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ABSTRACT: Making decisions about the appropriate action to take when presented with uncertain

information is difficult, particularly in an emergency response situation. Decision makers can be

influenced by factors such as how information is framed, their risk sensitivity and the impact of

false alarms. Uncertainty arising from limited knowledge of the current state or future outcome of

an event is unavoidable when making decisions. However, there is no universally agreed method

on the design and presentation of uncertainty information. The aim of this article is to demonstrate

that decision theory can be applied to an ensemble of plausible realisations of a situation to build a

transparent framework which can then be used to determine the optimal action by assigning losses

to different decision outcomes. The optimal action is then visualized, enabling the uncertainty

information to be presented in a condensed manner suitable for decision makers. The losses are

adaptable depending on the hazard and the individual operational model of the decision maker. To

illustrate this approach, decision theory will be applied to an ensemble of volcanic ash simulations

used for the purpose of airline flight planning, focussing on the 2019 eruption of Russian volcano

Raikoke. Three idealised scenarios are constructed to show the impact of different loss models on

the optimal action. In all cases, applying decision theory can significantly alter the regions, and

therefore potential flight tracks, identified as potentially hazardous. Thus we show that different

end users would and should make different decisions when presented with the same probabilistic

information based on their individual user requirements.
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to different decision outcomes. The optimal action is then visualized, enabling the uncertainty

information to be presented in a condensed manner suitable for decision makers. The losses are

adaptable depending on the hazard and the individual operational model of the decision maker. To

illustrate this approach, decision theory will be applied to an ensemble of volcanic ash simulations

used for the purpose of airline flight planning, focussing on the 2019 eruption of Russian volcano

Raikoke. Three idealised scenarios are constructed to show the impact of different loss models on

the optimal action. In all cases, applying decision theory can significantly alter the regions, and

therefore potential flight tracks, identified as potentially hazardous. Thus we show that different

end users would and should make different decisions when presented with the same probabilistic

information based on their individual user requirements.

CAPSULE: This paper outlines how decision theory can provide a transparent framework for

decision makers in a wide variety of situations through the application to volcanic ash forecasts.

1. Introduction

Making rational decisions in the face of uncertainty poses a challenge to all decision makers

from those involved in emergency hazard management to global climate change policy. Decision

makers can be influenced by how the information is framed (e.g. Taylor et al. 1997; Wernstedt

et al. 2019), presented (e.g. Cox et al. 2013; Mulder et al. 2017; Miran et al. 2020) and anchored

(e.g. Whyte and Sebenius 1997; Englich et al. 2006). The decision maker’s risk sensitivity can

be informed by political challenges, such as the impact of false alarms and blame in the event of

poor forecasts (Demeritt et al. 2010). There can also be issues with end users understanding, or

ignoring, complex forecast output (e.g. Demeritt et al. 2010, 2016). To address these issues this

paper will demonstrate how bespoke frameworks, designed in advance by decision makers, can

help to optimise the actions taken, thus minimising potential losses associated with the subjective

risk sensitivities of individual users.

Uncertainty is an unavoidable part of making decisions in a complex and often fast-moving

environment. Research has shown that providing uncertainty information can encourage more

economically rational decisions (e.g. Nadav-Greenberg et al. 2008; Riveiro et al. 2014), promote

user confidence and reflects the current state-of-the-art science for many environmental situations

(World Meteorological Organisation 2008). However, the end users of the uncertainty information

do not always interpret it in the way the producers of the information think they should (e.g.

Demeritt et al. 2007; Morss et al. 2010). Plus in many areas, there is no universally agreed method

on the design and presentation of uncertain information (Hogan Carr et al. 2018) and this can

influence how it is used (Hogan Carr et al. 2016a,b).

One way to quantify uncertainty is to perform several plausible realisations of a situation (known

as an ensemble). These realisations are constructed by sampling parameters that are used as input

to a simulation or within the simulator itself. Depending on the complexity of the simulator,

the number of realisations (or ensemble members) could range from approximately 20 for a

global numerical weather prediction model (e.g. the Met Office global weather forecast ensemble

(MOGREPS-G) has 18 members, Bowler et al. 2008) to billions for the hydrochemical model of

Brought to you by UNIVERSITY OF LANCASTER | Unauthenticated | Downloaded 08/16/22 10:52 AM UTC



4
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-21-0258.1.

Iorgulescu et al. (2005). Once completed, the output from the ensemble of simulations needs to

be condensed in some way so that a decision maker can use the information. It is possible for

many graphics to be produced for different times, locations and environmental hazard specific

thresholds. This would be overwhelming, plus the interpretation of the ensemble relies on the

decision maker’s experience and risk sensitivity (e.g. Mulder et al. 2017; Hogan Carr et al. 2021).

This risk sensitivity is generally not transparent, i.e., it depends on the undisclosed judgement of the

individual decision maker, which can lead to issues surrounding defensibility and culpability. In

many situations the ensemble mean is the metric of choice used by decision makers. However, there

are many other metrics, such as ensemble spread, ensemble agreement (i.e., how many ensemble

members agree that there is going to be an impact in a particular location) and a reasonable

best/worst case scenario, which may be more informative.

Bayesian decision theory is a branch of statistics that provides a transparent framework that

explicitly discloses the losses associated with each possible action in the decision-making process

and leads to optimum decision making under uncertainty. The losses are adaptable depending on

the hazard and the operational priorities of the decision maker, meaning that the framework can be

applied to many different circumstances. This approach has previously been applied to warnings

of daily severe precipitation over the UK by Economou et al. (2016) and by Western et al. (2018)

who applied it to the detection of volcanic ash during the 2010 eruption of Icelandic volcano

Eyjafjallajökull and the 2011 eruption of Puyehue-Cordón Caulle, Chile.

To address the applicability of the technique presented in Western et al. (2018) to other natural

hazards, a decision theoretical approach is applied to an ensemble of Volcanic Ash Transport and

Dispersion Model (VATDM) simulations used for the purpose of airline flight planning, focussing

on the 2019 eruption of the Russian volcano Raikoke. The atmosphere is categorised into regions

of High, Medium and Low hazard based on volcanic ash concentrations and three idealised sets of

losses to show the impact of different operational losses on the optimal action. Finally, to better

visualise the potential disruption to aviation operations the optimal hazard action is projected on

the representative flight tracks across the Pacific Basin. By providing this information in this

form, it is possible to provide decision makers with information relevant for their applications and

consistent with their risk sensitivity.
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visualise the potential disruption to aviation operations the optimal hazard action is projected on

the representative flight tracks across the Pacific Basin. By providing this information in this

form, it is possible to provide decision makers with information relevant for their applications and

consistent with their risk sensitivity.

2. What is decision theory?

Bayesian decision theory provides a transparent and coherent framework for making optimal

decisions under uncertainty. A decision maker’s goal is to choose the action, within some finite

set of actions, � ∈ �, which is optimal for the state of the hazard, �, given the data provided, �.

The action may be to issue a landslide warning, order an evacuation of a particular area due to a

potential wildfire or, as in the focussed example in this study, the cancellation or rerouting of airline

flights following a volcanic eruption. In the volcanic case, the potential action taken by the airline

would be informed by the concentration of ash at a particular flight level which is determined by an

ensemble of simulations from a VATDM. Decision theory bases the optimal decision on the risk

of taking a course of action, rather than basing the decision on most probable state, taken from the

fraction of ensemble members with ash concentrations within specified concentration ranges. Each

action will have a loss associated with a particular state (x) and action (a), termed a loss function,

� (�,�). There are many different forms of loss such as reduced profits, impact on reputation and

loss of life. These can be combined by a decision maker to form the loss function or using a

parameterisation (e.g., Economou et al. 2016). The actions must be exhaustive and exclusive. For

discrete actions and states, the values of the loss function can be presented in a loss table. This can

be generalised to accommodate continuous values.

The construction of a loss table, such as the one shown in Table 1, displays the loss associated

with taking each action given the true state of the hazard. Note that losses can be positive or

negative (i.e., a gain) but in this study only considers non-negative losses which assumes it is

satisfactory that there is no loss in making a correct decision.

The optimal action, �∗(�), is the action that minimises the mean loss associated with the risk of

all states (i.e. the loss multiplied by its probability), defined as (Lindley 1971) as,

�∗(�) = ������
�∈�

∑
�

� (�,�)�(� |�)�(�), (1)

where �(� |�) is the likelihood of the state (e.g. concentration range based on the ensemble

simulation) and �(�) is the prior probability of the state. If � is continuous, the summation in

Equation 1 is replaced by an integral.
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Table 1. An example loss table. �� are the potential actions to be taken and �� are the potential states of the

hazard. � (��, ��) are the loss functions for each potential action taken given the actual state of the hazard.

State

Action �1 �2 · · · ��

�1 � (�1, �1) � (�1, �2) · · · � (�1, ��)

�2 � (�2, �1) � (�2, �2) · · · � (�2, ��)
.
.
.

.

.

.
.
.
.

. . .
.
.
.

�� � (��, �1) � (��, �2) · · · � (��, ��)

3. Application of a decision theoretical approach to ensemble volcanic ash forecasts of Raikoke

2019

One area where decisions need to be made using uncertain information is in airline operations

following a volcanic eruption, where decisions need to be made about which flight routes are safe

and economical to fly before there is complete information about the exact nature of the eruption

or dispersion of the volcanic ash particles. If a plane encounters high levels of ash, it can cause

temporary engine failure and lead to permanent engine damage, but if it encounters moderate or

low levels of ash this can lead to a need for increased maintenance (Casadevall 1994; Guffanti

et al. 2010). Currently these decisions are aided by advisories issued by Volcanic Ash Advisory

Centres (VAACs). These advisories are a combination of observations of the ash cloud (ground

based and from satellites), output from a VATDM, and forecaster judgement. They indicate the

expected geographical position of the ash cloud but contain no quantitative information about ash

concentration or any indication of uncertainty. However, the guidelines for the production of these

advisories are periodically under review and The Roadmap for International Airways Volcano

Watch in Support of International Air Navigation states that from 2025 not only will quantitative

ash forecasts need to be provided but also uncertainty information, potentially through the use of

an ensemble (Meteorology Panel International Civil Aviation Organization: Montréal. 2019).

Prata et al. (2019) present a methodology that uses a risk matrix approach to condense the multiple

streams of data from a VATDM ensemble into a graphic that can be used to make fast and robust

decisions in an emergency response situation. The approach identifies the geographical regions

that are considered potentially hazardous to aircraft based on the probability of exceeding low,

medium and high concentrations as defined in UK Civil Aviation Authority (2017). This approach

considers potential impact of encountering high ash concentrations but does not incorporate any
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expected geographical position of the ash cloud but contain no quantitative information about ash

concentration or any indication of uncertainty. However, the guidelines for the production of these

advisories are periodically under review and The Roadmap for International Airways Volcano

Watch in Support of International Air Navigation states that from 2025 not only will quantitative

ash forecasts need to be provided but also uncertainty information, potentially through the use of

an ensemble (Meteorology Panel International Civil Aviation Organization: Montréal. 2019).

Prata et al. (2019) present a methodology that uses a risk matrix approach to condense the multiple

streams of data from a VATDM ensemble into a graphic that can be used to make fast and robust

decisions in an emergency response situation. The approach identifies the geographical regions

that are considered potentially hazardous to aircraft based on the probability of exceeding low,

medium and high concentrations as defined in UK Civil Aviation Authority (2017). This approach

considers potential impact of encountering high ash concentrations but does not incorporate any

losses that would be incurred if wrong action was taken. Examples of losses include the costs

associated for scheduling a flight and then encountering a region of high ash concentration and

reputational damage caused by cancelling flights along route that a competitor operates.

a. Case study description

Raikoke is a small volcanic island located at at 48.2 ◦ N, 153.3 ◦ E in the northwest Pacific

Ocean. The eruption that is the focus of this study started at approximately 1800 UTC on 21

June 2019 when a series of nine explosive events occurred until approximately 06:00 UTC on 22

June 2019. The initial height of the eruption plume was estimated to be 10-14 km above sea level

(Global Volcanism Program 2019a). Both sulphur dioxide and ash were dispersed throughout the

troposphere and lower stratosphere, including being caught up in a nearby cyclone. Over forty

aeroplanes were diverted following the eruption (Global Volcanism Program 2019b).

b. Ensemble VATDM simulations

The VATDM simulations analysed in this study were performed using the Numerical

Atmospheric-dispersion Modelling Environment (NAME) (Jones et al. 2007) driven by weather

forecast data from the Met Office global weather forecast ensemble (MOGREPS-G) (Bowler et al.

2008). This VATDM has been developed at the UK Met Office and is used by the London VAAC

for producing the ICAO defined ash advisories and graphics following an eruption in the North

Atlantic.

A 1000 member ensemble of NAME simulations was produced by perturbing nine parameters,

similar to those perturbed in Prata et al. (2019), within plausible ranges for this eruption informed

by Harvey et al. (2018). The parameters include the height of the eruption plume, ash density,

distal fine ash fraction (the fraction of ash is available for long range transport), duration of the

eruption, parameters within the NAME turbulence parameterisation and driving meteorology. The

parameter values are selected using Latin Hypercube sampling. In this study the start time of the

eruption is not perturbed. The simulations output ash concentration (g m−3) every 6 hours on a

global grid with a resolution of 0.45◦ x 0.3◦ (approximately 40km in the mid latitudes). Full details

of the ensemble creation can be found in Capponi et al. (2022).
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Before applying the decision theoretical approach to the ensemble of VATDM simulations, it

is useful to understand the evolution of the ash plume following the eruption. Initially the plume

travels zonally to the east (Figure 1 (a)) before being transported around a cyclone (Figure 1 (b)).

There is a small branch that travels towards the west. This is ash that is dispersed near the surface.

The main part of the plume wraps around the cyclone transporting ash back towards the west

and into Russia. By 0000 UTC on 24 July, the plume extends across large parts of the North

Pacific, almost reaching Alaska (Figure 1 (c)). As the plume is transported away from the site

of the eruption the mean column loading values reduce from peak values of approximately 200

g m−2 along the plume axis at 0000 22 June to 2.2 g m−2 by 0000 UTC 24 June as the plume

dispersed. Although this quantity shows the mean evolution of the plume and is broadly consistent

with satellite retrievals of ash column loading (not shown), it does not show any information about

the range of column loading values predicted by the ensemble or any information about the height

of the ash and so is not suitable for making an informed decision about airline operations.

Fig. 1. Ensemble mean ash column loading at 0000 UTC on (a) 22 June 2019, (b) 23 June 2019, (c) 24 June

2019. The red triangle indicates the location of Raikoke.

Another way to view the ensemble output is to calculate the fraction of ensemble members that

agree on a specific threshold being exceeded in each NAME grid box. Figure 2 shows the evolution

of the fraction of ensemble members that have ash column loading values greater than 0.2 g m−2.

This is qualitatively similar to the evolution of ash column loading. As with the column loading,

the agreement values are the highest along the axis of the plume, with peak agreement values

dropping from 0.993 to 0.77 by 0000 UTC 24 June. This graphic illustrates the variability within

Brought to you by UNIVERSITY OF LANCASTER | Unauthenticated | Downloaded 08/16/22 10:52 AM UTC



9
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-21-0258.1.

Before applying the decision theoretical approach to the ensemble of VATDM simulations, it

is useful to understand the evolution of the ash plume following the eruption. Initially the plume

travels zonally to the east (Figure 1 (a)) before being transported around a cyclone (Figure 1 (b)).

There is a small branch that travels towards the west. This is ash that is dispersed near the surface.

The main part of the plume wraps around the cyclone transporting ash back towards the west

and into Russia. By 0000 UTC on 24 July, the plume extends across large parts of the North

Pacific, almost reaching Alaska (Figure 1 (c)). As the plume is transported away from the site

of the eruption the mean column loading values reduce from peak values of approximately 200

g m−2 along the plume axis at 0000 22 June to 2.2 g m−2 by 0000 UTC 24 June as the plume

dispersed. Although this quantity shows the mean evolution of the plume and is broadly consistent

with satellite retrievals of ash column loading (not shown), it does not show any information about
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Fig. 1. Ensemble mean ash column loading at 0000 UTC on (a) 22 June 2019, (b) 23 June 2019, (c) 24 June

2019. The red triangle indicates the location of Raikoke.

Another way to view the ensemble output is to calculate the fraction of ensemble members that

agree on a specific threshold being exceeded in each NAME grid box. Figure 2 shows the evolution

of the fraction of ensemble members that have ash column loading values greater than 0.2 g m−2.

This is qualitatively similar to the evolution of ash column loading. As with the column loading,

the agreement values are the highest along the axis of the plume, with peak agreement values

dropping from 0.993 to 0.77 by 0000 UTC 24 June. This graphic illustrates the variability within

the ensemble, but judgements would need to be made regarding the level agreement and column

loading values that are needed impact flight planning decisions. Thus, decisions made using such

graphics can be subject to the specific risk sensitivity of the individual decision maker.

Fig. 2. Fraction of ensemble members that agree on the presence of ash greater than 0.2 g m−2 at 0000 UTC

(a) 22 June 2019, (b) 23 June 2019, (c) 24 June 2019. The red triangle indicates the location of Raikoke.

A further way to view the ensemble information is to determine the fraction of ensemble members

that have peak ash concentrations within the thresholds in the UK Civil Aviation Authority (2017)

guidelines at each of the flight levels (FLs - measured in hundreds of feet) that are required for

the VAAC advisories and graphics. Currently the concentration thresholds are: 200–2000 �g m−3

(Low), 2000–4000 �g m−3 (Medium) and >4000 �g m−3 (High) (UK Civil Aviation Authority

2017). An example of this is shown in Figure 3 which shows these fractions for FL350-550 at

0000 UTC 24 June. For the majority of the plume, the highest fractions are less than the 200 �g

m−3 threshold but at 52 ◦ N, 175 ◦ W the highest fraction (approximately 0.35) is greater than

4000 �g m−3. This suggests that this region should potentially be avoided by aircraft. Analysing

these figures takes time and experience. Furthermore, in an emergency response situation there

would also be figures for FL0-200 and FL200-350 for several different times. This could lead to

information overload in an emergency response situation and hinder decision making.

c. Application of the decision theoretical approach

In this section decision theory is applied to the ensemble of volcanic ash simulations of Raikoke.

Here we assume the prior probability of all ash states, �(�), are equally likely and this term is
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proportional to a value of one in our determination of �∗. �(� |�) is given by the fraction of the

ensemble members that fall in each of the following states based on concentration ranges (None:

less than 200 �g m−3, Low: 200–2000 �g m−3, Medium: 2000–4000 �g m−3, High: greater than

4000 �g m−3). These concentration thresholds are the same as those given in UK Civil Aviation

Authority (2017) and also used in Prata et al. (2019). To illustrate the application of decision

theory, we also follow Prata et al. (2019) to define a set of actions of varying disruption. Examples

of precautions associated with each action are – None: business as usual (no rerouting), Low: load

more fuel and perform additional engine checks on arrival, Medium: re-route flight and perform

additional engine checks on arrival and High: flight cancellation.

To illustrate the impact of decision makers with different operational loss models, three different

hypothetical loss tables are used. L0(�,�) (table 2) defines the loss table when there is no infor-

mation about losses. In this situation, all of the off-diagonal losses are uniform, i.e. L0(��,��)=1,

where � ≠ �, and the optimal action, �∗, reflects the most likely state. L1(�,�) (table 2) defines

the loss table for a decision maker who has equal costs for flight cancellation/rerouting and engine

maintenance. This table is symmetrical with the same level of loss for both false positives and

false negatives (e.g., L2(�1, �4)=L2(�4, �1)). L2(�,�) (table 2) defines the loss table for a decision

maker whose business has large costs associated with engine maintenance if ash is encountered

compared to small costs associated with flight cancellation and rerouting. The table is skewed

with larger losses associated with false negatives than false positives. The loss associated with

encountering ash concentrations in the High state when taking no rerouting action, L1(�1, �4), is

10 times that of the converse situation i.e when cancelling the flight (High action) but encountering

ash below 200�g, L1(�4, �1). Practically these loss functions would need to be defined by the

decision makers, are likely to be much more complicated, and could even change during flight.

The key is that these losses are transparent and can be inspected and improved upon, even in the

case where heuristics are used.

Figure 4 illustrates the calculation of the optimal action for a single grid point at FL350-550 for

3 different loss tables. The grid point is in the North Pacific at 50.30 ◦ N, 185.4 ◦ E and is shown in

Figure 3 as a black cross. The most likely ash concentration at this location is less than 200 �g m−3

(Figure 4(a)) with 48% of the members having ash concentrations below this threshold. Figure 4(b)

shows the likelihoods from panel 4(a) multiplied by loss values constructed to have uniform losses
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of precautions associated with each action are – None: business as usual (no rerouting), Low: load

more fuel and perform additional engine checks on arrival, Medium: re-route flight and perform

additional engine checks on arrival and High: flight cancellation.

To illustrate the impact of decision makers with different operational loss models, three different

hypothetical loss tables are used. L0(�,�) (table 2) defines the loss table when there is no infor-

mation about losses. In this situation, all of the off-diagonal losses are uniform, i.e. L0(��,��)=1,

where � ≠ �, and the optimal action, �∗, reflects the most likely state. L1(�,�) (table 2) defines

the loss table for a decision maker who has equal costs for flight cancellation/rerouting and engine

maintenance. This table is symmetrical with the same level of loss for both false positives and

false negatives (e.g., L2(�1, �4)=L2(�4, �1)). L2(�,�) (table 2) defines the loss table for a decision

maker whose business has large costs associated with engine maintenance if ash is encountered

compared to small costs associated with flight cancellation and rerouting. The table is skewed

with larger losses associated with false negatives than false positives. The loss associated with

encountering ash concentrations in the High state when taking no rerouting action, L1(�1, �4), is

10 times that of the converse situation i.e when cancelling the flight (High action) but encountering

ash below 200�g, L1(�4, �1). Practically these loss functions would need to be defined by the

decision makers, are likely to be much more complicated, and could even change during flight.

The key is that these losses are transparent and can be inspected and improved upon, even in the

case where heuristics are used.

Figure 4 illustrates the calculation of the optimal action for a single grid point at FL350-550 for

3 different loss tables. The grid point is in the North Pacific at 50.30 ◦ N, 185.4 ◦ E and is shown in

Figure 3 as a black cross. The most likely ash concentration at this location is less than 200 �g m−3

(Figure 4(a)) with 48% of the members having ash concentrations below this threshold. Figure 4(b)

shows the likelihoods from panel 4(a) multiplied by loss values constructed to have uniform losses

Fig. 3. The fraction of ensemble members that have FL350-550 peak ash concentrations (a) less than 200 �g

m−3, (b) 200–2000 �g m−3, (c) 2000–4000 �g m−3 and (d) greater than 4000 �g m−3 at 0000 UTC 24 June 2019.

The red triangle indicates the location of Raikoke. The grey line indicates the 180th meridian. The black cross

indicates the location of the example grid point used in Figure 4.

for all situations apart from where the optimal action matches the state (i.e. L0(��,��)=1, where

� ≠ �). These cells (on the diagonal of the table) are set to zero. Also shown in the last column is

the sum of the losses for each action. The optimal action is the action that results in the minimum
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State

Action x1 = None x2 = Low x3 = Medium x4 = High

L0(�, �)

a1 = None 0 1 1 1

a2 = Low 1 0 1 1

a3 = Medium 1 1 0 1

a4 = High 1 1 1 0

L1(�, �)

None 0 5 10 20

Low 5 0 5 10

Medium 10 5 0 5

High 20 10 5 0

L2(�, �)

None 0 5 10 20

Low 0.5 0 5 10

Medium 1 0.5 0 5

High 2 1 0.5 0

Table 2. L0(�,�): Uniform loss table with no information about losses. L1(�,�): Symmetrical loss table used

to represent decision maker with equal costs associated with flight cancellation/rerouting and engine maintenance.

L2(�,�): Skewed loss table used to represent a decision maker with high costs associated with engine maintenance

compared to flight cancellation or rerouting.

loss. As expected, the optimal action given a uniform loss table is the same as using the most likely

concentration range. In this case the optimal action is no flight re-routing (no action, highlighted

in grey). Panel 4(c) shows the same variables as Panel 4(b) but for loss table L1(�,�). In this case,

the optimal action is to load more fuel for potential flight rerouting (Low action, highlighted in

yellow), despite there being only 14.2% of the ensemble members that have ash concentrations in

this range. Panel 4(d) shows the same variables again as Panel 4(b) but for loss table L2(�,�). In

this case, the optimal action is cancelling the flight (High action, highlighted in red), despite there

being only 32% of the ensemble members having ash concentrations in this range.

The impact of using the decision theory framework on the whole ash plume can be seen in Figure

5. At 0000 UTC 24 June 2019, using the uniform loss table to inform optimal hazard action (Figure

5 (a-d)), the majority of the hazard comes from FL0-200 with a band of the highest hazard action

extending south east from Raikoke before wrapping round the cyclone. There is no hazard action

identified at FL350-550. The total combined hazard action area (maximum hazard action over all

flight levels) is 1.71x106 km2 with 38% of it at the highest hazard action level.
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Medium 1 0.5 0 5

High 2 1 0.5 0

Table 2. L0(�,�): Uniform loss table with no information about losses. L1(�,�): Symmetrical loss table used

to represent decision maker with equal costs associated with flight cancellation/rerouting and engine maintenance.

L2(�,�): Skewed loss table used to represent a decision maker with high costs associated with engine maintenance

compared to flight cancellation or rerouting.

loss. As expected, the optimal action given a uniform loss table is the same as using the most likely

concentration range. In this case the optimal action is no flight re-routing (no action, highlighted

in grey). Panel 4(c) shows the same variables as Panel 4(b) but for loss table L1(�,�). In this case,

the optimal action is to load more fuel for potential flight rerouting (Low action, highlighted in

yellow), despite there being only 14.2% of the ensemble members that have ash concentrations in

this range. Panel 4(d) shows the same variables again as Panel 4(b) but for loss table L2(�,�). In

this case, the optimal action is cancelling the flight (High action, highlighted in red), despite there

being only 32% of the ensemble members having ash concentrations in this range.

The impact of using the decision theory framework on the whole ash plume can be seen in Figure

5. At 0000 UTC 24 June 2019, using the uniform loss table to inform optimal hazard action (Figure

5 (a-d)), the majority of the hazard comes from FL0-200 with a band of the highest hazard action

extending south east from Raikoke before wrapping round the cyclone. There is no hazard action

identified at FL350-550. The total combined hazard action area (maximum hazard action over all

flight levels) is 1.71x106 km2 with 38% of it at the highest hazard action level.

Fig. 4. (a) The fraction of ensemble members that have concentration values within each of the concentration

states (None, Low, Medium, High) for a grid point at 50.30 ◦ N, 185.4 ◦ E. Tables showing the determination of the

optimal hazard action, �∗, at the same grid point for (b) P(y|x)L0(�,�) uniform loss approach, (c) P(y|x)L1(�,�)

symmetrical loss approach and (d) P(y|x)L2(�,�) skewed loss approach. The optimal hazard action is indicated

by the coloured shading, determined using Equation 1.

Using the symmetrical loss table, L1(�,�), with large costs associated with both rerouting and

engine maintenance, the pattern of hazard action identified (Figure 5 (e-h)) is similar to that using

the uniform loss approach, with the addition of a region of Low hazard action at FL350-550 and

with the region of High hazard action greatly reduced compared to the uniform loss approach. The

total combined hazard action area (where the action has been taken to classify the hazard action

above the level of ‘None’) is 2.85x106 km2 with only 1% at the highest hazard action level. This is

a reduction in the area of the highest hazard action by a factor of approximately 25. Using this loss

table also instructs the action to classify areas of Medium hazard action, which are not identified

using the uniform loss approach. Thus, using the symmetrical loss table would likely result in

fewer cancelled flights (High hazard action decision routes) but more re-routed flights (Medium
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hazard action decision routes) and more flights requiring additional engine checks on arrival (Low

hazard action decision routes) compared to the uniform loss table.

When using the skewed loss table, L2(�,�), that has high engine maintenance costs compared

to the cost of cancellation/rerouting, the overall pattern of optimal decisions (Figure 5 (i-l)) is

similar to the symmetrical loss table. However, there are areas where the optimal action is high,

i.e. cancellation of flights at all three FLs considered here. The area identified requiring an action

greater than none is much more extensive than the uniform loss approach, with the total combined

action area – of Low, Medium or High hazard – of 5.60x106 km2 with 43% at the highest action

level. This is an increase of the High hazard action area of a factor 3.65 compared to the uniform

loss approach, and a factor of 90 compared to using the symmetric hazard approach. Thus, using

L2(�,�) has the potential to have a much greater impact on aviation operations than when using

L1(�,�) or the uniform loss approach.

Figure 6 shows the impact of using the decision theory approach on flight tracks across the Pacific

Basin at 0000 UTC 24 June 2019. Representative eastbound and westbound time–optimal routes

from Sapporo (CTS) to Honolulu (HNL) and San Francisco (SFO) to Shanghai (PVG) international

airports were calculated by solving a time–optimal control problem as described in Wells et al.

(2021). Using the uniform loss approach, L0(�,�) (Figure 6 (a)) shows that although there is a

large area of the highest hazard action only a small fraction of the flight track between PVG and

SFO is impacted by this. There are regions of the tracks between SFO and PVG and CTS and

HNL that encounter regions of the lowest hazard action. The route between CTS and HNL is not

impacted by the ash at this time.

Using the symmetrical risk table, L1(�,�), shows a very similar impact on the flight tracks as

when the uniform loss approach is used but with the High hazard action region replaced by Medium

hazard action. However, when the skewed loss table, L2(�,�), is applied there are numerous regions

along the flight tracks which are impacted by the High optimal hazard action. This could potentially

lead to severe disruption to aviation operations.

Clarkson et al. (2016) advocate that the assessment of the risk to an aircraft from volcanic ash

should be performed using dosage (how much ash is encountered in total) over the whole flight

trajectory rather than only avoiding regions of high ash concentration. In this case, the potential
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hazard action decision routes) and more flights requiring additional engine checks on arrival (Low

hazard action decision routes) compared to the uniform loss table.

When using the skewed loss table, L2(�,�), that has high engine maintenance costs compared

to the cost of cancellation/rerouting, the overall pattern of optimal decisions (Figure 5 (i-l)) is

similar to the symmetrical loss table. However, there are areas where the optimal action is high,

i.e. cancellation of flights at all three FLs considered here. The area identified requiring an action

greater than none is much more extensive than the uniform loss approach, with the total combined

action area – of Low, Medium or High hazard – of 5.60x106 km2 with 43% at the highest action

level. This is an increase of the High hazard action area of a factor 3.65 compared to the uniform

loss approach, and a factor of 90 compared to using the symmetric hazard approach. Thus, using

L2(�,�) has the potential to have a much greater impact on aviation operations than when using

L1(�,�) or the uniform loss approach.

Figure 6 shows the impact of using the decision theory approach on flight tracks across the Pacific

Basin at 0000 UTC 24 June 2019. Representative eastbound and westbound time–optimal routes

from Sapporo (CTS) to Honolulu (HNL) and San Francisco (SFO) to Shanghai (PVG) international

airports were calculated by solving a time–optimal control problem as described in Wells et al.

(2021). Using the uniform loss approach, L0(�,�) (Figure 6 (a)) shows that although there is a

large area of the highest hazard action only a small fraction of the flight track between PVG and

SFO is impacted by this. There are regions of the tracks between SFO and PVG and CTS and

HNL that encounter regions of the lowest hazard action. The route between CTS and HNL is not

impacted by the ash at this time.

Using the symmetrical risk table, L1(�,�), shows a very similar impact on the flight tracks as

when the uniform loss approach is used but with the High hazard action region replaced by Medium

hazard action. However, when the skewed loss table, L2(�,�), is applied there are numerous regions

along the flight tracks which are impacted by the High optimal hazard action. This could potentially

lead to severe disruption to aviation operations.

Clarkson et al. (2016) advocate that the assessment of the risk to an aircraft from volcanic ash

should be performed using dosage (how much ash is encountered in total) over the whole flight

trajectory rather than only avoiding regions of high ash concentration. In this case, the potential

Fig. 5. The spatial distribution of optimal hazard action based on the uniform loss approach, L0(�,�) for

(a) FL0-200, (b) FL200-350, (c) FL350-500 and (d) maximum risk level at each point at 0000 UTC 24 June

2019. Panels (e)-(h) show the optimal hazard action determined using the symmetrical loss approach, L1(�,�).

Panels (i)-(l) show optimal hazard action determined using the skewed loss approach with high maintenance

costs compared to cancellation and rerouting L2(�,�). Yellow shading indicates regions of Low hazard action,

orange shading indicates Medium hazard action and red regions indicate the High level of hazard action. The

black triangle indicates the location of Raikoke. The grey line indicates the 180th meridian. The black cross

indicates the location of the example grid point used in Figure 4.

actions taken by the decision maker could be in the form of a set of flight paths, where the state, �,

is the dosage encountered along each flight path.

4. Conclusions

Decision theory provides a robust framework to identify regions of potential risk to aviation from

volcanic ash using a large ensemble of VATDM simulations. This framework has been applied

to the case study of the 2019 Raikoke eruption. It demonstrates the impact of moving from a

most probable (uniform loss) approach to one where uncertainty is treated explicitly by associating
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Fig. 6. The optimal hazard action projected on to representative flight tracks between San Franciso (SFO) and

Shanghai (PVG) and Honolulu (HNL) and Sapporo (CTS) International airports at 0000 UTC 24 June 2019 for

(a) the uniform loss approach using L0(�,�), (b) the symmetrical decision theory approach using L1(�,�) and

(c) the skewed decision theory approach using L2(�,�). Light grey shading indicates the flight track with action

necessary. Yellow shading indicates regions of Low hazard action, orange shading indicates Medium hazard

action and red regions indicate the High level of hazard action. The black triangle indicates the location of

Raikoke. The grey line indicates the 180th meridian. The black aeroplane icons indicate the direction of travel

between the International airports.

a loss with each possible action. The construction of a representative loss table is non-trivial

and may require intimate knowledge of the business model and costs of the individual decision
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Fig. 6. The optimal hazard action projected on to representative flight tracks between San Franciso (SFO) and

Shanghai (PVG) and Honolulu (HNL) and Sapporo (CTS) International airports at 0000 UTC 24 June 2019 for

(a) the uniform loss approach using L0(�,�), (b) the symmetrical decision theory approach using L1(�,�) and

(c) the skewed decision theory approach using L2(�,�). Light grey shading indicates the flight track with action

necessary. Yellow shading indicates regions of Low hazard action, orange shading indicates Medium hazard

action and red regions indicate the High level of hazard action. The black triangle indicates the location of

Raikoke. The grey line indicates the 180th meridian. The black aeroplane icons indicate the direction of travel

between the International airports.

a loss with each possible action. The construction of a representative loss table is non-trivial

and may require intimate knowledge of the business model and costs of the individual decision

makers. However, as shown in the example, application of different loss tables can greatly impact

the optimal action to be taken.

Using a decision theoretical approach operationally would allow the determination of risk to be

shared between scientists, forecasters and decision makers, where the loss table can be constructed

for, or even by, the end-user. The losses used in the table could be subjective or parameterised by a

loss function. There is also the possibility to define a reasonable best and worst case scenario loss

table to give a range of plausible scenarios. The collaboration between scientists and end users

would also help to build trust and understanding in the products that are produced, and therefore

also contribute to robust and transparent decision making. It is important to note that the use of a

decision theoretical framework does not remove the need to perform an appropriately designed set

of ensemble simulations. The construction of ensemble simulations for operational use is not the

focus of this study but it is crucial to ensure that each member sampled is representative of the real

world.

The current approach is limited as the "best" decision is determined on a pixel-by-pixel basis,

whereas real-world natural hazards tend to have a level of spatial coherence. This could be extended

by using multivariate spatial analysis similar to those used in satellite detection of ash clouds (e.g.

Pavolonis et al. 2015). Further extensions could focus on the formulation of more complex,

parameterised loss functions (e.g. Economou et al. 2016). We are unaware of any operational

applications of decision theory within meteorological decision making but the approach used in

this study could easily be applied to any decision making process using probabilistic information.
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