
Hounslow et al. SI-JGS-1 

 

Supplementary information for: Magnetostratigraphy of the Mercia 

Mudstone Group (Devon, UK): Implications for regional relationships and 

chronostratigraphy in the Late Triassic of western Europe. 

 

Mark W. Hounslow and Ramues W. Gallois 

This supplementary information contains the following: 

• Section S1: Additional lithological details of the members and sections, section 

sampling details and detailed logs of the sampling locations (Figs. S1.1 to S1.7 and 

Table S1.1). Inferred sequence stratigraphic boundaries (Table S1.2). 

• Section S2: Magnetic mineralogy details (Figs S2.1 to S2.10) 

• Section S3: Details about the low stability component, stratigraphic distribution of the 

blocking temperatures ranges of the LT and ChRM components (Figs S3.1 to S3.6). 

Demagnetisation diagrams for representative specimens (Figs. S3.7 to S3.9), mean 

directions and reversal tests of formation units in MMG (Table S3.1). 

• Section S4: Summary of the virtual geomagnetic pole (VGP) data in relationship to 

other Triassic poles from stable Europe (Fig. S4.1 and Table S4.1) 

• Section S5. Reference magnetostratigraphic sections and the GPTS-B for the Norian 

and Rhaetian (Figs. S5.1 to S5.4) 

o S5.1 The upper Chinle Group/Fm magnetostratigraphy and U-Pb dates 

▪ S5.1.1. Petrified Forest National Park (PEFO), Arizona (Fig. S5.3) 

▪ S5.1.2. Chama Basin, New Mexico 

▪ S5.1.3 Sangre de Cristo Mountains and Tucumcari Basins, New 

Mexico 

▪ S5.1.4. Construction of the Chinle Fm composite (Fig. S5.4) 

• Supplementary references 

• All the specimen-based data reported here and that from the Otter Sandstone Fm in 

the associated Excel file. 

S1. Section sampling details and lithological logs  

The lower parts of the cliffs are locally partially obscured by landslide debris (main text Fig. 

1), and the uppermost parts comprise vertical cliffs composed of Cretaceous age Upper 

Greensand Formation and Chalk Group sediments that rest unconformably on the MMG. A 
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low easterly dip (2-3°) allows much of the MMG succession to be examined at or a little 

above beach level. The sections can only be accessed at Sidmouth, Salcombe Mouth, Weston 

Mouth, Branscombe Mouth and Seaton (main text Fig. 1). The sections in the highest part of 

the MMG, the Haven Cliff Mudstone Member and the Blue Anchor Formation, crop out east 

of the outfall of the River Axe at Haven Cliff to Culverhole Point. Some of the sections are 

inaccessible at high tide, and some are prone to relatively frequent rock falls and landslides, 

factors which need considering if planning visits. 

 

The sections sampled are: 

A) Sidmouth to Salcombe Mouth (sample code MS; main text Fig. 2; SI Fig. S1.1): This 

section is between the outfall of the River Sid and Salcombe Mouth with the sampling 

extended up the cliff/gully at the Salcombe Mouth end of the section (from MS40 to 

43; Figs. 2; S1.2). This is essentially the section studied by Creer (1955, 1959), 

although our sampling probably extends beyond the 52 m examined by Creer. 

B) Salcombe Mouth to Hook Ebb (sample code MD; main text Fig. 3, SI Figs. S1.2, S1.3): 

The youngest sample is 17.5m below the base of the DMF which was inaccessible 

above Hook Ebb at the time of sampling.  

C) Strangman's Cove (code MW; Fig. 4, SI Figs. S1.3, S1.4): This is the type section of the 

DMF and was sampled by Baranyi et al. (2019) for palynology. The quality and 

extent of the exposure here varies from year to year, so the sampling was done over 

several years between 2000 and 2014, with the later sampling through the base of the 

DMF into the top of the Hook Ebb Mudstone, which had not been exposed in earlier 

years. Initial data showed many magnetozones in the DMF, so later additional 

sampling included many fill-ins, located onto the same logs. Above the DMF are the 

red mudstones of the Littlecombe Shoot Mudstone Mb (top of Fig. 4). These are 

partly decalcified high in the cliff at this locality, so upward sampling was limited 

here. This upper part overlaps with the better preserved MMG at the Littlecombe 

Shoot west section. 

D) Littlecombe Shoot west (sample code ML; lower panels in main text Fig. 5, SI Fig. S1.4): 

At the base of the section, weathered/slipped DMF mudstones are overlain by red 

mudstones of the Littlecombe Shoot Mudstone Mb. The member contains two 

prominent beds of sandstone which act as laterally persistent marker bands in the 

cliffs. 
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E) Littlecombe Shoot east (sample code SH; upper panels in main text Fig. 5, Figs. S1.4, 

S1.5): This short section, in a steep part of the cliff, overlaps with the sandstone beds 

in the top part of the Littlecombe Shoot west section. Between Littlecombe Shoot 

west and Red Rock [SY1984 8807] the lower cliffs are obscured by extensive 

landslide deposits and vegetation. In the absence of evidence for faulting or change of 

bedding dip angle, the gap between the top of the youngest Littlecombe Shoot-east 

exposure and the base of the Red Rock- Branscombe Mouth section is estimated at 15 

m. This is a ~22 m magnetostratigraphic sampling gap to the lowest sample in the 

overlying Red Rock-Branscombe Mouth section. The sampling gaps are clear in the 

detailed logs below. 

F) Red Rock to Branscombe Mouth (code MB; main text Fig. 6, SI Fig. S1.5): Three sub-

sections were sampled covering an interval from 2.5 m above the exposed base of the 

Red Rock Gypsum Mb to 54 m into the Seaton Mudstone Mb (SI Fig. S1.5). Strong 

colour banding allowed sub-sections to be correlated easily. The youngest part of the 

section exposes red mudstones with cm-thick sandstone laminae high in the cliff west 

of Branscombe Mouth, overlain unconformably by the Cretaceous Upper Greensand 

Formation (Fig. 6). 

G) Seaton Cliffs (code SE; main text Fig. 7, SI Fig, S1.6): Samples collected in 2003 from 

two sections in the Seaton Mudstone Mb fall within the Axe Valley Fault Zone at 

Seaton. The section sampled at Seaton (SI Fig. S1.6) was the best exposed succession 

in a group of five fault-bounded blocks that lie within the fault-bounded valley of the 

River Axe. Most of the successions within these fault blocks are poorly exposed due 

to landslides. Seismic-reflection surveys across the valley indicate that both the Axe 

Valley boundary faults downthrow the top of the DMF ~100 m to the west (Edwards 

and Gallois 2004 fig. 6). To the west of the sampled section, up to a maximum of 40 

m of Seaton Mudstone (older than the sampled section) is poorly exposed within the 

valley, and although some of the lithologies are like those in the Branscombe section 

(SI Fig. S1.5), the Red Rock Gypsum is not exposed. To the east of the sampled 

section, up to a maximum of 40 m of partially exposed Seaton Mudstone is 

lithologically different from that exposed in Haven Cliff. The regional east-directed 

dip of ~2° is maintained throughout these easterly sections which suggests that they 

are younger than the sampled section. Neither the Haven Cliff Mudstone Mb nor the 

BAF are exposed in the Axe valley fault system. These factors, and the fact that 

marker-bed correlation cannot be made between the Seaton sections and those 
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outcrops to the west of the town at Branscombe Mouth or east in the Haven Cliff 

section, suggest that the sampled Seaton section likely falls between the top and base 

of the sampled sections west and east of the town. Estimates of the thicknesses of the 

successions exposed in the individual fault blocks suggests that the sampled section 

represents ~25% of the total Seaton Mudstone Mb in the fault blocks. At the time of 

writing, these sections are now in a poorer and less accessible condition than when 

sampled, due to a combination of landslides and sea-defence works. 

H) Haven Cliff (code HC, main text Fig. 8, SI Fig. S1.7). This covers the upper part of the 

Branscombe Mudstone Fm and most of the Blue Anchor Fm (BAF), although an 

additional ~13 m from the top of the BAF was not sampled (Fig S1.7). This section 

was also sampled in a second field season to refine polarity boundary positions. 

 



Figure S1.1. Sid outfall (Sidmouth) [SY 1290 8733] to Salcombe Mouth [SY 1462 8765].  Arrows indicate the sample number (MS). The OSS codes 
relate to the samples of Hounslow & Mcintosh (2003). See Fig. S1.6 for key. Not shown on this log are MS55, MS56 at 4.45 m and 9.67m respectively below 
the base of the MMG. MS56 is 0.23m below OSS3 measured by Hounslow & McIntosh (2003).
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Figure S1.2. Salcombe Mouth [SY 1462 8765] to Hook Ebb [SY 1566 8776] section (MD samples). The MS samples 
belong to the Sidmouth to Salcombe Mouth section. 
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Figure S1.3. The upper part of the Salcombe Mouth -Hook Ebb section Hook Ebb [SY 1566 8776] (MD samples), and lower and mid 
part of the Strangeman's Cove (MW sample codes, [SY 1691 8793] section. 
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Fig. S1.4. The upper part of the Strangeman's Cove section (MW sample codes [SY 1691 8793]) and the Littlecombe 

Shoot sections (ML and SH sample codes) [SY 1828 8815]. 
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Fig. S1.5 The top-part of the Littlecombe Shoot section (SH sample codes) and the Branscombe Mouth section (MB sample codes). 

Red Rock [SY 1984 8807 sample MB40] to Branscombe [SY 2029 8815, sample MB16]. 
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Figure S1.7. Haven Cliff [SY 2565 8972 to SY 2730 8936].  

1:100 scale when printed in A3 format
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Supplementary Table S1.1. Lithology of the lithostratigraphic units of the sub-divided Mercia Mudstone Group. 1 of Sidmouth Mudstone Formation, 2 of 

Branscombe Mudstone Formation. 

Unit name  Lithology/ defined location 

Blue Anchor Formation Interbedded grey, green and rarely red calcitic and dolomitic mudstones.  
2Haven Cliff Mudstone Mb Interbedded green and red dolomitic and calcitic mudstones, with occasional siltstones (the 'variegated marls' of older 

usage). 
2Seaton Mudstone Mb Orange-red and occasionally green calcitic and dolomitic mudstones and occasional thin siltstones. 
2Red Rock Gypsum Mb Gypsum-cemented orange-red mudstone, with commonly developed mud breccia texture 
2Littlecombe Shoot Mudstone 

Mb 

Orange red mudstones with several prominent sandstone horizons and occasional green siltstone horizons. 

Dunscombe Mudstone Fm 

(DMF) 

Interbedded pale to dark grey, pale green, dark reddish brown to purple and orange red calcareous mudstones. Also has 

well-developed thin white siltstones and silty sandstones. Some mudflake conglomerates are also present. Solution 

breccias indicate thick former halite and gypsum deposits. 
1Little Weston Mudstone Mb Interbedded orange red and dark red dolomitic and calcitic mudstones, with extensive gypsum seams and veins 
1Hook Ebb Mudstone Mb Orange red dolomitic and calcitic mudstones, with occasional green mudstone and siltstone bands, and common 

horizons of gypsum seams and veins 
1Salcombe Mouth Siltstone Mb Orange red dolomitic and calcitic mudstones, with several thick beds of orange-red siltstone. 
1Salcombe Hill Mudstone Mb Orange red dolomitic and calcitic mudstones, with occasional thin green mudstone and siltstone bands, and layers of 

gypsum nodules.  
1Sid Mudstone Mb Orange red dolomitic and calcitic mudstones, with occasional thin green mudstone and siltstone bands. 

Pennington Point Mb 

(of Otter Sandstone Fm) 

Interbedded orange-red mudstones and sheet-flood, red silty sandstones. Characterised from the underlying Otter 

Sandstone by the absence of calcrete conglomerates and the development of large to small sandstone and mudstone 

filled channels. 
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Supplementary Table S1.2. Location and description of inferred sequence stratigraphic boundaries in the upper part of the Otter Sandstone Formation and the 

Mercia Mudstone Group from the Devon coast. These placements utilise principally the clastic playa model of Talbot et al. (1994) and Vollmer et al. (2008), 

as also shown in fig. 16.13 of Hounslow et al. (2012). The boundaries are organised base to top= oldest to youngest. 

Fm/Mb location Type [metre 

level] 

Characteristics, sources and associated samples 

Base of Haven Cliff MM SB/ts [ca. 455, -

20.1A] 

Fig. 15. Green Marl with intervening sandstone layer- the base of which is prominent juncture between the red 

mudstones below and overlying increasingly frequent green and grey mudstones. 

High gamma pick in middle 

of the Seaton MM 

mfs [ca 382] Fig. 15. This high gamma pick can be correlated across Wessex Basin (Galllois 2003; Newell 2018b), and probably 

corresponds to an interval of black mudstone layers in (low tide) beach-outcrops below the sampled Seaton Section (i.e. 

within the mid parts of the largely unseen SS11r; Fig. 14) 

Mid Red Rock Gypsum Mb mfs [ca. 316] Fig. 15. This marker can be recognized throughout the Wessex Basin (Gallois 2003), and probably into the Worcester 

Basin also (Newell 2018b).  

Base of Littlecombe Shoot 

MM 

SB/ts [221.6] Figs. 15, 16. Dolostone overlain by a thin dark grey mudstone (MW42 sample, WE205, and immediately underlying 

WE207, 208 of Baranyi et al. 2019). 

Dunscombe Mudstone Fm mfs [220.6] Fig. 16. Complex of a dolostone with immediately overlying thin grey mudstone layers interbedded in red mudstone 

Dunscombe Mudstone Fm mfs [210] Fig. 16. Dolostone with interbedded dark grey mudstones, with some brecciation (sample WE305, of Baranyi et al. 

2019). Bed L of Gallois and Porter (2006). 

Dunscombe Mudstone Fm ts [208.4] Fig. 16. Dark grey dolostone with a gritty erosive base, Bed H of Gallois and Porter (2006) (sample MW44 and WE301 

of Baranyi et al. 2019). 

Dunscombe Mudstone Fm mfs [205.9] Fig. 16. Muddy grey to green dolostone, immediately overlying green mudstone with thin grey mudstone layers 

(samples WE103, WE110, of Baranyi et al. 2019). Bed G of Gallois and Porter (2006). 

Dunscombe Mudstone Fm SB [194.6] Figs. 15, 16, Down-cutting base of the Lincombe Sandstone, marked by distinct trace fossil assemblage (Porter and 

Gallois 2008). Base of bed C of Gallois and Porter (2006). Immediately underlying are samples WE106, WE105 of 

Baranyi et al. (2019). 

Base of Dunscombe 

Mudstone Fm 

mfs [186] Fig. 16. Laminated grey green mudstone with thin dark grey mudstone layers (sample WE003 of Baranyi et al. (2019). 

Little Weston MM SB [180.5] Fig. 16, purple mudstone with many slickensides and micro-brecciation (a palaeosol). Top is a prominent boundary 

between jointed mudstones above and unjointed mudstones in the underlying 3 m. 

Salcombe Hill MM mfs, [51.6] Fig. 15. Green mudstone with gypsum nodules in top of an interval which is well laminated. Just above sample MS24. 

Base Pennington Point Mb ts, [-20.1B] As placed by Newell (2018a), using the log scale in Hounslow and McIntosh(2003)- between samples OSS2 and OSS3. 

Base Chiselbury Mb SB, [-59.1B] As placed by Newell (2018a), using the log scale in Hounslow and McIntosh(2003)- their sample CB6. 

Base unit II of Otterton Ledge 

Mb 

SB, [-88.2B] As placed by Newell (2018a), using the log scale in Hounslow and McIntosh (2003)- between samples PB5 and PB6, 

base of unit C of Hounslow and McIntosh(2003) and unit II of the Otterton Ledge Mb of Newell (2018a). 

Boundaries: SB= sequence boundary (mostly maximum regressive surface), ts=transgressive surface, mfs= maximum flooding surface. MM= Mudstone Member. A= below 
the base of the Blue Anchor Fm; B= below base of MMG. Metre level with respect to the base of the MMG (unless otherwise indicated) 
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S2. Magnetic mineralogy 

A large proportion of the samples have rather similar K-NRM intensity relationships, with K between 

150–300 x10-6 SI and intensity between 1–6 mA/m (Fig. S2.1). The exception are some red and non-

red lithologies from the Dunscombe Mudstone Fm (DMF), Blue Anchor Fm and the Haven Cliff 

Mudstone Mb, which have K below 180 x10-6 SI and intensity in part below 1 mA/m (Fig. S2.1).  

 

Fig. S2.1. The relationship between the NRM intensity and the magnetic susceptibility (K) for 

specimens. The red-mudstone samples are divided into formational groups (SMF=Sidmouth 

Mudstone Fm; DMF=Dunscombe Mudstone Fm; BMF=Branscombe Mudstone Fm). Other non-red 

samples (from both DMF, Blue Anchor Fm and Haven Cliff Mudstone Mb) are divided by dominant 

colour, or mixed-colour (green-mottled and red to grey). Chocolate coloured and purple-coloured 

mudstones are grouped together, as are sandstones (from the Lincombe Member) and gypsum (from 

Red Rock Gypsum Member). The major positive trend from small K and NRM intensity 

(predominantly grey mudstones and calcareous/dolomitic mudstones/limestones) to strongly magnetic 

red mudstones may be in part carbonate-content controlled, since some of those with the lowest K are 

also the most calcitic/dolomitic. 

 

The natural remanence of the red mudstones is dominated by haematite which is indicated by: 1) 

unblocking ranges above 580oC (Figs. S2.8, S2.9); 2) major remanence acquisition in magnetic fields 

above 0.1 T (Fig. S2.2a); 3) non-saturation of induced remanence (Mr) at 7 T (Fig. S2.2a); 4) 

magnetic extractions performed by Creer (1957) showed that the black ferromagnetic content 

(specularite) of the lower MMG was haematite, based on identification by X-ray diffraction. As 
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previously demonstrated by Creer (1961) the red mudstones of the Mercia Mudstones Group (MMG) 

are also rich in superparamagnetic haematite (MS5 and LP55 samples in Maher et al. 2004), which is 

seen in laboratory induced and remanent magnetisations (Fig. S2.2). Creer (1961) estimated that some 

97% of the haematite in the MMG red mudstones should be superparamagnetic and some 0.12% of 

the total haematite carries the stable natural remanence. 

 

The increase in Mr on cooling for the 2 T and 7 T remanence (France and Oldfield 2000), and the 

value of 56% for the % H parameter of Maher et al. (2004) indicates that sample MS5 probably 

contains important contributions from goethite. This is also borne out by the linear increase in Mr 

when cooling a 2 T or 7 T remanence acquired at 293 oK (France and Oldfield 2000) as in Fig. S2.2c. 

However, SP haematite or goethite are not contributors to the ChRM which largely reside in blocking 

temperatures much larger than the Neel temperature of goethite (Figs. S2.8, S2.9). The absence of the 

Morin transition at 240 oK in the data in Fig. S2.2c implies the bulk of the hematite is < 0.1 m in size 

(Creer 1962; Maher et al. 2004). The rapid drop in J/JNRM during demagnetisation at 100 -150oC does 

perhaps suggest goethite may be important in carrying the LT component, or alternatively that the LT 

component is carried by haematite which unblocks at <350 oC. Significantly, Maher et al. (2004) 

demonstrated that sample MS5 (from Sid Outfall-Salcombe Mouth section) when heated at 350oC 

annealed the SP haematite which allowed emergence of the Morin transition, so demagnetisation to 

ca. 350oC may simply be an annealing-induced demagnetisation, rather than true unblocking of 

haematite. 

 

Non-red lithologies from the DMF and Blue Anchor Fm have a more complex mix of a soft, 

magnetite-like phase which fully demagnetises during AF demagnetisation (Fig. S2.9a,b,c ) to a mix 

of haematite and this soft phase (blue curves in Figs. S2.9a,b,c), to non-red samples which are 

haematite dominated (Fig. S2.9d), much like the red mudstones in the DMF and other units.  
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Fig. S2.2. High field and low temperature data for sample MS5 (Sid Mudstone Member). Mr= 

isothermal remanence, Ms=induced magnetisation. Note the non-saturation of Mr even at 7 T in a) , 
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and Ms is linear with field indicating the dominance of paramagnetic/superparamagnetic 

susceptibility. The change in Mr between 293 and 77oK (12% at 2 T and 21% at 7 T) is smaller than 

the change in Ms (70% at 2T and 71% at 7 T) between 293 and 77oK indicating that most of the 

susceptibility is due to paramagnetic behaviour. Creer (1961, 1962) also proposed paramagnetic 

dominance of the susceptibility in his MMG samples from Devon and South Wales. 

S2.1. Behaviour during demagnetisation 

Changes in susceptibility of the red mudstones during the thermal demagnetisation heating steps tend 

to be small or show a gentle decline to around 400-450oC, when in many specimens there is an 

increase which peaks at around 500– 600oC, to be followed by the decline to 700oC (Figs. S2.3 to 

S2.7). Only specimens from the Seaton Section (SE code) do not show the dominance of this kind of 

behaviour in the red mudstones. Some red-mudstone specimens from the Hook Ebb-Strangman’s 

Cove and Strangman’s Cove-Littlecombe Shoot- Red Rock sections show more severe thermal 

alteration (Figs. S2.4g, h; S2.5h). Similar changes have been well documented in red-beds (Schwarz 

1968; Shive and Diehl 1977, Duff 1979) and probably result either from clay mineral breakdown 

and/or annealing of the SP haematite fraction (remembering most of the susceptibility is due to the SP 

haematite fraction). 

 

The non-red lithologies from the DMF show a range of behaviour from little change in K (Fig. S2.4d) 

to rather like the red-mudstone ‘peaked’ behaviour (Fig. S2.4c) to much larger increases in K (not 

well represented in the figures due to AF demagnetisation was used on these instead). 
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Fig. S2.3. Changes in magnetic susceptibility (K) with heating during thermal demagnetisations steps 

(measured at room temperature), for the Sid Outfall-Salcombe Mouth (MS) and Salcombe Mouth - 

Hook Ebb (MD) sections. The x-axis scale is not linear but shows the heating steps used in each case. 

Non red-lithologies marked with symbols as in Fig. S2.1 (e.g., MD31-1). 
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Fig. S2.4. Changes in magnetic susceptibility (K) with heating during thermal demagnetisations steps 

(measured at room temperature), for the Strangman’s Cove (MW) section. The top-most right panel 

shows K for representative specimens subjected to AF demagnetisation steps. Non red-lithologies 

marked with symbols as in the key at the bottom (e.g., MW23-6v in h). 
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Fig. S2.5. Changes in magnetic susceptibility (K) with heating during thermal demagnetisations steps 

(measured at room temperature), for the Littlecombe Shoot (ML and SH) section. Note the differing 

scale used for K for the SH samples. Non red-lithologies marked with symbols as in the key in Fig. 

S2.4. 
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Fig. S2.6. Changes in magnetic susceptibility (K) with heating during thermal demagnetisations steps 

(measured at room temperature), for the Red Rock to Branscombe Mouth (MB) section.  
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Fig. S2.7. Changes in magnetic susceptibility (K) with heating during thermal demagnetisations steps 

(measured at room temperature), for the Seaton Cliff section. Non red-lithologies marked with 

symbols using the key in Fig. S2.4. 
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Fig. S2.8. Typical loss of normalised natural remanence (J/JNRM ) during demagnetisation for the red 

lithologies from the various sections (excluding the Strangman’s Cove section shown in Fig. S2.9). In 

each case the curves represent an average of several sets (n= number of specimens) of similar shaped 

curves, divided into sets based on their J/JNRM intensity between 100 and 500 oC. These sets are 

divided into Types A to D (for each section) representing small retention of NRM at 100-500oC (for 

Type A behaviour) to larger retention of NRM (for Type-D behaviour). The shapes of the curves are 

unrelated to the polarity of the specimens, as might be anticipated for remove of a normal polarity LT 

from reverse and normal polarity ChRM. Those from the MS section have a few specimens (both R 

and N ChRM) which show a peaked response at around 400oC. 
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Fig. S2.9. Typical loss of normalised natural remanence (J/JNRM ) during demagnetisation for 

specimens from the Strangman’s Cove section (MW code). A), B), C) show representative specimens 

(labelled with name) subjected to combined thermal and AF demagnetisation. Vertical lines separate 

the thermal and AF demagnetised steps. D) Those subjected to thermal demagnetisation alone. See 

Fig. S2.8 for details for red-coloured specimens (Type A to D) in D). In D) those specimens which 

were not red but grey or pale-chocolate coloured lithologies are also indicated. Grey lithologies either 

have ‘soft’ behaviour like the bulk of the red mudstones, or ‘hard’ behaviour. 

 

 

Fig. S2.10. Typical loss of normalised natural remanence (J/JNRM ) during demagnetisation for 

specimens from the Haven Cliff section (HC code). A) Curves representing an average of several sets 

(n= number of specimens) of similar shaped curves, divided into sets based on their J/JNRM intensity 

between 100 and 500 oC. Type-a and Type-b in a) tend to come from the lower part of the section 

(lower than 13 m below the base of the BAF), and types d and c from above this -13 m level. Intensity 

decay is much like other samples from the MMG (Figs. S2.8, S2.9). b) Representative average J/JNRM 

of specimens subjected to combined thermal and AF demagnetisation (all non-red lithologies). 
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Vertical line separates the thermal and AF demagnetised datasets. Most of the specimens in b) are 

from the Blue Anchor Fm, with some from the topmost the Haven Cliff Mudstone Mb. Tumbling AF 

demagnetisation has a minor effect in changing intensity, but a bigger effect in changing the 

directional data. 

S3. Low temperature (LT) component, unblocking ranges of components, 

demagnetisation diagrams and mean directions. 

The LT component is fairly scattered and shows the best grouped behaviour for the SH, ML and MW 

sections, with least coherence in the MS, MD, HC sections (Fig. S3.1). As Creer (1957, 1959) 

demonstrated the lower MMG rocks can acquire substantial short-term viscous magnetisations, as 

well as longer term magnetisations, likely acquired during the Brunhes. Hence, a short-term viscous 

component has probably contributed to some of the evident scatter in the LT component. 

Nevertheless, the overall grouping near the present-day geomagnetic field (Fig. S3.1e) confirms the 

conclusions of Creer (1957) for this low stability component throughout the MMG. The LT 

component dominates the total NRM magnetisation in many samples accounting for around 50% to 

90% of the starting NRM (Figs. S2.8, S2.9, S2.10), typically ranging up to around the ca. 350-400 oC 

demagnetisation steps (Fig. S3.3a,c, S3.4a, S3.5a,c,e,g).  
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Fig. S3.1. The directional information from the low temperature component (LT) divided into 

divisions based on the sections (a) to d); all in geographic coordinates). See Table 2 in main text for 

sample codes indicating sections. e) The LT component directions contoured on the lower (solid 

contours) and upper hemisphere (dotted contoured), using the Kamb method and inverse area squared 

smoothing (binomial sigma value=3, grid size=30, contour interval=2; Vollmer 1995). 
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Fig. S3.2. The poles to fitted great circle (GC) planes of the ChRM directions for all the T-class 

specimens (in stratigraphic coordinates). The great circle shown is that orthogonal to the Fisher mean 

direction of all of the MMG specimens with S-class directions. Shown is the pole to the girdle defined 

by the GC poles (T-class specimens only), which is near to the mean direction based on the s-class 

specimens (main text Table 3). 

 

The line-fit ChRM component shows a range of unblocking temperatures typically at 500oC and 

above, but sometimes below this (Figs. S3.3b,d; S3.4b; S3.5b,d,f,h, S3.6b). 
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Fig. S3.3. The temperature ranges of the LT components (a and c) and the ChRM components (b and 

d) for samples from the Sid Outfall to Salcombe Mouth section (MS codes, c) and d)) and Salcombe 

Mouth to Hook Ebb (MD, a), b) section. The Y-axis shows specimens (only some sample number 

shown) in stratigraphic order from base to top of the section in each case. The member boundaries (in 

blue) are shown at the appropriate sample position. In b) and d) intersection of the range with the red 

vertical line indicates the ChRM component includes the vector origin in the principal component 

analysis. PP= Pennington Point, SM=Sid Mudstone Mb, SMT= Salcombe Mouth Mudstone Mb, 

HEM= Hook Ebb Mudstone Mb. LWM= Little Weston Mudstone Mb. See Figs. S1.1 to S1.7 for 

sample location positions on the section logs. 
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Fig. S3.4. The temperature ranges of the LT components (left) and the ChRM components (right) for 

the Hook Ebb-Strangman’s Cove section (MW). LSM=Littlecombe Shoot Mudstone Mb. The green 

ranges are those which include AF demagnetisation steps, following initial thermal demagnetisation 

(to between 200-400 oC). See Fig. S3.3 for other details. 
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Fig. S3.5. The temperature ranges of the LT components (a, c, e, g) and the ChRM components (b, d, 

f, h) for the Littlecombe Shoot west section (ML), Littlecombe Shoot east (SH), Red Rock-

Branscombe Mouth section (MB) and Seaton Cliffs (SE) sections. RRG= Red Rock Gypsum Mb. See 

Fig. S3.3 for other details. 
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Fig. S3.6. The temperature ranges of the LT components (a) and the ChRM components (b) for the 

Haven Cliff section (HC). See Fig. S3.3 for other details. 
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Fig. S3.7 (previous page). Representative demagnetisation plots for the Sidmouth Mudstone and Dunscombe Mudstone formations. Showing Zijderveld plot 

(scale indicates that between each tick in mA/m) and stereonets of directions. Some have demagnetisation intensity (J/J0- temperature, oC) plots. J0= initial 

undemagnetised NRM. Stereonets display the cone of confidence values (95) of Briden & Arthur (1981) from the repeat measurements (if > 5o) of each step 

(some of these have been removed in some plots for greater clarity). Points marked in blue are AF demagnetisation steps, all others are thermal 

demagnetisation steps. Selected steps are labelled corresponding to the boundaries between the inferred extracted components and great circle planes. The 

inferred polarity classification and demagnetisation behaviour is indicated in the [..] brackets. Most of these are red mudstone samples, but other lithologies 

are indicated in the descriptions. All directional plots are in stratigraphic coordinates. Fitted components and great circle directions indicated in {..}, with LT 

components in geographic coordinates and others in stratigraphic coordinates (plane directions are poles to the GC plane). The third value of the ChRM or 

pole values in {..} is the VGP latitude value VGPR. Heights relate to position in the subsections (shown in figures in main text). 

A) MS14.4 (73.23m), normal polarity (N?) LT-component is 150-400oC {318, 9} and ChRM is 400oC-origin {000, 21, 60}. B) MS31-3 (35.11 m), 

reverse polarity (R?) with LT component 150-400oC {012, -11} and a plane fitted between the NRM and origin defining the magnetisation direction {281, 

04, -73}, shown by the trend southwards in the last four steps. C) MS52.1 (22.48 m), reverse polarity (R ), with LT component NRM-150oC {033, 43} 

and well-defined ChRM component 450-700oC {217, -24, -84}.  D) MD8A-2 (36.78 m), normal polarity (N?), with LT component NRM-150C {308,-

14}, and a plane fitted between the NRM and origin defining the magnetisation direction {044, -47, 81}. E) MD11-1 (20.66 m) with LT component 

NRM-350C {343, 38} and ChRM component 400oC to origin {221, -17, -78}. F) MW20B-1, chocolate brown to dark red mudstone (27.32 m), with LT 

component NRM-400C {316, 67}, and a plane fitted between the NRM and origin defining the magnetisation direction {303, -8, -86}. G) MW6-4, 

white very fine-grained sandstone (9.28 m) with LT component NRM-250oC {045, 28} and ChRM defined by the steps from 300oC to the origin, including 

the AF steps from 10 to 80 mT {210, -42, -85}. 

Fig S3.8 (following page). Representative demagnetisation plots for the Dunscombe Mudstone Fm and Littlecombe Shoot Mudstone Mbr. See preamble to 

Fig.S3.7 for plot and labelling details. 

A) MW26-3v (40.4 m), normal polarity (N) with LT component NRM-350C {016, 41}, and ChRM component 560C to origin {003, 32, 62}. B) 

MW65_2d (3.87 m below base DMF), normal polarity (N??) with LT component NRM-300C {099, 74}and ChRM component 580C to origin {067, 35, 

58}. The intermediate is a composite negative inclination component in the NW. C) ML19-1 (47.39 m), normal polarity (N), with a LT component NRM -

450C {349, 65}, and a weak ChRM component 600C to origin {064, 13, 59}. D) ML18-1 (26.08m), reverse polarity (R ) with a ChRM component 

500C to origin {207,-19,-82}. E) ML2-1 (5.09 m), reverse polarity (R) with LT component NRM-150C {23, 41} and ChRM component 500C to 

origin (last two steps large 95) {202, -31, -79}. F) SH6bv (11.16 m), reverse polarity with LT component 150-560C {329, 46}, and ChRM component 

630-680C {224, -25, -79}. G) SH11bv (20.83 m), normal polarity with LT component 150-560C {002, 59}and ChRM component 630-680C {039, 

19, 82}. 
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Fig. S3.9 (previous page). Representative demagnetisation plots for the Seaton Mudstone and Haven Cliff Mudstone members and the Blue Anchor Fm. see 

preamble to Fig.S3.7 for plot and labelling details. 

A) MB13-1 (47.59 m), reverse polarity (R ) with ChRM component 350C to origin {203,-45, -75}. B) MB30-1 (0.29 m), normal polarity (N) with LT 

component NRM to 350C {049, 35}and ChRM component 400-650C {025, 13, 78}. C) MB31-3 (2.08 m) reverse polarity (R ) with LT component 

150-550C {033, 62} and a plane fitted between the 450C and the origin {310, -3, -85} defining the magnetisation direction. D) SE1.3 (15.47 m), 

normal polarity (N) with a weak/doubtful LT component 100-180C {046, 62}, and strong ChRM between 325C and the origin {053, 27, 71}.  E) 

SE16Av (9.69 m), with LT component NRM-150C {331, 53} and a weak reverse polarity component defined by a great circle trend from NRM to origin 

{149, 51, -83}. The strong intermediate component is a composite with positive inclination directed to the NW. F) HC4-1, grey-green mudstone (11.35 m, 

Blue Anchor Fm), reverse polarity, with LT component NRM-150C {087, 12} and great circle trend from 10 mT to the origin {199, 21, -59}. G) 

HC58.3, red-grey mottled mudstone (-25.5 m), normal polarity, with a strong LT component NRM-400C {33, 17} and a ChRM 500C to the origin {027, 

53, 72}. H) HC102-1 (-6.5 m) , normal polarity, LT component NRM-150C (202, -38}, and a ChRM 570-635C {040, 29, 86}. I) HC36-4 (-27.7 m), 

reverse polarity, with a strong LT component NRM-400C {086, 53} and a weak very high temperature ChRM, 700-720C {232, -25, -76}. The 

intermediate component is inferred as composite, shallow and directed to the SW. 
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Type/ section/ Unit Dec() Inc() K/95() Ns/Nl/Np Reversa

l Test 
GO/GC() Plat/ 

Plong() 

Dp/Dm 

() 

A95 (min, max), 

%VGP45 

Salcombe Cliff (MS)      

Line fits$ 29.8.0 25.9 20.5/5.4 35/37/0 Rc 5/11.3* 45.8/132.9 3.2/5.8 5.2 (2.9, 8.7), 0 

GC means+ 28.8 25.3 11.1/4.7 40/37/7 Rc 2.8/15.4 45.9/134.4 2.7/5.1 4.5 (2.7,8.0), 0 

Dunscombe Cliff (MD)      

Line fits$ 29.2 29.0 29.2/6.5 15/18/0 Rc 4.9/15* 47.7/132.5 3.9/2.7 6.9 (4.1, 14.9), 0 

GC means+ 28.0 30.0 16.4/5.3 18/18/6 Ro 3.7/21 48.8/133.6 3.3/5.9 6.2 (3.8, 13.3), 0 

Strangman’s Cove (MW)      

Line fits$ 33.8 35.5 20.6/4.9 28/43/0 Rb 4.3/7.8* 49.1/123.7 3.3/5.7 5.8 (3.2, 10.0), 0 

GC means+ 34.3 37.2 11.4/3.5 44/43/33 Rb 4.4/8.1* 49.8/122.1 2.4/4.1 3.8 (2.6, 7.6), 3.6 

Littlecombe Shoot west (ML)      

Line fits$ 33.9 26.7 16.8/9.0 14/17/0 Ro 7.7/32 44.3/127.7 5.3/9.8 8.0 (4.2,15.6), 0 

GC mean+ 33.7 26.9 10.7/6.8 18/17/6 Ro 7.3/33 44.5/127.9 4.0/7.4 6.6 (3.8, 13.3), 10.7 

Littlecombe Shoot east (SH)      

Line fits$ 33.9 27.1 20.8/9.3 8/13/0 Ro 6.9/27 44.5/127.6 5.5/10/1 11.3 (5.2, 22.1), 0 

GC mean+ 31.8 32.8 10.6/7.3 10/13/6 Rc 9.5/17* 48.6/127.6 4.7/8.3 8.8 (4.8, 19.2), 0 

Branscombe (MB)      

Line fits$ 30.7 28.5 21.9/5.9 25/29/0 Rc 10.3/12.0* 46.8/130.9 3.6/6.5 6.0 (3.3, 10.8), 0 

GC mean+ 31.5 26.8 12.0/4.8 28/29/7 Rc 10.5/10.7* 45.5/130.6 2.8/5.2 5.2 (3.2, 10.0), 0 

Seaton (SE)      

Line fits$ 37.2 29.8 24.8/6.1 16/24/0 Rc 7.6/12.9* 44.3/122.7 3.7/6.8 5.6 (4.0, 14.3), 0 

GC mean+ 38.4 31.1 9.1/6.4 16/24/5 Rc 7.1/29 44.3/120.7 4.0/7.2 5.2 (4.0, 14.3), 0 

Haven Cliff (HC)      

Line fits$ 39.6 35.6 24.0/3.4 51/74/0 R- 8.3/8.0 44.0/126.6 2.3/3.9 3.5 (2.5, 6.9), 1.4 

GC mean+ 37.7 34.2 10.1/2.6 74/74/63 R- 12.4/9.9 44.1/129.4 1.7/3.0 3.0 (2.1, 5.4), 2.1 

Formation Means:       

Branscombe 

Mudstone$,1  

33.5 28.4 21.4/3.4 66/86/0 Rb 3.5/6.8 45.4/127.5 2.0/3.7 3.4 (2.2, 5.9), 0 

Dunscombe Mudstone$ 33.0 35.5 20.7/5.6 20/33/0 Rc 4.9/11.6 49.5/124.7 3.7/6.5 6.2 (3.6, 12.4), 0 

Sidmouth Mudstone$ 30.9 28.1 22.0/4.1 51/58/0 Rc 2.8/13.1 46.5/130.7 2.5/4.5 4.3 (2.5, 6.9), 0 

Pennington Point Mb$ 18.7 27.7 11.7/13.3 10/12/0 - - 51.0/147.3 7.9/14.5 +10.8 (4.8, 19.2), - 
 

Table S3.1. Directional means (with tectonic correction), reversal tests and VGP poles. +=great circle combined mean using method of McFadden & 

McElhinny (1988). $=conventional Fisher mean. 1= not including Haven Cliff data. Ns=number of levels (sites), Nl=number of specimens used with fitted 



Hounslow et al. SI-JGS-34 

 

lines, and Np =number of specimens with great circle planes used in the determining the mean direction. 95, Fisher 95% cone of confidence. k, Fisher 

precision parameter. GO is the angular separation between the inverted reverse and normal directions, and Gc is the critical value for the reversal test. In the 

reversal test the Go/Gc values flagged with * indicate common K values, others not flagged have statistically different K-values for reverse and normal 

populations, in which case a simulation reversal test was performed. Plat and Plong are the latitude and longitude of the mean virtual geomagnetic pole1. For 

GC means reverse and normal means averaged using Fisher pooled mean (based on dispersion; Fisher et al. 1993), for line-fits by inverting the reverse set. 

Pennington Point and Sidmouth Mudstone means use data also from Hounslow & McIntosh (2003). A95 (min, max) = Fisher 95% confidence interval for 

VGP-based site mean (Ns sites), and A95min and A95max threshold values of Deenen et al. (2011). %VGP45= percent of samples yielding VGP latitude < |45|, 

as a reflection of the match to modern geomagnetic field models and palaeomagnetic data in which %VGP45 is a 3-4% (Cromwell et al. 2018). %VGP45 

applies to all the section. Statistics determined with Pmagtool v.5 (Hounslow 2006). 
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Section S4: Virtual geomagnetic pole (VGP) data for the European mid and late 

Triassic 

 

Fig. S4.1. VGP poles for stable Europe for the mid and late Triassic divided into source regions of the 

data and age intervals. The poles for the Devon coastal sections from this study are numbered 1 to 4, 

with 5 from Hounslow and McIntosh (2003). Apart from the poles from Svalbard these broadly 

indicate VGP latitude of ca. 50o, with the age intervals segmenting the data into larger (130-150o) and 

smaller VGP longitude. The poles are numbered according to Table S4.1. 
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Formation/Mb/Unit 95 Lat. Long. label Pole ID 

Haven Cliff section 3.4 44 126.6 L-MMG 1 

Branscombe Mudstone Fm 3.4 45.4 127.5 L-MMG 2 

Dunscombe Mudstone Fm 5.6 49.5 124.7 L-MMG 3 

Sidmouth Mudstone Fm 4.1 46.5 130.7 L-MMG 4 

Otter Sandstone Fm, Devon coast 5.1 52.8 138.8 M 5 

Branscombe M. Fm, St Audrie’ Bay  5.1 50 128 L-MMG 6 

Branscombe M. Fm, St Audrie’ Bay 4.4 47.9 114 L-MMG 7 

Blue Anchor Fm, St Audrie’ Bay 6.5 51.7 108.9 L-MMG 8 

      

Rhaetian Sandstones 8 50 112 L 9 

Sunhordland dykes (221± 5 Ma) 4.6 50 125 L 10 

Gipskeuper red beds (Carnian) 6 49 131 L 11 

Ladinian sediments, red dolomites 3.3 53.5 140.8 M 12 

basal Anisian, Rot Fm 6.5 49.1 154.1 M 13 

Polish Muscelkalk, Anisian 3 51 143 M 14 

Edivetur Limestones, Anisian, Bulgaria 8.4 53.8 132.4 M 15 

      

De Geerdalen Fm, Dalsnuten 3.1 59 113 S-L 16 

Tschermakfjellet Fm, Dalsnuten 4.1 54 117 S-L 17 

Nordstefjellet section, Hopen 3 60.1 137.6 S-L 18 

Binnedalen section, Hopen 2 60.5 139.3 S-L 19 

Tumlingodden, Wilhelmøya 4.5 61 163.8 S-L 20 

Top Botneheia Fm, Milne_Edwardsfjellet 4.3 57 134 S-M 21 

Botneheia Fm, Milne_Edwardsfjellet 3.7 50 143 S-M 22 

 

Table 4.1. Triassic VGP poles for stable Europe. Label indicates category, M=mid Triassic, L=Late 

Triassic, S=from Svalbard, MMG=from Mercia Mudstone Group. Poles 1 to 4 from this work. 

5=Hounslow and Mcintosh (2003). 6=Briden and Daniels (1999), 7-8=Hounslow et al. (2004).; 

9,11=Edel and Duringer (1997); 10= Walderhaug et al. (1993); 12= Théveniaut _et al. (1992); 

13=Szurlies (2007); 14= Nawrocki and Szulc (2000); 15= Muttoni et al. (2000). 16,17= Hounslow et 

al. (2007); 18-20= Hounslow et al (2022), 21-22=Hounslow et al. (2008). 

Section S5: Reference magnetostratigraphic sections and the GPTS-B for the 

Norian and Rhaetian 

The numbering of magnetochrons UT17 and UT18 (in main text Figs. 13, 15,16), has been changed 

from that given in Hounslow and Muttoni (2010), by upgrading the Newark magnetozone E12n (now 

UT17n) to a full magnetochron and down-grading the equivalent of E13r.1n (UT18r.1n) to a 

subchron. The marine composite for the Norian-Rhaetian boundary interval from Hounslow and 

Muttoni (2010) has been updated with new data (Fig. S5.1).  

 

Magnetostratigraphic and U-Pb radiometric dating has given a clearer picture of the synchronicity 

between the eruption of the Central Atlantic Magmatic Province LIP, and events in the oceans near 

the Triassic-Jurassic boundary (Deenen et al. 2010, Whiteside et al. 2010; Olsen et al. 2011).  Brief 

reverse polarity intervals are now seen to precede and follow the initial C13 isotopic excursion (Fig. 

S5.2), prior to the Triassic-Jurassic boundary (marked by Psiloceras spaele in the Hettangian GGSP 

at Kujoch; Schoene et al. 2011).  Data from the Moenave Formation (Donohoo-Hurley et al. 2010) 

and Argana Basin (Deenen et al. 2010) was used to refine the magnetochrons UT25 to UT28 (Fig. 

S5.2) originally defined by Hounslow and Muttoni (2010). A Lower Jurassic, LJ chron numbering is 
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introduced (Fig. S5.2), with the placement of the magnetostratigraphy with respect to the Hettangian-

Sinemurian boundary according to Ruhl et al. (2010). Kent et al. (2017) has proposed an alternative 

APTS for this interval based on the Newark-Hartford successions. 

 

In addition, the Chinle Fm/Group in SW USA has a well-studied polarity dataset, with associated 

detrital zircon age dates which clearly dates it to the mid Norian. A composite magnetostratigraphy of 

the upper Chinle Fm is constructed and used in this work, and its source data and composite 

construction is outlined in the below section. 

 

It has now been formally proposed that the GSSP for the Carnian-Norian boundary is placed in the 

Pizzo Mondello section at the first occurence of Halobia austriaca, which is within the lower part of 

magnetozone UT13n (PM5n at Pizzo Mondello), Hounslow et al. (2021).  

S5.1 The Chinle Group/Fm magnetostratigraphy and U-Pb dates 

Lithostratigraphic correlations between the various units of the upper Chinle Fm (some use this as a 

Group) in New Mexico, Arizona and Utah are problematic, and probably may not provide a 

particularly robust means of high-resolution correlation over large areas (Ramezani et al. 2011). This 

is fundamentally related to the complex fluvial system that the Chinle represents, and a number of 

unconformities which may sub-divide it (Heckert and Lucas 2002). Consequently, the magnetic 

polarity synthesis (SI Figs. S5.3, S5.4) has constructed magnetostratigraphy composites over smaller 

areas for comparison, based on; a) the Chama Basin (Zeigler and Geissman 2011) in northern New 

Mexico, b) San De Cristo Mts and Tucumcari Basin (Molina-Garza et al. 1996; Reeve and Helsley 

1972; Zeigler and Geissman 2011) in eastern New Mexico, c) Petrified Forest National Park (PEFO) 

area in eastern Arizona (Steiner and Lucas 2000, Ziegler et al. 2017; Kent et al. 2019; Rasmussen et 

al. 2021). Sections S5.1.1 to S5.1.3 examine these regional records, and section S5.1.4 discusses their 

amalgamation in Fig. S5.4. 

S5.1.1 Petrified Forest National Park (PEFO), Arizona 

Biostratigraphy: The zone II/Zone III palynostratigraphic boundary (Litwin et al. 1991, refined by 

Baryani et al. 2018) in the PEFO is above the Rainbow Forest bed and within the Jim Camp Wash 

beds (Parker and Martz 2011; SI Fig S5.3) slightly below or at the level of the Adamanian - 

Revueltian vertebrate turnover (Baryani et al. 2018). This level has been correlated to the New 

Oxford-Lockatong – Lower Passaic Heidlersburg palynozone boundary in the Passaic Fm (Olsen et 

al. 2011; Lucas et al. 2012). A similar biostratigraphic correlation argument, but based on land 

vertebrate and conchostracan faunas has been proposed by Lucas et al. (2012) who correlate the bases 

of the Sonsela Member and the Passaic Formation, using specifically the miospore Camerosporites 

veruccosus which occurs in the Chinle Zone III assemblage from the PEFO (Parker and Martz 2011). 

This has a first occurrence (FO) in the base of the Passaic Fm (Warford- Graters members, in 

magnetozone E11; Lucas et al. 2012). In addition, the pollen Perinopollenites elatoides has been 

found in the Sonsela Sandstone in the base of zone III, which allows potential correlation of this 

interval to the mid Norian of the Germanic facies in Europe (Baryani et al. 2018). Contrastingly, 

Lucas et al. (2012) correlates the base of the Revueltian to the Warford Member of the Passaic 

Formation using vertebrate data (this is the mid part of magnetozone E11 in the Newark Supergroup). 

 

Zircon U/Pb dates: An extensive and well documented re-evaluation of the lithostratigraphy of the 

Sonsela Member in the PEFO (Martz and Parker 2010; Parker and Martz 2011), has allowed a re-



Hounslow et al. SI JGS-36 

 

evaluation of the magnetostratigraphic study of Steiner and Lucas (2000), along with more recent 

polarity data from outcrops (Ziegler et al. 2017) and the core through the PEFO succession (Kent et 

al. 2019).  This allows the relationship between the magnetostratigraphy, the revised lithostratigraphy 

(Irmis et al. 2011; Parker and Martz 2011) and the zircon CA-ID TIMS U/Pb dates to be defined with 

greater confidence (Fig. S5.3).  Based on the lithostratigraphy of Irmis et al. (2011) and the 

magnetostratigraphy of Zeigler and Geissman (2011), additional U-Pb dates from the Six Mile 

Canyon section and the Chama Basin can be related to the PEFO succession (Fig. S5.4). The detrital 

zircon age dates do represent substantial challenges in dating the age of deposition, since re-cycling of 

older zircons in the sand-prone units is probably an issue in the Sonsela Sandstone (Gehrels et al. 

2020), which could have biased the zircon ages to older dates in the sandy units. 

S5.1.2 Chama Basin, New Mexico 

The main independent control on association between strata in the separate sub-basins of the Chinle 

Fm/Grp are the land vertebrate faunachrons (Lucas 2010), which broadly allow stratigraphic grouping 

of sections into the Adamanian, Revueltian and Apachean (left side of PEFO outcrop column in Fig. 

S5.4). 

 

The Chama Basin composite (Fig S5.4) is based on the Coyote Amphitheatre section for the youngest 

units and the Abuiquiu Dam section for the Poleo Fm (Zeigler and Geissman 2011).  The placement 

of the Hayden Quarry section radiometric date (i.e., 211.9 Ma) onto the Chama Basin 

magnetostratigraphy uses the lithostratigraphic correlation of Irmis et al. (2011). The roughly equal 

duration magnetozones in the Salitral Fm (Zeigler and Geissman 2011) is unlike the Norian, and in 

terms of relative magnetozone duration, is most similar to the polarity pattern in parts of the Carnian 

(see main text), so is not included in Fig. S5.4. 

 

The reverse polarity dominated composite Chama Basin composite section through the Poleo Fm and 

Petrified Forest Mb is unlike the mixed polarity seen in the Revueltian LVF age strata from the PEFO, 

so may represent the reverse polarity intervals in the PEFO core PF4r and PF3r (Fig. S5.4). The 

uppermost normal polarity zone in the upper siltstone member (Chama Basin column) is likely related 

to that in the basal Redonda Mb, as proposed by Ziegler and Geissman (2011).  The Hayden Quarry 

section U-Pb date (211.9 Myr) is correlated to near the base of the Petrified Forest Member in the 

Chama Basin (Irmis et al. 2011; Zeigler and Geissman 2011). The ~215 Ma date from Dickinson and 

Gehrels (2008) from the Poleo Fm suggests this interval is probably PF4r (Fig. S5.4). The correlation 

of the inferred ‘Rock Point’ unit in the Chama Basin to the Redonda Fm in eastern New Mexico 

follows Zeigler and Geissman (2011). 

S5.1.3 Sangre de Cristo Mountains and Tucumcari Basins, New Mexico 

Well constrained correlations between the Redonda Fm in the San De Cristo and Tucumcari basins 

are not possible. The upper part of the Redonda Fm (E. New Mexico column in Fig. S5.4) appears to 

be normal polarity dominated (Reeve and Helsley 1972; Molina-Garza et al. 1996), whereas the mid 

parts appear reverse to mixed polarity dominated (Fig. S5.4). There are differences between the 

magnetostratigraphy of the closby Mesa Redonda and Mesa Luciana sections near Tucumcari (Reeve 

and Helsley 1972; Ziegler and Geissman 2011), and the Redonda Mb composite reflects this 

uncertainty (due to differences in section thickness, and magnetic polarity in the lowermost and 

upper-most parts of the Redonda Fm in these sections). The Sebastian Canyon section of the Redonda 

Fm (Molina-Garza et al. 1996) is not shown due to its low-resolution sampling. The Revueltian and 
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Adamanian units in these basins are largely placed onto the composite chart (Fig. S5.4), using the land 

vertebrate faunachron data (Lucas 2010). Relying on the lithostratigraphic equivalence of the Trujillo 

and Poleo formations allows a tentative correlation of these sections.  

S5.1.4. Construction of the upper Chinle Fm composite 

The construction of the polarity composite is to a large extent guided by the many zircon U/Pb dates, 

along with the reference sections through the upper Chinle provided by the PEFO outcrops and core 

(Figs. S5.3, S5.4). The magnetostratigraphy in the Blue Mesa Mb seems well defined with three 

magnetic polarity studies in this interval (three PEFO colunns in Fig. S5.4). The Chinle composite 

CC1 to CC4 magnetozones are based on the PFNP-1A core (Fig. S5.4). From the PEFO, the Sonsela 

Sandstone is dominated by normal polarity, yet the apparent age equivalent units in the Chama Basin 

and Sangre de Cristo Mountains are reverse polarity dominated (except in the Tucamcari Basin 

(Garita Creek); Fig. S5.4). Substantial detrital U/Pb age differences of the Sonsela Sandstone are a 

feature of its regional occurrence (Marsh et al. 2019). The U/Pb dates in the PEFO both from outcrop 

and core, at face value, suggest a condensed (or hiatus) internal at around the position of the 

Rainbow/Jasper Forest bed (Fig. S5.3). A regional hiatus (TR4a or TR4b) in the lower or basal 

Sonsela Sandstone has also been widely inferred (Heckert and Lucas 2002; Tanner and Lucas 2006), 

and a change at around the Jasper Forest bed is coincident with a major climatic shift (Nordt et al. 

2015), which may be the driver for any condensed interval or hiatus. We infer that further east in the 

New Mexico successions this hiatus is better expressed and has removed much of the lower part of the 

Sonsela Sandstone (i.e. better preserved in the PEFO), so that magnetozone CC5n is missing (e.g. in 

the Chama Basin), and the reverse polarity dominance as seen in E. New Mexico sections at this level 

largely represent PF4r and PF3r in the PEFO outcrops and core. Substantial differences in thickness 

of reverse and normal intervals in CC6 and CC7 also seem to be a feature of the Petrified Forest Mb 

and its equivalents which perhaps relate to the frequency of palaeosols in this member. The Redonda 

Mb is widely inferred to be largely Rhaetian in age, based on vertebrates and conchostracans (Lucas 

et al. 2012), and this is largely confirmed by inference based on magnetostratigraphy (Fig. S5.4 and 

main text). 
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Fig. S5.1. The construction of the 

magnetostratigraphy around the Norian-

Rhaetian boundary using marine sections 

with biostratigraphy. This is based on 

Fig. 10 in Hounslow and Muttoni (2010), 

but with the addition of new data from 

Steinbergkogel of Hüsing et al. (2011) 

and Pignola Abriola of Maron et al. 

(2015) and Bertinelli-et al. (2016). The 

two proposed options for the base of the 

Rhaetian are NRB1 and NRB2 (Bertinelli 

et al. 2016; Galbrun et al. 2020). The 

conodont zones are those of Rigo et al 

(2018), but with the contentious Rhaetian 

boundary interval shown as a conodont 

range. See Hounslow and Muttoni (2010) 

for source of other data in this figure. 

The Sevatian 1 and 2 interval uses the 

concepts used with the original 

magnetostratigraphic source data. 
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Fig. S5.2. Magnetostratigraphy of the Rhaetian-Hettangian transition modified from Hounslow and Muttoni (2010) by addition of data from the Moenave Fm (Donohoo-Hurley et al. 2010) and Argana Basin data (Deenan et al. 2010). 

Source details for other section data in Hounslow and Muttoni (2010). Main scaling anchors are UT23r, UT25r, UT27n, UT28r, LJ2n, LJ3r. Subsidiary scaling anchor UT27r. Based on the Italcementi and Brumano sections the interval 

UT25n- UT26r may be more complex (Maron et al. 2019, show very similar correlations) than is shown in the Newark Supergroup E21-E22, so an uncertain interval is inserted at the fault in the Newark core. 
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Fig. S5.3. Upper Chinle Formation 

lithostratigraphic columns used by the 

two main radiometric dating studies on 

outcrops in the Petrified Forest 

National Park (PEFO, Arizona), 

illustrating how the U-Pb dates (Irmis 

et al. 2011; Ramezani et al. 2011; 

Nordt et al. 2015) can be correlated to 

the PEFO outcrop magnetostratigraphy 

(Steiner and Lucas 2000; Ziegler et al. 

2017), and biostratigraphy (Parker and 

Martz 2011; Baranyi et al. 2018) and 

hence their placement on Fig. S5.4. 

Member boundaries in blue. Sections 

from the CA-IDTIMS U/Pb dating 

studies have been scaled using the top 

of the Newspaper Rock Sandstone and 

the base of the Black Forest bed.  

Green correlation line is the 

Adamanian-Revueltian boundary.
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Fig. S5.4. Correlations between the various sections with magnetostratigraphy from the Chinle Fm/Group. The data from the Petrified Forest National Park 

(PEFO) is related to the reference section in the PEFO core 1a, and its associated detrital zircon dates (Kent et al. 2019; Rasmussen et al. 2021).  The 

magnetic polarity stratigraphy from the outcrops in the PEFO (Steiner and Lucas 2000) indicates a close similarity the Blue Mesa, Sonsela and Petrified 

Forest members in the cores. Sources of other data for the Chinle Group are Reeve and Helsley (1972), Molina-Garza et al. (1996 2003), Zeigler and 

Geissman (2010). These sources have all been re-drawn with the same style for uncertain intervals and sampling gaps. See the text for discussion of these 

relationships. 
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