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Abstract 

Intelligent fault diagnosis based on domain adaptation has recently been extensively 

researched to promote reliability of safety-critical assets under different working 

conditions. However, target data may be inaccessible in the model training phase, resulting 

in the degradation or failure of the diagnosis model. Therefore, this paper introduces a new 

idea called cross-domain augmentation (CDA) to achieve diagnosis under unseen working 

conditions, which are frequently occurred in industrial scenarios. To realize this idea, an 

adversarial domain-augmented generalization (ADAG) method is proposed with domain 

augmentation via convex combination of data and feature-label pairs. Through adversarial 

training on multi-source domains and the augmented domain, ADAG enables learning 

generalized and augmented features, which are proximal representation in the unseen 

domain, facilitating the generalization ability of the model. Moreover, feature extractor and 

domain classifier are optimized as adversaries in model training to obtain domain-invariant 

features, while the fault classifier is trained to identify the features. Extensive experiment 

studies indicate that ADAG can successfully solve the cross-domain diagnosis problem 

unseen working conditions. For SDUST case study, ADAG promotes the model accuracy 

by 1.44%; while for a more challenging Ottawa case study, it promotes the model accuracy 

by 5.34%. Moreover, the domain discrepancy is reduced by 4.6%. 

Keywords: Domain augmentation; Fault diagnosis; Unseen working condition; Rotating 

machinery; Domain generalization. 

1. Introduction

1.1. Background 

Aiming to increase reliability of assets, advanced fault diagnosis technology has been 

adapted in various industrial fields such as manufacturing, aerospace and renewable energy 

[1–3]. These approaches can significantly enhance the safety of safety-critical engineering 

systems [4]. Driven by industrial data explosion owing to sensor technology and the 
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internet of things, intelligent fault diagnosis has developed rapidly, playing a pivotal role 

in Industry 4.0 [5]. Therefore, data-driven intelligent fault diagnosis methods for 

prognostics and health management (PHM) have attracted extensive attention from 

researchers [6]. The intelligent fault diagnosis mainly leverages machine learning, such as 

convolutional neural network (CNN), autoencoder, and deep belief network, to extract fault 

features from big industrial data [7,8].  

However, due to the variations of the signal pattern under varying and complex working 

conditions, the different working conditions trigger the domain shift problem, which 

commonly violates the i.i.d. assumption i.e., the training data from the source domains and 

the testing data from target domain obey the same distribution independently. Considering 

the existence of domain shift, the empirical risk minimization (ERM) principle is invalid 

[9], whereas the diagnosis model trained in a specific domain fails to generalize the 

diagnosis knowledge to an unseen working condition [10]. Thus, catastrophic degradation 

of diagnostic performance occurs.  

1.2. Fault diagnosis with domain adaptation  

Recently, domain adaptation (DA) has offered a solution to the obstruction above by 

observing the distribution discrepancy between the source and the target domain in model 

training [11]. DA aims to learn a shared representation between training and testing data, 

and thus enables the fault classifier to identify the representation from the target domain. 

Generally, DA usually takes advantage of distribution alignment or adversarial learning to 

learn the cross-domain features, which have the capability of narrowing down the domain 

shift[12]. Following the distribution alignment idea, Wang et al. [12] proposed intra-class 

maximum mean discrepancy (MMD) with multi-scale ResNet to shorten the conditional 

distribution discrepancy of the vibration signal. Hu et al. [13] introduced tensor-aligned 

invariant subspace learning to learn a shared tensor representation for cross-domain 

diagnosis. Following the adversarial learning idea, Li et al. [14] mapped the knowledge 

from target to source working condition based on generative adversarial net. Jiao et al. [15] 

utilized maximum classifier discrepancy to gain class-separable and domain-invariant 

features. Jointly using distribution alignment and adversarial learning, Li et al. [16] 

combined correlation alignment (CORAL) and a gradient reversal layer (GRL) where  Jiao 

et al. [17] introduced joint MMD (JMMD) to adversarial training. Considering statistical 

metric, adversarial training and maximum classifier discrepancy method [18], Lee  et al. 

proposed a asymmetric inter-intra domain alignments approach [19]. Moreover, the meta-

learning and disentangle learning [20] are also introduced in domain adaptation to boost 

the generalization ability. Combining meta-learning and domain adaptation, Feng et al. [21] 

utilized similarity-based prototypical networks to improve identification performance. Wu 

et al. [22] progressively disentangle the domain-invariant and domain-specific features by 

feature decomposition, feature separation and feature reconstruction.  

In a real industrial application, however, the machines often run continuously and faulty 

data are commonly collected from different domains. Thus, in a conventional DA, the fault 

samples collected from specific domains are insufficient for feature extraction to ensure 

domain invariance. Hence, multi-source DA methods are proposed to fully leverage faulty 

data from different domains and exploit the domain-invariant features that are robust 

representations across varying working conditions [23,24]. Huang et al. [23] fused multi-

source information and fault label information with a modified DenseNet. Li et al. [24] 
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developed a multiple DA with weakly supervised data from the target domain using 

different but related machines to enhance the diagnostic performance. Xia et al. [25] used 

a moment matching-based metric to reduce the discrepancy among all source domains and 

a target domain for fault identification, promoting the model’s reliability. 

Nevertheless, the multi-source DA methods still have several limitations. The above 

approaches work only if the distribution of target domain data is accessible during the 

training phase, which is unfortunately practically impossible since conducting the target 

data collection or manual labeling is time-consuming and tedious. The diagnostic 

performance based on the above approaches would inevitably degrade. Therefore, it is 

difficult but important to have a cross-domain diagnosis method for faults under unseen 

working conditions. In such a method, the faulty features across domains should be further 

excavated to learn the invariance of domains. A bridge could be designed for discrete 

domains rather than only considering the available domains as the DA methods did. This 

is the motivation of the study carried out in this paper. 

1.3. Fault diagnosis with domain generalization 

Limited work has attempted to solve this challenge through domain generalization (DG) 

diagnosis by normalization or metric learning [10,26]. The key point of the challenge is the 

model capability of generalization under unseen working conditions. The signal in the 

unseen working conditions may be out of the distribution in the seen domain, and data 

augmentation is a promising technology to enrich the data distribution. Zhuo et al. [27] 

developed a generative approach with auxiliary information to diagnose unseen faults. Li 

et al. [28] compared five different data augmentations for diagnosis, in which signal 

translation provided the most remarkable improvements. Pei et al. [29] utilized a 

Wasserstein auto-encoder with a meta-learning strategy to conduct data augmentation to 

address the issue of data limitation and imbalance problem. Zhang et al. [30] proposed a 

signal augmented semi-supervised learning scheme through a generative adversarial 

network for fault diagnosis toward the small sample problem. It is noted that the above 

augmentation only focuses on faults rather than domains. Due to the limited domain label, 

Matsuura et al. [31] utilized clustered pseudo label to train a domain-generalized model. 

Inspired by AdaIN in style transfer, Zhou et al. [32] captured multiple style information to 

learn mixed feature statistics, enhancing the generalizability of the trained model. The up-

to-date research indicates that the existing data from different available domains may be a 

trigger to generate augmented data in a new domain. Hence, this work will generate fresh 

insight into a new idea called cross-domain augmentation (CDA) diagnosis to enhance the 

domain-invariant feature learning and to boost the generalization capability of the 

diagnosis model. 

The novelty of the work can be further illustrated by comparing CDA diagnosis with 

existing literature methods, as shown in Table 1. For an industrial diagnosis task with 

varying work conditions and unseen target domain, the feasibility of different methods is 

summarized. The DG-based methods are more feasible for a real industrial diagnosis 

because they can further learn the domain-invariant features, and the CDA diagnosis can 

further enrich the data distribution even the target domain is unknown. In short, the 

proposed work can fully exploit the augmented domain technologies for diagnosis under 

unseen working conditions. 
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Table 1 Feasibility for industrial diagnosis of different methods. 

Method 

Feasibility for industrial scenarios 

domain  

shift 

multiple &  

variable domains 

unseen faults 

 & unseen domains 

Domain 

augmentatio

n 

ERM × × × × 

DA √ × × × 

Multiple 

DA  
√ √ × × 

DG √ √ √ × 

CDA √ √ √ √ 

1.4. Motivation and contribution 

In a nutshell, to alleviate the existing drawbacks of DA-based diagnosis and to fulfill a 

more robust and reliable diagnosis, this work proposes the idea of CDA diagnosis and 

develops one of its potential implements, i.e., adversarial domain-augmented 

generalization (ADAG), for fault diagnosis of rotating machinery under unseen working 

conditions. In this method, three modules are integrated to fulfill multi-source feature 

learning. A feature extractor and a fault classifier are simultaneously trained with a domain 

classifier in an adversarial way to achieve fault identification from available source 

domains to unseen domains. Moreover, the CDA diagnosis is carried out at the instance 

and feature levels to boost the generalization capability. In the latent space, the augmented 

domain is exploited to construct a convex hull, which may generate proximal data to bridge 

the discrete domains. Enhanced by the CDA, adversarial training on multi-domain can 

learn smoother features with the domain invariance. To evaluate our method, elaborately 

designed experiments based on two well-known bearing vibration platforms under variable 

and unseen working conditions are fully explored. 

The contributions of this work can be summarized as follows: 

(1) Beyond basic DA diagnosis, a new idea called CDA diagnosis is first introduced for 

fault diagnosis under unseen working conditions, which leverages available domains to 

build an augmented domain. 

(2) A detailed implementation for CDA diagnosis, i.e. ADAG, is developed. ADAG can 

generate an augmented domain by convex combination of the signal and its labels from 

different domains, which expands a continuous latent space. 

(3) Guided by multi-level CDA, the augmented feature space derived by adversarial 

training can eliminate the domain shift across different source domains to achieve a robust 

diagnosis system. 

The remainder of this paper is structured as follows. Section 2 introduces the 

preliminaries and the main idea of CDA diagnosis. Section 3 develops the ADAG model 

to strengthen the idea of CDA diagnosis. Section 4 provides an in-depth discussion on 

different case studies. Section 5 summarizes the work. 

For ease of navigation through the manuscript, all the notations used in the paper are 

summarized as below. 

 

 
Notation Description 

𝑥𝑖 Signal sample 
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𝑦𝑖 Signal label 

𝑃(∙,∙) Joint distribution 

ℒ Loss function 

𝒳 Signal space 

ℱ Feature space 

𝒴 Label space 

𝑓𝜃 Prediction model 

ℛ Risk 

ℛ𝑆 Source risk 

ℛ𝑇 Target risk 

𝑑ℋ𝛥ℋ(∙,∙) ℋ𝛥ℋ distance 

𝓓𝑆 Seen domain 

𝓓𝑈 Unseen domain 

𝑁𝑆 Numbers of seen domain 

𝑁𝑈 Numbers of unseen domain 

𝛾 Upper-bound of ℋ𝛥ℋ distance between augmented and unseen domains 

𝜀 Upper-bound of ℋ𝛥ℋ distance between augmented and seen domains 

𝑫𝑆 Dataset of seen domain 

𝑫𝐴 Dataset of augmented domain 

𝐷𝑖𝑟(∙) Dirichlet distribution 

𝑅 Gradient reversal layer 

𝐸 Feature extractor 

𝐶 Fault classifier 

𝐷 Domain classifier 

ℒ𝐶𝑃 P-level loss of C-branch 

ℒ𝐷𝑃 P-level loss of D-branch 

ℒ𝐶𝐼 I-level loss of C-branch 

ℒ𝐷𝐼 I-level loss of D-branch 

ℒ𝐶𝐹 F-level loss of C-branch 

ℒ𝐷𝐹 F-level loss of D-branch 

2. Preliminaries and ideas 

2.1.  Intelligent fault diagnosis from ERM to DG   

The basic idea of intelligent fault diagnosis based on traditional machine learning 

follows the ERM principle [10,11]. Given the training set 𝐷 = {𝑋, 𝑌} = {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑛  

sampled from the distribution 𝑃(𝑋, 𝑌)  and specific loss function ℒ: 𝒴 × 𝒴 → [0, ∞)  to 

optimize the prediction model 𝑓𝜃: 𝒳 → 𝒴 with the parameter 𝜃. 𝒳 is the signal space, and 

𝒴  represents the label space. Hence, we want to learn the optimal parameters 𝜃∗  by 

minimizing the ERM. 

 ℛ =
1

𝑛
∑ [ℒ(𝑓𝜃(𝑥𝑖), 𝑦𝑖)]𝑛

𝑖=1   (1) 

In the DA methods, the concept of domain 𝒟 = {𝒳, 𝑃(𝑋)} is defined where 𝑃(𝑋) is the 

margin distribution of data, and 𝑋 = {𝑥1, … , 𝑥𝑛} ∈ 𝒳. To alleviate the issue of domain shift, 
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DA aims to learn a shared feature space ℱ𝑆,𝑇 between source domain 𝒟𝑆 and target domain 

𝒟𝑇 to build a reliable prediction model 𝑓. The risk bound to design the loss function is 

given as [9]: 

 ℛ𝑇 ≤ ℛ𝑆 +
1

2
𝑑ℋ𝛥ℋ(𝒟𝑇 , 𝒟𝑆) + 𝜆  (2) 

where 𝑑ℋ𝛥ℋ(𝒟𝑇 , 𝒟𝑆) is the ℋ𝛥ℋ distance that indicates the discrepancy between 𝒟𝑆 and 

𝒟𝑇 and 𝜆 is a constant denoting as the minimal risk of measuring adaptability between two 

domains. From the perspective of the risk bound, ℛ𝑆  could be optimized by traditional 

ERM, and 𝑑ℋ𝛥ℋ(𝒟𝑇 , 𝒟𝑆) could be approximated by MMD [12] or adversarial learning. 

The MMD metric can be unbiased empirically estimated as [33]. 

 𝑀𝑀𝐷(𝒟𝑗 , 𝒟𝑘)
2

= ||
1

𝑛𝑗
∑ 𝜙(𝑥𝑖,𝑗)

𝑛𝑗

𝑖=1
−

1

𝑛𝑘
∑ 𝜙(𝑥𝑖,𝑘)

𝑛𝑘
𝑖=1 ||ℋ

2   (3) 

where adversarial learning can be achieved in a min-max game [34]. 

min
𝐺

max
𝐷

𝑉 (𝐷, 𝐺) = 𝐸𝑥∼𝑝data (𝑥)[log 𝐷 (𝑥)] + 𝐸𝑍∼𝑝𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧)))]       (4) 

In the multiple DA methods, by leveraging the multi-source domains, the risk bound of 

the target domain can be further developed as: 

ℛ𝑇 ≤ ∑ 𝛼𝑗 (ℛ𝑆
𝑗

+
1

2
𝑑ℋ𝛥ℋ[𝒟𝑇 , 𝒟𝑆

𝑗
])

𝑁𝑆
𝑗=1 + 𝜆                             (5) 

where 𝑁𝑆 is the number of domains. The intuitive solution is adding a loss term to reduce 

the discrepancy between source domains and target domains, such as multiple MMDs [33]: 

 𝑀𝑀𝐷({𝒟𝑆
𝑗
}𝑗=1

𝑁𝑆 , 𝒟𝑇) =
1

𝑁𝑆
∑ 𝑀𝑀𝐷(𝒟𝑆

𝑗
, 𝒟𝑇)1≤𝑗≤𝑁𝑆

 (6) 

In the multiple DA, however, it is assumed that  𝒟𝑇 is accessible to design an appropriate 

loss function to guide the model training. This assumption may be violated in many 

industrial scenarios. Hence, this paper introduces the DG into the fault diagnosis field to 

tackle the problem. The idea of DG for diagnosis is shown in Fig. 1.  
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Fig. 1. Domain generalization for diagnosis. 

For a domain 𝓓 = {𝓧, 𝑷(𝑿)}, several seen and unseen domains can be sampled as 𝓓 =

{𝓓𝑆; 𝓓𝑈} = {𝒟𝑆
1, … , 𝒟𝑆

𝑗
… , 𝒟𝑆

𝑁𝑆; 𝒟𝑈
1 , … , 𝒟𝑈

𝑘 … , 𝒟𝑈
𝑁𝑈}  according to different working 

conditions, where 𝑁𝑆 and 𝑁𝑈 are the numbers of seen and unseen domains. The goal of DG 
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is to learn a generalizable model from the source domains 𝓓𝑆 to diagnose faults to achieve 

a minimum error on unseen domains 𝓓𝑈. 

 𝑚𝑖𝑛
𝑓

ℰ(𝑥,𝑦)∈𝓓𝑈
[ℒ(𝑓𝜃(𝑥), 𝑦)]  (7) 

where {𝐷𝑆
𝑗
}𝑗=1

𝑁𝑆 = {{(𝑥𝑖,𝑗, 𝑦𝑖,𝑗, 𝑑𝑖,𝑗)}
𝑖=1

𝑛𝑗
}

𝑗=1

𝑁𝑆

 is the training set with instance 𝑥𝑖,𝑗, label 𝑦𝑖,𝑗 

and working condition label 𝑑𝑖,𝑗 . {𝐷𝑈
𝑘}𝑘=1

𝑁𝑈 = {{(𝑥𝑖,𝑘, 𝑦𝑖,𝑘, 𝑑𝑖,𝑘)}
𝑖=1

𝑛𝑘
}

𝑘=1

𝑁𝑈

  is the testing set 

which has no contribution to the model training.  

An intuitive diagram to illustrate intelligent diagnosis from ERM to DG is shown in Fig. 

2. ERM is the most common setting in which training and testing data follow the i.i.d 

assumption. DA aims to break the limitation to narrow the discrepancy between source and 

target domains, where multiple DA attempts to fully utilize the multi-source domains to 

achieve better performance. Moreover, without access to the target data, DG diagnosis aims 

to learn generalized knowledge from seen domains to diagnose faults in unseen domains. 

To sum up, the diagnosis model maybe fragile and easy to fail if only considering the ERM 

or multiple DA technologies in an engineering scenario. Therefore, the correlation and 

discrepancy between seen and unseen domains should be further explored in the DG 

diagnosis setting. 

(a) (b)ERM DA 

Healthy data

Faulty data

Healthy data

Faulty data
S

T

(c) Multiple DA 

Healthy data

Faulty data
S

T

(d) DG

S

U

Healthy data

Faulty data

S

T

 
Fig. 2. Intelligent fault diagnosis methods: (a) ERM, (b) DA, (c) multiple DA, (d) DG. 

2.2. Data Augmentation based on Mixup. 

To boost the generalization of the diagnosis model, Mixup [36] can be a simple but 

remarkable technique. In essence, this technique enlarges the training set 𝐷 =
{(𝑥𝑖, 𝑦𝑖)}𝑖=1

𝑛 through linear combination: 

 𝑥̃𝑖 = α𝑥𝑖 + (1 − α)𝑥𝑖2  (8) 

 𝑦̃𝑖 = α𝑦𝑖 + (1 − α)𝑦𝑖2  (9) 

where (𝑥𝑖2, 𝑦𝑖2) are instances randomly drawn from 𝐷, and α ∼ 𝐵𝑒𝑡𝑎(φ, φ), φ ∈ (0, ∞). 

Intuitively, through this linear interpolation, Mixup constructs additional and proximal 

instances and enables ERM to build a prediction function with a more robust decision 

boundary: 
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  ℛ =
1

𝑛
∑ ℒ(𝑓θ(𝑥̃𝑖), 𝑦̃𝑖)𝑛

𝑖=1   (10) 

Notably, Mixup only focuses on the sample from the same domain. In this paper, we 

introduce the Mixup into the DG framework to enhance its ability to learn domain-invariant 

features under different working conditions. 

3. ADAG method based on CDA 

3.1. The proposal of CDA idea for diagnosis  

In this subsection, we introduce a new idea called CDA to diagnose and design an 

implementation by a convex combination of data and features based on the DG and Mixup.  

As shown in Eq.(5), a DG task without access to 𝒟𝑇 is challenging. However, it is still 

feasible because DG assumes that the samples in the unseen domain can be embedded into 

the proximal space of source features so that the fault classifier can identify the features in 

unseen domains. Accordingly, we introduce the idea of CDA to build an augmented domain 

from available source domains through the operator 𝜎(∙), which can be an explicit kernel 

or an implicit neural network.  

 𝓓̃𝑆 ≔ { 𝜎(𝒟𝑆
𝑗
) ∣∣ 𝒟𝑆

𝑗
∈ 𝓓 }  (11) 

Following this idea, we build a convex hull in the domain space through a convex 

combination of seen domains: 

 𝓓̃𝑆 ≔ { ∑ 𝛼𝑗𝒟𝑆
𝑗𝑁𝑆

𝑗=1 ∣∣ 𝒟𝑆
𝑗

∈ 𝓓, ∑ 𝛼𝑗
𝑁𝑆
𝑗=1 = 1, 𝑡𝑗 ∈ [0,1] }  (12) 

The augmented domain with domain labels yields a more continuous distribution. Then, 

a special augmented domain can be given [37]: 

 𝒟̃𝑈
𝑘 = ∑ 𝛼𝑗,𝑘𝒟𝑆

𝑗𝑁𝑆
𝑗=1 = 𝑎𝑟𝑔𝑚𝑖𝑛

𝛼
𝑑ℋ𝛥ℋ{𝒟𝑈

𝑘 , ∑ 𝛼𝑗,𝑘𝒟𝑆
𝑗𝑁𝑆

𝑗=1 }  (13) 

It means that the augmented domain can be a proximal domain to the unseen domain 

with the lowest discrepancy. The greedy optimization algorithm can iteratively narrow the 

gap between 𝒟̃𝑈
𝑘  and 𝓓̃𝑆. Let 𝛾 = 𝑑ℋ𝛥ℋ{𝒟̃𝑈

𝑘 , 𝒟𝑈
𝑘} denote the upper boundary of the ℋΔℋ 

discrepancy between the augmented and unseen domains, and 𝜀 = 𝑚𝑎𝑥{𝑑ℋ𝛥ℋ{𝒟̃𝑈
𝑘 , 𝒟𝑆

𝑗
}}  

denotes the upper-bound among the augmented and available source domains. The upper-

bound of Eq.(5) could be updated as follows: 

 ℛ𝑈
𝑘 ≤ ∑ 𝛼𝑗,𝑘𝑅𝑆

𝑗
+

𝛾+𝜀

2

𝑁𝑆
𝑖=1 + 𝜆  (14) 

Although 𝒟𝑈
𝑘  is inaccessible, we can optimize the model iteratively by using samples 

drawn from the convex hull with its labels to minimize the discrepancy term 𝛾 + 𝜀. For 

better understanding, Fig. 3 illustrates the effect of the feature combination from a seen to 

an unseen domain. Fig. 3 (a) shows the vanilla DG, and Fig. 3 (b) shows the convex hull 

built by the convex combination. In this manner, the unseen faulty data may be covered in 

the convex hull. As shown in Fig. 3 (c), the trained model can learn more generalized 

features and more robust decision boundaries. 
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Fig. 3. Effect of CDA using convex combination: (a) vanilla DG without CDA, (b) the 

convex hull of the seen faulty data, and (c) generalized features and robust decision 

boundary after training.  

3.2. Overview of ADAG method 

Fig. 4 shows the proposed method called ADAG under the guideline of CDA idea for 

diagnosis. 
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Fig. 4. Framework of Adversarial Domain-Augmented Generalization. 

First, data acquisition and data preprocessing are conducted. Considering that the 

machine runs under variable working conditions, the vibration signal has variable data 

distribution. The accessible data are collected to build a seen dataset  𝑫𝑆 = {𝐷𝑆
𝑗
}𝑗=1

𝑁𝑆 , which 

involves the training and validation datasets. An augmented dataset can be constructed as 

follows: 

 𝐷𝐴 = (𝑥̃𝑖, 𝑦̃𝑖, 𝑑̃𝑖) = (∑ 𝛼𝑗𝑥𝑖,𝑗
𝑁𝑆
𝑗=1 , ∑ 𝛼𝑗𝑦𝑖,𝑗

𝑁𝑆
𝑗=1 , ∑ 𝛼𝑗𝑑𝑖,𝑗)

𝑁𝑆
𝑗=1   (15) 

Specifically, the augmented data with faulty and domain labels are generated through 

the convex combination of the seen data from different domains, where 𝛼𝑗 is sampled from 

the Dirichlet distribution with the gamma function 𝛤(∙): 

 𝐷𝑖𝑟(𝛼|𝛽) =
𝛤(𝛽0)

𝛤(𝛽1)⋯𝛤(𝛽𝑁𝑠)
∏ 𝛼𝑗

𝛽𝑘−1𝑁𝑠
𝑗=1                             (16) 
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where 𝛽0 = ∑ 𝛽𝑗
𝑁𝑆
𝑗=1 . Intuitively, 𝛽𝑗 is set equally because the inaccessible target domains 

and the Dirichlet distribution have a special function that enables ∑ 𝛼𝑗
𝑁𝑆
𝑗=1 = 1 . Fig. 5 

shows its distribution in three dimensions. 

 
Fig. 5. Dirichlet distribution with different values of 𝛽𝑗: (a) 0.1, (b) 0.2, (c) 0.5, (d) 1.0, 

(e) 2.0, and (f) 5.0. 

As shown in Fig. 5, the points are located by the three-dimensional coordinate 

(𝛼1, 𝛼2, 𝛼3 ). The points in panel (d) are evenly distributed in the triangle plane whose 

vertices are (1,0,0), (0,1,0), and (0,0,1). In addition, with the growth of 𝛽𝑗, the points move 

from the edge to the center. 

The augmented dataset with the original signal uses Fast Fourier Transform (FFT) and 

the reshape operation to build two-dimensional (2-D) instance for model training. The 

prediction model derived in the model training phase can be divided into two parts as 𝑓 =
 𝐸 ∘ 𝐶,  where feature extractor (E) is denoted as a mapping from data to features  𝐸: 𝒳 →
ℱ  and fault classifier (C) is denoted as 𝐶: ℱ → 𝒴 . In particular, a neural network is 

preferable to perform both 𝐸 and 𝐶, due to its feasibility and capability to learn nonlinear 

transformation. 

In practice, adversarial learning generally constructs a double-branched architecture for 

fault classification and domain classification, respectively. Similar to 𝑓 =  𝐸 ∘ 𝐶  , the 

domain branch is marked as ℎ =  𝐸 ∘ 𝑅 ∘ 𝐷, where the domain classifier is denoted as 𝐷 

and 𝑅 in the GRL [24,35]. The GRL could be formulated as: 

 𝑅(𝑥) = 𝑥;    𝑑𝑅(𝑥)/𝑑𝑥 = −𝐼  (17) 

where the forward transformation is identical and the behavior of the back propagation 

reverses the sign.  

The model structure of E, C, and D is a vanilla CNN and fully connected network [38]. 

The model learns the mapping between the original instance and supervised label to 

minimize the risk of unseen domain by the loss function below. 

3.3.  Loss function of ADAG with multi-level CDA 

(1) Prototype-level 

The prototype-level (P-level) has no CDA data engaged in the loss function, and it obeys 

the conventional fashion of model training.  
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After module initialization, ADAG performs forward propagation of seen data. The pre-

processed seen data include the source and augmented datasets. The source data is 

transformed into E with its parameters 𝜃𝐸   as 𝐸(𝑥𝑖,𝑗; 𝜃𝐸) . In order to learn the shared 

representations that are domain unrelated but fault related, the fault classifier and domain 

classifier can predict the domain label and fault label with their parameters as 

𝐷 (𝑅 (𝐸(𝑥𝑖,𝑗; 𝜃𝐸)) ; 𝜃𝐷)  and  𝐶(𝐸(𝑥𝑖,𝑗; 𝜃𝐸); 𝜃𝐶) . In Fig. 4, the block I is the identical 

transformation and the block GRL is the gradient reversal layer. For clarity, D-branch is 

named for the loss acting on the D and E, while C-branch is named for the loss acting on 

the C and E. The loss function of D-branch and C-branch can be derived as follows: 

 ℒ𝐷𝑃 =
1

𝑁𝑆×𝑛𝑗
∑ ∑ [ℒ (𝐷 (𝑅 (𝐸(𝑥𝑖,𝑗; 𝜃𝐸)) ; 𝜃𝐷) , 𝑑𝑖,𝑗)]

𝑛𝑗

𝑖=1
𝑁𝑆
𝑗=1   (18) 

 ℒ𝐶𝑃 =
1

𝑁𝑆×𝑛𝑗
∑ ∑ [ℒ(𝐶(𝐸(𝑥𝑖,𝑗; 𝜃𝐸); 𝜃𝐶), 𝑦𝑖,𝑗)]

𝑛𝑗

𝑖=1
𝑁𝑆
𝑗=1   (19) 

where ℒ(∙,∙) means cross-entropy loss with softmax of one instance: 

 ℒ(𝑦̂, 𝑦) = − ∑ 𝑦̂𝑚 ln 𝑦𝑚
𝑀
𝑚=1 = − ∑

exp(𝑜𝑚)

∑ exp(𝑜𝑙)𝑀
𝑙=1

ln 𝑦𝑚
𝑀
𝑚=1   (20) 

The o denotes the output nodes of classifier and 𝑦𝑚 denotes the true labels.  

(2) Instance-level 

The Instance-level (I-level) CDA involves the I-level loss, which leverages the pre-

processing signal to build a convex hull through a convex combination of seen domains as 

given in Eq. (15). In the augmented domain,  𝑥̃𝑖, 𝑦̃𝑖, 𝑑̃𝑖  denote augmented instance, 

augmented faulty label and augmented domain label, correspondingly. 

Benefiting from the augmented dataset 𝐷𝐴 at the I-level, the features extracted by E are 

marked as 𝐸(𝑥̃𝑖; 𝜃𝐸). The fault classifier and domain classifier can predict the augmented 

domain label and augmented fault label with their parameters as 𝐷(𝑅(𝐸(𝑥̃𝑖; 𝜃𝐸)); 𝜃𝐷) and 

𝐶(𝐸(𝑥̃𝑖; 𝜃𝐸); 𝜃𝐶) . Then we can compute the loss between the I-level augmented data and 

its augmented domain label as follows: 

 ℒ𝐷𝐼 =
1

𝑛𝑗
∑ [ℒ(𝐷(𝑅(𝐸(𝑥̃𝑖; 𝜃𝐸)); 𝜃𝐷), 𝑑̃𝑖)]

𝑛𝑗

𝑖=1
  (21) 

The loss of fault classifier can be computed as: 

 ℒ𝐶𝐼 =
1

𝑛𝑗
∑ [ℒ(𝐶(𝐸(𝑥̃𝑖; 𝜃𝐸); 𝜃𝐶), 𝑦̃𝑖)]

𝑛𝑗

𝑖=1
  (22) 

(3) Feature-level  

The Feature-level (F-level) CDA involves the F-level loss, which leverages the learned 

features 𝐸(𝑥𝑖,𝑗; 𝜃𝐸)  of P-level from different domains. The features at P-level build a 

convex hull through a convex combination of the seen domains features. Specifically, the 

augmented feature and its label can be linearly combined to explore the robust 

representation in the feature space as: 

 (𝑒̃𝑖, 𝑦̃𝑖 , 𝑑̃𝑖) = (∑ 𝛼𝑗𝐸(𝑥𝑖,𝑗; 𝜃𝐸), ∑ 𝛼𝑗𝑦𝑖,𝑗
𝑁𝑆
𝑗=1 , ∑ 𝛼𝑗𝑑𝑖,𝑗)

𝑁𝑆
𝑗=1

𝑁𝑆
𝑗=1   (23) 

Thus, the fault classifier and domain classifier can predict the augmented domain labels 

and augmented fault labels with their parameters as 𝐷(𝑅(𝑒̃𝑖); 𝜃𝐷) and 𝐶(𝑒̃𝑖; 𝜃𝐶). Therefore, 

the relevant loss function is formulated as follows: 

 ℒ𝐷𝐹 =
1

𝑛𝑗
∑ [ℒ(𝐷(𝑅(𝑒̃𝑖); 𝜃𝐷), 𝑑̃𝑖)]

𝑛𝑗

𝑖=1
 (24) 
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 ℒ𝐶𝐹 =
1

𝑛𝑗
∑ [ℒ(𝐶(𝑒̃𝑖; θ𝐶), 𝑦̃𝑖)]

𝑛𝑗

𝑖=1
  (25) 

In summary, there are six losses contributing in two branches on three transformation 

levels. The total loss function for D-branch can be an accumulation of the three terms of 

D-branch as: 

 ℒ𝐷 = ℒ𝐷𝑃 + ℒ𝐷𝐼 + ℒ𝐷𝐹  (26) 

Symmetrically, based on the features from the three levels, the loss function to train the 

fault classifier can be formulated as follows: 

 ℒ𝐶 = ℒ𝐶𝑃 + ℒ𝐶𝐼 + ℒ𝐶𝐹  (27) 

Consequently, the total loss function of ADAG can be formulated as follows: 

 ℒ𝑂=α𝐶ℒ𝐶+α𝐷ℒ𝐷  (28) 

where 𝛼𝐶  and 𝛼𝐷  are the trade-off parameters. Table 2 presents a summary of the loss 

functions. 

Table 2 Six loss functions of ADAG on two branches at three levels. 
 P-level I-level F-level 

C-branch ℒ𝐶𝑃 ℒ𝐶𝐼 ℒ𝐶𝐹 

D-branch ℒ𝐷𝑃 ℒ𝐷𝐼 ℒ𝐷𝐹 

The augmentation of the I-level and F-level benefits from the convex combination of the 

data-label pairs and feature-label pairs, respectively. Theoretically, the above augmentation 

can enhance the performance of feature extraction for cross-domain diagnosis. 

3.4. Optimization 

Gradient back propagation (BP) through stochastic gradient descent is used to optimize 

the model. In each iteration, the parameters of neural networks are trained to satisfy the 

following optimization constrains: 

𝜃𝐸̂ = 𝑎𝑟𝑔 {𝑚𝑖𝑛
𝜃𝐸

𝛼𝐶ℒ𝐶(𝜃𝐸 , 𝜃𝐶̂), 𝑚𝑎𝑥
𝜃𝐸

𝛼𝐷ℒ𝐷(𝜃𝐸 , 𝜃𝐷̂)}                     (29) 

 𝜃𝐶̂ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜃𝐶

 𝛼𝐶ℒ𝐶(𝜃𝐸̂ , 𝜃𝐶) (30) 

 𝜃𝐷̂ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜃𝐷

 𝛼𝐷ℒ𝐷(𝜃𝐸̂ , 𝜃𝐷) (31) 

In this way, the gradients of ℒ𝐷 are minimized with 𝜃𝐷 but maximized with 𝜃𝐸  by GRL, 

where ℒ𝐶  is minimized with 𝜃𝐸  and 𝜃𝐶 . The fault classifier instructs the feature extractor 

to learn fault-related features. Simultaneously, the domain classifier instructs the feature 

extractor to learn domain-invariant features through adversarial training. The details of the 

parameter updating using the stochastic gradient descent are formulated as follows: 

 𝜃𝐸
𝑡 ← 𝜃𝐸

𝑡−1 − 𝛾 ( 𝛼𝐶
𝜕ℒ𝐶

𝜕𝜃𝐸
𝑡−1 −  𝛼𝐷

𝜕ℒ𝐷

𝜕𝜃𝐸
𝑡−1)  (32) 

 𝜃𝐷
𝑡 ← 𝜃𝐷

𝑡−1 − 𝛾 𝛼𝐷
𝜕ℒ𝐷

𝜕𝜃𝐷
𝑡−1  (33) 

 𝜃𝐶
𝑡 ← 𝜃𝐶

𝑡−1 − 𝛾 𝛼𝐶
𝜕ℒ𝐶

𝜕𝜃𝐶
𝑡−1  (34) 

where 𝛾 is a learning rate in the optimization algorithm.  

After model training, we can obtain the optimal parameters 𝜃𝐸
∗  and  𝜃𝐶

∗  to establish a 

generalized diagnosis model, which can be used to diagnose the fault in the unseen domain 

with an unseen dataset 𝑫𝑈 = {𝐷𝑈
𝑘}𝑘=1

𝑁𝑈 . 

  In brief, the ADAG method can be summarized as Algorithm 1. 
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Algorithm 1：ADAG 

# Training stage 

Input: Multiple seen dataset {{(𝑥𝑖,𝑗, 𝑦𝑖,𝑗 , 𝑑𝑖,𝑗)}
𝑖=1

𝑛𝑗
}

𝑗=1

𝑁𝑆

from seen domains. 

Initialization:  E, C, D with initialized parameters and other pre-setting hyper-

parameters. 

1: for epoch = 1 to epochs do 

2:     Randomly sample seen data from the dataset. 

3:     Generate augmented dataset by Eq.(15). 

4:     Forward propagation to generate augmented features by Eq. (23). 

5:     Forward propagation to calculate total loss function Eq.(28). 

6:     Backward propagation to update E, C, D by Eqs. (32) to (34). 

7: end for 

Return: The optimal E, C, D. 

# Testing stage 

Input: Unseen dataset 𝑫𝑈. 

Model: ADAG with optimal E, C, D. 

Output: Diagnosis result of 𝑫𝑈 by optimal E and C. 

4. Experimental validation 

4.1. Experiment setup 

The reliable condition monitoring of rolling bearings is highly demanded for rotating 

machines because the state of rolling bearings directly determines the health and remaining 

lifetime of rotating machines [39]. Therefore, this study fully exploits the augmented 

domain technologies for diagnosis under unseen working conditions and two case studies 

are setup. The two experiments are based on the test rig at SDUST [40,41] and Ottawa [42] 

for bearing fault diagnosis.  

To evaluate the diagnosis model under unseen conditions, we have designed two 

progressive experimental case studies. In the first case, we consider constant domain shift 

in the unseen domain where the experiment rig operated with multiple conditions of 

constant speed. In the second case, we consider a more challenging situation where the 

domain shift is variable, i.e. the experiment rig is operated under unseen and variable 

speeds. In this way, we can verify that the ADAG method based on CDA is fully applicable 

to complex industrial applications. 

4.1.1 SDUST dataset 

Fig. 6 shows the experimental platform of SDUST, which includes a motor, a shaft 

coupling, a rotor, a testing bearing, a gearbox, and a break. 

The bearing type is N205EU. The sampled data include four health conditions, namely, 

normal (Nor), inner ring fault (I), rolling element fault (B), and outer ring fault (O). Each 

fault type that includes three sizes of 0.2, 0.4, and 0.6mm. Four different working 

conditions are set under different speeds of 1000, 1500, 2000, and 2500r/min. Accordingly, 

four domain data are collected by the vibration sensor, and each domain has data with 10 

different types of health conditions (abbreviated as Nor, I02, I04, I06, B02, B04, B06, O02, 

O04, and O06, respectively). The data in each health condition have 100 samples. Each 
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sample has 2048 data points that fully cover the fault information.  

The sensors must maintain a minimum level of sampling rate in order to accurately 

detect impact signals produced by the rolling element in the bearing striking a local fault 

in the inner or outer race during operation, e.g., the ball pass frequency of inner race (BPFI) 

can be formulated as: 

 𝐵𝑃𝐹𝐼 =
𝑛𝑓𝑠

2
{1 +

𝑑

𝐷
𝑐𝑜𝑠 𝛼}  (35) 

where D, d, α, n and fs are the pitch diameter, ball diameter, contact angle between the ball 

and the cage, number of rolling elements and rotating frequency of bearing. 

For SDUST dataset, the fault characteristic frequency is about 8.375 fs according to Eq. 

(35). Since the rotating frequency of the test shaft is 8.3Hz~42Hz, the fault characteristic 

frequency range could be 69.51Hz~347.6Hz, and the lower limit of the sampling rate is 

about 695Hz. Therefore, the sampling rate 25.6kHz in the experiment is enough to identify 

the corresponding faults. 

The experiment sets four generalization tasks for four domains: T1000, T1500, T2000, 

and T2500 as shown in Table 2. For instance, the T1500 task means that the model is trained 

from seen domains under different speeds of 1000, 2000, and 2500r/min, thereby 

generalizing the knowledge to the unseen target domain under the speed of 1500 r/min. 

 

 
Fig. 6. Experimental platform of SDUST dataset. 

 

Table 3 Generalization tasks of SDUST dataset. 
Generalization tasks Seen domains Unseen domain 

T1000 1500r/min, 2000r/min, 2500r/min 1000r/min 

T1500 1000r/min, 2000r/min, 2500r/min 1500r/min 

T2000 1000r/min, 1500r/min, 2500r/min 2000r/min 

T2500 1000r/min, 1500r/min, 2000r/min 2500r/min 

In summary, we construct a seen dataset  {{(𝑥𝑖,𝑗 , 𝑦𝑖,𝑗, 𝑑𝑖,𝑗)}
𝑖=1

𝑛𝑗
}

𝑗=1

𝑁𝑆

 , where 𝑁𝑆 = 3 and 

𝑛𝑗 = 1000 in each working condition with 10 different health conditions 𝑦𝑖,𝑗. Similarly, 

the validation dataset is also constructed by seen domains to perform model selection, and 

the data in the validation dataset have no overlap with the training set. Finally, the sample 

number in the unseen domain is 2000 for testing. 

4.1.2 Ottawa dataset 

Further in-depth researches were carried out with another well-known Ottawa dataset 

under time-varying conditions. The experiment was conducted to collect vibration signal 

on a mechanical-failure simulator (MFS-PK5M) with 200kHz sampling rate. According to 

Eq. (35), the fault characteristic frequency is about 5.43 fs. Since the rotating frequency of 

bearing is 14Hz~30Hz, the fault characteristic frequency range could be 76Hz~162.9Hz, 
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and the lower limit of the sampling rate is about 325.8Hz. Therefore, the sampling rate 

200kHz in the experiment is enough to identify the corresponding faults. Each sample has 

8192 data points that fully cover the fault information. 

Fig. 7 shows the time-varying speed fault diagnosis test bench of the Ottawa dataset [42]. 

The speeds of different working conditions named as SA to SD, are shown in Table 4. 

Similar to SDUST dataset, four generalization tasks exist for TA, TB, TC, and TD. For 

instance, the TA task means that the model is trained from seen domains under working 

condition of SB, SC, and SD, thereby generalizing the knowledge to the unseen target 

domain under working condition of SA. 

In the Ottawa dataset, we construct a seen dataset  {{(𝑥𝑖,𝑗 , 𝑦𝑖,𝑗, 𝑑𝑖,𝑗)}
𝑖=1

𝑛𝑗
}

𝑗=1

𝑁𝑆

  , where 

𝑁𝑆 = 3 and 𝑛𝑗 = 300 under each working condition with three different health conditions, 

i.e., healthy, Inner ring fault and Outer ring fault.  

 

 
Fig. 7. Fault diagnosis test bench of the Ottawa dataset under time-varying speeds. 

 

Table 4 Different speed conditions of the Ottawa dataset. 

Bearing health condition 

 SA 

Speed increase 

 

SB 

Speed decrease 

 

SC 

Speed increase  

then decrease 

SD 

Speed decrease  

then increase 

Health 14.1-23.8  28.9-13.7  14.7 -25.3-21.0 24.2-14.8-20.6  

Inner race fault 12.5-27.8  24.3-9.9  15.1-24.4-18.7 25.3-14.8-19.4 

Outer race fault 14.8-27.1 24.9-9.8 14.0-21.7-14.5 26.0 -18.9-24.5 

4.2. Compared methods  

To evaluate the effectiveness of the CDA idea and the ADAG method, we define a set of 

compared methods with some typical or up-to-date technologies. As shown in Table 5, all 

the methods use the same pre-processing and network backbone for a fair comparison. The 

compared methods are divided into two series, i.e. M1-M6 series are competitive related 

methods while A, AD, AC, AF and AI are proposed ADAG and some variant studies.  

 

Table 5 Compared methods. 
Methods Description 

Motor

AC Drive

Encoder

Healthy Bearing

Experimental Bearing

Accelerometer
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M1 ERM.  

M2 ERM with MMD 

M3 ERM with JMMD  

M4 ERM with CORAL 

M5 ADIG [10] 

M6 IEDGNet [26] 

A The prototype of ADAG 

AD Remove ℒ𝐶𝐼 , ℒ𝐶𝐹 

AC Remove ℒ𝐷𝐼 , ℒ𝐷𝐹 

AF Remove ℒ𝐶𝐼 , ℒ𝐷𝐼 

AI Remove ℒ𝐶𝐹 , ℒ𝐷𝐹 

M1 means the ERM method using multi-domain data based on the general cross-entropy 

loss. M2-M4 follow the same setting in [17,23,43] by adding a distance metric or 

distribution alignment as a loss term, such as MMD, JMMD, and CORAL. M5 [10] is a 

start-of-the-art method DG that uses adversarial training with normalization strategies and 

a strategy of multi-task training. M6 [26] is a competitive method for cross-domain 

diagnosis under unseen domain through triplet loss and data augmentation with Gaussian 

noise. 

The second series shows the variety of the proposed method. A is a prototype of the 

proposed ADAG. AD removes ℒ𝐶𝐼 + ℒ𝐶𝐹  to examine the augmentation of the C-branch, 

whereas AC removes ℒ𝐷𝐼 + ℒ𝐷𝐹  to verify the D-branch augmentation. Similarly, AF 

removes ℒ𝐶𝐼  and ℒ𝐷𝐹  to examine the effectiveness of I-level augmentation, whereas AI 

removes ℒ𝐶𝐹, ℒ𝐷𝐹 to verify the effectiveness of F-level augmentation. 

4.3. Hyper-parameter Settings 

The hyper-parameter selection, part by referring to [10,44] and part by trial and error, is 

presented in Table 6 as the preferred hyper-parameters. 

Table 6 Hyper-parameter setting. 
Hyper-parameter value Hyper-parameter value 

Learning rate 0.0001 𝛼𝐶; 𝛼𝐷 0.5; 1 

Batch size 128 Weight decay 0.0001 

{𝛽𝑗}𝑗=1
𝑁𝑆  0.9 Epoch 200 

Particularly, we carried out a thorough study on the selection for parameter value of  

{𝛽𝑗}𝑗=1
𝑁𝑆  in the Dirichlet distribution. As shown in Fig. 8, the influence of different values 

for β on accuracy are plotted, where the overall accuracy is stable as the β varies between 

0.8 to 1.2. However, this doesn’t mean we can set a random value to β, and by referring to 

Fig. 5, the weight of augmented data can be evenly distributed in the triangle plane when 

β approaching 1.0. Hence, in our experiments  {𝛽𝑗}𝑗=1
𝑁𝑆  is set to 0.9 as preferred. 

Remark 1: the parameter {𝜷𝒋}𝒋=𝟏
𝑵𝑺  is a crucial parameter to be fine-tuned since it 

has a close relationship with the quality of the augmented data in the unseen domain. 

For a CDA task, it can be set equally for simplification in a Dirichlet distribution. 
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Fig. 8. Influence of different 𝛽  values on the accuracy.  

4.4. Result and discussion 

To verify the power of the idea CDA and the superiority of the ADAG method, we carry 

out two experiments in this section to show the performance. 

4.4.1 SDUST dataset 

In this experiment, the diagnosis results of the unseen domain in each task are averaged 

by five trials to eliminate contingency, showing accuracy and relevant standard deviation. 

The highest value in each column is in bold, and the second-highest value is underlined. 

All the results are given in Table 7. 

Table 7 Diagnosis results of SDUST dataset (%). 

Method T1000 T1500 T2000 T2500 Average 

M1 69.73±1.43 94.65±2.72 96.28±2.47 83.19±3.89 85.96±2.63 

M2 59.85±9.48 83.14±1.28 89.51±3.21 73.62±4.67 76.53±4.66 

M3 65.80±3.05 94.95±2.90 96.28±1.98 84.98±6.26 85.50±3.55 

M4 66.51±2.20 94.81±3.27 96.76±1.80 83.96±3.60 85.51±2.72 

M5 71.87±2.87 93.58±3.12 98.26±1.14 90.91±3.22 88.66±2.59 

M6 49.98±0.15 96.18±4.15 97.75±2.99 84.40±6.48 82.08±3.44 

A 74.03±4.17 96.60±2.64 99.06±0.42 89.37±2.94 89.77±2.54 

AD 73.75±1.91 95.19±1.52 98.35±0.84 90.42±0.76 89.43±1.26 

AC 73.27±3.64 94.48±2.86 97.27±0.74 86.06±4.49 87.77±2.93 

AF 74.09±2.40 96.24±2.51 99.18±0.57 90.89±1.87 90.10±1.84 
AI 74.80±2.54 95.16±2.41 97.61±1.49 89.55±3.58 89.28±2.51 

The following are some of our findings and highlighted remarks. 

1) The methods based on ERM and distribution alignment are insufficient or useless for 

cross-domain diagnosis with unseen working conditions in target domain. As shown in 

Table 7, we take the results of M1 as a baseline. Compared with ERM, multiple MMD 

methods have no improvement toward the unseen domain without the target data. M2-M4, 

which uses metrics to reduce domain discrepancy, has no improvement. Although multiple 

DA following M2-M4 can achieve satisfactory diagnosis under the DA assumption, once 

the target domain data are inaccessible, the performance will deteriorate. We can conclude 

that minimizing the distribution discrepancy may have some effects, but it is far from 

sufficient for industrial application. 

2) DG-based methods are fit for CDA tasks, where domain augmentation is important 
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and effective. Compared with M1, M5 based on DG diagnosis achieves significantly 

enhanced performance. Although M6 obtains an unusually small accuracy in T1000 due to 

the large and unseen domain for metric learning, M6 shows great improvement in T1500. 

Notably, for these methods, the data distribution under unseen condition is unknown, while 

ADAG with CDA enriches the data distribution, which further boosts the generalization 

ability. This finding can guide us to design the CDA based methods with extra techniques 

such as domain augmentation, metric learning, or normalization to learn generalized 

features by fully using the available data.  

Remark 2: the augmented domain generated by CDA enables the model fitting not 

only the source data distribution but also the data under unseen working condition, 

which is a core concern to DG-based diagnosis, and this is one of the main findings 

and contributions of this paper. 

3) We conduct a thorough study on the related variants of ADAG by ablation 

experiments. The results in Table 7 indicate that the components in ADAG, i.e. C-branch, 

D-branch and I-level, F-level, are effective since their performances are better than baseline. 

The comparison among A, AD, and AC shows that D- and C-branch augmentation can 

benefit learning generalized features. Likewise, the observations on A, AF, and AI show 

close results. Through feature-level CDA, AF has informative high-level representation to 

construct an augmented domain, whereas instance-level loss uses only low-level samples.  

Remark 3: in the ADAG framework, C-branch and D-branch are equally 

important and are indispensable. This conclusion is consistent with the properties of 

adversarial learning. The F-level CDA, however, is more important than the I-level 

because the high-level features can be built to explore the robust representation in the 

feature space. This is a key to the innovation of CDA diagnosis as depicted in Fig. 4. 

4) As shown in Table 7, the results of ADAG for CDA tasks of T1500 and T2000 achieve 

remarkable improvement. By specifically focusing on T1500 and T2000, as the CDA builds 

the convex hull of features, the fault data in the unseen domain can be covered in the feature 

sets. Hence, the augmented domain has some vicinal samples or features to approximate 

the data in the unseen domain.  

Remark 4: The results indicate that data collection in a wide-ranging domain is 

preferred. However, the industrial in-site data sensing is unable to have quality-

checked data, and a wide-ranging data sampling is impossible. The power of CDA 

diagnosis roots in the supplement with augmented domain to bridge the domain shifts. 
To verify the above comment, we carried out new DG tasks as shown in Table 8 with re-

collected data from speeds of 500 and 3000r/min to boost the result of T1000 and T2500. 

The results are shown in Table 9. With the new collected domain data, all comparison 

methods improve their performance. In T1000*, the ADAG outperforms other methods, 

where in T2500*, ADAG achieves relatively high performance. Comparison of the results 

in T1000 and T1000* reveals that more domain data can boost model generalization ability. 

With limited domain data, the ADAG can reduce dependence on domain data and still 

obtain the best performance, which shows the superiority of the proposed method. 

 

Table 8 New DG tasks with re-collected domain data. 

Generalization task Seen domains Unseen domain  

T1000* 500r/min, 1500r/min, 2000r/min 1000r/min  
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T2500* 1500r/min, 2000r/min, 3000r/min 2500r/min  

 

Table 9 Diagnosis results with re-collected domain data. 

Method T1000* T2500* 

M1 88.24±1.45 98.09±1.68 

M2 83.50±5.63 93.22±4.87 

M3 87.20±2.33 99.51±0.29 

M4 88.97±1.36 99.49±0.55 

M5 84.33±6.97 98.24±1.34 

M6 87.74±4.93 97.52±3.22 

A 92.16±2.17 98.42±1.82 

4.4.2 Ottawa dataset. 

 In the experiment on the Ottawa dataset, we also conduct five trials to show the 

superiorities of our method and to outline some new findings. 

1) ADAG is still effective for CDA diagnosis even in time-varying conditions. As shown 

in Table 10, under time-varying conditions, the distribution sharply changed, but ADAG 

can still achieve the best accuracy comparing with M1-M6. It shows that the concept of 

CDA with convex combination is feasible and effective, revealing the augmented domain 

benefit the model learning the unseen pattern. The results of M1-M4 show that the multiple 

DA method has no obvious effect on the generalization ability of the time-varying 

diagnosis tasks. Only reducing the domain discrepancy of the seen domain often has little 

effect on unseen domain owing to the larger domain discrepancy of time-varying signals. 

M5 and M6 get little improvement for the design of normalization and metric learning. 

2) Be cautious of instance-level loss. We further find that only using I-level loss may 

degenerate the performance, a similar conclusion as indicated above in Remark 3. When 

domain is dramatic shift such as time-varying condition, because the linear combination of 

the samples may confuse the model to learn the nonlinear feature, which is weak to adapt 

this situation. Comparison of A, AF and AI reveals that the standard deviation of variant 

AI is large, indicating that AI is unstable. Given the large difference in instance-level 

distribution, the augmentation effect at the instance level does not perform well, so 

constructing a feature convex hull in the feature space is more effective.  

Table 10 Diagnosis results of the Ottawa dataset (%). 

Method TA TB TC TD Average 

M1 46.21±9.63 92.04±4.88 92.85±4.42 97.35±2.25 82.11±5.23 

M2 57.25±12.35 85.81±3.94 94.15±3.76 91.15±2.79 82.09±5.71 

M3 43.58±12.30 91.15±7.24 89.52±7.41 93.77±4.80 79.51±7.94 

M4 53.10±6.01 91.92±4.48 94.69±4.18 97.50±1.73 84.30±4.10 

M5 60.00±16.28 88.52±5.14 92.38±4.76 96.48±1.38 84.35±6.89 

M6 62.11±22.3 96.2±4.04 94.95±5.36 85.82±10.58 84.77±10.57 

A 66.25±0.69 95.71±2.55 91.33±14.53 99.13±1.14 88.11±4.73 

AD 66.69±2.19 93.23±6.40 98.67±2.14 97.10±3.96 88.92±3.67 

AC 65.79±0.88 97.40±1.28 99.25±0.65 98.00±2.76 90.11±1.39 
AF 66.15±0.97 91.13±10.82 88.62±14.15 94.13±9.21 85.01±8.79 

AI 66.31±1.58 73.58±24.64 96.29±3.26 91.31±14.69 81.87±11.04 

 

Remark 5: I level and F-level joint-augmentation is preferred to construct a feature 

convex hull in the feature space. 
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To investigate the domain discrepancy of learned features between the seen domains and 

the unseen domain, we use multiple MMD error in Eq.(6) as a criterion to verify our method. 

Table 11 exhibits the results of the estimated domain discrepancy via the MMD on the 

Ottawa dataset. As shown in Eq.(14), the domain discrepancy between the seen and unseen 

domains is critical for the DG performance. Comparing the results between M2 and A, the 

metric estimated by MMD of ADAG is 4.6% lower than that of M2, although M2 is directly 

trained by MMD. Notably, the proposed ADAG obtains the lowest multiple MMD error 

without accessing the target domain distribution, proving the augmented domain built by 

ADAG can cover the representation of the unseen domain. Through iteratively 

optimization with the augmented domain, the generalization ability can be increased. 

Table 11 Estimated domain discrepancy via the MMD on the Ottawa dataset. 

Method TA TB TC TD Average 

M1 0.4734  0.5458  0.4557  0.4526  0.4819  

M2 0.7340  0.3991  0.3180  0.3951  0.4616  

M3 0.5586  0.5462  0.5573  0.5621  0.5561  

M4 0.6344  0.6615  0.4309  0.5384  0.5663  

M5 0.8865  0.5224  0.5023  0.4693  0.5951  

M6 0.6038  0.4980  0.4494  0.5179  0.5173  

A 0.7145  0.3479  0.3999  0.2986  0.4402  

AD 0.6869  0.4324  0.4660  0.4945  0.5200  

AC 0.6782  0.4827  0.4357  0.4234  0.5050  

AF 0.7457  0.4599  0.4408  0.4444  0.5227  

AI 0.5777  0.5523  0.4749  0.3683  0.4933  

 

Data quality is critical for our method to be used in industrial cases, where the data 

quality can be degraded by noise. To investigate this issue, we carry out a study of the 

impact of noisy data on the performance of our method. On the basis of a TD task, the 

comparative results of ERM, M5 and A are shown in Fig. 9. Noisy data with different signal 

noise ratio (SNR) are added to the signal to test the performance of the model under 

different noise conditions. As the SNR decreases, the impact of noise increases. As shown 

in the figure, the accuracy of the three methods decreases to certain degrees. Compared 

with the ERM and M5 methods, the proposed method can still maintain a higher accuracy 

even at a lower SNR, which shows the reliability and robustness of our method in industrial 

noisy environment. 

 𝑆𝑁𝑅( dB) = 10𝑙𝑜𝑔10 (
𝑃signal 

𝑃noise 
)  (36) 

Remark 6: Data quality for diagnosis tasks determines the upper limit of accuracy 

that the model can achieve. Different data quality and data source can degenerate the 

model performance because the signal distribution have essentially discrepancy, 

which has been verified. Moreover, we have given evidence that signal range can have 

certain impact on the model accuracy as Remark 4 indicated. Therefore, data quality 

is the first issue to be considered in establishing a reliable diagnosis model. 
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Fig. 9. Test accuracy under different Gaussian noise in a TD task. 

4.5. Feature Visualization 

DG based method aims to learn the domain-invariant features while our CDA diagnosis 

tries to generate the augmented domain to cover the unseen distribution. Therefore, this 

part use feature visualization to validate the above conclusions. 

To show the distribution of fault features from the seen and unseen domains, Fig. 10  

presents the 2-D features from the second layer of fault classifier by using T-SNE [45]. For 

an intuitive understanding, the feature vectors of SDUST dataset from four health 

conditions under task T1500 are plotted, and they are marked differently with 25 data points. 

Four colors of data points represent four domains. Specifically, the dark-green points are 

the features extracted from the unseen domains, whereas the points with the other colors 

are from available source domains. 

The DG based method aims to learn the generalized features clustered together across 

different domains and even in the unseen domains. As shown in Fig. 10, the features 

learned through M1-M3 fail to capture the generalized representation in the I04 fault 

because of the large domain discrepancy among the seen and unseen domains. The M4 

method may learn more robust features than M1-M3 but fails to cluster well in the seen 

domains. Owing to the idea of CDA diagnosis, the proposed ADAG can learn more 

domain-invariant features, thereby benefiting the classifier training and further 

reconfirming remark 2 in the first experiment. 

For a clear comparison, Fig. 11 also shows the MMD error of each method. Considering 

the unseen working condition, the model training cannot access the data distribution in the 

unseen domain. The compared methods have larger and similar MMD errors on average. 

Generally, the multi-source cross-entropy guided by ERM is not competitive in DG. 

Remark 7: as vicinal features are built by the feature extractor with available 

domains, the distribution of the augmented features attempts to cover the unseen data 

to enhance the model training. In this manner, the unseen distribution may lie within 

the convex hull of the features of the source domains. 
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Fig. 10. Results of feature-dimension reduction via T-SNE under unseen target working 

condition: (a) M1, (b) M2, (c) M3, (d) M4, (e) A. 

 

 
Fig. 11. Comparison of MMD errors in different tasks. 
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Furthermore, the effectiveness of augmented features is verified. Fig. 12 depicts the 

augmented features with the dark blue color of the proposed method from different tasks.  

As shown in panel (a), some of the features are not clustered well, which can explain why 

task T1000 in Table 7 is the most challenging. However, as shown in panels (b) and (c), 

although the unseen domain is inaccessible, the learned features are domain-invariant and 

fault-related. The clear decision boundary of each fault can be found to facilitate diagnosis. 

For instance, the points of fault B04 under the unseen domain in panel (b) can be covered 

by the augmented features but cannot be covered by the source domains. In this way, the 

idea of CDA diagnosis remarkably boosts the generalization ability. 

 
Fig. 12. Features distribution with augmented domain under unseen working condition: 

(a) T1000, (b) T1500, (c) T2000, and (d) T2500. 

5. Summary and Future Work 

Reliability of safety-critical assets under unseen working conditions is a major concern 

to conduct the health management. In this paper, a novel idea called CDA diagnosis based 

on DG and the associated ADAG are proposed to realize a robust and reliable fault 

diagnosis model under unseen working conditions. The CDA aims at building an 

augmented domain from available source domains, improving model training to diagnose 

the fault under unseen working conditions. As an implementation of CDA diagnosis, 

ADAG leverages convex combinations of features and instances to build an augmented 

domain. Using adversarial learning between feature extractor and domain classifier by 

multi-source domains and the augmented domain, the domain discrepancy could be 

Source1
Source2
Source3
Unseen

I06Nor I02 I04

Aug

B06B02 B04 O06O02 O04

(a) (b)
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narrowed among available domains and the unseen domains. This process remarkably 

boosts the generalization ability of the diagnosis model. Finally, extensive experiments 

with the SDUST dataset and the Ottawa dataset prove the best performance of ADAG 

among the comparison methods, shedding the light on the prospect of the CDA diagnosis 

to manage the safety-critical assets.  

In the future, some challenging tasks need to be further explored, e.g., the computational 

cost may have redundancy owing to the convex combination. Therefore, constructing 

augmented features through specific source features is valuable. Moreover, according to 

Eq.(11), the idea of CDA for diagnosis can be realized in other methods rather than limiting 

to ADAG. In the perspective of extended applications of our method, since the distribution 

shift of vibration signal collected from different machines always exists, our method is 

promising for other mechanical devices such as robots or pumps, and other industrial 

safety-critical assets. 

 Concerning the requirements of a real industrial fault diagnosis, the reliability and 

robustness of the method can be further improved. It is inspired to carry out continuous 

research on the impact of data quality, signal sensing consistency, etc. Potentially, we are 

conducting research on the implementation of our method to a SCARA robot, where the 

voltage and current signals are the only inputs to ADAG model, and the vibration signals 

are completely omitted.  It is greatly encouraged by the industry. 
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