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Recent advances in fabrication of two dimensional materials and their moiré heterostructures
have opened up new avenues for realization of ground-state excitonic insulators, where the structure
spontaneously develops a �nite interlayer electronic polarization. We propose and analyze a scheme
where an optically generated intralayer exciton is screened by excitations out of the excitonic in-
sulator to form interlayer polarons. Using Quantum Monte Carlo calculations we �rst determine
the binding energy of the biexciton state composed of inter- and intralayer excitons, which plays a
central role in understanding polaron formation. We describe the excitations out of the ground-state
condensate using BCS theory and use a single interacting-quasiparticle-pair excitation Ansatz to
describe dynamical screening of optical excitations. Our predictions carry the hallmarks of the ex-
citonic insulator excitation spectrum and show how changing the interlayer exciton binding energy
by increasing the layer separation modi�es the optical spectra.

I. INTRODUCTION

An excitonic insulator (EXI) is a phase of matter where
the ground state features bound electron-hole pairs1,2.
This is most easily realized in bilayer structures where
the lowest energy conduction band (CB) state of one
layer is tuned near resonance with the highest energy
valence band (VB) state of the other layer. Introduc-
tion of insulating layers in between the layers suppresses
tunnel coupling, thereby ensuring separate charge con-
servation in the two layers3. Exciton formation corre-
sponds to the binding of electron and hole pairs due
to Coulomb attraction. Due to the aligned dipole mo-
ments, such ground-state excitons are a promising can-
didate to mediate interactions between itinerant elec-
trons (holes) in the CB (VB), providing a platform for
the physics of Bose-Fermi mixtures4�7, potentially sup-
porting superconductivity8�11. Recently, evidence for the
formation of ground-state excitons in bilayer transition
metal dichalcogenides (TMDs) in the absence of a mag-
netic �eld has been reported using capacitance measure-
ments12.

In this Letter, we propose optical spectroscopy as a
probe of excitonic insulators. We particularly focus on an
electric �eld tunable MoS2/hBN/WSe2 heterostructure
where the conduction band (CB) of MoS2 can be tuned
into resonance with the valence band (VB) of WSe2

13.
We assume that an intralayer exciton (X) is injected by
resonant light absorption, which in turn acts as a quan-
tum impurity that can bind to interlayer excitons (IXs)
in the ground state. Polaron spectroscopy has already
proved to be an invaluable tool to characterize many-
body states in TMD mono- and bilayers14�17.

In the limit where the EXI is described by a dilute Bose
gas of IXs, the physics of the mobile impurity physics may
be regarded as a Bose polaron problem. Since the bind-
ing energy between the impurity and the bosons plays a

central role in understanding the polaron spectrum, we
compute the binding energy of this inter-intra layer biex-
citon X-IX by a 4-body di�usion Quantum Monte Carlo
(QMC) calculation. For large interlayer distances, the
biexciton wavefunction and energy approach that of an
intralayer trion (T) loosely bound to a hole in the other
layer.

However, the Bose polaron description does not gener-
ally apply to our system. In the �rst place, for increas-
ing interlayer distances the IX binding energy becomes
comparable to the trion binding energy and the inter-
nal structure of the IX plays a role. Moreover, at larger
chemical potentials, a description of the ground state in
terms of tightly bound, point-like bosons is inadequate,
but rather pairing involves fermions close to the Fermi
surface.

To fully take into account the microscopic fermionic
nature of the system, we model the EXI using the mean-
�eld BCS formalism2,18,19, while treating the intralayer
exciton as a rigid mobile impurity. The polaron spectra
are computed using a generalization of the Chevy Ansatz,
where two interacting fermionic quasiparticles are excited
and scatter o� the mobile impurity. This analysis re-
covers the expectation that the energy of the attractive
polaron at low IX densities is determined by the X-IX
binding energy. Moreover, we �nd that the gap in the
quasiparticle spectrum hampers the transfer of the oscil-
lator strength from the repulsive to the attractive branch.
Interestingly, when the IX binding energy is comparable
to the quasiparticle gap, we predict the emergence of a
third peak, associated with an excited state of the X-IX
complex. Polaron spectroscopy of an EXI carries clear
signatures of interlayer pairing and may provide a direct
estimate of the quasiparticle pair excitation gap. More-
over, potential valley polarization of the EXI13 could be
easily assessed in polarization resolved spectroscopy.

On a technical level, the generalized Ansatz we use
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has been previously implemented in the context of 3D
atomic Fermi super�uids20�22 and has allowed for inter-
polation between di�erent regimes, including the BEC-
BCS crossover for varying densities. To get a better un-
derstanding of the variational subspace, we analyze the
elementary neutral excitations of the EXI; we show that
even though the gapless Goldstone branch is not cap-
tured at the single-excitation level, all other collective
modes, including the ones referred to in the literature
as Higgs23 or Bardasis-Schrie�er24 modes, are well re-
produced. In computing the elementary excitations, we
extend the geometric approach of Refs. 25 and 26 to
BCS theory, where the BCS state is treated as a Gaus-
sian state and the collective modes as �uctuations on the
Gaussian manifold. Moreover, we do not assume con-
tact interactions, but rather work with realistic bilayer
Keldysh27�29 and exciton-electron30 interactions, mark-
ing a key di�erence with respect to atomic super�uids
where interactions are contact-like and the polaron be-
havior was studied as a function of the 3D scattering
length tuned through a Feschbach resonance.

II. FEW-BODY BINDING ENERGIES

Experiments in charge-tunable TMD monolayers have
established that the dominant resonances in the optical
excitation spectra can be identi�ed as attractive and re-
pulsive polarons (AP and RP). In the limit of vanishing
doping, the AP resonance energy approaches that of a
T14. Similarly, since the ground state of the bilayer sys-
tem in the small density BEC regime consists e�ectively
of tightly bound IXs, we expect that the X-IX energy de-
termines the position of the AP resonance. Determining
the binding energies of X, IX, T and X-IX, is therefore key
to understand the optical excitation spectra as a function
of interlayer separation.
We compute the binding energies of di�erent com-

plexes in a MoS2/hBN/WSe2 heterostructure using the
di�usion QMC method as implemented in the casino

package31. In particular, as sketched in Fig. 1a, we cal-
culate the binding energies of the MoS2 X, the IX made
of an electron in MoS2 and a hole in WSe2, the T in
MoS2 and the X-IX. The Hamiltonian whose energy is
minimized to obtain the X-IX complex is given by

H =

4∑
i=1

p2
i

2mi
+ U(r12)− U(r13)− U(r23)−

− V (r14)− V (r24) + V (r34). (1)

The �rst quantization formalism highlights the distin-
guishability of the four particles: here 1 labels the spin-
up electron in MoS2, 2 the spin-down one, 3 the hole in
this same layer and 4 the hole in WSe2 (see sketch in
Fig. 1a). Also, the two dimensional vector pi denotes
the momentum operator of particle i and rij the inter-
particle distance. We adopt the bilayer Keldysh interac-
tion where U, V are the intra- and inter-layer potentials

respectively, which can be most conveniently expressed
in momentum space:

U(q) = V (q)
[
(1 + rWSe2

∗ q)eqd − rWSe2
∗ qe−qd

]
, (2)

V (q) =
2π

q

[
(1 + rWSe2

∗ q)(1 + rMoS2
∗ q)eqd−

− rWSe2
∗ rMoS2

∗ q2e−qd
]−1

. (3)

Here we set e2

4πε0ε
= 1 and use V (q) =

∫
dx e−iqxV (x) for

the Fourier transform; the screening lengths in the two
layers are taken from Ref. 32 and read rMoS2

∗ = 0.76 nm
and rWSe2

∗ = 1.0 nm. We use ε = 4.5 for the dielectric
constant of the hBN environment.
We take m1 = m2 = m3 = 0.55m0 for the CB and VB

masses in MoS2, and m4 = 0.40m0 for the VB in WSe2.
These values match the reduced masses reported in the
quantitative investigation by Goryca et al.

32. We neglect
the less known mass ratio imbalance, having veri�ed that
the binding energies are not very sensitive to it33.
Our calculation is an extension of Refs. 34 and 35 to

a bilayer system; importantly, the trial wavefunctions
decay exponentially at large separations and satisfy the
cusp conditions for the Keldysh potential35. The Jastrow
function includes smoothly truncated polynomial expan-
sions in interparticle distances36.
In the Hamiltonian (1) only the intraband sector of

the (screened) Coulomb operator is included: this im-
plies that only processes which do not change the band
quantum number of particles are allowed. In particular,
electron-hole exchange and inter-valley scattering are ne-
glected. Also, the monolayer bands are considered in
the e�ective mass approximation. Therefore, di�usion
QMC yields the exact ground state of the Hamiltonian
(1). Even though the electron-hole exchange terms do
modify the binding energy of T and X-IX33,35, their con-
tribution should be small as compared to the actual en-
ergy and could be treated perturbatively. Based on that
we expect di�usion QMC calculation to provide a good
estimate of the binding energies.
With the above parameters, for a MoS2 monolayer, we

obtain 217 meV for the X binding energy and 18 meV for
the trion, which are in good agreement with the experi-
mental values in encapsulated samples37.
Figure 1.b shows the calculated energy of the few-

body complexes as a function of the interlayer distance
d, having set as reference to zero the energies of the band
edges. We express d in units of the thickness of a single
hBN layer (L1 = 0.33 nm), and plot X, T, IX,X-IX for
d = 1, 2, 4, . . . , 128 × L1. We note that the MoS2 exci-
ton and trion energies also depend on d, since the WSe2
monolayer contributes to screening. The binding energies
of T and X-IX, extracted from the energies depicted in
Fig. 1b are plotted in Fig. 1.c; here the binding energy Eb
for X-IX is given by Eb = EX+EIX−EX−IX. For large in-
terlayer distances yielding |EX | � |EIX |, the X-IX state
can be described as a strongly bound negatively charged
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FIG. 1. (a) Sketch of the X, IX, T, X-IX complexes in terms of electrons and holes (red and blue circles respectively). For the
X-IX, the labeling in Eq. (1) is illustrated. Energies (b) and binding energies (c) for di�erent complexes and as a function of
the interlayer distance d. These results are the output of QMC calculations with parameters suitable for a MoS2/hBN/WSe2
heterostructure.

intralayer trion T loosely bound to a hole in the WSe2
layer (see SI.B for the probability distribution functions).

III. MANY-BODY MODEL

To analyze optical excitation spectrum in the presence
of an EXI, we assume that the X can be treated as a
point-like quantum impurity with no internal degrees of
freedom. We also assume that IXs are spin-valley po-
larized and a few-layer-thick hBN separates MoS2 and
WSe2 layers, ensuring that there is no electronic moiré
potential. For simplicity, we consider the particle-hole
symmetric case, with equal electron and hole masses
(me = mh = m) and choose equal screening lengths
r∗ ' 0.8 nm and chemical potentials µe = µh = µ.
In practice, µe, µh can be tuned by connecting the two
layers to di�erent reservoirs to form a biased junction
or by applying a normal electric �eld Ez. In a recent
experiment12 both mechanisms have been employed to
overcome the semiconductor band gap. Our theory can
be equally applied to both scenarios.
The total system Hamiltonian is given by

H = Hel +Himp +HW. (4)

Denoting CB and VB electrons respectively as a ≡
ac, b ≡ av, the electronic Hamiltonian reads

Hel =
∑
k

εk(a†kak+bkb
†
k)+

1

2A

∑
kpq

U(q)(a†k+qa
†
p−qapak+

+ bk+qbp−qb
†
pb
†
k)− 1

A

∑
kpq

V (q)a†k+qbp+qb
†
pak (5)

The impurity Hamiltonian is Himp =
∑
q ε
I
qx
†
qxq with

εIq = EX + q2

2M − iγ(q). Here, M = 2m and γ(q) denotes
the momentum-dependent X radiative decay rate.

The general form of HW describing the coupling be-
tween the impurity (X) in MoS2 and the CB and VB
electrons that make up the IX is given by

HW =
1

A

∑
kpq

Wa(q)x†p−qxpa
†
k+qak −Wb(q)x

†
p−qxpbkb

†
k+q.

(6)
To model the exciton-electron scattering, we adopt the
e�ective potential

W̃ (r) =
W0

(r2 + a2X)2
, (7)

which correctly describes the polarization of the exciton
by the electron for r � aX

30,38. We note that the Fourier
transform of W̃ (r) gives W (q) =

∫
d2r W̃ (r)e−iqr =

W0
π
aX
qK1(aXq), with K1 denoting the modi�ed Bessel

function, ensuring W (q → 0)→ π
a2X
W0.

The constant W0 is chosen to ensure that W̃ (r) sup-
ports a single bound trion state with binding energy ∼ 20
meV. Due to the short-ranged nature of the exciton-
electron and exciton-hole interactions, we set Wb = 0
since it describes the interaction between spatially sepa-
rated excitons and holes that have vanishing wavefunc-
tion overlap. Including Wb 6= 0 is straightforward and
we have veri�ed that it does not lead to qualitative
changes39.

IV. BCS-CHEVY APPROACH

Even in the absence of an impurity, �nding the many-
body ground state (GS) of Hel represents a formidable
task. A rich zero temperature phase diagram, which in-
cludes Wigner crystal, electron-hole plasma, exciton and
biexciton condensate phases, has been obtained in QMC
calculations40�42. In this work, we are interested in the
excitonic phase and resort to a BCS variational approach,
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FIG. 2. Polaron spectra as a function of the density for d = L1 (a) and d = 13L1 (b). (c) Slice at n ' 3.5 · 1011cm−2 (cyan
dotted line in (a,b)), to highlight the high visibility of the RP for strong pairing (small d) as well as of the X-IX∗ peak at large
d.

which can interpolate between the Bose-Einstein conden-
sate (BEC) regime, with −2µ close to the IX binding en-
ergy, and the BCS regime at larger µ. This approach has
been applied previously to the excitonic insulator with
Coulomb potential2,3,13,18,19.
To proceed, we introduce fermionic quasiparticle oper-

ators αk and βk de�ned by:

ak = ukαk + vkβk , bk = ukβk − vkαk . (8)

We express the GS as the vacuum of β and the completely
�lled state of α quasiparticles (see also Fig. S2 of SI.C):

α†kαk|EXI〉 = |EXI〉 , βk|EXI〉 = 0. (9)

We have nk ≡ 〈a†kak〉 = 〈bkb†k〉 = u2k, so that the doping
density in each layer is n = 1

A

∑
k nk; in the BEC regime,

n is also the density of IXs. The coe�cients that de�ne
the new fermionic quasiparticles can be written in terms
of the variational parameters θk as uk = sin θk, vk =
cos θk, with the saddle point condition

tan 2θk = −∆k

ξk
, (10)

where ∆k = 1
A

∑
k′ V (k − k′)uk′vk′ , is the gap function

and ξk = εk+2πe2dn− 1
A

∑
k′ U(k−k′)nk′ is the Hartree-

Fock dispersion. Exciting a quasiparticle costs an en-

ergy Ek =
√
ξ2k + ∆2

k, meaning that 〈α†kHelαk〉−〈Hel〉 =

〈βkHelβ
†
k〉 − 〈Hel〉 = Ek.

The analog of the Chevy Ansatz43 is constructed
by dressing the impurity with excited quasiparticle
pairs20,21:

|Ψ〉 =

ψ0x
†
0 +

1

A

∑
kQ

ψk(Q)β†k+Qαkx
†
−Q

 |EXI〉. (11)

The Schrödinger equation restricted to the variational
subspace is then

i∂tψ0 = Wa(0)n ψ0 +
1

A

∑
kQ

〈x0HWβ
†
k+Qαkx

†
−Q〉 ψk(Q) (12)

i∂tψk(Q) = [Ek + Ek+Q + εIQ +Wa(0)n] ψk(Q) +A〈x−Qα†kβk+QHWx
†
0〉 ψ0+

+
∑
k′Q′

〈x−Qα†kβk+Q[Hel −HBCS +HW −Wa(0)n]β†k′+Q′αk′x
†
−Q′〉 ψk′(Q

′). (13)

The explicit expressions of the matrix elements are
given in SI.E. We emphasize that in deriving Eqs. (12)
and (13), we did not linearize the electronic Hamilto-
nian Hel to the Bardeen-Cooper-Schrie�er (BCS) form

HBCS = 〈Hel〉 +
∑
k Ekαkα

†
k +

∑
k Ekβ

†
kβk. As a con-

sequence, interactions between the quasiparticles αk and
βk are captured20. As shown in SI.H, it is evident that
a formalism that neglects quasiparticle interactions, can-
not describe the X-IX bound state. Such an approxi-
mation can be adequate for cold atom problems21, but
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would drastically fail in the system we are analyzing. We
also remark that Eqs. (12) and (13) reduce to a redun-
dant description of the usual single component Fermi po-
laron43�46 when the interlayer Keldysh interactions are
switched o�. In this case one has uk = Θ(kF − k), vk =
Θ(k − kF).
In the Appendix we provide a more detailed discussion

of the advantages and limitations of the Chevy approach.
In particular, the spectrum of the single particle-hole ex-
citation sector of the fermionic system is compared with
the Anderson-Bogoliubov spectrum. The latter is com-
puted treating the BCS state as a Gaussian state and the
collective modes as �uctuations on the Gaussian mani-
fold. It turns out that most of the neutral excitations
modes of the systems are well captured already at the
level of a single particle-hole excitation, including the
Higgs and Bardasis-Schrie�er modes. The Goldstone-like
mode presents instead the main challenge since in this
sector it is gapped and disperses parabolically. However,
in the very low density limit, the gap and the inverse
healing length are much smaller than the X-IX binding
energy and inverse X-IX radius, so that the correction to
the polaron spectra would be small. Finally, we also men-
tion that the collective modes of an EXI in the presence
of weak and static random disorder and contact inter-
actions have been studied in Ref. 47 with perturbative
techniques.

V. RESULTS

We diagonalize the Chevy-Schrödinger equations (12-
13) numerically; when computing the spectral function,
the weight of each eigenmode is given by the quasi-
particle weight |ψ0|2. The line broadening of the bare
X is set to γ(0) = 1 meV for zero exciton momentum
and zero otherwise. In the calculations, we choose the
electron and hole masses to be m = 0.5m0. Details on
the numerical scheme are given in SI.F.
We compute the polaron spectra as a function of nIX

and d as these are the experimentally tunable parame-
ters. For each parameter set we compute the mean-�eld
GS and use the corresponding uk, vk, Ek's in the Chevy-
Schrödinger equations. Since the Fermi polaron regime
is recovered for d→∞, comparing spectra at small and
large d provides insight on the e�ect of pairing.
Many important features can be observed in Fig. 2,

which shows the calculated optical excitation spectra as
a function of n for two extreme values of d, namely d = L1

in (a) and d = 13L1 in (b). In both cases, we �nd that
the principal spectral features consist of an AP branch
that gains in strength and red shifts with increasing nIX ,
while the accompanying RP branch blueshifts, broadens
and loses oscillator strength. It is the small but dis-
cernible deviations that we discuss below that contains
the signatures of EXI.
First, at small IX density (BEC limit) we observe an

AP branch originating from the X-IX bound state. As

FIG. 3. Polaron spectra at the density n ' 2 · 1011, as a
function of the interlayer separation. The X-IX∗ peak lowers
in energy for larger d and gains weight when anti-crossing the
repulsive polaron to disappear in the AP-RP gap for large d.
At large d we are in the Fermi polaron regime and the AP
gets closer and closer to the energy of the monolayer trion
(dashed cyan line). As for the energy of the AP peak, because
of the point-like approximation for X, only the d & 10L1 tail
of the non-monotonic behavior of the X-IX binding energy
in Fig. 1c is recovered. While for the AP energy one should
resort to QMC, the other qualitative features of the spectrum
arise from the properties of the EXI and are expected to be
independent of the point-like approximation (see also SI.I and
SI.J).

we argued above, this resonance is bright and acquires
oscillator strength with increasing density. With the Wa

we used, the binding energy of the trion in the monolayer
limit is around 20 meV, while for the X-IX at d = L1 we
have around 30 meV. We remark that these estimates are
not directly comparable with the more reliable 4-body
QMC computations of Fig. 1.c, since here the X is as-
sumed to be point-like. In particular, when the electron
and hole making up the IX are in close vicinity, there
should be a strong cancellation of the dipole attraction
to the X, contributing to the non-monotonic behavior of
Fig. 1; this cancellation cannot be captured if the exciton
is point-like. The peak of the X-IX cyan points in Fig 1.c
suggests that the rigid approximation becomes reliable
for d & 10L1, where the hole in WSe2 is very spread and
the cancellation mentioned above is negligible. Going
beyond the rigid exciton approximation is an interesting
direction for future research. We stress that, our focus
has been on capturing how elementary excitations out
of EXI modi�es the dressing of X. We expect our model
to qualitatively capture the main features of the polaron
spectrum, while a more detailed description of the im-
purity may introduce some other secondary features and
will account for the non-monotonicity of the AP energy
with d.
Since ET can be directly measured by selectively dop-

ing only the electron layer, the presence of this peak
at EX−IX 6= ET would provide a direct evidence that
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the probe exciton is interacting with the paired IX. On
the other hand, notice that for some interlayer distances
EX−IX ' ET, so one cannot use the inverse argument to
rule out the EXI. It is possible that the small jump in
the AP line measured in48 is indeed due to the slightly
di�erent binding energy of the T and X-IX, though for a
di�erent kind of excitonic insulator.

Another interesting feature, highlighted in Fig. 2.c,
emerges when we compare the RP branch for the two
layer separations: the RP for d = 1L1 remains much
brighter than its d = 13L1 counterpart for nIX ≤
1 × 1012 cm−2. As quantitatively discussed in SI.I, two
facts play together here: �rst, in the limit of strong
IX binding the electronic scattering states are shifted to
higher energies due to the large pairing gap; second, for a
smaller binding energy the oscillator strength transfer oc-
curs for smaller densities. It may be interesting to make
a comparison with polarons on top of an incompressible
state, as recently studied using DMFT in a homobilayer
model49. An even more striking related feature is the
resilience of the RP at d = 1L1 against increasing den-
sity, meaning that the RP branch stays �at and bright
for larger densities at d = 1L1 compared to the d = 13L1

case (Fig. 2.a versus Fig. 2.b, respectively). We demon-
strate in SI.J that this is not an artifact of the large
binding energy at d = 1 induced by the rigid exciton
approximation.

Next we move on to another observation. A trion
state may in principle exist at energy ωT ∼ 2E0 − |ET|,
where in the BEC limit 2E0 = |EIX| is the quasiparticle
gap; this estimate corresponds to breaking up an IX to
build a T plus a free hole. This state is not observed
for small d. Instead, for larger interlayer distance such
that |EIX| . |ET|, a third peak appears in the spectrum,
with sizable oscillator strength as it crosses the RP. The
shift of this peak with d is studied in Fig. 3. Inspec-
tion of the wavefunction (Fig. S5 of SI.G) shows that,
rather than a T plus a free hole, this is an excited 2s IX
bound to the impurity or equivalently a T with a hole
bound in a 2s wave. Notice that, with a realistic choice
of parameters, the �rst excited state of the intralayer
3-body problem lies & 150 meV higher in energy than
the trion ground state30, so that quite generally a third
peak needs to be related to the excitation of the hole in
the other layer. Therefore, the position of this X-IX∗

peak allows for a direct estimate of the quasiparticle gap
2E0 ∼ EX−IX∗−EX−IX. Notice that in the recent exper-
iment of Ref. 12 the IX binding energy is estimated to
be 25 meV, quite comparable to the typical trion bind-
ing energies: this means that the secondary peak may
be observed in existing platforms. Moreover, it entails
that polaron formation for the IXs in12 requires a de-
scription that keeps into account the fermionic nature of
their constituents, like the one provided here.

VI. CONCLUSION AND DISCUSSION

In summary, we used a generalized Chevy Ansatz
[Eq. (11)] to analyze the dressing of an intralayer exciton
by the quasiparticle pair excitations of a ground-state in-
terlayer excitonic insulator. The resulting polaron spec-
tra carry clear signatures of interlayer pairing.

A mean-�eld analysis which takes into account two val-
leys predicts that the interlayer excitonic insulator would
be valley polarized13,50. We have con�rmed that this
prediction remains true for the bilayer Keldysh poten-
tial (see SI.D). The presence of such spontaneous valley
polarization could be detected using circularly polarized
excitation of intralayer excitons: Since binding of inter-
and intralayer excitons that we analyzed is primarily me-
diated through exciton-electron interactions within the
same layer, we expect valley polarization of interlayer ex-
citons with the bound electron in K'-valley, to lead to a
valley-polarized attractive polaron resonance. By means
of polarized polaron spectroscopy on both layers, one can
track the valley polarization of both the electron and the
hole.

A natural extension of our work would be the calcu-
lation of the polaron spectra at �nite temperatures to
demonstrate that optical polaron spectroscopy could be
used to detect the transition from a thermal gas of exci-
tons to a quasi-condensate. Recent experiments demon-
strated that clear polaronic signatures of condensate for-
mation indeed exist in three-dimensional ultracold BECs
tuned across the critical temperature51. Development
of a formalism that goes beyond the zero-temperature
mean-�eld description we used remains an open problem.

Another exciting and timely extension of our formalism
would be to analyze the optical signatures of interlayer
exciton ground states in moiré heterostructures. In ad-
dition to s-wave paired ground-state moiré excitons that
have been experimentally observed48,52, recent theoreti-
cal work proposed the possibility of spontaneous p + ip
exciton formation leading to quantum anomalous Hall
e�ect53�56, or the emergence of fractional quantum Hall
state of excitons57. Here, the use of polaron spectroscopy
may help di�erentiate di�erent competing ground states
in these systems.
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APPENDIX: COLLECTIVE EXCITATIONS AND

CHEVY ANSATZ

For the Fermi polaron, the rationale behind writing the
Chevy Ansatz as a superposition of the impurity times
particle-hole excitations is that the neutral excitations
of a non-interacting Fermi sea are indeed particle-hole
excitations. As we emphasized earlier, this is not the
case for a BCS state: consequently, we will devote this
Section to discuss the elementary excitations of the EXI
and we will prove that the BCS-Chevy Ansatz of Eq. (11)
describes correctly the dressing of the impurity with most

of the neutral excitations of the bath.
The collective excitations on top of an EXI have been

computed in13,23 in the language of time-dependent-
Hartree-Fock theory. Here we give a more geometric
presentation in terms of linearized dynamics within a
manifold of Gaussian states, in the spirit of25,26. In this
approach, the collective excitations can be obtained as
variations of the Gaussian manifold |ψ〉 = Uψ|0〉 :

|ψ〉 = UBCS exp

∑
kQ

ψk(Q)b†k+Qak − ψ
∗
k(Q)a†kbk+Q

 |0〉,
(14)

where we introduced the bare �vacuum� b†kbk|0〉 =
|0〉, ak|0〉 = 0 and the BCS variational ground state is
given by |EXI〉 = UBCS|0〉 with

UBCS = exp

{∑
k

θk(b†kak − a
†
kbk)

}
. (15)

The quasiparticles are the rotated fermionic operators:

(α, β) = UBCS(a, b)U†BCS.
The tangent space to the manifold of Eq. (14) at the

|ψ〉 point is spanned by

|kQ〉ψ ≡ Uψb†k+Qak|0〉. (16)

Since Gaussian states correspond to a Kähler manifold,
the tangent space can be treated as vector space on the
complex �eld26. We note that equivalently, |kQ〉EXI =

β†k+Qαk|EXI〉 .
The dynamics within the Gaussian manifold is ob-

tained by applying the Hamiltonian to the instantaneous
state and projecting the result in the tangent space, in
order to constrain the dynamics to the manifold, i.e.

i∂tψk(Q) = ψ〈kQ|Hel|ψ〉. (17)

These are in general highly nonlinear equations in the
ψ's and we stress that also the projector depends on ψ.
Linearization of these equations yields two contributions:
a normal term stemming from the variation of |ψ〉 and
an anomalous term coming from the linearization of the
projector ψ〈kQ|. The matrix elements associated with
the �rst term are nothing but the linearized Hamiltonian,
i.e. the Hamiltonian in the tangent space.

An equivalent treatment is to write down the La-
grangian associated to the manifold (14) and keep terms
up to O(ψ2), to get

Lel =
∑
kQ

ψ∗k(Q)i∂tψk(Q)−
∑
kpQ

Akp(Q)ψ∗k(Q)ψp(Q)−

− 1

2
Bkp(Q)

[
ψ∗k(Q)ψ∗p(−Q) + ψk(Q)ψp(−Q)

]
(18)

where

Akp(Q) = 〈α†kβk+QHelβ
†
p+Qαp〉 − 〈Hel〉 (19)

is the linearized Hamiltonian and

Bkp(Q) = 〈Helβ
†
k+Qαkβ

†
p−Qαp〉 (20)

gives the anomalous term. It is clear at this point that
this is an equivalent approach to23, where they report the
same Lagrangian (the explicit expression for Bkp(Q) can
be looked up there).
The Euler-Lagrange equations have the bosonic Bo-

goliubov form

i∂t

(
ψk(Q)

ψ∗−k(−Q)

)
=

(
Akp(Q) B−kp(−Q)

−B−kp(−Q) −Akp(Q)

)(
ψp(Q)

ψ∗−p(−Q)

)
,

(21)
where this matrix is unitarily equivalent to

K =

(
0 Akp(Q)− B−kp(−Q)

−Akp(Q)− B−kp(−Q) 0

)
(22)

which is what is used in Ref. 25.
The collective mode frequencies in this approxima-

tion are given by the eigenvectors of K. However, the
corresponding eigenvalues are not to be interpreted as
the wavefunctions of the collective modes in the tangent
space; this can already be understood from the fact that
the dimension of an eigenvector of K is twice the one of
the tangent space. In other words, the collective modes
do not live in the tangent space to the EXI state. In
our opinion, this is particularly clear in the geometric
presentation used here.
In Fig. 4 we study the neutral excitations of the elec-

tronic system using this method, by plotting the resolvent
or density of states (DOS) of the Bogoliubov matrix as a
function of the momentum Q of the collective excitation,
using three di�erent levels of approximation. Notice that
the DOS does not tell anything about the sensitivity of a
mode to a given probe. In particular, in panel (a) we just
diagonalize HBCS in the tangent space and neglect the
interactions between the quasiparticles. In panel (b) we
diagonalize the full Hel in the tangent space, i.e. Akp(Q).
Scattering with these states is precisely what is included
in the Chevy Ansatz in the impurity problem. Finally, in
Fig. 4.c we diagonalize the full matrix of Eq. (21). In this
way we recover a gapless Goldstone branch with acous-
tic dispersion at small momenta, a double branch that in
the BEC limit corresponds to the 2p IX transition and
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FIG. 4. Density of states of the collective modes of momentum Q for d = L1 and n ' 1012 cm−2 in the absence of an impurity. In
(a) the collective modes are computed from HBCS, i.e. for non-interacting quasiparticles, and only the 2-quasiparticle continuum
is correctly reproduced. In (b) instead one diagonalizes A(Q)kp, which expresses the action of Hel in the tangent space to |EXI〉,
and one can see the modes that sometimes are called Higgs and Bardasis-Schrie�er. The more re�ned calculation of panel (c)
is instead based on the linearized equations of motion in the Gaussian manifold and captures the gapless Goldstone branch.
The color scale is logarithmic in the three panels.

in the BCS language is called Bardasis-Schrie�er mode24,
the 2s or Higgs branch23, a few other discrete modes and
�nally the two-quasiparticle continuum. Interesting, the
linearized Hamiltonian Akp(Q) of panel (b) reproduces
most of the DOS features; the Goldstone branch at small
momenta however, is not captured and this approach
yields a parabolic dispersion with a small gap that in-
creases with density. Diagonalizing HBCS instead yields
only the continuum states.

For smaller densities, the gap in the DOS of Akp(Q)
gets very small (not shown); at the same time, in this
limit the acoustic branch can be considered, for all prac-
tical purposes, to be parabolic. Consequently, the Chevy
Ansatz Eq. (11) is exact in the low density limit, provided
that one keeps the interactions between the quasiparti-
cles. For higher densities, instead, it remains an open
problem how much the gapless nature of the Goldstone
branch would a�ect the polaron spectrum.
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