AI Ethics : An Empirical Study on the Views of Practitioners and Lawmakers

Khan, Arif Ali and Akbar, Muhammad Azeem and Fahmideh, Mahdi and Liang, Peng and Waseem, Muhammad and Ahmad, Aakash and Niazi, Mahmood and Abrahamsson, Pekka (2023) AI Ethics : An Empirical Study on the Views of Practitioners and Lawmakers. IEEE Transactions on Computational Social Systems, 10 (6). pp. 2971-2984. ISSN 2329-924X

Full text not available from this repository.


Artificial intelligence (AI) solutions and technologies are being increasingly adopted in smart systems contexts; however, such technologies are concerned with ethical uncertainties. Various guidelines, principles, and regulatory frameworks are designed to ensure that AI technologies adhere to ethical well-being. However, the implications of AI ethics principles and guidelines are still being debated. To further explore the significance of AI ethics principles and relevant challenges, we conducted a survey of 99 randomly selected representative AI practitioners and lawmakers (e.g., AI engineers and lawyers) from 20 countries across five continents. To the best of our knowledge, this is the first empirical study that unveils the perceptions of two different types of population (AI practitioners and lawmakers) and the study findings confirm that transparency, accountability, and privacy are the most critical AI ethics principles. On the other hand, lack of ethical knowledge, no legal frameworks, and lacking monitoring bodies are found to be the most common AI ethics challenges. The impact analysis of the challenges across principles reveals that conflict in practice is a highly severe challenge. Moreover, the perceptions of practitioners and lawmakers are statistically correlated with significant differences for particular principles (e.g. fairness and freedom) and challenges (e.g. lacking monitoring bodies and machine distortion). Our findings stimulate further research, particularly empowering existing capability maturity models to support ethics-aware AI systems’ development and quality assessment.

Item Type:
Journal Article
Journal or Publication Title:
IEEE Transactions on Computational Social Systems
Uncontrolled Keywords:
?? ai ethicsai ethics principlesaccountable artificial intelligenceartificial intelligence (ai)challengesmachine ethicshuman-computer interactionsocial sciences (miscellaneous)modelling and simulation ??
ID Code:
Deposited By:
Deposited On:
23 Mar 2023 11:40
Last Modified:
15 Jul 2024 23:40