Quanteninterferenz in gemischtvalenten Komplexen:Modifikation elektronischer Kopplung durch Substituenteneffekte

Harrison, Daniel P. and Grotjahn, Robin and Naher, Masnun and Ghazvini, Seyed M. B. H. and Mazzucato, Daniel M. and Korb, Marcus and Moggach, Stephen A. and Lambert, Colin and Kaupp, Martin and Low, Paul J. (2022) Quanteninterferenz in gemischtvalenten Komplexen:Modifikation elektronischer Kopplung durch Substituenteneffekte. Angewandte Chemie, 134 (45). ISSN 0044-8249

Full text not available from this repository.


Whilst 2- or 5-OMe groups on the bridging phenylene ring in [{Cp*(dppe)RuCΞC} 2 (μ-1,3-C 6 H 4 )] + have little influence on the electronic structure of this weakly coupled mixed valence complex, a 4-OMe substituent enhances ground state electron delocalization, and increases the intensity of the IVCT transition. Vibrational frequency and TDDFT calculations (LH20t-D3(BJ), def2-SVP, COSMO (CH 2 Cl 2 )) on ([{Cp*(dppe)RuCΞC} 2 (μ-1,3-C ­6 ­H 3 -n-OMe)] + (n = 2, 4, 5) models are in excellent agreement with the experimental results. The stronger ground state coupling is attributed to the change in composition of the b-HOSO brought about by the 4-OMe group, which is ortho or para to each of the metal fragments. The intensity of the IVCT transition increases with the greater overlap of the β-HOSO and β-LUSO, whilst the relative phases of the β-HOSO and β-LUSO in the 4-OMe substituted complex are consistent with predictions of constructive quantum interference from molecular circuit rules.

Item Type:
Journal Article
Journal or Publication Title:
Angewandte Chemie
Uncontrolled Keywords:
ID Code:
Deposited By:
Deposited On:
21 Mar 2023 13:55
Last Modified:
15 Sep 2023 01:29