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Abstract

Organisations make multiple decisions, and each layer requires different types of infor-

mation. The main task of forecasting in these different situations is to support each decision

with relevant future information in point and interval forecasts. The consequence is that

we have multiple and correlated time series. To produce point and interval forecasts for

multiple decisions, we have three modeling options, namely:

• modeling each time series with a set of univariate Exponential Smoothing methods,

• modeling all time series with a Vector Exponential Smoothing model, and

• utilising state-of-the-art forecast reconciliation.

Each option has the same idea: to approximate the ‘true’ data-generating process. Con-

sequently, we have uncertainties around each modeling option, namely (a) model structure,

(b) parameter, and (c) sampling uncertainty. The literature mainly focuses on mitigating

the model structure uncertainty, which is believed to harm forecast accuracy significantly.

On the other hand, this thesis mitigates the parameter uncertainty in each modeling case

(Exponential Smoothing, Vector Exponential Smoothing, and Forecast Reconciliation). We

propose parameter shrinkage in each modeling option. Specifically, we propose a shrinkage

estimator for the univariate and the multivariate exponential smoothing. We also suggest

forcing some covariances to zero to mitigate the covariance matrix estimation uncertainty

in the forecast reconciliation.

Our study relies on theoretical investigations, simulation, and empirical studies. The

theoretical analysis provides solid and rational arguments to mitigate the parameter un-

certainty. We complement it with empirical findings, where the difference between the

simulation and the empirical study is how much we can control the experimental designs.

We also ensure that each design follows sound principles of forecasting evaluation.

Our findings show that the shrinkage estimator improves forecast accuracy. However,

the results are mixed for the Vector Exponential Smoothing. We also find that forcing some
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covariances in the covariance matrix approximation improves both the forecast accuracy and

the variability of the forecasting performance. By understanding the parameter uncertainty,

we find important correlations between parameters that may affect forecast accuracy. We

also propose the concept of stochastic coherency to encapsulate the overlooked uncertainties

in forecast reconciliation.

Our thesis emphasises the importance of revisiting uncertainty in business forecasting.

We decipher it via the bias-variance decomposition and understand how the interdependence

between parameters affects our understanding of the uncertainty. It is not only essential to

address each uncertainty individually but also to address all uncertainties comprehensively.

In particular, we propose different types of parameter shrinkage. The implementation de-

pends on whether we have sufficient information to estimate parameters in the model. In

the univariate case, the parameters’ estimates tend to be inefficient when the sample size is

limited. In the multivariate case, either the shrinkage estimator or forcing some parameters

to zero by design is also a potential solution to the problem. These forms of shrinkage avoid

overfitting and potentially improve foecast accuracy.

Concerning decision makers, our understanding of uncertainty highlights the importance

of reliability in forecasting, i.e., unmitigated parameter uncertainty results in unreliable

forecasting performance. This reliability is essential to gain the decision-maker’s trust in

our forecasts. It is a new business forecasting concept and is open to investigation.
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Certainty is inseparable from emptiness:

there is no synthetic a priori.

Hans Reichenbach, 1968



Chapter 1

Introduction

1.1 Motivation and Background

Organisations make decisions to achieve their goals. We can classify these decisions

according to the organisational hierarchy or functions, product categories, market

segments, etc. (Hyndman et al., 2011; Athanasopoulos et al., 2017; Kourentzes and

Athanasopoulos, 2019; Oliveira and Ramos, 2019; Babai et al., 2022). Each of these

decisions requires different information. For example, the strategic level requires

macro-level information (national sales, macroeconomic indicators). In contrast, the

tactical level requires business unit or store-related information (financial performance

of each business unit or branch). The main task of forecasting in these different

situations is to support each decision with relevant future information, especially in

projecting the most likely future (point forecasts) and reducing future uncertainty

(interval forecasts) amid uncertainties in the market (Ord et al., 2017).

As supporting multiple decisions in any organisation, forecasters need to deal

with many time series and produce multiple point and interval forecasts for each de-

cision. A straightforward approach is to model each time series independently using

a univariate statistical time series model. Among them, Exponential Smoothing is

one of the most popular methods because it is easy to implement, intuitive, robust,

and performs well in practice (Makridakis and Hibon, 2000; Makridakis et al., 2018,
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2021). Exponential Smoothing was initially developed by Brown (1956) in the form

of a Simple Exponential Smoothing, while Holt (2004) extended it to include trend

and seasonality (Winters, 1960). Snyder (1985) proposed a Single Source of Error

(SSOE) state-space model, underlying Simple Exponential Smoothing. Ord et al.

(1997), Hyndman et al. (2002) and Hyndman et al. (2008b) improved the methodol-

ogy by developing a new taxonomy that they called ‘ETS’ or Error-Trend-Seasonality.

They used the maximum likelihood to estimate parameters in Exponential Smooth-

ing models. By doing so, they could automate the modelling process by estimating

the model parameters and selecting the best-approximating model via minimising an

information criterion.

In practice, correlated time series are common (Ma et al., 2016). Implementing

ETS in a set of correlated time series is computationally inexpensive, at the cost

of losing the interdependence information. A potential approach to incorporate in-

terdependence is to employ a multivariate forecasting model. Such models capture

two types of interdependence: (a) functional and (b) covariance, where the former

demonstrates the functional relationship between time series and the latter shows the

correlations between errors. A multivariate extension of Exponential Smoothing was

initially proposed by Jones (1966). Duncan and Horn (1972) developed it further with

a Bayesian approach. de Silva et al. (2010) propose a vector exponential smoothing

(VES) within the SSOE framework as the extension of the ETS methodology. Like

any multivariate model, it is likely to suffer from ‘the curse of dimensionality’, where

the number of parameters may exceed the number of observations. Consequently,

the model may be estimable but suffer from overfitting as the number of observations

might not be sufficient to obtain efficient estimates of parameters in a statistical sense.

Svetunkov et al. (2022a) attempted to solve the dimensionality problems by imposing

commonality in parameters.

As incorporating interdependence into a forecasting model is not straightforward,
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we can split the multivariate estimation into a two-step estimation via forecast recon-

ciliation (Athanasopoulos et al., 2009; Hyndman et al., 2011, 2016; Wickramasuriya

et al., 2019; Panagiotelis et al., 2022). First, we generate independent unbiased base

forecasts from univariate time series models. Second, we combine forecasts using a

reconciliation weights matrix that adheres to the linear constraint. This reconciliation

lends information from the linear aggregation to improve the forecast accuracy, and it

is estimated via an ill-posed least square approach. The weights distribute the ‘left-

over’ information from the univariate models and add ‘interdependence’ information

to the final reconciled forecasts.

Modelling a multivariate time series is not straightforward. We have three ap-

proaches to choose from, and there is always a trade-off between these approaches.

For example, employing univariate models is easy, but we lose important information.

On the other hand, employing a multivariate model captures available information,

but it is difficult to estimate and prone to significant estimation errors. We certainly

can use forecast reconciliation, but the performance depends on the covariance ma-

trix approximation, and the multivariate connection remains limited, e.g., no lags.

Regardless of each approach’s advantages and disadvantages, the fundamental idea is

to approximate the unknown ‘true’ data-generating process (DGP). As in practice,

the ‘true’ DGP is unknown; we need to estimate the model structure and parameters,

conditional on the data at hand. It significantly affects how we approximate the DGP,

namely handling uncertainties.

Chatfield (2000) discussed three fundamental sources of uncertainties in statis-

tical models: (a) model structure, (b) parameter estimation, and (c) sampling one.

He argues that the model structure has the most severe effect on forecast accuracy

and the others do not. This argument implicitly assumes that the sample size is

sufficient to obtain efficient estimates of parameters. In contrast, in business, sam-

ple sizes are often limited due to product life cycles or poor data management (Ord
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et al., 2017). The parameters may be less efficient. It may harm forecast accuracy

and make forecasts unreliable, i.e., inconsistent across forecast origins, and eventually

make forecasts untrustworthy to the managers (Spavound and Kourentzes, 2022).

1.2 Research Question and Methodology

We discuss three modelling approaches in business forecasting and potential issues due

to uncertainties in model estimation. This thesis investigates the effect of parameter

uncertainty on forecast performance and proposes parameter shrinkage approaches to

mitigate this issue. We address the following overarching research question,

Research Question How do we mitigate the effect of parameter uncer-

tainty statistical models/ methods in forecasting performance?

In particular, we investigate this with three modelling approaches: ETS, VES, and

Forecast Reconciliation, each corresponding to a chapter in this thesis. Each looks

at a different case of parameter uncertainty. We validate our investigation through

different approaches, namely theoretical investigations, simulations, and empirical

studies (Naylor and Finger, 1967; Kleindorfer et al., 1998; Fildes and Kourentzes,

2011).

We theoretically investigate the overall forecast uncertainty by decomposing it

into several components, e.g., uncertainty related to model structure, parameter, and

randomness. From this, we can trace the contribution of each component to the overall

uncertainty. We also use the bias-variance trade-off (Hastie et al., 2015) to find any

potential interaction between parameters that affect the uncertainty and formalise

it. These theoretical insights provide a sound basis to propose several parameter

shrinkage approaches. We modify the loss function of ETS and VES and propose new

covariance matrix approximations relevant to the forecast reconciliation problem.

We substantiate and complement our theoretical insights with simulated and real
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data experiments. The main difference between both experiments is whether we know

and can control the DGP. For the former, first, we set up the DGP. We then implement

different models with different specifications, with and without the parameter shrink-

age treatment. For example, in Chapter 4, we construct simple autoregressive time

series and purposefully model them with an autoregressive model and ETS. That way,

we can see the effect of different degrees of uncertainty on forecasting performance.

However, we argue that simulated experiments are insufficient as the DGP remains

fully controlled and relatively simplistic. We provide real data experiments where we

cannot control or know the ‘true’ DGP. We use an Accident & Emergency Admission

dataset for Chapter 2 and Chapter 4. In this experiment, we assume that the model

structure is approximated adequately, to isolate the model structure uncertainty. We

observe forecast accuracy improvement with parameter shrinkage when we do not

know the DGP.

We also ensure that each design follows sound principles of forecasting evaluation

(Tashman, 2000). We split the time series in each experiment into a training and a

test set. We use the former to estimate the model and the latter to assess the point

and interval forecast accuracy for short and longer forecast horizons. The evaluation

was a rolling origin scheme. We compare any findings with benchmark models. Our

benchmarks are state-of-the-art implementations and, therefore, without any of the

proposed shrinkage estimators. For example, in Chapter 2, we use ETS without

any parameter shrinkage. We assess the forecasting performance by investigating the

forecast error comprehensively. We look at the mean, the mean squared of the forecast

error, and the distribution of the mean squared error via boxplots. We attempt to

observe the variability of the forecast error variance as a proxy for the reliability of

the forecasts (Spavound and Kourentzes, 2022). It allows us to evaluate any proposed

methods comprehensively.
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1.3 Contributions

Chapter 2 discusses a shrinkage estimator for ETS, where we shrink the smoothing

parameters toward zero. By doing that, we can control the stochasticity of the model

states, i.e., becoming more or less stochastic. This approach results in not only more

accurate point forecasts but also more accurate prediction intervals. We also find a

correlation between smoothing parameters and initial values. Lowering the smoothing

parameters makes the states ‘remember’ the past information more, resulting in a

more efficient initial value estimation. The estimated initial values become more

efficient, which leads to a decrease in the in-sample standard error and improves

prediction interval accuracy. It is in contrast to Makridakis and Winkler (1989)’s

finding that the initial values do not affect forecasting performance. This chapter is

published at the International Journal of Forecasting (Pritularga et al., 2022).

Chapter 3 extends the proposed shrinkage estimator for ETS to VES. In this case,

we shrink the persistence matrix containing the time series’ smoothing parameters.

The idea is similar to Chapter 2, where we control the state stochasticity. At the same

time, we aim to mitigate the curse of dimensionality issues in VES, which bridges the

gap between a highly restrictive VETS by Svetunkov et al. (2022a) and an unrestricted

one by de Silva et al. (2010). However, we find that this is not straightforward. The

shrinkage can estimate shrink smoothing parameters in the persistence matrix to zero,

but this does not necessarily translate to forecast accuracy improvement. We observe a

compensating effect between the persistence matrix and the covariance matrix, i.e., the

variances and the covariance compensate for the lowered smoothing parameters. As

a result, the covariance matrix estimation error becomes unnecessarily large in some

instances. We propose to develop an extended shrinkage estimator that includes the

persistence matrix and the covariance matrix, similar to Wilms and Croux (2018) that

developed the shrinkage estimator for the vector autoregressive model. Our findings
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provide a strong argument as to why we need to include the covariance matrix in the

shrinkage estimator.

Chapter 4 explores the effect of parameter uncertainty on forecast reconciliation

and proposes the concept of ‘stochastic coherency’ in forecast reconciliation. We

find that forecast reconciliation improves the point forecast accuracy, on average,

as suggested by Wickramasuriya et al. (2019), and validated in other works, e.g.,

Oliveira and Ramos (2019). However, we also find variability in the error measures.

The variability originates from the reconciliation weights matrix uncertainty, and the

weights uncertainty originates from the covariance matrix estimation error and the

forecasting model uncertainty. We see an amplification effect from the forecasting

model to the final reconciled forecasts. Stochastic coherency emphasises that the

notion of coherency is subject to uncertainty, and forecasters should be aware of

that. Practically speaking, we need slack to accommodate the discrepancy between

levels of aggregation due to measurement uncertainty. The concept accommodates

overlooked uncertainties in forecast reconciliation. In light of such uncertainty, we

also propose several alternatives to the covariance matrix approximations, i.e., to

force some covariances to zero to mitigate the covariance matrix estimation error. This

chapter is published at the International Journal of Production Economics (Pritularga

et al., 2021).

We should handle uncertainties in any statistical method/ model comprehen-

sively. A well-known approach that is believed to mitigate overall uncertainty is the

linear combination of forecasts. It could be in the form of forecast combination (Bates

and Granger, 1969; Clemen, 1989; Kourentzes et al., 2014; Barrow and Kourentzes,

2016), the Multi Aggregation Prediction Algorithm (Kourentzes et al., 2014, 2017), or

forecast reconciliation (Athanasopoulos et al., 2009; Hyndman et al., 2011; Athana-

sopoulos et al., 2017; Jeon et al., 2019; Wickramasuriya et al., 2019; Kourentzes and

Athanasopoulos, 2019; di Fonzo and Girolimetto, 2021; Panagiotelis et al., 2022). It
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is a post-processing approach, where first, we estimate the forecasting models and

use some linear combination approaches to combine the forecasts. It is useful, but if

the combination is not done properly, it can harm the forecast accuracy (Smith and

Wallis, 2009; Claeskens et al., 2016). In light of that, some studies attempt to mitigate

the uncertainty during the modelling process. For example, Burnham and Anderson

(2002) and Hyndman et al. (2008b) select the best-approximated model by minimis-

ing an information criterion and therefore mitigate the model structure uncertainty

prior to any combination. Similarly, one can eliminate forecasts from the combination

pool (Kourentzes et al., 2019). However, the parameter uncertainty is not explicitly

targeted. Our contribution is to fill this gap, where we mitigate the parameter un-

certainty in the modelling process. We propose parameter shrinkage approaches and

provide strong evidence that a shrinkage estimator can be a sensible solution beyond

its standard regression use in the univariate (see Chapter 2) and multivariate context

(see Chapter 3 and 4).

1.4 Structure of the Thesis

The remainder of this thesis is structured as follows. The next chapter presents the

shrinkage estimator for ETS, and Chapter 3 extends its implementation to VES mod-

els. In Chapter 4, we propose the notion of stochastic coherency to accommodate

overlooked uncertainties in hierarchical forecasting and design alternatives to the co-

variance matrix estimation approximations. We discuss and conclude our thesis in

Chapter 5.
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Chapter 2

Shrinkage Estimator for Exponential

Smoothing Models

In this chapter we propose a new estimator for exponential smoothing models to

mitigate the parameter uncertainty. This results in more reliable point and interval

forecasts. All materials in this chapter are based on an article published at the

International Journal of Forecasting (Pritularga et al., 2022).

Abstract

Exponential smoothing is widely used in the practice and has shown its efficacy and

reliability in many business applications. Yet, there are cases, for example when

the estimation sample is limited, that the estimated smoothing parameters can be

erroneous, often unnecessarily large. This can lead to over-reactive forecasts, and

high forecast errors. Motivated by these challenges, we investigate the use of shrink-

age estimators for exponential smoothing. This can help with parameter estimation

and mitigating parameter uncertainty. Building on the shrinkage literature, we ex-

plore ℓ1 and ℓ2 shrinkage for different time series and exponential smoothing model

specifications. From the simulation and the empirical study, we find that using shrink-

age in exponential smoothing results in forecast accuracy improvements and better

prediction intervals. In addition, using bias-variance decomposition we show the in-
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terdependence between smoothing parameters and initial values and the importance

of the initial value estimation on point forecasts and prediction intervals.

2.1 Introduction

Forecasting is essential to support decisions such as inventory management, produc-

tion planning, procurement, and other. To effectively support decisions, forecasts are

expected to consistent and reliable. In contrast, volatile forecasts can induce more

costs due to re-planning, schedule instability, and low service level (Kadipasaoglu

and Sridharan, 1995). Forecasts with such characteristics can also mitigate potential

issues related to overfitting and erratic forecast selection (Barrow et al., 2021).

Exponential smoothing is widely used in forecasting. It is robust, easy to imple-

ment, and amongst the top-performing methods in forecasting competitions (Fildes

et al., 1998; Makridakis and Hibon, 2000; Makridakis et al., 2018), available widely

in many software. It has been developed extensively over the years (Gardner, 2006).

Hyndman et al. (2002) introduced a state-space model formulation for exponential

smoothing, to handle time series with different trend and seasonal components. Hyn-

dman et al. (2008b) expanded the model taxonomy to include a variety of different

Error, Trend, Seasonal components, leading to the acronym ETS that is commonly

used for the exponential smoothing family of models. It has two important groups of

parameters, namely the smoothing parameters and and the initial values. The smooth-

ing parameters control how new information impacts the forecasts of the model and

the initial values act as proxies for the information prior to the collected observa-

tions. In a trend model, we can include a parameter which dampens the otherwise

linear trend. The conventional methodology in ETS utilises the single source of error

(SSOE) framework (Snyder, 1985). Hyndman et al. (2002, 2008b) automated the

methodology by employing the maximum likelihood estimation (MLE) and informa-
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tion criteria in order to select the most appropriate model to the data. This approach

produces consistent and efficient estimates of parameters asymptotically, in the sta-

tistical sense. However, in practice time series are typically short, which can affect

the quality of the estimation. As a result, ETS potentially suffers from overfitting

and might produce inaccurate forecasts (Barrow et al., 2021).

In addition, the literature highlights the benefits of lower smoothing parameters

in forecasting. Johnston and Boylan (1994) argue that a lower smoothing parameter

in simple (level) exponential smoothing can reduce forecast errors. Special cases,

such as the original Theta method, can be seen as having a parameter set to zero,

resulting in a deterministic state (Assimakopoulos and Nikolopoulos, 2000; Hyndman

and Billah, 2003). The Theta method has shown good performance in both the M3

and M4 competitions, and the authors argue that the Theta method is able to capture

long-term trends, modelled as deterministic. We agree that this can be beneficial, and

that more consideration needs to be given to the potential benefits of low smoothing

parameters, but this should be done in an non-arbitrary manner.

We propose to control the smoothing parameters by introducing shrinkage in

ETS. The concept of shrinkage is widely used in the regression context, with LASSO

and ridge being the two most popular (Tibshirani, 1996; Hoerl and Kennard, 2000).

Both reduce the effect of explanatory variables on the target variable by shrinking

their respective coefficients towards zero. Forecasting with shrinkage regression has

been shown to produce accurate forecasts (Sagaert et al., 2019). Here, we develop a

shrinkage estimation procedure for ETS, to obtain reliable and consistent forecasts.

We shrink the smoothing parameters in ETS to control the effect of new information

on the states of the model. However, the effect of shrinkage on ETS is different from

the one in regression models. Shrinkage can have two main effects for regression.

First, by resulting in smaller coefficients, models become more resistant to estima-

tion issues due to sampling uncertainty. Second, shrinking parameters to zero, as
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with LASSO regression, variables can be eliminated from the model. Irrespective

whether LASSO, ridge, or other variants of shrinkage are used, there are additional

modelling benefits, such as being able to estimate models when the number of ex-

planatory variables exceeds the sample size and being able to obtain estimates for

highly multicollinear systems (Hastie et al., 2015). The proposed shrinkage in ETS

matches the first operation of shrinkage, but does not eliminate states from the model.

By shrinking the smoothing parameters, we reduce the effect of new information on

the model states. The literature has investigated the positive effect of shrinking the

value of model parameters to improve forecasting performance. One such application

is various approaches that shrink the size of the seasonal estimates, demonstrating

positive effects on accuracy (Bunn and Vassilopoulos, 1999; Miller and Williams, 2003,

2004; Kourentzes et al., 2014). A motivation for using shrinkage for seasonal estimates

is the relatively large number of parameters needed to estimate a seasonal profile in

relation to the available seasons in the fitting sample. A similar application can be

seen in using shrinkage estimators for large variance-covariance matrices (Daniels and

Kass, 2001; Schäfer and Strimmer, 2005) with applications, for instance, in hierar-

chical forecasting (Wickramasuriya et al., 2019). Barrow et al. (2021) demonstrate

that these benefits are relevant even in the case of ETS with only a few parameters

to estimate.

Recognising the estimation issues originating from limited samples, other ap-

proaches have investigated improving parameter estimates by regularising parameters

towards a pooled estimate across time series, or an informative prior, for instance by

using empirical Bayes (Greis and Gilstein, 1991). Although the prior can be geared

towards shrinking parameters to zero, these approaches often have different targets,

and relate to pooled estimation methods (e.g., Trapero et al., 2015, use pooled esti-

mation to obtain more reliable estimates for promotional effects) and more recently

global learning methods (Makridakis et al., 2021). These approaches go beyond the
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univariate case, and do not directly relate to the proposed univariate ETS shrink-

age, yet they demonstrate the longstanding interest in the literature to investigate

parameter shrinkage estimation improvements via shrinkage and regularisation.

The shrinkage estimators investigated here have parallels with other recent con-

tributions in the literature for mitigating parameter estimation issues for ETS (e.g.,

Barrow et al., 2021, use M-estimators and boosting), or limiting the pool of exponen-

tial smoothing models (Kourentzes et al., 2019; Meira et al., 2021), all aiming to reduce

the inconsistency of forecasts. Our approach builds on the well-researched shrinkage

estimators and does not require the introduction of ad-hoc heuristics, while offering

a data-driven way to identify how much to diverge from conventional estimators.

We (a) propose an implementation of shrinkage estimates for ETS; (b) explain the

mechanism of shrinkage in ETS; and (c) evidence the effect of shrinkage on predictive

accuracy. Using simulated and real data, we show that our estimation procedure

works well in the ETS framework and leads to a reduction in bias for longer horizons,

more accurate point forecasts, and more precise prediction intervals. In Section 2.2,

we present the proposed shrinkage for exponential smoothing. Section 2.3 describes

the experimental setup used to validate the efficacy of shrinkage for ETS and the

findings. We use the proposed estimator to a real-life application in Section 2.4 and

conclude in Section 2.5.

2.2 Exponential Smoothing with Parameter

Shrinkage

ETS reconstructs the time series from its unobserved states: level, trend, and season-

ality. Hyndman et al. (2008b) build a taxonomy based on this, providing a naming

scheme for the different model forms, such as ETS(A,N,N), which means a model

with an additive error (A) no trend (N) no seasonality (N). Multiplicative states are
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denoted by M, and Ad and Md denote additive and multiplicative damped trends

respectively. Let yt be an observed time series, at period t. Assuming that the time

series is constructed from different unobserved states (xt), we can write a general

exponential smoothing model according Hyndman et al. (2008b):

yt = w(xt−1) + r(xt−1)εt, (2.1)

xt = f(xt−1) + g(xt−1)εt, (2.2)

where Eq. (2.1) and Eq. (2.2) are the measurement and the transition equations.

the error term (εt) has zero mean and variance of σ2. Oftentimes, εt is assumed

to be Gaussian, but can be relaxed for non-negative time series. In that case, the

log-normal distribution can be an alternative to the normal distribution (Svetunkov,

2022a). Let us consider two simple example from additive and multiplicative models,

the ETS(A,N,N) and the ETS(M,N,N). For ETS(A,N,N) w(xt−1) = f(xt−1) = lt−1,

r(xt−1) = 1, and g(xt−1) = g = α, where lt is the level of the time series at time t.

As a result εt = yt − lt−1. On the other hand, for ETS(M,N,N), w(xt−1) = f(xt−1) =

r(xt−1) = lt−1, and g(xt−1) = αlt−1. The multiplicative error is a relative error, i.e.,

εt = yt−lt−1

lt−1
. In the general case, g contains all level (α), trend (β), and seasonal

(γ) smoothing parameters. Those parameters update new information coming into

the model states. While there are different types of parameter restrictions (Hyndman

et al., 2008a), the most popular are: 0 < α < 1, 0 < α < β, and 0 < γ < 1− α. We

use these parameter restrictions here.

Gardner and McKenzie (1985) proposed the ϕ parameter in the ETS models

to dampen the linear trend and we call it the dampening parameter. In a damped

trend model ϕ is added into the transition matrix and the measurement vector. The

parameter space is 0 < ϕ ≤ 1 (Hyndman et al., 2008b, p. 157). In practice, ϕ is

typically close to 1, since the trend still persists, but is slightly diminished.
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The modelling employs MLE of the smoothing parameters, the dampening pa-

rameter, and the vector of initial values (x0), and σ2. The likelihood is often simplified

to get the concentrated likelihood function (see, for example, Hyndman et al., 2008b,

p. 69)

ℓ∗(θ,x0|It) = −T

2
log

(
2πe

1

T

T∑
t=1

εt
2

)
−

T∑
t=1

log|r(xt−1)|, (2.3)

where θ = {g, ϕ} = {α, β, γ, ϕ}, T is the number of observations, and It denotes the

available information up until the time t. εt is the error term, corresponds to the

forecast error in the case a model matching the data generating process. Throughout

the paper ‘smoothing parameters’ refers to θ, unless stated otherwise. Under MLE,

consistent and efficient estimators, in the statistical sense, can be achieved when

T −→ ∞. However, in practice, large sample sizes, for which the asymptotic behaviour

becomes relevant, are rarely obtained due to product life cycle, product discontinuity,

or low-quality data management (Ord et al., 2017). This may harm the efficiency

of the estimates, and eventually worsen the predictive accuracy. In the case of mis-

specified models due to unknown data generating processes, these problems can be

exaggerated more.

When we maximise Eq. (2.3), it is equivalent to minimising the augmented mean

squared error. In case of additive error models it reduces to Mean Squared Error,

which is often used in estimation of statistical models in a variety of contexts:

MSE(θ, x0|It) =
1

T

T∑
t=1

ε2t . (2.4)

The MSE-based estimation is also known to produce consistent and efficient estimates

of parameters, but suffers from the issues similar to MLE on small samples. To counter

the effect of small-sample inefficiency, we modify Eq. (2.4), introducing a shrinkage

component for the smoothing parameters. The conventional loss function, which is

widely applied in regression problems (Tibshirani, 1996; Hoerl and Kennard, 2000),
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is shown as,

MSE(θ, x0|It) + λ∗p(θ)1, (2.5)

where λ∗ ≥ 0 is the shrinkage hyper-parameter. The λ∗ is estimated separately from

the smoothing parameters (see Section 2.3) and hence treated separately. Given that

λ∗ has no upper bound, it can be difficult to find its optimal value. We modify Eq.

(2.5) so that the shrinkage hyper-parameter has a finite upper bound:

(1− λ)MSE(θ, x0|It) + λp(θ)1, (2.6)

where p(θ) =

[
p(α) p(β) p(γ) p(ϕ)

]
. p(·) is characterised by the selected norm,

and 1 is a vector of ones. λ ∈ [0, 1] and controls the shrinkage rate of the smoothing

parameters. With the ℓ1 norm, p(θ)1 = |α|+ |β|+ |γ|+ |1−ϕ|, and with the ℓ2 norm,

p(θ)1 = (α)2 + (β)2 + (γ)2 + (1 − ϕ)2. Both norms shrink g to zero, but the ℓ1 loss

can result in sparser solutions, i.e., with more parameters equal to zero (Hastie et al.,

2015). Note that in the case of ϕ we regularise it to 1, simplifying the damped trend

model to the linear trend one.

By shrinking the parameters, we do not eliminate the states, but we reduce

the degree of stochasticity of the states. We transition from a stochastic to a more

deterministic model. Suppose that we have a trended model, e.g., ETS(A,A,N). If

we shrink β to zero, we will get a deterministic trend. This is so as the additive

trend state, bt = bt−1 + βεt, is no longer updated by εt. In a seasonal model, e.g.,

ETS(A,N,A), shrinking γ to zero means that the seasonality becomes deterministic,

i.e., remaining identical across periods. As θ −→ 0 then xt −→ x0. The structure of both

models are still intact, but the influence of the stochastic εt changes. Consequently,

shrinking the smoothing parameters has implications on the initial values. As the

corresponding states become more deterministic, it increases the importance of the

estimation of the initial values. For example, for ETS(A,A,N) with β = 0, the model
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resembles the idea of the Theta method (Assimakopoulos and Nikolopoulos, 2000;

Hyndman et al., 2002), where the trend smoothing parameter shrinkage results in a

drift trend. The method reinforced the deterministic trend, and empirically performed

well in M3 and M4 Competition (Makridakis and Hibon, 2000; Makridakis et al.,

2018). However, instead of forcing the parameters to exactly zero arbitrarily (and

to 1 for ϕ), we shrink the smoothing parameters conditional on the data itself. The

shrinkage is data-dependent and when it is not needed λ can become close to zero,

leading to a minimisation similar to the minimisation of MSE. We do not shrink the

initial values and therefore the states (level, trend, seasonality) are not eliminated. As

the states become more deterministic, the reliance on the initial values increases, and

accordingly affects their estimation. Moreover, the model does not simplify in terms

of modelled time series components, but reduces in terms of parameters. This differs

from standard regression shrinkage estimators, where as coefficients are reduced to

zero, inputs are eliminated from the now simpler regression.

We can interpret Eq. (2.6) as a trade-off between model fitness and model inertia.

When λ is close to 0, the estimator puts more weight on the fitness. On the other hand,

when λ is close to 1, the estimator puts more weight on the model inertia. The model

inertia is defined as a situation where the updated information does not affect the

forecasts. Note here that Eq. (2.6) is applicable to both additive and multiplicative

models because they are seen to be identical via their recursive relationship (Hyndman

et al., 2008b, p. 55). As a result, their point forecasts are identical but they differ

in the prediction intervals. Thus, the shrinkage estimation focuses on controlling how

the model behaves and can be implemented in any types of model structure.

We demonstrate the effect of the smoothing parameter shrinkage on the states

and the forecasts. In the example, we use a time series from the empirical evalua-

tion (Section 2.4) with the sample size of 30. We identify its model structure to be

ETS(M,N,N), and estimate the smoothing parameters with (a) MLE and (b) shrink-
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age. In terms of the forecasting task, we produce 1-12 step ahead forecasts from 5

origins.
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Time Series 70

Time
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(a) MLE, α̂MLE = 0.47
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(b) Shrinkage, α̂REG = 0.19

Figure 2.1: Examples of different estimation approaches for 5 origins.

Figure 2.1 demonstrates the effect of the smoothing parameter shrinkage on the

single-state in the fitted value in-sample and the out-of-sample forecasts. RMSE is the

root mean squared error and AME is the absolute mean error. Both error measures

calculates the accuracy of 1-12 step ahead forecasts. The shrinkage reduces α by more

than a half. By doing so we reduce the effect of updating information (α̂εt) on the

state and produce a smoother fit. On the other hand, with a higher α, the state is

updated more and results in a more volatile in-sample fit. Consequently, the forecasts

from the shrunk model become more stable and consistent than the ones from the

MLE. Apart from that, the shrunk model produces more accurate and less biased

forecasts than MLE does.

2.2.1 Weighted Shrinkage

Eq. (2.6) assumes that we shrink all smoothing parameters at the same rate. However,

this may not be reasonable. Different shrinkage rates would imply that we expect each

state to have a different level of stochasticity. By having different shrinkage rates, for

instance, we can have a model with a deterministic seasonal pattern and a stochastic
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trend. We adjust Eq. (2.6) to accommodate different levels of stochasticity for each

state, by adding weights for each parameter in the penalty function. The loss function

with weighted shrinkage is shown as,

{θ̂, x̂0} = argmin
θ,x0

((1− λ)MSE(θ, x0|It) + λp(θ)ω) , (2.7)

where ω is a vector of weights, with ωi ∈ [0, 1],
∑k

i=1 ωi = 1, and k is the number of

states. Suppose that λ is 0.2 for ETS(A,A,N). When ωα and ωβ are 0.5, both states

are shrunk at the same rate. However, when ωα and ωβ are 0.1 and 0.9 respectively,

the trend has a tendency to be more deterministic than the level because the trend is

shrunk to zero at a faster rate than the level. A similar penalty function is used on

the adaptive shrinkage by Zou (2006), where each parameter in the penalty function

may have different shrinkage hyperparameters in groups or individually.

2.2.2 Prediction Intervals

Decision makers may often require the predictive distribution of forecasts as they

need to take into account the future uncertainty. Quantile forecasts are relevant

in organisations, such as in retail, warehouse staffing decisions, and dynamic pricing

optimisation (Sillanpää and Liesiö, 2018; Sanders and Graman, 2009; Chen and Chen,

2018). In this section, we dissect the construction of theoretical forecast variance and

discuss the effect of shrinkage on each of its elements.

Producing prediction intervals requires multi-step ahead forecast variances. Lit-

erature provides many approaches to produce the forecast variance and in this paper,

we discuss two of them, namely the theoretical and the empirical prediction intervals.

For additive models, we can construct the theoretical prediction intervals analytically,

where they are affected by the forecast horizon, the parameters, and the in-sample

residuals. The analytical variance is tractable and the in-sample residuals are inde-

19



pendent and identically distributed (i.i.d.) (Hyndman et al., 2008b). In other words,

we have to assume that the residuals are homoscedastic and are not autocorrelated.

For the other classes of models such as multiplicative and mixed models, we can use

approximate or simulation-based prediction intervals.

To calculate the theoretical prediction interval, we require to estimate the forecast

variance at the forecast horizon h. According to Hyndman et al. (2008b), for linear

homoscedastic models, the forecast variance is:

V(yt+h|t) =


σ2, if h = 1

σ2
[
1 +

∑h−1
j=1 c

2
j

]
, if h ≥ 2

, (2.8)

where cj depends on the forecast horizon and smoothing parameters (Hyndman et al.,

2008b, p. 82). For example, ETS(A,N,N),
∑h−1

j=1 c
2
j = α2(h − 1). In general, there

are three factors that affect the forecast variance, namely g, h, and σ2 (and ϕ). In

most cases, σ2 is unknown and is estimated from the in-sample residuals. Due to

the recursive nature of the model, the residuals depend on the estimates of g and x0

(and ϕ). We utilise the bias-variance decomposition of the sum squared in-sample

residuals to explain how each of these affects the residuals. The derivation assumes

a non-damped trend additive time series, which leads to a fixed transition matrix or

F . This matrix shows the relationship between the current and the previous states.

Otherwise, the conditional variance of the states does not have a closed-form due to

the multiplication of the transition matrix (which contains the dampening parameter)

by the states.

E
(
yt − ŷt|t−1|It

)2
= E

(
µt − E

(
ŷt|t−1

)
|It

)2︸ ︷︷ ︸
model bias

+E
(
E
(
ŷt|t−1

)
− ŷt|t−1|It

)2︸ ︷︷ ︸
model variance

+ σ2︸︷︷︸
irreducible
variance

, (2.9)

where yt = µt + εt and µt is the structure of the time series. ŷt|t−1 is the fitted value
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of yt conditional on the previous information and its recursive form is shown as,

ŷt|t−1 = w⊤F t−1x̂0 +
t−1∑
i=1

w⊤F t−i−1ĝei|i−1, (2.10)

where ei|i−1 is the residual at time i, which is conditional on the previous information.

There are two conditions that determine the model bias, namely a correctly-specified

model and a mis-specified model. In the former case, E(ŷt|t−1|Ix0) = µt = w⊤F t−1x0,

where Ix0 is the information related to x0. Since E(x̂0|Ix0) = x0, thus the model bias

vanishes. However, when the model is incorrectly specified, E(x̂0|Ix0) ̸= x0, hence

the model bias should be non-zero.

To dissect the model variance, we insert Eq. (2.10) into the model variance in

Eq. (2.9) and the decomposition is formulated as:

E
(
E
(
ŷt|t−1

)
− ŷt|t−1|It

)2
= E

(
w⊤F t−1(x0 − x̂0)|It

)2
+ E

(
t−1∑
i=1

w⊤F t−i−1ĝei|i−1|It

)2

(2.11)

− 2cov

(
w⊤F t−1(x0 − x̂0),

t−1∑
i=1

w⊤F t−i−1ĝei|i−1|It

)
.

Eq. (2.11) shows that the model variance is affected by the variance of ĝ and x̂0,

and the covariance between them. This shows that it is important to take care of not

only the smoothing parameters but also the estimation of initial values. If the model

is assumed to be unbiased, the sum squared of the in-sample residuals contains σ2

and the model variance, where the model variance depends on the estimation of the

smoothing parameters and the initial values. Linking back to Eq (2.8), we can say

that the forecast variance is affected not only by θ̂ and h, but also by x̂0, as a result

of the unknown σ2.

Our forecast variance analysis is under the assumption of independent and iden-

tically distributed residuals. However, this assumption can be violated because the
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data generating process is unknown. As a result, the residuals may be correlated over

time and/ or have time-varying variance. The literature suggests using empirical pre-

diction intervals (Chatfield, 2000). We estimate the multi-step ahead forecast error

and construct the requested quantiles for the empirical distribution. The empirical

approach is robust and usually outperforms the theoretical one, when the normality

assumption does not hold (Lee and Scholtes, 2014; Trapero et al., 2019).

2.2.3 On choosing hyper-parameters

We need to develop an approach for obtaining the shrinkage hyper-parameters. Grid

search is widely used for this purpose (Hoerl and Kennard, 2000; Bergstra et al.,

2012). It is relatively simple but computationally expensive. Instead, we propose

to implement a derivative-free shrinkage hyper-parameter optimisation. We aim to

minimise the mean squared one-step ahead holdout forecast error, shown as,

{λ̂, ω̂} = argmin
λ,ω

1

K

K∑
i=1

MSE(λ,ω, θ̂i, x̂i,0, y1:i), (2.12)

where K is the number of forecast origins and y1:i is the in-sample time series starting

from t = 1 to t = i. θ̂i and x̂i,0 are the estimated parameters and initial values

for origin l. First, we estimate θ̂i and x̂i,0 given λ̂ and ω̂. Then, we change λ̂

and ω̂, minimising Eq. (2.12). We use the Nelder-Mead algorithm. The algorithm

terminates when it meets a stopping criteria, i.e., the parameter tolerance or the

maximum number of iterations. We use an uninformative initialisation, with 0.1 for

λ and equal weights for each smoothing parameter.

2.3 Simulation Study

We perform four simulations to demonstrate the efficacy of the proposed estimation

approach in terms of its point forecasts and prediction interval accuracy. The four
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simulation experiments investigate alternative shrinkage approaches: (a) the ℓ1 un-

weighted one (ℓ1-US), (b) the ℓ1 weighted one (ℓ1-WS), (c) the ℓ2 unweighted one

(ℓ2-US), and (d) the ℓ2 weighted one (ℓ2-WS). US and WS denote the unweighted and

the weighted shrinkage estimators.

2.3.1 Experimental Design
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Figure 2.2: Examples of the simulated time series

In this simulation study, we generate data using seven different Data Generating

Processes (DGP), where six of them are additive models and one of them is a mixed

model with multiplicative errors and seasonality. The parameters of these models are

summarised in Table 2.1. Values in Table 2.1 reflect generated time series that have

a moderate amount of stochasticity, being neither too smooth nor volatile. As for the

parameters for ETS(M,A,M), they guarantee a non-explosive behaviour. In addition,

the seasonal initial values are generated randomly. Figure 2.2 presents examples of

simulated time series for different data generating processes. The error for the additive

time series follows a normal distribution with zero mean and unit standard deviation.

The multiplicative error (1 + εt) follows a normal distribution with a mean of 1 and

a standard deviation of 0.0075 to avoid explosive time series. We generate daily

time series with the sample sizes of 28 and 420 to explore shrinkage on short red (a
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month of daily time series) and relatively long time series (15 months of daily time

series), influenced by the typical business forecasting context. For the former case,

we expect that the ETS with shrinkage performs better than MLE and for the latter

case we expect MLE to be more competitive, with the longer sample aiding the MLE

estimators.

DGP α β γ ϕ l0 b0
ETS(A,N,N) 0.400 200 0.500
ETS(A,A,N) 0.400 0.300 200 0.500
ETS(A,N,A) 0.400 0.100 200 0.500
ETS(A,A,A) 0.400 0.300 0.100 200 0.500
ETS(A,Ad,A) 0.400 0.300 0.100 0.940 200 0.500
ETS(A,Ad,N) 0.400 0.300 0.940 200 0.500
ETS(M,A,M) 0.100 0.075 0.050 200 5.000

Table 2.1: A summary of data generating processes.

We apply seven models to each generated series, namely the ETS(A,N,N),

ETS(A,A,N), ETS(A,N,A), ETS(A,A,A), ETS(A,Ad,A), ETS(A,Ad,N), and

ETS(M,A,M). Thus, we have 49 combinations of DGPs and models. We classify

them according to model misspecification, resulting in five groups: correctly specified

models (CR), over-specified models (OV), under-specified models (UN), incorrect-

state models (IS), and incorrect-error-seasonality models (IE). We include seasonal

processes because many time series may be seasonal in practice.

We produce 1-7 step-ahead point forecasts, matching a complete week of daily

data, and construct prediction intervals of 80%, 85%, 90%, 95%, and 99% confidence

levels, theoretically and empirically. We repeat the simulation experiment for 500

times, which was sufficient for the summary statistics to converge. We use the sim.es()

function to generate data and the adam() function for model fitting. Both are available

in the smooth package for R (Svetunkov, 2021; R Core Team, 2022). As for the hyper-

parameter estimation, we use the nloptr package for R (Johnson, 2022).

We use two error measures to evaluate point forecasts: RMSE and AME. The
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Model ANN AAN AAdN ANA AAA AAdA MAM

DGP

ANN CR OV OV OV OV OV IE
AAN UN CR OV IS OV OV IE
AAdN UN UN CR IS IS OV IE
ANA UN IS IS CR OV OV IE
AAA UN UN IS UN CR OV IE
AAdA UN UN UN UN UN CR IE
MAM IE IE IE IE IE IE CR

Table 2.2: A classification based on pairs of DGPs and applied models.

former measures the accuracy while the latter measures the size of the bias:

RMSE =

√√√√1

h

h∑
k=1

(
yt+k − ŷt+k|t+k−1

)2
, AME =

∣∣∣∣∣1h
h∑

k=1

yt+k − ŷt+k|t+k−1

∣∣∣∣∣ .
We use a percentage difference between the measures to quantify the improvement or

deterioration in accuracy of shrinkage models in comparison with MLE ones.

dRMSE =
(RMSEMLE − RMSESHR)

RMSEMLE

where SHR denotes the shrinkage. A similar formula is also applied to AME.

For the prediction interval, we use the scaled Mean Interval Score or sMIS

(Koenker and Bassett, 1978) and the scaled Pinball Score (Gneiting and Raftery,

2007) that not only take the width of the interval into account, but also how well the

interval captures the uncertainty. Narrow intervals do not necessarily indicate precise

intervals, and may indicate model misspecification (Chatfield, 2000). We scale both

measures with the mean of the absolute in-sample value:

sMIS =
1
h

∑h
k=1

(
(ubt+k − lbt+k) +

2
τ
(lbt+k − yt+k1(yt+k < lbt+k) +

2
τ
(yt+k − ubt+k1(yt+k > ubt+k))

)
¯|y|

sPinball =
(1− τ)

∑
yt+j<qt+k,k=1,..,h |yt+k − qt+k|+ τ

∑
yt+k>qt+k,k=1,..,h |yt+k − qt+k|

¯|y|
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Figure 2.3: Effects of ℓ1 and ℓ2 shrinkage on smoothing parameters.

where ¯|y| is the mean of the absolute in-sample, τ is the level of confidence, ubt and

lbt are the upper and lower bounds, and q is the value of a specific quantile of the

distribution.

Ep = (Required Personality Level of Each Resource - Assigned Personality Level of each Resources)× (dai)

2.3.2 Findings

Accuracy

Penalty Type CR OV UN IS IE Overall

ℓ1
US 2.22 1.36 4.02 1.44 2.36 2.28
WS 7.06 0.94 13.18 3.05 6.78 6.20

ℓ2
US 3.00 1.12 3.61 1.49 2.57 2.36
WS 13.17 2.25 15.14 2.34 6.54 7.89

Table 2.3: A summary of aggregate performances in dRMSE.

Table 2.3 presents the aggregate performances of ETS models with shrinkage in

the four simulation settings, for ℓ1 and ℓ2 shrinkage for different model specifications,

26



for the small sample size of 28 and 1-7 steps-ahead forecasts. Positive numbers show

percentage improvement in accuracy from the MLE and otherwise. Bold numbers

denote the best performing result for each column. We can see that ℓ2-WS outperforms

the other approaches, improving the forecast accuracy overall by 7.9% and ℓ1-US

performs the worst among all, although still outperforming MLE. Looking at the

model specification, for most cases, ℓ2-WS outperforms the others, except for the IS

and IE scenarios. Regardless of the type and the penalty function, shrinking the

smoothing parameters improves the forecasting accuracy, but ℓ2-WS performs the

best. Figure 2.3 shows the values of the smoothing parameter α for a case where the

data generating process is ETS(A,N,N) and the correct model is fitted. For λ = 0

all MLE, ℓ1, and ℓ2 give the same α, as there is no shrinkage. As λ increases ℓ1

imposes a higher penalty, leading a smaller α. For the extreme case of λ = 1, both

ℓ1 and ℓ2 result in α = 0. When a model has more smoothing parameters than

one, restrictions imposed by ETS can affect how β and γ shrink, with WS providing

additional flexibility. For example, since 0 < γ < 1 − α, as α shrinks the possible

values for γ changes: a slower shrinkage of α provides more options for γ. Nonetheless,

as the optimal λ for ℓ1 and ℓ2 can differ, same smoothing parameters are possible for

both penalties. Therefore, while in regression models ℓ1 and ℓ2 behave differently in

terms of model sparsity, for ETS this is not the case. As the smoothing parameters

become equal to zero, the respective states become deterministic, but they are not

removed from the model. Instead, the two penalties have mainly implications for how

the optimizer searches the parameter space. Hereafter, we present the only results for

ℓ2 for brevity since we empirically find it to perform marginally better. The findings

we present are applicable to ℓ1, but with smaller gains over the MLE.

Building on the understanding of the effects of ℓ1 and ℓ2 penalties on the aggres-

siveness of the shrinkage, we can interpret the marginally better performance of ℓ1 in

the IS and IE cases. In Section 3.2.2 we show that the shrinkage of the smoothing
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Model CR OV UN IS IE Overall
h = 1

Measure dRMSE
US 8.332 4.151 10.745 6.531 9.983 7.948
WS 26.704 6.649 27.655 6.315 14.878 16.440
Overall 17.518 5.400 19.200 6.423 12.431 12.194
Measure dAME
US -1.994 0.493 0.052 2.447 -0.901 0.019
WS -15.660 1.170 -8.986 9.256 5.166 -1.811
Overall -8.827 0.832 -4.467 5.851 2.132 -0.896

h = 1− 7
Measure dRMSE
US 3.000 1.119 3.612 1.487 2.572 2.358
WS 13.166 2.248 15.138 2.338 6.538 7.886
Overall 8.083 1.684 9.375 1.912 4.555 5.122
Measure dAME
US 1.402 0.657 2.754 3.228 2.059 2.020
WS 4.786 2.227 13.644 7.647 7.385 7.138
Overall 3.094 1.442 8.199 5.438 4.722 4.579

Table 2.4: A summary of performances in dRMSE and dAME.

parameters indirectly influences the estimation of the initial values. The ℓ1 penalty

forces the initial values of superfluous states to become smaller faster (see Figure 2.8),

lessening their overall effect. Similarly, when appropriate states are missing (e.g., sea-

sonality) the ℓ1 penalty, being more aggressive, can keep the smoothing parameters

low and therefore guard the existing states from rapidly updating and overfitting. As

the proposed shrinkage approach does not focus on model selection, any influence on

the initial values is indirect, and we argue that ℓ2 in general performs the best. In ad-

dition, we conducted additional experiments to see if other DGPs and applied models

would behave differently with the proposed estimators. Our investigation shows that

the results hold for a wide variety of ETS models, including multiplicative ones.

Table 2.4 presents the summary of the forecasting performance for dRMSE and

dAME for the forecast horizons of 1 and 1-7, sample size of 28, and ℓ2 shrinkage.

Positive values indicate percentage gain over the performance of the MLE. The table

is structured similarly to Table 2.2. In terms of dRMSE for h = 1, we see a significant
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forecast improvement over MLE by 12%. Analysing by the type of shrinkage, the

weighted one outperforms the unweighted one across all model specifications, improv-

ing performance by 16% on average. Looking at the model specification, the biggest

improvement occurs when the model is under-specified, followed by the correctly-

specified model, with improvements of 27% and 26%, respectively. If we have an

incorrect error and seasonality model, we gain a 14% performance. The least improve-

ments occur in the case of the over-specified and the incorrect-state models, yielding

a 6% performance. Both weighted and unweighted shrinkage improve the forecast

accuracy. For the longer horizon, the improvement is at 5% overall. As the errors

for both MLE and shrinkage increase for longer horizons, the relative improvement

decreases, since it is more difficult to forecast in the long run.

In terms of dAME, for h = 1, we can see that the forecasts become more biased

than in the case of the MLE. On the other hand, the incorrect models, i.e., the

incorrect state and the incorrect error and seasonality, gain the most improvement.

We observe an improvement for the longer forecast horizon. Overall, the forecasts

are 5% less biased than MLE with the under- specified and the over-specified models

gaining the most and the least improvement, respectively.

Figure 2.4 shows the effect of sample sizes on dRMSE in the five scenarios. The

dotted lines denote the mean of the distributions and the arrows show some parts of

the distributions outside of the plotting area. We observe higher accuracy improve-

ment on smaller samples. When we have more observations the benchmark MLE

performance improves. Similarly to the application of shrinkage in regression, we see

that the proposed shrinkage estimator for ETS mitigates the sampling uncertainty

that limits the efficiency of MLE for smaller samples.

Overall, for shrinkage for ETS is shown to be beneficial for accuracy. We gain

more improvement when we use weighted shrinkage. In terms of forecast bias, shrink-

age benefits for longer horizons.
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Prediction Intervals

In this subsection, we demonstrate the performance of prediction intervals of the

shrinkage and the MLE models, and explain why the theoretical prediction intervals

from the shrinkage outperform the MLE ones, and lastly, we also demonstrate how

well the theoretical forecast variance approximates the empirical conditional forecast

variance.

Instead of presenting all combinations as in Table 2.2, we consider several special

cases to present the performance of the ℓ2-WS shrinkage as the models are linear

homoscedastic and their prediction intervals are tractable analytically. The special

cases are summarised in Table 2.5.

Specification CR OV UN IS IE
DGP ETS(A,N,N) ETS(A,N,N) ETS(A,N,N) ETS(A,A,N) ETS(M,A,M)
Model ETS(A,N,N) ETS(A,A,N) ETS(A,N,A) ETS(A,N,A) ETS(A,A,A)

Table 2.5: Several combinations from five levels of model specification
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Table 2.6 demonstrates the performance of the theoretical and the empirical pre-

diction intervals of the shrinkage and the MLE models, for the small sample size and

for both measures. For the MLE models, the empirical prediction intervals perform

better than the theoretical ones, as the residual assumptions of the MLE models do

not hold. This aligns well with the literature that the empirical ones are a robust ap-

proach in producing prediction intervals. On the other hand, for the shrinkage models

the theoretical prediction intervals perform better than the empirical intervals. In or-

der to explain this finding, we discuss (a) the assumptions of the residuals from the

shrinkage models, (b) the distribution of the standard error between the shrinkage

and the MLE models, and (c) the distribution of the initial values.

Measure sMIS sPinball
Approach Shrinkage MLE Shrinkage MLE

THE EMP THE EMP THE EMP THE EMP
80 1.22 1.37 2.20 1.76 0.70 0.69 1.52 1.10
85 1.33 1.55 2.44 1.91 0.57 0.57 1.27 0.89
90 1.49 1.86 2.77 2.14 0.43 0.44 0.96 0.65
95 1.81 2.75 3.28 2.65 0.26 0.29 0.57 0.37
99 2.91 9.77 4.34 6.09 0.07 0.17 0.15 0.12

Average 1.75 3.46 3.01 2.91 0.41 0.43 0.90 0.63

Table 2.6: Overall performance of the prediction interval across scenarios, for small
sample size and h = 1− 7.

We conducted several diagnostics of the residuals, namely checking the normality

of the residuals with the Shapiro-Wilk test, especially for the small sample size, visual-

ising the distribution of the residuals over time, and the summary of autocorrelation

testing of the residuals using the partial autocorrelation function (PACF). For the

normality test, we recorded the number of instances that the residuals are normally

distributed, i.e., when the null hypothesis of normality is not rejected, with a critical

level of 5%. We found that for all model specifications the shrinkage models produced

normally distributed residuals at 86% of all instances. On the other hand, the MLE

models produced normally distributed residuals, at 71% of all instances. Therefore,
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the proposed estimation results in normally distributed residuals more frequently,

compared to MLE, satisfying the assumptions for the theoretical prediction intervals

more often, which is reflected in the more accurate prediction intervals reported in

Table 2.6. THE and EMP are the theoretical and the empirical prediction intervals.

Bold numbers denote the best performing prediction intervals.

In terms of how consistent the variance of the residuals was over time, we exam-

ined the boxplot of the residuals over time in the cases of CR and IE. Figures 2.5a

and 2.5b show that the residuals of the shrinkage models are less erratic than the

residuals of the MLE ones, where the red dots denote the mean of each distribution

and the grey dots denote the outliers of the distribution. We also see a significant

difference between the first residual boxplot of the models, where the shrinkage model

exhibits a narrower distribution than that of the MLE model. Overall, the residuals

of the shrinkage models seem to have a more stable variance over time.

Across all model specifications, we observe that the shrinkage models produce

fewer autocorrelated residuals than the MLE models do, as shown in Figure 2.6. We

argue that the residuals of the shrinkage models meet the assumptions better than

the MLE models. Thus, it is sensible to use the theoretical prediction intervals when

we have linear homoscedastic shrinkage models.

Next, we discuss the standard error of ETS with Shrinkage and MLE. Figure 2.7

presents the distribution of the standard error for each model specification. The red

arrows denote that some parts of the boxplot are not plotted and the red dots denote

the means of each distribution. In general, we observe that the shrinkage models

produce lower standard errors than the MLE ones. The shrinkage models have a

better fit than the MLE, especially when the model structure is wrong. Shrinkage

not only improves the out-of-sample performance but also the in-sample performance.

Looking at OV where some states are redundant, the shrinkage is able to reduce the

standard error substantially. Linking to Eq. (2.9), we argue that the model bias
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(b) In-sample residuals of the incorrect error and seasonality model (IE)

Figure 2.5: Residual diagnostics.

should be non-zero, but the model variance decreases due to the smaller smoothing

parameters and a stronger covariance between the smoothing parameters and the

initial values. On the other hand, when the model bias is close to zero, i.e., in the

case of CR, the standard error reduces moderately, where the effect of shrinkage in

CR is not as apparent as in OV or IE.

Next we turn our attention to the initial values. Figure 2.8 presents the standard-

ised level initial values across origins and model specifications. The red dots denote

the mean of each distribution and the grey dots denote the outliers of the distribution.
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Figure 2.6: Number of instances that contains autocorrelated residuals

On average the initial values are estimated well, however, there are substantial differ-

ences in the spread of the distributions. The variability of the initial value from the

MLE model is substantially larger than the one from the shrinkage model. Looking

at the OV case, we can see that the MLE produces extreme initial values for many

instances. The estimation of the initial values is affected by the shrinkage of the

smoothing parameters. We show that this often lends to better estimated initial val-

ues and result in lower standard errors and consequently better performing prediction

intervals.

Lastly, we investigate whether the theoretical conditional forecast variance can

be a good approximation to the empirical conditional forecast variance for shrinkage

models. We expect that these two to provide similar results, i.e., the theoretical does

not overestimate or underestimate the observed variance. The theoretical variance

is computationally more efficient and useful when there is only limited sample. For

this analysis, we include more forecast origins (from 5 to 30) to aid approximating the

empirical variance. Hence, we also increase the sample size from 28 to 63. We calculate

the variance of the 7-step ahead forecast using its RMSE from all 30 origins to estimate
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Figure 2.7: Distributions of standard error between the MLE and the shrinkage mod-
els.

the conditional variance of the point forecast in the out-of-sample, giving the empirical

conditional variance. Figure 2.9 presents the ratio between the theoretical and the

empirical conditional variance. The red dots denote the mean of each distribution,

the grey dots denote the outliers of the distribution, and the red arrows denote that

some parts of the boxplot are not plotted. For the shrinkage models, on average the

theoretical variance matches the empirical conditional variance. For severely mis-

specified models, the theoretical variance underestimates the empirical conditional

variance. As for the MLE models, the theoretical variance significantly overestimates

the empirical one, for the OV, UN, and IS cases. This shows that in general, with

shrinkage we can approximate the empirical conditional variance with the theoretical

variance. With this finding, we argue that we should use the theoretical prediction

intervals when we shrink the smoothing parameters.

Our discussion from the simulation study leans towards the usage of the theoret-

ical prediction interval because (i) the residual assumptions are met more frequently

than the MLE; therefore (ii) the theoretical prediction interval is better than the

empirical prediction interval for most cases; and (iii) the theoretical variance of the
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Figure 2.8: Distributions of the standardised initial values from different model spec-
ifications.

shrinkage is more appropriate than that of the MLE.

2.4 Application of ETS Shrinkage for the UK NHS

2.4.1 Experimental Design

In this case study, we apply the proposed estimation procedure to the A&E admissions

of a hospital in the northeast of England. The data contains the number of incidents

in a day, which is classified by age (under 3 years old, between 4-16 years old, between

17-74 years old, and more than 75 years old), sex (male, female), and type of disposal

(admitted, discharged, referred to clinics, transferred, died, referred to health care

professionals, left, and others). In total, we have 135 daily time series, but we use

only 86 of them because we exclude all time series with zero values. Some time

series still retain zero values after temporally aggregating them due to its intermittent

characteristics and ETS is not appropriate for such time series (Boylan and Syntetos,

2021). The data spans from January 2009 to October 2019 and we aggregate the time
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Figure 2.9: Ratios between the theoretical and the empirical conditional variance of
the forecasts, for different levels of model specification.

series to the monthly level. To investigate the effect of sample size, we consider two

different sizes, namely the case of short time series with 36 observations (November

2015 - April 2018) and the case of long time series with 108 observations (January

2009 - April 2018). The chosen dataset includes types of time series beyond the ones

used in the simulations, exhibiting additional complexities due to the nature of the

collected data. This enables us to evaluate shrinkage further, with more diverse and

complex time series. Figure 2.10 depicts the two example time series from our data.

We observe that some time series are trended and have seasonality. For each sample

size, we apply rolling-origin with 5 origins to produce 1 to 12-steps ahead forecasts,

with the same model structure. We use the accuracy measures introduced in Section

2.3. However, if the model is multiplicative or mixed, we produce a simulated-based

prediction interval, instead of the analytical ones, because the latter might not be

available for such models.

We demonstrate the effect of shrinkage by comparing models with and without it.

Before applying shrinkage, we determine the structure of the model using automatic

selection based on the corrected Akaike Information Criteria (AICc). Then, we use

the MLE and the shrinkage to estimate the smoothing parameters and the initial

values.
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Figure 2.10: Examples of the time series from the A&E NHS dataset
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Figure 2.11: Numbers of model structures for both sample sizes, in percentages

Prior to analysing the performance of the proposed estimation approach, we

present the identified models. We identified a mixed pool of models, such as additive,

multiplicative, and mixed models. The distribution of model types is shown in Figure

2.11. For both sample sizes, we can see that multiplicative models dominate. When

the sample size is larger, there are more seasonal models.

Table 2.7 present the summary of performances of approaches in terms of dRMSE

and dAME for different forecast horizons. US and WS are the unweighted and the

weighted shrinkage, and MLE is the benchmark model. A bold number demonstrates
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Sample 2009-2018 2015-2018
Measure dRMSE dAME dRMSE dAME
Type US WS US WS US WS US WS
h = 1 10.052 10.344 -6.210 -5.264 8.741 9.639 -1.030 -3.247
h = 1− 6 5.655 5.634 0.442 0.363 4.531 3.564 6.619 4.367
h = 1− 12 5.639 5.613 9.056 9.018 4.404 3.483 7.762 5.504

Table 2.7: A summary of dRMSE and dAME for all time series with five origins.

the lowest among the others. For dRMSE, we see that the shrinkage improves the

forecast accuracy across all forecast horizons. The performance differences between

US and WS become marginal when the sample size is large. However, when the

sample size is small, the performance differences become more pronounced. Overall

WS performs well when h = 1 and US performs well for longer forecast horizons. For

dAME, our empirical findings align well with our simulation findings: the forecasts

are biased for short horizons, but they become less biased for longer ones. The

improvement is substantial for h = 1 − 12, namely 9% and 7% for the large and

the small sample size, respectively. Regardless of the type of shrinkage, on average,

it improves forecast accuracy and forecast bias.

US WS MLE
Measure Interval THE EMP THE EMP THE EMP

2015-2018
sMIS 80 0.652 0.704 0.652 0.704 0.709 0.768
sMIS 85 0.702 0.773 0.702 0.773 0.769 0.841
sMIS 90 0.776 0.876 0.776 0.876 0.856 0.946
sMIS 95 0.910 1.089 0.911 1.090 1.011 1.169
sMIS 99 1.306 2.466 1.313 2.472 1.440 2.637
sPinball 80 0.705 0.735 0.705 0.735 0.830 0.834
sPinball 85 0.589 0.613 0.589 0.613 0.697 0.688
sPinball 90 0.449 0.470 0.449 0.470 0.535 0.516
sPinball 95 0.271 0.290 0.272 0.290 0.327 0.310
sPinball 99 0.078 0.112 0.079 0.112 0.095 0.106

Table 2.8: Performances of the prediction interval.

In addition to the forecast accuracy, we also measure the performance of the

prediction intervals, presented in Table 2.8. It contains the prediction intervals for
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different confidence levels types of shrinkage, forecast horizons, and the small sample

size only. THE and EMP are the theoretical and the empirical prediction intervals

and bold numbers denote the best performing prediction intervals. The unweighted

shrinkage produces more precise prediction intervals than the rest, even though the

difference with the weighted are marginal. Also note that the theoretical prediction

intervals from the shrinkage models perform better than the theoretical and the em-

pirical intervals from the MLE, which aligns with our findings in Section 2.3. A

potential issue might arise from ETS(A,N,M), where the forecast variance might be

infinite (Hyndman et al., 2008b, p. 257). We find that in our case study the forecast

variances are finite and Table 2.8 demonstrates that the prediction interval of the

models estimated using the proposed shrinkage approach are adequate.

2.5 Conclusion

To reach reliable decisions reliable forecasts are needed. ETS has been a widely used

forecasting model, providing reliable and robust forecasts. The current methodology

utilises the maximum likelihood to estimate the smoothing parameters, the initial

values, and the dampening parameter. However, with limited sample, the estimation

of the smoothing parameters becomes unreliable. On the other hand, there is evi-

dence that low smoothing parameters may reduce the forecast error. We propose to

estimate the smoothing and the dampening parameters using shrinkage. However,

the shrinkage in ETS differs from regression, as it does not eliminate model states,

but instead reinforces deterministic patterns.

Using simulation and a real case study, we find the proposed shrinkage produces

more accurate and less biased forecasts. We also find that its theoretical prediction

intervals perform best, compared to empirical prediction intervals. Using the bias-

variance decomposition we demonstrate that the smoothing parameter shrinkage and
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the dependent initial value estimation affect the in-sample standard error, and result

in improved prediction intervals. Thus, we emphasise the importance of the initial

value estimation, especially when the shrinkage approach is used. However, we do

not shrink the initial values. The effect of alternative estimators for the initial values

remains interesting for future research, as it has the potential to enable shrinkage to

model select as well, when an ℓ1 penalty is used. By setting to zero both the smoothing

parameter and the initial value of a state of the ETS model, it could simplify to a

smaller model. To achieve this, future work should resolve issues with the scaling of

the various parameters to be shrunk efficiently.

Although we demonstrate the benefits of shrinkage on real time series that can

contain various artefacts, our evaluation is not exhaustive. For instance, we do not

investigate the effectiveness of shrinkage in the presence of structural breaks, as these

may introduce the need for specific treatments (e.g., adding indicator variables), and

lead to modelling questions that are beyond the focus of this work.

Moreover, the shrinkage estimators investigated here have parallels with other

recent contributions in the literature for mitigating parameter estimation issues, for

instance, by limiting the pool of exponential smoothing models (Kourentzes et al.,

2019; Meira et al., 2021), aiming to reduce the instability of forecasts. Future research

should investigate these approaches for complementarities.
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Chapter 3

Shrinkage Estimators for Vector Exponen-

tial Smoothing

In this chapter, we extend the understanding of a shrinkage estimator from ETS

to Vector Exponential Smoothing or VES. We present the results and provide some

discussion as to why this approach does not work as we expect. In the end, we discuss

possible improvements for the study.

Abstract

Vector Exponential Smoothing (VES) is a multivariate extension of Exponential

Smoothing. Like any other multivariate models, it suffers from overparameterisa-

tion and overfitting when the sample size is limited and these affect the forecasting

performance of the model. We postulate that shrinkage solves these issues and high-

light that forcing some parameters to zero arbitrarily is an ad-hoc form of shrinkage.

In addition, we also propose to shrink smoothing parameters in VES by developing

a shrinkage estimator for VES models. We conducted simulation experiments to test

the efficacy of the proposed estimator. The findings show that univariate Exponential

Smoothing models outperform the other multivariate models in a multivariate set-

ting. The multivariate models do not perform well because of a compensating effect

between the smoothing parameters and the covariance matrix. We suggest exploring
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the properties and the behaviour of the loss function of Exponential Smoothing and

VES and implementing shrinkage not only on the smoothing parameters but also on

the covariance matrix. An improved experimental design should also be investigated,

as the results from the VES with shrinkage do not converge to univariate models.

3.1 Introduction

Exponential smoothing is a popular forecasting method, which is widely used in busi-

ness. It is easy to understand and implement. Its forecasts are fairly accurate for a

relatively simple model, as recorded in several forecasting competitions (Makridakis

and Hibon, 2000; Makridakis et al., 2018, 2021). Brown (1959) proposed it initially

and its development has been growing since (Gardner, 2006). Hyndman et al. (2002)

and Hyndman et al. (2008a) automated the methodology and developed a taxon-

omy of Error-Trend-Seasonal models (ETS) under a Single Source of Error (SSOE)

framework. ETS is constructed from unobserved states, which consist of a level, a

trend, and a seasonality. For each state, there are two important groups of param-

eters: smoothing parameters and initial values. Smoothing parameters update new

information on the states and initial values are proxies of information prior to data

collection. These parameters are generally unknown and we need to estimate them.

Hyndman et al. (2002) and Hyndman et al. (2008a) proposed using Maximum Like-

lihood to estimate them and to select the best approximating ETS model to a target

series via the minimisation of an information criterion. This approach works well on

larger samples of data, as Maximum Likelihood guarantees consistent and efficient

estimated parameters asymptotically. However, this might not be the case in prac-

tice, where sample sizes can be small due to, for example, short product life cycles

and poor data management. Due to the small sample size, the parameters tend to be

higher, which could potentially deteriorate the forecasting performance of ETS due
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to overfitting. Barrow et al. (2021) and Pritularga et al. (2022) proposed different

estimators to deal with the overfitting. Specifically, Pritularga et al. (2022) suggested

shrinking the smoothing parameters and found that it controls the stochasticity of

states of ETS that leads to more accurate and reliable forecasts.

In practice, we can have a set of connected time series. For example, two prod-

ucts can have complimentary or substitution effects in the retail industry. This also

affects the forecasting models. If we model the series via a set of univariate models,

e.g., ETS, we cannot model their interdependence and suffer from mis-specification

issues. An alternative approach is to employ a multivariate forecasting model, e.g., a

vector autoregressive model (VAR). An application of VAR in retail forecasting is well

documented by Wilms and Croux (2018) and M5 Competition has demonstrated the

importance of ‘cross-learning’ between time series to produce more accurate forecasts

(Makridakis et al., 2021). An alternative to VAR models is a multivariate exponen-

tial smoothing model. It was initially introduced by Jones (1966) under the Multiple

Source of Error (MSOE) framework, and Duncan et al. (1993) implemented a Bayesian

estimation. de Silva et al. (2010) developed the Vector Innovations Structural Time

Series (VISTS) that utilises the SSOE framework. The same framework is called Vec-

tor Exponential Smoothing (VES) by Hyndman et al. (2008a) and Athanasopoulos

and de Silva (2012) extended it by adding seasonality. Throughout the paper we refer

to the SSOE multivariate exponential smoothing as ‘VES’ unless stated otherwise.

VES is a multivariate extension of ETS, and it is constructed from unobserved

states, i.e., level, trend, and seasonality. VES can accommodate interdependence

between time series in each state. Interdependence in VES can be observed from

two parameters: the persistence matrix and the covariance matrix. The persistence

matrix contains smoothing parameters of and between time series. The matrix con-

trols both the effect of new information on its own time series and the effect of new

cross-series information. For example, the new information from time series 1 has
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an effect on time series 2 and vice versa, which we call it the cross-smoothing effect.

This is basically the extension of smoothing parameters in a matrix form. On the

other hand, the covariance matrix is a statistical property of the time series’ errors.

It shows contemporaneous correlations between errors in each time series. Similar to

ETS, VES has two other groups of parameters: initial values and potentially damp-

ening parameters. We omit dampening parameters in this paper to limit additional

complications. In addition, VES models have a close connection with Vector Autore-

gressive Integrated Moving Average (VARIMA) models (de Silva et al., 2010). This

can help us to understand parameters in VES better from VARIMA perspectives.

The state-of-the-art VES methodology employs Maximum Likelihood estimation

(MLE) of parameters. The MLE works well when the sample size is large enough

to produce unbiased and efficient estimates, i.e., the parameters are well estimated

asymptotically. However, the estimation of any vector model is not straightforward

(James and Stein, 1961; Basu and Michailidis, 2015; Nicholson et al., 2017; Wilms and

Croux, 2018; Wilms et al., 2021). The model may suffer from overparameterisation.

The number of parameters may increase exponentially as the number of time series

increases the number of time series. Given limited sample sizes and overparameteri-

sation, the resulting parameters tend to be biased and/ or inefficient. This may lead

to overfitting, where the model attempts to fit the dataset but fails to differentiate

between randomness and the underlying structure. This can harm forecast accuracy.

In light of the dimensionality issue, several studies implement parameter shrink-

age in VAR models (Basu and Michailidis, 2015; Nicholson et al., 2017; Wilms and

Croux, 2018), which makes the model easier to identify and interpret by reducing

the number of lags and the cross-effect between time series. Duncan et al. (1993)

introduced common parameters in a multivariate exponential smoothing model with

the Bayesian approach, but they argue that it may be too restrictive. This model

does not acknowledge slight differences between the time series. A new develop-
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ment of VES is proposed by Svetunkov et al. (2022a). They propose a new taxon-

omy called ‘VETS-PIC’, where common restrictions are implemented to smoothing

(P)arameters, (I)nitial values, and (C)omponents or states. By introducing common-

ality, the number of parameters reduces significantly and the model becomes easier to

identify and estimate. Nonetheless, both studies put strong restrictions on the model.

Furthermore, the commonality may not improve the accuracy when the time series

are heterogeneous.

The literature has shown two extremes in modelling VES. We can model it with-

out any restrictions. This offers flexibility and fully uses information, but it might

suffer from overfitting. On the other hand, we can impose strong restrictions on the

model, but this does not accommodate potentially different smoothing of each time

series, even though the model is easier to estimate. We argue that we need a bridge

between the two extremes, where it can solve the dimensionality issue and allow for

some variations in the model. A possible solution is to implement parameter shrink-

age. Shrinkage has been known in dealing with high-dimensionality issues Hoerl and

Kennard (2000); Tibshirani (1996); Sagaert et al. (2018); Wilms and Croux (2018);

Wilms et al. (2021). It shrinks the parameters to zero, conditional on the data, and the

model is easier to identify and estimate. Specifically, (Wilms et al., 2021) shrink the

autoregressive and the moving average coefficients of a Vector Autoregressive Moving

Average (VARMA) to zero, meaning that they reduce the number of lags to make

the model more identifiable. On the other hand, parameter shrinkage in VES focuses

on reducing the cross-effect between states only, as the model structure has identified

the number of lags. Pritularga et al. (2022) show that shrinking the smoothing pa-

rameters reduces the effect of new information on each state and eventually reduces

the stochasticity of each state. In light of the benefits of shrinkage, we propose to

shrink smoothing parameters in VES to deal with the high-dimensionality issue and

control the stochasticity of each state. As the smoothing parameters are collected in
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the persistence matrix, we focus on that matrix and propose several penalty functions

to make each state less stochastic (near deterministic).

Section 3.2 discusses VES in general, followed by a detailed discussion of a simple

VES model in Section 3.3. We propose the shrinkage implementation in Section 3.5.

Section 3.6 describes the simulation setting and demonstrates the findings. Lastly,

Section 3.7 discusses and concludes the findings.

3.2 Vector Exponential Smoothing

Similar to ETS, VES reconstructs a set of time series from their vectors of unobserved

states, e.g., level (l), trend (b), and seasonality (s). The taxonomy of VES is similar

to ETS, provided by Hyndman et al. (2008a). For example, VES(A, A, N) consists

of additive errors (A), trends (A), and no seasonality (N). When states have a mul-

tiplicative relationship, they will be denoted as M. A multiplicative VES would be

a multiplication between states and time series, which it deems complicated. A way

to mitigate this issue is to take a logarithm of the model and treat it as an additive

model (Svetunkov et al., 2022a). Lastly, additive and multiplicative damped trends

are denoted as Ad and Md. This paper focuses on additive models only.

Let yt be a N -vector observed time series at time t, where N is the number of

time series and t = 1, ..., T . yt is constructed from unobserved states (xt), where

xt contains K states. For example, xt contains three states and can be presented

as xt = {lt, bt, st}, where each state has the same dimensionality as yt. The linear

function between yt and xt or the measurement equation is formulated as de Silva

et al. (2010); Hyndman et al. (2008a),

yt = Wxt−1 + εt, (3.1)

where W is a N × NK measurement matrix and εt is N -vector of errors that have
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zero means and the N × N covariance matrix of Σ. xt has an additive dynamic

relationship with the past, which is modelled via the transition equation (de Silva

et al., 2010; Hyndman et al., 2008a)

xt = Fxt−1 + Pεt, (3.2)

where εt has zero means and a covariance matrix of Σ, F is NK × NK transition

matrix, and P is a NK×N persistence matrix that contains a collection of smoothing

parameters. Eq. (3.1) and Eq. (3.2) are the parts of an additive VES model.

We can transform the model structure of VES, i.e., Eq. (3.1) and Eq. (3.2), to be-

come a Vector AutoRegressive Integrated Moving Average model or VARIMA(p,d,q),

where p and q denote the lag of autoregressive and moving average component

and d denotes the level of integration. For example, according to de Silva et al.

(2010, p. 358), VES(A,N,N) and VES(A,A,N) are equivalent to VARIMA(0,1,1) and

VARIMA(0,2,2). This equivalence significantly explains the relationship between pa-

rameters in P and Σ. The details of the equivalence are available in de Silva et al.

(2010), and we discuss the effect of this relationship on the forecasts in Section 3.3.2.

3.2.1 Estimation

In general, parameters in W , F , P , and Σ are unknown and we need to estimate

them. Literature utilises the maximum likelihood approach to estimate these parame-

ters (Hyndman et al., 2008a; de Silva et al., 2010; Svetunkov et al., 2022a). According

to Snyder et al. (2017), the likelihood function of a multivariate normal distribution

is

ln L(P ,x0,Σ|IT ) = −TN

2
(ln 2π)− N

2
ln|Σ| − 1

2

T∑
t=1

ε⊤t Σ
−1εt,

where I t is the collection of time series up to time t. εt refers to additive errors, as

presented in Eq. (3.1).
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It is often simplified to get the concentrated likelihood,

ln L(P ,x0, |Σ̂,IT ) = −TN

2
(ln 2π)− N

2
ln|Σ̂| − TN

2
, (3.3)

where Σ̂ = 1
T
ê⊤
t|t−1êt|t−1. êt|t−1 is the one-step ahead forecast error and this contains

the information about the smoothing parameter and the initial value estimation.

Snyder et al. (2017) postulate that maximising Eq. (3.3) is equivalent to minimis-

ing the determinant of Σ̂, which is called the generalised variance. In the case when

the covariances of Σ are zero, maximising |Σ| is implicitly the same as minimising the

sum of variances in Σ. Hence, we have a trace of variances in the covariance matrix

as the loss function. It is defined as,

Tr (MSEN(P ,x0|IT )) =
1

TN

N∑
i=1

T∑
t=1

ε2i,t. (3.4)

where MSEN is a diagonal matrix of MSEs for each time series and Tr(·) is a trace of

a matrix.

Regardless of the estimation, we need to ensure that the model is stable. This

means that the past information becomes less relevant to the current information, i.e.,

states indicate a monotonic behaviour. In such a case, the eigenvalues of the discount

matrix should lie in a unit circle. The discount matrix is defined as

D = F − PW .

A relaxation of the stability restrictions allows the eigenvalues to lie on the unit circle,

where we can use recent information to predict the future. This model does not need

to be stable but it is forecastable.

This stability and/ or the forecastability restriction has several implications for

the model. First, the smoothing parameters can be positive or negative, as defined
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in the admission bound (Hyndman et al., 2008a). The traditional parameter space,

i.e., between 0 and 1, no longer holds. Second, there is a possibility that the model is

deterministic because we allow the eigenvalues to be on the unit circle. For example,

for a deterministic VES(A,N,N), D = I as P = 0 and the eigenvalues of D are 1.

Note that the eigenvalues of D for a deterministic model are equal to 1. On the

other hand, a model with the unitary eigenvalues of D does not necessarily become a

deterministic model; otherwise it could become an unstable but forecastable model.

3.2.2 Prediction

After estimating the parameters, we can produce forecasts from the model. The

one-step ahead point forecasts are denoted as,

ŷt+1|t = Wx̂t,

x̂t = F x̂t−1 + P̂ êt|t−1,

where P̂ is the estimated P , x̂t is the estimated state. Note here that as we can

structure the model based on which states are incorporated, W linearly structures the

yt and it is treated to be known. Unlike Hyndman et al. (2008b, p. 292), we attempt

to incorporate the effects of the in-sample estimation on the forecasts, meaning that

xt is estimated. Thus, the recursive relationship of the forecasts can be formulated as

ŷt+1|t = WD̂tx̂0 +
t∑

r=0

WD̂rP̂ yt−r, (3.5)
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where D̂ = F − P̂W , and x̂0 is the estimated initial value, and the one-step ahead

forecast variance-covariance is

V(ŷt+1|P̂ , x̂0, Σ̂,IT ) = F t+1x̂0x̂
⊤
0 (F

t+1)⊤ +
t+1∑
r=0

W⊤F rP̂ Σ̂t+1−rP̂
⊤(F r)⊤W

= F t+1x̂0x̂
⊤
0 (F

t+1)⊤︸ ︷︷ ︸
Initial Value Effect

+ W⊤P̂ Σ̂P̂⊤W

t+1∑
r=0

F r(F r)⊤︸ ︷︷ ︸
Covariance and Persistence Matrix Effect

(3.6)

where we assume that the covariance matrix is time-invariant, i.e., Σ̂t+h−1 = Σ̂t+h−2 =

... = Σ̂t = Σ̂t−1 = ... = Σ̂0 = Σ̂, for the forecast horizon of h. We can see that the

uncertainty in the in-sample propagates to the forecast variance-covariance through

the variance of x̂0 and the multiplication between P̂ and Σ̂. This shows that we need

to be cautious about estimating P and Σ.

Next, we illustrate a simple bivariate VES(A,N,N) to demonstrate: (a) the re-

lationship between parameters in P via expanding the VARIMA(0,1,1); (b) the re-

lationship between P and Σ; (c) the effects of forcing some parameters in P and Σ

to zero on the prediction distribution; lastly (d) an equivalent situation between VES

and ETS.

3.3 Special Cases of VES(A,N,N)

The bivariate VES(A, N, N) is used to explore parameters in VES. It has a single

state, level only, and two time series, thus K = 1 and N = 2. The measurement and

the transition equation are,

yt = lt−1 + εt

lt = lt−1 + Pεt,
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where yt =

[
y1t y2t

]⊤
, lt =

[
l1t l2t

]⊤
, εt =

[
ε1t ε2t

]⊤
, W = F = I2, and I2 is a

2× 2 identity matrix, and εt MVN(0,Σ). P and Σ are,

P =

α11 α12

α21 α22

 , Σ =

σ2
11 σ12

σ21 σ2
22

 .

Parameters α11 and α22 model the smoothing on each series individually, while α12

and α21 model the cross-smoothing.

3.3.1 VARIMA equivalence

de Silva et al. (2010) has shown an equivalence between VES and VARIMA, where

in this case, VES(A,N,N) is equivalent to VARIMA(0,1,1). However, the literature

does not explicitly explain the interaction between parameters in P via VARIMA.

We transform VES into VARIMA via linear algebra and expand the model equations

to uncover the interaction between αii and αij, for all i, j ∈ N , to understand the

complexity of modelling VES. The linear transformation is:

(I2 − I2L)yt = εt − (I2 − P )εt−1, (3.7)

= εt −Zεt−1

where Z = I2 −P and it is the coefficient matrix of the moving average component.

If we expand it into a system of equations, these are:

y1t − y1t−1 = ε1t − (1− α11)ε1t−1 + α12ε2t−1, (3.8)

y2t − y2t−1 = ε2t − (1− α22)ε2t−1 + α21ε1t−1.
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We focus on the first equation in Eq. (3.8) only. We can transform Eq. (3.8) with a

backshift operator L and we define z11 = 1− α11 and z12 = −α12,

(1− z11L)
−1(1− L)y1t = ε1t + (1− z11L)

−1z12Lε2t(
1 + z11L+ z211L

2 + ...
)
(1− L)y1t = ε1t +

(
1 + z11L+ z211L

2 + ...
)
z12Lε2t, (3.9)

where (1 − z11L)
−1 = (1 + z11L+ z211L

2 + ...). Eq. (3.9) shows an ARIMA process

with the additional ε2t, where z11 affects the autoregressive component and zt11z12, for

t = 1, ..., T , determines the effects of ε2t on y1t. This shows a complicated interaction

between the autoregressive and the moving average component, as well as, between

z11 and z12. The effect of ε2t may persist or even overwhelm the effect of ε1t on y1t.

Therefore, we need to be cautious when dealing with the off-diagonal parameters of

P , where omitting z12 may simplify the model but lose information about ε2t.

3.3.2 Forecast Variance-Covariance

We have discussed the interaction between z11 and z12 on Eq. (3.9), and now we

explore the interaction between parameters in P and Σ from the forecast variance-

covariance. Since in this example we use VES(A,N,N), its forecast variance-covariance

is,

V(ŷt+1|P̂ , l̂0, Σ̂,IT ) = V(l̂0) + P̂ Σ̂P̂⊤
t+1∑
r=0

Ir(Ir)⊤, (3.10)

where the one-step ahead forecast variance-covariance consists of (a) the variance of

the estimated initial value and (b) the multiplication between P̂ and Σ̂. The forecast

variance-covariance is affected by the estimation in the in-sample. Now, we break
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P̂ Σ̂P̂ and the matrix becomes

P̂ Σ̂P̂⊤ =

α̂2
11(α̂11σ̂

2
11 + α̂12σ̂21) + α̂2

12(α̂11σ̂12 + α̂12σ̂
2
22) α̂2

21(α̂11σ̂
2
11 + α̂12σ̂21) + α̂2

22(α̂11σ̂12 + α̂12σ̂
2
22)

α̂2
11(α̂21σ̂

2
11 + α̂22σ̂21) + α̂2

12(α̂21σ̂12 + α̂12σ̂
2
22) α̂2

21(α̂21σ̂
2
11 + α̂22σ̂21) + α̂2

22(α̂21σ̂12 + α̂12σ̂
2
22)

 .

(3.11)

From Eq. (3.11), we can see that the forecast variance-covariance is constructed

from several multiplications between σ2
ii, σij, αii, and αij. As we need to estimate P

and Σ, this affects the construction of Eq. (3.10) and, in turn, the accuracy of the

prediction intervals. This shows that in dealing with parameter uncertainty, we need

to deal with P and Σ in some way or another.

3.3.3 Estimation in VES

In our discussion, capturing the interconnections between time series requires a full

estimation of P and Σ, thus both parameters are of our interests, i.e., as to esti-

mate them conventionally or with shrinkage. Our previous discussion demonstrates

the relationships between parameters in P and parameters between P and Σ. When

the sample size is sufficient enough to produce consistent and efficient estimates of

parameters, we can estimate these with no adverse impact on the forecast accuracy.

However, as discussed in Section 1, the sample size is often limited for various rea-

sons. Thus, the estimation of VES might result inefficient parameters, either in P

or/and Σ. This can make the interaction between parameters unhelpful, exacerbating

uncertainties and propagating the uncertainty to forecast accuracy. We argue that

parameter shrinkage can mitigate this issue.

Shrinkage has a wide spectrum. If we look at VAR models, a structural VAR

(Lütkepohl, 2005) can be seen as a specific form of shrinkage, where some coefficients

are forced to be zero so that the model is identifiable and interpretable. In the hierar-

chical forecasting literature, if seen as a multivariate modelling problem, some studies

propose a covariance matrix with zero covariances as an approximation to the h−
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step ahead forecast error covariance matrix (Hyndman et al., 2016; Athanasopoulos

et al., 2017; Wickramasuriya et al., 2019; Nystrup et al., 2020). Pennings and van

Dalen (2017) proposed a multivariate exponential smoothing model with MSOE to

model the hierarchical time series, where the off-diagonal parameters in P are zero.

In the VES literature, a commonality restriction proposed by Duncan et al. (1993)

and Svetunkov et al. (2022a) is also another form of shrinkage. Instead of shrinking

the parameters to zero, the parameters are regularised to a common value. de Silva

et al. (2010) and Svetunkov et al. (2022a) lean toward using a diagonal covariance

matrix instead of a fully estimated covariance matrix. These studies show the efficacy

of restricting some parameters to zero in forecasting problems. On the other hand,

we typically understand shrinkage as data-dependent, meaning that the amount of

parameter shrinkage is conditional to the data at hand. Such shrinkage is often pro-

posed to shrink the covariance matrix (Daniels and Kass, 2001; Schäfer and Strimmer,

2005). In the VAR literature, several autoregressive coefficient shrinkage approaches

have been proposed (Basu and Michailidis, 2015; Nicholson et al., 2017; Wilms and

Croux, 2018; Wilms et al., 2021).

There are two streams in implementing shrinkage: (a) fixed shrinkage, where

some parameters are forced to be zero and (b) data-dependent shrinkage. We explore

the effects of the fixed shrinkage in VES and propose a shrinkage estimator with

several options for the penalty function, investigating both streams.

3.4 The Effects of Fixed Shrinkage on VES

Having discussed the fixed shrinkage on multivariate forecasting models, we illustrate

the effects of the fixed shrinkage on VES using VES(A,N,N), specifically Eq. (3.9)

and Eq. (3.11). We set αij and σij to be zero. When αij is zero, then Eq. (3.9)
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becomes

(
1 + z11L+ z211L

2 + ...
)
(1− L)y1t = ε1t,

where it is a much simpler ARIMA process, and the effect of ε2t on y1t disappears.

As long as the effect of z11 on y1t diminishes over time, then it is easier to estimate

this model.

With regards to Eq. (3.11), if we set αij and σij to zero, the matrix becomes,

P̂ Σ̂P̂⊤ =

σ̂2
11α̂

2
11 0

0 σ̂2
22α̂

2
22

 .

We can see the forecast variance-covariance becomes less complicated. Thus, from the

model structure, forcing some parameters to zero makes the model easier to identify

and estimate. It also affects the construction of the forecast variance-covariance,

potentially improving the forecast accuracy.

3.4.1 Equivalence condition between VES and ETS

Despite the benefits of the fixed shrinkage in VES, this shrinkage highlights a situation

where the model structure of VES is equivalent to a set of ETS, mathematically. Using

the same example of VES(A,N,N), the matrix form of VES is shown as,

y1t
y2t

 =

1 0

0 1


l1t−1

l2t−1

+

ε1t
ε2t

 , (3.12)

l1t
l2t

 =

l1t−1

l2t−1

+

α11 0

0 α22


ε1t
ε2t

 . (3.13)
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Both Eq. (3.12) and Eq. (3.13) show that the bivariate VES(A,N,N) are the same as

two ETS(A,N,N) models.

In terms of the estimation of both models, the equivalence in the parameters can

be achieved when the covariances in the covariance matrix is omitted, meaning that

the covariances are zero. In that case, the loss function of the VES is shown as,

{α̂11, α̂22, x̂01, x̂02}VES = min (MSE(α11, x01|I1t) + MSE(α22, x02|I2t)) , (3.14)

where {α̂11, α̂22, x̂01, x̂02}VES = θ̂VES, and Iit is the time series up to time t for i time

series, for i in N . Given the same Σ, the sum of ETS loss functions is the same as

the VES loss function, as shown,

min (MSE(α11, x01|I1t) + MSE(α22, x02|I2t)) = min MSE(α1, x01|I1t) + min MSE(α2, x02|I2t).

If this condition is achieved, the parameters of VES are equal to those of ETS,

or θ̂VES = θ̂ETS. Mathematically, there are two conditions that promote equivalence

between VES and ETS, namely (a) the same model structure and (b) the same loss

function.

In practice, we minimise the loss function with a numerical optimisation routine.

The sum of ETS losses and the VES loss function should result in the same parameters

within a tolerance margin. However, as the optimiser in the VES case has to solve

a problem with much bigger dimensionality, the algorithmic aspects of the numerical

optimisation become relevant and result in an additional source for the deviation

between the VES and ETS parameters, even under the restrictions discussed above.
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3.5 Shrinkage Estimator and Penalty Function

We see that theoretically, shrinkage in P to zero simplifies the interaction between

parameters and avoids the estimation error propagation. We propose a shrinkage

estimator that shrinks P so that we can mitigate the parameter uncertainty and

control the state stochasticity without losing the structural interdependence between

time series. Thus, we modify the loss function to

(1− λ)C + λf(·), (3.15)

where λ is a scalar shrinkage hyper-parameter that regularises the parameters uni-

formly across time series and state, 0 ≤ λ ≤ 1, C is a multivariate loss function, where

it can be Eq. (3.3) or Eq. (3.4), and f(·) is a penalty function that we discuss in

this section. We can interpret Eq. (3.15) as a trade-off between model fit and model

inertia. If λ is 0, the effect of the penalty is zero. On the other hand, if λ is 1, the

estimator leans towards the model inertia, meaning that the new information does

not affect the states and the model becomes anchored to the initial values, hence more

deterministic (Pritularga et al., 2022).

We focus on D, where it collects much information about the model, as stated in

Eq. (3.5). This motivates us to propose different penalty functions, namely shrinking

P , PW and the eigenvalues of D to 1, as all of them potentially lead to a less

stochastic model. As for the norm function, we use ℓ2 norm as Pritularga et al.

(2022) has shown that the ℓ2 norm outperforms the ℓ1 one and the differences are

marginal, in the context of univariate ETS.
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3.5.1 Shrinking P

The penalty function is formulated in this case as:

f(P ) =
N∑
i=1

N∑
j=1

K∑
k=1

p2ijk,

where i, j = {1, .., N}, k = {1, ..., K}, N is the number of time series and k is the

number of states. Suppose that λ −→ 1, pijk −→ 0, and P −→ 0, where 0 is a null

matrix. Consequently, because D ≈ F , Eq. (3.5) becomes,

ŷt+1|t = WF t+1x̂0.

The new information effect vanishes as P −→ 0. Thus, shrinking P means that the

initial values become more prominent in constructing the forecasts. As shown by

(Pritularga et al., 2022) the estimated initial values reflect this.

3.5.2 Shrinking PW

A similar approach to Section 3.1 is to shrink parameters in PW to zero so that D −→

F . However, since we multiply P and W , it is the same as multiplying the sum of

pij by the number of states. For example,
∑N

i,j=1

∑q
k=1 pijkwijk = 2

∑N
i,j=1

∑q
k=1 pijk,

where wijk is each value in W for all i, j, and k. As a result, this penalises the loss

function heavier and faster than shrinkage in 3.5.1. Thus, the penalty function is

defined as

f(PW ) =
N∑
i=1

N∑
j=1

K∑
k=1

(pijkwijk)
2.
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3.5.3 Shrinking eigenvalues to 1

The next approach is to shrink the eigenvalues of D to 1. D contains ‘information’ of

the models, especially in its eigenvalues, denoted as ξ. The intuition follows from Hyn-

dman et al. (2008a), where the authors decompose a discount matrix for a univariate

ETS to explain the forecastability condition. In the same manner, we use the same

decomposition in the multivariate setting. We decompose D so that D = UHU−1,

where U is a eigenvector and H is a diagonal matrix that contains the eigenvalues of

D. This decomposition affects the recursive relationship in the time series, shown as:

yt = W
(
UHU−1

)t−1
x0 +

t−1∑
k=1

W
(
UHU−1

)k−1
Pyt−k + εt,

= WUH t−1U−1x0 +
t−1∑
k=1

WUHk−1U−1Pyt−k + εt. (3.16)

First, we can see that U does not give much information and H determines the

recursive relationship of yt. It is also clear that the effect of H vanishes over time.

Suppose that H −→ I when ξ −→ 1, then the recursive relation can be written as,

yt = Wx0 +
t−1∑
k=1

WP ††yt−k + εt,

where P †† is the persistence matrix when H −→ I. In contrast, if H −→ 0, then

yt −→ εt, making model behave like Random Walk. Given this rationale we propose

to shrinking ξi to 1, where i = {1, ..., N}. Thus, the penalty in this case is defined as,

f(H) =
N∑
i=1

K∑
k=1

(1− ξik)
2.
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3.5.4 Hyper-parameter Optimisation

We employ a derivative-free numerical optimisation to find a scalar λ, similar to

Pritularga et al. (2022). This implies that the shrinkage rate for all states and time

series is the same. We aim to minimise the mean squared one-step ahead holdout

forecast error, over Q forecast origins and N time series in the multivariate system.

Asymptotically, the one-step ahead holdout forecast error has the same properties as

the in-sample residuals (Chatfield, 2000). The objective function is

λ̂ = argmin
λ

1

Q

Q∑
q=1

MSEq,N(λ, P̂q, x̂q,0,y1:q),

where MSEo,N is the mean squared of the one-step ahead holdout forecast error at the

forecast origin of q and q = {1, ..., Q}. We use the Nelder-Mead optimisation routine

(Nelder and Mead, 1965) to find the optimal λ.

3.6 Simulation Study

In this section, we describe our experimental design to demonstrate the efficacy of

the proposed estimators, in comparison with the other models. We also discuss the

findings from our experiments.

3.6.1 Experimental Design

P /Σ Uncorrelated Correlated

Independent DGP(IDP,UNCORREL) DGP(IDP,CORREL)

Dependent DGP(DEP,UNCORREL) DGP(DEP,CORREL)

Table 3.1: A combination of P and Σ in DGP
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We design four simulation experiments based on types of interdependence in P and Σ.

We aim to demonstrate the efficacy of the proposed estimation approaches, i.e., the

uncorrelated and correlated innovations (named UNCORREL, CORREL), and the

independent and dependent persistence matrix (named IDP, DEP). Thus, we have

UNCORREL-IDP, UNCORREL-DEP, CORR-IDP, and CORREL-DEP, summarised

in Table 3.1. Of each Data Generating Process (DGP), we have four combinations

that represent different levels of model specification, shown in Table 3.2.

Specification CR OV UN IE
DGP A,N,N A,N,N A,N,A A,N,A
Model A,N,N A,A,N A,N,N A,A,N

Table 3.2: Model specification

Table 3.2 lists four groups of model specification, namely correctly-specified model

(CR), overly-specified model (OV), under-specified model (UN), and incorrect model

specification (IS). In the last case, the model incorrectly includes the trend and ex-

cludes the seasonality, where there should have had a seasonality. We attempt to

distinguish different types of model misspecification, i.e., OV, UN, and IS.

Of each combination, we have 12 models with the loss function of the maximum

likelihood (LIKE) and the trace (TR), referring to Eq. (3.3) and Eq. (3.4) respectively.

This leads to a univariate ETS (ETS), a univariate ETS with shrinkage (ETS-SHR),

VES with independent P (LIKE-IDP and TR-IDP), VES with dependent P (LIKE-

DEP and TR-DEP), VES with dependent P and shrinkage in P (LIKE-P and TR-P),

VES with dependent P and shrinkage in PW (LIKE-PW and TR-PW), and VES

with dependent P and shrinkage in the eigenvalues (LIKE-1L and TR-1L). Table

3.3 summarises the combinations of the models, the loss function, P , the penalty

functions, and the model naming. The standard models in the literature are ETS,

LIKE-IDP, TR-IDP, LIKE-DEP, TR-DEP, which we consider as benchmarks.

We generate monthly time series with a frequency of 12. The details of the

parameters are summarised in Table 3.4. Values in Table 3.4 ensure the stability
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Name E
T
S

E
T
S
-S
H
R

L
IK

E
-D

E
P

L
IK

E
-I
D
P

L
IK

E
-P

L
IK

E
-P

W

L
IK

E
-1
L

T
R
-D

E
P

T
R
-I
D
P

T
R
-P

T
R
-P

W

T
R
-1
L

S
tr
u
c ETS ✓ ✓

VES ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
L
os
s

MSE ✓

MSE-SHR ✓

Likelihood ✓ ✓ ✓ ✓ ✓

Trace ✓ ✓ ✓ ✓ ✓

F
u
ll

Dependent (DEP) ✓ ✓

S
h
ri
n
ka
ge

F
ix

Independent (IDP) ✓ ✓

D
at
a

P ✓ ✓

PW ✓ ✓∑
(1− ξi)

2 ✓ ✓

Table 3.3: A combination of treatments in the models.

of the processes, where U(·) and MVN(·) denote the uniform and the multivariate

normal distribution. Note that when the process is A, N, N, then γij = 0. As for the

covariance matrix, the setup is summarised in Table 3.5 and UNCORR and CORR

denote the uncorrelated and correlated covariance matrices. Seasonal initial values

are randomly set and we ensure that they have similar similar seasonal patterns and

are normalised. We employ 5 time series in the multivariate system. We also ensure

that the number of degrees of freedom is sufficient to estimate the model.

We produce 1 and 1-12 steps ahead point forecasts, and generate theoretical pre-

diction intervals of 80%, 85%, 90%, 95%, and 99% confidence levels. The theoretical

prediction intervals implicitly assume that the errors follow a multivariate normal

distribution with zero covariances. To generalise our findings, we repeat the simula-

tion 500 times, which was sufficient for the summary statistics to converge. We use

the sim.ves() function to generate the time series. For univariate models, we use the

adam() function from smooth package (Svetunkov, 2022b) while for multivariate mod-
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Smoothing parameters
αii U[0.3, 0.6], i ∈ N
αij (0.9− αii)/n, i, j ∈ N , i ̸= j
γii U[0.2, 1− αii], i ∈ N
γij (0.6− γii)/N , i, j ∈ N , i ̸= j
Parameter Values
Seasonal cycle 12
Initial value (li0) U[100, 1000], i ∈ N
Number of observations T = 36 months
Holdout size 12 months
Forecast horizon 1-12 months
Group sizes 5
Noise εt ∼ MVN(0,Σ)
Loss function Trace (TR) and Likelihood (LIKE)

Table 3.4: A simulation setup for the data generating processes.

UNCORR σi‡i‡ 10, i‡ = {1, 2, ..., ⌊N
2 ⌋}, i

‡ = j‡

σi‡‡i‡‡ 7, i‡‡ = {⌈N
2 ⌉, ..., N}, i‡‡ = j‡‡

σij 0, i ∈ {i‡, i‡‡}, j ∈ {j‡, j‡‡}
CORR σi‡i‡ 10, i‡ = {1, 2, ..., ⌊N

2 ⌋}, i
‡ = j‡

σi‡‡i‡† 7, i‡‡ = {⌈N
2 ⌉, ..., N}, i‡‡ = j‡‡

σij 6, i ∈ {i‡, i‡‡}, j ∈ {j‡, j‡‡}

Table 3.5: A simulation setup for Σ.

els we use the ves() function from legion package (Svetunkov and Pritularga, 2022)

for R (R Core Team, 2022).

We assess the performance of the proposed estimators with the Mean Squared

Error (MSE) to measure the accuracy of point forecasts and the Absolute Mean Error

to measure the magnitude of the bias:

MSE = 1
Nh

∑N
i=1

∑h
k=1

(
yi,t+k − ŷi,t+k|t+k−1

)2
AME = 1

N

∑N
i=1

∣∣∣ 1h∑h
k=1

(
yi,t+k − ŷi,t+k|t+k−1

)∣∣∣ ,
and as for the prediction interval, we use the Mean Interval Score (MIS),

MIS = 1
h

∑h
k=1

(
(ubt+k − lbt+k) +

2
τ
(lbt+k − yt+k1(yt+k < lbt+k) +

2
τ
(yt+k − ubt+k1(yt+k > ubt+k))

)
,

where τ is the level of confidence, ubt and lbt are the upper and lower bounds, and 1(·)

is an indicator function that returns 1 if the condition inside it is met, and otherwise.
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We choose MIS over the other measures such as Pinball and Coverage because MIS

can handle small sample sizes and covers both sides of the confidence level (Gneiting

and Raftery, 2007).

We repeat this experiment 500 times. It is important to make error measures

comparable and we use a percentage difference between the benchmark and the model

of interest. The formula is shown as,

dMSE =
MSEB −MSEA

MSEB

,

where B is the benchmark, and A is the model of interest. Similar formulas apply to

AME and MIS.

We also measure how well the smoothing parameters in P and the variances and

covariances in Σ are. We measure dSmooth, a percentage difference of the true and

the estimated smoothing parameters in P , which is calculated as,

dSmooth =



1
N2K

∑N
i=1

∑N
j=1

∑K
k=1

pijk−p̂ijk
pijk

, i, j ∈ N

1
NK

∑N
i=j=1

∑K
k=1

pijk−p̂ijk
pijk

, i = j ∈ N

1

N†2K

∑N†

i=1,i ̸=j

∑N†

j=1,i ̸=j

∑K
k=1

pijk−p̂ijk
pijk

, i ̸= j ∈ N †.

where when i, j ∈ N dSmooth includes all smoothing parameters in P . When i =

j ∈ N , it calculates the percentage difference of the diagonals of P . When i ̸= j ∈

N †, it calculates the percentage difference of the off-diagonals of P , for k ∈ K and

N † = 1
2
N(N + 1). We also measure the percentage difference between the true and

the estimated variances and covariances, as,

dVar =
1

N

N∑
i=j=1

σ2
ii − σ̂2

ii

σ2
ii

, and, dCov =
1

N †

N†∑
i,j=1,i ̸=j

σ2
ij − σ̂2

ij

σ2
ij

.
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3.6.2 Findings

Overall performance: univariate v.s. multivariate models

MSE − MODEL: ALL − DGP: ALL

Mean ranks

ETS − 1.97

TR−IDP − 2.40

ETS−SHR − 2.95

LIKE−IDP − 3.48

TR−DEP − 5.49

LIKE−DEP − 7.38

LIKE−P − 8.15

LIKE−PW − 8.84

TR−PW − 9.22

LIKE−1L − 9.33

TR−P − 9.34

TR−1L − 9.46

0 2 4 6 8 10 12

Figure 3.1: Overall performance of MSE ranks with an MCB test

Figure 3.1 presents the overall point forecast accuracy performance of 12 mod-

els across the data generating processes, model specifications, and forecast horizons,

presented in a format of MCB test (Koning et al., 2005; Demšar, 2006). All models

that intersect with the grey shaded area show no evidence of significant differences at

5% level, according to the Nemenyi test (Koning et al., 2005). We can see that ETS,

TR-IDP, and ETS-SHR outperform the multivariate models. LIKE-IDP performs

worse than the first three models but it outperforms the other LIKE models. Then,

TR-DEP and LIKE-DEP follow, and the rest are the proposed shrinkage approaches.

In this instance, forecasts from the proposed estimator are less accurate than the ones
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from ETS, TR-DEP, or LIKE-DEP. This shows the outperforming models with fewer

estimated parameters in light of correlated time series and limited sample sizes. We

Rank 1 2 3 4 5 6
CR TR-IDP ETS LIKE-IDP TR-DEP LIKE-DEP ETS-SHR
OV ETS ETS-SHR TR-IDP LIKE-IDP TR-DEP TR-1L
UN ETS TR-IDP ETS-SHR LIKE-IDP TR-DEP LIKE-1L
IS ETS-SHR LIKE-IDP ETS TR-IDP TR-PW TR-DEP

Table 3.6: The first six performing models according to the MSE ranks.

separate the results in Figure 3.1 according to the model specifications and we present

the first six models for each of them in Table 3.6. For the latter, we perform the non-

parametric Nemenyi test for the MSE of each model specification, where bold model

names denote the models with no evidence of statistical differences at 5% significance

or having similar performance statistically. We can see that either ETS or VES with

a diagonal P consistently outperform the other models. In the case of the correct

specified models, TR-IDP and ETS perform similarly statistically. This shows that

given the same model structure, different estimation approaches, i.e., simultaneously

or independently, lead to different results. Further exploration is needed to under-

stand why this happens. We also notice that ETS-SHR performs worse than ETS,

which contradicts to the results in Pritularga et al. (2022). This happens because

we apply ETS-SHR in a multivariate system, whereas Pritularga et al. (2022) apply

ETS-SHR in the uncorrelated time series. Nonetheless, ETS-SHR performs well when

the model is misspecified.

Our findings are seemingly counterintuitive because univariate models outper-

form a multivariate model in a multivariate system, whereas the multivariate models

are expected to perform well due to the DGP being indeed a multivariate one. In

order to understand our finding, we demonstrate the distribution of the percentage

difference of all smoothing parameters in P , dSmooth, for each model for the case

of the correctly-specified model, with DGP(DEP, CORREL). The result is shown in

Figure 3.2, where the closer the value is to zero, the more accurate the smoothing
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parameter estimation is. A positive number shows shrinkage in smoothing param-

eters; otherwise. Specifically, ETS, ETS-SHR, TR-IDP, and LIKE-IDP contain the

smoothing parameters of their time series, while the others contain all smoothing pa-

rameters in P . Red dotted lines are the mean of each distribution, and red arrows

denote some parts of the distribution that are not plotted.

We can see that the estimated smoothing parameters for ETS, ETS-SHR, TR-

IDP, and LIKE-IDP have tight distributions, although the smoothing parameters are

generally biased. On the other hand, for LIKE, the smoothing parameters are es-

timated well on average, but for some instances, they have large estimation errors.

As for TR, most of them are biased but more efficient than LIKE. Regardless of the

unbiasedness of the smoothing parameters, they tend to be inefficient in multivari-

ate models, meaning that they have large estimation errors. This potentially leads

to underperforming multivariate models on average. As LIKE has more estimated

parameters, it depicts the true DGP, where the errors are correlated. However, incor-

porating too many parameters can be challenging, even though this depicts the reality

we attempt to model. Note that here we use only 5 time series, and the estimation

challenge is already very evident. Thus, there should be a balance between depicting

reality fully and being a useful model to predict the future.

Prediction intervals

Figure 3.3 demonstrates the MCB test for MIS across forecast horizons, model specifi-

cation, and DGPs. Similar to the point forecast accuracy, the top-performing models

for MIS are ETS, TR-IDP, ETS-SHR, and LIKE-IDP. The next top-performing mod-

els with a similar rank are TR-DEP, TR-PW, and TR-P, and the rest are models

estimated via likelihood. This shows that estimating covariances can be tricky and

harm forecast accuracy. Table 3.7 presents dMIS between DEP as the benchmark and

other multivariate models for DGP(DEP, CORREL). Positive numbers show that the

68



E
T

S

E
T

S
−

S
H

R

T
R

−
ID

P

LI
K

E
−

ID
P

−3

−2

−1

0

1

2

3

dS
m

oo
th

LI
K

E
−

D
E

P

LI
K

E
−

P

LI
K

E
−

P
W

LI
K

E
−

1L

T
R

−
D

E
P

T
R

−
P

T
R

−
P

W

T
R

−
1L

Distribution of Smoothing Parameters

Figure 3.2: Distributions of smoothing parameters of each model for the correct spec-
ified model.

proposed approaches are better than DEP, and bold numbers show the best among the

four models. LIKE-IDP and TR-IDP are still the best multivariate models compared

to the others. Importantly, TR models perform better than LIKE models.

Loss LIKE TR
Spec. VES.IDP VES.P VES.PW VES.1L VES.IDP VES.P VES.PW VES.1L
CR 50.07 -96.57 -96.57 -399.55 40.81 -15.50 -15.50 -125.75
OV 78.69 -250.40 -290.10 -150.29 98.32 3.20 -2.17 -2.96
UN 12.78 4.85 4.85 -19.94 75.72 70.31 70.31 70.44
IE 90.34 23.70 25.22 -57.63 98.57 3.54 0.99 0.14

Table 3.7: dMIS across confidence levels for the correct specified model only.

We connect Figure 3.3 and Table 3.7 with Eq. (3.11) to discuss estimated vari-

ances, covariances, and smoothing parameters. The first three models, namely ETS,

TR-IDP, and ETS-SHR, have independent model structures and zero covariances.

When the forecast variance-covariance relies on PΣP⊤, then the multiplication be-

comes less complicated. This can mitigate any potential issues of parameter estima-
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MIS − DGP: ALL

Mean ranks

ETS − 1.88

TR−IDP − 1.88

ETS−SHR − 2.75

LIKE−IDP − 3.50

TR−DEP − 6.31

TR−PW − 6.75

TR−P − 6.88

TR−1L − 8.81

LIKE−P − 9.00

LIKE−DEP − 9.69

LIKE−PW − 10.12

LIKE−1L − 10.44

0 2 4 6 8 10 12

Figure 3.3: An MCB test for MIS across forecast horizons, model specifications, and
DGPs

tion uncertainty. The next group consists of TR-DEP, TR-PW, and TR-P, where the

covariances in Σ are omitted, but the smoothing parameters in P remain. This also

shows that forcing some covariances to zero may reduce the estimation errors, thus

providing accurate prediction intervals. This group certainly outperforms the LIKE

models. Thus, we also see a clear benefit of the fixed shrinkage in Σ.
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(b) Residual variances
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Figure 3.4: Percentage differences between the true and estimated smoothing param-
eters, variances, and covariances, for the correct specified model with independent
model structures such as ETS, ETS-SHR, TR-IDP, and LIKE-IDP.

We observe that omitting the off-diagonals of P and Σ results in more accurate pre-

diction intervals. It is worth inspecting the estimated diagonals and the off-diagonals

of P , and the estimated residual variances and covariances in Σ, shown in Figure 3.4.

A positive number shows that the estimated smoothing parameter is lower than the
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true one. A more than 100% dSmooth represents a change of direction in the pa-

rameters, for example the estimated one is negative whereas the true one is positive.

Negative dVar and dCov show that the estimated ones are larger than the true ones.

The dots represent the average of each distribution, and the red arrows show that

some parts of the distribution are not plotted. This description applies to Figure 3.5

and 3.6.

We discuss the dSmooth of the top-performing models, where the smoothing pa-

rameters are of each time series. ETS-SHR produces lower smoothing parameters

due to shrinkage than ETS, TR-IDP, and LIKE-IDP. Moreover, we observe some

shrinkage in TR-IDP, whereas ETS and LIKE-IDP estimate unbiased smoothing pa-

rameters on average. Looking at the estimation of Σ, the shrinkage in ETS-SHR

results in increased variances and covariances. This may explain why ETS-SHR does

not perform better than ETS, as the estimated residual variances and covariances

compensate for the smoothing parameter shrinkage. On the other hand, on average,

ETS and LIKE-IDP result in zero covariances because the smoothing parameters are

estimated well. Hence, there is a possible connection between smoothing parameters,

variances, and covariances, where all parameters in P and Σ have to be estimated

optimally to avoid any compensating effects.

Next we discuss the parameter accuracy for TR only, shown in Figure 3.5. We

can see that the diagonals of P have a shrinkage effect, even though TR-IDP has

the smallest positive dSmooth. Still, the estimated diagonals of P in TR-P and TR-

1L are unnecessarily large for some instances. Note that we do not include TR-PW

because TR-P and TR-PW, in the case of the correct specification, have the same

results, i.e. PW and P for VES(A,N,N) are the same. Only TR-1L can significantly

shrink the off-diagonal of P . On the other hand, TR-DEP and TR-P estimate the off-

diagonals well with a higher variability for the latter. Regarding the variance and the

covariance estimation, TR-DEP, TR-IDP, TR-P, and TR-1L have similar interquartile
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(c) Residual variances
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Figure 3.5: Percentage differences between the true and estimated smoothing param-
eters, variances, and covariances, for the correct specified models with a dependent
model structure and a trace loss function.

ranges. In some instances, the estimated variances and covariances of TR-P and

TR-1L explode. We have evidence of a relatively complicated connection between

smoothing parameters, variances, and covariances. This finding also highlights the

potential for misbehaving covariance matrix when shrinkage in P is implemented,

especially when TR is used in DGP(DEP, CORREL).

We now focus on models with the likelihood (LIKE), where the covariances are
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(c) Residual variances
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Figure 3.6: Percentage differences between the true and estimated smoothing param-
eters, variances, and covariances, for the correct specified models with a dependent
model structure and a maximum likelihood loss function.

included in the loss function. On average, LIKE-IDP can estimate the diagonals of

P well with quite significant variability, while there is a slight shrinkage effect in

LIKE-DEP. However, LIKE-P and LIKE-1L are able to shrink the diagonals of P

significantly, about 80%, with some outliers. On the other hand, on average, LIKE-

DEP, LIKE-P and LIKE-1L can estimate the off-diagonal of P well.

In contrast to the smoothing parameter estimation, the distribution of dVar and
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dCov reveals some interesting patterns. LIKE-DEP results in smaller estimated vari-

ances than the true ones and are able to estimate the covariance to zero. This shows

a possibility of an overfit model because the variance is unnecessarily smaller than

the true one. For LIKE-IDP, the variances are estimated well on average with some

variability. However, LIKE-P and LIKE-1L result in unnecessarily large estimated

variances with relatively high variability. As for the dCov, we can see that LIKE-P

and LIKE-1L have decent interquartile, but the averages are highly affected by out-

liers. This means that some of the estimated covariances are unnecessarily high in

either direction, i.e., the values of the covariances can be large, either in a positive or

a negative direction. Thus, in the DGP(DEP, CORREL) setting, it is important to

include Σ in the shrinkage loss function to avoid large estimation errors either in P

or Σ.

A comparison between ETS and TR-IDP

Having discussed the overall performance, we are interested in discussing the perfor-

mance of ETS and TR-IDP. Both models are a specific case of the fixed shrinkage,

where both have the same structure but differ in their estimation. ETS estimates the

parameters of each model independently, whereas TR-IDP estimates the parameters

simultaneously. In discussing these findings, we use DGP(IDP, UNCORREL) specifi-

cally to avoid additional uncertainties. Figure 3.7 shows evidence that the two models

have different estimated parameters. A red line on Panel (b) denotes an equivalence

between parameters. Figure 3.7a demonstrates the percentage difference between the

sum of ETS’s loss function and the TR-IDP’s loss function. The figure shows discrep-

ancies between the loss values of ETS and TR-IDP. Ideally, they would have had the

same loss value, assuming that the optimisation routine worked the same.

In addition, we show a comparison between the smoothing parameters of both

models. Figure 3.7b shows that the smoothing parameters of ETS have higher vari-
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Figure 3.7: A comparison between ETS and TR-IDP, in their loss values and smooth-
ing parameters.

ability than those of TR-IDP. Since each time series is modelled independently, there

is a chance that the smoothing parameters of ETS are more freely estimated than

those of TR-IDP. TR-IDP estimates the smoothing parameters in a bundle, which

means that they are estimated together in the optimisation routine. The parameters

do not have equal freedom to find the optimal values. These results hold when we used

the same optimisers for the two models with BOBYQA and Nelder-Mead (Nelder and

Mead, 1965; Johnson, 2022). This potentially affects the parameter estimation error

and impacts forecast accuracy. Admittedly, optimisation quality has been largely ig-

nored in the forecasting literature. Our results show that, for the multivariate models,

it can have a very substantive impact.

3.7 Discussion and Conclusion

We propose a shrinkage approach with several penalty functions to mitigate smoothing

parameter estimation uncertainty in VES. Our findings demonstrate that the proposed
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approaches are able to shrink the smoothing parameters effectively; however, they do

not produce accurate point and interval forecasts as expected. Another finding, rather

counterintuitive, in our experiment, is that the univariate models outperform the mul-

tivariate models in the multivariate setting. Here, we discuss a possible explanation

as to why our approaches do not result in forecast accuracy improvement and why

the univariate models outperform the multivariate ones.

We argue that our approach performs as intended, i.e., shrinking the smoothing

parameters. In principle, this should lead to better performance, as shown by (Prit-

ularga et al., 2022) for the univariate case. However, this increases the estimation

error of Σ, and we observe a ‘compensating effect’ between P and Σ. For example,

as the estimated off-diagonals of P are shrunk, the covariances in Σ increase for some

instances. This indicates a potential identification issue in estimating both P and Σ.

If this identification issue persists, a model restriction such as a fixed shrinkage in P

and Σ is a potential solution, which leads to the more accurate point and interval

forecasts, as the models are able to estimate the smoothing parameters efficiently in

the statistical sense.

There are several choices in modelling a multivariate system with a limited sample

size. First, we can employ the fixed shrinkage in a multivariate model. For example,

TR-IDP estimates the smoothing parameters well and can produce accurate point and

interval forecasts. The other option is to employ a set of ETS or ETS-SHR. These

align well with the previous studies in VES, where implementing TR is sufficient to

produce accurate forecasts (de Silva et al., 2010; Svetunkov et al., 2022a). However,

implementing ETS-SHR in a multivariate correlated time series needs to be done with

care as the smoothing parameter shrinkage can also increase the estimated residual

covariances.

One may argue that we can incorporate the interdependence in P and the fixed

shrinkage in Σ, i.e. TR-DEP. We see that there is an unmitigated shrinkage in the
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diagonals of P , but at the same time, some estimated variances are too large. The

diagonal smoothing parameter shrinkage potentially increases the estimated variances.

Thus, this is not an option either.

The previous examples show that we should shrink P and Σ simultaneously

to avoid any compensating effect between both parameters. Hence, it is important

to shrink or regularise Σ in the multivariate framework. Similar studies have been

proposed by Wilms and Croux (2018); Wilms et al. (2021) to shrink the autoregressive

coefficient and Σ in a VAR model. Our study complements Wilms and Croux (2018);

Wilms et al. (2021). We explain why we not only need to parameterise the coefficients

but also Σ in a multivariate time series model. We also highlight potential estimation

issues when only shrinkage is implemented in one of them.

An alternative to incorporating cross-learning information into the forecasts is

done via forecast reconciliation. Forecast reconciliation combines forecasts accord-

ing to some linear restrictions (Athanasopoulos et al., 2009; Hyndman et al., 2011,

2016; Wickramasuriya et al., 2019; Athanasopoulos et al., 2020; Panagiotelis et al.,

2021) via an ill-posed least square estimation. Forecast reconciliation is a multivari-

ate problem with a two-step estimation, i.e., (1) producing independent forecasts via

univariate models and (2) estimating a reconciliation weight matrix to linearly com-

bine the forecasts, where the matrix incorporates the cross-learning information from

the residuals of the univariate models. We mitigate the model uncertainty issues by

utilising the ‘left-over’ information captured by the residuals to combine the forecasts.

Nonetheless, in a multivariate system with limited sample sizes, we have three alter-

natives: (a) implementing ETS, ETS-SHR, or TR-IDP models, or (b) implementing

LIKE-DEP with shrinkage in P and Σ, or (c) implementing (a) and then employing

forecast reconciliation to incorporate the cross-learning information.

Our study focuses on estimating univariate and multivariate models in a mul-

tivariate system with limited sample sizes. To some extent, it is also important to
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provide evidence when the sample size is large enough to observe how they behave

asymptotically. This will give us a bigger picture and a fair treatment of LIKE-DEP

or LIKE-1L regarding how we handle a multivariate model with a relatively large

sample size.

It is also worth discussing the difference in performance between ETS and TR-

IDP. Both have the same model structure but have different estimation approaches.

We expect both to perform similarly, but our findings show that, in some cases, they

differ. We suspect this is because of how the optimisation operates differently on ETS

and TR-IDP. TR-IDP has more parameters to estimate than each univariate ETS. In

the case of the Nelder-Mean algorithm, as the number of parameters increases, the

progress in finding the local optima becomes smaller for each iteration. Eventually,

the search stops (Han and Neumann, 2006; Conn et al., 2009). We can confirm this

argument from our results. In ETS, the parameters have more freedom to reach

the local minimum, and the estimated parameters exhibit larger movement from the

initial values.

On the other hand, the estimated parameters of TR-IDP are less diverse than the

ETS ones due to the little progress for each iteration. We argue for more explorations

of the optimisation algorithm implications on multivariate models. It is important

to investigate the properties and behaviour of the loss function in a univariate and

a multivariate state-space model in more detail. A similar study has been done

by Farnum (1992), where they studied the loss function of a Simple Exponential

Smoothing when the smoothing parameter is close to 0 and 1. Understanding the

properties and the behaviour of the loss function in depth enables us to devise an

optimisation algorithm suitable for the specific problem. This may lead to better

parameter estimation and eventually improve forecasting performance.

Second, it is also possible to investigate the stability and forecastability conditions

in VES. These conditions allow negative smoothing parameters. A negative smoothing
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parameter results in a harmonic pattern, whereas states ETS itself, by nature, have

a monotonic pattern if the smoothing parameters are between 0 and 1. Tsay (2014)

notes that the stability condition ensures the eigenvalues decay exponentially, but not

in individual elements in Z (see Eq. (3.7)). Whether negative smoothing parameters

impact the forecasting performance needs to be explored further. We argue that we

may need to introduce additional conditions or restrictions on top of forecastibility

for either ETS or VES. For example, one could force the smoothing parameters to

be positive so that both the eigenvalues and the elements inside the discount matrix

decay exponentially. This potentially affects the smoothing parameters’ parameter

spaces, which might be useful when we have limited sample sizes. This, along with

other alternatives, needs to be investigated further.

In conclusion, a shrinkage implementation in VES is not as straightforward as

the one in ETS. There are interactions between smoothing parameters in P and Σ

and between them, which lead to a compensating effect between P and Σ. Due to the

relationships between parameters in VES, shrinkage should be implemented in both

P and Σ. Alternatively, we can employ a set of ETS models or VES with a diagonal

P and Σ to mitigate the parameter uncertainty. Then if cross-learning is needed,

forecast reconciliation can be used. Apart from that, the choice between ETS and

TR-IDP is still an open question. The numerical optimisation for the multivariate

models needs more exploration.
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Chapter 4

Stochastic Coherency in Forecast Reconcili-

ation

The previous chapters discuss the efficacy of parameter shrinkage for ETS and VES.

We show that we need to be careful in employing a multivariate model in a multivariate

time series. Alternatively, one can use the forecast reconciliation, as several studies

demonstrate its efficacy.

In this chapter we analyse the forecast reconciliation in detail, especially its

sources of uncertainties. We propose a concept of ‘stochastic coherency’ to accom-

modate the overlooked uncertainties. We also propose several covariance matrix ap-

proximations to mitigate this issue. All the materials in this chapter are based on an

article published in the International Journal of Production Economics (Pritularga

et al., 2021).

Abstract

Hierarchical forecasting has been receiving increasing attention in the literature. The

notion of coherency is central to this, which implies that the hierarchical time se-

ries follows some linear aggregation constraints. This notion, however, does not take

several modelling uncertainties into account. We propose to redefine coherency as

stochastic. This allows to accommodate overlooked uncertainties in forecast recon-
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ciliation. We show analytically that there are two potential sources of uncertainty

in forecast reconciliation. We use simulated data to demonstrate how these uncer-

tainties propagate to the covariance matrix estimation, introducing uncertainty in the

reconciliation weights matrix. This then increases the uncertainty of the reconciled

forecasts. We apply our understanding to modelling accident and emergency admis-

sions in a UK hospital. Our analysis confirms the insights from stochastic coherency

in forecast reconciliation. It shows that we gain accuracy improvement from forecast

reconciliation, on average, at the cost of the variability of the forecast error distri-

bution. Users may opt to prefer less volatile error distributions to assist decision

making.

4.1 Introduction

Forecasting is an essential activity for decision making in organisations. Often fore-

casts and supported decisions are organised in hierarchies. These hierarchies can be

constructed from market segments, products, or other demarcations (Athanasopoulos

et al., 2009). Beyond cross-sectional hierarchies, there are temporal hierarchies where

different functions in an organisation require forecasts at different sampling frequen-

cies and planning horizons (Athanasopoulos et al., 2017). Combining both is also

possible, which aims to provide a coherent view of the future across both dimensions

(Kourentzes and Athanasopoulos, 2019).

All the hierarchical forecasting methods are based on the property of coherency

(Wickramasuriya et al., 2019; Jeon et al., 2019; Taieb et al., 2020; Athanasopoulos

et al., 2020). It implies that the lower level forecasts add up to the forecasts of the

higher levels. For example, sales of individual products in a hierarchy sum up to

product category sales at higher levels, in observations and forecasts. When forecasts

are produced independently, they are typically not coherent, and this has been one of
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the motivations for developing hierarchical forecasting methods. This enables aligned

planning and actions throughout organisations and stake-holders (Kourentzes and

Athanasopoulos, 2019), which is the main motivation for hierarchical forecasting in

an organisational context. The concept of coherency has been central in temporal

dissagregation, establishing a link between high and low frequency time series. For

example, Chow and Lin (1971) uses a highly restrictive generalised linear regression

model to this purpose.

In the past, studies attempted to tackle this problem by employing a bottom-

up or top-down approach (Fliedner, 2001). The main issue with these methods is

that they ignore information either at higher levels or lower levels (Athanasopoulos

et al., 2009; Ord et al., 2017), thus leading to less accurate forecasts. Furthermore,

implicitly we accept increased modelling risk, as all forecasts in the hierarchy are

based on a single (top-down) or a few (bottom-up) forecasting models, which may be

misspecified. This misspecification can have adverse effects on the uncertainty of the

forecasts across the hierarchy, resulting in increased costs of any supported decisions,

such as unmet demand due to poor forecasts.

Nowadays, hierarchical forecasting is seen as a reconciliation problem, where

forecasts are generated at all levels and then are reconciled to a common view of the

future (Hyndman et al., 2011, 2016; Wickramasuriya et al., 2019). Several studies

have shown significant improvements in forecast accuracy in different contexts, when

hierarchical reconciliation techniques are used (Yang et al., 2016; Oliveira and Ramos,

2019; Kourentzes and Athanasopoulos, 2019, 2021). In brief, forecast reconciliation

is achieved by linearly combining all forecasts from the hierarchy to a set of adjusted

bottom-level forecasts, which by construction make use of all available information,

and then aggregating these to reconciled forecasts for the complete hierarchy. Note

that since we no longer rely on forecasts at any specific level, we mitigate uncertain-

ties stemming from the specification of the forecasting methods that both top-down
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and bottom-up methods suffer from. Apart from providing coherent forecasts, the

reconciliation methods also often improve upon the accuracy of the base indepen-

dent forecasts in cross-sectional, temporal, and cross-temporal hierarchies (Hyndman

et al., 2011; Athanasopoulos et al., 2017; Wickramasuriya et al., 2019; Kourentzes and

Athanasopoulos, 2019; Kourentzes et al., 2021).

Nonetheless, in the literature there is empirical evidence that hierarchical fore-

casting does not universally result in reduced forecast uncertainty and better forecast

accuracy. In temporal hierarchies, Athanasopoulos et al. (2017) demonstrate that

model selection uncertainty affects the efficacy of forecast reconciliation. Base fore-

casts from well-specified forecasting models gain little benefit from forecast reconcil-

iation, whereas forecasts from mis-specified models are improved significantly. Fur-

thermore, Kourentzes and Athanasopoulos (2019) find that combining cross-sectional

and temporal hierarchies offers ‘small yet significant’ improvement upon the accuracy

of the base forecasts, as the first dimension, the temporal, already mitigates much of

the uncertainty in base forecasts. However, in order to reconcile forecasts, a reconcil-

iation weights matrix is needed, and defining this matrix in the cross-temporal case

can be challenging (see also di Fonzo and Girolimetto, 2021). In cross-temporal hier-

archies, Kourentzes and Athanasopoulos (2019) average across multiple estimates of

the reconciliation weights matrix to avoid unnecessary estimation uncertainty, while

retaining coherency. Results in Panagiotelis et al. (2021) show substantially different

forecast error variances depending on how the reconciliation weights matrix is calcu-

lated. Empirical results from the retail and tourism sectors further demonstrate this

variability of performance that appears to depend on the calculation of the reconcilia-

tion weights (Wickramasuriya et al., 2019; Oliveira and Ramos, 2019). We argue that

there are inherent uncertainties in forecast reconciliation that have not been explored

in the literature, which we investigate here.

Thus, it appears that recent studies have overlooked the effect of uncertainties in
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forecast reconciliation. Panagiotelis et al. (2022, Theorem 3.1) demonstrate that the

only source of uncertainty is originating from the base forecasts, and the reconciliation

weights matrix is assumed to have no uncertainty and effectively treated as known.

Nevertheless, since we estimate the reconciliation weights, we face uncertainty in their

estimation. Furthermore, as there are different approximations for the covariance

matrix (Hyndman et al., 2011, 2016; Athanasopoulos et al., 2017; Wickramasuriya

et al., 2019; Nystrup et al., 2020), this leads to a selection question. Thus, the

conventional reconciled forecast variance is potentially underestimated. Note that we

consider parameter estimation and forecasting method selection uncertainties as two

aspects of the same modelling issue.

Apart from that, there is another complication with hierarchical time series.

There is a gap between how the hierarchical time series are collected in practice and

how we use the data for forecasting. Suppose that we see the original information

coming from the bottom-level of the hierarchy. For example, in macroeconomic vari-

ables the data is collected either by surveys, estimates, or a combination of them.

As the data are collected for different nodes or levels of the hierarchy, the bottom

level does not always add up to the higher levels of the hierarchy. Statistics bureaux

use the account ‘statistical discrepancy’ to fill the gap. Athanasopoulos et al. (2020)

treat the discrepancy as another time series in forecast reconciliation. This affects

how we perceive coherency in hierarchical time series, both in the observational and

population levels, as well as how we understand modelling uncertainty in forecast

reconciliation.

In order to address all these issues, we propose the notion of “stochastic co-

herency”. Stochastic coherency is easy to understand if we use the geometric in-

terpretation of forecast reconciliation (Panagiotelis et al., 2021). Incoherent base

forecasts (the initial forecasts for each node of the hierarchy) are projected to a

coherent subspace. Conventionally, this projection has no uncertainty, while with
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stochastic coherency, the projection becomes stochastic. Equivalently, if we see fore-

cast reconciliation from a forecast combination interpretation (e.g., Kourentzes and

Athanasopoulos, 2019), the combination weights are stochastic.

Suppose we have a set of forecasts from a sample of time series and a hierarchy is

given. When we collect additional samples and re-estimate the reconciliation weights

matrix, that is bound to change due to the estimation of covariance matrix approxi-

mations. However, as long as the estimated reconciliation weights matrix meets the

coherency constraint (Wickramasuriya et al., 2019), the forecasts are coherent, but

they will change as the weight matrix changes. The key here is to acknowledge that

the uncertainty of coherent forecasts comes from the incoherent base forecasts and

propagates to the estimation of the reconciliation weights matrix. This increases the

uncertainty of coherent forecasts.

Another differentiating characteristic of stochastic coherency is how the error

terms in the data generating process are treated. We realise that the error term in the

hierarchical time series itself may contain not only the innovations but also potential

errors coming from data collection, such as sampling and measurement errors. On

top of that, modelling uncertainty is introduced when we produce forecasts. Hence,

it allows us to decompose the variance of coherent forecasts. As we show later in the

paper, this has important implications for the construction of the estimated covariance

matrix and coherent forecasts.

Stochastic coherency affects not only point forecasts but also probabilistic fore-

casts. In order to understand the effect of stochastic coherency on probabilistic

coherent forecasts better, we refer to its definition by Taieb and Koo (2019) and

Panagiotelis et al. (2022). The former defines the probabilistic coherent forecasts

as convolutions of linear constraints, while the latter defines them in a more flexi-

ble manner as to extend to non-linear constraints (Panagiotelis et al., 2022, p. 8).

However, both definitions are rooted from the idea of forecast reconciliation where
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the base point forecasts are projected onto the coherent space by the reconciliation

weights matrix, and they assume that the weights matrix is known. Our stochastic

coherency highlights the uncertainty of these weights, or the projection, and it will

affect both the point and the probabilistic forecasts. This will increase the coherent

probabilistic forecasts uncertainty. We argue that these are important characteristics

in the application of hierarchical forecasting in organisations, where understanding

and controlling the sources of uncertainty is important for mitigating risks associated

with decision making, beyond any accuracy improvements.

We explore stochastic coherency in detail in Section 4.2 and 4.3. We show when

forecast reconciliation becomes beneficial, and we explore uncertainties in forecast rec-

onciliation further, attributing them to their sources. We find that the more complete

the covariance matrix approximation is, the better the resulting point forecast accu-

racy can be but at the cost of the increased variance of the reconciled forecast errors.

In Section 4.4, we conduct a simulation experiment to validate our understanding. In

Section 4.5 we apply this to modelling accident and emergency admissions at a UK

hospital, demonstrating the effect of stochastic coherency on a real complex problem.

Based on these findings, we discuss and conclude our work in Section 4.6.

4.2 Classical and Stochastic Coherency

The notion of coherency in hierarchical forecasting has been proposed and elaborated

by a series of hierarchical forecasting works (Athanasopoulos et al., 2009; Hyndman

et al., 2011, 2016; Wickramasuriya et al., 2019; Panagiotelis et al., 2021; Athanasopou-

los et al., 2020). The literature defines forecasts as coherent forecasts if they adhere

to a linear constraint, e.g. they add up according to the hierarchy, often simplified

as the bottom level forecasts aggregating to the higher level forecasts. In a similar

manner, Taieb et al. (2020) define mean coherent forecasts when the errors between
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aggregated bottom-level forecasts and the independent forecasts at the upper-level

are zero.

Let us explore the hierarchical approach in detail. Suppose that yt is a N ×

1 vector of hierarchical time series across the hierarchy, at period t, where yt is

constructed from bt, a m× 1 vector of the bottom-level time series, and a summation

matrix, S. In this case, S maps the bottom-level onto the upper-level of the hierarchy.

The coherent hierarchical time series is denoted as,

yt = Sbt. (4.1)

We argue that Eq (4.1) is not general. Let us consider how time series data is

collected in different organisations. In any retailer which records demand of every

stock keeping unit at the bottom-level in real-time, they can update new information

in the middle and the top of hierarchy at time t, across the hierarchy, instantaneously.

This means that the hierarchical time series are coherent, even as new information

becomes available. On the other extreme, we may need to estimate the data, even

though by nature it is a part of a hierarchy, for example the gross domestic prod-

uct (GDP). For instance, the Office of National Statistics United Kingdom measures

national accounts through surveys, forecasts, and estimates from models, which are

subject to errors (Office for National Statistics, 2011). Once an account is measured,

they need to reconcile the number from different methods and sources. Hence, in the

case of GDP, the values in the hierarchy from aggregating the bottom-level data and

collecting data from each level will be different. To accommodate the potential gap,

the statistical bureaux create an account called statistical discrepancy (Australian

Bureau of Statistics, 2015, p. 471). This discrepancy captures any potential error

coming from measurement and sampling errors. Athanasopoulos et al. (2020) treat

the discrepancy as a time series. It is easy to identify scenarios where such measure-

ment issues violate the classical coherency, from individual companies, to national
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statistics. Therefore, due to the measurement errors, we redefine hierarchical time

series yt as,

yt = Sbt + δt,

where δt is the statistical discrepancy at time t. By nature, δt is zero when data

collection is done perfectly and able to measure the variables of interest accurately.

First, we discuss the time series in population. Suppose that we know the true

data generating process of bt, which has an additive state-space structure. We use

this framework illustratively and we are not restricted to it. Nonetheless, the state-

space modelling framework is very flexible and encompasses many popular forecasting

model families. Let:

bt = µb,t + ηb,t, (4.2)

where µb,t denotes the structure of the time series and ηb,t is the innovation term

at period t, which for simplicity follows a multivariate normal distribution with zero

mean and has a covariance matrix of Σb. We aggregate bt by multiplying with S and

from Eq (4.2), and we get yt as a vector time series,

yt = Sbt + δt

= Sµb,t + Sηb,t + δt

= µt + εt (4.3)

where εt is the total residual of the process, which consists of the aggregated inno-

vations and the statistical discrepancy, denoted as εt = Sηb,t + δt, and µt = Sµb,t.

In this case, we assume that E(δt|I t) = 0, and from definition E(ηb,t|I t) = 0, thus
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E(Sηb,t|I t) = 0. In expectation, Eq (4.3) becomes,

E(yt|I t) = E(Sbt + δt|I t)

= E(Sµb,t|I t) + E(Sηb,t|I t) + E(δt|I t)

= E(µt|I t)

where I t is the available information at t. We can also infer that µt = Sµb,t and

this also holds at period t + h. This shows that the time series is coherent in expec-

tations, meaning that the linear hierarchical structure, S, guarantees coherency in

the structures of the time series, but does not necessarily guarantee coherency in the

residuals.

In observations, we exploit I t by differentiating between the type of the informa-

tion, namely Θ as a set of forecasting models in the hierarchy, and Yt as the available

hierarchical time series, where Yt = {y1, . . . ,yt}. Note that Θ is not restricted to a

single family of forecasting models and can be different forecasting models or methods

for each series across the hierarchy.

Using forecasting models Θ, we produce h-step ahead base forecasts. The fore-

casts, typically, adhere to the classical coherency, but are inaccurate. Following the

hierarchical forecasting literature, we can reconcile base forecast as:

ỹt+h|t = SGŷt+h|t, (4.4)

where ỹt+h|t is h-step ahead reconciled forecast, and G is a reconciliation weights

matrix, which combines all forecasts across the hierarchy to create adjusted bottom-

level forecasts. As S and ŷt+h|t are available prior to the reconciliation, G is es-

timated. Wickramasuriya et al. (2019) propose the MinT Reconciliation to obtain

G, by minimising the trace of covariance matrix of the reconciled forecast error
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(ẽt+h|t = yt+h|t − ỹt+h|t), instead of reconciliation error (ϵt+h|t = ŷt+h|t − ỹt+h|t):

minTr
(
SGWt+h|tG

⊤S⊤)
subject to SGS = S, or alternatively GS = I, where Wt+h|t = E(êt+h|tê

⊤
t+h|t|I t) and

êt+h|t is the h-step ahead base forecast error, yt+h − ŷt+h|t. They show that forecasts

are unbiasedly coherent when the unbiasedness constraint, or SGS = S, holds and

also implies that SG is a projection matrix. Thus, the optimal reconciliation weights

matrix is formulated as:

G = (S⊤W−1
t+h|tS)

⊤S⊤W−1
t+h|t. (4.5)

Eq (4.5) shows thatG is valid under a set of forecasting modelsΘ and depends on

the expected value of the h-step ahead base forecast error covariance matrix, which

contains the uncertainties from the corresponding forecasting models. In a limited

sample, Ŵt+h|t, is constructed from the estimated parameters of the forecasting mod-

els Θ and the one-step ahead base forecast error covariance matrix, Ŵt+1|t. Being

estimated, Ŵt+h|t is uncertain due to modelling uncertainty, and this influences the

uncertainty of G. In the observational level where the sample size is limited, we

denote the estimated reconciliation weights matrix as Ĝ, thus SĜS = S is subject

to uncertainty and the coherency constraint depends on how we utilise the available

information, given a limited sample. To avoid confusion we clarify the notion here: G

refers to the weights matrix of the conventional coherency from the literature. Here,

we use Ĝ to highlight that Ĝ is estimated. In our stochastic coherency framework G

and Ĝ are coincide. We also introduce Γ that is the weights matrix in population.
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The expectation of the reconciled forecasts conditional to I t is:

E(ỹt+h|t|I t) = E(SĜŷt+h|t|I t)

= SΓµt+h|t

= SΓSµb,t+h|t,

where E(ŷt+h|t|I t) = µt+h|t = Sµb,t+h|t, and Γ = E(Ĝ|I t). Coherency needs the

unbiasedness property to ensure that the forecasts are coherent via distributing infor-

mation across the hierarchy through linear combination. The multiplication between

S and Γ results in a projection which maintains coherency with regard to any over-

looked errors from forecasting models, such as the estimation errors or any statistical

discrepancies.

As SΓ and SĜ are both projection matrices, this property should be maintained.

For example, we maintain the projection matrix to be idempotent. This should hold in

both the population and the estimation level, SΓSΓ = SΓ and SĜSĜ = SĜ. The

linear projection, which maintains unbiasedness and coherency, basically ensures the

projected forecasts lie on the coherent subspace (Panagiotelis et al., 2021). The issue

now is how uncertain the estimated projection matrix is. In the case of SΓ, it projects

to µt+h|t, whereas SĜ may project the forecasts a bit further from µt+h|t. Thus, the

uncertainty in the projection highlights the importance of modelling uncertainty, since

the former originates from the latter. Therefore, we redefine coherency by treating

the coherent projection matrix, SΓS = S to mitigate overlooked errors from the

forecasting models in forecast reconciliation. We call it stochastic coherency.
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Figure 4.1: Forecast reconciliation uncertainty framework. Boxes in beige depict our
novel understanding in forecast reconciliation uncertainty framework.

Figure 4.1 summarises the view of the uncertainties in forecast reconciliation we

gain from stochastic coherency. Modelling uncertainty leads to the uncertainty in the

base forecasts, as in conventional forecasting (Chatfield, 1995). This contributes to

the uncertainty of reconciled forecast, which is well understood in the hierarchical

forecasting literature (for example, Athanasopoulos et al., 2017). With stochastic

coherency we demonstrated that there are additional sources of uncertainty, that can

help explain the observations in the literature (Panagiotelis et al., 2021). There is

uncertainty in the covariance matrix approximation, which is naturally connected to

the uncertainty of the base forecasts. This additional uncertainty is both due the

estimation and selection of an appropriate covariance matrix approximation method.

Both contribute to the uncertainty of the reconciliation weights, which adds to total

uncertainty of the reconciled forecasts.

As modelling uncertainty plays an important role in forecast reconciliation, i.e.

how we exploit I t, we discuss the effect of model specification on the reconciliation.

We illustrate the effects by focusing on the case when the forecasts are unbiased. Then,

we move to two special cases, namely reconciling biased forecasts and reconciling

forecasts from perfectly specified forecasting models. We demonstrate how modelling

uncertainty, as in the structure of the models and the parameter estimation, affects

forecast reconciliation.
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4.3 Reconciling Unbiased Forecasts with Stochas-

tic Coherency

In this scenario, we consider well-specified forecasting models. The forecasting models

are able to capture the structure of the data generating process well, but suffer from

parameter estimation uncertainty. Given the limited sample size in Yt, we produce

h-step ahead base forecasts, ŷt+h|t, and we expect that E(ŷt+h|t|I t) = µt+h|t. Thus,

the uncertainty due to parameter estimation is ŷt+h|t − E(ŷt+h|t) = vt+h|t, where

E(vt+h|t|I t) = 0. Note that the irreducible forecast error at period t+ h is defined as

ζt+h|t = yt+h − µt+h|t. This differs from εt+h as the latter is unconditional.

As the base forecasts are ŷt+h|t = µt+h|t+vt+h|t, the base forecast errors become:

êt+h|t = yt+h − ŷt+h|t

= µt+h|t + ζt+h|t − µt+h|t − vt+h|t

= ζt+h|t − vt+h|t. (4.6)

From Eq (4.6), we can see that the base forecast errors consist of the irreducible

error and the error due to parameter estimation. The latter is affected by the sample

sizes.

We aim to reconcile the base forecasts with regard to the hierarchical structure,

using ỹt+h|t = SĜŷt+h|t. To estimate Ĝ, we need to estimate the h-step ahead base

forecast error covariance matrix,

Ŵt+h|t = Zt+h|t + Vt+h|t +Ct+h|t,

where Zt+h|t is the covariance matrix of ζt+h|t and Vt+h|t is the covariance matrix of

vt+h|t, where E(Zt+h|t) = Σ and E(Vt+h|t) = V , and Ct+h|t is the covariance matrix
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between ζt+h|t and vt+h|t. Therefore,

Ĝ = (S⊤(Ŵt+h|t)
−1S)⊤S⊤(Ŵt+h|t)

−1. (4.7)

Looking at Eq (4.7), Ĝ is uncertain, because the variances and the covariances of

Ŵt+h|t depend on the parameter estimation uncertainty, given a limited sample size.

We can see that the uncertainty in forecasting models is transferred to Ĝ, which will

affect the reconciled forecast errors. The reconciliation weights matrix may not be

able to improve the base forecast accuracy due to this uncertainty.

From Eq (4.7), we can produce the reconciled forecasts, ỹt+h|t = SĜŷt+h|t, and

decompose the reconciled forecast error:

ẽt+h|t = yt+h − ỹt+h|t

= yt+h − SΓµt+h|t + SΓµt+h|t − SĜŷt+h|t

= yt+h − SΓµt+h|t + SΓµt+h|t − SĜ(µt+h|t + vt+h|t)

= ζt+h|t︸ ︷︷ ︸
irreducible error

+(SΓ− SĜ)µt+h|t︸ ︷︷ ︸
reconciliation matrix

estimation error

+(−SĜvt+h|t)︸ ︷︷ ︸
reconciled

estimation error

(4.8)

where ζt+h|t = yt+h − µt+h|t, and SΓµt+h|t = µt+h|t as SΓS = S and µt+h|t =

Sµb,t+h|t. Eq (4.8) shows that the reconciled forecast error consists of the irreducible

error, the reconciliation matrix estimation error, and the reconciled estimation error,

which will affect the uncertainty of reconciled forecast error variance.

Looking at the relations between different forecast errors in forecast reconcilia-

tion, Panagiotelis et al. (2022) and Panagiotelis et al. (2021) use generalised Pythago-

ras theorem to establish their relationships. We argue that it needs a relaxation to

accommodate the uncertainty by using triangular inequality, where the relationship
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is shown as,

||yt+h − ŷt+h|t||2 ≤ ||yt+h − ỹt+h|t||2 + ||ŷt+h|t − ỹt+h|t||2, (4.9)

SSEbase ≤ SSErecon + SSEϵ,

where SSEϵ is the sum squared reconciliation error and SSEϵ = ||ŷt+h|t− ỹt+h|t||2 ≥ 0.

If the left hand side of Eq (4.9) is equal to the right hand side, then ||yt+h− ŷt+h|t||2 ≥

||yt+h−ỹt+h|t||2. However, Eq (4.9) demonstrates that SSErecon may exceed SSEbase as

a result of the overall uncertainty in forecast reconciliation. Given the case of unbiased

forecasts, we discuss two special cases when the forecasting models are mis-specified

and perfectly specified.

4.3.1 Special Case I: Mis-specified Forecasting Models

Due to unknown data generating processes, it is possible to obtain mis-specified mod-

els, denoted by †, i.e. adding a redundant variable, wrong transformation, or omitted

variables. In the case of mis-specified forecasting models, we produce biased h-step

ahead base forecasts, where ŷ†
t+h|t = ŷt+h|t + o†

t+h|t and E(o†
t+h|t|I t) = o†, which may

be nonzero. The base forecast error is shown as,

ê†
t+h|t = yt+h − ŷ†

t+h|t

= µt+h|t + ζt+h|t − µt+h|t − vt+h|t − o†
t+h|t

= ζt+h|t − vt+h|t − o†
t+h|t. (4.10)

Consequently, the h-step ahead biased base forecast error covariance matrix can

be constructed as:

Ŵ †
t+h|t = Zt+h|t + Vt+h|t +O†

t+h|t +C†
t+h|t,
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where O†
t+h|t is the estimated covariance matrix of o†

t+h|t and E(O†
t+h|t) = O†. In this

case, C†
t+h|t collects all covariances between ζt+h|t, vt+h|t, and o†

t+h|t. Hence, we can

calculate Ĝ in the case of mis-specified models, or Ĝ†, such as,

Ĝ† = (S⊤(Ŵ †
t+h|t)

−1S)⊤S⊤(Ŵ †
t+h|t)

−1. (4.11)

Note that Eq (4.5) is obtained from the assumption of unbiased base forecasts. How-

ever, we aim to show that we are still able to reconcile the forecasts, even if the

forecasts are biased, but it will come at a cost of more variability due to an additional

element in the modelling uncertainty.

Using Eq (4.11), we construct the reconciled forecasts as ỹ†
t+h|t = SĜ†ŷ†

t+h|t and

the reconciled forecast error is shown as,

ẽ†
t+h|t = yt+h − ỹ†

t+h|t

= yt+h − SΓ(µt+h|t + o†
t+h|t) + SΓ(µt+h|t + o†

t+h|t)− SĜ†ŷ†
t+h|t

= yt+h − SΓµt+h|t + SΓµt+h|t − SĜ†(µt+h|t + vt+h|t + o†
t+h|t)

= ζt+h|t︸ ︷︷ ︸
irreducible

error

+(SΓ− SĜ)µt+h|t︸ ︷︷ ︸
reconciliation matrix

estimation error

+(−SĜ†vt+h|t)︸ ︷︷ ︸
reconciled

estimation error

+(−SĜ†o†
t+h|t)︸ ︷︷ ︸

reconciled
bias error

, (4.12)

where ζt+h|t = yt+h − µt+h|t, and SΓo†
t+h|t cancels out and similar to Eq (4.8)

SΓµt+h|t = µt+h|t as SΓS = S and µt+h|t = Sµb,t+h|t. Hence, Eq (4.12) shows

that the reconciled forecast error from biased unreconciled forecast consists of the

irreducible error, the reconciliation matrix estimation error, the reconciled estimation

error, and the reconciled bias error. This additional error affects the uncertainty of

the sum squared reconciled forecast error.
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4.3.2 Special Case II: Perfectly-Specified Models

Suppose we were able to produce forecasts from perfectly-specified forecasting models,

where the parameters and the data generating process are known. The h-step ahead

base forecasts will match with the structure of the hierarchical time series in expecta-

tions and in the observational level, shown as ŷt+h|t = µt+h|t. Hence, the h-step ahead

base forecast error is the irreducible error, shown as yt+h − ŷt+h|t = yt+h − µt+h|t =

ζt+h|t.

Suppose we aim to reconcile the base forecasts, the reconciled forecasts are shown

as,

ỹt+h|t = SĜµt+h|t = SĜSµb,t+h|t = µt+h|t (4.13)

where µt+h|t = Sµb,t+h|t and SΓS = S. In this case, if the structure and the parame-

ters are known, SĜ = SΓ, and Ĝ becomes irrelevant because the forecasts are coher-

ent already. Following Eq (4.9), since the forecast errors between both forecasts are the

same, then ||ŷt+h|t − ỹt+h|t||2 = 0. Consequently, ||yt+h − ŷt+h|t||2 = ||yt+h − ỹt+h|t||2,

as ỹt+h|t = ŷt+h|t = µt+h|t. In perfetly specified models, MinT Reconciliation does not

improve or worsen the forecast accuracy as the models are able to produce coherent

structures of the time series, µt+h|t. This is in agreement with Athanasopoulos et al.

(2017).

4.3.3 Uncertainty in G

The previous discussion shows that the accuracy improvement due to forecast rec-

onciliation depends on the quality of the estimated projection, SĜ. Since Ĝ is a

function of Ŵt+h|t and Ŵt+h|t depends on the model specification, Ĝ is stochastic.

With regard to Eq (4.4), we can say that the reconciled forecasts are the result of a

linear combination of all base forecasts, in which the weights are stochastic.
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In order to deal with uncertain weights in Ĝ, we draw on the arguments from

linear forecast combination literature by Smith and Wallis (2009) and Claeskens et al.

(2016). As Ĝ contains the estimated weights, Smith and Wallis (2009) and Claeskens

et al. (2016) note that estimated combination increases the variance of the combined

forecasts. Furthermore, in forecast pooling, for any forecast added in the combination

to be beneficial there are conditions on the forecast variance (Kourentzes et al., 2019).

In order to manage the uncertainty in forecast reconciliation, it could be possible that

not all parts of S are equally informative, i.e. these may increase the uncertainty

of Ĝ. This may explain the marginal improvements observed with cross-temporal

hierarchies, but more importantly it suggests that Ĝ could be restricted further.

A restricted Ĝ can be achieved by controlling the information which enters the

forecast reconciliation via Ŵt+h|t. Suppose that Ŵt+h|t is assumed to be a fixed

covariance matrix, e.g. an identity matrix, then the weights in Ĝ are fixed and

constructed from S only. Alternatively, we can include the sample variances and

the covariances of the base forecast errors, but the level of the randomness on the

weights in Ĝ are subject to the uncertainty from the forecasting models. A balance

between these is to use the sample variances and manage the off-diagonal elements,

for example by shrinking the covariances or restricting them to zero. This may enable

us to balance the trade-off between more information and reducing uncertainty of the

weights in Ĝ. We note here that stochastic coherency is a general concept which can

be applied to any covariance matrix in forecast reconciliation. Fixed weights in Ĝ due

to the identity covariance matrix, or OLS reconciliation, is seen as a means to limit

the uncertainty of Ĝ to zero. This way, we can restrict the uncertainty propagation

from the forecasting models to the reconciled forecast uncertainty.

Stochastic coherency acknowledges two potential sources of uncertainty in fore-

cast reconciliation, originating from the modelling or the collection of data. We

demonstrate that the main source of uncertainty originates from the forecasting mod-
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els. The uncertainty in the forecasting model propagates to the estimation of the

reconciliation weights matrix via the covariance matrix of the h-step ahead base fore-

cast error and this affects the uncertainty of the reconciled forecasts.

The difference between stochastic and deterministic coherency is not in the rec-

onciled point forecasts, but rather in the variability of the error distribution. Our

stochastic interpretation demonstrates that there is an increased uncertainty in the

error distribution. In the following section we use simulated and real data to show

that our theoretical discussion of stochastic coherency is observable in practice using

the widely used MinT Reconciliation and can help explain results in the literature.

4.4 Simulation Study

4.4.1 Experimental Design

In this section we perform two simulations: first, with a small hierarchy, controlling

for the model uncertainty, so as to validate the theoretical discussion above; second,

with a large hierarchy, as to see the effect of the hierarchy size.

We specify the data generating process of each bottom-level time series as an

AR(1) process for the small hierarchy:

bq,t = 0.4yq,t−1 + εq,t,

where q is an index from 1 to 4, denoting the bottom level time series in the hierarchy.

The innovation term εq,t = {ε1,t, ε2,t, ε3,t, ε4,t} and εb,t ∼ N (0,Σεb), where εb,t =
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[
ε1,t ε2,t ε3,t ε4,t

]⊤
,

Σεb =



3 2 1 1

2 3 1 1

1 1 3 2

1 1 2 3


, and S =



1 1 1 1

1 1 0 0

0 0 1 1

I4


.

The top and middle level series result from the aggregation of the bottom-level,

as presented by S, where yt = Sbt and bt = {bq,t}. For example, yTop,t = 0.4(b1,t−1 +

b2,t−1 + b3,t−1 + b4,t−1) + ε1,t + ε2,t + ε3,t + ε4,t. We simulate this setting with sample

sizes of 24, 120, and 240 and a burn-in period of 200, to eliminate any initialisation

issues.

For the large hierarchy we use 50 bottom-level series, two levels in the middle-

level and a top-level time series. All bottom-level time series are generated from

ARIMA with εb,50 ∼ N (0,Σεb,50) and Σεb,50 is generated randomly at each iteration

of the simulation. In both simulations, we assume that δt = 0. For ARIMA we allow

randomness in the data generating process, i.e., the AR and MA orders are sampled

from 0 to 3 and the integration is from 0 to 1. We simulate the same sample sizes as

for the small hierarchy with the same burn-in setting.

Forecasting Models

For the small hierarchy, we generate individual base forecasts using different model

specification settings, summarised in Table 4.1. The first option, referred to as DGP,

assumes that we know the process fully. The second option assumes the model struc-

ture is known, but the model is subject to parameter uncertainty. We call this AR(1).

The third option employs ARIMA with automatic model selection, named as Au-

toARIMA, which has potentially reduced model uncertainty and parameter uncer-
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tainty, as the data generating process is encompassed. The fourth option uses ex-

ponential smoothing and represents a mis-specified model by using ETS(AAN) that

is equivalent to ARIMA(0,2,2), introducing superfluous terms. For the large hier-

archy, we use ARIMA and exponential smoothing with automatic selection. These

match the latter two options in Table 1. We produce 1- to 6-step ahead base fore-

casts for both hierarchies. For each combination of sample sizes, forecast horizon, and

model specification scenario, we repeat the simulations 1000 times. ARIMA and ETS

models are implemented using the auto.arima() in the forecast package (Hyndman

and Khandakar, 2008) and the es() in the smooth package (Svetunkov, 2022b) for R

(R Core Team, 2022), and we rely on Akaike Information Criterion for selecting the

appropriate model form.

Models DGP AR(1) AutoARIMA ETS
Specification Known Known Approximated Wrong
Parameter Known Estimated Estimated Estimated

Table 4.1: Model specification for each scenario in the experimental design

Forecast Reconciliation

We reconcile the base forecasts using the MinT Reconciliation methodology. We

use several approximation methods for Ŵt+h|t from the literature, summarised in

Table 4.2. Hyndman et al. (2011) use a diagonal covariance matrix with equivariant

variances, they call this method OLS. Athanasopoulos et al. (2017) propose Structural

Scaling (SCL), where they set equal variances to the bottom-level, and then calculate

the covariance matrix as Sσb. In this case, σb = cIm, where c is a scalar and m is

the number of the bottom-level time series. Hyndman et al. (2016) propose WLS,

which uses a diagonal covariance matrix allowing for heterogeneity. Wickramasuriya

et al. (2019) propose MinT-Sample, a fully unrestricted estimated covariance matrix of

one-step ahead in-sample base forecast errors. This method is denoted here as EMP.

However, as it is difficult to estimate the off-diagonals, they implement shrinkage on
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the off-diagonals towards zero by Schäfer and Strimmer (2005), called MinT-Shrink

method. This is denoted SHR in Table 4.2.

Estimation OLS SS WLS SHR EMP

Approximation cI Sσb Ŵd,t+1|t Ŵ SHR
t+1|t Ŵt+1|t

Ĝ ĜOLS ĜSCL ĜWLS ĜSHR ĜEMP

Table 4.2: Different approximations of Wt+h|t

Apart from the established covariance matrix approximations, we explore three

alternative covariance matrices, motivated by our theoretical discussion. Our moti-

vation is to either construct them from the bottom-level or by ignoring some of the

off-diagonals in order to mitigate the uncertainty, instead of estimating the whole

covariance matrix. A similar study was done by Nystrup et al. (2020) who exploited

autocorrelations between time series in temporal hierarchies. Furthermore, we provide

a covariance matrix approximation continuum. Figure 4.2 illustrates the covariance

matrix approximations. It consists of four bottom-level, two middle-level, and a top-

level time series. S on the upper-level of pShrink is constructed, then shrunk. All

covariance matrix approximations are positive definite, except bSHR and EMP. bSHR

is a positive semi-definite covariance matrix and the positive definiteness of EMP here

depends on the sample (Hyndman et al., 2011). In the first method we collect a vec-

tor of the bottom-level variances from one-step ahead in-sample forecast errors, σ̂b,

and construct the covariance matrix with the variances of Sσ̂b. We call it cWLS.

Second, we estimate the bottom level covariance matrix and construct it according

to the hierarchy. We force a block diagonal structure, making other elements zero

and shrinking the remaining, named bShrink. Third, we estimate MinT-Shrink and

retain the bottom-level covariance matrix. Then we aggregate it to the hierarchy and

force covariances between the bottom-level and the upper-levels to be zero. We call

this pShrink. We sacrifice information utilisation on bShrink and pShrink by forcing

hierarchically block diagonals to mitigate the variability of the forecast error.

Figure 4.3 depicts the covariance matrix approximation continuum, where square
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points denote the alternative covariance matrix approximations. It represents the

utilisation of information with regards to the forecast error variability. On the left

side of the continuum, OLS provides the least information as Ĝ is constructed from

the hierarchy only. However, it produces the least variable forecast error. Beside

OLS, there are SCL and WLS. They provide more information than OLS by allowing

heteroscedasticity. Consequently, they produce more variable forecast error than OLS.
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Figure 4.2: Illustration of covariance matrix approximations for a hierarchy of seven
time series.

On the right hand side of the continuum, EMP provides full information as we

estimate the unrestricted covariance matrix. Consequently, EMP will produce the

most variable forecast error. Next to EMP, SHR provides full information with some

restrictions, thus produces less variable forecast error than EMP.

Our alternative covariance matrices fill the gap between WLS and SHR. We sac-
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Figure 4.3: Covariance matrix approximation continuum againts information used
and forecast error variability for the whole hierarchy.

rifice some correlations to manage the variability. We retain the correlations between

the parent nodes and the children nodes, but we dismiss the correlations between the

parent and the children from different parent nodes, and vice versa. By constructing

the covariance matrix from the bottom-level information, it is expected to produce

less variable forecast errors, but have a similar performance with SHR in terms of

forecast accuracy.

Error Metrics

We consider two different measures in hierarchical forecasting: (a) a measure which

aligns to the objective function (Wickramasuriya et al., 2019; Panagiotelis et al.,

2022, 2021); (b) a measure which is more relevant to decision makers (Kourentzes

et al., 2019; Athanasopoulos and Kourentzes, 2022). The former deals with measur-

ing the average accuracy of base and reconciled forecasts across the complete hierar-

chy. The latter measures performance of individual time series and then summarises

them across the complete hierarchy. A relevant discussion about the evaluation of

hierarchical forecasts is given by Athanasopoulos and Kourentzes (2022).
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We focus on the mean squared error (MSE) for each time series i, as

MSEi,h =
1

J

J∑
j=1

(yij,t+h − ŷij,t+h|t)
2,

where J is the simulation run. Then, we measure the performances across the hierar-

chy from the loss function perspective, using Relative Total Squared Error:

RelTotSEh =

∑N
i=1MSEih,recon∑N
i=1 MSEih,base

,

where N is the number of time series in the hierarchy. Essentially, RelTotSEh mea-

sures the relative accuracy between SSErecon and SSEbase. From the decision-focused

perspective, we use Average Relative MSE, inspired by Davydenko and Fildes (2013):

AvgRelMSEh =

(
N∏
i=1

MSEih,recon

MSEih,base

) 1
N

.

4.4.2 Findings: Small Hierarchy

Figure 4.4 and 4.5 present the distributions of RelTotSE and AvgRelMSE for different

forecasting models and covariance matrix approximations for the sample size of 24.

Each pair of subplots corresponds to a modelling case from Table 4.1, where the

first subplot provides t+ 1 error distributions, while the second provides the average

across t + 1 to t + 6. The red lines indicate the geometric mean. Furthermore,

in all plots, grey dots denote the outliers and any part of each distribution that is

not plotted is denoted by a red arrow at the top and the bottom. Note that the

covariance matrix approximations are ordered by its completeness of the information,

i.e. from an identity matrix to utilising variances and covariances fully to estimate

the reconciliation weights matrix.

From Figure 4.4, for RelTotSE, we can see that when we have perfectly-specified
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Figure 4.4: Distributions of RelTotSE (TSE) for the small hierarchy and the sample
size of 24.

forecasting models, there is no gain from reconciliation. That is because the models

are able to produce coherent forecasts. As the base forecasts are coherent already, the

reconciled forecasts are the same as the base forecasts.

However, once we introduce modelling uncertainty, we gain some benefit from

forecast reconciliation. Imposing parameter uncertainty only, i.e. employing esti-

mated AR(1), induces relatively small gains from reconciliation. This shows that as

the modelling uncertainty increases reconciliation provides gains but again at an in-

creased variability, meaning that the mean of the relative errors decreases, but the

variance of error measure distributions increases. The relative accuracy gain is more

noticeable when we use AutoARIMA compared to AR(1), at the cost of higher vari-

ability of RelTotSE. Using ETS we benefit the most from forecast reconciliation, but
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also at the cost of the highest error variability among other modelling options. These

gains are less pronounced when the multi-step base forecast errors are introduced,

even though the variances are non-zero.

Looking at the covariance matrix approximations, the results verify Theorem 3.1

by Panagiotelis et al. (2021) that OLS reconciliation improves or matches the accuracy

of base forecasts regardless the model specification. However, when we approximate

the covariance matrix, it is possible to get less accurate reconciled forecasts on some

observations, as uncertainties are introduced. We can see that some distributions go

well beyond the accuracy of base forecasts. As expected the simpler the approximation

of the covariance matrix is, the less the variability is, and vice versa. Our proposed

covariance matrix approximations, e.g. cWLS, pSHR, and bSHR, are able to reduce

the variability of RelTotSE yet provide relative accuracy, on average, similar to WLS

and SHR.

In Figure 4.5 the model specification does not affect the accuracy improvement

much, but affect the variability of the relative measure, for AvgRelMSE. The de-

scriptions of any symbol are the same as the ones in Figure 4.4. We can see from

the figure that the variability increases as the forecasting models become increasingly

mis-specified.

Here, the effect of the covariance matrix approximations differ from RelTotSE.

For AvgRelMSE there is no clear increase in error variability as more complete co-

variance matrix approximations are used. However, the simplest covariance matrix

approximation results in very variable performance. This can be explained by consid-

ering that another role of the covariance matrix in forecast reconciliation is to scale

the reconciled forecast errors. At more aggregate levels of the hierarchy the scale of

errors increases. Conversely SHR is able to scale the forecast errors better than OLS.

The same is true for the other approximations. This argument aligns to the discussion

on temporal hierarchies where SCL performs well (Athanasopoulos et al., 2017).
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Figure 4.5: Distributions of AvgRelMSE (MSE) for the small hierarchy and the sample
size of 24.

Figure 4.6 presents the effect of sample sizes using mis-specified models with

RelTotSE. For RelTotSE, the benefits of forecast reconciliation reduce as the sample

sizes increase, together with the decrease of the variability. As the estimation of the

parameters improves, the uncertainty reduces, and therefore this result is expected.

We can see this effect by looking at the lower error bars. Nevertheless, we still observe

some variability in longer sample sizes.

Regardless of what error metrics is used, we observe variability in the performance

of forecast reconciliation. For example, we observe a trade-off between accuracy and

variability of RelTotSE, i.e. the more complete covariance matrix is, the more accurate

the reconciled forecasts are. This, however, comes at a cost, which is introducing more

error variability.
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4.4.3 Findings: Large Hierarchy

Next we discuss the findings from the large hierarchy. Table 4.3 presents a comparison

between the small and the large hierarchy, with RelTotSE and AvgRelMSE for one-

step ahead forecast and different sample sizes. We present the geometric mean and

the logarithm of geometric standard deviation of the relative error distribution from

ETS only. A negative (positive) number denotes an improvement (deterioration) on

the error measure. The bold highlights the most accurate reconciliation approach, for

the geometric mean, and the least volatile reconciliation approach, for the standard

deviation. All numbers in the geometric mean are in percentages.

Considering the geometric mean of RelTotSE and AvgRelMSE, SHR outperforms
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Statistics Geometric Mean (%) Geometric St. Dev. (log)
Hierarchy Small Large Small Large
Sample 24 240 24 240 24 240 24 240

RelTotSE
OLS -3.8 -1.2 -7.4 -3.4 6.1 2.7 10.1 4.0
SCL -5.7 -1.4 -18.6 -13.5 12.7 4.9 22.9 15.7
CWLS -5.7 -1.4 -17.4 -13.0 12.8 4.9 21.4 15.3
WLS -6.8 -1.4 -18.4 -15.3 17.8 7.0 25.4 19.8
pSHR -6.5 -1.2 -18.4 -14.6 16.5 5.4 25.4 18.2
bSHR -6.2 -1.4 -21.8 -16.8 14.7 5.4 29.8 23.3
SHR -8.0 -2.6 -18.3 -18.4 20.9 11.8 25.5 29.4
EMP -3.5 -2.3 293.2 -11.1 44.7 17.5 119.2 51.0

AvgRelMSE
OLS 0.9 -0.6 12.6 10.8 13.1 6.1 33.5 29.9
SCL -0.9 -0.7 2.3 2.4 7.6 3.1 25.8 23.6
cWLS -0.9 -0.7 -0.4 -0.4 7.8 3.1 19.4 17.9
WLS -1.8 -0.7 -1.0 -1.5 6.8 2.3 18.6 16.9
pSHR -1.6 -0.4 -1.0 -1.2 6.9 3.5 18.6 17.1
bSHR -1.2 -0.7 -1.5 -1.4 7.6 3.0 19.4 17.8
SHR -3.1 -1.9 -0.9 -2.6 11.5 8.0 19.3 15.9
EMP 1.6 -1.7 1730.7 3.3 34.8 13.1 156.1 26.7

Table 4.3: A comparison between the small and the large hierarchy with RelTotSE
and AvgRelMSE for one-step ahead forecast.

the other alternatives, apart from the case of small sample size for the large hierar-

chy, where bSHR is the best. We find that pSHR ia also competitive. As expected

EMP is very sensitive to estimation uncertainty. The increased size of the hierarchy

substantially reduces its performance, while increasing the sample size helps.

In terms of the standard deviation of RelTotSE, we observe similar findings to

the small hierarchy, where OLS is the least variable, while EMP and SHR are the

most volatile. Overall, as the completeness of the covariance matrix increases, so

does the variance of the errors. The larger size of the hierarchy increases it further,

requiring more terms to be estimated, while sample size helps. On the other hand, for

AvgRelMSE, the least variable methods are between WLS, pSHR, and SHR, which

have more complete information than OLS does.

The differences between RelTotSE and AvgRelMSE can be largely explained

by the changing scale across the levels of the hierarchy. Improvements in the top-

level dominates RelTotSE, which is scale dependent. On the other hand, the scale
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independent AvgRelMSE balances the gains across all levels, and therefore differences

are less pronounced. It is important to consider both views. The RelTotSE matches

the operation performed by MinT Reconciliation and directly demonstrates the effects

of uncertainty highlighted by the stochastic coherency. Furthermore, although on

different scales, both RelTotSE and AvgRelMSE indicate that hierarchical forecasting

is beneficial in terms of accuracy. As evidence, as the complexity of the covariance

matrix approximation increases, so does the variance of the errors, in agreement with

our theoretical discussion.

4.5 Forecasting A&E hospital admissions

We apply our understanding of stochastic coherency to Accident and Emergency

(A&E) admission data in a hospital in the United Kingdom. Hospitals in the UK,

as is the case globally, face increased pressure due to the global pandemic, requiring

many resources. This has often caused disruptions in their normal operations, such

as scheduled surgeries, but also in the operations of their A&E departments. To this

end, it is important to have reliable forecasts of demand, across the different groups

of interest, so that the hospital can allocate resources best. In normal conditions,

A&E forecasting is important in the United Kingdom due to the worrying mismatch

between the hospital service quality and financial efficiency (Limb, 2014). Forecasts

can be useful for multiple decisions, such as staff scheduling, procurement of drugs

and other medical supplies, bed utilisation, etc.

The time series consists of 64 bottom-level time series, which are structured

according to age (under 3 years old, between 4-16 years old, between 17-74 years old,

and more than 75 years old), gender (male; female), and disposal type (admitted,

discharged, referred to clinics, transferred, died, referred to health care professionals,

left, and others). Figure 4.8 provides a plot of representative time series from the A&E
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hospital admissions dataset, where we observe that the time series exhibit seasonal

patterns, local trend, and outliers. There are multiple ways to aggregate from the

bottom-level time series to the total number of admissions, for example aggregating

by gender, age, or type first, and then across one of the remaining two characteristics,

and so on. This results in a grouped hierarchy of 135 time series with eight distinct

groups/levels. A map of the hierarchy is presented in Figure 4.7. Labels on the left

indicate the nature of time series at each level, while on the right provide the number

of time series at that level. The lines indicate how the time series are aggregated

between the different levels. Note that some time series in the bottom-level are sparse

and these pose challenges in the modelling.

      Age/Sex/Type 64 series

Age/Type 32 series

      Sex/Type 16 series

Sex/Age 8 series

Type 8 series

Age 4 series

Sex 2 series

Total 1 series

Figure 4.7: Map of the A&E admission hierarchy.

We have been provided weekly data from January 2009 to October 2019. We

produce from 1- to 4-step ahead base forecasts with two sets of in-sample data. The

longer set uses 536 weeks, while a much shorter set has only 100 weeks. The second

introduces additional modelling uncertainty as the number of time series is larger

than the number of observations making the approximation of the covariance matrix

challenging. This helps us validate our findings from stochastic coherency on real

complex hierarchical time series. For both cases we use the same test set of 29 weeks,

allowing for 25 rolling origin forecasts.
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Figure 4.8: Representative time series of A&E hospital admissions dataset for total,
elderly, and admitted male infant group.

Afilal et al. (2016) point that the A&E admission data can be structured in a

hierarchy according to the patients’ characteristics, which may be correlated. Athana-

sopoulos et al. (2017) use ARIMA to model UK A&E admission data, but at a country

level. Forecasting models can also incorporate exogenous variables, such as special

events, holidays, and temperatures, to improve forecast accuracy using regression

models, ARIMA, or ETS (Kam et al., 2010; Xu et al., 2016; Rostami-Tabar and Ziel,

2022).

We use ARIMA and ETS with automatic model selection, as setup for the large

simulation above. We acknowledge that these can be prone to model misspecification

problems. First, we omit important information for A&E forecasting, such as special

events. Second, we do not treat differently the any sparse time series at the bottom

level of the hierarchy. This potential misspecification is of interest, to explore how

the reconciliation approaches impact the forecasts. Thirdly, the automatic ARIMA

function on forecast package does not capture seasonality while some time series are

seasonal. We reconcile base forecasts using all covariance matrix approximations, as

in Figure 4.2 and evaluate the forecasts using RelTotSE and AvgRelMSE.

Table 4.4 presents a comparison between ARIMA and ETS models for the short

and long samples (100 and 536), for all covariance matrix approximations and over

1-4 step ahead forecasts. A negative (positive) number denotes an improvement (de-

terioration) of the error measure, on average. Numbers in bold highlight the best
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Statisics Geometric Mean (%) Geometric St. Dev. (log)
Model ETS ARIMA ETS ARIMA
Sample Short Long Short Long Short Long Short Long

RelTotSE
OLS -0.90 -0.70 -1.40 -3.10 0.50 0.60 0.70 2.30
SCL -0.90 -2.70 -2.20 -7.10 3.70 3.50 7.20 5.90
cWLS -0.70 -2.60 -3.10 -7.40 3.10 2.90 6.90 5.00
WLS -0.90 -3.10 -2.90 -7.90 4.30 3.70 8.00 6.20
pSHR -1.40 -3.30 -2.90 -5.60 4.90 3.30 8.40 4.50
bSHR -1.10 -3.10 -1.30 -6.20 5.90 4.80 9.20 6.30
SHR 0.80 -6.60 0.30 -11.30 5.80 8.00 9.90 9.20
EMP 55.20 -6.90 64.50 -2.60 43.50 41.40 39.90 32.60

AvgRelMSE
OLS 0.30 1.40 1.20 1.30 3.40 3.50 4.40 7.70
SCL -2.20 -1.60 -1.50 -1.50 2.70 3.00 3.70 4.70
cWLS -2.00 -1.50 -2.30 -2.90 2.60 3.40 3.70 4.80
WLS -2.70 -2.00 -2.40 -3.10 3.40 3.30 4.20 4.60
pSHR -3.50 -2.30 -2.70 -1.60 3.80 3.80 4.50 6.30
bSHR -3.20 -2.30 -1.70 -1.60 4.00 3.60 4.60 5.70
SHR -1.30 -5.00 -1.20 -7.00 4.00 5.80 5.50 7.50
EMP 65.40 2.20 51.40 -0.20 35.30 31.70 27.80 27.10

Table 4.4: A comparison between AutoARIMA and ETS models.

performing results. Similar to Table 4.3, we present summary statistics of the error

distribution, with the geometric mean and the logarithm of the geometric standard

deviation. The results are ordered in terms of completeness of the covariance matrix

approximation.

We note that across all results, the more complete covariance matrices, such as

the pSHR, and SHR, offer good forecast accuracy. First, we focus on the cases of

the short in-sample set. We find that pSHR performs overall best. For RelTotSE

and ARIMA the cWLS is best but closely followed by pSHR. We note that the more

complete approximations (SHR and EMP) perform poorly in terms of RelTotSE, while

for AvgRelMSE the SHR improves upon the base forecasts, but still performs worse

than all simpler approximations.

The results for the large sample are contrasting. The SHR performs best. In

the case of RelTotSE and ETS we observe that EMP outperforms all alternatives,
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although closely followed by SHR. The long sample size allows for reliable estimation.

We note that the less complete covariance approximations, although perform worse,

all improve upon the base forecasts.

Looking at the standard deviation of the forecast errors, OLS provides the most

stable relative accuracy for RelTotSE, and SCL together with cWLS for the Av-

gRelMSE. Overall, simpler covariance approximations exhibit a low standard devia-

tion of the forecast errors. More complete ones, such as the SHR and EMP, exhibit

increased deviations, even for the long in-sample set. The proposed covariance ma-

trix approximation, namely cWLS, pSHR, and bSHR, they enable us to compromise

between the accuracy gain and the variability of the error distribution.

The results in Table 4.4 are relative to the base forecasts and do not permit a

direct comparison between ETS and ARIMA, as this is not the aim of the evaluation.

If we compare the two, we find that the reconciled forecasts from ARIMA outperform

the ones from ETS for small sample sizes, and vice versa.

Therefore, we argue that with complex data generating processes, observed in real

data, we again find variability in the performance of forecast reconciliation, especially

when we need to estimate the covariance matrix approximation, instead of relying on

fixed values. This emphasises the importance of stochastic coherency to be considered

in the application of hierarchical forecasting. For the particular case of A&E hospital

admissions, we find that the pSHR covariance approximation that was developed

with the understanding we gained from stochastic coherency resulted overall in good

forecast accuracy, and stability. The performances of cWLS and bSHR were similar.

As a group these performed well against approximations from the literature that were

either too restrictive or they did not consider the additional uncertainty arising from

stochastic coherency.
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4.6 Conclusions

Stochastic coherency shifts our paradigm from deterministic to stochastic forecast

reconciliation. We have to deal with the uncertainties in estimating the reconciliation

weights matrix, originating modelling uncertainty due to limited sample size. This di-

rectly affects the performance of the forecast error, either on average or its variability,

due to the approximation of the covariance matrix.

Our findings show that there are two sources of uncertainty in forecast reconcil-

iation originating from modelling, namely the base forecast uncertainty and the rec-

onciliation weight uncertainty. It becomes obvious that the base forecast uncertainty

is carried forward to the reconciled forecast uncertainty. Model and parameter un-

certainty contaminate the covariance matrix approximation and introduce the second

source of error. Naturally, the sample size affects modelling uncertainty. Moreover,

a larger hierarchy produces more uncertain reconciled forecasts, as there are more

terms to estimate. These become evident with stochastic coherency and the results

from both simulated and real data corroborate with this understanding.

Due to these uncertainties, we cannot say that forecast reconciliation improves

the accuracy consistently all the time. Our findings show that the reconciled forecast

accuracy can be worse than the base forecast accuracy in some cases, even if on

average it ranks better.

In relation to different model specifications, there are some conditions when the

degree of specification affects the efficacy of forecast reconciliation. As stated previ-

ously, if the forecasting models capture the bottom level data adequately, stochastic

coherency indicates that the bottom-up approach is sufficient, and reconciliation will

not add value. For instance, our simulation demonstrates that by having perfect

information, the models can estimate coherent mean and errors, hence forecast rec-

onciliation does not change anything. When the modelling uncertainty is limited,

117



we obtain limited gains from forecast reconciliation. However, when we have mis-

specified models, forecast reconciliation becomes useful, which matches typical cases

in reality.

The benefit of forecast reconciliation appears when there are modelling uncer-

tainties. The MinT Reconciliation reduces the forecast error by redistributing the

modelling uncertainty, which contains the uncertainty of parameter estimation as

well as the unobservable statistical discrepancy, across the hierarchy. As long as the

data generating process is unknown and the forecasts are produced from individual

forecasting models, the MinT Reconciliation can help. Here we did not explore the

effect of statistical discrepancy and it should be explored further in future work.

We also observe a significant accuracy improvement when forecast error covari-

ances are incorporated into the estimated reconciliation weights matrix. Even though

it improves the forecast accuracy generally, it comes at the cost of increased variability

of the error measure. One of the solutions to deal with the variability is to obtain a

good quality reconciliation weights matrix, which reduces the effect of modelling un-

certainty. We can obtain this by managing variances and covariances on the estimated

h-step ahead covariance matrix and this determines the quality of the combination

weights estimation in the estimated reconciliation weights matrix. A weaker argument

for this is given by Kourentzes and Athanasopoulos (2019).

We can estimate a useful reconciliation weights matrix from approximating the

base forecast error covariance matrix. Simple and fixed approximations of the covari-

ance matrix, namely OLS and SCL, are immune to modelling uncertainty and the fixed

estimation of the reconciliation weights matrix is able to limit the variability of the

error measure. On the other extreme, the estimation of EMP and SHR relies heavily

on the base forecast errors, and is prone to modelling uncertainty. Consequently, the

reconciliation weights matrix becomes uncertain. SHR relying on shrinkage remains

widely useful, while EMP is useful only for a very large estimation sample size.

118



Managing the off-diagonals in the covariance matrix construction enables to bal-

ance the accuracy gain and the variability of the forecast error. We argue that using

bSHR and pSHR are potential solutions, because they introduce restrictions, yet

maintain structurally important information. Our findings also show that bSHR and

pSHR results in a similar accuracy gain, but less variable to SHR, while being com-

petitive to the simpler WLS and cWLS. Naturally, this is important in applications of

hierarchical forecasting, where both aspects of accuracy and reliability over time are

important. We find strong evidence of this when we model accident and emergency

admissions for the UK hospital of our case study, where the covariance matrices devel-

oped with our understanding of stochastic coherency performed very competitively,

offering a good balance between accurate and stable forecasts. We argue that these

can aid decision making. Naturally, less variable forecasts are beneficial widely for

operations. For example, in a production setting less erratic forecasts result in more

resilient plans and lower costs (Sagaert et al., 2018). Similar examples can be drawn

from inventory management, where maximum accuracy forecasts do not necessarily

result in the best inventory performance (Kourentzes et al., 2020).

Our discussion extends to probabilistic hierarchical forecasting. The literature

does not take into account modelling uncertainty (Jeon et al., 2019; Taieb et al., 2020).

The density of the reconciled forecasts is also affected by the reconciliation weights

matrix and so is their performance. Future research on this area will help highlighting

the exact influence of modelling uncertainties on probabilistic hierarchical forecasting.

In conclusion, we introduce stochastic coherency to overcome a limitation in the

definition of classical coherency in forecast reconciliation and hierarchical forecast-

ing. Using the concept of stochastic coherency, we give more attention to the error

term from the data generating process. We are able to demonstrate that stochas-

tic coherency is relevant to forecast reconciliation via simulations and a case study

of A&E admissions in a hospital. It allows us to explain observations from the lit-
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erature, where well performing approximations for the covariance matrix introduce

variability in the error distribution, and provides a framework to consider the setup

of hierarchical forecasting in applications.
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Chapter 5

Discussion and Conclusion

This thesis is built on understanding the sources of uncertainty in business forecast-

ing, as classified by Chatfield (2000), regardless of the choice of modelling approaches

(ETS, VES, or Forecast Reconciliation). In particular, we argue that not only model

structure but parameter estimation uncertainty has significant effects on forecasting

performance. Although this is not a new finding, we provide specific details on the

effect and remedies. These unmitigated uncertainties affect the variability of the point

forecasts and the forecasting performance. We address these problems using parame-

ter shrinkage. Collating from the previous chapters, we discuss three important ideas:

(a) understanding uncertainty in business forecasting, (b) estimation and shrinkage,

and (c) reliability in business forecasting. At the end, we discuss the practical impli-

cations, limitations of this thesis and further research avenues.

5.1 Uncertainty in Business Forecasting

Chatfield (2000) classifies three fundamental sources of uncertainty in any statistical

model: (a) model structure, (b) parameter estimation, and (c) sampling. We try to

understand this classification from the bias-variance decomposition. We rewrite Eq.
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2.9 in this chapter to show the decomposition, shown as

E
(
yt − ŷt|t−1|It

)2
= σ2︸︷︷︸

irreducible
variance

+E
(
µt − E

(
ŷt|t−1

)
|It

)2︸ ︷︷ ︸
model bias

+E
(
E
(
ŷt|t−1

)
− ŷt|t−1|It

)2︸ ︷︷ ︸
model variance

. (5.1)

Eq. 5.1 demonstrates that the total variance has three components, namely the ir-

reducible variance, the model bias, and the model variance. The irreducible error

cannot be mitigated further; meanwhile, the other two components can be reduced

by having an appropriate statistical model. In this thesis, we assume that we can

identify the model structure and isolate the model structure uncertainty. In other

words, the total variance is conditional to the ‘known’ or well-identified model struc-

ture. We can argue that the parameter estimation and the sampling uncertainty are

captured in the model variance, and the literature overlooks those. Table 5.1 com-

bines our understanding of Chatfield’s uncertainty classification and the bias-variance

decomposition. Chatfield (2000) argued that the model structure uncertainty is the

most problematic source. Burnham and Anderson (2002) and Hyndman et al. (2008b)

take this idea further by selecting the best-approximating model via minimising an

information criterion to identify the best model structure.

Uncertainty Model Bias Model Variance

Model structure ✓

Model parameter ✓

Sampling ✓

Table 5.1: The uncertainty classification and the bias-variance decomposition

We also need to mitigate the uncertainties in the model variance and this the-

sis provides the evidence. If not, they might impact forecasting performance. For

example, Chapter 4 demonstrates the effects of unmitigated parameter uncertainty

on the reliability of the forecasting performance of hierarchical methods over forecast
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origins. Chapter 2 and 3 attempt to mitigate this issue by implementing a shrinkage

estimator, either in a univariate or a multivariate model. The results are mixed in the

sense that the implementation results in more accurate point and interval forecasts

for the univariate model but inaccurate ones for the multivariate model. In addition,

exploring the model variance enables us to understand the interaction between pa-

rameters in models. For example, in Chapter 2, we demonstrate a covariance between

smoothing parameters and initial value estimation, which affects the prediction inter-

val performance. In Chapter 3, we show a compensating effect between the covariance

matrix and the persistence matrix.

We also demonstrate an intriguing finding in Chapter 3. Given the same model

structure, estimating parameters independently and simultaneously with a numerical

optimisation routine results in different estimates. It indicates that the parameter

search between univariate and multivariate models is different, which is worth ex-

ploring. We rely on the numerical optimisation routine to estimate ETS and VES

parameters instead of finding the solution analytically. Thus, we propose to incorpo-

rate ‘optimisation uncertainty’ in the classification.

This thesis provides evidence that we need to revise the uncertainty classification

and change our approach to dealing with these uncertainties. We shall mitigate each

uncertainty individually and show that parameter shrinkage can be a sensible solution

and that it produces accurate forecasts.

5.2 Estimation and Shrinkage

The amount of information we know about the model affects how we estimate the

model. Table 5.2 describes four modeling scenarios, where each depends on how

much we know about the true model structure, parameters, and sample size. We

have similar experimental designs in each chapter to control the source of uncertainty,
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where we adapted the scenario from Athanasopoulos et al. (2017).

Scenario 1 2 3 4

True model Known Known Unknown Unknown

True parameter Known Unknown Unknown Unknown

Sample size Sufficient Sufficient Sufficient Limited

Table 5.2: Scenarios in which we know the true model and have sufficient sample
sizes.

Scenario 1 would not happen in reality, where we know the model perfectly, and

the sample size becomes irrelevant anymore. We only have the irreducible uncer-

tainty. Scenario 2 and 3 are suitable for the maximum likelihood estimation, as we

have sufficient sample sizes to estimate parameters consistently and efficiently. How-

ever, Scenario 3 has more uncertainties than Scenario 2 because we have the model

structure uncertainty. Examples of Scenario 2 are apparent in any statistical infer-

ence book, especially in estimating parameters given a known probability distribution

(Casella and Berger, 2002). Meanwhile, the methodology proposed by Hyndman et al.

(2008b) resembles Scenario 3, where they select the model structure via the informa-

tion criterion and estimate the parameters with the maximum likelihood.

Scenario 4 represents reality, especially in business, where we have limited relevant

information and know nothing about the true model and parameters. In this case,

the model may suffer from overfitting, where the model tries to fit the data perfectly.

For example, smoothing parameters in ETS tend to be higher than the optimal ones.

This phenomenon has been observed by Barrow et al. (2021). If we stick with the

uncertainty classification, the sampling uncertainty potentially results in parameter

uncertainty because we need more information to estimate the parameters efficiently.

As a result, these uncertainties become a joint uncertainty that cannot be mitigated

independently.

This thesis focuses on the parameter estimation in Scenario 4, where we do not
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have enough sample sizes to conform to the maximum likelihood properties. In such

cases, the estimates of parameters may not be efficient and affect forecasting perfor-

mance. As discussed in Chapter 1, the linear combination approaches in business

forecasting can mitigate the overall uncertainty, improving the forecast accuracy on

average. However, if the combination is not done carefully, as seen in Chapter 4,

this might amplify the final forecast uncertainty. We need some mitigation to handle

the model structure and the parameter uncertainty in the first place. As for the for-

mer, selecting the best-approximated model via minimising an information criterion

is promising.

We propose implementing parameter shrinkage approaches to overcome the pa-

rameter uncertainty. Shrinkage has a wide spectrum, namely the fixed and data-

dependent shrinkage. The fixed shrinkage is when we force some parameters to zero

a priori. There are many reasons to force them to zero. First, one may have a prior

subjective belief that some parameters have to be zero. It is closely related to the

modellers’ judgement. We can extend this to the Bayesian approach where the pa-

rameters might have a prior distribution with a zero mean (Bhattacharya et al., 2015;

Kastner and Huber, 2020). Second, model identification may be the main reason for

the fixed shrinkage. For example, some parameters in VAR models are set to zero

to mitigate issues from simultaneous equations, resulting in structural VAR models

(Lütkepohl, 2005). Third, the fixed shrinkage can help avoid significant estimation

errors. In a covariance matrix, we often set the covariances to be zero as it is diffi-

cult to estimate a full covariance matrix. Oftentimes, it needs a shrinkage estimator

(Daniels and Kass, 2001; Schäfer and Strimmer, 2005). We provide evidence that the

fixed shrinkage mitigates the parameter uncertainty. In Chapter 3, we see that VES

models perform well when the cross-smoothing parameters and the covariances are

shrunk to zero arbitrarily. In Chapter 4, forcing some covariances to zero improves

the forecast accuracy of the forecast reconciliation on average and results in a less
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variable forecast error distribution.

Instead of shrinking parameters to zero heuristically, we can control the amount

of parameter shrinkage depending on the data at hand. We call this as the data-

dependent shrinkage. It is often used in regression models, for example, ridge, lasso,

and elastic net regression (Hoerl and Kennard, 2000; Tibshirani and Taylor, 2011;

Zhou, 2007; Hastie et al., 2009, 2015). We implement the data-dependent shrinkage

on different time series models by modifying the loss function to include a penalty

function. In the new loss function, a hyper-parameter controls the amount of the

penalisation. We have evidence in Chapter 2 that shrinking smoothing parameters

yields forecast accuracy improvement. Linking back to Table 5.2, we can move from

Scenario 3 to 4 using the shrinkage estimator. Suppose we have a limited sample size;

the estimator will typically result in some amount of shrinkage in the parameters.

When the sample size increases, we can still use the shrinkage estimator. We anticipate

that the shrinkage would be limited, and the shrinkage hyper-parameter would be close

to zero. In other words, the estimation will be very similar to the maximum likelihood

or the one proposed by (Hyndman et al., 2008b).

We have sufficient evidence to postulate that it is important to implement pa-

rameter shrinkage estimation in any model/ method. It is a flexible implementation,

as we can use it when we have a limited or sufficient sample. It can be a potential

safety net to mitigate issues from overfitting. In terms of mitigation, we have two

options depending on the situation. Suppose we have a large model and a limited

sample size; then implementing the fixed shrinkage can be our ‘best bet’ solution. On

the other hand, the data-dependent shrinkage estimator is a sensible solution as we

can transition from it to the maximum likelihood, conditional on the sample size.
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5.3 Reliability in Business Forecasting

Apart from communicating our forecasts to the decision-makers, we need to make our

forecasts trustworthy enough for them (Gönül et al., 2012). Spavound and Kourentzes

(2022) argue that reliability in forecasting is an important feature to gaining decision-

makers’ trust. Reliability in forecasting can mean two things. First, a forecasting

model/ method is reliable when it performs well consistently across forecast origins.

Second, reliable forecasts suggest that the forecasts are concentrated around its global

model. For example, for a local-level model, the reliable forecasts will be close to its

mean. We suspect that this reliability may result in cost efficiency due to avoiding

erratic scheduling and low service-level (Kadipasaoglu and Sridharan, 1995) and the

effectiveness of the forecasting task to support decisions.

This thesis provides two examples of reliability in forecasting. Chapter 2 shows

that shrinking smoothing parameters will result in forecasts close to its global model.

This implementation leads to more accurate point and interval forecasts. Chapter 4

shows that there is a trade-off between the average performance and the variability

in performance, i.e. when we use available information to estimate the covariance

matrix, we may get the most accurate forecasts on average at the cost of increased

variability. On the other hand, forcing the covariances to zero may lead to moderate

forecast accuracy with manageable forecast errors. It has an important practical

implication. We could handle thousands of time series in forecast reconciliation,

which may consume many resources. Ensuring that the approach is reliable would be

a safety net for decision makers that they get accuracy improvements when dedicating

a considerable cost of resources.

Reliability is a relatively new concept in business forecasting and is open to

discussion. First, reliability can be a sensible candidate for defining ‘good’ forecasts,

as some decision-makers may emphasise reliability over accuracy. Second, there is a
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possibility to measure reliability, either in the forecasting performance or the forecasts.

Third, we need to understand whether this concept will lead to better decisions. For

example, in inventory management, reliable forecasting might reduce inventory costs.

Overall, reliability in business forecasting may become an interesting research avenue,

especially in a more uncertain and pessimistic society about the future (Tutton, 2022).

5.4 Practical Implications

In this section, we discuss the possible implications of this thesis for practice, which

are relevant to managers and researchers. This thesis provides evidence that a multi-

variate model for a multivariate time series can be tricky. The model requires a large

sample size to estimate all parameters efficiently. Given the limited resources avail-

able to a manager, it would be sensible to implement univariate time series models or

the forecast reconciliation with a simple covariance matrix estimation approximation

(Athanasopoulos et al., 2017; Pritularga et al., 2021). Utilising all information may

not be necessary to obtain accurate forecasts. Instead, using relevant information,

i.e., sacrificing cross-time series information, suffices to obtain accurate forecasts in

light of potential large estimation errors.

Introducing a hyperparameter to a forecasting model offers greater control over

estimating the model parameters. An additional ability to tune the model is a way to

remedy the effect of ‘algorithm aversion’ (Dietvorst et al., 2015, 2018). For example,

the modeller/ decision maker can decide which parameters are set to zero and this

can make the model more trustworthy. They can also adjust the hyper-parameter

optimisation according to their utility functions. However, the application has to be

done carefully as Sroginis (2021) shows that the forecasting performance of judgmen-

tally tuning the model can be low. Linking to the decision maker’s utility function,

Athanasopoulos and Kourentzes (2022) provide a series of practical recommendations
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to accommodate the decision maker’s utility function in the hierarchical forecasting

problem.

5.5 Limitations

Due to its underlying assumptions, this thesis has some limitations relating to the

model structure, the data-generating process, the loss function in a multivariate set-

ting, and the hyper-parameter estimation.

Our methodology assumes that the model structure is known to observe the ef-

fect of parameter uncertainty. Specifically, in our case study, the model structure is

selected via minimising an information criterion as suggested by Burnham and Ander-

son (2002) and Hyndman et al. (2008b), and it is sufficient for our purpose. Note that

our case differs from shrinkage in regression, as the latter mitigates the parameter and

the model structure uncertainty simultaneously. Ours only mitigates the parameter

uncertainty and we do not perform any model selection in our implementation.

Our findings are tied to our design of the DGP. We need evidence of whether our

parameter shrinkage performs well in different types of DGP. Our DGP also has a

‘moderate’ sampling frequency, which is neither high nor intermittent. We speculate

that the connection between smoothing parameters and initial values will impact both

cases, albeit differently. We also suspect that our implementation may be sensitive

to a structural break, where the location of the time series shifts. Lower smoothing

parameters mean that the ETS remembers the past more, and the structural break

effect carries over to the forecasts. It means that the model may need to be more

adaptive to handle it.

Third, we need to rethink our multivariate shrinkage loss function. Currently,

we only include the persistence matrix in the penalty function. We may need to in-

clude the covariance matrix because we observe a compensating effect between both
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parameters. More philosophically, a multivariate model implicitly assumes that the

whole system has the same loss function. Suppose we have sales data for different

stores; employing a multivariate model means that each store has the same loss func-

tion. Athanasopoulos and Kourentzes (2022) and Babai et al. (2022) have pointed

this problem in hierarchical forecasting.

Lastly, our shrinkage approach in ETS is computationally more expensive than

the maximum likelihood estimation because we have an additional hyper-parameter.

It might not be appealing for forecasters as business often has thousands of time

series to forecast with the potential to investigate more efficient routines. Currently,

we rely on derivative-free optimisation algorithms available on R (Johnson, 2022), and

we argue for the importance of examining the optimisation problem in forecasting,

specifically.

5.6 Future Research

This thesis provides various options for future research in business forecasting, espe-

cially in methodology development and applications, such as inventory management

and retail forecasting. First, we can extend our shrinkage estimator to conduct model

selection by shrinking the initial values. The current model selection in ETS has a

binary approach, i.e., whether a state exists or does not. However, we can extend our

modelling to those abrupt jumps between models (Svetunkov et al., 2022b). Instead,

we can shrink states to zero and effectively reduce the effect of the corresponding

states on the actual time series. We can start from a general ETS model with pos-

sible states and let the shrinkage estimator select the model. The same idea can be

applied in VES. The current VES requires homogeneous time series, e.g., all time se-

ries have seasonality. By implementing model selection with shrinkage, we can model

VES with heterogeneous time series.
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Secondly, we can extend the shrinkage implementation with Bayesian estimators.

The subjective belief that some parameters are zero can be translated to a prior

distribution of some parameters (Bhattacharya et al., 2015). From Chapter 2, we

can see a correlation between the smoothing parameters’ value and the initial values’

variance. It shows that each parameter’s statistical properties affect the model’s

estimation and performance. A study by Andrawis and Atiya (2009) implements

Bayesian estimation, showing promise, and we can generalise it to develop a new

estimation and selection methodology in SSOE state-space models.

Third, we need to investigate the loss function in a multivariate model. The

current loss function assumes that the whole system has a single loss function. On

the other hand, each decision related to each time series in the multivariate system

might have different objectives. For example, a procurement manager has a different

objective function than a marketing manager. It relates to a question about con-

necting the decision-maker’s loss function to the model’s one. Trapero et al. (2019),

Kourentzes et al. (2020) and Liu et al. (2022) attempt to combine the optimisation and

the forecasting problem in the inventory setting. This issue becomes more prominent

in hierarchical forecasting because each node might have a different, possibly con-

flicting, objective function. For example, decision-makers at the strategic level have

different goals from ones at the operational level. Athanasopoulos and Kourentzes

(2022) and Babai et al. (2022) raise this issue, and the former proposes a Pareto chart

to incorporate the multi-objective decisions in hierarchical forecasting.

Regarding hierarchical forecasting, the literature often treats the hierarchy as a

part of the problem setup, and it is known. However, we can argue that the hierarchy

is prone to uncertainty over time. For example, a product category hierarchy can

be uncertain because a product might be discontinued or a new product might be

introduced. There are also some problems defining the granularity of time series in

a temporal hierarchy. These counterexamples highlight a possibility of a stochastic
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hierarchy in terms of structure and not estimates. It might be challenging to say

whether a hierarchy represents the truth of DGP. Still, we acknowledge that it is

valuable to accumulate more information outside the time series of interest.

Lastly, the concept of reliability is emerging in business forecasting, and there

are many aspects that we need to explore. We need to define the concept of reliability

clearly. One way would be to explore the statistical properties of the forecast error

distribution. As the reliability is quantified, we can measure its effects on the decisions,

e.g., the impact of reliability on inventory costs.
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