-critical in G
′
χ′ , or G′[Va ∪ Vb] is a component of G′[W ′] and so Va ∪ Vb

is σ2-critical in G
′
χ′ by Lemma 5.3.1.9. As G′[W ′] is σ2-tight and |W ′| ≥ 3, Lemma

5.3.1.8 implies dG′[W ′](x) ≥ 2 and so |Va ∪ Vb| ≥ 3. Furthermore, κ1(G
′[Va ∪ Vb]) = 1

and G′[E(G′[Va ∪ Vb]) \ {xy}] = G[Va ∪ Vb] is not connected. So, by Lemma 5.3.1.13,

σ2(Va), σ2(Vb) ≤ 1 and hence σ2(Vi) ≤ 1 for all 1 ≤ i ≤ n.

Suppose instead that w ̸= v, so there exists 1 ≤ i ≤ n, say a, such that NG[v]\{w} ⊆ Va

and so dG[Va\{w}](v) ≥ 2. Hence, as G[W \ {w}] is not connected, G′[W ′ \ {w}] is not
connected. If G′[W ′] is connected then, as W ′ is critical in G′

χ′ and |W ′| ≥ 3 and G′
χ′

is σ2-cut-sparse, σ2(V
′
j ) ≤ 2 for all 1 ≤ j ≤ m. Moreover, for all 1 ≤ i ≤ n such that

i ̸= a there exists 1 ≤ j ≤ m such that Vi = V ′
j , and there exists 1 ≤ k ≤ m such that

Va \ {v} = V ′
k so Va ⊃ V ′

k . Therefore σ2(Vi) ≤ 2 for all 1 ≤ i ≤ n by Lemma 5.3.1.7.

On the other hand, if G′[W ′] is not connected then letH1, . . . , Ht denote the components

of G′[W ′] and for all 1 ≤ i ≤ t let V (Hi) = Ui. As W ′ is σ2-critical in G
′
χ′ , Lemma

5.3.1.9 implies that, for all 1 ≤ i ≤ t, Ui is σ2-critical in G
′
χ′ and σ2(Ui) = 0. There exists

1 ≤ i ≤ t, say a, such that w ∈ Ua and we observe that (
⋃t
i=1 Ui)\ (Ua \Va) = Va \{v}.

Therefore Va ⊇ (
⋃t
i=1 Ui) \ (Ua \ Va) and so σ2(Va) = 0 by Lemma 5.3.1.7. As Ua

is σ2-critical in G
′
χ′ , |Ua| ≥ 3. If G′[Ua \ {w}] is connected then {V1, V2} = {(Va ∪

{v}), (Ua \ {w})} and σ2(V1) = 0 = σ2(V2). If G′[Ua \ {w}] is not connected then for

all 1 ≤ i ≤ n such that i ̸= a, Vi ⊆ Ua \ {w}. So, as G′
χ′ is σ2-cut-sparse, σ2(Vi) ≤ 2

for all 1 ≤ i ≤ n such that i ̸= a.

Finally, if G′
χ′ is σ2-cut-tight then by above and Lemma 5.3.2.4 we have that Gχ is

σ2-cut-tight if and only if Gχ is σ2-tight if and only if σ2(V (G′)) = σ2(V ).

The three previous results provide justification for the earlier comment suggesting that

for (2, 0)-VL-reductions/extensions and (2, 1)-VL-extensions the move from σ2-sparsity
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to σ2-cut-sparsity would not have any impact. However we shall have to give a more

piecemeal analysis for (2, 1)-VL-reductions. Lemma 5.3.2.3 gives a necessary and suffi-

cient condition for a (2, 1)-VL-reduction of a σ2-sparse graph to be σ2-sparse. Our next

step is to build on this result and show that there exist σ2-sparse (2, 1)-VL-reductions of

σ2-sparse graphs that are not σ2-cut-sparse.

Building on this, given a vertex v of degree three in a σ2-sparse labelled graph Gχ, Lemma

5.5.2.2 and Lemma 5.5.2.3 allow us to understand when there exists a (2, 1)-VL-reduction

of Gχ at v that is σ2-sparse by considering σ2(NG(v)) and σ2(NG[v]).

There is an important point here about how information about σ2(V ) is required in

order to apply these two results, which both use the hypothesis that σ2(V ) ≥ 1. This

information is used in two ways. First and foremost, Lemma 5.5.2.1 tells us that restriction

guarantees that if (2, 1)-VL-reduction does not preserve σ2-sparsity then a particular σ2-

critical set exists. Secondly, the fact that σ2(V ) ≥ 1 allows us to make use of the

results concerning the intersection of σ2-critical sets. This second usage is seemingly

less important, as it’s plausible that the relevant properties of intersecting σ2-critical sets

could be extended to the situation where σ2(V ) = 0. This shows that, at least if we

demand that σ2(V ) ≥ 1, then whether a (2, 1)-VL-reduction preserves σ2-sparsity is, in

some sense, a purely local question.

On the other hand, our next result, which plays a similar role to that of Lemma 5.5.2.1

but in the context of σ2-cut-sparsity, has a much more tangible reliance on σ2(V ). In

this setting we must now demand that σ2(V ) ≥ 2 in order to make the question of

whether a (2, 1)-VL-reduction preserves σ2-cut-sparsity local in the same way. Figure 5.5

highlights this point. This is clearly unsatisfactory, as by allowing σ2(V ) to equal one we

have access to a far more varied collection of labelled graphs, but this potentially acts as

evidence to support the idea that σ2-cut-sparsity is a notably more complicated notion

than that of σ2-sparsity.

Lemma 5.5.3.5. Let Gχ = (V,E)χ be a vertex-labelled graph, and suppose there

exists v ∈ V such that dG(v) = 3. Let NG(v) = {x, y, z} and suppose Gχ is σ2-

cut-sparse. Suppose there exists a (2, 1)-VL-reduction of Gχ at v adding xy that is
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σ2-sparse, and denote this by G′
χ′ . If σ2(V ) ≥ 2 then G′

χ′ is not σ2-cut-sparse if and

only if there exist W1,W2 ⊆ V \ {v} such that |W1|, |W2| ≥ 3, NG(v) ∩W1 = {x, y},
W1 ∩W2 = {v ∈ V : σ2(V \ {v}) > σ2(V )}, iG(W1) = 2|W1| − 3, W2 is σ2-critical in

Gχ, and dG(W1,W2) = 0.

Proof. Firstly suppose that there exist W1,W2 ⊆ V \ {v} such that |W1|, |W2| ≥ 3,

NG(v)∩W1 = {x, y}, W1∩W2 = {v ∈ V : σ2(V \{v}) > σ2(V )}, iG(W1) = 2|W1|−3,

W2 is σ2-critical in Gχ, and dG(W1,W2) = 0. Then W1 and W2 are σ2-critical in Gχ,

so Lemma 5.5.1.5 implies iG′(W1 ∪W2) = 2|W1 ∪W2| − 2 and hence W1 ∪W2 is σ2-

critical in Gχ. Moreover, |W1 ∪W2| ≥ |W1| ≥ 4 and dG′(W1,W2) = dG(W1,W2) = 0.

Consequently G′[(W1 ∪ W2) \ (W1 ∩ W2)] is not connected and σ2(W1 \ W2) = 3.

Therefore G′
χ′ is not σ2-cut-sparse.

On the other hand, suppose G′
χ′ is not σ2-cut-sparse. Then there exists U ⊆ V (G′) =

V \ {v} such that |U | ≥ 3, U is σ2-critical in G′
χ′ , and κ(G′[U ]) = 1. Moreover,

there exists u ∈ U such that G′[U \ {u}] is not connected, say the components of

G′[U \ {u}] are G′
1, . . . , G

′
n, and there exists 1 ≤ i ≤ n such that σ2(V (G′

i)) = 3. For

all 1 ≤ i ≤ n, let V (G′
i) = U ′

i and let U ′
i ∪ {u} = Ui. Lemma 5.3.1.11 implies that

for all 1 ≤ i ≤ n, σ2(Ui) ≤ 2. So, as σ2(V ) = 2 Lemma 5.3.1.7 gives us that for all

1 ≤ i ≤ n, σ2(Ui) = 2 = σ2(U). It follows that, for all 1 ≤ i < j ≤ n, Ui is σ2-critical

in G′
χ′ and dG(Ui, Uj) = 0.

As Gχ is σ2-cut-sparse and E(G′) \ E = {xy}, {x, y} ⊆ U and there exists 1 ≤ i ≤ n

such that {x, y} ⊆ Ui. We may suppose without loss of generality that U1. If z ∈ U1

then Gχ[U ∪ {v}] is a (2, 1)-VL-extension of G′
χ′ [U ] and so Lemma 5.3.2.2 implies that

U ∪{v} is σ2-critical in Gχ. However, as |U ∪{v}| ≥ 3 and NG(v) ⊆ U1 this contradicts

the fact that Gχ is σ2-cut-sparse. Hence NG(v) ∩ U1 = {x, y}. So, |U1|, |U2| ≥ 3,

NG(v) ∩ U1 = {x, y}, U1 ∩ U2 = {u} = {v ∈ V : σ2(V \ {v}) > σ2(V )}, iG(U1) =

iG′(U1) − 1 = 2|U1| − 3, and iG(U2) = iG′(U2) = 2|U2| − 2, so U2 is σ2-critical in G,

and dG(U1, U2) = 0.

As discussed above, the previous result is a not wholly satisfactory analogue of Lemma
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5.5.2.1 and does not give rise to an easy to work with object as was the case with σ2-

critical sets. However, part of the reason for giving Lemma 5.5.3.5 in the form above is

that we are interested in σ2-tight graphs with σ2(V ) = 2. It is certainly plausible that

a full analogue of Lemma 5.5.2.1 (i.e., with no restriction on σ2(V )) could be found,

although it is unclear how useful such a result would be.

Gχ

x
y

v

Figure 5.5: Illustration of a σ2-cut-sparse graph, Gχ, such that the (2, 1)-VL-reduction
of Gχ at v adding xy is σ2-sparse but is not σ2-cut-sparse.

Gχ

x
y

v

z

Figure 5.6: Illustration of a σ2-cut-sparse graph, Gχ, such that the (2, 1)-VL-reduction of
Gχ at v adding xy is σ2-sparse but is not σ2-cut-sparse whereas the (2, 1)-VL-reduction
of Gχ at v adding xz is σ2-cut-sparse

Lemma 5.5.3.6. Let Gχ be a σ2-cut-sparse labelled graph. If σ2(V ) ≥ 2 and there exists

v ∈ V such that dG(v) = 3 and σ2(NG[v]) = 3 then there exists a (2, 1)-VL-reduction

of Gχ at v that is σ2-cut-sparse.
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Proof. If σ2(V ) = 3 then this follows from Lemma 5.5.2.2 and Lemma 5.5.3.5, so we

may suppose that σ2(V ) = 2. As dG(v) = 3, |V | ≥ 4 so let {w} = {u ∈ V (G) : σ2(V \
{u}) > σ2(V )}. As σ2(NG(v)) = 3, w /∈ NG(v). Let NG(v) = {x, y, z}, define H
to be the complete graph with vertex set NG(v), and let F = E(H) \ E. We proceed

by considering iG(NG(v)). As Gχ is σ2-sparse and |NG[v]| = 4 and σ2(NG[v]) = 3,

iG(NG[v]) ≤ 2|NG[v]| − 3 = 5 and so iG(NG(v)) ≤ 2.

If iG(NG(v)) = 2 then let F = {e}. As σ2(NG(v)) = 3, we may suppose without loss of

generality that e = xy. Suppose there existW1,W2 ⊆ V \{v} such that |W1|, |W2| ≥ 3,

NG(v) ∩W1 = {x, y}, W1 ∩W2 = {w}, iG(W1) = 2|W1| − 3, W2 is σ2-critical in Gχ,

and dG(W1,W2) = 0. As w /∈ NG(v), and xz, xy ∈ E, and dG(W1,W2) = 0, z /∈ W2.

Lemma 1.1.1.4 implies

iG(W1 ∪W2 ∪ {v, z}) = iG(W1 ∪W2) + iG({v, z}) + dG({v, z},W1 ∪W2)

= (2|W1 ∪W2| − 3) + 5

= 2|W1 ∪W2 ∪ {v, z}| − 2.

As Gχ is σ2-sparse it follows that dG({v, z},W1 ∪W2) = 4 and W1 ∪W2 ∪ {v, z} is

σ2-critical in Gχ. Moreover, κ(G[W1∪W2∪{v, z}]) = 1 and G[(W1∪W2∪{v, z})\{w}]
is not connected. As G[W2\{w}] is a component of G[(W1∪W2∪{v, z})\{w}] and Gχ

is σ2-cut-sparse, σ2(W2 \ {w}) ≤ 2. However this contradicts the fact that σ2(V ) ≥ 2.

Therefore such sets W1 and W2 can not both exist and so Lemma 5.5.2.2 and Lemma

5.5.3.5 together imply there exists a (2, 1)-VL-reduction of Gχ at v that is σ2-cut-sparse.

If iG(NG(v)) = 1 then let F = {e1, e2} = {xy, xz}, so V (G[F ]) = NG(v). By Lemma

5.5.2.2 we may suppose, without loss of generality since σ2(NG(v)) = 3, that there does

not exist W ⊆ V \ {v} such that W is σ2-critical in Gχ and W ∩ NG(v) = {x, y}.
Let us suppose instead that there exist W1,W2 ⊆ V \ {v} such that |W1|, |W2| ≥ 3,

NG(v) ∩W1 = {x, y}, W1 ∩W2 = {w}, iG(W1) = 2|W1| − 3, W2 is σ2-critical in Gχ,

and dG(W1,W2) = 0. We now have two cases to consider.

Firstly, suppose there exists U ⊆ V \ {v} such that U ∩ NG(v) = {x, z} and U is
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σ2-critical in Gχ. Then W1 ∩ U ̸= ∅ and Lemma 1.1.1.4 implies

iG(W1 ∪ U) = iG(W1) + iG(U) + dG(W1, U)− iG(W1 ∩ U)

≥ 2(|W1|+ |U |) + 1− (3 + σ2(U) + iG(W1 ∩ U)

= 2|W1 ∪ U |+ 2|W1 ∩ U | − (2 + σ2(U) + iG(W1 ∩ U)).

If |W1∩U | = 1 then σ2(U) = 3 and iG(W1∩U) = 2|W1∩U |−2, so iG(W1∪U) ≥ 2|W1∪
U |−3. If |W1∩U | ≥ 2 then, as Gχ is σ2-sparse, iG(W1∩U) ≤ 2|W1∩U |−σ2(W1∩U)
and hence Lemma 5.3.1.7 implies iG(W1 ∪ U) ≥ 2|W1 ∪ U | − 3. So, regardless of

|W1∩U |, as NG(v) ⊆ W1∪U and σ2(NG[v]) = σ2(NG(v)) and Gχ is σ2-sparse, Lemma

5.5.1.4 implies W1 ∪U is not σ2-critical in Gχ. Therefore iG(W1 ∪U) = 2|W1 ∪U | − 3,

dG(W1, U) = 1, and W1 ∪ U ∪ {v} is σ2-critical in Gχ.

If |W2 ∩ (W1 ∪ U ∪ {v})| ≥ 2 then Lemma 5.5.1.6 implies W2 ∩ (W1 ∪ U ∪ {v}) is

σ2-critical in Gχ and, as σ2(W1 ∪U ∪ {v}) = 2 = σ2(W2), |W2 ∩ (W1 ∪U ∪ {v})| ≥ 4.

Hence |W2 ∩ (U \ W1)| ≥ 3. As dG(W1, U) = 1, Lemma 5.3.1.8 implies w ∈ U .

So |W1 ∩ U |, |(W1 ∩ U) ∩ W2| ≥ 2. Hence, by previous calculations, W1 ∩ U is σ2-

critical in Gχ and by Lemma 5.5.1.6 (W1 ∩ U) ∪ W2 is σ2-critical in Gχ. Moreover,

Lemma 1.1.1.4 gives us that dG(W1 ∩ U,W2) = 0 and so κ(G[(W1 ∩ U) ∪W2]) = 1

and G[((W1 ∩ U) ∪W2) \ {w}] is not connected. As G[W2 \ {w}] is a component of

G[((W1 ∩ U) ∪W2) \ {w}] and Gχ is σ2-cut-sparse, σ2(W2 \ {w}) ≤ 2. However this

contradicts the fact that σ2(V ) ≥ 2, so we must have W2 ∩ (W1 ∪ U ∪ {v}) = {w}.

As W2 ∩ (W1 ∪ U ∪ {v}) = {w}, Lemma 1.1.1.4 implies

iG(W1 ∪ U ∪ {v} ∪W2) = |W1 ∪ U ∪ {v}|+ dG(W1 ∪ U ∪ {v},W2)− 2.

So, as Gχ is σ2-sparse, dG(W1 ∪U ∪{v},W2) = 0 and W1 ∪U ∪{v}∪W2 is σ2-critical

in Gχ. Therefore κ(G[W1∪U ∪{v}∪W2]) = 1 and G[(W1∪U ∪{v}∪W2)\{w}] is not
connected. As G[W2 \ {w}] is a component of G[(W1 ∪ U ∪ {v} ∪W2) \ {w}] and Gχ

is σ2-cut-sparse, σ2(W2 \ {w}) ≤ 2. However this contradicts the fact that σ2(V ) ≥ 2.

Therefore no such set U can exist.
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Now let us suppose instead that there exist A1, A2 ⊆ V \ {v} such that |A1|, |A2| ≥ 3,

NG(v) ∩A1 = {x, z}, A1 ∩A2 = {w}, iG(A1) = 2|A1| − 3, A2 is σ2-critical in Gχ, and

dG(A1, A2) = 0. If A2 ∩W2 = {w} then Lemma 5.5.1.7 implies dG(A2,W2) = 0 and so

Lemma 5.5.1.5 implies A2 ∪W2 is σ2-critical in Gχ. Therefore κ(G[A2 ∪W2]) = 1, and

G[(A2∪W2)\{w}] is not connected. AsG[W2\{w}] is a component ofG[(A2∪W2)\{w}]
and Gχ is σ2-cut-sparse, σ2(W2 \ {w}) ≤ 2. However this contradicts the fact that

σ2(V ) ≥ 2, so we must have |A2 ∩W2| ≥ 2. Therefore, Lemma 5.5.1.6 implies that

A2 ∩W2 is σ2-critical in Gχ. Let C = A2 ∩W2 and note that as σ2(C) = 2, |C| ≥ 4.

As dG(A1,W1) ≥ 1, Lemma 1.1.1.4 implies iG(A1 ∪ W1) ≥ 2|A1 ∪ W1| − 3. So, as

NG(v) ⊆ A1 ∪W1 and σ2(NG[v]) = σ2(NG(v), Lemma 5.5.1.4 implies that iG(A1 ∪
W1) = 2|A1 ∪ W1| − 3. Hence dG(A1,W1) = 1 and A1 ∪ W1 ∪ {v} is σ2-critical in

Gχ. So, as C ∩ A1 = {w} = C ∩W1 and v /∈ C, κ(G[A1 ∪W1 ∪ {v} ∪ C]) = 1 and

G[(A1 ∪ W1 ∪ {v} ∪ C) \ {w}] is not connected. As G[C \ {w}] is a component of

G[(A1 ∪W1 ∪ {v} ∪C) \ {w}] and Gχ is σ2-cut-sparse, σ2(C \ {w}) ≤ 2. However this

contradicts the fact that σ2(V ) ≥ 2. Therefore such sets A1 and A2 can not both exist.

So either W1 and W2 exist in which case, by the above, Lemma 5.5.2.2 and Lemma

5.5.3.5 together imply the (2, 1)-VL-reduction of Gχ at v adding xy is σ2-cut-sparse or

W1 and W2 do not both exist in which case Lemma 5.5.2.2 and Lemma 5.5.3.5 together

imply the (2, 1)-VL-reduction of Gχ at v adding xz is σ2-cut-sparse.

If iG(NG(v)) = 0 then F = {xy, xz, yz}. By Lemma 5.5.2.2 we may suppose, without

loss of generality since σ2(NG(v)) = 3, that there does not exist W ⊆ V \ {v} such that

W is σ2-critical in Gχ and W ∩NG(v) = {x, y}. Let us suppose instead that there exist

W1,W2 ⊆ V \ {v} such that |W1|, |W2| ≥ 3, NG(v) ∩W1 = {x, y}, W1 ∩W2 = {w},
iG(W1) = 2|W1| − 3, W2 is σ2-critical in Gχ, and dG(W1,W2) = 0. We now have two

cases to consider.

Firstly, suppose there exist A,B ⊆ V \{v} such that A∩NG(v) = {x, z}, B∩NG(v) =

{y, z}, and A and B are σ2-critical in Gχ. As NG(v) ⊆ A ∪ B and σ2(NG(v)) =

σ2(NG[v]), Lemma 5.5.1.4 implies A∪B is not σ2-critical in Gχ. Consequently, Lemma

5.5.1.6 implies A ∩ B = {z} and Lemma 5.5.1.7 implies dG(A,B) = 0. As A ∩ B =
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{z} and σ2(V ) = 2, max{σ2(A), σ2(B)} = 3 and min{σ2(A), σ2(B)} = σ2(A ∪ B).

Therefore Lemma 5.5.1.5 implies iG(A ∪B) = 2|A ∪B| − (σ2(A ∪B) + 1).

As NG(v)∩((A∪B)∩W1) = {x, y} and there does not existW ⊆ V \{v} such thatW is

σ2-critical in Gχ andW∩NG(v) = {x, y}, iG((A∪B)∩W1) ≤ 2|(A∪B)∩W1|−(σ2((A∪
B)∩W1)+ 1). Therefore Lemma 5.5.1.5 implies iG(A∪B ∪W1) ≥ 2|A∪B ∪W1| − 3.

Moreover, as Gχ is σ2-sparse and σ2(NG[v]) = σ2(NG(v)) and NG(v) ⊆ A ∪ B ∪W1

it follows that iG(A ∪ B ∪ W1) = 2|A ∪ B ∪ W1| − 3 and dG(A ∪ B,W1) = 0 and

A ∪B ∪W1 ∪ {v} is σ2-critical in Gχ.

If |W2∩ (A∪B∪W1∪{v})| ≥ 2 then Lemma 5.5.1.6 impliesW2∩ (A∪B∪W1∪{v}) is
σ2-critical in Gχ. So, as σ2(A∪B∪W1) = 2 = σ2(W2), |W2∩ (A∪B∪W1∪{v})| ≥ 4

and hence |W2 ∩ ((A ∪ B) \W1)| ≥ 3. As dG(A ∪ B,W1) = 0, Lemma 5.3.1.8 implies

w ∈ A∪B. As A∩B = {z} and dG(A,B) = 0, there exists S ∈ {A,B} such that w ∈ S

and |W2∩S| ≥ 2. We may suppose, without loss of generality since σ2(NG(v)) = 3 that

w ∈ A and |A ∩W2| ≥ 2.

As w ∈ A, |A ∩W1| ≥ 2 and so Lemma 5.5.1.5 implies iG(A ∪W1) ≥ 2|A ∪W1| − 3.

As Gχ is σ2-sparse and σ2(NG[v]) = σ2(NG(v)) and NG(v) ⊆ A ∪W1, Lemma 5.5.1.4

implies iG(A ∪W1) = 2|A ∪W1| − 3 and therefore A ∩W1 is σ2-critical in Gχ. Now,

Lemma 5.5.1.5 implies iG((W1 ∩A)∪W2) = 2|(W1 ∩A)∪W2| − 2 + dG(W1 ∩A,W2).

So, as Gχ is σ2-sparse, (W1 ∩ A) ∪W2 is σ2-critical in Gχ and dG(W1 ∩ A,W2) = 0.

Moreover, κ(G[(W1 ∩ U) ∪W2]) = 1, and G[((W1 ∩A) ∪W2) \ {w}] is not connected.
As G[W2 \ {w}] is a component of G[((W1 ∩ A) ∪ W2) \ {w}] and Gχ is σ2-cut-

sparse, σ2(W2 \ {w}) ≤ 2. However this contradicts the fact that σ2(V ) ≥ 2, so

we must have that W2 ∩ (W1 ∪ A ∪ B ∪ {v}) = {w}. Now, Lemma 5.5.1.5 implies

iG(W1∪A∪B∪{v}∪W2) = 2|W1∪A∪B∪{v}|+dG(W1∪A∪B∪{v},W2)−2. So, asGχ

is σ2-sparse,W1∪A∪B∪{v}∪W2 is σ2-critical in Gχ and dG(W1∪A∪B∪{v},W2) = 0.

Moreover, κ(G[(W1 ∪A∪B ∪ {v} ∪W2]) = 1, and G[(W1 ∪A∪B ∪ {v} ∪W2) \ {w}]
is not connected. As G[W2 \ {w} is a component of G[(W1 ∪A∪B ∪{v}∪W2) \ {w}]
and Gχ is σ2-cut-sparse, σ2(W2 \ {w}) ≤ 2. However this contradicts the fact that

σ2(V ) ≥ 2. Therefore such sets A and B can not both exist.

160



Chapter 5. Vertex-Labelled Graphs

Alternatively, suppose there exist B1, B2 ⊆ V \ {v} such that |B1|, |B2| ≥ 3, NG(v) ∩
B1 = {y, z}, B1 ∩ B2 = {w}, iG(B1) = 2|B1| − 3, B2 is σ2-critical in Gχ, and

dG(B1, B2) = 0. If B2 ∩W2 = {w} then Lemma 5.5.1.7 implies dG(B2,W2) = 0 and so

Lemma 5.5.1.5 implies B2 ∪W2 is σ2-critical in Gχ. Therefore κ(G[B2 ∪W2]) = 1, and

G[(B2∪W2)\{w}] is not connected. AsG[W2\{w}] is a component ofG[(B2∪W2)\{w}]
and Gχ is σ2-cut-sparse, σ2(W \ {w}) ≤ 2. However this contradicts the fact that

σ2(V ) ≥ 2, so we must have |B2 ∩W2| ≥ 2. Therefore, Lemma 5.5.1.6 implies that

B2 ∩W2 is σ2-critical in Gχ. Let C = B2 ∩W2 and note that as σ2(C) = 2, |C| ≥ 4.

If B1 ∩ W1 is σ2-critical in Gχ then, as σ2(B1 ∩ W1) = 2, |B1 ∩ W1| ≥ 4 and, as

(B1 ∩W1) ∩ C = {w}, Lemma 5.5.1.5 implies (B1 ∩W1) ∪ C is σ2-critical in Gχ and

dG(B1∩W1, C) = 0. Therefore κ(G[(B1∩W1)∪C]) = 1 and G[((B1∩W1)∪C)\{w}]
is not connected. As G[C \ {w}] is a component of G[((B1 ∩W1) ∪ C) \ {w}] and Gχ

is σ2-cut-sparse, σ2(C \ {w}) ≤ 2. However this contradicts the fact that σ2(V ) ≥ 2,

so we must have that B1 ∩ W1 is not σ2-critical in Gχ. Hence, as |B1 ∩ W1| ≥ 2,

iG(B1∩W1) ≤ 2|B1∩W1|−3. AsNG(v) ⊆ B1∪W1 and σ2(NG[v]) = σ2(NG(v)), Lemma

5.5.1.4 implies B1 ∪W1 is not σ2-critical in Gχ and so iG(B1 ∪W1) ≤ 2|B1 ∪W1| − 3.

Therefore Lemma 1.1.1.4 implies

iG(B1 ∪W1) + iG(B1 ∩W1) ≤ (2|B1 ∪W1| − 3) + (2|B1 ∩W1|)− 3

= (2|B1| − 3) + (2|W1| − 3)

= iG(B1) + iG(W1)

= iG(B1 ∪W1) + iG(B1 ∩W1)− dG(B1,W1).

Consequently, dG(B1,W1) = 0, iG(B1 ∪W1) = 2|B1 ∪W1| − 3, iG(B1 ∩W1) = 2|B1 ∩
W1| − 3, and B1 ∪W1 ∪ {v} is σ2-critical in Gχ.

As (B1 ∪ W1 ∪ {v}) ∩ C = {w}, Lemma 5.5.1.7 implies dG(B1 ∪ W1 ∪ {v}, C) =

0 and so Lemma 5.5.1.5 implies B1 ∪ W1 ∪ {v} ∪ C is σ2-critical in Gχ. Therefore

κ(G[B1 ∪W1 ∪ {v} ∪C]) = 1 and G[(B1 ∪W1 ∪ {v} ∪C) \ {w}] is not connected. As
G[C \ {w}] is a component of G[(B1 ∪W1 ∪ {v} ∪ C) \ {w}] and Gχ is σ2-cut-sparse,

σ2(C \ {w}) ≤ 2. However, this contradicts the fact that σ2(V ) ≥ 2. Therefore such
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sets B1 and B2 can not both exist.

So eitherW1 andW2 exist in which case, by the above, Lemma 5.5.2.2 and Lemma 5.5.3.5

together imply the (2, 1)-VL-reduction of Gχ at v adding xy is σ2-cut-sparse or W1 and

W2 do not both exist in which case Lemma 5.5.2.2 and Lemma 5.5.3.5 together imply

the (2, 1)-VL-reduction of Gχ at v adding xz is σ2-cut-sparse or the (2, 1)-VL-reduction

of Gχ at v adding yz is σ2-cut-sparse.

Lemma 5.5.3.7. Let Gχ be a σ2-cut-sparse labelled graph. If σ2(V ) = 2 and there

exists v ∈ V such that dG(v) = 3 and σ2(NG[v]) = 2 = σ2(NG(v)) then there does not

exist a (2, 1)-VL-reduction of Gχ at v that is σ2-cut-sparse if and only if there does not

exist a (2, 1)-VL-reduction of Gχ at v that is σ2-sparse.

Proof. If there does not exist a (2, 1)-VL-reduction of Gχ at v that is σ2-sparse then

there does not exist a (2, 1)-VL-reduction of Gχ at v that is σ2-cut-sparse. On the other

hand, let us suppose there does not exist a (2, 1)-VL-reduction of Gχ at v that is σ2-cut-

sparse. As dG(v) = 3, |V | ≥ 4 so we set {w} = {u ∈ V (G) : σ2(V \ {u}) > σ2(V )}.
As σ2(NG(v)) = 2, w ∈ NG(v) so let NG(v) = {w, x, y}. Define H to be the complete

graph with vertex set NG(v), and let F = E(H) \ E. We proceed by considering

iG(NG(v)). If iG(NG(v)) = 3 then Lemma 5.5.2.3 implies there does not exist a (2, 1)-

VL-reduction of Gχ at v that is σ2-sparse.

If iG(NG(v)) = 2 then let F = {e}. Suppose there exist W1,W2 ⊆ V \ {v} such that

|W1|, |W2| ≥ 3, NG(v)∩W1 = {endpoints of e}, W1∩W2 = {w}, iG(W1) = 2|W1|−3,

W2 is σ2-critical in Gχ, and dG(W1,W2) = 0. We may suppose, without loss of generality

since σ2(NG(v)) = 2 = σ2(V ), that e = wx. As wy, xy ∈ E, and dG(W1,W2) = 0,

y /∈ W2. Lemma 1.1.1.4 implies

iG(W1 ∪W2 ∪ {v, y}) = iG(W1 ∪W2) + iG({v, y}) + dG({v, y},W1 ∪W2)

≥ (2|W1 ∪W2| − 3) + 5

= 2|W1 ∪W2 ∪ {v, y}| − 2.
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As Gχ is σ2-sparse it follows that dG({v, y},W1 ∪W2) = 4 and W1 ∪W2 ∪ {v, y} is

σ2-critical in Gχ. Moreover, κ(G[W1∪W2∪{v, y}]) = 1 and G[(W1∪W2∪{v, y})\{w}]
is not connected. As G[W2\{w}] is a component of G[(W1∪W2∪{v, y})\{w}] and Gχ

is σ2-cut-sparse, σ2(W2 \ {w}) ≤ 2. However, this contradicts the fact that σ2(V ) ≥ 2.

Therefore such sets W1 and W2 can not both exist. Lemma 5.5.3.5 now implies that

there does not exist a (2, 1)-VL-reduction of Gχ at v that is σ2-sparse.

If iG(NG(v)) = 1 then let F = {e1, e2}, so V (G[F ]) = NG(v). By Lemma 5.5.2.3 we

may suppose, without loss of generality since σ2(NG(v)) = 2 = σ2(V ), that wx ∈ F

and there does not exist W ⊆ V \ {v} such that W is σ2-critical in Gχ and W ∩
NG(v) = {w, x}. Let us suppose instead that there exist W1,W2 ⊆ V \ {v} such that

|W1|, |W2| ≥ 3, NG(v) ∩W1 = {w, x}, W1 ∩W2 = {w}, iG(W1) = 2|W1| − 3, W2 is

σ2-critical in Gχ, and dG(W1,W2) = 0. We now have three cases to consider.

Firstly, suppose F = {wx, xy}. Suppose there exists U ⊆ V \{v} such that U∩NG(v) =

{x, y} and U is σ2-critical in Gχ. Then W1 ∩ U ̸= ∅ and Lemma 1.1.1.4 implies

iG(W1 ∪ U) = iG(W1) + iG(U) + dG(W1, U)− iG(W1 ∩ U)

≥ 2(|W1|+ |U |) + 1− (3 + σ2(U) + iG(W1 ∩ U)

= 2|W1 ∪ U |+ 2|W1 ∩ U | − (2 + σ2(U) + iG(W1 ∩ U)).

If |W1∩U | = 1 then σ2(U) = 3 and iG(W1∩U) = 2|W1∩U |−2, so iG(W1∪U) ≥ 2|W1∪
U |−3. If |W1∩U | ≥ 2 then, as Gχ is σ2-sparse, iG(W1∩U) ≤ 2|W1∩U |−σ2(W1∩U)
and hence Lemma 5.3.1.7 implies iG(W1 ∪ U) ≥ 2|W1 ∪ U | − 3. So, regardless of

|W1∩U |, as NG(v) ⊆ W1∪U and σ2(NG[v]) = σ2(NG(v)) and Gχ is σ2-sparse, Lemma

5.5.1.4 implies W1 ∪U is not σ2-critical in Gχ. Therefore iG(W1 ∪U) = 2|W1 ∪U | − 3,

dG(W1, U) = 1, and W1 ∪ U ∪ {v} is σ2-critical in Gχ.

If |W2∩(W1∪U∪{v})| ≥ 2 then Lemma 5.5.1.6 impliesW2∩(W1∪U∪{v}) is σ2-critical
in Gχ and, as σ2(W1 ∪ U ∪ {v}) = 2 = σ2(W2), |W2 ∩ (W1 ∪ U ∪ {v})| ≥ 4. Hence

|W2∩(U\W1)| ≥ 3. As dG(W1, U) = 1 and w /∈ U we have that dG[W2∩(W1∪U∪{v})](w) ≤
1. However this contradicts Lemma 5.3.1.8, so we must haveW2∩(W1∪U∪{v}) = {w}.
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As W2 ∩ (W1 ∪ U ∪ {v}) = {w}, Lemma 1.1.1.4 implies

iG(W1 ∪ U ∪ {v} ∪W2) = |W1 ∪ U ∪ {v}|+ dG(W1 ∪ U ∪ {v},W2)− 2.

So, as Gχ is σ2-sparse, dG(W1 ∪U ∪{v},W2) = 0 and W1 ∪U ∪{v}∪W2 is σ2-critical

in Gχ. Therefore κ(G[W1∪U ∪{v}∪W2]) = 1 and G[(W1∪U ∪{v}∪W2)\{w}] is not
connected. As G[W2 \ {w}] is a component of G[(W1 ∪ U ∪ {v} ∪W2) \ {w}] and Gχ

is σ2-cut-sparse, σ2(W2 \ {w}) ≤ 2. However this contradicts the fact that σ2(V ) ≥ 2.

Therefore no such set U can exist.

So either W1 and W2 exist in which case, by above, Lemma 5.5.3.5 and Lemma 5.5.2.1

together imply that the (2, 1)-VL-reduction of Gχ at v adding xy is σ2-cut-sparse, or W1

andW2 do not exist in which case Lemma 5.5.3.5 and Lemma 5.5.2.1 together imply that

the (2, 1)-VL-reduction of Gχ at v adding wx is σ2-cut-sparse. Either way we contradict

that there does not exist a (2, 1)-VL-reduction of Gχ at v that is σ2-cut-sparse.

On the other hand, suppose F = {wx,wy}. Then two cases remain to be considered.

Firstly, suppose there exists U ⊆ V \ {v} such that U ∩ NG(v) = {w, y} and U is

σ2-critical in Gχ. Then W1 ∩ U ̸= ∅ and Lemma 1.1.1.4 implies

iG(W1 ∪ U) = iG(W1) + iG(U) + dG(W1, U)− iG(W1 ∩ U)

≥ 2(|W1|+ |U |) + 1− (3 + 2 + iG(W1 ∩ U)

= 2|W1 ∪ U |+ 2|W1 ∩ U | − (4 + iG(W1 ∩ U)).

If |W1∩U | = 1 then iG(W1∪U) ≥ 2|W1∪U |−2. If |W1∩U | ≥ 2 then σ2(W1∩U) = 2

and iG(W1 ∩ U) ≤ 2|W1 ∩ U | − 2, so iG(W1 ∪ U) ≥ 2|W1 ∪ U | − 2. So, regardless

of |W1 ∩ U |, as Gχ is σ2-sparse we have that W1 ∪ U is σ2-critical in Gχ. However, as

NG(v) ⊆ W1∪U and σ2(NG[v]) = σ2(NG(v)) this contradicts Lemma 5.5.1.4. Therefore

no such set U can exist.

Alternatively, suppose there exist A1, A2 ⊆ V \ {v} such that |A1|, |A2| ≥ 3, NG(v) ∩
A1 = {w, y}, A1 ∩ A2 = {w}, iG(A1) = 2|A1| − 3, A2 is σ2-critical in Gχ, and

dG(A1, A2) = 0. If A2 ∩W2 = {w} then Lemma 5.5.1.7 implies dG(A2,W2) = 0 and so
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Lemma 5.5.1.5 implies A2 ∪W2 is σ2-critical in Gχ. Therefore κ(G[A2 ∪W2]) = 1 and

G[(A2∪W2)\{w}] is not connected. AsG[W2\{w}] is a component ofG[(A2∪W2)\{w}]
and Gχ is σ2-cut-sparse, σ2(W2 \ {w}) ≤ 2. However this contradicts the fact that

σ2(V ) = 2, so we must have |A2 ∩ W2| ≥ 2. Therefore Lemma 5.5.1.6 implies that

A2 ∩W2 is σ2-critical in Gχ. Let C = A2 ∩W2 and note that as σ2(C) = 2, |C| ≥ 4.

As dG(A1,W1) ≥ 1, Lemma 1.1.1.4 implies iG(A1 ∪ W1) ≥ 2|A1 ∪ W1| − 3. So, as

NG(v) ⊆ A1 ∪W1 and σ2(NG[v]) = σ2(NG(v)), Lemma 5.5.1.4 implies that iG(A1 ∪
W1) = 2|A1 ∪ W1| − 3. Hence dG(A1,W1) = 1 and A1 ∪ W1 ∪ {v} is σ2-critical in

Gχ. So, as C ∩ A1 = {w} = C ∩W1 and v /∈ C, κ(G[A1 ∪W1 ∪ {v} ∪ C]) = 1 and

G[(A1 ∪ W1 ∪ {v} ∪ C) \ {w}] is not connected. As G[C \ {w}] is a component of

G[(A1 ∪W1 ∪ {v} ∪C) \ {w} and Gχ is σ2-cut-sparse, σ2(C \ {w}) ≤ 2. However this

contradicts the fact that σ2(V ) = 2. Therefore such sets A1 and A2 can not both exist.

So either W1 and W2 exist in which case, by above, Lemma 5.5.3.5 and Lemma 5.5.2.1

together imply that the (2, 1)-VL-reduction of Gχ at v adding wy is σ2-cut-sparse, orW1

andW2 do not exist in which case Lemma 5.5.3.5 and Lemma 5.5.2.1 together imply that

the (2, 1)-VL-reduction of Gχ at v adding wx is σ2-cut-sparse. Either way we contradict

that there does not exist a (2, 1)-VL-reduction of Gχ at v that is σ2-cut-sparse.

If iG(NG(v)) = 0 then F = {wx,wy, xy}. By Lemma 5.5.2.3 and Lemma 5.5.3.5 as

there does not exist a (2, 1)-VL-reduction of Gχ that is σ2-cut-sparse we may suppose,

without loss of generality since σ2(NG(v)) = 2 = σ2(V ), that there exist W1,W2 ⊆
V \ {v} such that |W1|, |W2| ≥ 3, NG(v) ∩W1 = {w, x}, W1 ∩W2 = {w}, iG(W1) =

2|W1| − 3, W2 is σ2-critical in Gχ, and dG(W1,W2) = 0. Similarly, we may suppose

there exists A ⊆ V \ {v} such that A∩NG(v) = {x, y} and A is σ2-critical in Gχ. Note

that σ2(A) = 3. We now have two cases to consider.

Firstly, suppose there exists B ⊆ V \ {v} such that B ∩ NG(v) = {w, y} and B is
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σ2-critical in Gχ. Note that σ2(B) = 2. Then B ∩W1 ̸= ∅ and Lemma 1.1.1.4 implies

iG(B ∪W1) = iG(B) + iG(W1) + dG(B,W1)− iG(B ∩W1)

≥ (2|B| − 2) + (2|W1| − 3)− (2|B ∩W1| − 2)

= 2|B ∪W1| − 3.

As NG(v) ⊆ B ∪W1 and σ2(NG[v]) = σ2(NG(v)), Lemma 5.5.1.4 implies B ∪W1 is

not σ2-critical in Gχ, so iG(B ∪ W1) = 2|B ∪ W1| − 3. Hence dG(B,W1) = 0 and

iG(B ∩W1) = 2|B ∩W1| − 2. As |(B ∪W1) ∩ A| ≥ 2, another application of Lemma

1.1.1.4 give us that

iG(B ∪W1 ∪ A) = iG(B ∪W1) + iG(A) + dG(B ∪W1, A)− iG((B ∪W1) ∩ A)

≥ (2|B ∪W1| − 3) + 2|A| − 3− (2|(B ∪W1) ∩ A| − 3)

= 2|B ∪W1 ∪ A| − 3.

Similarly to above, as NG(v) ⊆ B∪W1∪A and σ2(NG[v]) = σ2(NG(v)), Lemma 5.5.1.4

implies B ∪W1 ∪ A is not σ2-critical in Gχ, so iG(B ∪W1 ∪ A) = 2|B ∪W1 ∪ A| − 3.

Hence dG(B ∪W1, A) = 0 and (B ∪W1) ∩ A is σ2-critical in Gχ.

As σ2(NG(v)) ⊆ A∪B and σ2(NG[v]) = σ2(NG(v)), Lemma 5.5.1.4 implies A∪B is not

σ2-critical in Gχ. Consequently, Lemma 5.5.1.6 implies A∩B = {y} and Lemma 5.5.1.7

implies dG(A,B) = 0. Therefore Lemma 5.5.1.5 implies iG(A ∪ B) = 2|A ∪ B| − 3.

So (B ∪W1) ∩ A is σ2-critical in Gχ and B ∩ A = {y}. Therefore (B ∪W1) ∩ A =

{y} ∪ (W1 ∩ A) and, as xy /∈ E, |(B ∪W1) ∩ B| ≥ 4 which implies |W1 ∩ A| ≥ 3. As

dG(B,W1) = 0, it follows that dG[(B∪W1)∩A](y) = 0. However this contradicts Lemma

5.3.1.8. Therefore no such set B can exist.

Alternatively, suppose there exist B1, B2 ⊆ V \ {v} such that |B1|, |B2| ≥ 3, NG(v) ∩
B1 = {w, y}, B1 ∩ B2 = {w}, iG(B1) = 2|B1| − 3, B2 is σ2-critical in Gχ, and

dG(B1, B2) = 0. If B2 ∩W2 = {w} then Lemma 5.5.1.7 implies dG(B2,W2) = 0 and so

Lemma 5.5.1.5 implies B2 ∪W2 is σ2-critical in Gχ. Therefore κ(G[B2 ∪W2]) = 1 and

G[(B2∪W2)\{w}] is not connected. AsG[W2\{w}] is a component ofG[(B2∪W2)\{w}]
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and Gχ is σ2-cut-sparse, σ2(W2 \ {w}) ≤ 2. However this contradicts the fact that

σ2(V ) = 2, so we must have |B2 ∩ W2| ≥ 2. Therefore Lemma 5.5.1.6 implies that

B2 ∩W2 is σ2-critical in Gχ. Let C = B2 ∩W2 and note that as σ2(C) = 2, |C| ≥ 4.

If A ∩ (B1 ∪W1) is σ2-critical in Gχ then, as xy /∈ E, |A ∩ (B1 ∪W1)| ≥ 4. So we

may suppose, without loss of generality since σ2(NG(v)) = 2, that |A ∩ B1| ≥ 2. As

NG(v) ⊆ A ∪ B1 and σ2(NG[v]) = σ2(NG(v)), Lemma 5.5.1.4 implies A ∪ B1 is not

σ2-critical in Gχ. Therefore iG(A ∪B1) ≤ 2|A ∪B1| − 3. So, Lemma 1.1.1.4 implies

2|A| − 3 + 2|B1| − 3 + dG(A,B1) = iG(A ∪B1) + iG(A ∩B1)

≤ (2|A ∪B1| − 3) + (2|A ∩B1| − 3)

= (2|A| − 3) + (2|B1| − 3).

Therefore, as Gχ is σ2-sparse, dG(A,B1) = 0 and iG(A ∪ B1) = 2|A ∪ B1| − 3 and

A ∪B1 ∪ {v} is σ2-critical in Gχ.

As A ∪ B1 ∪ {v} and C are σ2-critical in Gχ and (A ∪ B1 ∪ {v}) ∩ C ̸= ∅, and Gχ is

σ2-sparse, Lemma 1.1.1.4 implies

(2|A ∪B1 ∪ {v}| − 2) + (2|C| − 2) = iG(A ∪B1 ∪ {v} ∪ C)

+ iG((A ∪B1 ∪ {v}) ∩ C)

≤ (2|A ∪B1 ∪ {v} ∪ C| − 2)

+ (2|(A ∪B1 ∪ {v}) ∩ C| − 2)

= (2|A ∪B1 ∪ {v}| − 2) + (2|C| − 2).

Therefore dG(A ∪B1 ∪ {v}, C) = 0, A ∪B1 ∪ {v} ∪C is σ2-critical in Gχ and iG((A ∪
B1 ∪ {v}) ∩ C) = (2|(A ∪B1 ∪ {v}) ∩ C| − 2).

If |(A ∪ B1 ∪ {v}) ∩ C| ≥ 2 then (A ∪ B1 ∪ {v}) ∩ C is σ2-critical in Gχ and |(A ∪
B1 ∪ {v}) ∩ C| ≥ 4. Now, (A ∪ B1 ∪ {v}) ∩ C = (A ∩ C) ∪ {w}, so |A ∩ C| ≥ 3 and

hence Lemma 5.5.1.6 implies dG(A,C) = 0. It follows that dG[(A∪B1∪{v})∩C](w) = 0.

However this contradicts Lemma 5.3.1.8. So (A ∪ B1 ∪ {v}) ∩ C = {w}. Therefore
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κ(G[A ∪ B1 ∪ {v} ∪ C]) = 1 and G[(A ∪ B1 ∪ {v} ∪ C) \ {w}] is not connected.

As G[C \ {w}] is a component of G[(A ∪ B1 ∪ {v} ∪ C) \ {w}] and Gχ is σ2-cut-

sparse, σ2(C \ {w}) ≤ 2. However this contradicts the fact that σ2(V ) = 2. Therefore

A ∩ (B1 ∪W1) is not σ2-critical in Gχ, so iG(A ∩ (B1 ∪W1)) ≤ 2|A ∩ (B1 ∪W1)| − 4.

As NG(v) ⊆ B1 ∪W1 and σ2(NG[v]) = σ2(NG(v)), Lemma 5.5.1.4 implies B1 ∪W1 is

not σ2-critical in Gχ. Therefore iG(B1 ∪W1) ≤ 2|B1 ∪W1| − 3. Also, Lemma 1.1.1.4

gives us that

iG(B1 ∪W1) = iG(B1) + iG(W1) + dG(B1,W1)− iG(B1 ∩W1)

≥ 2(|B1|+ |W1|)− (6 + iG(B1 ∩W1)

≥ 2|B1 ∪W1| − 4.

So 2|B1 ∪W1| − 4 ≤ iG(B1 ∪W1) ≤ 2|B1 ∪W1| − 3.

AsNG(v) ⊆ A∪B1∪W1 and σ2(NG[v]) = σ2(NG(v)), Lemma 5.5.1.4 implies A∪B1∪W1

is not σ2-critical in Gχ. Therefore iG(A ∪ B1 ∪W1) ≤ 2|B1 ∪W1| − 2. Combining the

information we have so far, Lemma 1.1.1.4 implies

(2|A| − 3) + (2|B1 ∪W1| − 4) = (2|A ∪B1 ∪W1| − 3) + (2|A ∩ (B1 ∪W1)| − 4)

≥ iG(A ∪B1 ∪W1) + iG(A ∩ (B1 ∪W1))

≥ (2|A| − 3) + (2|B1 ∪W1| − 4) + dG(A,B1 ∪W1)

Therefore dG(A,B1 ∪ W1) = 0 and iG(A ∪ B1 ∪ W1) = 2|A ∪ B1 ∪ W1| − 3 and

iG(A∩ (B1 ∪W1)) = 2|A∩ (B1 ∪W1)| − 4 and A∪B1 ∪W1 ∪ {v} is σ2-critical in Gχ.

If |(A∪B1∪W1∪{v})∩C| ≥ 2 then (A∪B1∪W1∪{v})∩C is σ2-critical in Gχ and |(A∪
B1∪W1∪{v})∩C| ≥ 4. Now, (A∪B1∪W1∪{v})∩C = (A∩C)∪{w}, so |A∩C| ≥ 3 and

hence Lemma 5.5.1.6 implies dG(A,C) = 0. It follows that dG[(A∪B1∪W1∪{v})∩C](w) = 0.

However this contradicts Lemma 5.3.1.8. So (A∪B1∪W1∪{v})∩C = {w}. Therefore
κ(G[A ∪ B1 ∪ W1 ∪ {v} ∪ C]) = 1 and G[(A ∪ B1 ∪ W1 ∪ {v} ∪ C) \ {w}] is not

connected. As G[C \ {w}] is a component of G[(A∪B1∪W1∪{v}∪C) \ {w}] and Gχ

is σ2-cut-sparse, σ2(C \ {w}) ≤ 2. However this contradicts the fact that σ2(V ) = 2.
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Therefore such set B1 and B2 can not both exist.

So either W1 and W2 and A exist in which case, by above, Lemma 5.5.3.5 and Lemma

5.5.2.1 together imply that the (2, 1)-VL-reduction of Gχ at v adding wy is σ2-cut-sparse,

or W1 and W2 do not exist in which case Lemma 5.5.3.5 and Lemma 5.5.2.1 together

imply that the (2, 1)-VL-reduction of Gχ at v adding wx is σ2-cut-sparse or A does not

exist in which case Lemma 5.5.3.5 and Lemma 5.5.2.1 together imply that the (2, 1)-

VL-reduction of Gχ at v adding xy is σ2-cut-sparse. Either way we contradict that there

does not exist a (2, 1)-VL-reduction of Gχ at v that is σ2-cut-sparse.

Note that neither of the previous two results say that if a (2, 1)-VL-reduction of a σ2-cut-

sparse graph is σ2-sparse then that (2, 1)-VL-reduction is σ2-cut-sparse. This distinction

is illustrated in Figure 5.6

Lemma 5.5.3.8. Let Gχ be a labelled graph. Suppose that Gχ is σ2-cut-tight and

σ2(V ) = 2. There exists a (2, 0)-VL-reduction or a (2, 1)-VL-reduction of Gχ that is

σ2-cut-tight if and only if |V | ≥ 5.

Proof. Suppose there exists a (2, 0)-VL-reduction or a (2, 1)-VL-reduction of Gχ that

is σ2-cut-tight. This implies ∆(G) ≥ 2, so |V | ≥ 3. As Gχ is σ2-tight and |V | ≥ 3

and σ2(V ) = 2, Lemma 5.3.1.5 and Lemma 5.3.1.6 together imply |E| = S(Gχ, σ2) =

2|V |−2. Theorem 1.1.1.6 now implies |V | ≥ 4, and as there exists a (2, 0)-VL-reduction

or a (2, 1)-VL-reduction of Gχ that is σ2-cut-tight we note that G is not a complete

graph so in fact |V | ≥ 5.

On the other hand suppose that |V | ≥ 5. As σ2(V ) = 2, |{u ∈ V (G) : σ2(V \ {u}) >
σ2(V )}| = 1, so we set {u ∈ V (G) : σ2(V \ {u}) > σ2(V )} = {w}. If δ(G) ̸= 3 then

Lemma 5.3.1.8 implies that δ(G) = 2. Then there exists a (2, 0)-VL-reduction of Gχ and

Lemma 5.5.3.3 implies this is σ2-cut-tight. So we may suppose that δ(G) = 3 then take

v ∈ V such that dG(v) = 3 and σ2(NG[v]) = max{σ2(NG[u]) : u ∈ V and dG(u) = 3}.
As σ2(V ) = 2, σ2(NG[v]) ∈ {2, 3}. If σ2(NG[v]) = 3 then Lemma 5.5.3.6 and Lemma

5.3.2.4 together imply there exists a (2, 1)-VL-reduction of Gχ that is σ2-cut-tight.

If σ2(NG[v]) ̸= 3 then, as σ2(NG[v]) = max{σ2(NG[u]) : u ∈ V and dG(u) = 3},

169



5.5. σ2-Tight Vertex-Labelled Graphs

σ2(NG[u]) = 2 for all u ∈ V such that dG(u) = 3. Let U = {u ∈ V : dG(u) = 3} and

let U ′ = {u ∈ U : σ2(NG(u)) = 2} = U \ {w}. Note that w ∈ NG(u) for all u ∈ U ′, so

dG(w) ≥ |U ′|. As |E| = 2|V | − 2, Theorem 1.1.1.6 implies |U | ≥ 4 and

4|V |−4 =
∑
v∈V

dG(v) ≥ dG(w)+3|U ′|+4(|V |−(|U ′|+1)) = (4|V |−4)+(dG(w)−|U ′|).

Hence dG(w) ≤ |U ′| and so dG(w) = |U ′|. Take u ∈ U ′ and let NG(u) = {w, x, y}. If

xw /∈ E or yw /∈ E then Lemma 5.5.3.7, Lemma 5.5.2.3, and Lemma 5.3.2.4 together

imply there exists a (2, 1)-VL-reduction of Gχ that is σ2-cut-tight. So we may suppose

that {xw, yw} ⊆ E and hence dG(x) = 3 = dG(y). If xy /∈ E then Lemma 5.3.1.8

implies there does not exist U ⊆ V \ {v} such that U ∩ NG(v) = {x, y}, U is σ2-

critical in Gχ and σ2(U) = 3. Then Lemma 5.5.3.7, Lemma 5.5.2.3, and Lemma 5.3.2.4

together imply there exists a (2, 1)-VL-reduction of Gχ that is σ2-cut-tight. If xy ∈ E

then G[NG[u]] ∼= K4. As Gχ is σ2-cut-tight and u was chosen arbitrarily, it follows that

G = G[NG[u]]. However, then |V | = 4 which is a contradiction. So if δ(G) = 3 then

there exists a (2, 1)-VL-reduction of Gχ that is σ2-cut-tight.

We are now able to state and prove the main theorem of this section. This is an analogue

of Proposition 5.4.0.3 where we replace σ1-tight with σ2-cut-tight, although we also have

the additional constraint that σ2(V ) = 2.

Theorem 5.5.3.9. Let Gχ = (V,E)χ be a labelled graph. The following are equivalent:

(i) σ2(V ) = 2 and Gχ is σ2-cut-tight; and

(ii) there exists t ∈ N+ and a sequence a1, . . . , at, with a1 ∼= (K4, ψ), σ1(V (a1)) = 2,

at = Gχ, such that, for all 2 ≤ j ≤ t, aj is a (2, 0)-VL-extension or a (2, 1)-VL-

extension of aj−1 and σ1(aj) = σ1(aj−1).

Proof. Suppose (i) holds, we proceed by induction on |V |. By Lemma 5.5.3.3, for all

s ∈ N such that s ≥ 4, there exists a σ2-cut-tight graph with s vertices. Take n ∈ N
such that n ≥ 4 and suppose that (ii) holds for all σ2-cut-tight graphs with at most n

vertices. Now suppose that |V | = n+1. As |V | ≥ 5, Lemma 5.5.3.8 implies there exists
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a (2, 0)-VL-reduction or (2, 1)-VL-reduction of Gχ that is σ2-cut-tight. Let this labelled

graph be G′
χ′ . As |V (G′)| ≤ n, it follows from our induction hypothesis that there

exists t ∈ N+ and a sequence a1, . . . , at with a1 ∼= (K4, ψ), σ2(V (a1)) = 2, at = G′
χ′ ,

such that, for all 2 ≤ j ≤ t, aj is a (2, 0)-VL-extension or a (2, 1)-VL-extension of

aj−1 and σ1(aj) = σ1(aj−1). As a1 is σ2-cut-tight, repeated applications of Lemma

5.5.3.3 and Lemma 5.5.3.4 imply that G′
χ′ is σ2-cut-tight. As Gχ is σ2-cut-tight, one

more application of Lemma 5.5.3.3 or Lemma 5.5.3.4 implies that σ2(V (G′)) = σ2(V ).

Therefore, a1, . . . , at, Gχ is a sequence of the form claimed. On the other hand, if (ii)

holds then as σ2(V (a1)) = 2 we note that a1 is σ2-cut-tight. Hence repeated applications

of Lemma 5.5.3.3 or Lemma 5.5.3.4 imply that Gχ is σ2-cut-tight.
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Future Research

To finally bring things to a close we conclude with a brief discussion of some of the

possible directions that future research could take. This chapter is organised as to echo

the order of earlier chapters. Some of the ideas put forward are relatively nebulous and

would, one imagines, require a significant investment of time and energy. On the other

hand, we also note a few quirks present in earlier results and contemplate the possibility

of providing comparatively minor optimisations.

6.1 Connected Sparsity Matroids

During Chapter 2 and Chapter 3 we acknowledged that, despite an interest in rigidity

providing some motivation for studying (k, l)-sparse graphs, there were many purely

combinatorial questions about these graphs that could be asked and answered. In Section

2.1 we endeavoured to treat these objects in as great a level of generality as possible.

Typically we were able to answer questions for all k ∈ N+ and a large range of values of

l. One notable exception to this was Lemma 2.1.0.19, where we specified that k ∈ {1, 2}
for reasons discussed in Remark 9. That being said, we did not show that the result

could not be generalised to apply for values of k greater than three, and perhaps even to

arbitrary k ∈ N+. As (k, 1)-extensions of graphs have been widely studied, particularly
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for k ≤ 3 but also for larger values of k, and so it would be nice to know for which values

of k the conclusion of Lemma 2.1.0.19 still holds.

Our next question(s) are also related to graph operations, however this time it is the

more involved 2-sum, 2-cleave, i-join, and i-separation operations (where i ∈ {1, 2, 3})
that could prove fruitful to consider. In Section 2.2, by considering (k, 2k−1)-connected

graphs, we extended earlier work [2, 22] which focused on the particular case of this

where k = 2. Of note was the fact that the 2-sum and 2-cleave operations behaved

well, i.e. preserved the properties of being a (k, 2k− 1)-circuit or (k, 2k− 1)-connected,

for all k ∈ N+. This good behaviour was fundamental to Berg and Jordán’s method of

constructing (2, 3)-circuits and to Jackson and Jordán’s method of constructing (2, 3)-

connected graphs. A natural question to consider is whether these operations could prove

to be similarly useful in allowing us to find a method of constructing (3, 4)-connected,

(4, 7)-connected, or general (k, 2k−1)-connected graphs (or indeed (k, 2k−1)-circuits).

It is plausible that these families of graphs correspond to globally rigid graphs in some

unusual settings.

While the 2-sum and 2-cleave operation were able to be applied to (k, 2k−1)-connected

graphs for arbitrary k ∈ N+, the i-join and i-separation operations appear to be more

closely wedded to the specific setting of (2, 2)-connectivity. However, we note that

Lemma 2.1.0.20 highlights an important distinction between (k, 2k−1)-connected graphs

and (k, l)-connected graphs where k ≤ l ≤ 2k−2. It could be illuminating to investigate

whether graph operations analogous to the i-join and i-separation operations may behave

similarly well for different (k, l)-connected graphs for specific values of k and l. We note

that Lemma 2.1.0.14 only gives a lower bound of two for a κ(G), where G is (k, l)-

connected, for all k ≤ l ≤ 2k−1 so it is possible that 2-vertex-separations could continue

to be present as k gets larger. Also, if G is (k, l)-connected then Lemma 2.1.0.10 gives

us that δ(G) ≥ k+1 and so perhaps repurposing the 3-join and 3-separation operations

as (k + 1)-join and (k + 1)-separation operations could shed some light on these graphs

for larger values of k. An inviting first step could be to consider how these operations,

and other structural results, may be extended to (k, k)-connected graphs or even just to

the (3, 3) case. The final comment we make regarding connected sparsity matroids is to
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observe the only place where the combinatorial purity of the second and third chapters

is disturbed. The proof of Lemma 3.1.0.1 (ii) makes use of a Theorem 1.4.3.8 which

is a result concerning rigid frameworks in two-dimensional non-Euclidean spaces. The

same issue arose in [22, Lemma 5.2]. Rigidity reared its head in other parts of Jackson

and Jordán’s work, for example [22, Lemma 3.9], but in these other cases we were able

to give a purely combinatorial proof of the analogous result (e.g. Lemma 2.1.0.17). If

similar methods are to be employed to better understand these matroids for a variety of

values of k then this issue would need to be addressed. Comparatively little is known

about rigidity of frameworks in higher-dimensional (i.e. larger k value) spaces and so this

could be problematic. It would be satisfying to give a combinatorial proof of this result,

and it would also allow these matroids to be studied with only an indirect relationship to

rigidity which could lead to new insights.

6.2 Rigidity in Normed Spaces

The first, and arguably most obvious, comment to make here is to acknowledge the

fact that the characterisation given in Chapter 4 only concerns analytic (non-Euclidean)

normed spaces. The corresponding characterisation of rigidity in non-Euclidean normed

spaces has no such restriction. A very inviting problem to consider is whether this

restriction to the analytic setting can be loosened and if so then how and by how much.

This feels like a challenging problem, as the various technical details interact in quite

subtle ways as is sometimes evidenced by the wording of results. Note that references

to a completely regular realisation, smooth space, or strictly convex space, may appear

to pop up quite sporadically. There are various results (e.g. Lemma 4.1.2.4) where

the constraints required to allow the proof of that result to work can have a significant

impact further down the line when that result is the primary reason that another result

(e.g. Theorem 4.2.0.6) involves some additional condition.

Another possible direction to take this research would be to consider higher-dimensional

normed spaces. As we have mentioned, relatively little is known concerning higher-

dimensional (global) rigidity. There does not appear to be an obvious reason why con-
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sidering the non-Euclidean setting would prove to be more fruitful, but as this is still a

fairly novel area it is certainly something worth exploring.

6.3 Labelled Graphs and Frameworks on Surfaces

Finally we consider how one may build upon the work from Chapter 5. First and foremost,

as was alluded to in that chapter, we believe that the graphs studied here should prove

to be relevant to studying rigidity of frameworks on non-concentric spheres. This is a

natural extension of earlier work [32] that characterised rigid frameworks on concentric

spheres. We claim that, given Theorem 5.5.3.9, it should be possible to characterise

a particular notion of rigidity in this context. The only labelled graph operations used

are based on the well-understood (2, 0)-extension and (2, 1)-extension operations and this

construction begins from a single labelled graph. Showing that the labelled graph (K4, χ)

is rigid (when χ is such that σ2(V (K4)) = 2) and that the labelled graph operations

preserve rigidity would provide a sufficient condition for a graph to be rigid and it seems

that necessity of these labelled graphs could be confirmed using similar arguments to

those in [32].

Spheres are not the only surface that has been considered from a rigidity perspective,

not even in [32]. Cylinders are also well-understood and some more exotic surfaces have

also been investigated. One possible application of the ideas in Chapter 5 would be to

investigating rigidity of frameworks realised on other formations of surfaces. The notion

of a labelled graph may prove to be very useful and by tweaking the σd-functions it may

be possible to model any (labelled) graphs of interest in a similar manner.

Of course, it may be wise to first confirm that these ideas are as useful in the spherical

setting as seems likely. The combinatorial analysis of Chapter 5 is detailed and would

greatly benefit from be combined with a formal rigidity theoretic motivation rather than

the general description in Section 5.1.
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