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Abstract 

Amongst Markov chain Monte Carlo algorithms, Hamiltonian Monte Carlo 

(HMC) is often the algorithm of choice for complex, high-dimensional target 

distributions; however, its efficiency is notoriously sensitive to the choice of 

the integration-time tuning parameter. When integrating both forward and 

backward in time using the same leapfrog integration step as HMC, the set 

of apogees, local maxima in the potential along a path, is the same 

whatever point (position and momentum) along the path is chosen to 

initialise the integration. We present the Apogee to Apogee Path Sampler 

(AAPS), which utilises this invariance to create a simple yet generic 

methodology for constructing a path, proposing a point from it and 

accepting or rejecting that proposal so as to target the intended distribution. 

We demonstrate empirically that AAPS has a similar efficiency to HMC but 

is much more robust to the setting of its equivalent tuning parameter, the 

number of apogees that the path crosses. 

Keywords: Leapfrog step, Hamiltonian Monte Carlo, Markov chain Monte Carlo, 

robustness to tuning. 
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1 Introduction 

Markov chain Monte Carlo (MCMC) is often the method of choice for estimating 

expectations with respect to complex, high-dimensional targets (e.g. Gilks 

et al., 1996; Brooks et al., 2011). Amongst MCMC algorithms, Hamiltonian Monte 

Carlo (HMC, also known as Hybrid Monte Carlo; Duane et al., 1987) is known to 

offer a performance that scales better with the dimension of the state space than 

many of its rivals (Neal, 2011b; Beskos et al., 2013). 

Given a target density ( ), dx x  , with respect to Lebesgue measure, and a current 

position, at each iteration HMC samples a momentum and numerically integrates 

Hamiltonian dynamics on a potential surface 

( ) log ( )U x x   (1) 

to create a proposal that will either be accepted or rejected. As such, HMC has two 

main tuning parameters: the numerical integration step size, ϵ, and the total 

integration time, T. Given T, guidelines for tuning ϵ have been available for some 

time (Beskos et al., 2013); however, the integration time itself, is notoriously difficult 

to tune (e.g. Neal, 2011b), with algorithm efficiency often dropping sharply following 

only slight changes from the optimum T value, and usually exhibiting approximately 

cyclic behaviour as T increases. 

The sensitivity is illustrated in the left panel of Figure 1, in which HMC is applied to a 

modified Rosenbrock distribution (see Section 4.1) of dimension d = 40. In the top 

half of this plot, the efficiency (see (8) for a precise definition), is given as a function 

of ϵ and the number of numerical integration steps, L. The bottom half of the panel 

shows the analogous plot for a modification of the HMC algorithm 

(Mackenze, 1989; Neal, 2011b), which we refer to as blurred HMC where at each 

iteration, the actual step-size is sampled (independently of all previous choices) 

uniformly from the interval [0.8 ,1.2 ] . This step was designed to mitigate the near 

reducibility of HMC that can occur when T is some rational multiple of the integration 

time required to return close to the starting point, but as is visible from the plots, it 

also makes the performance of the algorithm more robust to the choice of T, and, we 
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have found, often leads to a slightly more efficient algorithm. In both cases, the 

optimal tuning choice appears as a narrow ridge of roughly constant T L . Blurred 

HMC can be viewed as sampling the integration time T uniformly from 
* *

2
[ , ]
3

T T
, 

where * 1.2T L
. The approach of using a random integration time to introduce 

robustness has been extended recently to sampling uniformly from *[0, ]T
 (Hoffman 

et al., 2021) and as an exponential variable with an expectation of *T
 (Bou-Rabee 

and Sanz-Serna, 2017). 

Motivated by the difficulty of tuning T, Hoffman and Gelman (2014) introduces the no 

U-turn sampler (NUTS). This uses the same numerical integration scheme as 

standard HMC, the leapfrog step, to integrate Hamiltonian dynamics both forward 

and backward from the current point, recursively doubling the size of the path until 

the distance between the points the farthest forward and backward in time stops 

increasing. Considerable care must be taken to ensure that the intended posterior is 

targeted, making the algorithm relatively complex; however, the no U-turn sampler is 

the default engine behind the popular STAN package (Stan Development 

Team, 2020), which has a relatively straightforward user interface. 

Integration of Hamiltonian dynamics can be thought of as describing the position and 

momentum of a particle as it traverses the potential surface U. During its journey, 

provided T is not too small, the particle will reach one or more local maximum, or 

apogee, in the potential. The leapfrog scheme creates a path which is a discrete set 

of points rather than a continuum, and so (with probability 1) apogees occur between 

consecutive points in the path; however, they are straightforward to detect. We call 

the set of points (positions and momenta) between two apogees a segment. The 

discrete dynamics using the leapfrog step share several properties with the true 

dynamics, including the following: if we take the position and momentum of any point 

along the path, and integrate forward and backward for appropriate lengths of time 

we will create exactly the same path, and hence the same set of apogees and the 

same set of segments. This invariance is vital to the correctness and flexibility of the 

algorithm presented in this article. 
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In Section 3 we present the Apogee to Apogee Path Sampler (AAPS). Like HMC, 

AAPS is straightforward to implement and has two tuning parameters, one of which 

is an integration step size, ϵ. As with the no U-turn sampler, given a current point 

(position and momentum), AAPS uses the leapfrog step to integrate forwards and 

backwards in time. However, the integration stops when the path contains the 

segment in which the current point lies as well as K additional segments, where K is 

a user-defined tuning parameter. A point is then proposed from this set of K + 1 

segments and either accepted or rejected. The positioning of the current segment 

within the K + 1 and the accept-reject probability are chosen precisely so that the 

algorithm targets the intended density. The invariance of the path to the starting 

position and momentum leads to considerable flexibility in the method for proposing 

a point from the set of segments, which in turn allows us to create an algorithm 

which enjoys a similar efficiency to HMC yet is extremely robust to the choice of ϵ 

and K. These properties are evident from the right-hand panel of Figure 1 and 

analogous plots for other distributions in Section 4.1. The robustness arises mainly 

from the proposal scheme; see the end of Section 3.3. The definition of K, however, 

also naturally caters to intrinsic properties of the target, such as its eccentricity, with 

any externally imposed length (or time) scale largely irrelevant; the theoretical 

analysis of Section 3.6 makes this explicit in a simplified setting. 

Section 2 describes Hamiltonian dynamics and HMC. The AAPS is detailed in 

Section 3, and is compared empirically against HMC and the no U-turn sampler in 

Section 4. We conclude in Section 5 with a discussion. 

2 Hamiltonian dynamics and Hamiltonian Monte 
Carlo 

2.1 Hamiltonian dynamics 

The position, x, and momentum, p, of a particle on a frictionless potential surface 

U(x) evolve according to Hamilton’s equations: 

1d d
   and    .

d d
x

x p
M p U

t t

    (2) 

Acc
ep

te
d 

M
an

us
cr

ipt



For a real object, M is the mass of the object, a scalar, but the properties of the 

equations themselves that we will require hold more generally, when M is a 

symmetric, positive-definite mass matrix. The choice of M, whether for HMC or 

AAPS, is discussed at the end of Section 3.5. We define 
( , )t t tz x p

 and the map t  

which integrates the dynamics forwards for a time t, so 0( )t tz z
. The map, t  has 

the following fundamental properties (e.g. Neal, 2011b): 

1. It is deterministic. 

2. It has a Jacobian of 1. 

3. It is skew reversible: 0 0( , ) ( , )t t tx p x p   
. 

4. It preserves the total energy 

11
( , ) ( )

2
H x p U x p M p 

. 

Except in a few special cases, the dynamics are intractable and must be integrated 

numerically, with a user-chosen time step which we will denote by ϵ. The default 

method for Hamiltonian Monte Carlo, is the method which will be used throughout 

this article, the leapfrog step; the leapfrog step itself is detailed in Appendix A. 

Throughout the main text of this article we denote the action of a single leapfrog step 

of length ϵ on a current state z as ( ; )zLeapFrog . The leapfrog step satisfies 

Properties 1-3 above (see Appendix A), but it does not preserve the total energy. 

Consider using L leapfrog steps of size /t L  to approximately integrate the 

dynamics forward for time t. Since each individual leapfrog step satisfies Properties 

1-3, so does the composition of L such steps, which we denote 0
ˆ ( ; )t z

. 

2.2 Hamiltonian Monte Carlo 

Hamiltonian Monte Carlo (HMC) creates a Markov chain which has a stationary 

distribution of ( ) exp{ ( )}x U x   . Given a current position, 
currx , and tuning 

parameters ϵ and L, a single iteration of the algorithm proceeds as follows: 

1. Sample a momentum 0 ~ (0, )p MN
 and set 

curr

0 0( , )z x p
. 

2. For i in 1 to L: 

● 1( ; )i iz z  LeapFrog
. 
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3. Let 
prop

Lz z
 and set 

prop curr1 ( ) / ( )z z    . 

4. With probability α, 
curr propz z ; else 

curr currz z . 

Here, with ( )p  denoting the density of the (0, )MN  random variable, 

( ) ( , ) ( ) ( ) exp{ ( , )}.z x p x p H x p        (3) 

If 
currx  is in its stationary distribution then   is the density of 

curr

0 0( , )z x p
. 

3 The Apogee to Apogee Path Sampler 

3.1 Apogees and segments 

The left panel of Figure 2 shows L = 50 leapfrog steps of size 0.1  from a current 

position, x0 simulated randomly from a two-dimensional posterior ( )x  (with contours 

of U(x) shown), and momentum p0 simulated from a 2(0, )IN
 distribution. Different 

symbols and colours are used along the path, with both of these changing from step l 

to step l + 1 if and only if 

1 1

1 1( ) 0   and    ( ) 0.l l l lp M U x p M U x 

      (4) 

Intuitively, condition (4) indicates when the “particle” has switched from moving “

uphill” to moving “downhill” with respect to the potential surface U(x). By (2), 
1 d / d · d / dp M U x t U U t     , so (4) indicates a local maximum in 

( )tU x
 between 

xl and 1lx  . 

Between such a pair of points at l and l + 1 there is a hypothetical point, a with 

1l a l    where the particle’s potential has reached a local maximum, which we 

call an apogee. Under the exact, continuous dynamics, this point would, of course, 

be realised, but under the discretised dynamics the probability of this is 0. We call 

each of the realised sections of the path between a pair of consecutive apogees (i.e., 

each portion with a different colour and symbol in Figure 2) a segment. Each 

segment consists of the time-ordered list of position and momentum at each point 

between two consecutive apogees. 
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Instead of integrating forward for L steps, one can imagine integrating both forwards 

and backwards in time from 0 0 0( , )z x p
 until a certain number of apogees have 

been found. The right pane of Figure 2 shows the segment to which the current point 

belongs, which we denote 0 0( )z
, together with two segments forward and one 

segment backward. We denote the jth segment forward by 0( )j z
 and the jth 

segment backward by 0( )j z . We abbreviate the ordered collection of segments 

from 0( )a z
 to 0( )b z

 as : 0( )a b z
. Thus, the right panel of Figure 2 shows the 

positions from 1:2 0( )z . For a particular point :( , ) a bz x p    
, we denote the 

segment to which it belongs by # 0( ; )z z
. 

The following segment invariance property is vital to both the simplicity and 

correctness of our algorithm. For any 0K   and {0,1, , }c K   set a c   and 

b K c  . For any z and any : ( )a bz z 
, 

: : #( ) ( ),   where    ,   and  ( ; ).a b a bz z a c b K c c c z z                 (5) 

The quantities ,a b   and c  correspond to a, b and c but from the point of view of z  

rather than z. For the right panel of Figure 2, for example, picking any ( , )z x p     

from 1 0 2:1( ), ( )z z 
 would give the same ordered set of segments as illustrated in the 

figure. This is because the numerical integration scheme is deterministic and skew 

reversible, so the apogees would all occur in exactly the same positions with exactly 

the same (up to a possible sign flip) momenta. 

3.2 The AAPS algorithm 

We now introduce our algorithm, the Apogee to Apogee Path Sampler, AAPS . The 

algorithm requires a weight function 
4: [0, )dw   , where d is the dimension of the 

target. Weight functions are investigated in more detail in Sections 3.3, but for now it 

might be helpful keep in mind the simplest that we consider: ( , ) ( )w z z z   . 

Given a step-size ϵ, a non-negative integer, K, a mass matrix, M and a current 

position 
currx , one iteration of AAPS  proceeds as follows: 
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1. Sample a momentum 0 ~ (0, )p MN
 and set 

curr curr

0 0( , )z z x p 
. 

2. Simulate c uniformly from {0,1, , }K ; set a c   and b K c  . 

3. Create :a b  by leapfrog stepping forward from (x0, p0) and then backward from 

(x0, p0). 

4. Propose 
propz  w.p. 

curr prop prop curr

:( , )1  ( ( ))a bw z z z z 
. 

5. With a probability of 

curr
:

curr
:

prop prop curr curr

( )

curr curr prop prop

( )

( ) ( , ) ( , )

1
( ) ( , ) ( , )

a b

a b

z z

z z

z w z z w z z

z w z z w z z










 




 (6) 

set 
curr propz z  else 

curr currz z . 

6. Discard 
currp  and retain 

currx . 

The Metropolis-Hastings formula (6) arises because, out of the allowable proposals 

once c has been chosen, the probability of proposing 
propz  is 

:

prop curr curr prop curr( | ) ( , ) / ( , )
a bz

q z z w z z w z z


 
. 

Proposition 1. The AAPS  algorithm satisfies detailed balance with respect to the 

extended posterior ( , )x p . 

Proof. Step 1 preserves   because p is independent of x and is sampled from its 

marginal. 

It will be helpful to define the system from the point of view of starting at 
propz . Let 

,a b   and c  be as defined in (5), but with 
propz z  . Then, since 

prop curr curr prop

# #( ; ) ( ; )z z z z 
, 

prop curr curr prop

# #0 ,  ( ; ) ( ; ) ,  0 .c K c c z z K c c z z K c c K c                      

Equivalently, 
prop curr curr prop

: :1( {0, , })1( ( )) 1( {0, , })1( ( ))a b a bc K z z c K z z        
. 

Moreover, segment invariance (5) is equivalent to 
curr prop

: :( ) ( )a b a bz z z z   
. 
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The resulting chain satisfies detailed balance with respect to   because 

     curr prop prop( ) propose | accept | proposed,z c z c z c     

is 

curr
:

curr
:

prop
:

curr prop prop curr
curr :

curr

( )

prop prop curr curr

( )

curr curr prop prop

( )

( , )1( ( ))1( {0, , })
( )

1 ( , )

( ) ( , ) ( , )

1 ,
( ) ( , ) ( , )

a b

a b

a b

a b

z z

z z

z z

w z z z zc K
z

K w z z

z w z z w z z

z w z z w z z













 
 



 







 

which is 

curr prop
: :

prop curr curr curr prop prop prop curr

:

curr prop

( ) ( )

1( {0, , })1( ( )) ( ) ( , ) ( ) ( , )
.

1 ( , ) ( , )

a b a b

a b

z z z z

c K z z z w z z z w z z

K w z z w z z

 

  

 
   

  
  

 
 

 

This expression is invariant to 
curr prop( , , , ) ( , , , )z a b c z a b c    . □ 

Remark 1. The AAPS  could be applied with a numerical integration scheme that 

does not have a Jacobian of 1. In such a scheme, however, the Jacobian would 

need to be included in the acceptance probability; moreover, a Jacobian other than 1 

would lead to greater variability in   along a path and, we conjecture, to a reduced 

efficiency. 

The path :a b  may visit parts of the statespace where the numerical solution to (2) is 

unstable and the error in the Hamiltonian may increase without bound, leading to 

wasted computational effort as large chunks of the path may be very unlikely to be 

proposed and accepted. Indeed it is even possible for the error to increase beyond 

machine precision. The no U-turn sampler suffers from a similar problem and we 

introduce a similar stability condition to that in Hoffman and Gelman (2014). We 

require that 

currcurr ( )( ) ::

max ( ) min ( ) ,
z zz z a ba b

H z H z


    (7) 
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for some prespecified parameter Δ. This criterion can be monitored as the forward 

and backward integrations proceed, and if at any point the criterion is breached, the 

path is thrown away: the proposal is automatically rejected. Segment invariance 

means that 
curr prop

: :( ) ( )a b a bz z z z   
, so the same rejection would have occured 

if we created the path from any proposal in 
curr

: ( )a b z
, and detailed balance is still 

satisfied. For the experiments in Section 4 we found that a value of Δ = 1000 was 

sufficiently large that the criterion only interfered when something was seriously 

wrong with the integration. Step 3 of the algorithm then becomes: 

1. Create :a b  by leapfrog stepping forward from (x0, p0) and then backward from 

(x0, p0). If condition (7) fails then go to 6. 

For a d-dimensional Markov chain, 0{ }t tX 

 , with a stationary distribution of π, the 

asymptotic variance is 1

1
: lim ( )

n

f i
n

i

V n f X
n



 
  

 
Var

. Thus, after burn in, 

1

1
( ) /

n

i f

i

f X V n
n 

 
 

 
Var

. The effective sample size is the number of iid samples from 

π that would lead to the same variance: 
 ESS /f fn f V Var

. Let 
ESSi  be an 

empirical estimate of the ESS for the ith component of X (i.e., f gives the ith 

component) and let nleap be the total number of leapfrog steps taken during the run of 

the algorithm. We measure the efficiency of an algorithm as: 

1, ,

1
Eff min ESS .

i d
i

leapn  

  (8) 

Since the leapfrog step is by far the most computationally intensive part of the 

algorithm, Eff  is proportional to the number of effective iid samples generated per 

second in the worst mixing component. 

3.3 Choice of weight function 

The weight function ( , ) ( )w z z z    mentioned previously is a natural choice, and 

substitution into (6) shows that this leads to an acceptance probability of 1; however, 

it turns out not to be the most efficient choice. For example, intuitively the algorithm 
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might be more efficient if points on the path that are further away from the current 

point are more likely to be proposed. To investigate the effects of the choice of w we 

examine six possibilities: 

1. ( , ) ( )w z z z   , which leads to α = 1. 

2. 
2( , ) || ||w z z x x    , squared jumping distance (SJD). 

3. 
2( , ) ( ) || ||w z z z x x     , SJD modulated by target. 

4. ( , ) || ||w z z x x    , absolute jumping distance (AJD). 

5. ( , ) ( ) || ||w z z z x x     , AJD modulated by target. 

6. ( , ) ( )1  ( ( ))w z z z z z     , where ( )z  is described below; this also leads to α 

= 1. 

Scheme 6 essentially partitions 
curr

: ( )a b z
 into two halves of roughly equal total   

and then proposes only values from the half that does not contain 
curr curr, ( )z z ; 

details are given in Appendix H. 

The left panel of Figure 3 shows, for a particular choice of ϵ and target, the efficiency 

of AAPS  as a function of K for each of the six weight schemes. Scheme 6 is the 

most efficient; however Schemes 3 and 5 each of which involve some measure of 

jumping distance modulated by   are not far behind. Indeed there is only a factor of 

two between the least and most efficient. Very similar relative performances were 

found for all the other toy targets from Section 4.1 and across a variety of choices of 

ϵ, except that when ϵ becomes small, modulation of SJD or AJD by   makes little 

difference since relative changes in   are small. 

A simple heuristic can explain the difference of a factor of nearly 2 between Scheme 

1 and Scheme 6 in the case where   is approximately constant; for example, when 

ϵ is small. :a b  is constructed prior to making the proposal, so the computational 

effort does not depend on the scheme; thus efficiency can be measured crudely in 

terms of the squared jumping distance of the proposal (e.g. Roberts and 

Rosenthal, 2001; Sherlock and Roberts, 2009; Beskos et al., 2013), since it is 

accepted with probability 1. Without loss of generality, we rescale :a b  to have unit 

length. For two independent (0,1)Unif  variables U1 and U2, Scheme 1 is equivalent 
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to an expected squared jumping distance (ESDJ) of 
2

1 2( ) 1/ 6U U    , whereas 

Scheme 2 is equivalent to an ESJD of 
2

1 2{(1 / 2) / 2)} 7 / 24U U     ; the ratio 

between the two ESJDs is 7/4. 

A naive implementation of each of the above weighting schemes would require 

storing each of the points in 
curr

: ( )a b z
, which has an associated memory cost of 

( )K  and an exact cost that varies from one iteration to the next as the number of 

points in each segment is not fixed. For all schemes except the last there is a simple 

mechanism for sampling 
propz  with a fixed (1)  memory cost; however, this would be 

useless if calculation of the acceptance ratio α in (6) still required storage of ( )K . 

For Schemes 1, 2 and 3, however, it is also possible to calculate α with a fixed (1)  

memory usage. We have found that this has a negligible effect on the CPU cost but 

the impact on the peak memory footprint of the code is substantial, decreasing by a 

factor of around 17 in d = 40, 27 in d = 100 and 42 in d = 800. Since there is little 

otherwise to choose between the schemes, we opt for the most efficient of these, 

Scheme 3, 
2( , ) || || ( )w z z x x x      and apply this thoughout the remainder of this 

article. Appendix B details the implementation of Schemes 1-3 with (1)  memory 

cost. 

3.4 Robustness and efficiency 

The robustness of AAPS with Scheme 3 which is visible in Figure 1 and similar 

figures in Section 4.1, arises from two aspects of the algorithm. We first consider 

robustness to the choice of ϵ, then robustness to the choice of K. 

For Scheme 2, as with HMC itself, the acceptance probability contains the ratio 
prop curr( ) / ( )z z  . The error in the total energy of HMC is proportional to 

2
, so as ϵ 

increases the acceptance rate drops substantially when the error becomes (1) . By 

contrast, the acceptance probability for Scheme 3 contains only weighted sums of 

the   in both the numerator and denominator so the empirical acceptance rate is 

much more robust to increasing ϵ. This effect can be seen in the right panel of Figure 

3. 

Acc
ep

te
d 

M
an

us
cr

ipt



Robustness to the choice of K arises because AAPS samples a point from the whole 

set of segments rather than choosing the end point of the integration as HMC does. 

Figure 2 (bottom left) of Appendix D echoes Figure 1, but for an alternative version of 

AAPS which always sets c = 0 and always samples the proposal from segment K via 

weighting Scheme 3. At its optimum, the algorithm is slightly more efficient than the 

version of AAPS that we recommend; however, the efficiency drops much more 

sharply when K is larger or smaller than its optimal value. 

Both of the above robustness properties are shared by Scheme 1 (also 

demonstrated in Figure 2); however, Scheme 3 is more efficient than Scheme 1 

precisely because it preferentially targets proposals that are further from the current 

value. 

3.5 Tuning 

Since AAPS with weighting Scheme 3 is much more robust to the choice of either 

tuning parameter than HMC is, precise tuning is less important than it is for HMC. 

Thus, we present only brief guidelines here; further heuristics and empirical evidence 

for them are presented in Appendices E and F. 

For any given K > 0, we recommend increasing ϵ from some small value until the 

empirical acceptance starts to change, stopping when the change from the small-ϵ 

acceptance rate is no more than 3%. Empirically, we have found that such minor 

changes in acceptance rate correspond to substantial changes in the total energy 

over the K + 1 segments, such that the modulation of SJD by   starts to have a 

negative impact on the choice of 
propz . 

For a given value of ϵ we recommend a short tuning run of AAPS using a large 

value, *K
, of K and then choosing a sensible *{0, , }K K 

 according to the most 

popularly proposed segment number using a diagnostic that we describe in 

Appendix F. 

As with HMC and the no U-turn sampler, the mass matrix, M, used by AAPS can 

also be tuned, and mixing will be optimised if  1M X

  Var
, as approximated from 

a tuning run. However, the matrix-vector multiplication required for simulating p0 and 
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in each leapfrog step can be expensive, so it is usual to choose a diagonal M 

instead. 

3.6 Gaussian process limit 

Intuitively, the more eccentric a target the more apogees one might expect per unit 

time. This section culminates in an expression which makes this relationship 

concrete for a product target where each component has its own length scale. With 

the initial condition (X0, P0) sampled from 
1, ( )t tP M U X  

 can be considered as a 

random function of time. We first show that when the true Hamiltonian dynamics are 

used, subject to conditions, a rescaling of this dot-product tends to a stationary 

Gaussian process as the number of components in the product tends to infinity. A 

formula for the expected number of apogees per unit time follows as a corollary. 

We consider a d-dimensional product target with a potential of 

 ( ) ( ) ( )

1

( ) constant
d

d d d

i i

i

U x g x


   (9) 

for some :g   and values 
( ) 0, 1, ,d

i i d   
, and where 

( )exp{ ( )}d 1dU x x  . 

HMC using a diagonal mass matrix, M, and a product target is equivalent to HMC 

using an identity mass matrix and a target of 
1/2M x

 (e.g. Neal, 2011b), which, in the 

case of (9) is also a product target, but with different νi. For simplicity, therefore, we 

assume the identity mass matrix throughout this section. We also consider the true 

Hamiltonian dynamics which are approached in the limit as 0 , but approximate 

the dynamics for small to moderate ϵ reasonably well. 

Define the scaled dot product at time t given an initial position of 
( )

0

dx
 and momentum 

of 
( )

0

dp
 as 

     ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0 ( )
1

1 1
( ; , ) :   · |   .d

d
d d d d d d d d

x i i i ix t
i

D t x p p t U g x p t
d d

 


     (10) 

We define the one-dimensional densities with respect to Lebesgue measure 
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2

1

1
( ) exp{ ( )}   and    ( ) exp{ / 2},

2
x g x p p   


     

and let   and ρ1 denote the corresponding measures. The joint density and 

measure are 1( , ; ) ( ; ) ( )x p x p     
 and  . 

Assumptions 1. We assume that 
1g C , that there is a 0   such that 

1

2

~ | ( ) | ,X g X 



      (11) 

and that for each 0y 
, there is a unique, non-explosive solution 0 0( ; , )a t y y

 to the 

initial value problem: 

2

0 02

d
( );  (0) ,  (0) .

d

y
g y y y y y

t
        (12) 

Theorem 1 is proved in Appendix C.1. 

Theorem 1. Let the potential be defined as in (9) and where g satisfies the 

assumptions around (11) and (12). Further, let μ be a distribution with support on 

 

with 

1 /2

~



         (13) 

for some 0  , and let 
~
iid

i 
. Define 

( )   ( )   ( ( , ))  ( ; , ) ,tV t g X P g X X P a t X P         (14) 

where the expectation is over the independent variables 1 1~ , ~X P 
 and ~  , 

and assume that for any finite sequence of n distinct times 1( , , )nt t
, the n × n matrix 

Σ with , ( )i j j iV t t  
 is positive definite. 

Let 
( )dD  be the scaled dot product defined in (10), and let 0 0( , ) ~X P 

; then 

 ( ) ~ 0, ,dD D V SGP  (15) 
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as d  , where ~ ( , )Y b VSGP  denotes that Y is a one-dimensional stationary 

Gaussian process with an expectation of b and a covariance function of 

 , ( )t tY Y V t t   Cov
. 

Ylvisaker (1965) shows that the expected number of zeros over a unit interval of a 

stationary Gaussian process with a unit variance is: 

1
(0)C


 

, where C is its 

covariance function. Zeroes can be either apogees or perigees (local minima in U(x) 

along the path), and these alternate. Hence, with some work (see Appendix C.2), we 

obtain the following: 

Corollary 1. The expected number of apogees of D  over a time T is 

   
 

2

2
( ) .N T T






  
   

Since 0 ~ (0, )dP N I
, with an identity mass matrix, the root-mean-square speed in any 

direction is 1. As ν is a squared inverse-scale parameter, the first term in the product 

simply relates the time interval to the overall length scale of the target (
 1/ 

). 

The second part of the product increases with relative variability in the squared 

inverse length scales of the components of the target. Choosing K fixes N(T), and 

approximately fixes the product of the two terms on the right. For a given relative 

variability in length scales, the integration time automatically flexes according to the 

overall absolute length scale; however if that relative variability increases then T and, 

hence, the path length reduces. This makes it plain that the tuning parameter K 

relates to properties intrinsic to the target; unlike L, its impact is relatively unaffected 

by a uniform redefinition of the length scale of the target or by the choice of ϵ. 

4 Numerical Experiments 

In this section we compare, AAPS with HMC, blurred HMC (see Section 1) and the 

no U-turn sampler over a variety of targets. For fairness we use the basic no U-turn 

sampler from Hoffman and Gelman (2014), without it needing to adaptatively tune ϵ; 

instead tuning ϵ using a fine grid of values. For both varieties of HMC we use a grid 
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of ϵ and L values, and for AAPS we use a grid of ϵ and K values; in each case we 

choose the combination that leads to the optimal efficiency. To ensure that the 

various toy targets are close to representing the difficulties encountered with targets 

from complex statistical models, all algorithms use the identity mass matrix. 

All code ( AAPS /HMC/no U-turn sampler) was written in C++; the effective sample 

size was estimated using the R package coda, and the mean number of leapfrog 

steps per iteration (for AAPS and the no U-turn sampler) was output from each run 

as a diagnostic. 

4.1 Toy targets 

Here we investigate performance across a variety of targets with a relatively simple 

functional form, and across a variety of dimensions. Many are product densities with 

independent components: Gaussian, logistic and skew-Gaussian. We consider 

different, relatively large ratios ξ between the largest and smallest length scales of 

the components in a target, as well as different sequences of scales from the 

smallest to the largest. We also consider a modification of the Rosenbrock banana-

shaped target. 

For a target of dimension d, given a sequence of scale parameters, 1, , d 
 we 

consider the following four forms: 

2

2
1

2
1

2

2
1

2/2
2 2 1

2 22 2 2
1 2

1
( ) exp ,

22

exp( / )1
( ) ,

{1 exp( / )}

2
( ) exp ,

22

1 1 1
( ) exp ( 2 ) exp

2 2 1 / (4 )2

d
i

G

i ii

d
i i

L

i i i i

d
i i

SG

i i ii

d
i

MR i i i i

i i i i ii

x
x

x
x

x

x x
x

x
x x s x

s x ss


 




 




  

 










 

 
   




   
        

 
     

 








2

,
  
  

  

 

where   is the distribution function of a (0,1)N  variable, α = 3, β = 1 and 
2 99( 1) / ( / 2 1) 1is i d   

. The targets πG, πL an πSG are products of one-dimensional 

Gaussian, logistic and skew-Gaussian distributions respectively. The potential 
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surface of the target πMR is a modified version of the Rosenbrock function 

(Rosenbrock, 1960), a well-known, difficult target for optimisation algorithms, which 

is also a challenging target used to benchmark MCMC algorithms (e.g. Pagani 

et al., 2021; Heng and Jacob, 2019). The tails of the standard Rosenbrock potential 

increase quartically, but all algorithms which use a standard leapfrog step and 

Gaussian momentum are unstable in the tails of a target where the potential 

increases faster than quadratically. We have, therefore, modified the standard 

Rosenbrock target to keep the difficult banana shape whilst ensuring quadratic tails. 

For πG, πL and πSG, we denote the largest ratio of length scales by 

1: max /i j d i j    
 and define four different patterns between the lowest and 

highest scaling, depending on which of σi, 
2 2,1/i i 

 or 
1/ i  increases approximately 

linearly with component number. To minimise the odd behaviour that HMC (but not 

AAPS or the no U-turn sampler) can exhibit when scalings are rational multiples of 

each other (a phenomenon which is rarely seen for targets in practice) we jitter the 

scales for all the intermediate components. Specifically, let v  be a vector with 1 0v 
, 

vd = 1 and for 
2, , 1, ( 1 ) / ( 1)i ii d v i U d      

 where 2 1, , dU U 
 are independent 

( 0.5,0.5)Unif  variables. Then we define the following four progressions for 

1, ,i d  : SD: 
( 1) 1i iv   

; VAR: 
2 2( 1) 1i iv   

; H: 
2 2 21/ (1 1/ ) 1/i iv    

; 

invSD: 
1/ (1 1/ ) 1/i iv    

. 

A final target, 
RN

G , arises from an online comparison between HMC and the no U-

turn sampler at 

https://radfordneal.wordpress.com/2012/01/27/evaluation-of-nuts-more-comments-

on-the-paper-by-hoffman-and-gelman/. 

Figure 4 uses ξ = 20 and repeats Figure 1 in d = 40 for each of the main product 

target types: Gaussian, skew-Gaussian and logistic. It demonstrate the robustness of 

AAPS when compared with HMC and blurred HMC. Appendix D contains more 

details on these experiments. Figure 1 in Appendix D plots efficiency against step 

size when the popular No U-turn Sampler is used on the targets in Figures 1 and 4. 

The peaks for the logistic and modified Rosenbrock targets are broad, suggesting 
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some robustness; however, the peaks for the Gaussian and skew-Gaussian targets 

are much sharper. 

We next investigate products of Gaussians using each of the four scale-parameter 

progressions with ξ = 20. Dimension d = 40 is high enough that for this and higher 

dimensions the components can be well approximated as arising from some 

continuous distributions and Corollary 1 applies. 

Table 1 shows the efficiencies of HMC, blurred HMC and the no U-turn sampler 

relative to that of AAPS . Amongst the Gaussian targets, the relative performance of 

AAPS  compared with HMC and NUTS is best for 
invSD

G  and 
H

G , which have just a 

few components with large scales and many components with small scales; 

weighting Scheme 3 ensures that the large components are explored preferentially. 

In contrast, the large number of components with large scales in 
VAR

G  leads to the 

worst relative performance of AAPS ; we, therefore, investigate this regime further 

using alternative component distributions, and choice of dimension and ξ. Across the 

range of targets, no algorithm is more than 1.7 times as efficient as AAPS . Empirical 

acceptance rates at the optimal parameter settings are provided in Appendix E. All 

ESS estimates were at least 1000. 

Table 3 of Appendix 1 provides the equivalent efficiencies when the algorithms are 

tuned according to recommended guidelines, and shows AAPS remaining 

competitive with blurred HMC and the no U-turn sampler. 

4.2 Stochastic volatility model 

Consider the following model for zero-centred, Gaussian data 1( , , )Ty y y 
 where 

the variance depends on a zero-mean, Gaussian AR(1) process started from 

stationarity (e.g. Girolami and Calderhead, 2011; Wu et al., 2019): 

2

2
2

1 1 1 12

~ (0, exp ),  1, , ,

~ 0, ,    | ( ) ~ ( , ),  2, , .
1

t t

t t t t

Y x t T

X X X x x t T




 


  

 

 
    

N

N N
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Parameter priors are 
2

0( ) 1/ ,1/ ~ (10,0.05)    Gamma
 and 

(1 ) / 2 ~ (20,1.5) Beta , and we reparameterise to give a parameter vector in 
3
: 

1
log ,    log ,   and    2log .

1


    




  


 

As in Girolami and Calderhead (2011) and Wu et al. (2019) we generate T = 1000 

observations using parameters 0.98, 0.65    and 0.15  . We then apply 

blurred HMC, AAPS  and the no U-turn sampler to perform inference on the 1003-

dimensional posterior. We ran AAPS  using two different K values, one found by 

optimising the choice of ( , )K  over a numerical grid and one by using the tuning 

mechanism mentioned in Section 3.5. Tuning standard HMC (not blurred HMC) on 

such a high-dimensional target was extremely difficult; due to the algorithm’s 

sensitivity to the integration time, we could not identify a suitable range for L. Widely 

used statistical packages such as Stan (Stan Development Team, 2020) and PyMC3 

(Salvatier et al., 2016) perform the blurring by default, and so we only present the 

results for HMC-bl. 

Each algorithm was then run for ten replicates of 105 iterations using the optimal 

tuning parameters. Efficiency was calculated for each parameter, and the minimum 

efficiency over the latent variables and over all 1003 components were also 

calculated. For each algorithm the mean and standard deviation (over the replicates) 

of these efficiencies were ascertained; Table 2 reports these values normalised by 

the mean efficiency for AAPS  for that parameter or parameter combination. Overall, 

on this complex, high-dimensional posterior, AAPS  is slightly less efficient than 

blurred HMC, and slightly more efficient than the no U-turn sampler. 

4.3 Multimodality 

The AAPS  algorithm with K = 0 is close to reducible on a multimodal one-

dimensional target, and this might lead to concerns about the algorithm’s 

performance on multimodal targets in general. However, in d dimensions, because 

( )p U x  is a sum of d components even with K = 0, AAPS  is not reducible on 

multimodal targets with d > 1. This is illustrated in Appendix G, which also details a 

short simulation study on three 40-dimensional bimodal targets where AAPS  is 
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more efficient than the no U-turn sampler and is never less than two-thirds as 

efficient as blurred HMC. 

5 Discussion 

We have presented the Apogee to Apogee Path Sampler ( AAPS ), and 

demonstrated empirically that it has a similar efficiency to HMC but is much easier to 

tune. From a current point, AAPS  uses the leapfrog step to create a path consisting 

of a fixed number of segments, it then proposes a point from these segments and 

uses an accept-reject step to ensure that it targets the intended distribution. 

We investigated six possible mechanisms for proposing a point from the path, and 

for the numerical experiments we chose the probability of proposing a point to be 

proportional to the product of the extended target density at that point and the 

proposal’s squared distance from the current point, which was possible with an (1)  

memory cost. However, the flexibility in the proposal mechanism allows other 

possibilities such as a Mahalanobis distance based on an estimated covariance 

matrix, or 
prop 2 curr 2 2(|| || || || )x x     for some central point, μ, with a similar 

motivation to the ChEEs diagnostic of Hoffman et al. (2021). Indeed, if any scalar or 

vector function, f, is of particular interest, then a proposal weighting of the form 
prop curr 2|| ( ) ( ) ||f x f x  could be used with a memory cost of (1) . 

Choosing the current segment’s position uniformly at random from the K + 1 

segments is not the only way to preserve detailed balance with respect to the 

intended target. For example, the current segment could be fixed as segment 0 and 

proposals could only be made from segment K, a choice which bears some 

resemblance to the window scheme in Neal (1992); however, we found that this had 

a negative impact on the robustness of the efficiency to the choice of K (see 

Appendix D). 

Because of its simplicity, many extensions to the AAPS  algorithm are clear. For 

example, if the positions along the path are stored, then a delayed rejection step 

may increase the acceptance probabilities. A cheap surrogate for π could be 

substituted within   in any weighting scheme. Indeed, given c, the randomly chosen 
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offset of segment 0, the next value could be chosen conditional on 
currz  using any 

Markov kernel reversible with respect to   (see also Neal, 2011a). A non-reversible 

version of the algorithm could set K = 1 and always choose a path consisting of the 

current segment and the next segment forward; instead of completely refreshing 

momentum at each iteration, the momentum at the start of a new step could be a 

Crank-Nicolson perturbation of the momentum at the end of the previous step as in 

Horowitz (1991). The properties of the leapfrog step required for the validity of AAPS 

are a subset of those required for HMC (see Section 2.2), so any alternative 

momentum formulation (e.g. Livingstone et al., 2019) or numerical integration 

scheme that can be used within HMC could also be used within AAPS. 

AAPS  with weighting Scheme 1 relates to HMC using windows of states 

Neal (2011b) but with K defining the total number of (forward and backward) leapfrog 

steps taken rather than the number of additional segments. As mentioned in Section 

1 and shown in Corollary 1, the number of apogees is a more natural tuning 

parameter than an integration time as it relates to intrinsic properties of the target: 

rescaling all co-ordinates by a constant factor would not change the optimal K. 
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Fig. 1 Efficiency, according to (8), as a function of the tuning parameters for the 40-

dimensional modified Rosenbrock target of Section 4.1. Left panel: HMC with 

positive L values corresponding to the standard HMC algorithm and negative L 

correspond to | |L  leapfrog steps of blurred HMC. Right panel: AAPS. Optimal 

parameter settings in red. 

 

Fig. 2 Left panel: L = 50 leapfrog steps of size 0.1  from the current point. Right 

panel: the current segment, 0 , and two segments forward and one segment 

backward using 0.1 . The current point, x0 is simulated from a target, which has a 

density of 
2 2

1 2( ) exp( / 2 6 )x x x   
; p0 is simulated from 2(0, )IN

. Different colours 

and symbols are used for each segment along the path. 
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Fig. 3 Left: efficiency (see (8)) of AAPS  as a function of K when 1.2 . Right: 

acceptance rate as a function of ϵ when K = 15. There is one curve for each of the 

six choices of weight function. The single horizontal line associated with each curve 

in the left panel indicates the maximum efficiency achieved. The target is 
( )H

G x
 (see 

Section 4.1) with d = 40 and ξ = 20. 
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Fig. 4 Efficiency, measured via (8), as a function of the tuning parameters for 
H

G  

(top), 
VAR

SG
 (middle) and 

VAR

L  (bottom) all with ( , ) (20,40)d   as defined in Section 

4.1. Left panels: HMC with positive L values corresponding to the standard HMC 

algorithm and negative L correspond to | |L  leapfrog steps of blurred HMC. Right 

panels: AAPS. Optimal tuning in red.  
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Table 1 Relative efficiency compared with AAPS of HMC, blurred HMC (HMC-bl) and 

the no U-turn sampler (NUTS); raw efficiencies were taken as the minimum over the 

d components of the number of effective samples per leapfrog step. The optimum 

was found by grid search. 
(1)

This is not a typographic error: the values differ at the 

5th decimal place. 
(2)  for odd-numbered components of πMR. 

(3)
The tuning surface 

for HMC was so uneven that were were unable to ascertain the optimal tuning 

parameters with any degree of certainty; instead we picked the least unreasonable of 

the combinations we tried. 

Target type  d ξ AAPS  
HMC  HMC-bl NUTS 

SD

G   
40 20 1.000  0.722  0.718  1.182  

VAR

G   
40 20 1.000  1.016  1.091  1.461  

H

G   
40 20 1.000  

(1)
0.162 0.644  0.392  

invSD

G   
40 20 1.000  

(1)
0.162 0.461  0.460  

VAR

SG
  

40 20 1.000  1.253  1.528  1.618  

VAR

L   
40 20 1.000  1.135  1.488  1.677  

VAR

G   
100 20 1.000  0.657  1.020  1.378  

VAR

G   
40 40 1.000  1.190  1.346  1.645  

πMR 20 
(2)

10 1.000  1.647  1.582  0.728  

πMR 40 
(2)

10 1.000  1.045  1.166  0.873  

πMR 100 
(2)

10 1.000  0.770  0.970  1.079  

πMR 400 
(2)

10 1.000  0.684  0.859  0.963  

RN

G   
30 110 1.000  

(3)
0.019 1.206  0.306  
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Table 2 Relative efficiency compared with 
gAAPS  ( AAPS  tuned using a grid) of 

aAAPS  ( AAPS  tuned using the advice from Section 3.5), blurred HMC (HMC-bl) 

and the no U-turn sampler (NUTS) for the stochastic volatility model using 10 

replicates of 105 iterations. Raw efficiencies were the number of effective samples 

per leapfrog step; these were then normalised by the mean efficiency from 
gAAPS ; 

normalised standard deviations are reported in brackets. 

Parameter  gAAPS  
aAAPS  

HMC-bl  NUTS  

Α 1.00 (0.12)  1.04 (0.19)  1.05 (0.18) 0.73 (0.25) 

Β 1.00 (0.09)  0.87 (0.11)  1.04 (0.13) 1.24 (0.29) 

Γ 1.00 (0.03)  1.20 (0.05)  1.14 (0.07) 0.74 (0.19) 

{1, , }min ( )t T tX  ESS
  

1.00 (0.13)  0.89 (0.16)  1.07 (0.19) 0.78 (0.44) 

, , , {1, , }min t T     ESS
  

1.00 (0.05)  0.91 (0.12)  1.06 (0.11) 0.76 (0.21) 

acc. rate (%)  75.1  75.5  66.5  86.9  
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