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Abstract

Contrary to leading asset pricing theories, recent empirical evidence indicates that
financial markets compensate only short-term equity variance risk. An equilibrium
model with generalized disappointment aversion risk preferences and rare events
reconciles salient features of the variance term structure. In addition, a calibration
explains the variance and skew risk premiums in equity returns and the implied
volatility skew of index options while capturing standard moments of fundamen-
tals, equity returns, and the risk-free rate. The key intuition for the results stems
from substantial countercyclical risk aversion induced by endogenous variation in
the probability of disappointing events in consumption growth.
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1 Introduction

The consumption-based asset pricing literature has been recently revived by gen-

eralized models of long-run risks and rare disasters to capture many characteristics of

the equity and derivatives markets. Yet leading theories fail to explain the timing of

variance risk. Contrary to most successful asset pricing models, Dew-Becker, Giglio, Le,

and Rodriguez (2017) show that it has been costless to hedge future variance at horizons

longer than two months, whereas only unexpected realized variance was significantly

priced.1, 2 The term structure of variance risk possess a challenge to models featuring

time-varying expected growth and volatility (Bansal and Yaron, 2004) or disaster risk

(Rietz, 1988; Barro, 2006).

I illustrate the challenge in Figure 1 by showing the empirical Sharpe ratios and

prices for forward variance claims, which are swap contracts that pay the owner the

realized stock market variance during a particular future period.3 The figure shows

the term structure of forward claims on future variance up to one year. The average

prices are upward-sloping at the short end and quickly flatten with the horizon. Sharpe

ratios are significantly negative for short maturities, suggesting investors are willing to

hedge short-term variance risk. Puzzling, however, is that future variance from three to

12 months is unpriced. Well-known asset pricing theories predict a strongly upward-

1Dew-Becker, Giglio, and Kelly (2021) show that it is highly costly to hedge realized volatility but
not forward-looking uncertainty across different markets. Berger, Dew-Becker, and Giglio (2019) provide
new empirical evidence that shocks to future uncertainty have no significant effect on the economy. Also,
Dew-Becker and Giglio (2019) find that investors do not view shocks to cross-sectional uncertainty as bad.

2Also, van Binsbergen, Brandt, and Koijen (2012) and van Binsbergen, Hueskes, Koijen, and Vrugt
(2013) document a downward-sloping term structure of equity risk premia and volatility, which is at odds
with leading asset pricing models.

3For instance, a payoff (realized variance) of n-month variance forward equals the sum of daily squared
stock market returns in month n from today.
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Figure 1. Average prices and annualized Sharpe ratios for forward variance claims
The figure plots annualized Sharpe ratios and average prices for forward variance claims in the US data from 1996 to
2013. The prices are reported in annualized volatility terms. The data are from Dew-Becker et al. (2017).

sloping term structure of forward variance prices and, hence, imply the negative and

significant Sharpe ratios at future horizons, counter to what we observe empirically.

I capture the observed variance term structure by introducing asymmetric prefer-

ences into a model with learning about consumption depressions.4 Disaster risk gener-

ates the upward-sloping term structure of return variance, however, I demonstrate that

asymmetric preferences cancel the increasing effect in the long term. The reason is that,

in bad times, forward variance becomes higher in the short term than in the long term

with asymmetric preferences, which flattens the increasing pattern at longer horizons

on average. The properties of forward return variance translate into empirically con-

sistent variance forward prices. This mechanism also implies negative Sharpe ratios on

short-term variance forwards and positive and increasing ratios at longer maturities.

Formally, I consider an exchange economy with generalized disappointment aver-

sion (GDA) risk preferences (Routledge and Zin, 2010) and rare events. Consumption

growth follows a hidden two-state Markov chain where a rare “depression” is calibrated

4The ingredients are empirically motivated. A number of studies provide micro-level evidence that
investors dislike losses more than they enjoy gains (Choi, Fisman, Gale, and Kariv, 2007). Also, Hansen
(2007) argues that the assumption of the investor’s full information about the model structure is extreme.
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to the US Great Depression. The agent filters the hidden state probabilities. GDA prefer-

ences amplify the impact on the pricing kernel of disappointing beliefs corresponding to

utilities below a scaled certainty equivalent. The amplification of lower-tail shocks yields

strongly countercyclical risk aversion, which helps capture the variance term structure.

The economic mechanism is as follows. Following Veronesi (1999), the conditional

volatility of equity return is a hump-shaped function of a posterior probability of ex-

pansion, πt (GDA in Figure 4). The economy is in a good state for most of the periods,

in which case πt is high and close to 1. A good piece of news reinforces investor’s be-

liefs that the current regime is the expansion. In this case, the risk of future disasters

generates an upward-sloping term structure of forward variance. A bad piece of news

decreases πt and leads to a spike in return variance initially. Bad news could be due

to a disaster and hence the investor will learn times are bad in the future (πt ≈ 0).

Bad innovations could also be due to idiosyncratic consumption risk in expansion and

hence the investor will update beliefs to reflect times are still good (πt ≈ 1). In both

cases, return variance will decrease quickly when πt approaches 0 or 1, implying the

inversion in forward variance. Unconditionally, the investor is always willing to hedge

high realized variance in the short term. In the long term, however, the inversion in bad

times dominates the upward-sloping effect of disaster risk in good periods, flattening

the forward variance curve. Variance claims inherit the properties of forward variance.

Thus, the unconditional term structure of prices is upward-sloping at the short end and

flattens out quickly in maturity. The inversion in prices yields positive Sharpe ratios on

variance forwards at longer horizons on average.

Intuitively, the inversion in forward variance in response to bad news happens be-
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cause high volatility is short-lived in the economy.5 Indeed, the conditional volatility

peaks within a narrow range of beliefs and sharply diminishes outside this interval.

When beliefs change, return volatility spikes but does not persist. Mechanically, sizable

countercyclical risk aversion induced by GDA preferences yields strong and weak price

sensitivities to belief changes in good and bad times (Veronesi, 1999). This difference in

sensitivities implies return volatility should be higher following a bad piece of news in

good times than a good piece of news in bad times. As a result, an asymmetric effect on

the price sensitivity to news leads to a skewed shape of conditional volatility.

Next, I compare GDA preferences with nested utility functions. I show that the term

structure of variance risk can be replicated with GDA preferences due to a sufficiently

countercyclical risk aversion.6 Interestingly, not only can nested preference specifications

be rejected by the unconditional term structure, but they are also inconsistent with the

conditional dynamics of the variance term structure.

I first compare GDA preferences to a disappointment aversion utility function (Gul,

1991) and Epstein-Zin preferences (Epstein and Zin, 1989). First, a disappointment-

averse agent increases the pricing kernel for disappointing utilities, defined as being be-

low the certainty equivalent. Compared to Routledge and Zin (2010), Gul’s preferences

increase the disappointment threshold. This generates a large number of disappointing

events and a large risk aversion in two states. Thus, price sensitivities are similar in

good and bad times, generating a symmetric shape of return volatility (DA in Figure

5This mechanism is consistent with Dew-Becker et al. (2017) showing that, during consumption disas-
ters and financial crisis, realized volatility spikes for one month only and then reverts quickly.

6The countercyclical risk aversion can rationalize the equity premium puzzle (Melino and Yang, 2003).
I show that, in my setting, a sufficiently countercyclical risk aversion induced by generalized disappoint-
ment aversion can further explain the variance term structure.
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4). Second, a model with Epstein-Zin preferences generates a slightly skewed shape of

return volatility (EZ in Figure 4). However, conditional volatility remains elevated for

a wide range of beliefs in both models. When investor’s beliefs change, high variance

persists in the long term. This generates the upward-sloping term structure of forward

variance and prices.

I also look at the conditional dynamics of the term structures. I assume the investor

holds a median belief (normal times). I then study the impact of one positive and three

negative consumption innovations. First, at the one-month maturity, the average Sharpe

ratios in the GDA economy are pro-cyclical, meaning more (less) negative in bad (good)

times, consistent with Aït-Sahalia, Karaman, and Mancini (2020). The reason is that GDA

preferences generate a beliefs-dependent pricing kernel with higher marginal utility in

low consumption states, increasing the hedge against high realized variance associated

with low-utility states.7 At longer maturities, the Sharpe ratios remain close to zero in

response to small shocks, whereas they become upward-sloping and positive in response

to large negative news. The reason is that small shocks are not priced due to a low

disappointment threshold. In contrast, lower-tail shocks place the posterior belief within

the interval of the highest return variance and, hence, the variance tends to be lower

in later periods. The variance claims are priced accordingly, making the short-term

variance forwards more expensive. The inversion in prices generates positive Sharpe

ratios at longer horizons.

Second, in the disappointment aversion model, the conditional variance forward

7Routledge and Zin (2010) and Bonomo, Garcia, Meddahi, and Tédongap (2011) provide a similar
analysis of GDA stochastic discount factor with alternative consumption processes. Also, the beliefs-
dependent effective risk aversion of my paper echoes the mechanism of Berrada, Detemple, and Rindis-
bacher (2018) with learning and a beliefs-dependent utility function.
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prices remain strongly upward-sloping, implying negative Sharpe ratios across all eco-

nomic conditions. The reason is that high variance is persistent due to the shape of

the conditional return variance and, therefore, variance risk concentrates in the long

term. Third, in the Epstein-Zin economy, prices of variance forwards remain markedly

increasing in the horizon for most economic conditions and become mildly decreasing

only when consumption growth is extremely low. The mild inversion is too weak to

dampen the upward-sloping effect at other times. Thus, the conditional Sharpe ratios

remain strongly negative.

Finally, the GDA model shows the superior performance when confronted with

other asset pricing facts. It captures salient features of the equity variance and skew

risk premiums and a volatility skew implied by index option prices.8 In contrast, other

frameworks generate too small variance and skew risk premiums and flat implied volatil-

ity curves. In a comparative analysis, I show that my results are robust to different cal-

ibrations of key parameter values. Following Pohl, Schmedders, and Wilms (2018) and

Lorenz, Schmedders, and Schumacher (2020), I check that global projection methods

provide highly accurate numerical solutions.

This paper is related to several strands of the literature. First, it contributes to the

growing literature on the term structures of equity and variance claims (van Binsbergen,

Brandt, and Koijen, 2012; van Binsbergen, Hueskes, Koijen, and Vrugt, 2013; Dew-Becker,

Giglio, Le, and Rodriguez, 2017). A number of studies (Croce, Lettau, and Ludvigson,

2014; Belo, Collin-Dufresne, and Goldstein, 2015; Favilukis and Lin, 2015; Hasler and
8Also, see Choi, Mueller, and Vedolin (2017) and Londono and Zhou (2017) for bond and currency

variance risk premiums.
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Márfe, 2016; Márfe, 2017; Ai, Croce, Diercks, and Li, 2018; Hasler, Khapko, and Márfe,

2019) explain the downward-sloping term structure of equity risk premia and return

volatility.9 I complement these papers by explaining the variance term structure.

Second, this study builds on the literature exploring asset pricing properties of GDA

preferences. These preferences have been used to explain stock market returns (Bonomo,

Garcia, Meddahi, and Tédongap, 2011, 2015; Liu and Miao, 2014; Schreindorfer, 2020),

sovereign spreads (Augustin and Tédongap, 2016), portfolios (Dahlquist, Farago, and

Tédongap, 2016), the cross section of stock returns (Delikouras, 2017; Farago and Té-

dongap, 2018; Delikouras and Kostakis, 2019), and the term structure of interest rates

(Augustin and Tédongap, 2021). I employ GDA preferences to explain the variance

forward prices and returns. This paper is, to my knowledge, the first to reconcile the

variance term structure. It does so while jointly explaining equity returns, variance and

skew premiums, and option prices. Also, the extant literature studies GDA preferences

in long-run risk models, while this paper examines a rare event model with learning.

Third, this paper is related to leading asset pricing theories focusing on the variance

premium and option prices. These include the extensions of equilibrium models with

habit (Du, 2011), rare disasters (Liu, Pan, and Wang, 2005; Benzoni, Collin-Dufresne, and

Goldstein, 2011; Seo and Wachter, 2019), and long-run risks (Eraker and Shaliastovich,

2008; Bollerslev, Tauchen, and Zhou, 2009; Drechsler and Yaron, 2011; Drechsler, 2013;

Zhou and Zhu, 2014; Shaliastovich, 2015). My paper is distinct from this literature be-

cause it points out the importance of the investor’s generalized disappointment aversion

for the variance term structure.
9See van Binsbergen and Koijen (2017) for a review of the literature on term structures of equity claims.
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Finally, this paper connects to hidden Markov switching models (David, 1997; Veronesi,

1999, 2000).10 The recent literature extends this approach to learning about unknown

volatility (Weitzman, 2007) and persistence (Cogley and Sargent, 2008; Gillman, Kejak,

and Pakos, 2015; Andrei, Hasler, and Jeanneret, 2019) as well as to a multidimensional

learning problem (Collin-Dufresne, Johannes, and Lochstoer, 2016; Johannes, Lochstoer,

and Mou, 2016; Babiak and Kozhan, 2020, 2021). This paper contributes to the learn-

ing literature by investigating how state uncertainty is priced in the presence of GDA

preferences with a particular emphasis on the pricing of the variance risk.

The remainder of the paper is organized as follows. Section 2 describes the econ-

omy. Section 3 outlines the equilibrium conditions. Section 4 provides asset pricing

results and sensitivity analysis. Section 5 concludes. Internet Appendix provides sup-

porting analysis and additional results.

2 Model
2.1 Generalized Disappointment Aversion Risk Preferences

The environment is an infinite-horizon, discrete-time exchange economy with a rep-

resentative agent. Following Epstein and Zin (1989), the agent’s utility Vt is defined by

Vt =
[
(1− β)Cρ

t + βRρ
t

]1/ρ
, (1)

in which Ct is consumption, 0 < β < 1 is the subjective discount factor, 1/(1− ρ) > 0

is the elasticity of intertemporal substitution (EIS), and Rt = Rt(Vt+1) is the certainty

equivalent.

The certainty equivalent captures the generalized disappointment aversion (GDA)

10See Pastor and Veronesi (2009) for a survey of the early literature on learning in financial markets.
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risk of Routledge and Zin (2010). GDA preferences put more weight on “disappointing”

events compared to the expected utility, similar to disappointment aversion risk prefer-

ences of Gul (1991). For Gul’s model, however, an outcome is viewed as disappointing

when it is below the certainty equivalent, whereas for Routledge and Zin’s specification

a disappointing outcome is below a constant fraction of the implicit certainty equivalent.

Formally, the certainty equivalent of GDA preferences is implicitly defined by

[Rt(Vt+1)]
α

α
= Et

[
Vα

t+1
α

]
− θEt

[
I

(
Vt+1

Rt(Vt+1)
6 δ

)(
[δRt(Vt+1)]

α

α
−

Vα
t+1
α

)]
, (2)

in which I(·) is the indicator function, 1− α > 0 is the relative risk aversion, δ ≤ 1 is

the disappointment threshold, and θ ≥ 0 is disappointment aversion. GDA preferences

enable one to control the disappointment threshold by changing δ. Routledge and Zin’s

preferences nest two specifications. The expected utility is obtained by setting θ = 0.

Setting θ 6= 0 and δ = 1 reduces GDA preferences to the disappointment aversion utility.

2.2 Endowments and Inference Problem

I consider a Markov switching model for aggregate consumption growth

∆ct+1 = µst+1 + σεt+1, εt+1 ∼ N(0, 1).

where ∆ct+1 is log consumption growth, st+1 is a hidden two-state Markov chain with a

state space S = {1, 2} and a transition matrix P =
(
πij
)

, in which π11 = 1− π12 and

π22 = 1− π21 are transition probabilities, µst+1 is the state-dependant mean growth rate,

and σ is the constant consumption volatility. I assume µ2 < µ1 to identify st+1 = 1 and

st+1 = 2 as expansion and recession, respectively.11

11The application of a regime-switching framework is a popular paradigm in the asset pricing literature.
These models are flexible to embed business cycle fluctuations (Cecchetti et al., 1990; Veronesi, 1999; Ju
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The motivation for constructing a two-state model is twofold. First, I want to main-

tain parsimony for the sake of convenient interpretation. Second, I do not introduce

additional risks to isolate the impact of learning and GDA preferences. A model with

additional ingredients would certainly make the framework more flexible. However, I

show that a tightly calibrated GDA model with a single state variable can already repro-

duce the variance term structure with a wide array of salient features of the equity and

derivatives markets.

I seek to price a levered consumption claim with log dividend growth:

∆dt+1 = gd + λ∆ct+1 + σdet+1, et+1 ∼ N(0, 1),

in which λ is a leverage ratio on expected consumption growth. I use gd to equalize long-

run dividend and consumption growth rates, and σd to match the empirical dividend

growth volatility. In addition, the chosen value of λ allows me to match the observed

correlation between annual consumption and dividend growth rates.

The investor knows the true parameters and distribution of shocks but does not ob-

serve the state. At time t, the agent updates the probability of expansion πt = P(st+1 =

1|Ft) conditional on the history of consumption growth rates denoted by Ft. I assume a

Bayesian agent who updates his belief through Bayes’ rule:

πt+1 =
π11 f (∆ct+1|1)πt + (1− π22) f (∆ct+1|2)(1− πt)

f (∆ct+1|1)πt + f (∆ct+1|2)(1− πt)
, (3)

f (∆ct+1|i) =
1√
2πσ

e−
(∆ct+1−µi)

2

2σ2 , i = 1, 2.

and Miao, 2012; Johannes et al., 2016; Collin-Dufresne et al., 2016), the “peso problem” in the mean (Rietz,
1988; Barro, 2006; Backus et al., 2011; Gabaix, 2012) or persistence (Gillman et al., 2015), long-run risks
(Bonomo et al., 2011, 2015), and economic recoveries (Hasler and Márfe, 2016) in endowments.
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3 Equilibrium
3.1 Equilibrium and Pricing Kernel

Following Routledge and Zin (2010), I show (see Appendix B) that the gross return

Ri,t+1 on the i-th traded asset satisfies the condition

Et [Mt+1Ri,t+1] = 1, (4)

in which Mt+1 is the stochastic discount factor (SDF) of the GDA economy defined as

Mt+1 = β

(
Ct+1

Ct

)ρ−1

︸ ︷︷ ︸
MCRRA

t+1

·
(

Vt+1

Rt(Vt+1)

)α−ρ

︸ ︷︷ ︸
MEZ

t+1

·

 1 + θI(Vt+1 6 δRt(Vt+1))

1 + θδαEt

[
I(Vt+1 6 δRt(Vt+1))

]


︸ ︷︷ ︸
MGDA

t+1

. (5)

The first component MCRRA
t+1 is the SDF of the power utility. The second multiplier

MEZ
t+1 is the adjustment of Epstein-Zin preferences, which separate the coefficient of risk

aversion and EIS. The third component MGDA
t+1 represents the GDA adjustment. When the

agent’s utility is below a predefined fraction of the certainty equivalent, more weight is

attached to the SDF, magnifying the countercyclical dynamics of the pricing kernel. For a

better understanding of the key role of GDA, I shut down the Epstein-Zin adjustment in

SDF for the models with (generalized) disappointment aversion by setting α = ρ. Thus,

the pricing kernel simplifies to

Mt+1 = β

(
Ct+1

Ct

)ρ−1

·

 1 + θI(Vt+1 6 δRt(Vt+1))

1 + θδαEt

[
I(Vt+1 6 δRt(Vt+1))

]
 .

3.2 Model Solution

The latest long-run risk models generate significant nonlinearities, which, coupled

with the log-linearization of equilibrium quantities, can generate economically signifi-

12

Electronic copy available at: https://ssrn.com/abstract=4197174



cant numerical errors (Pohl et al., 2018). Hence, I solve the model numerically using

global solution methods to accurately capture the nonlinear nature of the model under

consideration. The model solution boils down to approximating the return on the wealth

portfolio Rω
t+1 and the equity return Re,t+1 implicitly defined by Eq. (4). Denoting the

investor’s wealth and equity price by Wt and Pe
t , we obtain

Rω
t+1 =

Wt+1

Wt − Ct
=

Wt+1
Ct+1

Wt
Ct
− 1
· e∆ct+1 ∧ Re

t+1 =
Pe

t+1 + Dt+1

Pe
t

=

Pe
t+1

Dt+1
+ 1

Pe
t

Dt

· e∆dt+1 .

I conjecture that Wt
Ct

= G(πt) and Pe
t

Dt
= H(πt) are functions of πt. I substitute Rω

t+1 and

Re
t+1 into Eq. (4) and apply the projection method (Judd, 1992) to approximate G(πt)

and H(πt). I discuss the numerical solution and its accuracy in Appendix C and provide

the model-generated asset prices in Appendix D.

4 Data and Quantitative Results
4.1 Data

I construct annual real per capita consumption growth from January 1930 to Decem-

ber 2016 using the US National Income and Product Accounts. I then retrieve data from

the Center for Research in Security Prices to obtain aggregate equity market dividends

and asset returns. To discipline quantitative analysis, I tightly calibrate each model in

this paper to closely match the key moments of fundamentals and equity returns.

In addition to standard asset pricing moments, I study the implications of different

models for the high moment risk premiums and option prices. The variance premium

is the difference between expectations of stock market return variance under the risk-

neutral Q and actual physical P probability measures.12 Formally, a τ-month variance

12In the model, the Radon-Nikodym derivative is defined as dQ
dP

= Mt+1
Et(Mt+1)

and allows one to compute
the risk-neutral moments.
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Table 1. Summary statistics: variance and skew risk premiums
This table reports monthly descriptive statistics for the conditional variance vpt and skew spt premiums. Mean, Me-
dian, SD, Max, Skewness, and Kurtosis report the sample average, median, standard deviation, maximum, skewness,
and kurtosis, respectively. The empirical statistics of the variance and skew risk premiums are for the US data from
January 1990 to December 2016 and from January 1996 to December 2016, respectively.

vpt spt

Mean 10.24 −42.12
Median 7.50 −68.11
SD 10.49 82.11
Max 83.70 447.37
Skewness 2.62 3.57
Kurtosis 14.15 16.26

premium at time t is vpt = E
Q
t
[
Return Variation(t, t + τ)

]
−EP

t
[
Return Variation(t, t +

τ)
]
, in which the total return variation is calculated over the period t to t + τ. The quan-

tity vpt corresponds to the expected profit of a variance swap, which pays the equity’s

realized variance over the term of the contract. Like the variance premium, I follow

Kozhan, Neuberger, and Schneider (2013) and define a τ-month skew risk premium at

time t as spt =
EP

t

[
Return Skewness(t,t+τ)

]
E

Q
t

[
Return Skewness(t,t+τ)

] − 1, in which the total return skewness is calcu-

lated from t to t + τ. The quantity spt corresponds to the excess return on a skew swap,

which pays the equity’s realized skewness over the term of the contract. The literature

has mainly focused on the variance premium, while the skew premium has received

little attention, especially from theoretical research.

The data for the variance premium covers the period from January 1990 to Decem-

ber 2016 and is from Chicago Board of Options Exchange (CBOE). For the skew risk

premium and implied volatility surface, I use European options written on the S&P 500

index and traded on the CBOE. The options data cover the period from January 1996

to December 2016 and are from OptionMetrics.13 Table 1 shows summary statistics for

13I present the empirical methodology in Appendix A and the model-based asset prices in Appendix
D.
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one-month variance and skew risk premiums.14 Figure 2 shows the implied volatility

curves. The size of the variance and skew premiums as well as the level and the slope of

implied volatility curves remain a challenge for asset pricing models. This paper shows

that a model with GDA preferences and learning about rare depressions jointly captures

standard moments of equity returns, high moment premiums, and option prices with

new evidence about the variance term structure.

4.2 Calibration

To better understand the role of generalized disappointment aversion, I consider

three frameworks: a model with generalized disappointment aversion preferences (GDA),

an economy with disappointment aversion preferences (DA), and a specification with

Epstein-Zin preferences (EZ). The comparison of GDA and DA isolates the contribution

of disappointment aversion, while the comparison of GDA and EZ illustrates the impact

of the agent’s preference for early resolution of uncertainty. Having solved the model

numerically, I generate 10,000 simulations of each calibration and report model-based

5th, 50th and 95th percentiles of sample moments of cash flows and asset prices across all

simulations.15 In line with the data, the model-implied cash flows and returns are based

on simulations with depressions, while the model-based variance forwards, moment

risk premiums, and option prices correspond to simulations without depressions. The

results are robust to the inclusion of rare events, which are excluded to eliminate the im-

pact of large consumption declines and to highlight the role of learning and generalized

14The estimates are consistent with Bakshi et al. (2003), Bollerslev et al. (2009), and Kozhan et al. (2013).
15The previous version of the paper reported model population moments. For a convenient exposition

of tables and figures, those results are not reported but are available upon request. In those results, I
check that the fact the model explains the variance term structure and other moments is not a finite-
sample phenomenon.

15

Electronic copy available at: https://ssrn.com/abstract=4197174



0.9 0.95 1 1.05

16

20

24

28

Moneyness

A
nn
ua
lV
ol
.%

1-Month Implied Volatilities

���

���

1 3 6

16

20

24

28

Months to Expiration

A
nn
ua
lV
ol
.%

OTM/ATM Implied Volatilities

Figure 2. Implied volatilities
The left panel plots the empirical 1-month implied volatility curve as a function of moneyness. The right panel plots
the empirical implied volatility curves for ATM and OTM options as functions of the time to maturity (in months).
All curves are for the US data from January 1996 to December 2016.

disappointment aversion.

Table 2 reports the parameter values. As in Bansal and Yaron (2004), I make the

model’s time-averaged consumption statistics consistent with observed annual log con-

sumption growth. As in Collin-Dufresne et al. (2016), I calibrate the recession state

to a consumption decline in the US during the Great Depression.16 Specifically, I set

π11 = 1151/1152 and π22 = 47/48. These numbers imply an average duration of the

high-growth state of (1− π11)
−1 = 96 years and the depression state of (1− π22)

−1 = 4

years. The unconditional probability of expansion is π11 = (1− π22)/(2− π11 − π22) =

0.96 and hence the economy experiences one four-year depression per century, consis-

tent with the historical data. Consumption declines on average at the annual rates of

µ2 × 12 = −4.6% in the depression state, which is equal to an average annual decline in

the real, per capita log consumption growth during the Great Depression.

I now calibrate parameters in the dividend process. To compare my results to prior

16The Great Depression is the only example of a consumption disaster in US history for the period
considered in my paper. Thus, I naturally calibrate the recession state to this observation following Collin-
Dufresne et al. (2016). Furthermore, Nakamura, Steinsson, Barro, and Ursua (2013) note that rare disasters
tend to unfold over multiple years. Instead of assuming extreme instantaneous consumption disasters, I
choose a milder depression with an average duration corresponding to four years of the Great Depression.
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Table 2. Parameter values
This table reports parameter values in the cash-flow processes and the three models: GDA, DA, and EZ.

Parameter Description Value

π11 Transition probability from expansion to expansion 1151/1152
π22 Transition probability from recession to recession 47/48
µ1 × 12 Consumption growth in expansion 2.06
µ2 × 12 Consumption growth in recession −4.6
gd × 12 Mean adjustment of dividend growth −2.87
σ×
√

12 Std. deviation of consumption growth shock 2.6
σd ×

√
12 Std. deviation of dividend growth shock 11.41

λ Leverage ratio 2.6

GDA DA EZ

β12 Discount factor 0.99 0.99 0.99
1/(1− ρ) EIS 1.5 1.5 1.5
1− α Risk aversion 1/1.5 1/1.5 6.0
θ Disappointment aversion 8.41 0.6 0
δ Disappointment threshold 0.930 1

studies, particularly the disaster literature, I set the leverage ratio λ = 2.6, the value

used in Seo and Wachter (2019).17 I further follow the literature and set gd to equalize

the long-run dividend and consumption growth. The standard deviation of the dividend

process σd is used to generate large annual dividend volatility observed in the data.

Table 2 further summarizes the values of GDA, DA, and EZ preferences. I set

β12 = 0.99 and 1/(1 − ρ) = 1.5 in all cases. In the GDA model, the coefficient of

relative risk aversion is 1− α = 1/1.5. This cancels the Epstein-Zin adjustment in SDF

as shown in Section 3 and also deletes one degree of freedom caused by extra GDA

parameters. I jointly set θ = 8.41 and δ = 0.930 to match the high equity premium. The

calibrated disappointment aversion is consistent with the empirical estimates from 3.29

to 8.41 (Delikouras, 2017). Note that the variance term structure, the variance and skew

premiums, and the implied volatility surface are not directly targeted during the model

17I regress the annual dividends on the annual consumption covering the period 1930-2016 and find
the leverage ratio is around 2.5, a number within an interval of commonly used values from 1.5 to 4.5. The
leverage ratio is an important parameter for two reasons. First, it controls the volatility of dividends in nor-
mal times. Second, it determines the decline of dividends in the depression state. Consequently, a larger
leverage parameter would increase the payoff of put options, conditional on the depression realization.
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calibration.

In the DA model, I set 1− α = 1− ρ = 1/1.5 to eliminate the impact of a relative risk

aversion parameter on SDF. I also shut down the generalized disappointment aversion

channel by setting δ = 1. This inevitably generates larger effective risk aversion in good

times due to an increased number of disappointing events, significantly distorting equity

moments in the DA model. Thus, I decrease the disappointment aversion parameter

θ = 0.6 to match the observed equity premium. The remaining parameters are fixed

at the initial values. For the EZ model, I turn off disappointment aversion by setting

θ = 0. The model operates only through the risk aversion channel with the coefficient

of relative risk aversion of 1− α = 6. In this case, the agent has a preference for early

resolution of uncertainty, a workhorse in the asset pricing literature. Other parameters

correspond to those in the GDA model.

4.3 Endowments and Equity Returns

Panel A in Table 3 compares the annualized consumption and dividends moments

of the data with those implied by the calibration. A two-state regime-switching process

matches the key empirical statistics well. Panel B in Table 3 reports the annualized

moments of equity returns for the three specifications. All three models do a good job

of accounting for salient features of equity returns, as all predict the low risk-free rate,

the large equity premium, and the volatility of excess returns. Also, the volatility of

the risk-free rate and the level of the log price-dividend ratio correspond well to the

empirical estimates. The shortcoming of the three models is too low volatility of the log

price-dividend ratio.
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Table 3. Cash flows and stock market returns
Panel A reports moments of consumption and dividend growth denoted by ∆c and ∆d. Panel B reports moments
of the log risk-free rate r f , the excess log equity returns re − r f , and the log price-dividend ratio pd. The entries are
annualized statistics except for autocorrelation and correlation. The moments are for the data and the three models:
GDA, DA, and EZ. The empirical moments are for the US data from January 1930 to December 2016. For each
model, I simulate 10,000 economies at a monthly frequency with a sample size equal to its empirical counterpart and
report percentiles of sample statistics. The model-implied results are based on the simulations with consumption
disasters, consistent with the historical data. I use common notations for mean E, volatility σ, autocorrelation ac1, and
correlation corr.

Data GDA DA EZ

5% 50% 95% 5% 50% 95% 5% 50% 95%

Panel A: Cash flows

E(∆c) 1.83 0.91 1.85 2.40 0.91 1.85 2.40 0.91 1.85 2.40
σ(∆c) 2.22 1.90 2.28 3.19 1.90 2.28 3.19 1.90 2.28 3.19
ac1(∆c) 0.50 0.09 0.30 0.62 0.09 0.30 0.62 0.09 0.30 0.62
E(∆d) 1.44 −1.10 1.91 4.44 −1.10 1.91 4.44 −1.10 1.91 4.44
σ(∆d) 11.04 9.51 11.05 12.97 9.51 11.05 12.97 9.51 11.05 12.97
ac1(∆d) 0.19 0.09 0.27 0.46 0.09 0.27 0.46 0.09 0.27 0.46
corr(∆c, ∆d) 0.55 0.38 0.55 0.71 0.38 0.55 0.71 0.38 0.55 0.71

Panel B: Returns

E(r f ) 0.81 −0.13 0.86 1.49 0.68 1.14 1.20 0.22 1.03 1.41
σ(r f ) 1.87 1.48 2.52 3.51 0.04 0.25 1.22 0.73 1.50 2.34
E(re − r f ) 5.22 3.67 6.10 8.35 3.43 6.04 8.47 3.50 5.89 8.19
σ(re − r f ) 19.77 15.58 19.22 23.11 13.03 16.02 20.34 14.64 18.69 23.49
E(pd) 3.11 2.96 3.03 3.05 2.90 2.97 2.98 2.95 3.04 3.06
σ(pd) 0.33 0.04 0.08 0.18 0.01 0.05 0.18 0.03 0.08 0.22

4.4 The Price of Variance Risk

Figure 3 compares the empirical and model-based term structure of variance swap

prices and returns. The left plot shows that the GDA model does a good job of matching

the overall shape of annualized Sharpe ratios. In particular, it generates a curve that

is negative and steep at shorter horizons and becomes positive and upward-sloping at

longer maturities. The figure also shows that both DA and EZ specifications fail to rec-

oncile the concave and upward shape of the term structure. Consistent with Dew-Becker

et al. (2017), the calibration with Epstein-Zin preferences underprices variance risk in the

short term and overprices future variance in the long term. The DA model implies even

more negative Sharpe ratios at longer horizons, while the one-month forwards earn a

similar risk premium as in the EZ model. The right panel plots the average prices of
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Figure 3. Sharpe ratios and forward variance claim prices
The figure plots annualized Sharpe ratios and average prices for forward variance claims for the data and the three
models: GDA, DA, and EZ. The prices are reported in annualized volatility terms. The empirical lines are from Dew-
Becker et al. (2017) and correspond to the US data from 1996 to 2013. For each model, I simulate 10,000 economies
at a monthly frequency with a sample size equal to its empirical counterpart and report medians of sample statistics.
The model-implied results are based on the simulations without consumption disasters, consistent with the historical
data.

forward variance claims for different maturities in the data and the three models. The

empirical curve is steep and concave at the very short end and it flattens significantly

at the long end. In contrast, the DA and EZ specifications predict strongly upward-

sloping term structures at all horizons. Although the GDA model generates slightly

higher prices of variance claims, it captures the concave shape and the flatness of the

curve at longer maturities.

Table 4 augments the results in Figure 3 by reporting the p-values of annualized

Sharpe ratios with respect to their finite-sample distribution. For each model, it shows

the fraction of samples across 10,000 simulations of the economy satisfying one of the

conditions. For the first three conditions, simulated average Sharpe ratios for one-, three-

, and 12-month horizons should be respectively smaller, larger, and larger than the em-

pirical estimates. One can interpret these fractions as p-values for a one-sided test of

the model generating as negative or as positive average Sharpe ratios for a particular

maturity as in the data. For the last condition, simulated statistics should jointly satisfy

the first three requirements. This corresponds to the p-value for a test of the model
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Table 4. Model tests using annualized Sharpe ratios for forward variance claims
The entries are for the three models: GDA, DA, and EZ. For each model, I simulate 10,000 economies at a monthly
frequency with a sample size equal to the length of the variance swap data. In each simulation, I calculate average
annualized Sharpe ratios for forward variance claims with one-, three-, and 12-month maturities. For each model,
the first row shows fractions of samples in which the simulated Sharpe ratios are at least as small as the empirical
one-month estimates. The second and third rows present the fraction of samples in which the simulated Sharpe ratios
are at least as large as the empirical three-month and 12-month estimates, respectively. The entries of the bottom row
are the fraction of samples in which all three conditions are satisfied simultaneously. The model-implied results are
based on the simulations without consumption disasters, consistent with the historical data.

p-value

GDA DA EZ

Simulated 1mo/SR ≤ empirical SR 0.91 0.26 0.27
Simulated 3mo/SR ≥ empirical SR 0.38 < 0.01 0.03
Simulated 12mo/SR ≥ empirical SR 0.48 < 0.01 < 0.01

Joint test: 1mo/SR ≤ data ∧ 3mo/SR ≥ data ∧ 12mo/SR ≥ data 0.32 < 0.01 < 0.01

replicating the observed upward-sloping shape of the term structure.

Table 4 shows that we cannot reject any of the three models based on the one-month

variance forward returns only. Specifically, one would expect to see as small average one-

month Sharpe ratios as observed empirically in 91%, 26%, and 27% of the time in the

GDA, DA, and EZ specifications, respectively. At longer maturities, however, one can

reject at the 5% level the null hypothesis that the DA or EZ frameworks generate the

variance swap data. The GDA model instead generates large p-values for all tests and

cannot be rejected. In particular, the models with disappointment aversion or Epstein-

Zin preferences would predict positive Sharpe ratios at longer maturities as in the data

in fewer than 3% of simulations, while the likelihood of replicating the overall shape is

less than 1%. This is in stark contrast to the GDA model, which captures negative Sharpe

ratios at the short end and positive ones at the long end in 32% of the simulations.

To gain a better understanding of the results, Figure 4 illustrates annualized return

volatility as a function of the posterior probability of the expansion in the three models.

The volatility has a pronounced humped shape and is maximized at an interior point
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Figure 4. Return volatility
The panel plots equity return volatility as a function of a posterior belief for the three models: GDA, DA, and EZ.
Quantities are reported in annualized volatility terms, 100×

√
12× vart(re).

of the probability simplex in all cases. The GDA model generates highly skewed condi-

tional volatility. The DA specification yields a symmetric shape of the volatility curve.

The volatility line in the EZ economy is roughly located in the middle of the two. For

Epstein-Zin and especially disappointment aversion preferences, return volatility is high

for a wide range of beliefs and becomes low only when the investor has full confidence

in the state. As the investor’s beliefs tend to change slowly over time, high return volatil-

ity persists in the long term and hence increases the hedge against long-term volatility

risk. As a result, this generates the upward-sloping term structure of variance claim

prices, which is inconsistent with the data.18

In contrast, return volatility in the GDA model is high within a narrow range of

beliefs and quickly diminishes outside this interval. When the investor’s beliefs become

pessimistic, return volatility initially spikes but does not persist in the long term, im-

plying a larger amount of variance risk in the short term. In equilibrium, the properties

of return variance transmit to variance forwards, which generates the inversion in their

18This intuition also applies to the models with full information. If the state is observable, the high stock
market variance happens during consumption disasters and hence persists on average for four years, the
average duration of a depression state. As a result, high variance risk will concentrate in the long term,
and forward variance will be upward-sloping, counter to what we observe empirically.
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prices in bad times. In the short term, the inversion increases the hedge against realized

variance. In the long run, it kills the upward-sloping effect of time-varying disaster risk

and produces the flat unconditional term structure of prices. I also show that the in-

version is strong enough to produce on average positive and slightly increasing Sharpe

ratios at longer maturities.

The mechanism determining the conditional return volatility is as follows. Veronesi

(1999) demonstrates that, in the endowment economy with two hidden regimes, price

sensitivity to news is strongly driven by the risk aversion component stemming from

the investor’s degree of risk aversion. In the DA model, risk aversion is equally large in

the expansion and depression states because a high disappointment threshold implies a

large number of disappointing outcomes in the two regimes. Thus, price sensitivities are

similar across states, resulting in symmetric conditional return volatility. In the EZ econ-

omy, equity prices are more sensitive to consumption shocks in good times than in bad

times, although Epstein-Zin preferences do not generate a significant difference in price

sensitivities in the two regimes. In the GDA model, instead, substantial countercyclical

risk aversion leads to a stronger overreaction of stock prices to bad news in good times,

whereas equity prices are substantially less sensitive to good news in bad times. This

asymmetry in price sensitivities leads to strongly skewed return volatility in the GDA

model.

As an additional exercise, Figure 5 provides impulse responses of the conditional

term structure of Sharpe ratios and average prices. The investor holds a median belief

(normal times). I then study conditional dynamics of the term structures next period

when consumption growth is a 1.5 standard deviation above and 1.5, 2.2, and 2.5 stan-
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Figure 5. Conditional Sharpe ratios and forward variance claim prices
The figure plots annualized Sharpe ratios and average prices for forward variance claims for the three models: GDA,
DA, and EZ. Each panel shows the term structures in good, normal, and bad times. The economy is initially in
normal times, corresponding to a median posterior belief. In good (bad) times denoted by "+1.0σ" ("-1.5σ", "-2.2σ",
and "-2.5σ"), consumption growth is a 1.0 (1.5, 2.2, and 2.5) standard deviation(s) above (below) an average growth in
expansion.

dard deviations below average growth in the expansion (good and bad times). Figure 5

shows that the DA and EZ models predict negative Sharpe ratios for all economic condi-

tions. Contrary to the empirical evidence, average Sharpe ratios become more negative

in the upside scenario under disappointment aversion. The economy with GDA pref-

erences generates a procyclical and steep curve for short-term claims, consistent with

Aït-Sahalia et al. (2020). Furthermore, the term structure of Sharpe ratios is insignificant
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for maturities longer than two months in good and normal times as well as bad but

not depression-like states and is steep and positive in response to large consumption

declines. The latter feature of the GDA model enables to match the sign and shape of

the unconditional curves.

Figure 5 further depicts impulse responses of variance claim prices. The average

curve for the DA model remains upward-sloping in all scenarios. This explains negative

average returns on variance forwards. For the EZ economy, the term structure of prices

switches from strongly increasing in normal and good times to slightly increasing in bad

(but not severe) times, and it even becomes weakly downward-sloping in very bad times.

Nevertheless, this amplification of short-term prices is too weak to generate on average

positive returns on holding a variance forward. In contrast, generalized disappointment

aversion inverts the term structure in all bad scenarios, and this inversion is substantially

stronger than in the EZ economy. Thus, GDA preferences strongly amplify the short-

term variance risk in bad times that enables one to replicate empirical term structures.

Next, I conduct a sensitivity analysis to examine the robustness of key results to

alternative calibrations of preference specifications and to address the concern that the

findings are driven by a particular choice of parameters. Specifically, I change one key

parameter in each of the three preference specifications, while holding the remaining

parameters as in the original calibration. In the GDA model, I consider smaller and

larger values of disappointment aversion and threshold parameters. In the DA model,

I decrease or increase disappointment aversion compared to the original calibration. In

the EZ model, I consider smaller and larger relative risk aversion coefficients.

Figure 6 depicts Sharpe ratios and prices for variance forwards in various cali-
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Figure 6. Sensitivity of Sharpe ratios and forward variance claim prices: GDA
The figure plots annualized Sharpe ratios and average prices for forward variance claims for different model calibra-
tions with generalized disappointment aversion preferences. GDA corresponds to the original GDA model. In GDAθl
and GDAθh

, θl = 6.41 and θh = 10.41. In GDAδl
and GDAδh

, δl = 0.920 and δh = 0.940. If not stated otherwise, the
remaining parameters are set at the original values in the GDA model. For each model, I simulate 10,000 economies
at a monthly frequency with a sample size equal to its empirical counterpart and report medians of sample statistics.
The model-implied results are based on the simulations without consumption disasters, consistent with the historical
data.

brations of GDA preferences. The shape of variance forward prices flattens and the

term structure of Sharpe ratios becomes upward-sloping with the higher disappointment

threshold or disappointment aversion. Intuitively, variance risk is amplified more in the

short term than in the long term in bad times. As a result, this generates downward- and

upward-sloping patterns in prices and Sharpe ratios, respectively. In normal and good

times, average prices are slightly increasing in the horizon. However, only short-term

variance risk earns a significant premium as measured by large and negative Sharpe

ratios for one and two months but insignificant ratios for longer horizons. Since higher

disappointment risk reinforces the first effect, the higher disappointment threshold or

disappointment aversion implies flatter and steeper term structures of prices and Sharpe
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Figure 7. Sensitivity of Sharpe ratios and forward variance claim prices: DA and EZ
The figure plots annualized Sharpe ratios and average prices for forward variance claims for different model calibra-
tions with disappointment aversion and Epstein-Zin preferences. DA and EZ correspond to the original DA and EZ
models. In DAθl

and DAθh
, θl = 0.5 and θh = 0.7. In EZ(1−α)l

and EZ(1−α)h
, (1− α)l = 5 and (1− α)h = 7. If not

stated otherwise, the remaining parameters are set at the original values in the DA and EZ models. For each model,
I simulate 10,000 economies at a monthly frequency with a sample size equal to its empirical counterpart and report
medians of sample statistics. The model-implied results are based on simulations without consumption disasters,
consistent with the historical data.

ratios, respectively.

Figure 7 examines the impact of disappointment and risk aversion parameters on

the variance term structures in the models with Gul and Epstein-Zin preferences. In the

DA specification, the slope of forward variance prices is increasing in disappointment

aversion. The reason is that the disappointment-averse investor strongly dislikes low and

high variance. Thus, stronger disappointment aversion increases already high insurance

premia against shocks to realized and future volatility. In the EZ economy, the slope

of forward variance prices is decreasing in risk aversion. To generate a close-to-zero

slope at least after the ten-month maturity, the risk aversion should be at least 7. For

this value, however, the model would generate a Sharpe ratio of less than -2.0 for the
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one-month claim compared to -1.3 in the data. Moreover, with this value of relative

risk aversion, the mean equity premium has a median value of 8% in the EZ model,

well above the empirical estimate of around 5%. Raising risk aversion even more would

only worsen the model fit with the variance term structure at the one-month maturity

and with equity moments and higher-moment risk premiums (see Appendix E). Thus,

one cannot reconcile the variance term structure in the EZ framework by increasing risk

aversion.

In sum, this sensitivity analysis confirms that the pricing kernel, necessary to recon-

cile the empirical variance term structure, is consistent with generalized disappointment

aversion and cannot be supported by parameter values in alternative preferences. Ap-

pendix E augments a comparative statics exercise by reporting the remaining results in

alternative model calibrations. It demonstrates that the DA and EZ specifications with

different parameter choices are unable to capture the higher-moment risk premiums and

implied volatility curves.

4.5 Variance and Skew Risk Premiums

Panel A in Table 5 collects moments of the variance premium and related measures

in the data and models. The GDA economy is able to generate a large and volatile vari-

ance premium. It also qualitatively respects the non-normality of the variance premium

distribution, although the sample skewness and kurtosis statistics are smaller relative

to the data. The GDA model accounts for the variance premium with empirically con-

sistent conditional return variances under both probability measures. In particular, it

predicts that return variance is more volatile under the risk-neutral distribution and that

both variances are persistent, as they are in the data.
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Table 5. Variance premium and predictability

Panel A reports moments of variance premium vp, market return variances varP
t (re) and varQ

t (re) under physical P

and risk-neutral Q probability measures. The Panel A entries are monthly statistics. Panel B reports results of the

predictive regression of h-month future excess log equity returns constructed as rex
t+1→t+h = ∑h

i=1

(
re,t+i− r f ,t−1+i

)
on

the lagged variance premium vpt. Specifically, the slope estimates β(h) and R2(h) are based on the linear projection:

100× rex
t+1→t+h = Intercept + β(h)× vpt + εt+h, h = 1, 3, 6.

The moments and regression outputs are for the data and the three models: GDA, DA, and EZ. The empirical statistics
are for the US data from January 1990 to December 2016. For each model, I simulate 10,000 economies at a monthly
frequency with a sample size equal to its empirical counterpart and report percentiles of sample statistics based on
these series. The model-implied results are based on the simulations without consumption disasters, consistent with
the historical data. I use common notations for mean E, volatility σ, autocorrelation ac1, skewness skew, and kurtosis
kurt.

Data GDA DA EZ

5% 50% 95% 5% 50% 95% 5% 50% 95%

Panel A: Variance premium

E(vp) 10.27 8.13 12.32 17.14 1.34 2.11 3.39 3.15 4.92 7.23
σ(vp) 10.87 12.22 15.99 18.93 1.53 3.11 5.25 4.79 7.46 10.91
skew(vp) 2.33 0.91 1.49 2.25 0.49 2.76 4.17 −0.62 1.71 2.98
kurt(vp) 10.90 2.34 4.06 7.67 5.88 12.03 24.96 4.00 7.27 13.59
σ(varP

t (re)) 29.32 17.34 25.44 32.68 5.02 14.25 36.48 13.00 25.50 40.47
ac1(varP

t (re)) 0.79 0.70 0.81 0.88 0.61 0.79 0.92 0.66 0.82 0.91
σ(varQ

t (re)) 33.76 29.58 40.60 49.11 6.55 17.24 38.91 17.79 31.46 45.00
ac1(varQ

t (re)) 0.80 0.69 0.79 0.85 0.62 0.80 0.92 0.66 0.82 0.89
skew(varQ

t (re)) 3.53 0.86 1.47 2.21 2.40 3.73 5.75 1.47 2.30 3.34
kurt(varQ

t (re)) 21.47 2.30 4.13 7.78 8.46 19.47 45.54 3.87 8.24 16.18

Panel B: Predictability of excess returns

β(1m) 0.76 0.19 0.75 1.38 −1.43 1.81 5.56 −0.95 0.93 2.77
R2(1m) 2.70 0.15 2.39 6.99 0.02 1.09 4.19 0.01 1.31 6.01
β(3m) 0.83 0.18 0.63 1.09 −1.31 1.55 4.02 −0.73 0.87 2.11
R2(3m) 8.61 0.47 5.57 15.24 0.02 2.39 8.67 0.03 3.28 12.87
β(6m) 0.57 0.15 0.50 0.82 −1.05 1.24 3.06 −0.63 0.74 1.60
R2(6m) 7.55 0.68 7.78 20.79 0.08 3.32 13.14 0.04 4.67 16.95

I now examine return predictability by the variance premium documented by prior

literature. I regress the one-, three-, and six-month cumulative excess log returns (ex-

pressed in percentages) on the lagged monthly variance premium. Panel B in Table 5

reports positive and slightly decreasing regression coefficients and increasing R2s with

the horizon. The GDA model matches the magnitude and monotonicity of coefficients

and R2 statistics.

Table 5 shows that the model with disappointment aversion preferences produces
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Table 6. Skew premium

This table reports moments of skew premium sp, market return skewness skewP
t (re) and skewQ

t (re) under the physical
P and risk-neutral Q probability measures. The entries are monthly statistics. The moments are for the data and
the three models: GDA, DA, and EZ. The empirical statistics are for the US data from January 1996 to January
2016. For each model, I simulate 10,000 economies at a monthly frequency with a sample size equal to its empirical
counterpart and report percentiles of sample statistics based on these series. The model-implied results are based on
the simulations without consumption disasters, consistent with the historical data. I use common notations for mean
E, volatility σ, skewness skew, and kurtosis kurt.

Data GDA DA EZ

5% 50% 95% 5% 50% 95% 5% 50% 95%

E(sp) −42.20 −39.11−34.58 −30.78 26.58 34.88 56.36 −22.79−19.34 −12.84
σ(sp) 81.81 11.23 26.42 46.52 24.44 29.53 377.79 3.03 21.31 91.65
skew(sp) 3.57 −4.32 3.28 8.56 −3.37 1.24 13.98 −11.70 3.23 13.69
kurt(sp) 16.26 1.93 43.48 112.04 3.10 4.65 215.60 2.04 80.40 219.37
ar1(sp) 0.04 −0.12 0.15 0.62 −0.01 0.61 0.70 −0.27 0.11 0.58

E(skewP
t (re)) −87.52 −42.55−39.99 −33.83 −20.49−15.82 −12.34 −38.00−33.98 −29.43

σ(skewP
t (re)) 173.59 8.99 11.79 22.21 7.68 11.41 15.56 12.03 13.61 23.97

E(skewQ
t (re)) −177.73 −70.44−64.13 −53.83 −17.39−13.22 −9.82 −47.60−42.42 −36.45

σ(skewQ
t (re)) 92.33 23.20 28.27 41.96 7.91 11.14 15.54 16.44 18.68 28.90

a mean and volatility of the variance premium that are more than five times smaller

than with the generalized utility function. Turning off the generalized disappointment

aversion channel also leads to a significant reduction in the volatility of return variance

in the DA model. As the variance premium decreases, its predictive power for the excess

log returns also suffers. This is manifested in the lower R2s and empirically inconsistent

regression coefficients. Next, I turn off any source of (generalized) disappointment aver-

sion and consider a representative agent with Epstein-Zin preferences. The EZ model

leads to around a two-fold increase in the mean and volatility of the variance premium

relative to the DA model, but sample statistics are less than half of the numbers in the

GDA model. A smaller variance premium is due to the reduced volatility in conditional

variances. A smaller variance premium in the DA and EZ models results in excessively-

high regression coefficients and too small R2s in the predictive regressions.

Table 6 reports summary statistics of the skew risk premium in the data and mod-
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els. The GDA model produces a sizeable skew premium, which corresponds well to

the historical value and generates positive skewness and excess kurtosis statistics. The

conditional mean of the return skewness under both measures is significantly negative,

although the model cannot fully capture the size observed in the data. The main draw-

back of the GDA model is lower volatility of the skew premium, realized and implied

skew. Since conditional dynamics of the model are driven by a single state, allowing the

model to operate through other channels (time-varying expected growth and volatility,

jumps in consumption, etc.) would make the economy more flexible to jointly match all

moments.

Table 6 also shows that disappointment aversion predicts the wrong sign of the

skew premium. The DA model also predicts the smallest first and second moments of

return skewness across the three models. In the EZ model, the risk-neutral return density

becomes more distorted towards the left tail; however, the model generates less than half

of the average skew premium in the data. Although the EZ model predicts the correct

sign, it significantly understates the magnitude. Overall, generalized disappointment

aversion better explains salient features of the skew premium than nested preferences.

4.6 The Term Structure of Implied Volatilities

Figure 8 compares the implications of all models for equity index options. The

implied volatilities are expressed as a function of moneyness. The empirical implied

volatilities decline in moneyness, a pattern known as the implied volatility skew. The

DA implied volatilities for the 1-month maturity are flat and approximately equal to the

realized stock market volatility. One apparent candidate to generate a steep volatility

skew is high risk aversion. Although raising risk aversion in Epstein-Zin preferences
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Figure 8. Implied volatilities
The left panel plots the 1-month implied volatility curve as a function of moneyness for the data and the three models:
GDA, DA, and EZ. The middle and right panels plot the empirical and model-based implied volatility curves for ATM
and OTM options as functions of the time to maturity (in months). The empirical statistics are for the US data from
January 1996 to December 2016. The model-based curves are calculated for option prices using the annualized model-
implied interest rate and dividend yield. For each model, I simulate 10,000 economies at a monthly frequency with a
sample size equal to its empirical counterpart and report the medians of sample statistics. The model-implied results
are based on the simulations without consumption disasters, consistent with the historical data.

improves the model’s performance, this cannot fully account for the level of implied

volatilities. In contrast, the GDA framework can fit the option prices much better. Figure

8 additionally presents implied volatilities for ATM and 0.90 OTM options. In the data,

ATM (OTM) volatilities slightly increase (decrease) over the horizon. Neither DA nor

EZ specification can match the level of the empirical curves. In contrast, generalized

disappointment aversion can explain overall patterns and magnitudes of the empirical

implied volatilities.

5 Conclusion

I build an equilibrium model with GDA preferences and rare events in consumption

growth. I show that the combination of the investor’s tail aversion and fluctuating eco-

nomic uncertainty due to learning about a hidden depression state explains a wide vari-

ety of asset pricing phenomena. Most notably, the model rationalizes the variance term

structure, a new stylized fact of the variance swap data. In particular, the model pre-

dicts large and negative Sharpe ratios on one-month variance forwards and produces a

slightly positive term structure for maturities longer than two months. Furthermore, the
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model accounts for the large variance and skew risk premiums, and generates a realistic

volatility surface implied by index options, while simultaneously matching the salient

features of equity returns and the risk-free rate. I show that the success of the model is

attributable to generalized disappointment aversion by comparing GDA preferences to

nested utilities: disappointment aversion and Epstein-Zin preferences. Although three

specifications can reasonably match equity moments, only GDA preferences can explain

the variance term structure, moment risk premiums, and option prices.

There are several interesting avenues for future research. First, my paper high-

lights the importance of the specific values of the disappointment threshold and disap-

pointment aversion. Although Delikouras (2017) provides the empirical estimate of a

disappointment aversion parameter in Gul (1991), joint estimation of the parameters in

Routledge and Zin (2010) has not been addressed yet. Second, it is fruitful to explore the

implications of the richer model for the term structure of dividend strips and interest

rates. For instance, the extension with post-depression recoveries (Hasler and Márfe,

2016) has the potential to jointly explain the term structures of interest rates, equity and

variance risk. Third, generalized disappointment aversion is likely to have additional

asset pricing implications for risk premia with a multi-dimensional learning problem

(Johannes et al., 2016) or rational parameter learning (Collin-Dufresne et al., 2016). Fi-

nally, it is interesting to study GDA preferences with other behavioral biases (Brandt,

Zeng, and Zhang, 2004).
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Internet Appendix

“Generalized Disappointment Aversion and
the Variance Term Structure”

Abstract

This appendix provides a detailed description of the data, the numerical methods
used to solve different models, model-based asset prices as well as additional results
not included in the main body of the paper.
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A Data
A.1 Consumption, Dividends, and Market Returns

I follow Bansal and Yaron (2004) and construct real per capita consumption growth

series (annual, due to the frequency restriction) for the longest sample available, 1930-

2016. In the literature, consumption is defined as a sum of personal consumption expen-

ditures on nondurable goods and services. I download the data from the US National

Income and Product Accounts (NIPA) as provided by the Bureau of Economic Analysis.

I apply the seasonally adjusted annual quantity indexes from Table 2.3.3. (Real Personal

Consumption Expenditures by Major Type of Product, Quantity Indexes, A:1929-2016) to

the corresponding series from Table 2.3.6. (Real Personal Consumption Expenditures by

Major Type of Product, Chained Dollars, A:1995-2016) to obtain real personal consump-

tion expenditures on nondurable goods and services for the sample period 1929-2016. I

further retrieve mid-month population data from NIPA Table 7.1. to convert real con-

sumption series to per capita terms.

I measure the total market return as the value-weighted return including divi-

dends, and the dividends as the sum of total dividends, on all stocks traded on the

NYSE, AMEX, and NASDAQ. The dividends and value-weighted market return data

are monthly and are retrieved from the Center for Research in Security Prices (CRSP).

To construct the monthly nominal dividend series, I use the CRSP value-weighted re-

turns including and excluding dividends of CRSP common stock market indexes (NYSE,

AMEX, NASDAQ, ARCA), denoted by RIt and REt, respectively. Following Hodrick

(1992), I construct the price series Pt by initializing P0 = 1 and iterating recursively

Pt = (1 + RIt)Pt−1. Next, I compute normalized nominal monthly dividends Dt =
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(RIt − REt)Pt. The proxy of the risk-free return R f ,t+1 is the 1-month nominal Treasury

bill. The nominal annualized dividends are constructed by summing the corresponding

monthly dividends within the year. Finally, I retrieve the inflation index from CRSP to

deflate all quantities to real values.

A.2 Variance Premium Data

For the variance risk premium, I closely follow Bollerslev et al. (2009), Bollerslev

et al. (2011), Drechsler and Yaron (2011) and Drechsler (2013). Under the no-arbitrage

assumption, the risk-neutral conditional expectation of the return variance is equal to

the price of a variance swap, which is a forward contract on the realized variance of the

asset. Since the CBOE calculates the VIX index as a measure of the 30-days ahead risk-

neutral expectation of the variance of the S&P 500 index, I use the VIX index as a proxy

for the risk-neutral expectation of the market’s return variation. The VIX is quoted in an

annualized standard deviation. Hence, I first take it to a second power to transform it

to variance units and then divide it by 12 to obtain monthly frequency. Thus, I obtain a

new series defined as [VIX]2t =
VIX2

t
12 . I further use the last available observation of [VIX]2t

in a particular month as a measure of the risk-neutral expectation of return variance in

that month.

For the objective expectation of return variance, a second component in the vari-

ance premium, I calculate a one-step-ahead forecast from a simple regression similar to

Drechsler and Yaron (2011) and Drechsler (2013). I first calculate the measure of the

realized variance by summing the squared daily log returns on the S&P 500 futures and

S&P 500 index obtained from the CBOE. The constructed series are denoted by FUT2
t
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and IND2
t , respectively. Subsequently, I estimate the following regression:

FUT2
t+1 = β0 + β1 · IND2

t + β2 · [VIX]2t + εt+1. (A.1)

The actual expectation is measured as the one-period ahead forecast given by (A.1). I re-

fer to the resulting series as the realized variance and denote it by RVt. Theoretically, the

variance premium should be non-negative in each period. Thus, I truncate the difference

between the implied series of [VIX]2t and RVt from below by 0.

For the empirical strategy above, I obtain the daily data series of the VIX index, S&P

500 index futures, and the S&P 500 index from the CBOE. The main restriction on the

length of the constructed monthly variance premium is the VIX index, reported by the

CBOE from January 1990. Using high-frequency data would provide a finer estimation

precision of the quantities in the variance premium, but my estimates remain largely

consistent with the numbers reported by the existing literature.

A.3 Options Data for the Skew Premium and Implied Volatility Skew

The empirical strategy and key definitions of the skew risk premium are in line

with Bakshi et al. (2003) and Kozhan et al. (2013). For the empirical analysis of the skew

risk premium and implied volatility surface, I use European options written on the S&P

500 index and traded on the CBOE. The options data set covers the period from January

1996 to December 2016 and is from OptionMetrics. Options data elements include the

type of options (call/put) along with the contract’s variables (strike price, time to expi-

ration, Greeks, Black-Scholes implied volatilities, closing spot prices of the underlying)

and trading statistics (volume, open interest, closing bid and ask quotes), among other

details. The empirical estimates of the conditional skew risk premium are computed
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in line with Kozhan et al. (2013). The empirical strategy consists of calculating fixed

and floating legs for the skew swap, which correspond to the risk-neutral and physical

expectations of the return skewness. For a detailed description of the methodology, see

Kozhan et al. (2013).

To construct the empirical implied volatility curves, I first compute the moneyness

for each observed option using the daily S&P 500 index on a particular trading day. I fil-

ter out all data entries with non-standard settlements. I use the remaining observations

to construct the implied volatility surface for a range of moneyness and maturities. In

particular, I follow Christoffersen and Jacobs (2004) and perform polynomial extrapola-

tion of volatilities in the maturity time and strike prices. This strategy makes use of all

available options and not only those with a specific maturity time. The fitted values are

further used to construct the implied volatility curves.

B Representative Agent’s Maximization Problem

A representative agent starts with an initial wealth denoted by W0. Each period t, the

agent consumes Ct consumption goods and invests in N assets traded on the competitive

market. Denote the fraction of the total t-period wealth Wt invested in the i-th asset with

gross real return Ri,t+1 by ωi,t. Then, the agent’s budget constraint in period t takes the

form:

Wt+1 = (Wt − Ct)Rω
t+1 (B.1)

N

∑
i=1

ωi,t = 1 and Rω
t+1 =

N

∑
i=1

ωi,tRi,t+1. (B.2)

The agent chooses {Ct, ω1,t, ..., ωN,t} in period t to maximize the utility subject to (B.1)-

(B.2).

A-4

Electronic copy available at: https://ssrn.com/abstract=4197174



The Bellman equation becomes:

Jt = max
Ct,ω1,t,...,ωN,t

{
(1− β)Cρ

t + β [Rt(Jt+1)]
ρ)
}1/ρ

subject to (B.1) and (B.2). I guess the optimal value function of the form Jt = φtWt. Using

this conjecture of Jt and the form of Rt from (2), I rewrite the Bellman equation as:

φtWt = max
Ct,ω1,t,...,ωN,t

{
(1− β)Cρ

t + β
[
Et

[
(φt+1Wt+1)

αK(φt+1Wt+1)
]ρ/α

}1/ρ

,

K(x) =
1 + θI{x 6 δRt(x)}

1 + θδαEt

[
I{x 6 δRt(x)}

] .

Note that the function K defined above is homogeneous of degree zero.

The Return on the Aggregate Consumption Claim Asset. I further conjecture that the

consumption Ct is homogeneous of degree one in wealth at the optimum, that is Ct =

btWt. Then, I obtain the Bellman equation:

φ
ρ
t =

{
(1− β)

(
Ct

Wt

)ρ

+ β

(
1− Ct

Wt

)ρ [
Et

[
(φt+1Rω

t+1)
αK(φt+1Rω

t+1)
]ρ/α

}
(B.3)

or equivalently

φ
ρ
t =

{
(1− β)bρ

t + β (1− bt)
ρ y∗t
}

(B.4)

y∗t =
[
Et

[
(φt+1Rω

t+1)
αK(φt+1Rω

t+1)
]ρ/α

.

Taking the FOC of the right side of a simplified Bellman equation (B.3) with respect to

Ct, I find:

(1− β)

(
Ct

Wt

)ρ−1

= β

(
1− Ct

Wt

)ρ−1

y∗t .

or using the notations:

(1− β)bρ−1
t = β(1− bt)

ρ−1y∗t . (B.5)
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Solving for y∗t from the last equation and substituting it into (B.4), I deduce:

φt = (1− β)
1
ρ b

ρ−1
ρ

t = (1− β)
1
ρ

(
Ct

Wt

) ρ−1
ρ

Shifting one period ahead the formula for φt and substituting φt+1 into (B.5), I obtain:

(1− β)Cρ−1
t = β(Wt − Ct)

ρ−1

Et

(1− β)α/ρ

(
Ct+1

Wt+1

)α
ρ−1

ρ (
Rω

t+1
)αK

(
φt+1Rω

t+1
)ρ/α

.

Then, I rewrite the equation above as:

Cρ−1
t = βEt


 Ct+1

Wt+1
(Wt−Ct)

α
ρ−1

ρ (
Rω

t+1
)αK

( Ct+1
Wt+1

Wt−Ct

) ρ−1
ρ

Rω
t+1




ρ/α

.

and derive the asset pricing restriction for the return on the total wealth Rω
t+1 :

Et



(

β

(
Ct+1

Ct

)ρ−1

Rω
t+1

)1/ρ

︸ ︷︷ ︸
zt+1



α

K


(

β

(
Ct+1

Ct

)ρ−1

Rω
t+1

)1/ρ

︸ ︷︷ ︸
zt+1




1/α

= 1.

Define Rc
t+1 the return on the consumption endowment. In equilibrium, Rc

t+1 = Rω
t+1

and, as in Routledge and Zin (2010), using the definition of the certainty equivalent and

the function K, the return Rc
t+1 should satisfy the equation:

Rt(zt+1) = 1, zt+1 =

(
β

(
Ct+1

Ct

)ρ−1

Rc
t+1

)1/ρ

. (B.6)

Rewriting Rc
t+1 in the form:

Rc
t+1 =

Wt+1

Wt − Ct
=

Wt+1
Ct+1

Wt
Ct
− 1
· Ct+1

Ct
=

ξt+1

ξt − 1
· Ct+1

Ct
,
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the wealth-consumption ratio ξt =
Wt
Ct

can be found from the equation:

Et

[
β

α
ρ

(
Ct+1

Ct

)α

·
(

ξt+1

ξt − 1

) α
ρ

· K(zt+1)

]
= 1.

The Return on the Aggregate Dividend Asset. Following Routledge and Zin (2010), the

portfolio problem for the obtained values φt+1 reads as follows:

max
ω1,t,...,ωN,t

Rt(φt+1Rω
t+1),

subject to the constraints
N
∑

i=1
ωi,t = 1 and Rω

t+1 =
N
∑

i=1
ωi,tRi,t+1. Taking the FOC with

respect to the weight ωi,t, I derive:

Et

[
φα

t+1(Rω
t+1)

α−1[1 + θI(φt+1Rω
t+1 < δRt)]Ri,t+1

]
= 0.

Taking the difference between the i-th and j-th FOCs, I thus obtain:

Et

[
φα

t+1(Rω
t+1)

α−1[1 + θI(φt+1Rω
t+1 < δRt)](Ri,t+1 − Rj,t+1)

]
= 0.

Multiplying the last equation by ωj,t and summing over j, I further obtain:

Et

φα
t+1(Rω

t+1)
α−1[1 + θI(φt+1Rω

t+1 < δRt)]Ri,t+1

N

∑
j=1

ωj,t︸ ︷︷ ︸
=1

 =

= Et

φα
t+1(Rω

t+1)
α−1[1 + θI(φt+1Rω

t+1 < δRt)]
N

∑
j=1

Rj,t+1ωj,t︸ ︷︷ ︸
=Rω

t+1


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Et

[
φα

t+1(Rω
t+1)

α−1[1 + θI(φt+1Rω
t+1 < δRt)]Ri,t+1

]
=

= Et
[
φα

t+1(Rω
t+1)

α[1 + θI(φt+1Rω
t+1 < δRt)]

]
. (B.7)

Following Epstein and Zin (1989), it is straightforward to show that φt+1 = zt+1
Rω

t+1
holds in

equilibrium. Using these equilibrium conditions and the definition of Rt, I have:

Et
[
φα

t+1(Rω
t+1)

α[1 + θI(φt+1Rω
t+1 < δRt)]

]
= Et

[
zα

t+1[1 + θI(zt+1 < δRt)]
]
=

Et

1 + θδαI(zt+1 < δRt(zt+1)︸ ︷︷ ︸
=1

)]

Rt(zt+1)
α︸ ︷︷ ︸

=1

= Et [1 + θδαI(zt+1 < δ]] . (B.8)

Combining (B.7)-(B.8) and using the equilibrium condition Rc
t+1 = Rω

t+1, I finally obtain

the asset pricing restriction for the gross return Ri,t+1 :

Et

[
zα

t+1(Rc
t+1)

−1(1 + θI(zt+1 < δ)Ri,t+1

1 + θδαEt [I(zt+1 < δ)]

]
= 1, (B.9)

Moreover, the pricing kernel Mt+1 is:

Mt+1 =
zα

t+1(Rc
t+1)

−1(1 + θI(zt+1 < δ))

1 + θδαE [I(zt+1 < δ)]
.

Rewriting Ri,t+1 in the form:

Ri,t+1 =
Pi,t+1 + Di,t+1

Pi,t
=

Pi,t+1
Di,t+1

+ 1
Pi,t
Di,t

· Di,t+1

Di,t
=

λt+1 + 1
λt

· Di,t+1

Di,t
,

the price-dividend ratio of the i-th asset λt =
Pi,t
Di,t

can be found from the equation:

Et

[
β

α
ρ

(
Ct+1

Ct

)α−1 Di,t+1

Di,t
·
(

ξt+1

ξt − 1

) α
ρ−1

· K(zt+1) · (λt+1 + 1)

]
= λt.

A-8

Electronic copy available at: https://ssrn.com/abstract=4197174



C Numerical Solution

Following the notation from the paper, aggregate consumption growth is

∆ct+1 = µst+1 + σεt+1, εt+1 ∼ N(0, 1).

The consumption volatility σ is constant, whereas the mean growth rate µst+1 is driven

by a two-state Markov-switching process st+1 with a state space:

S = {1 = expansion, 2 = recession},

a transition matrix

P =

 π11 1− π11

1− π22 π22


and transition probabilities πii ∈ (0, 1), i = 1, 2. Let

X (y1, y2, y3) =
1 + θI

{
βeρy1

(
y2

y3−1

)
6 δρ

}
1 + θδαEt

[
I
{

βeρy1

(
y2

y3−1

)
6 δρ

} ] ,

then, the wealth-consumption ratio ξt =
Wt
Ct

satisfies the equation:

Et

[
β

α
ρ eα∆ct+1 ·

(
ξt+1

ξt − 1

) α
ρ

· X
(

∆ct+1, ξt+1, ξt

)]
= 1, (C.1)

and the price-dividend ratio λt = Pt
Dt

of the asset with a gross return Rt+1 (I skip the

subscript i for convenience) is given by:

Et

[
β

α
ρ e(α−1)∆ct+1+∆dt+1 ·

(
ξt+1

ξt − 1

) α
ρ−1

· X
(

∆ct+1, ξt+1, ξt

)
· λt+1 + 1

λt

]
= 1. (C.2)

C.1 Projection Method

Following Pohl et al. (2018), I apply a projection method of Judd (1992) to solve

for the equilibrium pricing functions defined by (C.1) and (C.2). The model solution
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consists of two steps. First, I find the wealth-consumption ratio from Equation (C.1).

Second, I use the wealth return from the first step and substitute it into (C.2) to find the

price-dividend ratio for the equity claim.

The Return on the Aggregate Consumption Claim Asset. I conjecture the wealth-consumption

ratio of the form ξt = G(πt), in which πt is the posterior belief. I seek to approx-

imate the functional form of G(πt) by a basis of complete Chebyshev polynomials

Ψ = {Ψk(πt)}n
k=0 of order n with coefficients ψ = {ψk}n

k=0 :

G(πt) =
n

∑
k=0

ψkΨk(πt) πt ∈ [1− p, q]. (C.3)

I further define the function:

Γ(πt; j) = Et,j

[
β

α
ρ eα∆ct+1 ·

(
ξt+1

ξt − 1

) α
ρ

· X
(

∆ct+1, ξt+1, ξt

)]
=

= β
α
ρ

∫
eαy
(

G(B(y, πt))

G(πt)− 1

) α
ρ

· X
(

y, G(B(y, πt)), G(πt)
)

f (y, j)dy, (C.4)

B(y, πt) =
(1− q) f (y, 1)(1− πt) + p f (y, 2)πt

f (y, 1)(1− πt) + f (y, 2)πt
,

f (y, j) is the probability density function of a normal distribution N(µst , σ2) conditional

on st = 1, 2. I further apply the Gauss-Hermite quadrature to calculate expectations in

(C.4). Substituting G(πt) from (C.3) and Γ(πt; j) from (C.4) into (C.1), I obtain:

Rc(πt; ψ) = (1− πt)Γ(πt, 1) + πtΓ(πt, 2)− 1.

The objective is to choose the unknown coefficients ψ to make Rc(πt; ψ) close to

zero ∀πt ∈ [1− p, q]. I apply the orthogonal collocation method. Formally, I evaluate

the residual function in the collocation points {rk}n+1
k=1 given by the roots of the n + 1
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order Chebyshev polynomial and then solve the system of n + 1 equations:

Rc(rk; ψ) = 0 k = 1, ..., n + 1

for n + 1 unknowns ψ = {ψk}n
k=0. Let ξ̃t = G̃(πt) =

n
∑

k=0
ψ̃kΨk(πt) denote an approxima-

tion of the wealth-consumption ratio, which will be used in the second step.

The Return on the Aggregate Dividend Asset. I conjecture the price-dividend ratio

of the form λt = H(πt). Now, I seek to approximate the functional form of H(πt),

which solves Equation (C.2). I approximate H(πt) by a basis of complete Chebyshev

polynomials Υ = {Υk(πt)}n
k=0 of order n with coefficients υ = {υk}n

k=0 :

H(πt) =
n

∑
k=0

υkΥk(πt) πt ∈ [1− p, q]. (C.5)

I define the function:

Λ(πt; j) = Et,j

[
β

α
ρ e(α−1)∆ct+1+∆dt+1

(
ξ̃t+1

ξ̃t − 1

) α
ρ−1

· X
(

∆ct+1, ξ̃t+1, ξ̃t

)
· λt+1 + 1

λt

]
=

= β
α
ρ

∫∫
e(α+λ−1)y+gd+z

(
G̃(B(y, πt))

G̃(πt)− 1

) α
ρ−1

· X
(

y, G̃(B(y, πt), G̃(πt)
)
· (C.6)

·H(B(y, πt))

H(πt)− 1
f (y, j)g(z, j)dydz,

in which f (y, j) and g(z, j) are probability density functions of normal distributions

N(µst+1 , σ) and N(gd, σd), respectively, conditional on st+1 = 1, 2. Substituting H(πt)

from (C.5) and Λ(πt; j) from (C.6) into (C.2), I obtain:

Rd(πt; υ) = (1− πt)Λ(πt, 1) + πtΛ(πt, 2)− 1.

Again, I apply the orthogonal collocation method. Formally, I evaluate Rd(πt; ψ) in
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the collocation points {sk}n+1
k=1 given by the roots of the n + 1 order Chebyshev polyno-

mial and solve the system of n + 1 equations

Rd(sk; υ) = 0 ∀k = 1, ..., n + 1

for n + 1 unknowns υ = {υk}n
k=0.

C.2 Implementation in Matlab

This paper implements a one-dimensional projection method for solving functional

equations. I approximate unknown functions using Chebyshev polynomials of the first

kind and compute them recursively as:

T0(z) = 1, T1(z) = z, Tk(z) = 2zTk(z)− Tk−1(z), k = 2, ..., n ∧ z ∈ [−1, 1].

I adjust the domain of Chebyshev polynomials to the state space of pricing ratios and

use modified polynomials in the approximation. Thus, the following equalities hold on

the interval [πmin, πmax] = [1− p, q] :

Ψk(πt) = Υk(πt) = Tk

(
2
[

πt − πmin

πmax − πmin

]
− 1
)

, k = 0, ..., n.

I present the results based on the collocation method. For this purpose, I evaluate resid-

ual functions in a set of nodes corresponding to n + 1 zeros of the (n + 1)-order Cheby-

shev polynomial, which are formally defined as:

zk = cos
(

2k + 1
2n + 2

π

)
, k = 0, ..., n.

I adjust the nodes zk ∈ [−1, 1] to the domain of the state variable πt :

πk = πmin +
πmax − πmin

2
(1 + zk), k = 0, ..., n.
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The numerical algorithm, which requires solving a system of nonlinear equations,

is efficiently programmed in Matlab. I experiment with different nonlinear solvers to

achieve better performance of the code. Initially, I used the simple solver "fsolve". Then

I found the solution of the system of nonlinear equations through minimizing a con-

stant subject to the system of nonlinear functions. I apply the nonlinear programming

solver "fmincon" with the SQP algorithm for this purpose. Similar to Pohl et al. (2018), I

found that "fmincon" provides faster running of the code and a more accurate solution

compared to "fsolve". Thus, I present all results based on the "fmincon" approach.

Additional numerical details involve the choices of an order of Chebychev poly-

nomials used in the approximation of unknown functions (n), a number of Gauss-

Hermite quadrature points used in the numerical integration of expectations in the

residual functions (NGH), and a number of draws used in Monte-Carlo simulations

to compute model-based European put prices (NMC). I report the results of all mod-

els in the main text based on the numerical solution, in which n = 400, NGH = 150,

and NMC = 4, 000, 000. The next section performs a sensitivity analysis of alternative

approximation choices.

C.3 Accuracy of Numerical Solution

To better assess the numerical accuracy, I first calculate the root mean squared error

(RMSE) in the residual function for the wealth-consumption ratio. I evaluate Rc(πt; ψ)

on a dense grid of points {πi}NRMSE
i=1 that are equally spaced on the interval [πmin, πmax].
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Table A1. Euler errors: GDA, DA, and EZ
The table reports the RMSE for different models. For each specification, it shows the results for two different degrees
of Chebyshev polynomials n and two different numbers of Gauss-Hermite quadrature points NGH . The Euler errors
are computed using Equation (C.7) with 10,000 points equally spaced on the interval [πmin, πmax].

Model n = 200 n = 200 n = 400 n = 400
NGH = 100 NGH = 150 NGH = 100 NGH = 150

GDA 4.71e-07 4.18e-07 1.83e-07 1.47e-07

GDAδl
3.40e-07 2.83e-07 1.25e-07 1.16e-07

GDAδh
5.01e-07 4.40e-07 1.83e-07 1.75e-07

GDAθl
4.28e-07 4.12e-07 1.61e-07 1.53e-07

GDAθh
5.42e-07 4.76e-07 1.86e-07 1.84e-07

DA 1.28e-08 9.48e-09 3.97e-09 3.47e-09

DAθl
8.82e-09 7.95e-09 3.16e-09 2.52e-09

DAθh
1.30e-08 1.17e-08 4.63e-09 3.53e-09

EZ 7.59e-14 7.37e-14 9.15e-14 9.32e-14

EZ(1−α)l
5.57e-14 4.95e-14 6.85e-14 6.58e-14

EZ(1−α)h
9.94e-14 9.86e-14 1.34e-13 1.26e-13

I choose NRMSE = 10, 000 of these points. The RMSE is calculated as:

RMSEc =

√√√√ 1
NRMSE

NRMSE

∑
k=1

[
Rc(πk; ψ)

]2
, (C.7)

πk = πmin +
πmax − πmin

NRMSE − 1
(k− 1), k = 1, ..., NRMSE.

I consider four pairs of (n, NGH) : (200, 100), (200, 150), (400, 100), (400, 150). For each

pair, I solve different model calibrations of this paper and compute the RMSE.

Table A1 reports the Euler errors implied by various approximation and integration

choices. Several observations are noteworthy. First, the numerical solution technique is

highly accurate, producing errors consistently below 6e-7 for all cases. Second, the pro-

jection method generates smaller RMSE for the models with Epstein-Zin preferences rel-

ative to the calibrations with disappointment aversion and generalized disappointment

aversion utility functions. This result is expected in light of nonlinearities in the pricing
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Figure A1. Accuracy of the projection method: Sharpe ratios and forward variance claim
prices

The figure plots annualized Sharpe ratios and average prices for variance forwards for the original GDA calibration,
which is solved and simulated with different precisions. ”GDA” denotes the results of the original solution. ”GDA2”
shows the results of the original calibration, which is solved with a twice larger order of Chebyshev polynomials.

kernel implied by disappointing outcomes in consumption growth. Third, increasing ei-

ther the degree of Chebyshev polynomials or the number of quadrature points generally

leads to a better approximation precision.

Figure A1 conducts further robustness checks. It compares the results of the two so-

lutions of the original GDA calibration. First, the "GDA" lines correspond to the variance

term structures as presented in the main text. Second, the "GDA2" curves represent the

results of the same calibration, which is solved with a twice larger order of Chebyshev

polynomials. The panels in Figure A1 show that the results across the two solutions are

very similar, confirming the high-precision solution obtained by the projection method.

D Asset Prices

The empirical evidence concerning the variance term structure and higher moment

risk premiums is based on the data at the daily frequency and is then expressed in

monthly terms. The risk-neutral neutral expectation of return variance can be synthe-

sized using options data in a model-free way or proxied by synthetic variance swap
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rates (Britten-Jones and Neuberger, 2000; Bakshi et al., 2003; Carr and Wu, 2009; Dew-

Becker et al., 2017). The ex-post total return variance is commonly estimated by a sum of

squared daily returns. The ex-ante expectation of total return variance under the physi-

cal measure requires using the high-frequency data to compute ex-post return variation

and then forecasting the future return variance using lagged realized variance or addi-

tional predictors. Kozhan et al. (2013) further extend these approaches for computing

the risk-neutral and physical expectations of return skewness.

Turning to the model-based asset prices, one needs to calibrate the model at a daily

frequency in order to exactly follow the procedure used to obtain empirical estimates.

Bonomo et al. (2015) build a discrete-time model with the daily interval. I want to be

as close as possible to the existing long-run risk and rare disaster models in discrete

time, particularly Drechsler and Yaron (2011) and Gabaix (2012), which fail to replicate

the variance term structure, a key focus of my paper, as shown by Dew-Becker et al.

(2017). Therefore, I calibrate my framework at the monthly frequency and present the

model-based asset prices in this section.

D.1 Prices and Returns of Variance Claims

Consider an n-month variance swap, a claim to realized variance over months t + 1

to t+ n. Given the discrete nature of the model, the total variance of the return is equal to

the sum of conditional variances RVt+i in each subperiod. Following Dew-Becker et al.

(2017), the price of an n-month variance swap is

VSn
t = E

Q
t

[
n

∑
i=1

RVt+i

]
.
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In turn, the price of a zero coupon forward claim on realized variance is

Fn
t = E

Q
t [RVt+n] .

Thus, Fn
t is equal to the risk-neutral expectation of return variance during the n-th month

from the current period. F0
t is naturally defined as the realized variance in the current

period. Next, I define the return on the n-month variance forward as a return on the

trading strategy in which investors buy the n-month forward at the time t and sell it in

the next period as a forward claim with maturity n− 1. The proceeds from selling the

forward are then used to purchase a new n-month variance at price Fn
t+1. Formally, the

excess return of an n-period variance forward is

Rn
t+1 =

Fn−1
t+1 − Fn

t

Fn
t

.

Using the law of iterated expectations and the Radon-Nikodym derivative defined

as dQ
dP

= Mt+1
Et(Mt+1)

, I recursively compute the prices and returns of variance forwards for

different maturities.

D.2 Variance and Skew Risk Premiums

The focus of this paper is on the monthly variance and skew risk premiums asso-

ciated with equity returns. Since I calibrate the economy at the monthly frequency, the

t-time monthly variance premium vpt is defined as the difference between risk-neutral

and physical expectations of the total return variance between t and t + 1. The monthly

decision horizon of a discrete-time model considered in this paper implies that the vari-

ance premium simply equals

vpt = varQ
t (re,t+1)− varP

t (re,t+1), (D.1)
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in which varQ
t (re,t+1) and varP

t (re,t+1) are t-period conditional variances of the log re-

turn re,t+1 = ln(Re,t+1) under the risk-neutral Q and physical P probability measures,

respectively. Drechsler and Yaron (2011) call the definition (D.1) as the level difference.

Furthermore, they argue that calibrating the model at a higher frequency would imply

vpt = E
Q
t

[
n−1

∑
i=1

varQ

t+ i−1
n

(
re,t+ i−1

n ,t+ i
n

)]
−EP

t

[
n−1

∑
i=1

varP

t+ i−1
n

(
re,t+ i−1

n ,t+ i
n

)]
, (D.2)

in which vart+ i−1
n

(
re,t+ i−1

n ,t+ i
n

)
denotes the conditional variance of the market return be-

tween t+ i−1
n and t+ i

n . Following Equation (D.2) for calibrations at the higher frequency,

Drechsler and Yaron (2011) define the variance premium as

vpt = E
Q
t (varQ

t+1(re,t+2))−EP
t (varP

t+1(re,t+2)), (D.3)

in which vpt is the sum of the level difference and the drift difference defined as:

drift difference =
[
E

Q
t (varQ

t+1(re,t+2))− varQ
t (re,t+1)

]
−
[
(EP

t (varP
t+1(re,t+2))− varP

t (re,t+1))
]

.

(D.4)

As I compare the predictions of our model with those implied by Drechsler and Yaron

(2011), I similarly define the variance premium by Eq. (D.3). However, in the unreported

results, I confirm that the main results related to the variance premium are robust to the

alternative formulation in Eq. (D.4) because the drift difference strongly dominates vpt,

the finding also reported by Drechsler and Yaron (2011) and Lorenz et al. (2020).

The t-time monthly skew premium is defined as a return on a skew swap, a contract

paying the realized skew of the return between time t and t + 1. Following Kozhan et al.

A-18

Electronic copy available at: https://ssrn.com/abstract=4197174



(2013), I define the skew premium as

skt =
EP

t (skewP
t+1(re,t+2))

E
Q
t (skewQ

t+1(re,t+2))
− 1,

in which skewQ
t+1(re,t+2) and skewP

t+1(re,t+2) are (t + 1)-period conditional skewness of

the log return re,t+2 = ln(Re,t+2) under the risk-neutral Q and physical P probability

measures, respectively. Note that Kozhan et al. (2013) define the skew premium as the

ratio between the risk-neutral and physical expectation of return skewness, unlike the

difference between the expectations in the case of the variance premium. This leads

to an economic interpretation that is different from the variance premium: the skew

premium measures the average return on a skew swap, a synthetic instrument with a

price equal to the risk-neutral expectation of return skewness that pays off the realized

return skewness. I want to be consistent with Kozhan et al. (2013) and their estimates,

therefore, I follow their definition of the skew premium.

D.3 Option Prices and Implied Volatilities

I now describe how I compute model-based option prices and solve for their Black-

Scholes implied volatilities. Consider a European put option written on the price of

the equity that is traded in the economy. Note that the equity price should not include

dividend payments; that is, options are written on the ex-dividend stock price index.

Using the Euler condition (4), the relative price Ot(πt, τ, K) = Po
t (πt,τ,K)
Pe

t (πt)
of the τ-period

European put option with the strike price K, expressed as a ratio to the initial price of

the equity Pe
t , should satisfy

Ot(πt, τ, K) = Et

[
τ

∏
k=1

Mt+k ·max
(

K−
Pe

t+τ

Pe
t

, 0
)]

. (D.5)
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Note that a put price Po
t depends on the equity price Pe

t , whereas the normalized price

Ot does not. One can express the ratio Pe
t+τ
Pe

t
in terms of dividend growth rates and price-

dividend ratios on the equity and hence the state belief πt provides sufficient information

for the calculation of the option prices. Specifically, I compute model-based European

put prices Ot = Ot(πt, τ, K) via Monte Carlo simulations. I convert them into Black-

Scholes implied volatilities with a properly annualized continuous interest rate rt =

rt (πt) and dividend yield qt = qt (πt) . Thus, given the maturity τ, the strike price K,

the risk-free rate rt, and dividend yield qt, the implied volatility σt = σBS
t (πt, τ, K) solves

the equation:

Ot = e−rtτ · K · N(−d2)− e−qtτ · N(−d1), (D.6)

d1,2 =
[
− ln (K) + τ

(
rt − qt ± σ2

t /2
)]

/
[
σt
√

τ
]

.

E Sensitivity Analysis

This appendix presents additional results of alternative calibrations of GDA, DA,

and EZ specifications.

E.1 Equity Returns and Moment Risk Premiums

Figure A2 provides sensitivity results for the risk-free rate, the equity premium, the

price-dividend ratio, and the moment risk premiums for a broad range of parameter

choices in the three models. In particular, I change a key parameter in each of the three

preference specifications, while holding the remaining parameters at the values in the

original calibration. In the GDA model, I vary the disappointment threshold between

0.915 and 0.945. In the DA model, I change the disappointment aversion parameter

between 0.45 and 0.75. In the EZ model, the results are provided for the coefficient of
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relative risk aversion ranging from 4.5 to 7.5. The panels in Figure A2 present the model-

based average statistics implied by the GDA, DA, and EZ frameworks. The asset pricing

moments are expressed as a function of a varying parameter, which is indicated on the

corresponding axis.

Figure A2 shows that the risk-free rate decreases with the disappointment thresh-

old, disappointment aversion, and relative risk aversion in the GDA, DA, and EZ models,

respectively. Further, the equity premium increases and equity prices decline in δ, θ, and

1− α. Intuitively, when the agent faces more disappointing outcomes or becomes more

averse to low consumption growth rates, he demands larger premiums in expected re-

turns for bearing the additional risk in consumption growth. The impact of δ and 1− α

on the volatility of asset prices is similar across the GDA and EZ models: a higher disap-

pointment threshold or a higher risk aversion leads to a more volatile risk-free rate, while

the volatility of equity returns and the price-dividend ratio exhibits a hump-shaped pat-

tern with a maximum approximately in the middle of the parameter intervals consid-

ered. In the DA model, raising disappointment aversion slightly increases the volatility

of the risk-free rate, equity returns, and prices. Overall, the magnitude of changes in

the risk-free rate, equity returns, and the price-dividend ratio is quite comparable across

the three models, especially when looking at the GDA and EZ frameworks. These find-

ings suggest that all three preference specifications can reasonably explain the first and

second moments of equity returns by adjusting a key preference parameter. In contrast,

the four bottom panels in Figure A2 indicate the crucial importance of generalized dis-

appointment aversion for generating significant risk premiums in higher moments of

equity returns.
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Figure A2. Sensitivity of asset prices: GDA, DA, and EZ
The figure plots asset pricing moments in the GDA, DA, and EZ models, in which a single parameter is changed
while others are fixed at the original values. Specifically, I change the disappointment threshold, the disappointment
aversion parameter, and the coefficient of risk aversion in the original GDA, DA and EZ models, respectively, over a
range of values. For each calibration, I simulate 10,000 economies at a monthly frequency with a sample size equal to
its empirical counterpart. The entries of the figure are medians of sample statistics (annualized for the risk-free rate,
the equity premium and the price-dividend ratio; monthly for the variance and skew risk premiums). The model-
implied results for equity returns (moment risk premiums) are based on the simulations with (without) consumption
disasters, consistent with the historical data. I use common notations for mean E and standard deviation σ.
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Figure A2 shows that, in the DA setting, changing the disappointment aversion for

a wide range of values does not improve the model’s performance, as the variance and

skew risk premium moments are not very sensitive to changes in θ. Moreover, no value of

the disappointment aversion parameter can support the negative skew premium. Figure

A2 also shows that Epstein-Zin preferences provide a better fit of the model with the

data. In particular, when the risk aversion increases from 4.5 to 6, the average variance

premium increases from less than 2 to around 5, while the skew premium declines

from around -10% to -20%. However, the mean and volatility of the variance premium

actually start to decline at some point, and thus the higher risk aversion will move

the model away from the data. Finally, the comparative analysis with respect to the

disappointment threshold in the GDA model generates patterns in the variance and

skew risk premiums similar to those predicted by different risk aversion parameters in

the EZ economy. However, with generalized disappointment aversion, the magnitude

and time-variation of variance and skew risk premiums are significantly amplified.

E.2 Implied Volatilities

Figures A3 and A4 further provide comparative statics of the implied volatility

curves in the three preference specifications. Several observations are noteworthy. First,

in all economies, the implied volatility curve for one-month options is not very sensitive

to a further increase in effective risk aversion. In all cases, an incremental increase is less

than 1% for any particular maturity and moneyness. Second, in the model with Epstein-

Zin preferences, the slope of the ATM and OTM volatilities stays the same for higher

risk aversion. In the DA economy, even though ATM volatilities for longer maturities

seem to increase more in response to raising disappointment aversion, the levels are
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Figure A3. Sensitivity of implied volatilities: GDA

The figure plots the 1-month implied volatility curve (top) as a function of moneyness, and implied volatility curves
for ATM (middle) and OTM (bottom) options as functions of the time to maturity (in months) for different model
calibrations with generalized disappointment aversion preferences. GDA corresponds to the original GDA model. In
GDAθl

and GDAθh
, the disappointment aversion parameters are θl = 6.41 and θh = 10.41, respectively. In GDAδl

and
GDAδh

, the disappointment threshold parameters are δl = 0.920 and δh = 0.940, respectively. If not stated otherwise,
the remaining parameters in all specifications are set at the original values in the GDA model. For each model, I
simulate 10,000 economies at a monthly frequency with a sample size equal to its empirical counterpart and report
medians of sample statistics based on these series. The model-implied results are based on the simulations without
consumption disasters, consistent with the historical data.

significantly below the empirical curves. In the GDA economy, changes in θ and δ have

a larger impact on the term structure of ATM and OTM volatilities. Specifically, Figure
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A3 suggests that a higher disappointment threshold increases the prices of options with

longer maturities, helping to explain a slightly upward-sloping shape in ATM volatilities.

Meanwhile, a higher disappointment aversion parameter seems to increase prices of

short-term OTM options more than those with longer maturities, helping to explain a

slightly downward-sloping pattern in OTM volatilities. Therefore, in the setting of my

model, simultaneously increasing θ and decreasing δ could allow one to keep the one-

month implied volatilities close to the empirical curves while even better matching the

salient statistics of ATM and OTM volatilities. Finally, a lower degree of effective risk

aversion implies that the implied volatility curves become flatter and shift down in all

models, especially in the economies with GDA and Epstein-Zin preferences.
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Figure A4. Sensitivity of implied volatilities: DA and EZ

The figure plots the 1-month implied volatility curve (top) as a function of moneyness, implied volatility curves
for ATM (middle) and OTM (bottom) options as functions of the time to maturity (in months) for different model
calibrations with disappointment aversion and Epstein-Zin preferences. DA and EZ correspond to the original DA
and EZ models. In DAθl

and DAθh
, the disappointment aversion parameters are θl = 0.5 and θh = 0.7, respectively.

In EZ(1−α)l
and EZ(1−α)h

, the risk aversion parameters are (1− α)l = 5 and (1− α)h = 7, respectively. If not stated
otherwise, the remaining parameters in all specifications are set at the original values in the DA and EZ models. For
each model, I simulate 10,000 economies at a monthly frequency with a sample size equal to its empirical counterpart
and report medians of sample statistics based on these series. The model-implied results are based on the simulations
without consumption disasters, consistent with the historical data.
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