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Abstract

The ability to efficiently model complex datasets using probabilistic models is a key

component of many machine learning workflows as it offers the ability to extract

accurate predictions and well-characterised uncertainty estimates. Consequently, it

becomes possible to develop models that can be deployed as decision-making tools.

However, evaluating such models is often computationally expensive, particularly

when assumptions of independence and identically distributed data can no longer

be made. This thesis explores how Gaussian process models can be used to model

climate data, and how the kernel function of a Gaussian process can be adapted to

operate on data observed on a network. Methodological developments are proposed

to enable faster inference for Gaussian processes, to use Gaussian processes as

tools for embedding hypergraphs, and to extract latent functions from vector-

valued datasets. In application, this thesis explores the effect of Covid-19 on air

pollution in the United Kingdom, how air pollution varies at a street-level, the

latent structure of political networks, and what future warmings can be expected

on planet Earth. The consideration of how such models can be computationally

developed is carefully considered throughout, with a specific chapter dedicated to

the development of a new Gaussian process software package that allows for new

computational methods to be developed and tested.
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Chapter 1

Introduction

This thesis contributes to the methodological intersection of probabilistic mod-

elling and environmental sciences by developing Gaussian process (GP) models

to better understand and model problems concerning air quality and climate

science. Consequently, this work seeks to affect both statisticians and environ-

mental scientists by presenting the complex challenges that accompany modelling

environmental data to the statistics and machine learning communities, whilst

simultaneously presenting a suite of new methodologies to the environmental

sciences community to allow them to better model the complex phenomena that

they are frequently presented with.

Within this thesis, we adopt a probabilistic stance when approaching either a

methodological or an applied problem. This is appealing, as it allows us to build

models that attain accurate predictions and precisely characterise the uncertainty

in the prediction. When working in an applied field, such as environmental

sciences, this becomes an indispensable tool as it allows the end users of our work

to reason and make decisions under the uncertainty of the model. Practically

speaking, this may involve placing a new air quality sensor in an area of high
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Chapter 1. Introduction

predictive uncertainty to improve our understanding of where data is currently

sparse, or providing faithful estimates of the range of possible global surface

temperatures in 2100.

1.1 Probabilistic modelling

A probabilistic modelling task is comprised of an observed dataset y for which we

construct a model. The parameters θ of our model are unknown, and our goal is

to conduct inference to determine their range of likely values. To achieve this, we

apply Bayes’ theorem (Bayes, 1763; Laplace, 1774)

p(θ |y) = p(θ)p(y | θ)
p(y) = p(θ)p(y | θ)∫

θ p(y, θ)dθ
, (1.1)

where p(y | θ) denotes the likelihood, or model, and quantifies how likely the

observed dataset y is, given the parameter estimate θ. The prior distribution

p(θ) reflects our initial beliefs about the value of θ before observing data, whilst

the posterior p(θ |y) gives an updated estimate of the parameters’ value, after

observing y. The marginal likelihood, or Bayesian model evidence, p(y) is the

probability of the observed data under all possible hypotheses that our prior model

can generate (Mackay, 1992). Within Bayesian model selection, this property

makes the marginal log-likelihood an indispensable tool. Selecting models under

this criterion, an approach known as Bayes’ factors, places a higher emphasis on

models that can generalise better to new data points.

When the posterior distribution belongs to the same family of probability

distributions as the prior, we describe the prior and the likelihood as conjugate to

each other. Such a scenario is convenient in Bayesian inference as it allows us to

derive closed-form expressions for the posterior distribution. When the likelihood

2
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function is a member of the exponential family, then there exists a conjugate

prior. However, the conjugate prior may not have a form that precisely reflects

the practitioner’s belief surrounding the parameter. For this reason, conjugate

models seldom appear; one exception to this is Gaussian process (GP) regression

that we will present in Section 1.3.3.

As a motivating example of the conjugate prior, consider the following model:

y |µ ∼ N (µ, σ2) (1.2)

µ ∼ N (m, τ 2) . (1.3)

We have a Gaussian likelihood function with unknown mean parameter µ and

known variance σ2. By placing a Gaussian prior on µ, we can analytically derive

the corresponding posterior distribution as

p(µ |y) = N
(
m

σ2

nτ 2 + σ2 + ȳ
nτ 2

nτ 2 + σ2 ,
τ 2σ2

nτ 2 + σ2

)
, (1.4)

where ȳ = n−1∑n
i=1 yi. The prior and posterior distributions are both Gaussian

distributions, thus verifying the model’s conjugacy. We visualise this update in

Figure 1.1.

When our model does not contain a conjugate prior, we must compute the marginal

log-likelihood to normalise the posterior distribution and ensure it integrates to 1.

For models with a single, 1-dimensional parameter, it may be possible to compute

this integral analytically or through a quadrature scheme, such as Gauss-Hermite

(Abramowitz et al., 1972). However, in machine learning, the dimensionality of

θ is often large and the corresponding integral required to compute p(y) quickly

becomes intractable as the dimension grows. Techniques such as Markov chain

Monte-Carlo (MCMC), variational inference (VI), or Stein variational gradient

3
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Figure 1.1: The closed form Gaussian posterior p(µ |y) distribution of the mean
parameter µ whose prior p(µ) is also a Gaussian distribution.

descent (SVGD) allow us to approximate1 integrals such as the one seen in p(y).

We devote Chapter 2 to considering how SVGD can be applied to a range of GP

models.

Once a posterior distribution has been obtained, we can make predictions at

new points y⋆ through the posterior predictive distribution. This is achieved by

integrating out the parameter set θ from our posterior distribution through

p(y⋆ |y) =
∫
θ
p(y⋆, θ |y)dθ (1.5)

=
∫
θ
p(y⋆ | θ,y)p(θ |y)dθ . (1.6)

As with the marginal log-likelihood, evaluating this quantity requires computing

an integral which may not be tractable, particularly when θ is high-dimensional.

It is difficult to communicate statistics directly through a posterior distribution as

it is often not possible to assigned contextual information to the distribution’s

shape within the scope of the modelling task at hand. To resolve this, we

often compute and report moments of the posterior distribution which serve
1In the asymptotic limit, MCMC will be exact. However, this is a theoretical result that we

cannot rely on computationally.
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as informative summary statistics. When the margnial posterior distribution is

Gaussian (Section 1.3.1), we often report the first moment and the centred second

moment

µ = E[θ |y] =
∫
θp(θ |y)dθ (1.7)

σ2 = V[θ |y] =
∫

(θ − E[θ |y])2 p(θ |y)dθ . (1.8)

Through this pair of statistics, we may communicate our beliefs about the most

likely value of θ i.e., µ, and the uncertainty σ around the expected value.

However, as with the marginal log-likelihood and predictive posterior distribution,

computing these statistics again requires a potentially intractable integral.

1.2 Variational inference

When the marginal log-likelihood of our Bayesian model is intractable, we

are unable to evaluate the true posterior distribution as it is only known

in its unnormalised form i.e., p(θ |y) ∝ p(y | θ)p(θ). VI introduces a λ-

parameterised approximating distribution qλ(θ) that belongs to a family of

probability distributions, Q, such as the family of Gaussian distributions. VI

minimises the distance between qλ(θ) and the true posterior p(θ |y) by optimising

with respect to λ (Jordan et al., 1998). We refer to q as the variational distribution,

λ as the variational parameters, and hereon drop the dependence of q on λ for

notational clarity.

The Kullback-Leibler divergence (KLD) (Kullback et al., 1951) is a function

commonly used within VI to measure the discrepancy from2 one density to another.
2The KLD is an asymmetric function, so we say it is evaluated from one density to another,

not between.
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Definition 1.2.1 (Kullback-Leibler Divergence) Let p and q be continuous

probability distributions whose support set is X . The Kullback-Leibler divergence

from q to p is defined as

KL(q(·) || p(·)) = −
∫

X
q(·) log p(·)

q(·)dθ (1.9)

= −Eq
[
log p(·)

q(·)

]
. (1.10)

Within VI, it is common to let the distribution p for which we are trying to

minimise against be the true posterior distribution p(θ |y). However, directly

minimising Equation (1.9) is not possible as it requires explicit evaluation of

p(θ |y) whose unknown form is the reason we have to use VI. We can reveal

the dependence on the marginal log-likelihood in Equation (1.9) by expanding the

posterior distribution to give

KL (q(θ) || p(θ |y)) =
∫
q(θ) log q(θ)

p(θ |y) (1.11)

= Eq [log q(θ)]− Eq
[
log p(θ,y)

p(y)

]
(1.12)

= Eq[log q(θ)]− Eq[log p(θ,y)] + log p(y) . (1.13)

We can see that the intractable marginal log-likelihood p(y) is present in

Equation (1.13) and it is therefore not possible to evaluate the corresponding

KLD term. Instead, by rearranging Equation (1.13) and switching the signs, we

can define the tractable evidence lower bound (ELBO) L as

log p(y)−KL (q(θ) || p(θ |y)) = Eq[log p(θ,y)]− Eq[log q(θ)]︸ ︷︷ ︸
=L(q)

. (1.14)
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The marginal log-likelihood is constant with respect to the variational posterior,

and the evidence lower bound (ELBO) is, therefore, equal to the negative KLD

from the variational posterior to the true posterior, up to this constant term.

Crucially, since the KLD is non-negative, the left-hand side of Equation (1.14) is a

lower bound on the marginal log-likelihood. Therefore, maximisation of the ELBO

gives a computationally tractable way to minimise the KLD from the variational

approximation to the true posterior distribution. In Figure 1.2 we visualise the

variational approximation to the Gaussian-Gaussian model that was presented in

Equations (1.2)–(1.4). After initialising the variational mean of q to be 1 and the

variance as 0.52, we can see that over 50 iterates of the Adam (Ba et al., 2015)

optimiser with a learning rate of 0.01, the variational approximation perfectly

recovers the true posterior distribution. This is to be expected, given that the

true posterior distribution is a Gaussian distribution and therefore belongs to our

family of variational distributions i.e., p(θ |y) ∈ Q.

We can further examine the ELBO term in Equation (1.14) and reduce it into

quantities that are simple to compute in most computational settings. To do this,

we first expand the joint distribution in Equation (1.14) before collecting the terms

up into an expected log-likelihood function and a KLD term from the variational

distribution to prior

L(q) = Eq[log p(y | θ)] + Eq[log p(θ)]− Eq[log q(θ)] (1.15)

= Eq
[
log p(θ)

q(θ)

]
+ Eq [log p(y | θ)] (1.16)

= Eq[log p(y | θ)]−KL(q(θ) || p(θ)) . (1.17)

When optimising Equation (1.15) with respect to the variational parameters,

we can see that the KLD term acts as a prior regularisation term that will
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penalise a variational approximation that diverges too far from the model’s prior

distribution, whilst the expected log-likelihood measure will encourage variational

approximations that best explain the observed dataset.
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Figure 1.2: Comparison of the variational approximation q(µ) to the true posterior
distribution p(µ |y) under the model given in Equations (1.2)–(1.4). We visualise
the variational approximation after 1, 20 and 50 steps of the optimisation routine,
as denoted by the superscript on q.

We will now introduce an alternative way to bound the marginal log-likelihood in

VI that relies on Jensen’s inequality. This construction will be a helpful framework

to keep in mind for the remainder of this thesis. We start by establishing the notion

of a convex function.

Definition 1.2.2 (Convex function) A function f : Rd → R is convex if and only

if for any x1, x2 ∈ Rd and every c ∈ [0, 1] we have

cf(x1) + (1− c)f(x2) ≥ f(cx1 + (1− c)x2) . (1.18)

Informally, a convex function is a U-shaped function such that if we pick any two

values x1 and x2 and draw a straight line between f(x1) and f(x2), then the line

will be above the function’s curve. We visualise this in Figure 1.3.

Using the notion of a convex function, we can define Jensen’s inequality.
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Theorem 1.2.3 (Jensen’s Inequality) Let y be a random variable and f be a

convex function. Jensen’s inequality states

f (E [y]) ≤ E [f (y)] . (1.19)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

x

0

1

2

3

4

f
(x

) f

x1

x2

Figure 1.3: The convex function f(x) = x2 evaluated at x1 = −0.75 and x2 = 1.5.

Starting from the definition of the marginal log-likelihood, we use Jensen’s

inequality (Jensen, 1906) to derive an ELBO term as follows

log p(y) = log
∫
p(y, θ)dθ (1.20)

= log
∫
p(y, θ)q(θ)

q(θ)dθ (1.21)

= logEq
[
p(y, θ)
q(θ)

]
(1.22)

≥ Eq
[
log p(y, θ)

q(θ)

]
. (1.23)

Having applied Jensen’s inequality to get from the penultimate line to the final

line, we can rearrange Equation (1.20) to obtain a computationally tractable bound

9
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that is equivalent to that given in Equation (1.15)

Eq
[
log p(y, θ)

q(θ)

]
= Eq[log p(y, θ)− log q(θ)] (1.24)

= Eq[log p(y | θ)] + log p(θ)− log q(θ)] (1.25)

= Eq[log p(y | θ)]−KL(q(θ) || p(θ)) . (1.26)
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Figure 1.4: Demonstration of the shortcomings experienced in variational inference
when the target distribution is non-Gaussian.

We close this section with a word of caution that, whilst elegant in its formulation

and fast to compute, VI solutions can be inaccurate when the posterior distribution

does not belong to the variational family of distributions Q specified by the

practitioner. This error between the true distribution and the variational

approximation is referred to as the approximation gap (Cremer et al., 2018). As

an example of this, we consider the synthetic example where the distribution we

are trying to approximate p is a Cauchy distribution with a location of 0 and scale

of 1.5 (Figure 1.4). With a variational Gaussian approximation, the variational

distribution q recovers sensible parameters with a location of 0.04 and a scale of

1.59. However, the variational approximation is unable to precisely model the

underlying density’s heavy tails as it is constrained by the choice of Q. Whilst a

more accurate variational approximation could be obtained by letting Q be the

10
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family of Cauchy distributions, it is often hard in practice to accurately specify the

correct form of Q apriori. Further, many of the computational enhancements that

VI provides depend on Q being the family of Gaussian distributions. We address

this issue in the case of GPs in Chapter 2.

1.3 An introduction to Gaussian processes

For a set X , a stochastic process f : X → R is a GP if for any finite collection

X = {x1,x2, . . . ,xn} ⊂ X the random variable f := f(X) is distributed according

to a joint Gaussian distribution (Rasmussen et al., 2006). For this reason, we begin

this section by briefly reviewing Gaussian random variables and some basic results

from probability theory that describe how we can marginalise and condition one

Gaussian random variable on another Gaussian random variable. Notationally,

we will let x and y be univariate random variables and x and y be multivariate

random variables.

1.3.1 Gaussian random variables

We begin our review with the simplest case; a univariate Gaussian random variable.

Definition 1.3.1 (Univariate Gaussian random variable) Let y be a random

variable, µ ∈ R be a mean scalar and σ2 ∈ R>0 a variance scalar. If y is a

Gaussian random variable, then the density of y is

N (y |µ, σ2) = 1√
2πσ2

exp
(
−(y − µ)2

2σ2

)
, (1.27)

We visualise three different parameterisations of Equation (1.27) in Figure 1.5.
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Figure 1.5: Probability density functions of three univariate Gaussian random
variables with different mean and variance parameters.

A Gaussian random variable is uniquely defined in distribution by its mean µ

and variance σ2 and we therefore write y ∼ N (µ, σ2) when describing a Gaussian

random variable. Further, we can compute these two quantities by

E[y] = µ , E
[
(y − µ)2

]
= σ2 . (1.28)

Extending this concept to vector-valued random variables reveals the multivariate

Gaussian random variables which brings us closer to the full definition of a GP.

Definition 1.3.2 (Multivariate Gaussian random variable) Let y be a D-dimensional

random variable, µ be a D-dimensional mean vector and Σ be a D×D covariance

matrix. If y is a Gaussian random variable, then the density of y is

N (y |µ,Σ) = 1
√

2πD/2|Σ|1/2
exp

(
−1

2 (y− µ)T Σ−1 (y− µ)
)
. (1.29)

We visualise three different 2-dimensional multivariate Gaussian random variables

in Figure 1.6.
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Figure 1.6: Probability density functions of three bivariate Gaussian random
variables. Each random variable has an expectation of (0, 0), marginal variance of
1, and correlation of ρ.

Extending the intuition given for univariate Gaussian random variables in

Equation (1.28), we can obtain the mean and covariance by

E[y] = µ , Cov(y) = E
[
(y− µ)(y− µ)⊤

]
(1.30)

= E[yy⊤]− E[y]E[y]⊤ (1.31)

= Σ . (1.32)

The covariance matrix is a symmetric positive definite matrix that generalises the

notion of variance to multiple dimensions. The matrix’s diagonal entries contain

the variance of each element, whilst the off-diagonal entries quantify the degree to

which the respective pair of random variables are linearly related; this quantity is

called the covariance.

Assuming a Gaussian likelihood function in a Bayesian model is attractive

as the mean and variance parameters are highly interpretable. This makes

prior elicitation straightforward as the parameters’ values can be intuitively

contextualised within the scope of the problem at hand. Further, in models where

the posterior distribution is Gaussian, we again use the distribution’s mean and

variance to describe our prediction and corresponding uncertainty around a given

13
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event occurring.

−4 −3 −2 −1 0 1 2 3 4
−4
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p(x,y)

p(x)

p(y)

Figure 1.7: A joint probability distribution p(x,y) with marginal distributions
p(x) = N (0, 12) and p(y) = N (0.25, 0.52). The inner panel visualises 1000 draws
from the joint distribution (red points) and contours of constant density (grey
lines). In the side panels, we observe the probability distribution of each marginal.

Not only are Gaussian random variables highly interpretable, but linear operations

involving them lead to analytical solutions. We have already seen this in the

conjugate prior example given in Section 1.1, but a second example that will be

useful in the sequel is the marginalisation and conditioning property of sets of

Gaussian random variables. We will present these two results now for a pair of

Gaussian random variables, but it should be stressed that these results hold for

any finite set of Gaussian random variables.

For a pair of random variables x and y defined on the same support, the

distribution over them both is known as the joint distribution. The joint

distribution p(x,y) quantifies the probability of two events, one from p(x) and

another from p(y), occurring at the same time. We visualise this idea in Figure 1.7.

Definition 1.3.3 (Joint Gaussian distribution) Let p(x,y) be the joint probability

14



1.3. An introduction to Gaussian processes

distribution defined over x ∼ N (µx,Σxx) and y ∼ N (µy,Σyy). We define the

joint distribution as

p


x

y


 = N


µx

µy

 ,
Σxx,Σxy

Σyx,Σyy


 , (1.33)

where Σxy is the cross-covariance matrix of x and y.

When presented with a joint distribution, two tasks that we may wish to perform

are marginalisation and conditioning. For a joint distribution p(x,y) where we are

interested only in p(x), we must integrate over all possible values of y to obtain

p(x). This process is marginalisation. Conditioning allows us to evaluate the

probability of one random variable, given that the other random variable is fixed.

For a joint Gaussian distribution, marginalisation and conditioning have analytical

expressions where the resulting distribution is also Gaussian.

Definition 1.3.4 (Gaussian marginalisation and conditioning) For a joint Gaus-

sian random variable of the form given in Equation (1.33), the marginalisation of

x or y is given by

∫
p(x,y)dy = p(x) = N (x |µx,Σxx) (1.34)∫
p(x,y)dx = p(y) = N (y |µy,Σyy) . (1.35)

The conditional distributions are given by

p(x |y) = N
(
µx + ΣxyΣ−1

yy(y− µy),Σxx −ΣxyΣ−1
yyΣyx

)
(1.36)

p(y |x) = N
(
µy + ΣyxΣ−1

xx(x− µx),Σyy −ΣyxΣ−1
xxΣxy

)
. (1.37)
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Returning to the KLD that was presented in Definition 1.2.1, when evaluating

the KLD from one Gaussian random variable to another, the divergence can

be computed in closed form. When computing a variational approximation to

the posterior distribution of a GP, something that we will do in the sequel, this

analytical form will be indispensable.

Definition 1.3.5 (Kullback-Leibler between multivariate Gaussians) Letting p(x) =

N (µx,Σxx) and q(y) = N
(
µy,Σyy

)
, the KLD from p(x) to q(y) is given by

KL (p(x) || q(y)) = 1
2
(

trace
(
Σ−1

yyΣxx
)

+
(
µy − µx

)⊤
Σ−1

yy

(
µy − µx

)
−D + log det Σyy − log det Σxx

)
, (1.38)

where x and y are random variables with equal dimensions D.

Within this section, we have introduced the idea of multivariate Gaussian random

variables and presented some key results concerning their properties. In the

following section, we will lift our presentation of Gaussian random variables to

GPs.

1.3.2 Gaussian processes

When transitioning from Gaussian random variables to GPs there is a shift in

thought required to parse the forthcoming material. Firstly, to be consistent with

the general literature, we hereon use x to denote an observed vector of data points,

not a random variable as has been true up until now. To distinguish between

matrices and vectors, we use bold upper case characters e.g., X for matrices, and

bold lower case characters for vectors e.g., x.

We are interested in modelling supervised learning problems, where we have n ob-
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1.3. An introduction to Gaussian processes

servations y = {y1, y2, . . . , yn} ⊂ Y at corresponding inputs X = {x1,x2, . . . ,xn} ⊂

X . We aim to capture the relationship between X and y using a model f with

which we may make predictions at an unseen set of test points X⋆ ⊂ X . We

formalise this by

y = f(X) + ε , (1.39)

where ε is an observational noise term. We collectively refer to (X,y) as the

training data and X⋆ as the set of test points. This process is visualised in

Figure 1.8. As we shall go on to see, GPs offer an appealing workflow for scenarios

such as this, all under the Bayesian framework of Section 1.1.
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Error εn
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Predictive mean µ|y
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Figure 1.8: Left: Data generating process where 10 data points {xn, yn}1
n=10 (blue

crosses) are realisations of a latent function (red line), subject to observational
noise (vertical green lines). Right: The predictive posterior distribution of a
Gaussian process conditioning on the 10 observed data points.

The covariance matrix that parameterises a multivariate Gaussian distribution

is finite-dimensional. Consequently, it is not possible to evaluate a multivariate

random variable at a location not present in our observed dataset. A kernel k :

X ×X → R resolves this by allowing us to compute the (co)variance between any

two points in X . Using a kernel function k, we write a GP f(·) ∼ GP(µ(·), k(·, ·))

with mean function µ : X → R and θ-parameterised kernel k (see Definition 1.3.6).

When evaluating the GP on a finite set of points X ⊂ X , k gives rise to the Gram

matrix Kff such that the (i, j)th entry of the matrix is given by [Kff ]i,j = k(xi,xj).
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As is conventional within the literature, we centre our training data and assume

µ(x) := 0 for all x ∈ X. We further drop dependency on θ and X for notational

convenience in the remainder of this thesis.

We define a joint GP prior over the latent function

p(f , f⋆) = N

0,

Kff Kf∗

K∗f K⋆⋆


 , (1.40)

where f⋆ = f(X⋆). Conditional on the GP’s latent function f , we assume a

factorising likelihood generates our observations

p(y | f) =
n∏
i=1

p(yi | fi) . (1.41)

To be more precise, we can re-define the likelihood function as p(y |ϕ(f)) where

ϕ is the likelihood function’s associated link function. Example link functions

include the probit or logistic functions for a Bernoulli likelihood and the identity

function for a Gaussian likelihood. We eschew this notation for now as this section

primarily considers Gaussian likelihood functions where the role of ϕ is superfluous.

However, this intuition will be helpful for the work presented in Chapter 4.

Applying Bayes’ theorem yields the joint posterior distribution over the latent

function

p(f , f⋆ |y) = p(y | f)p(f , f⋆)
p(y) . (1.42)

The choice of kernel function that we use to parameterise our GP is an

important modelling decision as the choice of kernel dictates properties such as

differentiability, variance and characteristic lengthscale of the functions that are
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1.3. An introduction to Gaussian processes

admissible under the GP prior (Figure 1.9). A kernel is a positive-definite function

with parameters θ that maps pairs of inputs x,x′ ∈ X onto the real line.

Definition 1.3.6 (Kernel function) For a non-empty set X , a function k : X ×

X → R is called a kernel on X if there exists a Hilbert space H and map Φ : X → H

such that

k(x,x′) = ⟨Φ(x),Φ(x′)⟩ (1.43)

for all x,x′ ∈ X .

Within Equation (1.43), we refer to Φ as the feature map and H as the feature

space of k. We revisit this concept in greater detail in Section 2.2.1.

Definition 1.3.7 (Positive semi-definite matrix) A symmetric matrix A is positive

semi-definite if and only if

ν⊤Aν ≥ 0 (1.44)

for all ν ∈ Rn.

Proposition 1.3.8 (All Gram matrices are positive semi-definite) For a kernel

function k : X × X → R with feature map Φ, the corresponding Gram matrix K

that arises from computing the kernel function over a finite set X = [x1,x2, . . . ,xn]

satisfies the positive semi-definite (PSD) condition given in Definition 1.3.7.
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Proof. For any vector ν ∈ Rn we have

ν⊤Kν =
n∑
i=1

n∑
j=1

νiνjKij (1.45)

=
n∑
i=1

n∑
j=1

νiνj⟨Φ(xi),Φ(xj)⟩ (1.46)

=
n∑
i=1

n∑
j=1
⟨νiΦ(xi), νjΦ(xj)⟩ (1.47)

= ∥
n∑
i=1

νiΦ(xi)∥2 (1.48)

≥ 0 (1.49)

The implication of this is that the eigenvalues of the Gram matrix are non-

negative; a result that seeds the work presented in Section 1.3.4. Further, by

Proposition 1.3.8, we can say that the kernel function k : X ×X → R is a positive

semi-definite function if the matrices formed by evaluating k over any finite set X

are PSD.

A subclass of the kernel functions introduced in Definition 1.3.6 whose value

depends only on the difference between its inputs x,x′ ∈ X is the family of

stationary kernels. To see this with an example, we can define the stationary

radial basis function (RBF) kernel and the non-stationary linear kernel

kRBF(x,x′) = σ2 exp
(
−∥x− x′∥2

2
2ℓ2

)
(1.50)

klin(x,x′) = σ2xx′⊤ . (1.51)

We can see here that the RBF kernel is parameterised by a variance parameter σ2

and a lengthscale parameter ℓ. Meanwhile, the linear kernel is parameterised by a
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1.3. An introduction to Gaussian processes

variance parameter σ2.
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Figure 1.9: The functional priors induced by varying the kernel function. 10
samples are drawn independently from each prior model.

Another important kernel that will be pivotal to the work presented in Chapter 3

and Chapter 4 is the Matérn kernel (Matérn, 1960). We can write the Matérn

kernel as

k(x,x′) = σ2 exp 21−ν

Γ(ν)

(√
2ν ∥x− x′∥

ℓ

)ν
Bν

(√
2ν ∥x− x′∥

ℓ

)
, (1.52)

where Γ is the gamma function, Bν is a modified Bessel function of the second

kind, and ν ∈ R>0 is a smoothness parameter that controls the GP’s mean-square

differentiability. When ν is half-integer, the Matérn kernel’s form simplifies down

to the following

k1/2(x,x′) = σ2 exp
(
−∥x− x′∥

ℓ

)
(1.53)

k3/2(x,x′) = σ2
(

1 +
√

3∥x− x′∥
ℓ

)
exp

(
−
√

3∥x− x′∥
ℓ

)
(1.54)

k5/2(x,x′) = σ2
(

1 +
√

5∥x− x′∥
ℓ

+ 5∥x− x′∥2

3ℓ2

)
exp

(
−
√

5∥x− x′∥
ℓ

)
. (1.55)
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As the smoothness parameter ν increases, the GP’s functions become increasingly

smooth, and, in the limit that ν → ∞, we recover the RBF kernel from

Equation (1.50). We visualise the GP prior samples induced by some commonly

used kernels in Figure 1.9.

Finally, a convenient feature of kernels is that they are closed under addition and

multiplication. This allows us to construct intricate, non-trivial kernels from a set

of simpler kernels.

Proposition 1.3.9 (Closure of kernels) For the kernel function k1 defined on X1

and k2 defined on X2 the following operations yield kernel functions

1. k(x,x′) = k1(x,x′) + k2(x,x′) for x,x′ ∈ X1 ×X2.

2. k(x,x′) = αk1(x,x′) for α ∈ R>0.

3. k(x,x′) = k1(x,x′)k2(x,x′) for x,x′ ∈ X1 ×X2.

Proof. Let K1 and K2 be the Gram matrices formed by evaluating k1 and k1 on a

set of points X1 ∈ X1 and X2 ∈ X2, respectively. We then have the following:

1. ν⊤(K1 + K2)ν = ν⊤K1ν + ν⊤K2ν ≥ 0 which proves that K1 + K2 is a

positive-definite matrix and, therefore, the kernel k1 + k2 is a valid kernel

function.

2. The validity of αk1 can be proven using the same approach: ν⊤αK1ν =

αν⊤K1ν ≥ 0.

3. Let K = K1⊗K2 be the Kronecker product of K1 and K2. The eigenvalues of

K are given by multiplying the eigenvalues of K1 and K2 together. Therefore,

K is positive-definite and the kernel k1k2 is a valid kernel function.

by Proposition 1.3.8.
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1.3. An introduction to Gaussian processes

In practice, the implication of Proposition 1.3.9 is that one can combine kernels

to construct models that accurately capture the phenomena being modelled. We

make extensive use of this result in Section 2.4.3 where we combine a series of

kernels to build a principled model of air pollution in the United Kingdom (UK).

1.3.3 Gaussian process regression

When the likelihood function from Equation (1.41) is a Gaussian distribution

p(yi | fi) = N (yi | fi, σ2
n), marginalising f from the joint posterior to obtain the

posterior predictive distribution is exact

p(f⋆ |y) =
∫
p(f , f⋆ |y)df (1.56)

= N (f⋆ |µ | y,Σ | y) , (1.57)

where

µ | y = K∗f
(
Kff + σ2

nIn
)−1

y (1.58)

Σ | y = K⋆⋆ −K∗f
(
Kff + σ2

nIn
)−1

Kf∗ . (1.59)

Further, the log of the marginal likelihood in Equation (1.42) can be analytically

expressed as

log p(y) = log
∫
p(y | f)p(f , f⋆)df⋆ (1.60)

= 0.5

−y⊤
(
Kff + σ2

nIn
)−1

y︸ ︷︷ ︸
Data fit

− log|Kff + σ2
nIn|︸ ︷︷ ︸

Complexity

−n log 2π︸ ︷︷ ︸
Constant

 . (1.61)

In the absence of any prior distributions on either the kernel parameters θ or

the observational noise σ2
n, model selection can be performed for a GP through
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gradient-based optimisation of log p(y). Collectively, we call these terms the model

hyperparameters ξ = {θ, σ2
n} from which the maximum likelihood estimate is given

by

ξ⋆ = arg max
ξ∈Ξ

log p(y) ,

where Ξ is the set of all possible hyperparameter values.

When a prior distribution has been placed on one or more of the model

hyperparameters, Bayesian inference schemes such as MCMC or SVGD must be

used to learn the full posterior distribution of the hyperparameters.
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Figure 1.10: The decomposed marginal log-likelihood from Equation (1.60) as a
function of the kernel’s lengthscale parameter. The observed data (left panel) is
drawn from a third-order Matérn process with lengthscale and variance parameters
of 1. The observed data points are perturbed by a zero-mean Gaussian noise vector
with a variance of 0.1. In the right panel, we set the observation noise and kernel
variance terms to the true values and plot the decomposed marginal log-likelihood
as a function of the kernel’s lengthscale.

Observing the individual terms in Equation (1.60) can help understand exactly

why optimising the marginal log-likelihood gives reasonable solutions. The data fit

term is the only component of Equation (1.60) that includes the observed response

y and will therefore encourage solutions that model the data well. Conversely,

the complexity term contains a determinant operator and therefore measures the
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volume of the function space covered by the GP. Whilst a more complex function

has a better chance of modelling the observed data well, this is only true to a

point and functions that are overly complex will overfit the data. Optimising

with respect to Equation (1.60) balances these two objectives when identifying the

optimal solution, as visualised in Figure 1.10.

1.3.4 Background on sparse Gaussian processes

The requirement to invert the N × N covariance matrix Kff in Equation (1.60)

means that the term’s evaluation scales cubically in the number of data points.

Historically, this made the deployment of GPs to real-world problems challenging

as the corresponding datasets often surpassed tens of thousands of data points;

a size that makes evaluating Equation (1.60) intractable. In this section, we’ll

review some of the early methods that were used to overcome this difficulty.

Because any positive-define kernel function yields a positive definite matrix, we

can write the eigendecomposition of the covariance matrix as

Kff = UΛU⊤ , (1.62)

where U an N ×N orthonormal matrix whose columns are the eigenvectors and Λ

is a diagonal matrix with eigenvalues of decreasing magnitude i.e., diag(Λ) =

[λ1, λ2, . . . , λN ] where λ1 ≥ λ2 ≥ . . . ≥ 0. Truncating the approximation in

Equation (1.62) to include only the first M columns of U allows us to approximate

Kff by

Kff ≈ U:,MΛM,MU⊤
:,M . (1.63)

Approximations of this kind are widely used for techniques such as principal
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component analysis (Pearson, 1901). However, an eigendecomposition approach

is ill-advised for GP models as computing the eigendecomposition is itself a cubic

operation. Therefore, each time the kernel’s parameters are updated the covariance

matrix and its corresponding eigendecomposition will need to be re-computed.

Despite this, it motivates the core idea behind some of the earliest sparse GP

techniques; can we learn a low-rank approximation to the full covariance matrix

in a manner that exudes better-than-cubic scaling in the number of data points?

To generalise the approximation given in Equation (1.63), we can write

Kff ≈ AB−1A⊤ . (1.64)

where A ∈ RN×M and B ∈ RM×M . A natural question to then ask is how to

find the matrices A and B that minimise ∥Kff − AB−1A⊤∥F where ∥·∥F is the

Frobenius norm? Approximations of this form are desirable as, assuming N ≫M ,

the dominant cost is now the matrix multiplications in Equation (1.64) that scale

linearly in the number of data points and quadratically in M . However, it should

be stressed that the value of M should be set pragmatically as the cost of inverting

the M ×M matrix B will scale cubically in M .

Within the GP literature, a popular framework that we make extensive use of in

this thesis is that of inducing points. The idea is to summarise the N input data

points X with a set of M inducing points Z = {z1, z2, . . . , zM} where M ≪ N . For

a kernel k, we can then build approximations of Kff in the form of Equation (1.64)

by

Kff ≈ KfuK−1
uuK⊤

fu . (1.65)

where Kfu = k(X,Z) and Kuu = k(Z,Z). For a well-designed algorithm, the
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quality of the approximation in Equation (1.65) should improve as the number of

inducing points increases (Figure 1.11).

Kff M = 5 M = 10 M = 30

Figure 1.11: A series of low-rank approximation to the covariance matrix Kff
formed by evaluating the RBF kernel with unit lengthscale and variance parameter
on 500 uniformly sampled points. The inducing points are chosen to be a random
subset of the 500-point dataset. In panels 2-4, we see the improved approximation
quality that is given as the number of inducing points increases from 5 to 10, to
30.

We call the evaluation of our GP at the inducing points the inducing variable and

denote its value by u = f(Z). We can then augment the GP joint prior from

Equation (1.40) with the inducing variable to give

p(f⋆, f) =
∫
p(f⋆, f ,u)du (1.66)

=
∫
p(f⋆, f |u)p(u)du , (1.67)

where p(u) = N (0,Kuu). By the GP’s consistency property (Definition 1.3.4),

we can be sure that augmenting the joint prior distribution with the inducing

variable and marginalising it out leaves no imprint on the joint prior’s distribution.

However, the augmented prior distribution in Equation (1.66) is exact, meaning

that inference will still scale cubically in the number of data points. To improve

this scaling, we assume that f and f⋆ are conditionally independent, given u, to
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give the approximate joint prior

p(f⋆, f) ≈ q(f⋆, f) (1.68)

=
∫
q(f⋆ |u)q(f |u)p(u)du . (1.69)

We refer to q(f⋆ |u) as the approximate test conditional and q(f |u) as the

approximate training conditional. For reference, the exact forms of these two

conditional distributions are given by

p(f |u) = N (f |KfuK−1
uuu,Kff −Qff) (1.70)

p(f⋆ |u) = N (f⋆ |K∗uK−1
uuu,K⋆⋆ −Q⋆⋆) , (1.71)

where Qab = KauK−1
uuKub. We visualise the predictive posterior of a sparse GP,

namely the variational free energy (VFE) model covered in Section 1.3.5, along

with its inducing points in Figure 1.12.

Deterministic Training Conditional The Deterministic Training Conditional

(DTC) approach, originally named the projected latent variables (PLV) method

(Seeger et al., 2003), induces scalability by representing M latent function values

which are projected into an N -dimensional space when evaluating the likelihood

p(y | f) ≈ q(y |u) = N (KfuK−1
uuu, σ2In) . (1.72)

In the exposition of Quinonero-Candela et al. (2005), a more unified presentation

of this method is given where the exact likelihood function is retained and the

training conditional is approximated by

qDTC(f |u) = N (KfuK−1
uuu,0) . (1.73)
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A valid Gaussian density cannot be parameterised by a 0 covariance, but we use

this notation to illustrate the deterministic relationship that exists between f and

u.

The exact test conditional is retained i.e., q(f⋆ |u) = p(f⋆ |u) and the approximate

marginal log-likelihood takes the form

log p(y) = logN (y |0,Qff + σ2In) . (1.74)

The DTC approximation provided a large improvement in scalable methods by

correcting the nonsensical posterior variances that were experienced in previous

methods, such as the Subset of Regressors (SOR) (Silverman, 1985; Wahba et al.,

1998). Further, the O(NM2) scaling of the DTC enabled datasets containing tens

of thousands of data points to be efficiently modelled.
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Figure 1.12: Illustration of a sparse Gaussian process being fit to data simulated
from the function f(x) = sin(2x2) + x cos(5x) + ϵ where ϵ ∼ N (0, 0.52). The
inducing points are randomly initialised and then optimised with respect to
evidence lower bound.

Fully Independent Training Conditional The Fully Independent Training

Conditional (FITC) approach was introduced by Snelson et al. (2005) under the

name Sparse Pseudo-input GP (SPGP). The first improvement given in the FITC

approach when compared to DTC is the richer covariance structure that the
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training conditional is equipped with

q(f |u) =
N∏
i=1

p(fi |u) (1.75)

= N (KfuK−1
uuu, diag (Kff −Qff)) . (1.76)

As with the DTC approach, an exact test conditional is used in FITC. However,

unlike DTC, a non-deterministic relationship exists between f and u which allows

for more complex relationships to be encoded within the coupling. The marginal

log-likelihood in FITC is given by

log p(y) = N

2 log(2π) + 1
2 log|Qff + G|+ 1

2y⊤(Qff + G)−1y , (1.77)

where G = diag (Kff −Qff)+σ2In. As with the DTC model, FITC offersO(NM2)

scaling making it amenable to modelling large datasets.

Contrary to all previous sparse methods, a type 2 maximum likelihood estimate,

sometimes termed the evidence approximation (Bishop, 2006), of the model’s

hyperparameters can be jointly learned with the inducing points’ position by

optimising against Equation (1.77). This transcends previous works by relaxing

the assumption that the inducing points are a subset of the dataset, and instead

allowing the inducing points to exist anywhere in the dataset’s support which,

consequently, leads to better mean predictions from the model. However, fitting

models with a FITC approximation severely underestimates the noise variance

parameter, meaning that the posterior distribution pinches at locations where an

inducing point is present (M. Bauer et al., 2016). This pathology stems from the

|Qff + G| term that can be interpreted as an input-dependent (heteroscedastic)

noise term. Therefore, when we optimise the inducing points’ position that give

rise to Qff , our objective function is implicitly minimising the noise variance. This
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is disastrous for applications, such as Bayesian optimisation (BO), where we would

like to reason and make decisions under the model’s uncertainty.

1.3.5 Variational free energy

A solution to the issue of an underestimated noise variance term was proposed in

the variational free energy (VFE) approximation (Titsias, 2009). Unlike previous

sparse methods, the VFE approach works with the exact GP prior and builds a

variational approximation to the posterior in which inference is tractable. This

concept can be elegantly summarised through the following quote: “Approximate

the posterior, not the model” (Hensman, 2020). In essence, once the model has

been approximated, we can never hope to recover the exact posterior. However, if

the model is kept intact and the posterior approximation is optimal, then we may

be able to recover the exact posterior.

Despite its wide adoption, a full derivation of the VFE model is often omitted

from technical reports. Due to its popularity and the fact it plays a fundamental

role in all subsequent chapters of this thesis, we will now provide a full derivation

of the VFE model.

Letting u be the evaluation of our GP at the inducing points i.e., u = f(Z), the

VFE approach begins by augmenting the posterior distribution with the set of

inducing variables

p(f ,u |y) = p(f |u,y)p(u |y) . (1.78)

Following the VI workflow of Section 1.2, a variational approximation to the true
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posterior is then introduced with the form

q(f ,u) = p(f |u)q(u) , (1.79)

such that q is a free-form variational distribution, meaning that we make no

assumption surrounding the family of probability distributions Q that q belongs

to. Starting from the definition of the ELBO given in Equation (1.14), we can

substitute in the definition of q(f ,u) to yield

L(q) = Eq(f ,u) [log p(f ,u,y)]− Eq(f ,u) [log q(f ,u)] (1.80)

= Eq(f ,u)

[
log p(f ,u,y)

q(f ,u)

]
(1.81)

=
∫
q(f ,u) log p(f ,u,y)

q(f ,u) dfdu (1.82)

=
∫
p(f |u)q(u) log p(y | f)����p(f |u)p(u)

����p(f |u)q(u) dfdu (1.83)

=
∫
q(u)

(∫
p(f |u) log p(y | f)p(u)

q(u) df
)

du (1.84)

=
∫
q(u)


∫
p(f |u) log p(y | f)df︸ ︷︷ ︸

ψ(u,y)

+ log p(u)
q(u)

 du . (1.85)

This formulation allows us, in what follows, to fully eliminate the expensive to

compute training conditional p(f |u) from the ELBO in Equations (1.80)–(1.84).

By assuming a Gaussian likelihood distribution in the model, we can rearrange the

ELBO such that integration over f need only be done with respect to a simpler
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quantity; a task that can be done analytically

ψ(u,y) =
∫
p(f |u) log p(y | f)df (1.86)

=
∫
p(f |u)

(
−n2 log(2πσ2)− 1

2σ2 trace
(
yy⊤ − 2yf⊤ + ff⊤

))
df (1.87)

= Ep(f | u)

[
−n2 log(2πσ2)− 1

2σ2 trace
(
yy⊤ − 2yf⊤ + ff⊤

)]
(1.88)

= −n2 log(2πσ2)− 1
2σ2 trace

(
yy⊤ − 2Ep(f | u)

[
yf⊤

]
+ Ep(f | u)

[
ff⊤

])
.

(1.89)

To arrive at Equation (1.89), we have first expressed log p(y | f) in terms of its

density. Within the expectation, we can see that −n
2 log(2πσ2) and 1

2σ2 are

independent of f , and can therefore be moved outside of the expectation. Finally,

by the linearity of the trace operator, we can rewrite the expectation of the trace

term as the trace of the expectation applied to each of the three constituent terms,

noting that yy⊤ is independent of p(f |u). To compute the two expectation terms

left in Equation (1.89), we can use the relationship between the auto-covariance

and autocorrelation matrices

Cov[f , f ] = E[ff⊤]− E[f ]E[f ]⊤ ⇐⇒ E[ff⊤] = Cov[f , f ] + E[f ]E[f ]⊤ . (1.90)

By the definition of p(f |u) = N (KfuK−1
uuu,Kff −Qff) from Equation (1.70), the

conditional expectation of the GP prior can be written as

Ep(f | u) [f ] = KfuK−1
uuu (1.91)

which we denote as α.

Through Equations (1.90)–(1.91), the pair of expectations in Equation (1.89) can
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be expressed as

= −n2 log(2πσ2)− 1
2σ2 trace

(
yy⊤ − 2yα⊤ +αα⊤ + Kff −Qff

)
(1.92)

= logN (y |α, σ2In)− 1
2σ2 trace (Kff −Qff) . (1.93)

Observing that Kff and Qff are independent of u, we now substitute Equa-

tion (1.93) back into the ELBO of Equation (1.85) and simplify

L(q) =
∫
q(u)

(
logN (y |α, σ2In)− 1

2σ2 trace (Kff −Qff) + log p(u)
q(u)

)
du (1.94)

=
∫
q(u) log N (y |α, σ2In)p(u)

q(u) du− 1
2σ2 trace (Kff −Qff) . (1.95)

The ELBO that is now under consideration is void of the expensive to compute

p(f |u) term. Instead, the cost in evaluating the ELBO is dominated by α, a

quantity that scales linearly with the number of data points and quadratically in

the number of inducing points i.e., O(NM2). This scaling stems from the need

to compute the matrix multiplication KfuK−1
uu. In practice, evaluating such terms

is computationally tractable on modern computers for tens of thousands of data

points with hundreds of inducing points. Beyond this, the memory requirements

for computing KfuK−1
uu surpass the capacity of most modern computers, although

there are techniques to improve this scaling that we discuss in Section 1.3.6.

The starting point of this derivation was the ELBO term that was formed by

lower bounding the marginal log-likelihood using Jensen’s inequality. To identify

the optimal distribution we would usually be required to compute a derivative of

the ELBO with respect to the variational distribution, equate to zero and solve

for q. However, it was explicitly specified in Equation (1.79) that q is a free-

form distribution and therefore did not belong to a specific family of probability
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distributions. As shown in Titsias (2009), we can reverse Jensen’s inequality by

moving the log outside of the integral. Consequently, the lower bound’s inequality

will become an equality that identifies the optimal variational distribution q⋆(u)

through the following

L⋆(q) = log
∫

���q(u)N (y |α, σ2In)p(u)
�

��q(u) du− 1
2σ2 trace (Kff −Qff) (1.96)

= logN (y |α,Qff + σ2In)− 1
2σ2 trace (Kff −Qff) , (1.97)

noting that L⋆(q) ≥ L(q). From Equation (1.97), we can see that the optimal

distribution q⋆ is a Gaussian distribution with the form

q⋆(u) = N (y |α, σ2In)p(u) (1.98)

= c exp
(1

2u⊤
(

K−1
uu + 1

2σ2 K−1
uuKuf KfuK−1

uu

)
u + 1

2σ2 y⊤KfuK−1
uuu

)
,

(1.99)

where c is the constant that is used to scale the distribution. By completing the

square, the quadratic form of Equation (1.99) is the Gaussian

q⋆(u) = N (u |σ−2KuuΣ−1Kuf y,KuuΣ−1Kuu) , (1.100)

where Σ = Kuu + σ−2Kuf Kfu.

As with FITC, we can compute derivatives of Equation (1.97) with respect to

the model’s hyperparameters and the inducing points Z to learn a tighter bound.

Unlike FITC though, the resulting predictions that come from this model do not

underestimate the predictive variance (M. Bauer et al., 2016).

To make predictions using the variational posterior learned using the VFE model,

we must compute p(f⋆ |y). By again appealing to the conditional independence
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assumptions made in Equation (1.69), we can write the predictive distribution as

p(f⋆ |y) =
∫
p(f⋆ |u)p(f |u)p(u |y)dfdu (1.101)

=
∫
p(f⋆ |u)p(u |y)du

∫
p(f |u)df (1.102)

=
∫
p(f⋆ |u)p(u |y)du (1.103)

≈
∫
p(f⋆ |u)q(u)du (1.104)

= N (f⋆ |mq(·), kq(·, ·)) . (1.105)

where

mq(x⋆) = K∗uK−1
uuµq (1.106)

kq(x⋆,x⋆′) = k(x⋆,x⋆′)−K∗uK−1
uuKu∗′ + K∗uK−1

uuΣqK−1
uuKu∗′ (1.107)

where µq is the variational distribution’s mean and Σq is the variational

distribution’s covariance, each computed with respect to the training data.

The computational complexity of the VFE model is O(NM2) and, despite being

over 13 years old now, it is still widely used in the literature due to its efficiency and

well-understood theoretical foundations. In Burt et al. (2020), rates of convergence

were derived for the VFE model with respect to the number of inducing points.

A scheme for sequentially updating the variational posterior distribution as new

data is received in an online setting was proposed in Bui et al. (2017). Finally, the

VFE model has been used in the Bayesian Gaussian process latent variable model

(GPLVM) to perform unsupervised learning of latent spaces (Titsias et al., 2010),

a model that we extend in Chapter 4.
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1.3.6 Accelerating sparse Gaussian processes

The elegance of the VFE approach is the unrestricted form of q that allows its

optimal form to be identified analytically. However, the method’s complexity is still

dependent on the full dataset’s size, meaning that for datasets containing hundreds

of thousands of observations, the method will become intractable. To resolve this,

Hensman et al. (2013a) developed an alternative ELBO that is amenable to mini-

batching, thus replacing the method’s dependence on the full dataset’s size with a

mini-batch size term.

We assume that the variational family Q is the set of multivariate Gaussian

distributions and any variational distribution q will, therefore, be a Gaussian

distribution with mean µ and covariance matrix Σ

q(u) = N (u |µ,Σ) . (1.108)

By assuming a Gaussian likelihood function, letting yn and fn be the nth entries

of y and f respectively, and applying the variational framework of Section 1.2, we

can obtain the ELBO

L(q) =
N∑
n=1

[
logN (yn |KfnuK−1

uuµ, σ
2)− 1

2
(
trace(ΣA)− σ−2Bn,n

)]

−KL(q(u) || p(u)) , (1.109)

where

A = σ−2K−1
uuKfnuKufnK−1

uu (1.110)

B = Kff −KfuK−1
uuKuf . (1.111)

A fundamental observation that enables tractable computations of Equation (1.109)
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is that the q(u) and p(u) are both multivariate Gaussian distributions and the KLD

can, therefore, be computed analytically using Definition 1.3.5.

Unlike the bound given in the VFE model, we have no closed form expression for

the optimal variational distribution. When performing inference in the model, we

must therefore learn the variational distribution’s M -dimensional mean vector and

M ×M covariance matrix alongside the model’s hyperparameters. To accelerate

this, natural gradients (Amari, 1998; Martens, 2020) have been widely employed

with great success for optimising the variational parameters of a sparse GP, whilst

first-order methods such as Adam (Ba et al., 2015) are used for the model’s

hyperparameters (Salimbeni et al., 2018).

The bound given in Equation (1.109) assumes a Gaussian likelihood function.

However, a further advantage of this bound in comparison to the VFE model is

that non-Gaussian likelihoods can be used. To achieve this, we define

q(f) =
∫
q(f ,u)du (1.112)

=
∫
p(f |u)q(u)du . (1.113)

Under the assumption now that our likelihood factorises over the N data points,

we can redefine the original ELBO from Equation (1.15) as

L(q) =
N∑
n=1

Eq(fn) [log p(yn |ϕ(fn)]−KL(q(u) || p(u)) , (1.114)

where ϕ(·) is the likelihood distribution’s link function. The expectation in

Equation (1.114) requires solving a 1-dimensional integral that is unavailable

analytically, but can be solved using quadrature (Hensman et al., 2015b). Despite

its flexibility to handle non-Gaussian likelihoods, the bound in Equation (1.114) is

a slacker bound on the marginal log-likelihood when compared to Equation (1.109).
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It is therefore advisable to use Equation (1.109) when the likelihood is Gaussian,

but the number of data points is insurmountable for the VFE approach.

Modern extensions to the bounds given in Equation (1.109) and Equation (1.114)

have considered inter-domain inducing variables (Lázaro-Gredilla et al., 2009).

An inter-domain approach relaxes the assumption that the inducing points Z at

which we evaluate our GP f should exist within the domain of our observed data

inputs X. Instead, we can define the mth inducing variable um =
∫
f(X)ξm(X)dX

where ξm is a real-valued function that we refer to as an inducing feature. The

downstream inference then works in an identical manner to the approaches given

in Sections 1.3.5–1.3.6. This can be seen as a generalisation of the above sparse

approaches as letting ξm = δzm(·) where δzm(·) is the Dirac delta function that

assigns all the probability mass to zm yields a regular sparse GP. The works of

Lázaro-Gredilla et al. (2010) and Hensman et al. (2018) consider transformations

of the form ξm(·) = exp(−iω⊤
m·) where i is the complex unit and ωm is a

harmonic frequency vector. Meanwhile, for certain kernel functions, applying the

transformation ξm(·) = vm(·) where vm(·) corresponds to the kernel function’s mth

eigenfunction can lead to sparse GPs that scale linearly in the number of inducing

points due to the resulting diagonal form of Kuu (Dutordoir et al., 2020).

1.4 Thesis structure

This thesis has focussed on developing GP methodology for the analysis of climate

and network data. Contributions include: a demonstration of how SVGD can be

used as an alternative to VI or MCMC for inference in a range of GP models;

pollution modelling on a network using GP; the development of a GPLVM to

embed hypergraphs into a latent space; a probabilistic ensemble of GP models

using Wasserstein barycentres; and the development of an efficient GP software
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package. A brief outline of the material presented in this thesis is given below.

• Chapter 2 introduces Stein’s method and SVGD. We demonstrate how

SVGD can be efficiently used to perform inference in a range of GP

models. Theoretical results are then derived to demonstrate the asymptotic

convergence guarantees that can be provided by SVGD in a latent Gaussian

model. The efficacy of SVGD for GP models is demonstrated on a range of

benchmark regression and classification datasets, a challenging multi-modal

dataset, and a spatiotemporal air quality modelling problem that explores

the change in pollution across the time window that the United Kingdom

entered a Covid-19 lockdown. This chapter is based on Pinder et al. (2020).

• Chapter 3 introduces graph kernels and how they can be used to parameterise

a GP whose support is the vertex set of a graph. We extend this model to

accommodate a heteroscedastic noise component. The GP model is then

used to model air pollution in London where fine-scale predictions of air

pollution along an individual’s journey can be made. The chapter concludes

by describing the collection of a new air quality dataset where a series of

pollutants were measured in a mobile manner every second for a week in

Lancaster. This chapter is based on Pinder et al. (2022d) and Pinder et al.

(2022a).

• Chapter 4 introduces hypergraphs and the range of datasets that they can

be used to model. We construct a new GPLVM that embeds the vertices of a

hypergraph into a latent space. The latent space is then used for downstream

modelling or easier visualisation of the hypergraph’s relational structure. We

demonstrate this model on a series of political networks. This chapter is

based on Pinder et al. (2021).
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• Chapter 5 introduces GPJax; a GP package written in the JAX framework

that offers performant computational abstractions of common GP opera-

tions. We empirically benchmark GPJax against GPFlow and GPyTorch. This

chapter is based on Pinder et al. (2022c).

• Chapters 6–7 conclude the thesis by first outlining some ongoing work in

Chapter 6 that presents a probabilistic ensemble model with applications

to global surface temperature projections. The framework first emulates

the output of climate models using a novel sparse hierarchical GP. Proper

scoring rules are then used to rank each climate model’s emulator based on

how well it represents real-world observations. The rankings are then used

to assign weights to each emulator within the final ensemble; a quantity that

is identified using ideas from the optimal transport literature. The thesis is

concluded in Chapter 7 by consolidating the work presented in this thesis

and outlining some potential next steps.
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Chapter 2

Stein Variational Gaussian

Processes

Whilst elegant in its formulation, the VFE approach of (Titsias, 2009) is only

compatible with models where the likelihood function is a Gaussian distribution.

The stochastic extension of (Hensman et al., 2013a) is amenable to any factorising

likelihood, however, unlike the VFE model, there is no guarantee that the

variational family is the set of multivariate Gaussian distributions. Further, due

to the variational scheme used in both approaches, specifying prior distributions

and learning a posterior distribution over the model’s hyperparameters is not

possible. In this chapter, we seek to resolve this by connecting SVGD with GPs to

propose a SteinGP model. With this model, we enable a fully Bayesian treatment

of the model’s hyperparameters whilst retaining the computational efficiency of

variational approaches. The contents of this chapter are adapted from (Pinder

et al., 2020) where background details on general GP models are omitted in favour

of the exposition given in Section 1.3.
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Table 2.1: Features of key inference methods for Gaussian process models.

Reference p(y|f) Sparse Approx. posterior Hyperparams Inference

Opper et al. (2008) Binary ✗ Gaussian Point estimate Variational
Titsias (2009) Gaussian ✓ Gaussian Point estimate Variational
Nguyen et al. (2014) Any ✗ Gaussian mixture Point estimate Variational
Hensman et al. (2015a) Any ✓ True posterior Marginalised MCMC
This work Any ✓ True posterior Marginalised SVGD

2.1 Introduction

GPs are highly expressive, non-parametric distributions over continuous functions

and are frequently employed in both regression and classification tasks (Rasmussen

et al., 2006). In recent years, GPs have received significant attention in the machine

learning community due to their successes in domains such as reinforcement

learning (M. P. Deisenroth et al., 2015), variance reduction (Oates et al., 2017),

and optimisation (Mockus, 2012). This recent blossoming has been facilitated by

advances in inference methods, and especially by VI which provides a tractable

approach to fitting GP models to large and/or non-Gaussian data sets (e.g.

Hensman et al., 2013a; Cheng et al., 2017).

Whilst computationally efficient, VI typically relies on the practitioner placing a

parametric constraint upon the approximating posterior distribution. Unfortu-

nately, this assumption can often severely inhibit the quality of the approximate

posterior should the true posterior not belong to the chosen family of probability

distributions, as often happens with GPs (Havasi et al., 2018). The most common

(asymptotically) exact inference method for GPs is MCMC. However, sampling

may be problematic if the posterior distribution is non-convex as the sampler

can become trapped in local modes (Rudoy et al., 2006). Additionally, MCMC

does not enjoy the same computational scalability as VI, and for this reason, it is

impractical for modelling problems with a large number of observations.
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In this work we propose the use of SVGD (Liu et al., 2016b), a non-parametric VI

approach, as an effective inference method for GP models. SVGD can be thought

of as a particle-based approach, whereby particles are sequentially transformed

until they become samples from an arbitrary variational distribution that closely

approximates the posterior of interest. SVGD can be considered a hybrid of VI and

Monte Carlo approaches, yielding benefits over both. The first benefit is removing

the parametric assumption used in VI. The result of this is that inference through

SVGD allows a richer variational distribution to be learned. A second benefit is

that we do not need to compute the acceptance step required in MCMC. This leads

to greater efficiency in SVGD as we are only required to compute the score function,

an operation that can be accelerated for big datasets using the subsampling trick

in Section 2.3. Finally, through the use of a kernel function acting over the set

of particles, SVGD encourages full exploration over the posterior space, meaning

that we can better represent the uncertainty in multimodal posteriors. This is

a critical difference in the quality of inference that is possible through SVGD in

comparison to alternative methods and we provide compelling empirical evidence

to support this in Section 2.4.2. Table 2.1 shows the position of this work within

the current literature. It should be acknowledged that SVGD is not without its

shortcomings. Unlike MCMC, there is no metric to assess the quality of the

posterior approximation. Further, the performance of SVGD is dependent on the

number of particles being sufficient to represent the posterior. As we shall go on to

see in Section 2.4.2, for posterior distributions where the geometry is non-convex,

selecting an appropriate number of particles is a non-trivial task.

Our article demonstrates how to use SVGD to fit GPs to both Gaussian and

non-Gaussian data, including when computational scalability is addressed through

an inducing point representation of the original data. We prove that the
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SVGD scheme reduces the KLD to the target distribution on each iteration.

We empirically demonstrate the performance of SVGD in a range of both

classification and regression datasets, comparing against traditional VI and modern

implementations of MCMC for GPs, including in a large-scale spatiotemporal

model for air quality in the UK. We acknowledge that since the release of this

work several orthogonal lines of work have approached this problem from different

perspectives (Hamelijnck et al., 2021; Tebbutt et al., 2021). We release, at

https://github.com/thomaspinder/SteinGP, code for reproducing the

experiments in Section 2.4, and a general library for fitting GPs using SVGD

based entirely upon GPFlow (Matthews et al., 2017) and TensorFlow (Abadi et al.,

2016). For a demonstration of the package see Section 2.4.4.

2.2 Stein’s method in machine learning

The core of this chapter is centred around Stein’s identity (Stein, 1972). As we shall

go on to see, in its original form, Stein’s identity is intractable for most machine

learning models. However, by building on recent developments in the statistics

and machine learning literature, reproducing kernel Hilbert space (RKHS) theory

can be used to derive an analytical solution to Stein’s identity for a wide range

of machine learning models. RKHS is intimately linked to kernel methods, and

we, therefore, commence this chapter by building upon the definition of a kernel

function that was given in Definition 1.3.6 to establish some key results from

the RKHS literature. This provides a natural foundation for understanding the

subsequent work that considers how Stein’s identity (Stein, 1972) can be used

to perform inference with a GP. For a detailed review of RKHS theory, see the

seminal work of Aronszajn (1950) or the textbooks of Berlinet et al. (2004) and

Steinwart et al. (2008).
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2.2. Stein’s method in machine learning

2.2.1 Reproducing kernel Hilbert spaces

A Hilbert space H is a complete inner product space that allows us to generalise

from Euclidean spaces to infinite dimensional spaces. Examples of a Hilbert space

include

1. The space Rd is a Hilbert space over R with inner product ⟨x, y⟩ = ∑d
i=1 =

xiyi.

2. The space Cd is a Hilbert space over C with inner product ⟨x, y⟩ = ∑d
i=1 xiyi.

3. The space L2[a, b] = {f : [a, b] → R, where
∫ b
a |f(t)|2dt < ∞} is a Hilbert

space over R with inner product ⟨f, g⟩ =
∫ b
a f(t)g(t)dt.

We now proceed to lift this concept to a type of a Hilbert space known as

a reproducing kernel Hilbert space (RKHS). To achieve this, we first define a

reproducing kernel function before showing that a Hilbert space endowed with a

reproducing kernel yields a unique RKHS.

Definition 2.2.1 (Reproducing kernels) For a non-empty set X , let H be a Hilbert

space defined on X with inner product ⟨·, ·⟩H. A symmetric positive-definite kernel

k : X × X → R is a reproducing kernel of H if and only if the following two

properties are satisfied:

1. For all x ∈ X , k(·, x) ∈ H.

2. For all x ∈ X , and for all h ∈ H

⟨h(·), k(·, x)⟩H = h(x) . (2.1)

Equation (2.1) is known as the reproducing property and it tells us that the result

of h(x) is reproduced by computing the inner product of h with the kernel function
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k(x, ·). It is important here to acknowledge that any reproducing kernel is a kernel

function, as presented in Definition 1.3.6. The feature map Φ : X → H of a

reproducing kernel k that endows the Hilbert space H defined over X is given by

Φ(x) = k(·, x) (2.2)

for x ∈ X (Steinwart et al., 2008, Lemma 4.19). In such circumstances, Φ is called

the canonical feature map.

Definition 2.2.2 (Evaluation functional) Let X be a non-empty set and Hk a

Hilbert space of functions over X . A linear evaluation functional δx evaluates each

h at x:

δx[h] = h(x) , (2.3)

for all h ∈ H.

Equipped with the concept of an evaluation functional and a reproducing kernel,

we can now define a RKHS.

Proposition 2.2.3 (Reproducing kernel Hilbert space) For a non-empty set X ,

the Hilbert space H of functions over X is an RKHS if the evaluation functional

δx is continuous for every x ∈ X (Steinwart et al., 2008).

The correspondence between a kernel function k and the RKHS Hk that is

associated to k is a unique one-to-one correspondence (Berlinet et al., 2004,

Theorem 3). This is often referred to as the Moore-Aronszajn theorem. We

notationally link the kernel and its associated RKHS by subscribing the RKHS

with the kernel that endows the space.
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2.2.2 Stein’s discrepancy

The foundation for SVGD is the Stein operator (Stein, 1972) that we now introduce

in Rd following Oates et al. (2017); Chwialkowski et al. (2016). For a continuously

differentiable density p with support on Rd that vanishes at infinity, let X ⊂ Rd

and ϕi : X → Rd for i = 1, 2, . . . , d be scalar functions on X . Further, let

ϕ(x) = [ϕ1(x), ϕ2(x), . . . , ϕd(x)]⊤ ∈ Rd define a bounded smooth vector-valued

function ϕ : Rd → Rd. The Stein operator is then given by

Apϕ(x) =
d∑
i=1

(ϕi(x)∇xi
log p(x) +∇xi

ϕi(x)) , (2.4)

where ∇xi
denotes the partial derivative operator with respect to xi. We call Ap

a Stein operator if Stein’s identity holds:

Ep [Apϕ] = 0 , (2.5)

for all ϕ in an appropriate family of functions F , a set sometimes referred to

as the Stein set (Gorham et al., 2020). We can validate that the operator in

Equation (2.5) is a valid Stein operator through integration by parts

Ep [Apϕ] =
∫
Rd
Apϕ(x) p(x)dx (2.6)

=
d∑
i=1

∫
Rd
∇xi

(ϕi(x)p(x)) dx (2.7)

= 0 , (2.8)

by virtue of the fact that p vanishes at infinity, giving

lim
x→±∞

ϕi(x)p(x) = 0 , (2.9)
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for i = 1, 2, . . . , d. The function ϕ is referred to as a test function.

Equation (2.5) was originally designed for distributional comparisons against

a Gaussian distribution. Subsequently, the result was extended for Poisson

distributions (L. H. Chen, 1975). More recently, Stein’s identity has found uses in

a range of modern machine learning problems including variance reduction (Oates

et al., 2017), model selection (Kanagawa et al., 2019) and generative modelling

(Pu et al., 2017). In our application, p will be the posterior density of interest.

When the density p under which we evaluate the expectation in Equation (2.5) is

replaced with a second density q, Equation (2.5) holds if and only if p = q. For a

test function ϕ, we can write this as

Eq [Apϕ(x)] = Eq [Apϕ(x)]− Eq [Aqϕ(x)] (2.10)

= Eq
[
ϕ(x)⊤ (∇x log p(x)−∇x log q(x))

]
, (2.11)

assuming that Equation (2.5) is satisfied for q. Observing Equation (2.11), it

can be seen that the result may only be 0 if ∇x log p(x) = ∇x log q(x), that

is, the score functions of p and q equate to one another. This observation also

unveils another key property of Stein’s identity: we only require access to the

score function of a density. In the context of Bayesian inference where p may

be our unnormalised posterior distribution, this property is immensely useful as

evaluating Equation (2.11) bypasses the need to evaluate the often intractable

marginal log-likelihood.

Given the dependence of Equation (2.11) on the test function ϕ, it is more

informative to consider the test function ϕ ∈ F that leads to the largest violation of

Stein’s identity. This is Stein’s discrepancy. Formally, we posit Stein’s discrepancy

50



2.2. Stein’s method in machine learning

as

D(p, q) = sup
ϕ∈F

Eq [Apϕ] . (2.12)

where F is the family of functions which we will optimise over. Choosing F is

challenging as we are faced with the following dichotomy: 1) F must be rich

enough to contain the test function that truly leads to the largest violation of

Stein’s identity and 2) F must be small enough to enable tractable optimisation

within Equation (2.12). To resolve this, we can appeal to the RKHS theory that

was presented in Section 2.2.1 to obtain a closed form solution to Equation (2.12).

As shown in Liu et al. (2016a), letting Hk be the RKHS endowed with the kernel

function k, we can define F to be the unit ball of Hk, i.e., F = {ϕ ∈ Hk : ∥ϕ∥Hk
≤

1}. Consequently, the space F contains an infinite number of basis functions. The

test function ϕ ∈ Hk that solves the optimisation problem in Equation (2.12) takes

the closed form solution

ϕ̂(·) = βp,q(·)
∥βp,q(·)∥Hk

, (2.13)

where βp,q = Ex∼q [Apk(x, ·)] and ϕ̂ denotes the maximising test function.

Unlike the KLD function given in Definition 1.2.1, kernel Stein discrepancy (KSD)

is a symmetric divergence measure (Chwialkowski et al., 2016, Theorem 2.2).

We shall now proceed to see how KSD can be used within a Bayesian inference

framework.

2.2.3 Stein Variational Gradient Descent

In SVGD, as in classical VI, we approximate the true posterior distribution p with a

variational distribution q that minimises the KLD between p and q. The innovation
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in SVGD is that we assume no parametric form for q. From an arbitrary initial

distribution q0, SVGD iterates through a series of pushforward transformations

that reduce the KLD between the target distribution and the distribution qt after

t iterations.

In particular, we consider the transformation that is defined by the mapping1

T (λ) = λ + ϵϕ(λ) for an arbitrary function ϕ and perturbation magnitude ϵ,

where λ ∼ qt. The role of ϕ in this update is to define the velocity field over which

the distribution’s shape will be transformed. The transformed distribution qt+1 is

the distribution of T (λ). Following Gorham et al. (2015) and Liu et al. (2016a),

we assume ϕ lives in the RKHS Hd. Under this assumption, it can be shown that

∇ϵ KL (qt+1∥p)|ϵ=0 = −Eλ∼qt [trace (Apϕ(λ))] . (2.14)

Comparing Equation (2.14) and Equation (2.12) we see that letting ϕ be equals

to ϕ̂ from Equation (2.13) maximally decreases the KLD. If we consider the task

of Bayesian inference from the perspective of a traditional VI framework, the

significance of this should not be understated, as our fundamental goal is to

minimise KL(q || p) with respect to q2. By the result given in Equation (2.14),

we can see that moving our approximating distribution q in the direction given

by Equation (2.13), we can guarantee that we are taking steps in the optimal

direction.

To implement the recursion, we maintain a finite set of J samples that empirically

represent q, referred to as particles. These particles Λ = {λj}Jj=1 are initially sam-

pled independently from q0, which is typically taken to be the prior distribution.3

1Note, other transformations such as the preconditioned update given in Detommaso et al.
(2018) are also possible.

2An illuminating orthogonal line of work considers using metrics other than the KLD (Y. Li
et al., 2016; Knoblauch et al., 2022)

3In the asymptotic limit, the final particle values are invariant to the initial distribution that
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The transformation T is then applied repeatedly to the set of particles, where at

each stage the optimal ϕ from Equation (2.13) is estimated empirically using the

particles Λt = {λjt}Jj=1 at the tth iteration:

ϕ̂Λt(λ) = 1
J

J∑
j=1

[
κ(λjt ,λ)∇λ log p(λjt)︸ ︷︷ ︸

Attraction

+∇λκ(λjt ,λ)︸ ︷︷ ︸
Repulsion

]
. (2.15)

When the process terminates after T iterations, each of the particles is a sample

from a distribution qT with low KLD from the target p, and we can use the particles

in the same way as a standard Monte Carlo sample.

Examining the update step in Equation (2.15), it can be seen that the first term

transports particles towards areas in the posterior distribution that represent high

probability mass. Conversely, the second term is the derivative of the kernel

function; a term that will inflate when the particles are close to one another.

To demonstrate this through an example, we take κ(·, ·) to be an isotropic4 RBF

kernel (a valid kernel when computing KSD (Gorham et al., 2015)), then we have

κ(λ,λ′) = exp
∥λ− λ′∥2

−ℓ2

 (2.16)

whereby

∇λκ(λ,λ′) = −2λ− 2λ′

ℓ2 exp
∥λ− λ′∥2

−ℓ2


= −2(λ− λ′)

ℓ2 κ(λ,λ′). (2.17)

Should particles be densely clustered, then the resultant Gram matrix will be

dense. This will lead to a larger quantity being computed upon evaluation of

particles are initialised from (Papamakarios et al., 2019)
4An anisotropic form is valid and, whilst more computationally demanding, will allow high-

dimensional particles to move independent in each dimension.
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Equation (2.17), compared to when particles are sufficiently far from one another.

In the case that J = 1, the summation in Equation (2.15) disappears, and the

entire scheme reduces to regular gradient-based optimisation. Additionally, there

is no danger of running SVGD with J too large as, by the propagation of chaos

(Kac, 1976), the final distribution of the ith particle is invariant to J as the number

of iteration steps T →∞ (Liu et al., 2016b).

2.2.4 Connection to variational inference

Typically, in VI (Section 1.2) we minimise the KLD between a ξ-parameterised

variational distribution qξ(λ) and the target density:

ξ⋆ = arg min
ξ

KL(qξ(λ)||p(λ)). (2.18)

ξ often parameterises a family {qξ} of Gaussian distributions. The resultant

parameters ξ⋆ are then used to form the optimal variational distribution q⋆ξ (λ),

used in place of the intractable p(λ).

In a regular VI framework, the explicit form placed on q can be highly restrictive,

particularly if the true posterior density is not well approximated by the variational

family selected. Conversely, SVGD allows for a non-parametric representation of

the posterior distribution to be learned that that enriches the choice of variational

family beyond the Gaussian distribution that is commonly used in regular VI.

An additional advantage is that SVGD only requires evaluation of the posterior’s

score function, a quantity that is invariant to the normalisation constant and can

be unbiasedly approximated in large data settings.
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2.2.5 Related works

SVGD has been used in the context of fitting Bayesian logistic regression and

Bayesian neural networks (Liu, 2017). Further, SVGD was used in the context

of a variational autoencoder (VAE) to model the latent space (Pu et al., 2017).

By relaxing the Gaussian assumption that is typically made of the latent space,

it was possible to learn a more complex distribution over the latent space of the

VAE. Further examples of the applications of SVGD can be found in reinforcement

learning (Liu, 2017), Bayesian optimisation (Gong et al., 2019), and in conjunction

with deep learning (Grathwohl et al., 2020). Theoretical analysis has also

established connections between SVGD and the overdamped Langevin diffusion

(Duncan et al., 2019), and black-box VI (Chu et al., 2020).

This article leverages the effective and efficient SVGD optimisation framework to

address the computational and multi-modality challenges endemic in GP inference.

We show that compared to standard inference approaches for GPs, the SVGD

framework offers the best trade-off between accuracy, computational efficiency and

model flexibility.

2.3 Stein variational Gaussian processes

2.3.1 Conjugate models

Our goal is to establish an inference scheme that allows us to use SVGD to infer

the posterior distribution p(f |y,θ) of a GP in a manner that is robust to model

mispecification. We deviate slightly from the notion that has been established in

Section 1.3 by conditioning on θ. This is because our goal in the forthcoming

sections of this chapter is to place prior distributions on the components of θ

and, consequently, their notation becomes non-trivial. When the data likelihood
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Algorithm 1 Pseudocode for fitting a
Gaussian process using T iterations of
SVGD.
Require: Base distribution q0. Target

distribution p(λ |y) where λ =
{θ,ν}.
Create Λ0 = {λj0}Jj=1 where λj0

iid∼ q0.

for t in 1:T do
for j in 1:J do
λjt ← λjt−1 + ϵϕ̂Λt−1(λjt−1) (see
Equation (2.15))

end for
Λt = {λjt}Jj=1

end for
return ΛT

Algorithm 2 Pseudocode for predictive
inference over test inputs X⋆.
Require: Set of particles {λj}Jj=1

Initialise sample= {}
for j in 1:J do

Set (θ,ν) = λj

for k in 1:K do
Sample y∗ ∼ p(· |θ,ν)
Append y∗ to sample

end for
end for
return mean(sample),
var(sample)

is Gaussian, we can analytically integrate out f and use SVGD to learn the kernel

hyperparameters and observation noise σ2, which comprise θ. This means that

each particle λj represents a sampled θ value. SVGD is useful even in these cases,

as estimating kernel parameters such as the Automatic Relevance Determination

(ARD)lengthscale vector can be particularly challenging for VI and MCMC. This is

due to their unidentifiable nature that often manifests itself through a multimodal

marginal posterior distribution. See Section 2.4.2 for an example of this. Through

a set of interacting particles, SVGD is able to efficiently capture these modes.

Accounting for posterior mass beyond the dominant mode is of utmost importance

when trying to give realistic posterior predictions (Palacios et al., 2006; Gelfand

et al., 2010).

2.3.2 Non-conjugate models

When the likelihood function of the data p(yi | fi,θ) in a GP model does not admit

a Gaussian distribution, we are required to learn the latent values f of the GP in
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addition to θ. To decouple the strong dependency that exists between f and θ,

we centre (or ‘whiten’) the GP’s covariance matrix such that f = Lθν, where Lθ

is the lower Cholesky decomposition of the Gram matrix K⋆⋆, and νi ∼ N (0, 1).

Applying such a transformation has been shown to enhance the performance of

inferential schemes in the GP setting (I. Murray et al., 2010; Hensman et al., 2015a;

Salimbeni et al., 2017). Once whitened, we can use the joint posterior distribution

p(θ,ν |X,y) as the target distribution for SVGD and post-hoc deterministically

transform the posterior samples to give p(θ, f |X,y).

SVGD requires evaluation of the score function of the density at the current particle

values to evaluate Equation (2.15). Using automatic differentiation, this is a trivial

task. However, it is accompanied by a computational cost that scales quadratically

with N since we can no longer marginalise f . For this reason, in datasets surpassing

several thousand data points, we estimate the score function using subsampled

mini-batches Ψ ⊂ {1, . . . , N}. The result of this is a score function approximation

that can be written as

∇θ,ν log p(θ,ν |y) ≈ ∇θ,ν log p0(θ,ν) N
|Ψ|

∑
i∈Ψ
∇θ,ν log p(yi |θ, νj) , (2.19)

where i indexes the respective elements in y j indexes ν from 1 to i. The quality of

this approximation is empirically demonstrated in Section 2.4.3 where we observe

comparable performance to the current state-of-the-art GP inference scheme.

2.3.3 Posterior predictions

Once a set of particles Λ has been learned, we can use the value of each particle

to make predictive inference. Recalling that the primary motivation of SVGD is

to enable accurate predictive inference in posterior distributions with complex and

multimodal geometries, naively taking the mean particle value for each parameter
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as the final estimate of each parameter in the GP could become problematic when

the posterior is complex. For this reason, to obtain a predictive mean and variance,

we sample K times from the predictive posterior of the GP for each of the J

particles and compute the mean and variance of the predictive samples. Such an

approach is equivalent to Monte-Carlo sampling and, consequently, admits has

an error rate of 1/
√
K. To elucidate this notion, the procedure is summarised in

Algorithm 2 .

We would like to show that the SteinGP in Algorithm Algorithm 1 iteratively

improves the posterior approximation. Consider the variational distributions qt of

the particles at time t. We can show that the Kullback-Leibler divergence between

these distributions and the target p decreases monotonically as t increases. The

following result is similar to that of Liu (2017) and Korba et al. (2020); however,

our proof focusses on the asymptotic case, an assumption that has since been

relaxed to give non-asymptotic results. This serves as a useful starting point for

more rigorous analysis of GPs (e.g., (Burt et al., 2020)).

Theorem 2.3.1 Consider SVGD in a general model with log p(λ) at least twice

continuously differentiable and ∇ log p(λ) is smooth with Lipschitz constant L.

The Kullback-Leibler divergence between the target distribution p and its SVGD

approximation qt at iteration t is monotonically decreasing, satisfying

KL(qt+1||p)−KL(qt||p) ≤ −ϵD(qt, p)2(1−

ϵEλ∼qt [Lκ(λ,λ)/2 +∇λ,λκ(λ,λ)]) (2.20)

for a step-size parameter ϵ that is chosen to satisfy 0 < ϵ ≤ ρ(∇λϕ̂(λ))−1, where

ρ(·) is the matrix spectral norm.

Proof. SVGD maps particles using λt+1 = T (λt) = λt + ϵϕ̂(λt). Denote the
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corresponding mapping of densities by qt+1 = T (qt). We have that

KL(qt+1||p)−KL(qt||p) = KL(T (qt)||p)−KL(qt||p)

= KL(qt||T−1(p))−KL(qt||p)

=Eλ∼qt

[
log qt(λ)− log T−1(p)(λ)

]
− Eλ∼qt [log qt(λ)− log p(λ)]

=Eλ∼qt

[
log p(λ)− log T−1(p)(λ)

]
. (2.21)

Under the change of variable formula for densities, we have

T−1(p)(λ) = p(T (λ)) · | det(∇λT (λ))|

which allows us to rewrite Equation (2.21) as

Eλ∼qt

[
log p(λ)− log p(λ+ ϵϕ̂(λ))− log | det(∇λT (λ))|

]
. (2.22)

Assuming that ∇λ log p(λ) is Lipschitz smooth with constant L and log p(λ) ∈ C2,

a second order Taylor series approximation of log p(λ+ ϵϕ̂(λ)) about λ (assuming

ϵ≪ 1) lets us bound the first two terms in Equation (2.22) by

log p(λ)− log p(λ+ ϵϕ̂(λ)) ≤ −ϵ∇λ log p(λ)⊺ϕ̂(λ) + Lϵ2

2 ϕ̂(λ)⊺ϕ̂(λ). (2.23)

Noting the definition of the Stein operator from Equation (2.4), we have that

−ϵ∇λ log p(λ)⊺ϕ̂(λ) = trace(−ϵApϕ̂(λ) + ϵ∇λϕ̂(λ)). Note also that T (λ) = λ +

ϵϕ̂(λ), and therefore ∇λT (λ) = I + ϵ∇λϕ̂(λ). We can lower bound the final term

in Equation (2.22) by first noting that by the approximate Neumann expansion of
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the inverse matrix ∇λT (λ)−1,

∇λT (λ)−1 = (I + ϵ∇λϕ̂(λ))−1 ≈ I − ϵ∇λϕ̂(λ) + (ϵ∇λϕ̂(λ))2 (2.24)

which holds for 0 < ϵ ≤ ρ(∇λϕ̂(λ))−1, where ρ(·) is the matrix spectral norm. We

can bound the final term in Equation (2.22) using the following lower bound,

log | det(∇λT (λ))| ≥
d∑
i=1

(1− e−1
i ) = trace(I −∇λT (λ)−1) (2.25)

where e1, . . . , ed are the eigenvalues of∇λT (λ). Replacing the Neumann expansion

for ∇λT (λ)−1 in Equation (2.25), gives the following lower bound,

log | det(∇λT (λ))| ≥ ϵ∇λ · ϕ̂(λ)− ϵ2||∇λϕ̂(λ))||2F , (2.26)

where || · ||F is the Frobenius norm.

Combining Equation (2.23) and Equation (2.26) gives the following upper bound

for Equation (2.22),

Eλ∼qt

[
−ϵ∇λ log p(λ)⊺ϕ̂(λ) + Lϵ2

2 ϕ̂(λ)⊺ϕ̂(λ) + ϵ∇λ · ϕ̂(λ) + ϵ2||∇λϕ̂(λ))||2F
]
.

= −ϵEλ∼qt

[
Apϕ̂(λ)

]
︸ ︷︷ ︸

B

+Eλ∼qt

ϵ2||∇λϕ̂(λ))||2F︸ ︷︷ ︸
C1

+ Lϵ2

2 ϕ̂(λ)⊺ϕ̂(λ)︸ ︷︷ ︸
C2


︸ ︷︷ ︸

C

.

By definition of the Stein discrepancy Equation (2.12), B = −ϵD(qt, p)2, and

60



2.3. Stein variational Gaussian processes

Equation (2.21) becomes

KL(qt+1||p)−KL(qt||p) ≤ −ϵD(qt, p)2 + C. (2.27)

Based on this, we must now show that C is bounded, which we can do by

considering each term individually.

C2: We can bound this term using the properties of the RKHS (Berlinet et al.,

2004). As ϕ̂ = (ϕ̂1, . . . , ϕ̂d)′ and ϕ̂i ∈ H0 =⇒ ϕ̂ ∈ Hd then

∥∥∥ϕ̂(λ)
∥∥∥2

2
=

d∑
i=1

ϕ̂i(λ)2

=
d∑
i=1

(
⟨ϕ̂i(·), κ(λ, ·)⟩H0

)2
which follows from the RKHS properties

≤
d∑
i=1

∥∥∥ϕ̂∥∥∥2

H0
∥κ(λ, ·)∥2

H0
by Cauchy-Schwarz

=
∥∥∥ϕ̂∥∥∥2

Hd
κ(λ,λ′)

= D(qt, p)2κ(λ,λ′) which follows by Equation (2.13) (2.28)

C1: We upper bound the matrix norm ϵ||∇λϕ̂(λ)||2F using the same RKHS

property used in C2.
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∥∥∥∇λϕ̂(λ)
∥∥∥2

F
=

d∑
i=1

d∑
j=1

∂ϕ̂i(λ)
∂λj

2

from definition above and the Frobenius norm

=
d∑
i=1

d∑
j=1

(
⟨ϕ̂i(·), ∂κ(λ, ·)/∂λj⟩H0

)2
by Theorem 1 of D. X. Zhou (2008)

≤
d∑
i=1

d∑
j=1

∥∥∥ϕ̂i∥∥∥2

H0
∥∂κ(λ, ·)/∂λj∥2

H0
by Cauchy-Schwarz

=
∥∥∥ϕ̂∥∥∥2

Hd
∇λ,λ′κ(λ,λ′)

= D(qt, p)2∇λ,λ′κ(λ,λ′).

Finally, putting terms C1 and C2 together, Equation (2.27) now becomes

KL(qt+1||p)−KL(qt||p) ≤− ϵD(qt, p)2 + ϵ2D(qt, p)2Eλ∼qt

[
∇λ,λ′κ(λ,λ)

]
+

ϵ2L

2 D(qt, p)2Eλ∼qt [κ(λ,λ)]

=− ϵD(qt, p)2
(
1− ϵEλ∼qt

[
Lκ(λ,λ)/2 +∇λ,λ′κ(λ,λ)

])
.

It can be shown that for the GP models considered in this paper, the gradients are

Lipschitz smooth and therefore Theorem 2.3.1 holds (Solak et al., 2002; Lederer

et al., 2019). Additionally, Theorem 8 of Gorham et al. (2015) establishes weak

convergence for a sequence of probability measures (qt)t≥1, where qt =⇒ p if

D(qt, p)→ 0, and so it follows from Theorem 2.3.1, that qt =⇒ p as t→∞.

2.4 Experiments

For the datasets used in Section 2.4.1, models are fit using 70% of the full dataset,

whilst the remaining 30% is used for model assessment. To obtain standard errors,
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Table 2.2: Full list of the UCI datasets used in Section 2.4.1. N corresponds the
number of observations, whilst the dimension column quantifies the dimensionality
of the inputs. For datasets with a binary target, we also report the dataset’s
imbalance through the proportion of observations whereby the target is positive
i.e. 1.

Dataset N Dimension Positive-proportion

airfoil 1503 5 -
autompg 392 7 -
blood 748 5 23.8%
boston 506 13 -
breast-cancer 286 10 29.72%
challenger 23 4 -
concrete 1030 8 -
concreteslump 103 7 -
fertility 100 10 12.0%
gas 2565 128 -
hepatitis 155 20 79.35%
machine 209 7 -
mammographic 961 6 46.31%
parkinsons 5875 20 -
servo 167 4 -
skillcraft 3338 19 -
spectf 267 45 79.4%
winered 1599 11 -
winewhite 4898 11 -

the procedure is repeated five times using a different training/test split each time

i.e., 5-fold cross validation. The partitioning of data, hyperparameter initialisation

and computing environment used are the same for all models. For each dataset,

we standardise the inputs and outputs to zero mean and unit standard deviation.

Throughout our experiments, we use an RBF kernel κ to specify the SVGD step

Equation (2.15) (which is an independent choice from the kernel within the GP

model). The RBF kernel’s variance is set to 1, and we select the lengthscale at
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each iteration of SVGD using the median rule (Garreau et al., 2017) as in Liu

et al. (2016b). We run experiments with J = 2, 5, 10 and 20 particles (labelled

SteinGP2 through to SteinGP20).

2.4.1 UCI datasets

We analyse 19 UC Irvine (UCI) datasets where the target is 1-dimensional.

Datasets range in size from 23 to 5875 data points. As highlighted in Table 2.2,

the targets in 6 of the datasets are binary, whilst the remaining 14 datasets are

continuous values. To accommodate this, we use a GP with a Bernoulli likelihood

for the classification tasks, and a Gaussian likelihood for regression. For regression,

we infer the model’s hyperparameters and for classification we additionally infer

the latent values of the GP.
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Table 2.3: Mean test log-likelihoods ± one standard deviation (larger is better)
over 5 independent data splits of the UCI benchmark experiment presented in
Section 2.4.1. Bold values indicate the best performing method. Our SteinGP
with 2, 5, 10 and 20 particles is compared against a Gaussian process fitted
using variational inference, maximum likelihood (ML) and Hamiltonian Monte-
Carlo (HMC). For datasets where there is a significant difference between the best
performing and one, or more, alternative methods, the dataset’s name is listed in
purple.

Dataset SteinGP2 SteinGP5 SteinGP10 SteinGP20 VI ML/HMC

Airfoil 0.06± 0.04 0.06± 0.04 0.05± 0.06 0.05± 0.05 0.03± 0.03 0.03± 0.03

Autompg −0.39± 0.09 −0.39± 0.09 −0.39± 0.09 −0.4± 0.09 −0.39± 0.07 −0.39± 0.07

Blood −0.6± 0.05 −0.6± 0.04 −0.6± 0.05 −0.61± 0.04 −0.51± 0.05 −0.52± 0.06

Boston −0.3± 0.12 −0.28± 0.11 −0.3± 0.12 −0.3± 0.13 −0.31± 0.13 −0.31± 0.13

Breast Cancer −0.08± 0.04 −0.08± 0.02 −0.08± 0.02 −0.08± 0.01 −0.65± 0.09 −0.08± 0.04

Challenger −1.53± 0.45 −1.52± 0.43 −1.46± 0.32 −1.53± 0.41 −1.51± 0.3 −1.51± 0.3

Concrete −0.25± 0.07 −0.25± 0.07 −0.25± 0.07 −0.25± 0.07 −0.24± 0.05 −0.24± 0.05

Concreteslump 1.08± 0.39 1.07± 0.41 1.06± 0.4 1.08± 0.39 0.13± 1.14 0.13± 1.14

Fertility −0.44± 0.03 −0.44± 0.03 −0.43± 0.02 −0.42± 0.02 −0.70± 0.08 −0.54± 0.02

Gas 0.88± 0.11 0.88± 0.11 0.89± 0.1 0.88± 0.11 0.79± 0.11 0.79± 0.11

Hepatitis −0.41± 0.07 −0.41± 0.07 −0.42± 0.07 −0.4± 0.07 −0.69± 0 −0.44± 0.04

Machine −0.51± 0.09 −0.52± 0.08 −0.52± 0.08 −0.52± 0.08 −0.52± 0.07 −0.52± 0.07

Mammographic −0.37± 0.03 −0.37± 0.03 −0.37± 0.03 −0.37± 0.03 −0.39± 0.03 −0.38± 0.04

Parkinsons 4.12± 0.05 4.12± 0.05 4.14± 0.03 4.13± 0.06 3.95± 0.04 3.95± 0.04

Servo −0.48± 0.04 −0.43± 0.05 −0.41± 0.11 −0.41± 0.21 −0.39± 0.1 −0.39± 0.1

Skillcraft −0.99± 0.02 −0.99± 0.02 −0.99± 0.02 −0.99± 0.02 −1.01± 0.02 −1.01± 0.02

Spectf −0.26± 0.01 −0.26± 0.01 −0.26± 0.01 −0.26± 0.01 −0.69± 0 −0.68± 0.03

Winered −1.17± 0.03 −1.17± 0.03 −1.17± 0.03 −1.17± 0.03 −1.16± 0.03 −1.16± 0.03

Winewhite 0.56± 0.05 0.57± 0.05 0.57± 0.05 0.57± 0.05 0.49± 0.05 0.55± 0.05

When the likelihood is Gaussian, we compare our SteinGP against a GP that

is fit using maximum likelihood (ML) and another GP fit using VI (VI). For

Bernoulli likelihoods, maximum likelihood estimation is not feasible so we instead
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use Hamiltonian Monte-Carlo (HMC) for inference along with VI. We report the

test log-likelihoods for the three model classes in Table 2.3 where the performance

given by inferring the GP’s parameters using SVGD is significant in comparison

to comparative approaches. Furthermore, we can see that increasing the number

of particles for SVGD often leads to larger improved log-likelihood values.

For some datasets, we see a weak improvement in the test log-likelihood as the

number of particles increases. This is due to the simple posterior distribution

that is being targetted and we visualise this in Figure 2.1 where we compare the

marginal posterior distributions learned through the SteinGP against the samples

drawn using HMC; the gold standard for Bayesian inference. In this figure,

we see that even for 2 particles, the SteinGP model can recover a reasonable

representation of the posterior distribution. For 20 particles, the SteinGP has

perfectly recovered the marginal posteriors over the kernel hyperparameters given

using HMC. For the observation noise variance, the SteinGP with 10 or 20 particles

does a reasonable job of recovering the posterior distribution, but it does struggle

to capture the posterior with 2 or 5 particles; an observation that aligns with the

test log-likelihood results in Table 2.3.
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Figure 2.1: Marginal posterior distributions for the servo dataset used in
Section 2.4.2.

For two particles, a SteinGP is nearly always faster than comparative methods.
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Table 2.4: Relative average computational runtimes of comparative methods.
Results are reported relative to a SteinGP with 2 particles i.e., a value of 2 would
indicate that method was two times slower than SteinGP2.

ML VI HMC

Relative wall time 1.8 1.3 5.6

The two exceptions to this are when 1) the maximum likelihood approach converges

quickly or 2) VI is used for non-conjugate models. In the case of 1), the difference

is in the order of seconds. Across all UCI datasets, we report the average runtime

of each comparative method and report timings relative to a SteinGP with 2

particles Table 2.4. It is clear that a SteinGP is a computationally efficient model,

particularly compared to a HMC approach, and a SteinGP consistently produces

optimal predictive results.
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Figure 2.2: The multimodal dataset from Neal (1997) that is used in Section 2.4.2.

2.4.2 Multimodal posteriors

One way in which a multimodal posterior can be observed is in the case of

a misspecified model. However, posterior multimodality can also occur due to

corrupted data. To see this, we use the 1-dimensional example from Neal (1997)
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whereby data is generated according to

yi = 0.3 + 0.3xi + 0.5 sin(2.7xi) + 1.1
1 + x2

i

+ ϵi

where xi ∼ N (0, 1) and ϵi ∼ N (0, σ2). We set σ = 1 with probability 0.05, and

σ = 0.1 otherwise, thus inflating the variance of some data points and creating

outliers. We simulate 200 points from this model, with the first 100 used for the

fitting of the GP and the remaining 100 used for evaluation Figure 2.2.

Table 2.5: Predictive metrics on 100 held out data points from the multimodal
example in Section 2.4.2. Coverage statistics are computed by the number of
test points that fall within a 90% credible interval of the predictive posterior
distribution. A perfect score is, therefore, 90%.

SteinGP2 SteinGP5 SteinGP10 SteinGP20 HMC VI

RMSE 0.045 0.040 0.039 0.039 0.043 0.044
Log posterior density -29.40 -25.94 -24.81 -24.33 -24.38 -27.31
Coverage 90% 64% 65% 68% 70% 68% 60%
Runtime (seconds) 6.9 9.1 14.9 24.8 50.4 14.7

The data are modelled using a GP that is equipped with an RBF kernel k(x, x′) =

α2 exp (−(x− x′)2/2ℓ2). We assume the observation noise follows a zero-mean

Gaussian distribution with variance σ2. We, therefore, wish to learn the posterior

distribution p(θ) where θ = {α, ℓ, σ}.

We compare the posteriors of a SteinGP with 20 particles against the posterior

samples from HMC in Figure 2.3. The point estimates inferred using VI are

included for a full and faithful comparison. Accurately quantifying the posterior

uncertainty is not only useful for parameter interpretation but also leads to higher-

quality predictive inference (see Table 2.5). From Table 2.5 it is clear that at

the cost of slightly longer computational runtime than VI, the performance in

predictive inference given by a SteinGP is significant. This can be seen through

the order of magnitude improvement in root-mean-square error (RMSE) compared
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Figure 2.3: The marginal posterior distributions of the GP model’s kernel
parameters in the multimodal example of Section 2.4.2. The left panel shows
the bimodal posterior learned through SVGD, whereas the Hamiltonian Monte-
Carlo (right panel) inferred posterior has only identified a single mode. The scalar
parameters learned with the variational GP are overlayed onto the HMC-inferred
posterior distribution through a red point.

to VI and HMC.

In contrast to the posteriors of Section 2.4.1, the bimodality of the marginal

posterior in this experiment demands a larger number of particles to be used

within the SteinGP. This is to ensure that there are enough particles to capture

additional modalities within the posterior distribution. In Table 2.5, we observe

that optimal performance is achieved when 20 particles are used. This is evidenced

through the reduced RMSE which indicates a more precise predictive mean, and

improved coverage and posterior density metrics that quantify the quality of the

posterior uncertainty. Whilst a SteinGP with 20 particles performs optimally,

we note that 10 particles can provide an accurate representation of the posterior

distribution, and with this number of particles inference in the SteinGP is only 0.2

seconds slower than the variational GP and 35.5 seconds faster than HMC.
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Figure 2.4: Inferred NO2 spatial surface (µgm−3) in the UK at 9AM on March
23rd; the day that initial lockdown measures were announced.

2.4.3 Spatiotemporal modelling

As a final experiment, we consider a spatiotemporal air quality dataset comprised

of 550,134 data points. Data is recorded hourly from 237 sensors across the UK.

The period of interest is February 1st to April 30th 2020; the period in which the

UK entered a Covid-19 lockdown. Consequently, the spatiotemporal dynamics

of air quality levels are chaotic and challenging to model as many individuals

adopt lifestyle changes with ramifications for their contribution to air pollution.

Historically, fully Bayesian inference with GP models would be infeasible on such

datasets due to the challenging scaling of MCMC samplers. However, using the

batched approach in Equation (2.19) we can make full Bayesian inference tractable.

To further demonstrate the efficacy of a SteinGP, we develop, in conjunction

with climate scientists, a complex separable kernel that principally captures the

complex spatiotemporal dynamics of atmospheric nitrogen dioxide (NO2). Across

the spatial dimensions we use a third-order Matérn kernel and in the temporal

dimension we use a product of a first-order Matérn and a third-degree polynomial
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kernel to capture the temporal nonstationarity. A third-degree polynomial was

selected on the advice of climate scientists who advised that, as a result of the

lockdown, there NO2 levels would rise as time approaches the lockdown date before

immediately dropping. From the lockdown date, it is believed that, slowly, activity

will resume and a rise in NO2 levels will be obsered. We further include a white

noise process. The kernel function that parameterises our GP is, therefore, given

by

k(x,x′) = kmat3(s, s) + kmat1(t, t′)kpoly3(t, t′) + σ2δ′
x,x′ , (2.29)

where s is 2-dimensional spatial coordinate and t the temporal indices. kmati
is

the Matérn kernel of ith order, kpoly3 is the third-order polynomial kernel, and δ is

the Dirac-delta function.

Table 2.6: Comparison of our SteinGP with 30 particles against a Gaussian process
fitted using stochastic variational inference on the air quality data of Section 2.4.3.
Standard errors are computed by fitting each model on 5 random splits of the data,
with 30% of the data being used for prediction.

SteinGP SVI

RMSE 0.82± 0.09 0.79± 0.07
Log-likelihood −1.358± 0.15 −1.342± 0.11

Predictive performance We assess the performance of our model by comput-

ing the predictive log-likelihood and the RMSE of our model and compare against

the state-of-art sparse GP fitted using stochastic VI (Hensman et al., 2013a). To

induce sparsity, the same set 600 inducing points are used in both models. We

initialise the inducing points through a Determinantal point process (DPP), as per

Burt et al. (2020).

We optimise both models by running the SteinGP for 1000 iterations and the
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Figure 2.5: Marginal posterior distribution of the 2-dimensional lengthscale
parameter used to model the normalised longitude and latitude coordinates in
degrees.. The density for each element of the lengthscale is estimated using the
optimised particles in SVGD and the red line corresponds to the scalar estimates
produced through a stochastic VI scheme.

stochastic VI model for 10000. For both models, we use a batch size of 256 and

a learning rate of 0.001. 30 particles are used for the SVGD routine. Due to the

size of the dataset, a single step of a HMC sampler took over 10 minutes. Given

that several thousand steps of the HMC sampler would be required, a comparison

against HMC is infeasible.

Table 2.6 shows there is no significant difference between the GP fit using

SVGD and stochastic VI. Unsurprisingly, VI is faster than SVGD with average

computational wall times of 141 seconds and 332 seconds, respectively. However,

this is to be expected due to the kernel computations that are required at each

iteration of SVGD.

Uncertainty quantification Although the headline predictive performance of

the two methods is comparable, the fully Bayesian treatment of the GP model

that SVGD enables leads to full posterior inference and improved uncertainty

quantification. To see this, we hold out all stations in the midlands of the UK (see
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Table 2.7: Spatial interpolation of a SteinGP with 30 particles and a stochastic
variational inference Gaussian process. Here, stations within (-2.2o, 52o), (-1o, 54o)
are held back for testing.

SteinGP SVI

RMSE 0.97 1.00
Log-likelihood −1.467 −1.462

the red box in Figure 2.6(a)) and re-fit both the SteinGP and the stochastic VI

counterpart. We then perform spatial interpolation over the midlands of the UK

from February 1st through to April 30th. In a model that is capable of generating

effective predictive uncertainties, the predictive variance should be much larger

over the midlands due to the lack of observations there.

Both models achieve comparable predictive metrics (Table 2.7). However, the

purpose of this study is to assess the predictive uncertainties that each model

yields. It can be seen in Figure 2.5 that estimating the spatial lengthscale

parameters is challenging due to multimodalities. The SteinGP appears to have

captured a secondary mode for each parameter. For completeness, we also give

the scalar estimates produced by the stochastic VI procedure.

From Figure 2.6(a) it can be seen that the richer posterior inference provided from

a SteinGP results in more reasonable posterior uncertainty estimates than those

displayed in Figure 2.6(b). This can be seen by observing the increased uncertainty

over the midlands of the UK. Noting the different legend colour scaling, it can

be seen in comparison that the GP inferred using stochastic VI is incapable of

capturing this behaviour and yields an almost uniform predictive variance across

the UK.

2.4.4 Demo
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(a) Figure A (b) Figure B

Figure 2.6: Posterior variances for a SteinGP (Figure 2.6(a)) and stochastic
variational inference Gaussian process (Figure 2.6(b)). Data within the red square
in Figure 2.6(a) was held back and predictions were then made across the entire
UK. The lighter colours indicate a higher predictive variance; something that is
expected when there are no observation present. We note the differing colour scales
used in Figure 2.6(a) and Figure 2.6(b).

In Listing 1 we demonstrate the code released alongside this work. Code has been

purposefully designed to integrate with GPFlow (Matthews et al., 2017), meaning

that all operations are GPU-compatible and can be integrated with the extensive

functionality provided in GPFlow.

2.5 Conclusions

We have shown that SVGD can be used to provide comparable inferential quality

to the gold standard HMC sampler in GP inference, whilst only requiring a

computational cost comparable to VI. The ability to carry out joint inference over
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1 from steingp import SteinGPR, RBF, Median, SVGD
2 import numpy as np
3 import gpflow as gpf
4

5 # Build data
6 X = np.random.uniform(-5, 5, 100).reshape(-1,1)
7 y = np.sin(x)
8

9 # Define model
10 kernel = gpf.kernels.SquaredExponential()
11 model = SteinGPR((X, y), kernel)
12

13 # Fit
14 opt = SVGD(model, RBF(bandwidth=Median()), n_particles=5)
15 opt.run(iterations = 1000)
16

17 # Predict
18 Xte = np.linspace(-5, 5, 500).reshape(-1, 1)
19 theta = opt.get_particles()
20 posterior_samples = model.predict(Xte, theta, n_samples=5)

Listing 1: Demonstration of the supplementary code package that implements a
Stein variational Gaussian process.

latent function values and kernel hyperparameters allows for a full and proper

consideration of uncertainty in the inference.

For simple problems where the true posterior is Gaussian, two or five SVGD

particles are required to achieve strong inference, as can be seen in the experiments

carried out in Section 2.4.1. However, for modelling tasks where posterior geometry

is non-convex, such as those in Section 2.4.2, more particles can help capture subtle

posterior geometries.

Well quantified predictive uncertainties are critical when GP models are being used

in real-world scenarios. As shown in Section 2.4.3, when compared to variational

GP, a SteinGP can provide well-quantified uncertainty estimates, even in big

data scenarios. This, in conjunction with strong predictive performance, makes

SteinGPs a useful tool for practitioners fitting GP models.
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Chapter 3

Street-Level Modelling of Air

Pollution Using Graph Gaussian

Processes

In this chapter, an alternative approach to modelling air pollution is proposed by

allowing the space on which the data is observed to be the vertex set of a graph,

not a coordinate system, such as the one used in Section 2.4.3. As will be shown in

Section 3.3, constructing GP models in this way enables questions such as “What

levels of NO2 will I be exposed to if I wish to walk from one location to another?”

or “Which road has the highest levels of NO2 in my town?” to be answered.

Extending regular GP models such that their support is the vertex set of a graph

requires the derivation of kernel functions that can quantify the similarity between

any pair of vertices within a graph. In this chapter, we build upon the work

Borovitskiy et al. (2021) by developing a graph GP that is capable of modelling

heteroscedastic noise processes on the vertices of a graph.
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We demonstrate the use of our model by investigating NO2 levels in the Mitcham

and Tooting regions of London, using a dataset collected by the Breathe London

project that gives mobile measurements collected in a moving vehicle. Through

our model, we can infer NO2 levels at a high resolution and begin to answer

pertinent questions that link air pollution to matters such as public health and

policy decision-making. We conclude this chapter by presenting the LancasterAQ

dataset - a mobile dataset of ultrafine particle (UFP) that we have collected in

Lancaster, UK. This new dataset provides a useful augmentation to the existing

set of air pollution datasets as it measures UFP, an under-regulated pollutant, in

a small city. This contrasts with existing datasets which typically measure larger

particulate matters and NO2 in major cities such as London and Barcelona.

3.1 Introduction

Exposure to poor ambient air pollution is a major public health issue and producing

accurate prediction maps of pollution levels is a critical task in the earth science

and machine learning communities. In this work, we focus our attention on NO2

- a pollution compound that is primarily produced by the burning of fuels, such

as by combustion engines in cars. Disentangling the direct effect of NO2 on one’s

health is challenging, however, it is estimated that 3.6 million deaths per year

result from exposure to pollution created by combustion engines (Lelieveld et al.,

2019). There is no single illness that causes these deaths, but short-term exposure

to NO2 has been linked to reduced lung function and increased cardiovascular risk

(Strak et al., 2012; Strak et al., 2013).

Constructing regression models capable of interpolating and forecasting air quality

measurements in the absence of monitoring stations is challenging due to data

scarcity and the complex underlying spatial topology that exists in urban areas.
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Figure 3.1: Location of the 145 automatic urban and rural network (AURN) sites
within the UK that measure NO2 levels.

Previous works have combined datasets of different resolution to try and resolve

this issue (Hamelijnck et al., 2019), however, it cannot always be guaranteed that

a range of suitable datasets will be available. In the UK, the largest network of

NO2 sensors contains 145 stations with a disproportionately large number of these

residing in major cities (Figure 3.1). With so few sensors, it is often infeasible

to build fine-scale models that are capable of inferring NO2 levels at a street

level. There exists a parallel line-of-work that considers fusing multiple datasets

at varying resolutions together to obtain fine-scale predictions (Law et al., 2018;

Hamelijnck et al., 2019; H. Zhu et al., 2021); however, we do not consider this here

as it relies on multiple datasets of the same quantity being available, a requirement

that often cannot be satisfied. Furthermore, assuming the model’s domain is

Euclidean is a common assumption, yet unrealistic in cities and urban areas.

Factors such as varying traffic speeds and congestion levels are more accurately

explained using a road network (i.e., the graph approach) rather than assuming
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the underlying space is unconstrained and continuous (Euclidean approach). A

pertinent example of this can be visualised in Figure 3.2(a) where we see the

problem encountered when computing Euclidean distances on network spaces.

We wish to design a statistical model for air quality that is well-calibrated, accounts

for the underlying road network, and allows us to make predictions at locations

for which we do not have observations. Firstly, a well-calibrated model is essential

for informing policy decisions since this highlights points at which the model can

be trusted and those where further investigation is required. Secondly, our model

should reflect the topology of the road network so that outputs from the model

appropriately reflect constraints implied by the real world. Finally, the cost and

time-intensive nature of the data collection process motivates the development of

models which offer accurate predictions away from the observations. This allows

practitioners to make statements based on limited data and outputs from the

model can be viewed as a cheap alternative to data collection.

In this work, we construct a GP regression model that is defined on a graph

representation of London’s road network where a junction is represented by a vertex

and a road by an edge. GPs are a well-motivated choice of model as they offer

calibrated uncertainty estimates and their flexible non-parametric form allows us

to model the complex dynamics exhibited by NO2. We parameterise our GP using

a graph kernel, which allows us to capture the correlation structure present within

London’s road network. Such a representation allows us to use our model to assess

the levels of pollution exposure experienced when taking common journeys, such

as a commute or bike ride (Figure 3.5). Identifying roads with dangerous levels

of pollution (Figure 3.7) enables us to recognise and proactively assist individuals

who are more at risk of contracting pollution-related illnesses.
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3.2 Graph theory primer

A graph G = {V,E,W} is a triad comprised of a set of vertices V = {v1, v2, . . . vnv},

a set of edges E = {(vi, vj) : vi, vj ∈ V } ⊆ V × V for |E| = ne, and a weight

function w : V × V → R that assigns a value to each edge in the graph. For three

examples of real-world graphs, consider the following

1. A molecule, where a vertex is an atom and an edge represents a bond between

two atoms. The bonds’ strength is given by the weight function.

2. Social networks, where individual users constitute a vertex, and an edge is

present between two users if they’re connected on the social network. The

edge’s weight is given by the amount the two users interact with one another.

3. Road networks, where each vertex is a junction and an edge connects two

junctions if they are connected by a road. Assuming bidirectional traffic he

edge’s weight is given by the inverse length of the road (see Section 3.3.1 for

further intuition on this point.).

Within graph signal processing, a graph signal is a function g : V → R that is

defined on the vertices of a graph. A realisation of this signal is denoted g =

[g(v1), g(v2), . . . , g(vnv)] ∈ Rnv . Through a model, the task is to learn the graph

signal’s functional form so that predictions can be made at vertices where the

signal was not observed.

Three matrices that can be used to represent a graph are the adjacency matrix

A, the degree matrix D, and the Laplacian matrix ∆. The graph adjacency

matrix A is a square matrix such that [A]i,j is equal to w(vi, vj) if and only if

(vi, vj) ∈ E, and 0 otherwise. To denote adjacency between two vertices vi, vj,

we can also write vi ∼ vj. We only consider symmetric graphs in this work i.e.,

(vi, vj) ∈ E ⇐⇒ (vj, vi) ∈ E and, for graphs of this form, the adjacency matrix
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is symmetric. The degree matrix D of a graph is a diagonal matrix such that

[D]i,i = ∑
j ̸=iAi,j.
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Figure 3.2: Left panel: A comparison of graph (green) and Euclidean (red)
distances when the underlying space is a network. Right panel: NO2 observations
overlayed onto Mitcham’s road network. Observations have been log-scaled to aid
visualisation.

The graph Laplacian combines the adjacency and degree matrices through ∆ =

D − A. The graph Laplacian is a diagonally dominant matrix and it is a

fundamental concept in spectral graph theory. For a graph signal g, the graph

Laplacian can be used to quantify the smoothness of the signal over the graph’s

vertices (Smola et al., 2003). To see this, we can consider the following

⟨g,∆g⟩ = g⊤∆g = 1
2
∑
vi∼vj

wi,j(gi − gj)2 , (3.1)

for all g ∈ Rnv . Functions that are smooth over the vertices will result in small (gi−

gj)2 values, whereas rough functions will change rapidly across vertices, meaning

the quadratic difference will be larger. The graph Laplacian is symmetric positive-
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definite and therefore admits the eigendecomposition

∆ = UλU⊤ , (3.2)

where λ is the diagonal matrix of non-negative eigenvalues and U is the

orthonormal matrix whose columns are the eigenvectors of ∆.

3.3 Case study

(A) (B) (C)

Figure 3.3: Schematic describing the inclusion of NO2 measurements into a road
network. With an underlying road network (A), vertices are junctions and edges
are roads that connect two junctions. The colour of an edge denotes the edge’s
length. Measurements are made at points on the road (green cross, (B)) and the
nearest edge is spliced at this point. We then reconstruct the edge as a pair of
edges with length proportional (C).

3.3.1 Data

We use NO2 measurements from the Breathe London Mobile study where pollution

measurement sensors were fixed to two Google street view cars (Hasenkopf et al.,

2015). NO2 levels were measured every 1-10 seconds as the cars drove around

London. 600 journeys were made from Autumn 2018 to Autumn 2019 when the

study ended. We use data from 6-7.30 AM on December 18th, 2018 in the suburb

of Mitcham, which provides us with 695 measurements (Figure 3.2(b)).

To represent the roads of Mitcham as a graph, we use data from OpenStreetMap
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(Bennett, 2010) and let each junction be a vertex v. Two vertices are connected

by an edge e in the graph if a road connects the corresponding junction pair.

Intuitively, an adjacent pair of vertices are more similar the closer they are to

one another. For this reason, we weight the edges in our graph by the inverse

distance between the adjacent vertex pair. We next augment the graph with the

NO2 measurements. For each measurement, we identify the nearest edge, splice

the edge at the measurement’s coordinate, and reconstruct the graph with the

measurement becoming a new vertex and two new edges being created to connect

the measurement vertex to its adjacent junctions. We calculate length using the

measurement’s distance from its adjacent junction pair. We visualise this process

in Figure 3.3.
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Figure 3.4: A comparison of a homoscedastic GP (left) whose noise term is constant
and a heteroscedastic GP (right) whose noise term is a vector. Both models are
fitted using the same train/test split of the motorcycle dataset given in (Silverman,
1985). In each panel, the shaded regions represent the 90% credible interval around
the predicted mean, given by the solid line.

3.3.2 Model specification

Equipped with a graph representation, we now seek to define a GP on the graph’s

vertices. Apriori, it is challenging to infer the smoothness of the air pollution data

being modelled. For this reason, we use the Matérn kernel k : V ×V → R given in

Borovitskiy et al. (2021) as its flexible parameterisation will allow us to capture a
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range of functions with differing smoothness. For a smoothness parameter ν ∈ R>0

and lengthscale ℓ ∈ R>0, the GP prior can be written as

p(f) = N
(

0,
(2ν
ℓ2 Inv + ∆

)−ν)
(3.3)

= N
(

0,U
(2ν
ℓ2 Inv + diag(λ)

)−ν
U⊤

)
, (3.4)

using the eigendecomposition of the Laplacian matrix given in Equation (3.2)

where nν denotes the number of vertices within the graph.

Up until this point, a constant, homoscedastic noise term has been used. However,

in this work, the NO2 values’ variance increases proportionally to the magnitude

of the value. To account for this, we will seek to learn a vector of noise values

σ2 = {σ2
1, σ

2
2, . . . , σ

2
nv
}, where each observation is mapped to a unique element in

σ. Such a model is known as a heteroscedastic model and we visualise it for a

simple 1-dimensional regression problem in Figure 3.4.

To effectively learn a heteroscedastic noise term, we introduce a second GP

p(r(·)) = GP(µr, kr(·, ·)) where r = [r(v1), r(v2), . . . , r(vnv)] into our model. The

role of this GP is to functionally map the graph’s vertices to a vector of noise

terms. Unlike the GPs that we have seen so far in this thesis, we explicitly seek

to model the mean function of this GP as a function of the graph, as this term

allows us to control the scale of the variances’ values. To ensure the noise terms

are positive, we use the exponential link function, and the likelihood function in

our model is now given by

p(y | f , r) = N (f , exp(r)2In) .

Introducing exp(r) makes inference for our model intractable. To resolve this, we
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introduce a pair of variational distributions: q(f) and q(r). Applying the standard

VI procedure outlined in Section 1.2 then yields the following ELBO

L(q(f), q(r)) = log p(y)−KL(q(f), q(r) || p(f , r |y)) . (3.5)

Following Lázaro-Gredilla et al. (2011), the optimal form of q(f) is given by

q⋆(f) = arg max
q(f)

L(q(f), q(r)) (3.6)

= C−1p(f) exp
(∫

q(r) log p(y | f , r)dr
)
, (3.7)

where C is the normalisation constant that ensures q⋆(f) integrates to 1. Letting

q(r) be a multivariate Gaussian with mean mr and covariance Σr, we may

analytically compute the integral inside the exponent by

∫
q(r) log p(y | f , r)dr =

∫
N (r |mr,Σr) log p(y | f , r)dr (3.8)

= logN (r | f ,R)− 1
4 trace(Σr) , (3.9)

where R is a diagonal matrix whose entries are diag(R) = exp (mr + diag(Σr)).

With this result, the normalisation constant C can be analytically computed and

the corresponding ELBO is then given by

L(q(r)) = logN (y |Kf + R)− 1
4 trace(Σr)−KL(q(r) || p(r)) . (3.10)

The bound on the true marginal log-likelihood that is given by the ELBO is

tightened by computing the derivative of Equation (3.10) with respect to the

variational parameters and the kernel hyperparameters that are associated with f

and r. A gradient-based optimiser can then be used to find the optimal values for
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these parameters.
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Figure 3.5: Left: Example 4.2km route that we query our Gaussian process for.
Right: The NO2 exposure that would be experienced whilst walking the journey.
The shading indicates the risk of a given level. Plotted in blue is the GP’s predictive
mean and one standard deviation.

3.3.3 Model validation

With each observation pair (vi, yi) corresponding to an individual vertex and

associated NO2 value, we assess our model’s performance by partitioning the

dataset into a training and testing set. We hold back 137 vertices for testing,

and fit our model to the remaining 548 vertices. Note that a spatial cross-

validation approach would be inappropriate as we have assumed observations to

be observed on a network, not a Euclidean space. To validate our model, we

compare it against its Euclidean and homoscedastic analogues. We construct a

Euclidean representation of the data by computing the coordinate location of each

vertex, making the input space R2. A Euclidean Matérn kernel (Equation (1.52))

is then fit to the data and we compare these models both with and without the

heteroscedastic noise term.

R2 coefficients measure the amount of variation in the data that is explained by the

model. A perfect model will attain an R2 score of 1, whilst predicting the data’s
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mean ȳ = n−1∑n
i=1 yi everywhere will yield a score of 0. The predictive posterior

density evaluated on test data quantifies how well the model explains unseen data

points. We compute these metrics for each model (Table 3.1) and find that the

optimal model is one with a heteroscedastic noise term and a graph kernel.

Table 3.1: R2 coefficients and predictive posterior density scores on a held-back
test set for the four models considered in Section 3.3.2. For both metrics, a higher
score is better.

Kernel Domain Noise Model R2 Predictive likelihood

Euclidean (R2) Homoscedastic 0.636 0.511
Heteroscedastic 0.716 0.672

Graph (V ) Homoscedastic 0.688 0.521
Heteroscedastic 0.722 0.724

We further validate our model through an analysis of residuals in Figure 3.6. The

left panel plots the predicted values ŷ and the corresponding ground-truth value

y, the middle panel shows the predicted values against the residual y − ŷ. In the

right panel, we plot a histogram of the residuals. In each of the three plots, we

observe that the residuals are dispersed with no obvious bias or structural error.

Further, the residuals’ behaviours are consistent across the training and test data,

indicating that we have not overfit to the training data.

Figure 3.6: Analysis of residual plots for the heteroscedastic graph GP presented
in Section 3.3.2.

The improvement in model diagnostic measures (Table 3.1) alone is enough to

justify using a graph kernel. However, we would like to explicitly acknowledge
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that the computational cost incurred when fitting a graph kernel scales equally

to a Euclidean kernel. Furthermore, the choice of kernel domain is a modelling

decision, and in this work, a graph kernel is more appropriate as it more accurately

reflects the fact that observations are collected whilst a vehicle moves along the

roads of Mitcham. This is of importance as the vehicles are one of the primary

sources of NO2 and, therefore, by using a graph kernel, we can better capture

the relative closeness of locations that a vehicle has passed through, under the

assumption of bi-directionality. Selecting a Euclidean kernel would imply that the

closeness of locations is simply a function of distance which is untrue if we consider

parks, flanks of buildings, and areas of construction; all areas where a vehicle is

unable to travel through and should, therefore, be less correlated with a position

on the road.

3.3.4 Nitrogen dioxide exposure levels

Here we seek to explore the NO2 levels that an individual would be exposed to

during a typical walking journey. To answer this question, we consider the journey

plotted in orange in the left panel of Figure 3.5 and infer from our fitted GP

model the NO2 levels that would have been experienced at 6 AM. The World

Health Organisation consider NO2 levels of 0.023 ppm to be unsafe (World Health

Organization, 1997). The prediction in Figure 3.5 we can see that a pedestrian

would spend 51 minutes of a 64-minute walk at levels greater than this threshold.

The significance of this should not be underplayed as the European commission

consider more than 18 exceedances of 0.1ppm on an hourly average in a single year

to be a violation of EU law.
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3.3.5 Areas of greatest exposure

The fine-scale resolution our model provides allows us to precisely identify the

streets whose NO2 exposure is greatest. To do this, we evaluate the GP’s predictive

mean at every street for which we have at least one observation. We then compute

the mean NO2 value for each street and identify the three streets with the largest

mean NO2 value. NO2 predictions at vertices that are adjacent to two or more

streets are repeated once per street. We identify Tooting Bec Road, Trinity Road

and Balham High Road as the three streets with the largest mean NO2 values.

To further investigate the NO2 exposure experienced along these roads, we simulate

250 additional vertices for each of the three streets mentioned above and include

the vertices into our graph in an identical manner to the process described in

Figure 3.3. We refit our GP to the expanded graph and plot the GP’s predictive

mean at the vertices associated with each of the three above streets. In Figure 3.7,

we can see that despite the average exposure being large on these streets, there are

areas more exposed to high NO2 levels than others. Such analyses are invaluable

from a policy-making perspective as they enable us to better understand which

people are more at risk of pollution-related illnesses.
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Figure 3.7: The three streets in Mitcham with the largest mean NO2. In each
panel, we visualise the predictive mean along the respective street where we can
see regions with larger NO2 values.
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3.4 LancasterAQ - A mobile datatset of ultra-

fines

We present an air quality dataset collected in Lancaster, UK that comprises of

UFPs measurements, collected by a combination of vehicle-borne and bicycle-

borne instrumentation. The high-resolution at which UFPs have been measured

makes this a novel dataset that will enable further research into the impacts of

UFPs on human health and enable more informed public policy. The aim of this

paper is to provide the required knowledge to use and understand the data.

Exposure to poor air quality is a major hazard to human health with an estimated

4.2 million premature deaths globally each year resulting from outdoor air pollution

(Cohen et al., 2017), including particulate matter (PM). UFPs are PM less

than 0.1 µm in diameter and are linked to a range of negative health effects,

including cardiovascular and pulmonary diseases (Ohlwein et al., 2019). However,

UFPs are not included in current premature death estimates and are currently

unregulated in air quality standards worldwide, in part, due to the lack of

systematic measurement. UFPs are directly emitted from combustion sources,

although they are also created by atmospheric reactions. In urban environments,

the primary source of UFPs is traffic, including tailpipe, road abrasion, and non-

exhaust emissions (e.g., brake and tyre wear).

UFPs concentrations vary across space and time and are influenced by physical

(e.g., meteorology and atmospheric chemistry) and social (e.g., rush hour traffic

and public transport use) processes. Therefore, datasets measured at a high

spatiotemporal resolution are essential to understand the behaviour and impacts

of UFPs. Existing air quality products range from coarse global-scale reanalysis

(e.g., Inness et al., 2019; Kong et al., 2021) to small and localised low-cost
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static sensor networks (e.g., Purple Air). However, these datasets seldom contain

measurements of UFPs, let alone provide information at scales appropriate for

their high spatiotemproal variability.

Better measurements of UFPs will improve our understanding of meteorological,

climate, and social systems. Through atmospheric reactions they form important

seeds for cloud creation, currently a major source of uncertainty in modelling

climate change and a possible method for geoengineering climate solutions.

Socially, it will be possible to quantify the effects of pollution intervention

and design impactful policies, such as active traffic management, low-traffic

neighbourhoods and low-emission zones.

Table 3.2: Summary of data collected from this measurement campaign including
average meteorological variables temperature, humidity and surface pressure.
Driving measurements are shown in blue and cycling in red.

Date Time Data count Temp. (°C) Humid. (%) Press. (mb)

Tuesday 03/05/2022
0827-1045 9650 9.2 84.6 1010
1353-1655 10924 12.5 77.9 1009
0757-0953 6637 8.7 85.5 1010

Wednesday 04/05/2022
0855-1219 12256 10.5 100.0 1005
1454-1800 11155 11.6 77.9 1006
0854-1051 6539 10.4 100.0 1005

Thursday 05/05/2022

1013-1315 10907 12.3 83.7 1012
1553-1858 11132 12.5 81.8 1012
1001-1143 5391 11.5 85.7 1012
1550-1709 4494 13.3 77.2 1013

Friday 06/05/2022 1057-1414 11823 12.3 88.8 1011
1053-1210 4521 12.3 88.7 1011

Sunday 08/05/2022 0910-1124 8020 12.4 69.2 1017

Our new dataset of mobile UFP measurements is an important addition to existing

air quality products. It provides highly resolved UFP concentrations at the street

level of an under measured, but important pollutant. Our data is available through
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a Python package1 that facilitates statistical modelling from either a spatial or

network perspective. Finally, as our dataset is collected in the small city of

Lancaster, UK, it contrasts with existing mobile datasets, which focus on larger

cities (e.g., Breathe London and C. Chen et al. (2001)).

Our mobile dataset can be used in a number of impactful ways, including the

following:

• Route planning to factor in UFP exposure levels (e.g., Y. Wang et al., 2022;

J. D. Smith et al., 2022).

• Decision making and experimental design for sensor placement (e.g., Diggle

et al., 2010).

• Investigating causal relationships from UFPs to human behaviour and urban

design (e.g., Schrotter et al., 2020).

3.4.1 Collection

UFP measurements were made by car and bicycle over 5 days during one week

in May 2022 in Lancaster, UK. Measurements were made between 8am and 7pm,

and were designed to maximise temporal coverage and sample the city’s road and

cycle networks. Measurements were made over ∼ 3 hours for driving and ∼ 90

minutes for cycling. One driving measurement campaign was also carried out on

a Sunday morning to give an indicative background UFP concentration. In total,

we completed 8 measurements by car and 5 by bicycle. Routes were driven with

the aim of driving past 6 key waypoints: 1) the A6, which is the main road from

the city centre out to the university and the M6 motorway; 2) the one-way system

that goes around the city centre and is the main thoroughfare between Lancaster
1https://github.com/lgouldsbrough/LancasterAQ
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and the adjoining urban centre of Morecambe; 3/4) Bowerham and Hala, which

are both residential areas with some schools and a frequent bus route; 5) the

Greyhound Bridge, which is a major bottleneck in Lancaster; and 6) the Lune

Industrial Estate. The cycling routes sampled key cycling infrastructure including

the canal towpath and popular cycle paths through the city centre. Where cycle

paths were unavailable, cycling was done on the road.

All UFPs measurements were made using the NAQTS V20002. Two devices were

co-located prior to deployment for calibration. Flow and zero checks were done

daily before monitoring. For the vehicle-based monitoring, a V2000 was put in the

rear passenger seat with a tube out of the window facing towards the front of the

vehicle, following the testing methodology outlined by Lim et al. (2022) that also

used a V2000. For the bicycle-based measurements, we modified a bicycle trailer

to carry the V2000. UFP loss corrections for the sample tubes were calculated

before measurements. Measurements were made at 1-second time intervals and

were geo-located using an onboard global positioning system (GPS).

3.4.2 Metadata

Lancaster is a city in North West England, with a population of 52234 as of

the last census. All routes started and finished at Lancaster University, located

approximately 5km south of the city centre. In total, we covered 397km and

collected 31.5 hours (113449 data points) of on-road UFP data (113449 data

points), which is summarised in Table 3.2 alongside complementary meteorological

metadata collected by Lancaster University’s weather station, Hazelrigg.
2https://www.naqts.com/our-technology/v2000/
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Figure 3.8: Kernel density estimate of log UFP levels stratified by the day of the
week and the vehicle used to collect the readings.

3.4.3 Limitations

While the data are available at a high time resolution (1 second), we recognise that

the data are temporally limited as the measurements were only taken for portions

of 5 days in May 2022. This was partially mitigated by using a sliding start time

each day, which varied the time windows captured. Some covariate information is

available for the meteorological conditions, which are important for UFPs levels,

but there are no associated traffic data available, which represents a key source

for UFPs. Finally, the data are right-skewed and exhibit discontinuities which

makes modelling a challenging task that we address in Section 3.4.4. Nevertheless,

the data are amenable to modelling approaches on a range of supports, including

spatial grids (Matheron, 1963) or networks (Pinder et al., 2022d; Nikitin et al.,

2022).

3.4.4 Preliminary analysis

In this section, we will present a brief summary of the dataset. We do not aim

to explore any patterns in the data, but rather highlight some of the information

they contain, to enable and motivate wider community engagement.

For regression modelling, the UFP or logUFP column in Table 3.3 will be our

response variable. In Figure 3.8 we explore its shape through a set of kernel density

estimates: one per day of the week and vehicle type. The modelling challenge here
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is immediately apparent through the measurements’ right-skew.
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Figure 3.9: 1 hour of log-scaled UFP measurements with a 2-second moving average
applied. Each line represents an individual journey.

As data collection process here is sequential, a natural task one may wish to carry

out is time series modelling. In Figure 3.9 we plot the time series associated with

four trips: the cycling and driving journeys that were carried out on both the

Tuesday and Wednesday mornings. For easier visualisation, the data have been

log-scaled and a 2-second moving average has been applied. However, even with

these transformations applied, the roughness of the data is apparent.

Table 3.3: Leading 5 rows of the collected data as given by the LancasterAQ API.

Datetime Lat Lon Ultrafines Vehicle Log ultrafines

2022-05-05 15:53:08 54.01 -2.79 6591.00 driving 8.79
2022-05-05 15:53:11 54.01 -2.79 7095.00 driving 8.87
2022-05-05 15:53:12 54.01 -2.79 7505.00 driving 8.92
2022-05-05 15:53:12 54.01 -2.79 7505.00 driving 8.92
2022-05-05 15:53:12 54.01 -2.79 7505.00 driving 8.92

96



3.4. LancasterAQ - A mobile datatset of ultrafines

3.4.5 Conclusion

To allow members of the climate science and atmospheric communities to more

easily access the data, we have created and published a Python package titled

LancasterAQ on PyPi3. Through this package, the UFPs data can be loaded into

a Python module as either a tabular GeoPandas DataFrame (Jordahl et al., 2020),

or a networkx graph object (Hagberg et al., 2008). We visualise the leading five

rows of this data in tabular format in Table 3.3.

With this data, we will initially model UFP concentrations on a graph structure

(Pinder et al., 2022d) to produce local exposure maps and a route planner which

accounts for exposure to poor air quality. This is only possible due to the dataset’s

high resolution. Our motivation for publishing this data is to encourage the applied

machine learning community to investigate and model questions including the

influence of humans on UFPs, the links between climate, clouds and UFPs, and

how public policy can mitigate impacts on our changing social and physical world.

3https://pypi.org/project/LancasterAQ/
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Chapter 4

Probabilistic Embedding of

Hypergraphs Through Gaussian

Process Latent Variable Models

Chapter 3 explored how graphs and GPs can be combined to construct informative

models of air pollution. In this chapter, we extend this idea by generalising

the concept of a graph to a hypergraph and develop GP methodology on the

hypergraph. Such a representation allows for a richer dependency structure within

the data to be modelled with negligible additional computational complexity.

The methodology of this chapter contrasts with previous chapters as we depart

from conditional regression modelling and instead consider unsupervised learning

algorithms. More specifically, we seek to probabilistically learn a latent vector

representation of a hypergraph that can be used for downstream modelling and

visualisation. We demonstrate such a model on a set of political scenarios including

the Congressional voting system of Peru, and the Senate committees within the

United States of America’s Congress.
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4.1 Introduction

Modelling a complex system where there exist interactions between elements of

the system requires a descriptive data representation that precisely encodes how

sets of elements interact, if at all. A graph is a popular choice for modelling

such datasets as it enables individual elements to be represented by a vertex and

relations between any two elements are represented through an edge. However,

as we further our understanding of real-world systems, the need to characterise

richer and more complex relational structures within a graph becomes increasingly

pertinent. The limiting behaviour of simple graphs is quickly realised here as we are

constrained to only ever modelling pairwise interactions between elements within

our systems, whereas in many real-world systems the interactions truly occur at a

group level. To resolve this issue, a hypergraph is often used to model data where

there exists higher-order interaction structures within the data. Hypergraphs are a

powerful generalisation of simple graphs that enable higher-order, complex systems

to be represented. Hypergraphs have been shown to be useful in the domains of

video segmentation (Huang et al., 2009), collaboration networks (Patania et al.,

2017), and cellular networks (Klamt et al., 2009). However, the use of hypergraphs

is often impaired by the less established hypergraph modelling literature.

Despite their capacity to model complex systems, two limitations of hypergraphs

are the difficulty in visualising the hypergraph’s structure and how the hypergraph

can be used within a machine learning modelling framework. Whilst small

hypergraphs can be visualised using modern scientific computing libraries, this

task becomes increasingly difficult as the hypergraph’s size grows. Recent years

have seen a rapid blossoming in the number of algorithms that have been adapted

to operate on a graph (Bronstein et al., 2021). However, very few of these methods

have been extended to the hypergraph setting.
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Figure 4.1: Given a hypergraph (left panel, formally introduced in Section 4.2.3),
we seek to embed the vertices of the hypergraph into a low-dimensional latent
space.

Within this work, we seek to learn a low-dimensional, latent vector representation

of each vertex within our hypergraph (visualised in Figure 4.1). The hypergraph’s

latent representation may then be used to more easily visualise the relational

structure present within the hypergraph and identify communities or clusters

whose constituent vertices exhibit similar behaviour within the hypergraph.

Further, we can use the latent vector that is associated with each vertex for

downstream modelling tasks, such as vertex classification, by making use of the

rich software ecosystem that exists for vector-valued inference e.g., Scikit-learn

(Pedregosa et al., 2011). This is of enormous utility as it obviates the need to

design complex analogues of existing techniques so that they are amenable to being

applied to a hypergraph. For example, if we had a hypergraph whereby a subset

of the hypergraph’s vertices was labelled with a binary class, we could embed the

hypergraph into a latent space and then use a logistic regression model to classify

the vertices of the hypergraph that were previously unlabelled. Currently, adapting

models such as a logistic classifier to operate on a hypergraph is a non-trivial task.
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Our latent representation requires that the original hypergraph’s dependency

structure is preserved in the latent vector space. For example, two vertices

with similar interactions in the hypergraph should be close to one another in

vector space whereas two vertices that exhibit very different behaviour within the

hypergraph should be far apart in the vector space. Hypergraphs can often exceed

a few hundred vertices, and we therefore also require our latent representation to

be tractable to compute for large hypergraphs.

Building on recent developments in the GP literature, we propose the use of

a GPLVM (Lawrence et al., 2005) to learn a latent space representation of a

hypergraph. Such an approach is well motivated as through the use of a GP

we can learn a vector representation of each vertex through a nonparametric

non-linear mapping. Furthermore, we can reflect our beliefs surrounding the

smoothness of the hypergraph’s latent structure through kernel selection within

our GP. Within the graph theory literature, analogies of traditional dimensionality

reduction algorithms, such as principal component analysis, have been adapted for

graphs (Jiang et al., 2013). More recently, techniques that rely on geometric deep

learning architectures have been proposed (Perozzi et al., 2014). However, neither

principal component analysis or the the existing deep learning approaches are able

to probabilistically infer a latent space and enable the practitioner’s beliefs to be

incorporated into the model, as is the case with our proposed methodology.

To illuminate the utility provided by our model, we will apply our model to a

range of political datasets where the vertices of the hypergraph are political figures.

Political network analysis is a common task in the domain of graph representation

learning, however, as we shall go on to see in Section 4.4, modelling the data as a

hypergraph reveals a number of interesting insights.
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4.2 Background

4.2.1 Political latent space modelling

The task of inferring a latent space representation of a graph describing political

entities is not novel and we here review some of the existing literature on this

topic. This serves to not only establish our work within the literature but also

provide a concrete context with which all subsequent modelling choices can be

associated. To the best of our knowledge, all of this literature considers a graph,

not a hypergraph, to model the data.

Edges within a graph encode a relationship between two vertices. However, it

is reasonable to assume that “the friend of my friend is also a friend of mine”

(Rapoport, 1953). Under this assumption, it is reasonable to believe that there

exists a latent representation of the graph whereby similar vertices will be close

together. Within the domain of politics, political figures become the vertices of

a network (Ward et al., 2011). In the United States of America (USA), two

politicians within Congress were assumed to interact if they voted the same way

on any given roll call vote (Yu et al., 2020). The resulting network was then used

to perform Bayesian factor analysis. Meanwhile, Sewell et al. (2015) propose a

latent space for a dynamical graph where an interaction between two politicians

is present if they co-sponsored a bill. Subsequent work extended this model to

allow for weighted edges to be incorporated into the model, thus assuming that

not all interactions were equal in weight (Sewell et al., 2016). In such models, an

interaction is represented by an edge in the graph.

Outside of the USA, Paul et al. (2016) devised a discrete latent space model of

Members of Parliament (MPs) in the UK where each vertex is assigned a discrete

class, rather than a continuous vector value. Interactions in this model sought
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to encode the strength of the relationship between any pair of MPs through their

interactions on Twitter. Similarly, Barberá (2015) modelled the political ideologies

of the people within six countries based on the people that they interacted with

and followed on Twitter.

4.2.2 Whittle Matérn fields

The presentation of a GP given in this thesis has so far viewed them through a

functional representation (Rasmussen et al., 2006). However, representing a GP as

a stochastic partial differential equation (SPDE) provides an alternative viewpoint

that will be helpful in the sequel (Särkkä et al., 2019).

A SPDE equates the differential of a function f with a stochastic process, such as

a white noise process, W . For an SPDE, this can be written as

T f(·) =W(·) , (4.1)

The differential operator T given here is any operator that is defined as a

function of the differentiation operator (Lototsky et al., 2017). Examples of T are

therefore the first or second derivative operator or the Laplacian. The function

f that satisfies Equation (4.1) is termed the solution to the SPDE. Considering

Equation (4.1) from the Gaussian processes perspective, we can see that by letting

f be a zero-mean GP with kernel operator k, then solutions of Equation (4.1) will

provide us with a tool to uniquely identify GP models.

When the differential operator in Equation (4.1) is known, the analytical form of

the SPDE’s solution can be written as

f(x) =
∫
g(x− v)W(v)dv . (4.2)
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The function g is known as Green’s function and can be found by computing the

inverse Fourier transform of T f (Green, 1889). With this in mind, one can show

that the covariance between f(x), and f(y) can be computed through

k(x, y) = E[f(x)f(y)] (4.3)

= E
[∫

g(x− u)W(u)du
∫
g(y − v)W(v)dv

]
(4.4)

= E
[∫

g(x− u)g(y − u)du
]

(4.5)

=
∫
g(x− u)g(y − u)du (4.6)

where the penultimate line is obtained through Itô’s isometry (Oksendal, 2013).

From this, it can be seen that the exact form of T and kernel function k of the

GP f are intimately linked, and different forms of T will yield different kernels.

For Euclidean domains X = Rd, the seminal work of Whittle (1963) showed

that when T is the continuous Laplacian ∆, the following provides a solution

to Equation (4.1)

(2ν
ℓ2 −∆

)ν/2+d/4

f =W , (4.7)

where ∆ is the Laplacian. This can then be rearranged to give a Matérn GP

process

f ∼ GP
(

0,
(2ν
ℓ2 −∆

)−ν−d/2
)
. (4.8)

It is through this connection that sparse precision matrices for Gaussian Markov

random fields can be efficiently constructed in the seminal work of Lindgren et al.

(2011). Since then, this connection has been further developed for GP modelling on

Riemannian manifolds (Borovitskiy et al., 2020), graphs (Borovitskiy et al., 2021;
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Bolin et al., 2022), and spatial domains (Bolin, 2014). Further, an alternative line

of work seeks to parameterise neural networks such that they learn the solutions

to the differential equation (Salvi et al., 2021). For a contemporary review of these

works and more, see Lindgren et al. (2022).

4.2.3 Hypergraphs

A hypergraph is a generalisation of a graph in which interactions occur among an

arbitrary set of nodes (Berge, 1973). We visualise this in Figure 4.2 where we see

a hypergraph comprised of four hyperedges E = {e1, e2, e3, e4}, and six vertices

V = {v1, v2, . . . , v6}. Each hyperedge ei ∈ E corresponds to a subset of vertices

from V with no repeated elements. A hyperedge ei is said to be weighted when it

has a positive value w(ei) assigned to it and incident to a vertex vj if vj ∈ ei. A

hypergraph comprised of N vertices and D hyperedges can be represented by an

incidence matrix H ∈ {0, 1}N×D with (i, j)th entry equal to 1 if vi is incident to ej

and 0 otherwise.

Representing network data as a hypergraph provides a flexible and descriptive

framework to encode higher-order relationships within a graph-like structure. This

is because, within a single hyperedge, we assume that a group-level interaction

occurs amongst the set of constituent vertices. Modelling such interactions would

not be possible in a simple graph as it would be impossible to disentangle multiple

pairwise connection from a fully-connected group-level interaction. Returning to

our early example of political networks, modelling the US senate as a hypergraph

would allow us to represent the Congresspeople as vertices and senate committees

as hyperedges. A vertex would then be incident to a hyperedge if the respective

Congressperson is a member of the given committee. Similarly, a hyperedge could

be an individual piece of legislation whereby vertices belong to the hyperedge
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if the respective Congressperson voted in favour of the legislation. We study

these scenarios in Section 4.4. Beyond politics, hypergraphs have been successfully

applied to friendships within social networks (Andjelković et al., 2015), ecological

species equilibria (De Oliveira et al., 2000), and protein modelling (Ruepp et al.,

2010).

Every hypergraph also admits a bipartite representation (Battiston et al., 2020)

in which each hyperedge is assigned a node, and an edge from a node vertex

to a hyperedge vertex indicates incidence (see Figure 4.2). Since a hypergraph

generalises the graph representation, it follows that these structures coincide when

each hyperedge contains precisely two nodes.

v1

v3

v4

v5 v6

v2

e1

e2

e3

e4

G v1

v2

v3

v4

v5

v6

e1

e2

e3

e4

Figure 4.2: A hypergraph comprised of four hyperedges among six vertices and
the corresponding bipartite representation. See Section 2.1.2 in (Bretto, 2013) for
details of this relationship.

Unlike pairwise graphs, the Laplacian for hypergraphs has no unique form.

However, for this work, we rely on the form given in (D. Zhou et al., 2006) which

can be written as

∆ = I−D−1/2
v HD−1

e H⊤D−1/2
v , (4.9)

where Dv and De are diagonal matrices with non-zero entries containing the node
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and hyperedge degrees, respectively. We write

[Dv]i,i =
∑
e∈E

w(e)h(vi, e) [De]i,i =
∑
v∈V

h(v, ei), (4.10)

where h(v, e) = 1 if v is incident to e i.e., v ∈ e. In this work, we only considered

unweighted hypergraphs (i.e. w(ei) = 1 for 1 ≤ i ≤ M); however, extending our

framework to accommodate weighted hyperedges poses no challenge as, through

an appropriate weight function w, the matrices Dv and De can be recomputed.

From here, all subsequent methodology is unchanged.

4.2.4 Latent variable models

The literature on probabilistic generative models is vast, spanning probabilistic

principal component analysis (PCA) (Tipping et al., 1999), the GPLVM (Lawrence

et al., 2005), deep Boltzmann machines (Salakhutdinov et al., 2009), energy models

(Ngiam et al., 2011), variational autoencoders (Kingma et al., 2013), generative

adversarial networks (Goodfellow et al., 2014), normalising flows (Rezende et al.,

2015), and diffusion models (J. Ho et al., 2020). Common amongst all of these

methods is the goal of learning a latent representation of a complex dataset from

which we can more easily visualise the underlying structure of the data, draw a

sample from the latent space, and use the latent space for downstream modelling.

In this work, we focus our attention on the GPLVM which we shall now proceed

to introduce, starting from the perspective of probabilistic PCA.

Probabilistic principal component analysis Probabilistic PCA (Tipping et

al., 1999) is a dimensionality reduction method that relies on two key assumptions:

1. The observed data is a linear function of some latent variables.

2. The latent variables are random variables that follow zero-mean and identity
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covariance multivariate normal.

For an observed dataset Y ∈ RN×D (so, this applies to continuous data rather

than binary), we assume that they are generated given a linear function applied to

a set of T -dimensional latent variables X ∈ RN×T where T ≪ D. For each latent

variable, we assign the prior distribution

p(xi,:) = N (0, IT ) . (4.11)

We define the conditional distribution of an observed data point, given its

respective latent variable, to also be a Gaussian

p(yi,: |xi,:) = N (yi,: |Wxi,:, σ2ID) , (4.12)

where W ∈ RD×T is a linear map and σ2 is a noise term. Using Equations (4.11)–

(4.12), we can write the generative model as

yi,: = Wxi,: + ϵ , where ϵ ∼ N (0, σ2ID) . (4.13)

To estimate the optimal parameters W and σ2, we first marginalise out the latent

variable X from Equation (4.12) to give the distribution of each observation as

p(yi) = N (0,WW⊤ + σ2ID) . (4.14)

The model’s marginal log-likelihood is optimised with respect to W and σ2. When

σ2 → 0, the quantity in Equation (4.14) simplifies to regular PCA.

The intuition given by Bishop (2006) is a helpful note to close this section on:

We can think of the distribution p(yi) as being defined by taking an
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isotropic Gaussian ‘spray can’ and moving it across the principal sub-

space spraying Gaussian ink with density determined σ2 and weighted

by the prior distribution. The accumulated ink density gives rise to a

‘pancake’ shaped distribution representing the marginal density p(yi).

Gaussian process latent variable models In probabilistic PCA we first

integrate out the latent variable X, then optimise the mapping matrix W. As

a matrix, W can only represent a linear relationship between our latent variable

and the observed data. The GPLVM offers a solution to this problem by optimising

X and marginalising W. This distinction is highlighted in Table 4.1.

Table 4.1: The different treatments that probabilistic PCA and the GPLVM apply
to the model’s latent variable and the observed data.

Latent variable (X) Mapping operator (W)

Probabilistic PCA Marginalise Optimise
GPLVM Optimise Marginalise

Following the GP notation that has been used so far in this thesis, the GPLVM

places independent GP priors w(x:,i) ∼ GP(0,Kff) on each column of W.

p(w:,i |X,θ) = N (w:,i |0,Kff) . (4.15)

A prior distribution is placed on the latent variable X which we will specify to be

p(X) = N (0, IN).

If we assume our observations have an additive Gaussian noise model, then a joint
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model for the GPLVM takes the form

p(Y,W,X |θ, σ2) = p(Y |W, σ2)p(W |X,θ)p(X)

=
D∏
d=1

p(y:,d |w:,d, σ
2)︸ ︷︷ ︸

Observation Likelihood

p(w:,d |X,θ)︸ ︷︷ ︸
GP prior

p(X)︸ ︷︷ ︸
Latent space prior

. (4.16)

Analytically marginalising the mapping matrix W and the latent variable X from

Equation (4.16) is computationally intractable due to the interplay that exists

between these two quantities. Unlike regular GP regression, X is now a random

variable and we are therefore required to propagate its uncertainty through the GP.

Problems arise when evaluating the marginal log-likelihood of a GP as X appears

non-linearly in the (Kff + σ2IN)−1 matrix. Instead, to allow us to analytically

marginalise W, we condition on the latent variable

p(Y |X,θ, σ2)p(X) =
(∫

p(Y |W, σ2)p(W |X,θ)dW
)
p(X) (4.17)

where

p(Y |X,θ, σ2) =
D∏
d=1
N (y:,d |0,Kff + σ2IN) . (4.18)

If we collect our latent variables X and the model hyperparameters {θ, σ2} into

the set ψ = {X,θ, σ2} then we can learn the optimal point estimates ψ⋆ for each

parameter using gradient-based optimisation of

ψ⋆ = arg max
ψ

p(Y |X,θ, σ2)p(X) . (4.19)

The learned values of X⋆ give the set of latent coordinates with a one-to-one

mapping between X⋆ and Y.
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Connection to probabilistic PCA If we let the kernel function that produces

Kff in Equation (4.15) be a linear kernel i.e., k(x, x′) = α2xx′ where α2 is the

kernel’s variance, then inference in the GPLVM is equivalent to probabilistic PCA

(see Figure 4.3). The advantage of the GPLVM is that for non-linear kernels,

such as the Matérn family of kernels, it is possible to learn a non-linear mapping

between the observed data and latent variable.
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Figure 4.3: Relationship between probabilistic PCA (left) and the GPLVM with
a linear kernel (centre) and a non-linear squared exponential kernel (right). Each
panel shows the inferred 2-dimensional latent space computed from the original
8-dimensional Oil dataset (Bishop et al., 1993).

4.3 Embedding hypergraphs through Gaussian

process latent variable models

In this section, we outline our main contribution: a GPLVM model that is capable

of embedding the vertices of a hypergraph into a latent space. To achieve this,

we first provide a unifying framework for defining a family of kernel functions

on the vertices of a hypergraph. We then incorporate this kernel function into a

GPLVM model to learn a latent space embedding of a hypergraph. To resolve the

binary nature of the hypergraph, we derive an ELBO term that enables tractable

inference in our model.
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4.3.1 Kernels on hypergraphs through regularisation func-

tions

We start the presentation of our embedding framework by generalising recent

developments in the GP literature (Borovitskiy et al., 2021) through regularisation

theory. We then extend this framework from the context of graphs to hypergraphs,

the result being that we can define kernel functions k : V ×V → R on the vertices

of our hypergraph through the following result

Theorem 4.3.1 (Smola et al. (2003)) Let r : R → R>0 be a monotonically

increasing, strictly positive function whose evaluation on a normalised Laplacian

matrix ∆ yields the regularisation matrix R = r(∆). The corresponding kernel

matrix is given by K = r−1(∆)

K = UR−1U⊤

= Ur−1(Λ)U⊤ , (4.20)

where U is an orthonormal matrix of eigenvectors, and Λ a diagonal matrix whose

elements are the set of eigenvalues.

Intuitively, Theorem 4.3.1 allows us to compute a covariance matrix on the vertices

of a graph, by specifying a regularisation function r which we can invert either

exactly or using Moore-Penrose inversion. Applying this inverse function element-

wise to the entries of a graph’s Laplacian matrix will then yield a valid kernel

matrix. As we will now go on to demonstrate, this is a powerful tool, as it provides

us with the freedom to define a range of valid kernel functions by simply specifying

a regularisation function.

We are interested in learning a function f : V → R that is defined on
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the hypergraph’s vertex set. With this in mind, the discrete hypergraph

Laplacian ∆ ∈ RN×N can be used to quantify the smoothness of a function

f = [f(v1), f(v2), . . . , f(vN)]. To regularise the degree to which rough functions

are penalised through the Laplacian, we can consider a regularisation function

r : R>0 → R>0. Regularising the Laplacian can then be done through

r(∆) = Ur(Λ)U⊤ . (4.21)

where U are the eigenvectors and Λ = diag(λ1, λ2, . . . , λN) the diagonal matrix of

eigenvalues corresponding to the Laplacian’s eigendecomposition.

When designing a regularisation function, we must ensure that its codomain is non-

negative to ensure we do not receive a negative eigenvalue. Further, eigenvectors

that correspond to larger eigenvalues will be rougher than those eigenvectors

corresponding to smaller eigenvalues. We require our regularisation function to

be monotonically increasing in R>0 to ensure that eigenvectors corresponding

to larger eigenvalues are penalised more than the eigenvectors corresponding to

smaller eigenvalues. We summarise three commonly used regularisation functions

in Table 4.2.

Table 4.2: Three commonly used regularisation functions r and their corresponding
inverse applied to a single eigenvalue λ.

r(λ) r−1(λ)

Diffusion process exp
(
σ2

2λ

)
exp

(
−σ2

2λ

)
p-step random walk (αI− λ)−p (αI− λ)p

Inverse cosine cos
(
λπ
4

)−1
cos

(
λπ
4

)
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If we are to define a regularisation function to be

r(λ) =
(2ν
ℓ2 + λ

)ν/2

, (4.22)

for smoothness parameter ν ∈ R>0 and lengthscale parameter ℓ ∈ R>0, then we

can compute the kernel’s associated Gram matrix Kvv by

Kvv = Ur−1(Λ)U⊤

= U
(2ν
ℓ2 + Λ

)−ν/2

U⊤ . (4.23)

The value of Equation (4.22) will increase as the size of the eigenvalue λ increases.

However, through ν we are able to control the smoothness of functions realised on

the hypergraph and ℓ allows us to control the regularisation’s curvature. Rewriting

Equation (4.1) in terms of Equation (4.23) where W is a finite-dimensional

multivariate Gaussian, we have the SPDE

(2ν
ℓ2 + ∆

)ν/2

f = W , (4.24)

which we can see is identical in form to the Matérn process defined in Equa-

tion (4.7), except the continuous Euclidean Laplacian has now been replaced by

the discrete graph Laplacian. We can rewrite Equation (4.24) as a GP prior

p(f) = N
(

0,
(2ν
ℓ2 + ∆

)−ν)
, (4.25)

noting that the d/2 term that ensure regularity has in the Euclidean support is not

required for the hypergraph (Borovitskiy et al., 2021). From this point, regular

GP inference can be achieved using the outline given in Section 1.3.
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4.3.2 Variational bound

We will now combine the previous sections that consider hypergraphs and kernels

functions on the vertices of a hypergraph to propose a model that can embed

the hypergraph’s vertices into a latent space where vertex-to-vertex similarity is

established using an appropriate kernel. To achieve this, we represent a hypergraph

through its incidence matrix H ∈ {0, 1}N×D and probabilistically learn a latent

embedding X ∈ RN×T where T ≪ D using the GPLVM model presented in

Section 4.2.4. Therefore, the goal is to infer a projection matrix W ∈ RD×T that

maps the data into a lower-dimensional space.

To achieve this, we build upon the GPLVM that was presented in Section 4.2.4

where the observed data Y is now our hypergraph’s incidence matrix H. In

a GPLVM, a maximum a posteriori estimate of X is obtained jointly with

the model’s hyperparameters using gradient-based optimisation (Lawrence et al.,

2005). However, these models assume that the likelihood distribution p(H |X)

is Gaussian, making the GP’s marginal likelihood distribution analytical. For

unweighted hypergraphs, the incidence matrix is binary, meaning that our

likelihood is instead a Bernoulli distribution. To resolve this, we will now proceed

to derive a variational scheme that enables tractable inference in models where

the likelihood function is non-Gaussian. Existing work by S. Murray et al.

(2018) considered a similar problem where observed dataset being modelled by

the GPLVM had a mixture of data types. Meanwhile, Ramchandran et al.

(2021) considered incomplete medical data, and Lalchand et al. (2022) derived

a stochastic bound that uses a deep learning model to amortised inference in

the latent space. However, none of these works have considered the problem of

embedding a hypergraph into a latent space; the canonical issue being broached

in this work. Further, whilst the work presented here considers Bernoulli data, we
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would stress that this scheme can be used for other non-Gaussian distributions.

When the likelihood function p(H |X) is non-Gaussian, the optimisation routine

given in Equation (4.19) is intractable. In this section, we derive a variational

bound that can be evaluated for any likelihood function that belongs to the

exponential family. We, therefore, redefine the likelihood function in the general

form

p(H |W) =
N∏
n=1

p(hn,: |ϕ(wn,:)) , (4.26)

where ϕ : R → R is the link function corresponding to our choice of noise model.

For the hypergraph’s incidence matrix, a correctly specified model would assume a

Bernoulli likelihood with a logistic or probit link function. Similarly, for a weighted

incidence matrix whose weights have been normalised to [0, 1], a likelihood with

support on [0, 1], such as the Beta likelihood with a logistic link function would

be appropriate.

To resolve this, we augment our joint GPLVM using a set of Z ∈ RM×T latent

inputs with corresponding outputs U = w(Z) in a similar fashion to the sparse

GPs introduced in Sections 1.3.5–1.3.6 to give

p(H,W,U,X |Z)

= p(H |W)p(W |U,X,Z)p(U |Z)p(X) (4.27)

=

 D∏
d=1

p(h:,d |ϕ(w:,d))︸ ︷︷ ︸
Observation likelihood

p(w:,d |u:,d,X,Z)︸ ︷︷ ︸
Conditional prior

p(u:,d |Z)︸ ︷︷ ︸
Inducing prior

 p(X)︸ ︷︷ ︸
Latent prior

. (4.28)

The benefits of this augmentation are twofold. Firstly, the introduction of the

inducing variables enables more efficient inference. Secondly, unlike each latent

variable xi ∈ X which is a random variable, each inducing input zi ∈ Z is a T -
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dimensional vector. Because of this, we can optimise their value by computing

derivatives of the ELBO with respect to Z. This differs from the regular GPLVM

where we are forced to conduct maximum a posteriori (MAP) inference on X.

Our model’s posterior is defined by X,W,U with corresponding marginal log-

likelihood quantity

log p(H) = log
∫
p(W |X,U)p(H |ϕ(W))p(X)p(U)dXdWdU . (4.29)

To be able to derive a tractable lower bound on the marginal log-likelihood, we

introduce the following variational approximation to the true posterior distribution

q(W,U,X) = p(W |X,U)q(X)q(U) , (4.30)

where

q(U) =
D∏
d=1
N (u:,d |µd,Σd) (4.31)

q(X) =
N∏
n=1

T∏
t=1
N (xn,t |mn,t, sn,t) (4.32)

where µ,m are variational mean parameters and Σ, s are variational variance

and variance parameters, respectively. We can now bound Equation (4.29) using

118



4.3. Embedding hypergraphs through Gaussian process latent variable models

Jensen’s inequality

log p(H) = log
∫
p(X)p(U)p(W |X,U)p(H |ϕ(W))q(X,W,U)

q(X,W,U)dXdWdU

(4.33)

≥
∫
q(X)q(U)q(W |X,U) log p(X)p(U)p(W |X,U)p(H |ϕ(W))

q(X)q(U)p(W |X,U)
(4.34)

=
∫
q(X) log p(X)

q(X)dX︸ ︷︷ ︸
− KL(q(X) || p(X))

+
∫
q(U) log p(U)

q(U)dU︸ ︷︷ ︸
− KL(q(U) || p(U))

+ Eq(xn)q(ud)p(wn,d | ud,xn) [log p(hn,d |ϕ(wn,d))] (4.35)

≈ −KL(q(X) || p(X))−KL(q(U) || p(U))

+ 1
S

S∑
s=1

log p(hn,d |ϕ(w(s)
n,d)) . (4.36)

The approximation given in Equation (4.36) is a Monte-Carlo approximation

evaluated over S samples that can be achieved by simulating

u
(i)
n,d ∼ q(U) , (4.37)

X(i) ∼ q(X) , (4.38)

w(i)
:,d ∼ p(wd,: |u(i)

n,d,X(i)) , (4.39)

from which we can then evaluate 1/S
∑S
s=1 log p(hn,d |ϕ(w(s)

n,d)). Note that the KLD

terms for X and U in Equation (4.36) will factor across T and D, respectively, and

are analytically computable by Definition 1.3.5. A similar Monte-Carlo scheme is

given in Gal et al. (2015) for the specific case of a categorical likelihood function.

Using the ELBO in Equation (4.36), we can now use first-order gradient methods

to identify the model’s hyperparameters and the inducing point locations Z. We
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find that 10 Monte-Carlo samples are sufficient to ensure a stable optimisation

routine.

4.4 Experiments

Within this section, we empirically investigate the utility of our proposed model

in the context of political networks. We present two examples that concern the

legislation voting in Peru’s Congress, and the house committee formation in the

United States of America’s Congress.

Where relevant, we detail and compare our model to a competing model that exists

within the hypergraph literature. However, in some cases, such an approach does

not exist and we instead compare our model to a pairwise graph alternative. To

project a hypergraph into a pairwise graph, we let each hyperedge be a clique and

then construct a pairwise graph from the set of cliques. Where relevant, we weight

the edges of the pairwise graph by the number of times the edge appeared within

a clique. This process is formally known as a clique expansion (Agarwal et al.,

2005).

4.4.1 Senate of Peru

Data In this first experiment, we consider data that describes the co-sponsorship

of legislation within the Congress of the Republic of Peru in 2007 (Lee et al., 2017).

To represent this dataset as a hypergraph, we form a hyperedge for each piece of

legislation and the constituent vertices correspond to the members of Congress

responsible for drafting the respective legislation. Within Peru’s Congress, each

congressperson has a party affiliation. Further, each party belongs to one of the

three Congressional groups: the government, opposition and minority groups. Our
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task here is to predict the group affiliation of a member of Congress given only the

hypergraph structure.

Table 4.3: The number of Congressional groups and parties that were represented
within a single hyperedge e.g., there were 80 hyperedges that contained
congresspersons from three parties.

Unique count Party Group

1 668 718
2 44 75
3 80 28
4 16 -
5 9 -
6 4 -

The resulting hypergraph is made up of 121 vertices and 821 hyperedges. The

average number of vertices per hyperedge is 8, the smallest hyperedge contains 1

vertex and the largest hyperedge contains 40 vertices. In Table 4.3 we summarise

the party and group diversity within each hyperedge.

Latent function recovery The first research question we consider is how

well can a Matérn kernel defined on the vertices of a hypergraph represent the

dependency structure between the hypergraph’s vertices?. We construct a multi-

class classification GP on the vertices of our hypergraph that will probabilistically

infer the party affiliation of a senator, given the pieces of legislation that the senator

was involved in creating. To the best of our knowledge, we are the first to consider

GP modelling on the vertices of a hypergraph so no directly comparative method

is available. To establish suitable benchmarks, we represent our hypergraph as

a pairwise graph using clique expansion. From thereon, GP modelling can be

accomplished using the graph kernel provided in Borovitskiy et al. (2021).

We employ the categorical likelihood function of Hernández-Lobato et al., 2011
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Table 4.4: The performance of the GP model on a graph and hypergraph
structure. Results are reported for the 40 held-out vertices, split by the underlying
(hyper)graph representation. Bold values denote the best performing model and
standard errors are computed across 10 random partitions of the data. For every
metric, excluding expected calibration error (ECE), a larger value is better.

Metric Hypergraph Graph
Binary

expansion

Graph
Weighted
expansion

Accuracy 0.9± 0.002 0.7± 0.015 0.75± 0.009
Recall 0.89± 0.002 0.74± 0.002 0.78± 0.006
Precision 0.9± 0.002 0.73± 0.033 0.79± 0.007
ECE 0.13± 0.001 0.29± 0.003 0.2± 0.002
Log-posterior density −0.34± 0.017 −0.89± 0.001 −0.45± 0.005

and a multi-output GP f : V → P2, where P2 is the probability 2-simplex

and each output dimension corresponds to the probability of the respective

vertex being attributed to one of the three political groups. As can be seen in

Table 4.4, the hypergraph representation yields significantly fewer misclassified

nodes with equally compelling precision and recall statistics. GPs are commonly

used due to their ability to quantify predictive uncertainty and, as can be seen

by the expected calibration error (ECE) values in Table 4.4, the hypergraph

representation facilitates substantially improved posterior calibration. From these

results we can conclude that, for this dataset, there is a utility to be gained from

the hypergraph representation and the Matérn kernel can effectively capture the

dependency structure between the vertices of the hypergraph.

Embedding Satisfied that a GP defined on the vertices of a hypergraph can

model the dependency structure between the vertices, we now proceed to infer

a latent representation of the hypergraph. To achieve this, we optimise the

ELBO objective given in Equation (4.36) until convergence. The resulting latent

representation is shown in Figure 4.4(a). We can see the separation that has
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Figure 4.4: 2-dimensional latent space inferred by our GPLVM. Vertices are
coloured by the respective Senator’s Congressional group (left) and their party
affiliation (right).

occurred between the government group and the opposition and minority groups.

Further, we can observe a distinct split within the government group. In the 2006

elections, the Union for Peru party allied with the Peruvian Nationalist Party.

Collectively, the alliance won 45 of the 120 seats in Congress and formed the

government. However, after the election, the alliance internally dissolved and

it is this dynamic that explains the separation within the government party in

Figure 4.4(a). We visualise the latent representation of the hypergraph using the

party affiliation of each senator in Figure 4.4(b).

In Figure 4.5(a) and Figure 4.5(b) we visualise the latent space that is inferred

using the spectral embedding algorithm of D. Zhou et al. (2006). Under this

approach, the leading two eigenvectors of the hypergaph’s Laplacian matrix are

used as the latent vectors, an approach very similar in spirit to PCA. We can see

that, visually, the spectral embedding algorithm has been unable to learn a latent

representation that is as dispersed as the one inferred by the GPLVM. We now

proceed to empirically evaluate the quality of the latent spaces inferred by these

two methods.

Latent space quality The motivation for learning a latent representation of

a hypergraph was to enable easier visualisation of the vertices and to facilitate
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Figure 4.5: The 2-dimensional latent space inferred by the spectral method of
D. Zhou et al. (2006). The colouring of a vertex is given by the representative
senator’s congressional group (left) and their party affiliation (right).

the construction of a machine learning model that maps from the vertices to an

observed response value. Having explored the former task of visualising the vertices

in the previous section, we now demonstrate the additional information that is

contained within our latent space and the improvement that this can yield for

downstream modelling. To achieve this, we let the 2-dimensional latent vector

that is associated with each vertex be the input to a generalised linear model and

support vector machine. We then use the vertices’ corresponding Congressional

group and political party as our observed response value. We use 80% of the

vertices as training data and the remaining 20% for testing. The mean accuracy

and one standard deviation of a 10-fold cross-validation procedure are reported in

Table 4.5.

We can see from Table 4.5 that the latent space inferred by our GPLVM yields a

substantial improvement in classification accuracy when compared to the spectral

embedding method. This is evidenced by the improved accuracy when trying to

predict both the Congressional group and the political party using both the logistic

regression model and support vector machine. Whilst simplistic in nature, this is

just one example of a downstream modelling task that one may wish to perform

on the vertices of a hypergraph. However, defining such a model directly on the
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Table 4.5: Predictive accuracy of a logistic regression and support vector machine
model whose inputs are the 2-dimensional latent space vectors inferred using our
GPLVM model and the spectral approach. Results are given as the mean ± 1
standard deviation as determined by 10-fold cross-validation. Bold values indicate
the best performing approach across each classifier and the corresponding response
variable.

Logistic Regression Support Vector Machine
Response Method

Party Spectral 49.17± 12.6 59.17± 15.5
GPLVM 74.17± 14.7 71.67± 15

Group Spectral 47.50± 15.4 70.83± 9.3
GPLVM 77.50± 9.9 75.00± 10.5

hypergraph itself will be challenging as off-the-shelf machine learning libraries will

not be able to handle the hypergraph as input without significant preprocessing

that will potentially result in a loss of information.

4.4.2 United States Senate Committees

In this experiment, we follow an identical workflow to that of Section 4.4.1.

However, we now consider data from the United States of America’s Congress. To

construct a hypergraph, we let each congressperson be a vertex. The Congressional

committees that each congressperson is a member of form the hyperedges in

our hypergraph, and a vertex belongs to a hyperedge if the corresponding

Congressperson belongs to that committee. Within Congress, there are several

different types of committees. Some committees are permanent, such as the

Standing Committee of Defense, and others are temporary, such as the Select

Committee for Intelligence. For this reason, we use data from 1993 to 2017 and

follow Chodrow et al. (2021) by assuming temporal stationarity across this time

i.e., a senator cannot flip party affiliation.
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Figure 4.6: The representation of Republican members within committees. A
value of 0.5 indicates that the committee is equally split between Republicans and
Democrats.

The hypergraph contains 341 hyperedges and 1290 vertices. The average

hyperedge contains 35 vertices and the distribution of Republican and Democratic

representation within each hyperedge can be visualised in Figure 4.6. Here we see

that, on average, most committees are comprised of an equal split of Republicans

and Democrats. However, there does exist hyperedges comprised of entirely

Republican or Democratic members. Treating the senators’ party affiliation as the

observed response value, we have a balanced classification task with the dataset

containing 670 Republicans and 620 Democrats.

In Figure 4.7 we visualise the latent space inferred by our GPLVM and the spectral

embedding method of D. Zhou et al. (2006). It is noteworthy that we do not

observe the same clear separation between vertices as in Section 4.4.1. This is

because, to form a committee, a member of the majority party will chair the

committee and the ranking members of the committee are then selected from

the minority party. The committees are, therefore, bipartisan and we should

therefore expect to see a more gradual transition from one party to another as

this corresponds to the changing political ideologies that are observed as we move
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from a left-leaning committee to a right-leaning committee.
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Figure 4.7: 2-dimensional latent spaces inferred by our GPLVM (left) and the
spectral method (right) of D. Zhou et al. (2006). Senators are coloured blue if
they identify as a democrat and red if republican.

Despite the lack of clear separation between vertices, we still see that using the

latent space for downstream modelling is a worthy endeavour. Replicating the

classification experiment that was described in Section 4.4.1 where the response

variable is now the party affiliation of each Congressperson, we can see in Table 4.6

that using the latent vectors produced by our GPLVM yields an improvement over

the latent vectors given by a spectral embedding. Using the latent vectors inferred

by our GPLVM in conjunction with a logistic regression model, we can attain a

90.8% accuracy on the test set. This is a remarkably reassuring result as we have

relied on no covariate information to produce such high quality predictions, and

instead use only the hypergraph’s structure to infer a latent space from which we

can fit our logistic regressor.
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Table 4.6: Predictive accuracy of a logistic regression and support vector machine
model whose inputs are the 2-dimensional latent space vectors inferred using our
GPLVM model and the spectral approach. Results are given as the mean ± 1
standard deviation as determined by 10-fold cross-validation. Bold indicates the
best performing model, subject to variation across folds.

Logistic Regression Support Vector Machine

Spectral 83.7± 3.4 84.2± 2.7
GPLVM 90.0± 1.8 90.5± 2.6

4.5 Conclusions

Within this chapter, we have introduced the concept of a hypergraph. With this

concept, we proceeded to construct a GPLVM that could embed the vertices of

a hypergraph into a low-dimensional latent space. To achieve this, we extended

the regular GPLVM model of Lawrence et al. (2005) to handle the hypergraph’s

structure. We then demonstrated the utility of our model on two real-world

political examples.

An exciting avenue for future work is to investigate the geometric properties of the

latent space using the tools developed in Tosi et al. (2014). By equipping the latent

space with a Riemannian metric, the distance between any two latent coordinates

can be precisely computed using the manifold’s corresponding geodesic.
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Chapter 5

GPJax - A Didactic Gaussian

Process Library in JAX

This chapter provides an overview of GPJax, a GP package that I have developed

in the JAX ecosystem. At the time of writing this, GPJax has been downloaded

75321 times with an average of 1012 downloads per week1, and has amassed 210

stars on Github. Further, the open-source development of GPJax has attracted a

community of eleven contributors.

GPJax is designed to be a library that can be easily used by researchers and

individuals looking to develop their own custom GP algorithms. As a consequence

of this, a heavy emphasis has been placed on providing computational abstractions

that closely resemble the underlying maths. As we shall go on to see, this does

not come at the cost of efficiency, as GPJax is comparable, and often faster, that

the current state-of-the-art GP libraries.
1As reported in PyPi.
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5.1 Introduction

GPs (Rasmussen et al., 2006) are Bayesian nonparametric models that have been

successfully used in applications such as geostatistics (Matheron, 1963), Bayesian

optimisation (Mockus et al., 1978), and reinforcement learning (M. Deisenroth

et al., 2011). GPJax is a didactic GP library that provides users with a set of

composable objects from which a GP model can be constructed. This low-level

computational interaction with a GP means that it is simple to construct new

GP methodologies and, for this reason, GPJax is perfectly suited for researchers

wishing to design new GP models. However, for users wishing to simply fit a GP

to a dataset, GPJax may not be the most appropriate library as it will require a

certain level of understanding of the underlying maths.

By the virtue of being written in JAX (Bradbury et al., 2018), GPJax natively

supports CPUs, GPUs and TPUs through efficient compilation to XLA, automatic

differentiation and vectorised operations. Consequently, GPJax provides a modern

GP package that can effortlessly be tailored, extended and interleaved with other

libraries to meet the individual needs of researchers and scientists.

From both an applied and methodological perspective, GPs are widely employed in

the statistics and machine learning communities. High-quality software packages

that promote GP modelling are accountable for much of their success. However,

there currently exists a gap within the JAX ecosystem for a Gaussian process

package to be developed that incorporates scalable inference techniques. GPJax

seeks to resolve this.

GPJax has been carefully tailored to amalgamate with the JAX ecosystem. For

efficient MCMC inference, GPJax can utilise samplers from BlackJax (BlackJax,

2021) and TensorFlow Probability (Abadi et al., 2016). For gradient-based
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optimisation, GPJax integrates seamlessly with Optax (Babuschkin et al., 2020),

providing a vast suite of optimisers and learning rate schedules. To efficiently

represent probability distributions, GPJax leverages Distrax (Babuschkin et al.,

2020) and TensorFlow Probability (Abadi et al., 2016). To combine GPs with

deep learning methods, GPJax can incorporate the functionality provided within

Haiku (Babuschkin et al., 2020). The GPJax documentation includes examples of

each of these integrations.

Several computational details are implemented in GPJax that enable fast and

efficient computations, as we’ll go on to see in Section 5.3.

• Matrix inversion GPJax computes the matrix’s Cholesky factorisation and

solves a linear system using the Cholesky factorisation. This is a computa-

tionally efficient approach to matrix inversion that is also numerically stable.

• Parameter spaces During optimisation, all parameters are transformed

such that they have support on the entire real line to ensure numerically

stable optimisation. All transformations are bijectors, meaning that the

original parameter can be recovered by simply computing the inverse of the

transformation.

• Cached quantities The posterior predictive function given in GPJax takes a

set of test locations as inputs and returns the posterior predictive distribution

supported at these points. To compute this quantity, the covariance matrix

over the conditioned training set must be computed. However, its value is

invariant to the test location set. We therefore cache quantities such as this,

meaning that when the posterior is evaluated sequentially, as in Bayesian

optimisation or active learning, the covariance matrix over the training set

is only computed once.
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• Stateful operations Parameters are the only quantity to have a state in

GPJax. This is in keeping with the JAX workflow, but also provides the

practitioner with complete control over the model’s parameters and avoids

any unintended side-effects happening.

The foundation of each abstraction given in GPJax is a Chex (Babuschkin et al.,

2020) dataclass object. These require significantly less boilerplate code than

regular Python classes, leading to a more readable codebase. Moreover, Chex

dataclasses are registered as PyTree nodes, facilitating the applications of JAX

operations such as just-in-time compilation and automatic differentiation to any

GPJax object.

The intimacy between GPJax and the underlying maths also makes GPJax an

excellent package for people new to GP modelling. Having the ability to easily

cross-reference the contents of a textbook with the code that one is writing is

invaluable when trying to build an intuition for a new statistical method. We

further support this effort in GPJax through documentation that provides detailed

explanations of the operations conducted within each notebook.

5.2 Existing Gaussian process libraries

Within the Python community, the three most popular packages for GP modelling

are GPFlow (Matthews et al., 2017), GPyTorch (Gardner et al., 2018), and

GPy (GPy, 2012). Despite these packages being indispensable tools for the

community, none support integration with a JAX workflow. On the other hand,

the BayesNewton (Wilkinson et al., 2021) and TinyGP (Foreman-Mackey, 2021)

packages utilise a JAX backend. However, BayesNewton is designed on top

of ObJax (Objax Developers, 2020), making integration with the broader JAX

132



5.3. Functionality of GPJax

ecosystem challenging. Meanwhile, TinyGP offers excellent integration with

inference frameworks such as NumPyro (Phan et al., 2019) but does not yet support

inducing points frameworks (Hensman et al., 2013a, e.g., ). GPJax exists to

resolve these issues. Furthermore, modern research from the GP literature, such

as graph kernels (Borovitskiy et al., 2021) and Wasserstein barycentres for GPs

(Mallasto et al., 2017), are supported within GPJax but absent from these packages.

Finally, the Stheno package (Bruinsma, 2022) supports a JAX backend along with

TensorFlow, PyTorch and Numpy. Whilst this integrates GPs into an extensive

JAX workflow, GPJax has the advantage of being a pure JAX codebase, whereas

Stheno requires using a custom linear algebra framework.

For completeness, packages written for languages other than Python include GPML

(Rasmussen et al., 2010) and GPStuff (Vanhatalo et al., 2013) in MATLAB. An

R port also exists for GPStuff. Within Julia, there exists GaussianProcesses.jl

(Fairbrother et al., 2022), AugmentedGaussianProcesses.jl (Galy-Fajou et al.,

2020), and Stheno.jl (Tebbutt W, 2022). GP implementations are available in

numerous modern probabilistic programming languages such as NumPyro (Phan

et al., 2019), Stan (Carpenter et al., 2017), and PyMC (Salvatier et al., 2016).

5.3 Functionality of GPJax

As acknowledged in Section 5.1, the purpose of GPJax is to allow researchers to

computationally define GP in a manner that is similar, if not identical, to how a

GP is mathematically formulated on paper. A compelling example of this can be

seen in Listing 2 where a non-conjugate GP posterior is defined. For completeness,
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the hierarchical model can be written as

k(·, ·′) = σ2 exp
(
−∥ · − ·

′ ∥2

2ℓ2

)
(5.1)

p(f(·)) = N (0, k(·, ·′)) (5.2)

p(y | f(·)) = Bern(y | f(·)) (5.3)

p(f(·) | y) ∝ p(y | f(·)) p(f(·)) (5.4)

In Listing 2 lines 8-9, we start by defining the kernel function (Equation (5.1))

that will be used to parameterise our GP prior (Equation (5.2)). Independent of

the prior, in line 11, we then define our likelihood function that reflects our beliefs

surrounding the observed data. In this example, the observed data is binary and

we, therefore, adopt a Bernoulli likelihood function (Equation (5.3)) that factorises

over all 100 data points.

1 import gpjax as gpx
2 import jax.numpy as jnp
3

4 x = jnp.linspace(-5.0, 5.0, num=100).reshape(-1, 1)
5 y = jnp.sign(x)
6 D = gpx.Dataset(X=x, y=y)
7

8 kernel = gpx.kernels.RBF()
9 prior = gpx.gps.Prior(kernel=kernel)

10

11 likelihood = gpx.likelihoods.Bernoulli(num_datapoints=100)
12

13 posterior = prior * likelihood
14 params, _, _, _ = gpx.initialise(posterior)
15

16 log_posterior_density = posterior.log_posterior_density(training=D)
17 log_posterior_density(params)

Listing 2: Evaluating the log-posterior density of a non-conjugate Gaussian process
in GPJax.

The posterior distribution (Equation (5.4)) can then be computed up to an

unknown normalising constant by taking the product of our already defined prior
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and likelihood function (line 13). It is at this point that we explicitly initialise the

state of our posterior’s parameters through the initialise function (line 14).

This is a significant point of difference in GPJax as parameters are given an

explicit state in the program. Handling parameters in this way not only prevents

undesirable side effects from happening but also places more control in the hands

of the practitioner. In this example, the parameters are a dictionary containing

the kernel’s lengthscale and variance parameter, and the latent function’s value.

We finally define a log-posterior density function in line 16. The returned object

from this line is itself a function that will use to evaluate the model’s log-

posterior density as a function of the parameter set. This function, as with

all functions in GPJax, is a pure function, meaning all the input data is passed

through the function’s parameters, and all the results are output through the

function’s return statements. Further, all pure functions are entirely deterministic,

meaning that invoking the function multiple times will always return the same

result. The benefit of structuring GPJax around this principle means that gradients

can be taken of any function, such as the log-posterior density, by simply

calling grad(log_posterior_density). Similarly, the functions in GPJax can

be compiled into XLA for significantly faster computations. Combined, these two

operations make gradient-based optimisation of model parameters an incredibly

efficient process in GPJax, a process that we explore further in Section 5.4.

5.4 Experiments

In this section we benchmark the performance of GPJax against the two most

established GP packages available in Python: GPFlow and GPyTorch. We note

that despite the relative immaturity of GPJax when compared against GPFlow and

GPyTorch, the performance of GPJax is at least comparable, if not better than
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these two established packages. All experiments were run on a 16-core, 3.00GHz

Intel Xeon Gold 6248R CPU with 64Gb of RAM.

5.4.1 Marginal log-likelihood

Efficient computation of the marginal log-likelihood (Equation (1.60)) is crucial

for any performant GP package. This is because in conjugate GP regression, the

marginal log-likelihood is often maximised with respect to the GP’s hyperparame-

ters to determine the maximum likelihood estimate. As such, we can often evaluate

the marginal log-likelihood upwards of 500 times during a typical optimisation run.
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Figure 5.1: Comparison of the marginal log-likelihood computation times for a
conjugate Gaussian process regression model.

To compare the performance of GPJax against GPFlow and GPyTorch, we first

compile each package’s marginal log-likelihood functionality into XLA. We then

evaluate it for a range of dataset sizes, the results of which can be seen in Figure 5.1.

We see that for smaller dataset sizes, there is little difference between the three

packages. However, as the dataset size surpasses 2000 data points, the more

efficient scaling of GPJax begins to emerge. For datasets of 5000 data points,

GPJax is 1.8 times faster than GPyTorch and 4.7 times faster than GPFlow.

136



5.4. Experiments

5.4.2 Collapsed evidence lower bound

For moderately large datasets where the marginal log-likelihood calculation would

be intractable, the collapsed ELBO Equation (1.97) is a sparse approximation that

provides a tractable lower bound to the marginal log-likelihood. Optimisation

can then be performed with respect to this objective. In addition to the

hyperparameters optimised in Section 5.4.1, the collapsed ELBO is also a function

of the inducing variable that parameterises the variational approximation.
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Figure 5.2: Comparison of the collapsed ELBO computation times for a sparse
Gaussian process regression model.

We compare the performance of GPJax to GPFlow by simulating a dataset of 20000

points and then evaluating the collapsed ELBO for a range of inducing variable

sizes. The results of this comparison can be seen in Figure 5.2. As with the

marginal log-likelihood, the performance of GPJax is comparable to GPFlow for

smaller sets of inducing points, but as the number of inducing points increases,

GPJax offers significantly better scaling. For 800 inducing points, GPJax is 2.1

times faster than GPFlow.
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5.4.3 Uncollapsed evidence lower bound

As a final demonstration of the computational efficiency of GPJax, we evaluate

the computational cost of evaluating the uncollapsed ELBO presented in Equa-

tion (1.109). Unlike the collapsed ELBO demonstrated in Section 5.4.2, the

uncollapsed ELBO can be evaluated on mini-batches of data. We, therefore,

evaluate the uncollapsed ELBO for a range of inducing variable sizes and a range

of minibatch sizes.
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Figure 5.3: Comparison of the uncollapsed ELBO computation times for a sparse
Gaussian process model as a function of the minibacth size. The number of
inducing points is fixed to 100 and 200.

In Figure 5.3, we observe the scaling of the uncollapsed ELBO as the minibatch

size increases. For inducing point sets of 100 and 200 data points, we see that the

scaling of GPJax is marginally faster than the highly optimised implementation

that is given in GPFlow. For a minibatch size of 512 data points GPJax is 1.2 times

faster than GPFlow. Similarly, if we keep the minibatch size fixed at 512 data

points and model the computational runtime of GPJax and GPFlow as a function

of the number of inducing variables, we see in Figure 5.4 that the scaling of GPJax

is almost identical to GPFlow.
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Figure 5.4: Comparison of the uncollapsed ELBO computation times for a sparse
Gaussian process model as a function of the number of inducing points. The batch
size is fixed to 512 data points.

5.5 Conclusions

In this chapter, we presented GPJax; a JAX-based GP software package that

enables fast inference in GP models using both exact and approximate inference

schemes. GPJax enables researchers wishing to develop novel GP models to rapidly

implement their models. This is achieved by the low level of abstraction given in

GPJax, meaning that the user has full control over the underlying GP model and

its constituent components.

Whilst this chapter has focussed on connecting GPJax to the wider community

of GP packages, the online documentation given in GPJax provides a wealth of

information on the GP model and how it can be applied to a wider range of

problems. Examples of this include demonstrating how a set of GP posterior

distributions can be combined using a Wasserstein barycentre, and how inference

can be done in a GP model with a non-Gaussian likelihood function through

MCMC or Laplace approximations. The documentation is available at https:

//gpjax.readthedocs.io.
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Chapter 6

Probabilistic Climate Model

Ensembles

The conclusion of this thesis is comprised of two sections: the first covers some

ongoing work that incorporates many of the topics discussed in previous chapters

and the second is a summary of the work presented in this thesis and possible

future directions. Whilst the work presented in this chapter is incomplete, the

framework and application are sufficiently developed to contribute to this thesis.

Chapter 6 addresses the problem of combining multiple climate models in a

probabilistic manner. To construct the ensemble, we first emulate each climate

model using a GP that is defined over a set of outputs from the climate model. To

effectively model this, we design a sparse hierarchical GP that allows us to infer

the latent function of the climate model. Using proper scoring rules, we can then

rank each model based on how well its emulator’s posterior distribution reflects

the true observations that we observed. Finally, we learn an ensemble using a

weighted Wasserstein barycentre that we can compute in closed form.
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6.1 Introduction

Ensemble models An ensemble model is the formation of a “committee”

of models for which each constituent model supplies a, possibly weighted,

contribution to the final ensemble prediction. For classification problems, the

ensemble prediction could be a majority vote of the constituent models, whilst

in regression problems, the ensemble prediction could be a mean statistic. The

paradigm motivating the construction of ensemble models is that even though a

single model in isolation may not perform well, the combination of multiple models,

the ensemble, will perform better.

The origin of ensemble models can be attributed to the political science literature

through Condorcet’s Jury Theorem (De Condorcet, 1785). This work approaches

the question of how many people must form a committee to ensure that the correct

decision is made for a binary task. Assuming that the probability of each person on

the committee making the correct decision is greater than 0.5, then the probability

of the committee making the correct decision will increase monotonically as the

committee’s size grows.

In recent years, ensemble methods have been widely adopted in the machine

learning community through boosting and AdaBoost (Schapire, 1990; Auer et al.,

1995), mixture-of-experts (Jacobs et al., 1991), aggregated bootstraps (Breiman,

1996), random forests (T. K. Ho, 1995), and gradient boosting machines (Mason

et al., 1999; Friedman, 2001). Within the GP literature, ensemble methods

have been borrowed to construct scalable approximations of the GP posterior

distribution by subsetting the data, fitting a single GP to each subset, and then

combining the predictions of each GP (M. Deisenroth et al., 2015; Srivastava et al.,

2015). This work contrasts with the existing GP ensemble methods in that we are

interested in creating an ensemble of GPs to combine the information contained
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with multiple climate models and not to improve the scalability of our model.

Climate modelling From 1850-1900 to 2001-2020, the global surface temper-

ature increased by 0.99°C (Pörtner et al., 2022). Until 1981, the rate at which

Earth’s temperature increased was 0.08°C per decade. However, from 1981 to the

present day, the rate has more than doubled to 0.18°C per decade. Further, the

nine years from 2013 to 2021, inclusively, rank among the 10 warmest years on

record (NOAA, 2021). The ramifications of such warming cannot be understated,

as the impacts of an increasing surface temperature will reduce snow cover and

sea ice, cause intensifying droughts, and irreversibly alter the habitats of plants

and animals. To enable us to plan and adapt to these changes, any model we

construct must be able to accurately predict the range of likely future scenarios.

To this end, we construct a probabilistic ensemble of climate models that allows

us to propagate uncertainty from the individual models’ realisations through to

the final ensemble projection.

Climate models are numerical process models that are fundamental in investigating

how climatic systems develop under natural and anthropogenic influences over a

range of temporal and spatial scales (Taylor et al., 2012; Randall et al., 2007).

Functionally, a climate model is comprised of a set of differential equations that

characterise how energy and matter interact within the atmosphere. The output

of climate models is resolved on a spatial grid whose resolution controls the level

of detail in the model’s predictions, and the computational power required to run

the model. A finer grid will yield more detailed results, but will also be more

computationally demanding to run.

Based on their output, climate models can be split into two categories: a hindcast

where the model is provided with a set of initial conditions at 1800 and then
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run from that point forward to the present day, and forecasts where the model

is run from the present day forwards in time to a future year that is usually

2100 but can be as far as 2300. The uncertainty around extrapolations as far as

2100, let alone 2300, will render any output meaningless. Therefore, to control for

the effects of our future socio-economic behaviours, climate models’ forecasts are

constrained by a set of shared socio-economic pathways (SSPs) (Riahi et al., 2017).

An individual SSP describes a possible pathway that the world could take and,

therefore, controls for factors such as population, economic growth, education,

urbanisation and technological development. There are five main SSPs that can

be briefly described as follows:

• SSP1: Sustainability - The most positive future scenario that sees a world

of sustainable development and equality.

• SSP2: Middle of the Road - A world whose socioeconomic trends mimic

those of the past. Progress under this scenario is slow and discriminative,

but less so than in SSP3 and SSP4.

• SSP3: Regional Rivalry - A divided world that sees a resurgence of

nationalistic politics. At the cost of global development, individual countries

prioritise their energy and food security. Economic growth is slow and

dependent on fossil fuels.

• SSP4: Inequality - Unequal investments and increasingly disjoint economic

opportunities lead to a widening stratification both within and between

countries over time.

• SSP5: Fossil-fuel intensive development - Rapid and unconstrained

growth in economic activity and energy consumption. This scenario sees

similar economic growth to SSP1, but with a much higher dependency on
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fossil fuel usage.

In Figure 6.1, we visualise atmospheric projections of the greenhouse gas carbon

dioxide (CO2) for each of the five SSPs according to the models run in Riahi

et al. (2017). As we can see, following SSP5 leads to the largest atmospheric CO2

increase, whilst SSP1 sees the least significant increase. There is little difference

between SSP2, SSP3, and SSP4, however, this could vary from one climate model

to another. The SSPs in Figure 6.1 are a set of baseline scenarios, which inform
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Figure 6.1: The five major shared socioeconomic pathways that describe the range
of possible future atmospheric concentrations of carbon dioxide.

projections under the assumption that no new climate policies will be introduced,

beyond those in existence today. These help understand the purpose of SSPs.

However, when constraining the output of a climate model by a specific SSP,

we impose a further constraint on the levels of greenhouse gasses and radiative

forcings1 that might be expected in the future. Such a constraint is known as

a representative concentration pathway (RCP) and is characterised by a number

whose value is the Watts per squared metre energy change e.g., 2.6Wm−2 denotes

the RCP where every squared metre on earth receives an additional 2.6 Watts
1Radiative forcings are the difference between incoming and outgoing energy in Earth’s climate

system. If the levels of greenhouse gasses increase, then the amount of incoming will increase
relative to the amount of outgoing energy. Consequently, the Earth will become a warmer planet.
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of energy. For each climate model, the output is, in practice, constrained by a

combination of a SSP and RCP, although the combinations may differ from one

model to another. A combination is denoted by the concatenation of an SSP

scenario with an RCP value e.g., SSP126. In Figure 6.2, we visualise atmospheric

CO2 projections for each combination of SSP and RCP.
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Figure 6.2: Global CO2 emissions in parts per million for all of the SSP and RCP
combinations. The colour of each line represents the RCP, and the style of each
line represents the SSP.

Climate model ensembles Ensembles of climate models, where modelling

groups produce simulations to an agreed experimental design, are routinely used

to more accurately estimate the evolution of the climate (e.g. Hoegh-Guldberg

et al., 2018; Deser et al., 2020; Vautard et al., 2021). Additionally, climate

model ensembles provide a way to investigate model uncertainty and quantify the

confidence in future projections, typically by considering the inter-model variance

(Knutti et al., 2013; Murphy et al., 2004; Tebaldi et al., 2007; Lehner et al.,

2020). However, commonly used ensemble analysis methods, such as the multi-

model mean (e.g. Lamarque et al., 2013; Tebaldi et al., 2007) and weighted-mean
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(e.g. Sanderson et al., 2017; Brunner et al., 2019; Amos et al., 2020), often fail

to propagate uncertainties from model realisation to ensemble projection in a

principled manner (IPCC, 2010).

Ensemble approaches are widely used throughout environmental and statistical

sciences because an ensemble prediction is typically more accurate than a

prediction from any single model (Reichler et al., 2008). Ensembles are now

the standard way to perform broad model investigations (Eyring et al., 2016;

WMO, 2018) including evaluating structural and epistemic model uncertainties

(Deser et al., 2020; Tebaldi et al., 2007; Hawkins et al., 2009). When considering

the uncertainty in an ensemble projection, it is very common to use the standard

deviation across weighted and/or unweighted model simulations (e.g. Raftery et al.,

2005; Dhomse et al., 2018; IPCC, 2010). However, the standard deviation is not

necessarily a good estimator of the ensemble variance as it can be biased by outlier

models (IPCC, 2010). Furthermore, the standard deviation across an ensemble of

models does not capture a likely individual model’s inter-annual variability.

Methods to produce ensemble projections from multiple models fall broadly

into two categories; methods which use only the outputs from a set of models

and then compute metrics such as the multi-model mean (Palmer et al., 2005;

Hoegh-Guldberg et al., 2018) to derive a prediction, and estimate uncertainty by

considering how far models are away from the mean model value (e.g. Giorgi

et al., 2002). There are also methods which use observations to score and

subsequently weight the individual models that form an ensemble (Sanderson

et al., 2017; Amos et al., 2020; Liang et al., 2020). Model weighting addresses

limitations of unweighted ensembling methods including their inability to account

for model similarity or variable model performance (Knutti, 2010). The majority

of these methods also attribute uncertainty to forward-looking projections using
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the models’ spread. However, quantifying the projection’s uncertainty based on

the spread of the models’ outputs only tells us about the range of plausible

outcomes, and does not provide a measure of the uncertainty in the ensemble

model’s prediction. Further, such an approach is accompanied by the assumption

that each model is equally performant, and the models’ predictions are all normally

distributed around the mean.

Here we present a probabilistic ensembling method which quantifies uncertainty

through the entire ensembling process, from individual simulations to ensemble

output. We apply our approach to projections of surface temperature change from

the Coupled Model Intercomparison Project Phase 6 (CMIP6) (Eyring et al., 2016)

to demonstrate the method’s ability to produce better-constrained projections with

principled uncertainty estimates.

Despite drawing probabilistic conclusions from ensembles of climate models, the

tools with which we generate ensemble output themselves are rarely probabilistic.

We seek to address this deficit within this paper by designing an end-to-

end statistical framework to probabilistically ensemble models to produce fully

probabilistic climate projections.

6.2 Background

The ensemble method presented here relies on ideas from the fields of optimal

transport, GPs, and scoring rules. We, therefore, review these concepts in this

section where an explanation of GPs has been omitted in favour of Section 1.3.
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6.2.1 Wasserstein barycentres

Optimal transport is a rich area of mathematics with origins dating back to 1781

when Gaspard Monge considered the problem that, given a set of locations from

which soil can be dug up from the ground, how can it optimally be transported

to a set of construction sites (Monge, 1781). The idea has been generalised in

modern statistics to consider the case where we have two probability distributions

ν1 and ν2 and we wish to compute the optimal way to transport probability mass

from ν1 to ν2 such that ν2 is equal to ν1. The literature concerning the assignment

problem is rich, and goes beyond the scope of this work. We, therefore, refer the

curious reader to the detailed works of Villani (2009) and Peyré et al. (2019).

The squared 2-Wasserstein distance measure W 2
2 (ν1, ν2) is commonly used within

machine learning and statistics for computing the distance between two probability

distributions ν1 and ν2. More precisely, the metric can be given by

W 2
2 (ν1, ν2) = inf

T#ν1=ν2

∫
X
∥x− T (x)∥2dν1(x) , (6.1)

where T#ν1=ν2 denotes the push forward of ν1 through the transport map T : X →

X defined on a metric space X . Intuitively, the metric measures the minimum

amount of work required to transport probability mass from ν1 to ν2 with respect

to the Euclidean norm.

In general, computing Equation (6.1) cannot be done analytically and its

computation, therefore, requires solving a complex linear program. However,

when ν1 and ν2 are multivariate Gaussian distributions ν1 ∼ N (m1,Σ1) and

ν2 ∼ N (m2,Σ2), the Equation (6.1) has the closed form expression

W 2
2 (ν1, ν2) = ∥m1 −m2∥2

2 + trace
(

Σ1 + Σ2 − 2
(
Σ1/2

1 Σ2Σ
1/2
1

)1/2
)
. (6.2)
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This result can be attributed to Takatsu (2011).

If we now allow ourselves to consider a set of T probability distributions ξ =

{ν1, ν2, . . . , νT}, then a natural question that we may ask is “what is the average

probability distribution ν̄?”. Such a quantity is known as a barycentre and we can

use the idea of Wasserstein distances given above to compute it (Agueh et al.,

2011). In particular, when every element in ξ is a Gaussian distribution, the

Wasserstein barycentre is analytically available and is itself a Gaussian distribution

ν̄ ∼ N (m̄, Σ̄)2. We call barycentres of this form a Bures barycentre (Bhatia et al.,

2019). To compute the mean and covariance of the Bures barycentre, we can

calculate the following

m̄ =
T∑
t=1

βtmt , Σ̄ =
T∑
t=1

βt

(
Σ̄

1/2Σ̄tΣ̄
1/2
)1/2

, (6.3)

where {βt}Tt=1 is a set of weights. If we assume that elements in ξ are equally

informative of the mean, then we can assign uniform weights. However, if we have

some prior knowledge that certain elements in ξ more precisely represent the mean

than others, then we are free to choose non-uniform weights under the constraint

that ∑t βt = 1 and all weights are positive-valued. We visualise this in Figure 6.3

and utilise this idea in Section 6.4.2.
2A common over-simplification is that the Wasserstein barycentre is simply the average

probability distribution. More precisely, the Wasserstein barycentre is the Fréchet mean defined
on a Wasserstein space. Intuitively, the barycentre is the distribution that minimises the average
Wasserstein distance to each of the sets’ constituent measures.
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Figure 6.3: Left: Comparison of the naive Euclidean mean and the Wasserstein
barycentre computed between two Gaussian distributions π1 ∼ N (10, 1.5) and
π1 ∼ N (15, 0.25). Right: Visualisation of the changing Bures barycentre that is
computed between two Gaussian distributions π1 and π2 as the weights (w1, w2)
change from (α, 1− α) for 0 < α < 1.

6.3 Data

6.3.1 Model output

We used monthly average surface temperature output from climate models within

the CMIP6 ensemble (Eyring et al., 2016). These are sophisticated numerical

models, built upon fundamental laws of physics and chemistry, which are used

to generate future projections and explore a wide range of scientific questions.

Specifically, we consider 20 models {mw}20
w=1 that simulated 3 or more realisations

for both the historical and forecast simulations.

All historical simulations (1850–2014) are similarly forced with historic green house

gas emissions, land use, sea surface temperature, sea ice concentrations and solar

and volcanic events, such that they recreate the climatic behaviour of the past.

For climate model forecasts (2016–2100) we focus on the 7 main SSP experiments

which represent different ways that anthropogenic influences may change within

the next century. All model output was conservatively regridded to a common

5o × 5o to directly match the observational resolution.
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We denote the set of realisations for the ith model mi as Y(i) = {y(i)
1 ,y

(i)
2 , . . . ,y

(i)
Ri
}.

Each element in Y(i) is an estimate of the global surface temperature at an index

set X that is comprised of a matrix of spatial coordinates S = {s1, s2} and vector

of time points t. This leads to K = |s1| × |s2| × |t| datapoints per realisation. To

spare overloading notation, we index the individual values within one realisation

(jth realisation from the ith model) using the notation [y(i)
j,1,y

(i)
j,2, . . . ,y

(i)
j,K ].

6.3.2 Observation data

Observations were sourced from HadCRUT5 (Morice et al., 2021) a global gridded

dataset of historic surface temperature anomalies (relative to 1961–1990), which

merges observational products of land and sea surface temperatures. The dataset

contains 200 observational realisations, which captures the uncertainty due to

measurement error, spatially non-uniform sampling of observations and from the

statistical reconstruction. Like the models, the dataset spans 1850 to the present

day and exists on a two-dimensional spatial grid. We align observations to

model outputs through the spatiotemporal indexing and denote a single set of

observations at the kth spatiotemporal index as y⋆k = [y⋆k,1, y⋆k,2, . . . , y⋆k,200].

6.4 A probabilistic ensemble

We will now proceed to describe the main contribution of this work; a three-

step process that creates a probabilistic ensemble from sets of model realisations.

Although the application of this work is to model global surface temperature,

we present this section in a general setting as the framework can be effortlessly

adapted to new problems.
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6.4.1 From realisations to model emulation

Given a set of realisations from a single model, our goal is to probabilistically

infer the latent function that generated the realisations. We make no assumptions

of the underlying physics that drives global surface; imparting such information

into the model is left as further work. To ease notation in this subsection, we

will consider the task of emulating a single model and consequently drop the

notational dependency on the model index, given by i in the previous subsection.

We consider a set of model realisations Y = {yr}Rr=1 where yr is a vector in RN .

We make two assumptions: 1) there exists a latent function ŷ from which all yr

are noisy realisations of and 2) all realisations are defined across the same index

set X = {xn}Nn=1. In our examples, these data D = {X,yr}Rr=1 are a collection

of surface temperature projections across a common temporal range, simulated by

multiple climate models, where we wish to extract the latent climate signal.

To model these data we use a Bayesian hierarchical model of GPs

g(X) ∼ GP(0, kg(X,X′)), (6.4)

f (r)(X) ∼ GP(µg | y, k
(r)(X,X′)) , (6.5)

where g(X) is the latent function that underpins all yr. f (r)(X) is the latent

function for an individual vector and has a mean given by the posterior mean of

g that we denote µg | y = Ep(g | y)[g(X)]. The kernel kg describes the covariance

structure of the latent function and the set of kernels {k(r)}Rr=1, which have

a one-to-one mapping with each f (r), describe the covariance structure of an

individual realisation. Different kernel functions may be used for any of the

kernel terms. This hierarchical model is linear, which means that for a single

vector f (r)(X) ∼ GP(0, kg(X,X′) + k(r)(X,X′)), whereas the joint distribution
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between different time series is described by the covariance function kg(X,X′).

This model can be extended to multiple hierarchies (e.g., Hensman et al., 2013b)

but is computationally limited in its scalability; O(N3) for data size as per standard

GP regression and O(R2) for the number of realisations.

To ameliorate the computational cost associated with fitting models of this form,

we approximate each GP in Equations (6.4)–(6.5) with a low-rank (sparse) GP. To

form such an approximation, we introduce a set of inducing points Z = {zm}Mm=1

where M ≪ N . We assume that the inducing points exist on the same support as

our observed inputs X, but they need not be a subset of X (Snelson et al., 2005;

Titsias, 2009). Further, the set of inducing points used is shared across all GPs,

as acknowledged by the absence of a subscript on Z.

Our low-rank approximations are themselves GPs and therefore have an associated

set of kernel and likelihood parameters. We collectively denote these as θ.

Optimising the marginal log-likelihood of this model is intractable, so we instead

use VI to form an ELBO (Jordan et al., 1998). The ELBO lower bounds the

marginal log-likelihood and maximising its value is analogous to minimising the

Kullback-Leibler divergence from the approximate low-rank processes to the true

model. To achieve this, we optimise the model’s hyperparameters and the inducing

points’ values using a first-order gradient-based optimiser (e.g., Ba et al., 2015).

The cost of inference now scales linearly in N and quadratically in M , giving a

total cost of O(NM2R2). We now proceed to give a full derivation of the ELBO,

noting that similar results have been derived in the literature for GP regression

(Titsias, 2009), latent variable GPs (Pinder et al., 2021), and heteroscedastic GP

models (Lázaro-Gredilla et al., 2011; Saul et al., 2016).

Let Z = {zm}Mm=1 be a set of inducing points whose corresponding function

evaluations are given by Uf = {u(r)
f }Rr=1 = {f (r)(Z)}Rr=1 and ug = g(Z).
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The function evaluations Uf and ug are termed inducing variables as they are

themselves random variables assigned the prior distributions of

p
(
u(r)
f |Z

)
= N

(
u(r)
f |0,Kf (r)

uu

)
(6.6)

p(ug |Z) = N (ug |0,Kg
uu) (6.7)

(6.8)

where

Kf (r)

uu = kf (r)(Z,Z) (6.9)

Kg
uu = kg(Z,Z) . (6.10)

Similarly, Kf (r)
xx = kf (r)(X,X′) and Kg

xx = kg(X,X′). When incorporating the

inducing variables into our joint prior, we assume that our latent functions are

independent

p(F,g |Uf ,ug) = p(F |Uf )p(g |ug) , (6.11)

where F is a matrix whose rth column corresponds to the evaluation of f (r) =

f (r)(X) and g = g(X). By the consistency of a GP, we can be sure that augmenting

the GP’s joint prior with the inducing variables and marginalising them out will

leave no imprint on the true joint distribution.

The marginal log-likelihood of the model presented in Equations (6.4)–(6.5) is

log p(Y) =
R∑
r=1

log
∫
p(yr | f (r),g)p(f (r),g |u(r)

f ,ug)p(u(r)
f )p(ug)df (r)dgdu(r)

f dug

(6.12)
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To enable a tractable model, our approach is to introduce a variational approxima-

tion to the model’s posterior distribution. By assuming that the latent variables F

and g factor within the variational posterior distribution, we are then able to enable

tractable computations (Saul et al., 2016). We will now proceed to derive an ELBO

term following the approaches given in Titsias (2009); Lázaro-Gredilla et al. (2011)

that will allow us to optimise the parameters of our variational approximation such

that they offer the best approximation of the true posterior. We begin by defining

the augmented joint prior

p(F,g,Uf ,ug |y) ≈ p(F |Uf )p(g |ug)q(Uf )q(ug) (6.13)

= p(g |ug)q(ug)
R∏
r=1

p(f (r) |u(r)
f )q(u(r)

f ) , (6.14)

where q
(
u(r)
f

)
and q(ug) are multivariate Gaussian distributions of the form

q
(
u(r)
f

)
= N

(
u(r)
f |m

(r)
f ,Σ(r)

f

)
(6.15)

q (ug) = N (ug |mg,Σg) . (6.16)

We now seek to obtain a tractable bound on the marginal log-likelihood from

Equation (6.12). To achieve this, we first apply the assumptions of factorisation

and latent prior independence to Equation (6.12) and incorporate Equation (6.13).

Application of Jensen’s inequality to the refactored marginal log-likelihood will

then yield a tractable lower bound. Applying the assumptions of factorisation and

independence the marginal log-likelihood from Equation (6.12) and incorporating
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Equation (6.13) gives

log p(Y) =
R∑
r=1

log
∫
p(yr | f (r),g)p(f (r) |u(r)

f )p(g |ug)p(u(r)
f )p(ug)df (r)dgdu(r)

f dug

(6.17)

≥
R∑
r=1

Eq(f)q(g) [log p(y | f ,g)]−KL(q(u(r)
f ) || p(u(r)

f ))−KL(q(ug) || p(ug)) .

(6.18)

The forms of q
(
f (r)

)
and q(g) are given by

q(f (r)) =
∫
p(f (r) |u(r)

f )q
(
u(r)
f

)
du(r)

f (6.19)

=
∫
N
(

f (r) |Kf (r)

fu

[
Kf (r)

uu

]−1
u(r)
f ,K(r)

ff −Q(r)
ff

)
q
(
u(r)
f

)
du(r)

f (6.20)

q(g) =
∫
p(g |ug)q(ug)dug (6.21)

=
∫
N
(
g |Kg

gu [Kg
uu]−1 ug,Kgg −Qgg

)
q(ug)dug . (6.22)

where Q(r)
ff = Kf (r)

fu

[
Kf (r)

uu

]−1
Kf (r)

uf and Qgg = Kg
gu [Kg

uu]−1 Kg
ug.

By virtue of the likelihood function being Gaussian, we can analytically evaluate

the expectation in Equation (6.18) using the results outlined in Titsias (2009).

Further, both of the KLD terms in Equation (6.18) are being evaluated on a pair

of multivariate Gaussian distributions, meaning that they have an analytical form

that can easily be computed. As such, when we bring these results together, we

are provided with the following ELBO term

L∗
q =

R∑
i=1

R∑
j=1

[
logN

(
y |0, σ2In + Qgg + δi,jQ(i)

ff

)

− 1
2σ2 trace

(
Kg

xx + Qgg − δi,j
(
Kf (i)

xx + Q(i)
ff

))]
, (6.23)

where δi,j = 1 if i = j and 0 otherwise i.e., a Dirac delta function.
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In the forthcoming sections, we use the posterior distribution of the latent

function g to emulate the latent behaviour of a climate model. The posterior

distributions that correspond to the latent functions {f (r)} help diagnose the

emulator’s behaviour; however, they are not used in the following sections. As

such, we will not discuss them further.

6.4.2 Weighting models

With a set of posterior distributions now learned for each model, the next step

in our framework is to score each of the models. To do this, we make use of the

observational data that was introduced in Section 6.3. Under our approach, we

assign a higher score c ∈ R to models where the observed data is more plausible

under the model’s predictive density. To quantify this, we consider three metrics:

EPLD, KSD, and CRPS that we present here before empirically exploring each of

them in Section 6.5.

Expected predictive likelihood density The EPLD metric measures how

well an emulator’s posterior distribution explains the observed data points. For

EPLD, a higher score is better and we, therefore, compute its negative value at

each of the K index points by

cEPLD = E [log p(y⋆ | f , ŷ)] (6.24)

≈ 1
200

200∑
i=1

log p(y⋆i | f , ŷ) . (6.25)

A larger EPLD score will correspond to a better performing model. However, to

be consistent with other metrics, we will use the negative of this value as our score.
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Kernel stein discrepancy KSD is a statistical divergence metric that can be

used to measure how well an empirical density that is defined over a finite sample

set approximates a true distribution (Liu et al., 2016a; Gorham et al., 2015).

Letting p be the emulator’s posterior distribution, q be the empirical density over

our sample set y⋆, and k(x, x′) = (α2 + ∥x− x′∥2
2)
β be the inverse multiquadratic

kernel with α > 0 and β < 0 to give

cKSD = Ey⋆
i ,y

⋆
j ∼q

[
Ay⋆

i
p A

y⋆
j
p k(y⋆i , y⋆j )

]
(6.26)

where the Stein operator Ap is given by

Ay⋆
i
p = k(y⋆i ,y⋆)∇y⋆

i
log p(y⋆i ) +∇y⋆

i
k(y⋆i ,y⋆) . (6.27)

KSD is a strictly positive metric and a score of 0 is attained if, and only if, the

samples were generated exactly from the target distribution. For a more rigorous

presentation of KSD, we refer the reader to Section 2.2.

Continuous ranked probability score When evaluating the performance of

a probabilistic forecast, CRPS is a commonly used metric that can intuitively

be thought of as the squared difference between the empirical CDF of over the

observations and the CDF of the emulator’s predictive posterior distribution

(Brown, 1974; Matheson et al., 1976). We can formalise this as follows

cCRPS = −
∫ ∞

−∞
(p(x)− 1y⋆≥x)2 dx . (6.28)
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When the predictive posterior distribution p is a Gaussian with mean µ and

standard deviation σ, the CRPS has the following analytical form

cCRPS = σ

[
1√
π
− 2φ

(
x− µ
σ

)
− x− µ

σ

(
2Φ

(
x− µ
σ

)
− 1

)]
, (6.29)

where φ and Φ denote the PDF and CDF of a unit Gaussian distribution,

respectively. As with KSD, CRPS is a strictly positive metric.

Proper scoring rules EPLD, KSD, and CRPS are three evaluation functions

that we could use to measure the quality of our emulators for a set of observations.

However, it is non-trivial how we should choose between them. Whilst we

empirically explore this in Section 6.5, observing this problem through the lens

of scoring rules can equip us with a more general framework for evaluating the

quality of a set of emulators.

If we assume that our observations are given by the latent distribution Q, then a

scoring function γS is a function based on a scoring rule S that can be defined by

γS(P,Q) = EQ [S(P,Q)] , (6.30)

where P,Q ∈ Q are two probability distributions over the same space where P is

used to denote the probabilistic forecast of the model.

Within the literature, scoring rules and scoring functions are presented as both

negatively and positively oriented. To align with the orientation of EPLD, KSD,

and CRPS, we here focus on the negatively oriented case where a smaller score

is indicative of a better model. In this case, a scoring rule S is termed a proper

scoring rule if and only if γS(P,Q) ≥ sγ(Q,Q) holds for all P,Q ∈ Q. Further,

the scoring rule is strictly proper if the equality γS(P,Q) = sγ(Q,Q) is satisfied if
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and only if P = Q (Savage, 1971; Gneiting et al., 2007).

Intuitively, a scoring rule is proper if the best expected value is attained by

predicting the observations’ distribution and strictly proper if no other prediction

can achieve this distribution. Within our emulator framework, comparing models

using a proper scoring rule allows us to be confident that the model whose

predictive distribution has the highest fidelity with the observations will receive the

largest weight in the ensemble. Both EPLD and CRPS are proper scoring rules;

however, as we shall see in Section 6.5, ranking models using KSD yields a well-

performing ensemble and further work should be done to theoretically investigate

whether KSD is a proper scoring rule.

6.4.3 Computing weights

For each of the three scoring metrics, the process is repeated independently for each

model, leaving us with a set of W score vectors, each of length K. We transform

these scores into weights β by calculating the relative score of each model w at

each index location k through3

βw,k = 1− cw,k∑W
w=1 cw,k

. (6.31)

Clearly, if we were to compute ∑W
w=1 βw,k then we would yield a K-long vector of

ones, thus satisfying our requirement from Section 6.2.1, that weights should sum

to one.
3As the scores outlined in Section 6.4.2 are negatively oriented, we subtract each term below

from 1 to ensure the best model is assigned the largest weight.

161



Chapter 6. Probabilistic Climate Model Ensembles

6.4.4 Creating an ensemble

Now that we have inferred a GP posterior distribution for each model and assigned

it a relative weight vector for each index location, the only remaining task required

to compute our ensemble is to combine the set of posterior distributions. Having

taken care to work under a probabilistic framework thus far, we seek to ensure that

our ensemble takes into account not only the mean of each posterior distribution,

but also its variance, thus ensuring that our final ensemble will exhibit well-

characterised uncertainty estimates. For this reason, we compute the Bures

barycentre from Section 6.2.1 where the constituent set of probability distributions

is the individual GP posterior distributions. We use the weights from Section 6.4.2

to assign a larger amount of probability mass to those models that represented

the underlying observations accurately and conversely penalise models which are

unrepresentative of the truth.

Although we are computing the Bures barycentre over a finite index set here, the

Bures barycentre is well defined over a set of infinite dimension (Mallasto et al.,

2017; Masarotto et al., 2019). Such a theoretical result guarantees to us that

computing the Bures barycentre here as our final ensemble will yield a unique and

well-defined function if, theoretically, the index set size was to tend toward infinity.

6.5 Experimental results

In this section, we empirically validate our proposed ensemble methodology and

present initial results that project global mean surface temperature. Fundamen-

tally, this involves fitting a 1-dimensional temporal regression model. Soon, we

plan to conduct further experiments to evaluate global surface temperature in a

spatiotemporally resolved manner using the workflow presented in this chapter.
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6.5.1 Projecting mean surface temperature

In this section, we answer the question “How will the global mean surface

temperature change between now and 2100”. To achieve this, we apply our model

from Section 6.4 to climate model outputs that have been constrained by each of

the five SSPs and the set of RCPs for which each climate model was simulated for.
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Figure 6.4: The predictions of our ensemble for the global mean surface
temperature constrained by each of the five SSPs. The solid line represent the
ensemble’s predictive mean and the surrounding shaded region represents one
standard deviation.

In Figure 6.4, we plot the predictions of our ensemble for the global mean surface

temperature constrained by each of the five SSP. For all scenarios, we see an

increase in global mean surface temperature until 2040. In 2040, even the most

optimistic scenario, SSP119, sees an increase in global mean surface temperature

of 1.5°C. It is of significance, that limiting global mean surface temperature to
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2°C with a goal of 1.5°C is a fundamental statement in the 2015 Paris Agreement

(UNFCCC, 2015).
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Figure 6.5: Comparison of the projections of our ensemble (red) to the multi-
model mean (blue). The data used in each model has been constrained according
to SSP370. The solid line represent the ensemble’s predictive mean and the
surrounding shaded region represents one standard deviation.

Projections for each SSP begin to diverge from one another after 2040. The most

pessimistic scenario, SSP585 that sees rapid and unconstrained economic growth

and energy consumption, results in a global mean surface temperature increase

of 5.9°C by 2100. Such warming would be catastrophic for the planet and, at

warmings of this magnitude, Earth would be incompatible with human civilisation.

Conversely, by the projections given by our model, we can see that if we follow

SSP119 or SSP126, we would be able to suppress global mean surface temperature

increases to less than 2°C by 2100. In between these two extremes, we see that
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all scenarios yield a global mean surface temperature of between 3 and 4.8°C by

2100.

An important observation to make when interpreting the projections from our

model is that they should not be treated as binary outcomes. It is untrue to

state that if Earth’s warming can be limited to less than 1.5°C, then the human

civilisation will be fine and warming of 2°C will result in the collapse of humanity.

Instead, the correct way to interpret the results is that every increase in warming

corresponds to an increased risk of catastrophic events occurring (Kopp, 2021).

Within the climate modelling community, the multi-model mean (MMM) is the

default ensemble model that is used in the Intergovernmental Panel on Climate

Change (IPCC) reports. For this reason, we compare our ensemble to the MMM

and argue for the benefits of our proposed approach in the context of both precision

and interpretability. The climate models and corresponding realisation sets used

to compute the MMM and our ensemble are equal and correspond to SSP370.

Observing Figure 6.5, we can see the difference in projections that our ensemble

model yields in comparison to those given by the MMM. The variance of the

MMM’s predictions is significantly wider than that of our model as it is capturing

the variance across all models’ projections. In contrast, the variance of our model

is a characterisation of the range of possible projections that could be made by

our ensemble model. In the framework of ensemble modelling, we argue that the

variances produced by our model are significantly more useful than those of the

MMM as they inform the practitioner of a precise range of possible temperatures

that could be experienced, not the range of model outputs, as is the interpretation

of the MMM.

The projections given by our model are strictly less than those given by the MMM.

This can be explained by the fact that a subset of climate models are biased towards
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overestimating surface temperature due to complex dynamics required to resolve

cloud formations (Zelinka et al., 2020). We follow convention and refer to these

as hot models (Hausfather et al., 2022). However, the MMM does not assign more

credibility to models that are more representative of the truth and, consequently,

the hot models over-contribute to the projections given by the MMM. In contrast,

the weights assigned to each climate model within our ensemble are determined

by the accuracy of the model with respect to the fidelity between its hindcast and

the true observations. As a result, the hot models are penalised and the resulting

projections are more conservative when compared to those of the MMM. We see

this as a further benefit of our proposed approach.

In Figures 6.4 and 6.5, we note that the standard deviation of our ensemble does not

increase as we extrapolate into the future. This may seem counter-intuitive as we

would expect the uncertainty of a model to increase as we move further away from

the data that it was trained on. However, in this work, all meteorological effects

have been removed from the data in the preprocessing. Further, by constraining

the model runs to a single SSP, all socio-economic variation has been explained.

With these two constraints applied, the variance between the constituent models

becomes small which, consequenlty, makes the ensemble model’s variance narrow.

6.5.2 Ensemble validation

Within the above work, we used CRPS to weight our emulators. However, we also

proposed EPLD and KSD in Section 6.4.2. We justify the use of CRPS for two

reasons, firstly, despite offering good performance, KSD is not a proper scoring

rule and is therefore not accompanied by the same guarantees as CRPS. Second,

the range of values that EPLD can take are broad and its value is very sensitive.

We see this in Figure 6.6 where the weights assigned to each model by EPLD are
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very rough and many models will not contribute to the ensemble prediction at

all as their weight is zero. This behaviour is undesirable from a climate model

ensemble as we know that all models are reasonable approximations of the truth

and, therefore, should at least offer small contributions to the ensemble prediction.

We acknowledge the uniformity of the weights plotted in Figure 6.6, however, when

extending the model to the spatiotemporal setting we would expect to see more

inter-model variation as it is well known that all models do not perform equally

well across the globe.

6.5.3 Validating our model

Within this work, we have introduced a novel GP methodology that enables us to

probabilistically learn a latent function from a set of vector-valued observations.

The posterior distribution of this latent function is then used as a component of

our final ensemble. For this reason, it is therefore prudent to evaluate our model

and validate two points: 1) the GP is capable of learning the underlying latent

function, and 2) the variance of the GP’s posterior distribution is calibrated.

Data To empirically validate the model from Section 6.4.1, we simulate four

datasets where the latent function in each is a single realisation of a Matérn process.

The lengthscale used in the latent functions’ draws are 0.1, 0.2, 0.5, and 1. 10

realisations are produced from the latent function where each is corrupted by a

homoscedastic, zero-mean Gaussian noise vector with a scalar variance of 0.1. The

relationship between the latent function and each realisation is further corrupted

by shifting each realisation by a constant factor whose value is drawn from a

uniform distribution with limits of -1.5 and 1.5. We plot the four datasets used in

Figure 6.7.

A priori, we should expect our model to perform better on datasets whose latent
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function was drawn from a Matérn process with a larger lengthscale as this will

correspond to a smoother function that will be easier to model, particularly when

the ratio of data points to inducing points is high.

Predicitve quality The first question we seek to answer is “How well can our

model recover the true latent function using only a set of realisations?”. To this

end, we simulate 10 realisations from the four Matérn processes described above.

We further vary the number of data points within a single realisation to be one

of 50, 100, or 300. The latent function’s lengthscale and the number of data

points within a single realisation are our independent variables. For each of the

four datasets, we fit our model from Section 6.4.1 and report the R2 coefficient to

assess how much of the variability within the latent function is explained by our

model. This is our dependent response variable.

From Figure 6.8 we can see that our model can consistently model the variance

in the latent function to a high fidelity. The only time we see a degradation in

performance is when the latent function’s lengthscale is 0.1 or 0.2, and we use just

10 inducing points in our model. This is not surprising though as we should never

expect to recover such rough functions with so few inducing points as the GP will

be forced to smooth out the underlying function’s roughness when interpolating

from one inducing point to the next.

Posterior calibration We further validate our model by answering the question

“How well calibrated is the uncertainty given by our model when representing the

latent function?”. We use the same data generating process as above, however, we

now let our independent variables be the true latent function’s lengthscale and the

number of realisations within a dataset. To test calibration, we query our GP at

a set of test locations and report the percentage of times that the true response
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value fell within our model’s 95% credible interval. An over-confident model would

report values less than 95%, whilst an under-confident model would report values

larger than 95%.

From Figure 6.9 we can see that the uncertainty estimates of our model are well

calibrated. There is a tendency for the posterior distribution of our model to

be under-confident in its predictions. However, this is a common artefact of

variational GP models of the form given in Titsias (2009) due to the different rank

of Kg
xx and Kf (r)

xx when compared to Qgg and Q(r)
ff (Turner et al., 2011; M. Bauer

et al., 2016). Further, as the number of inducing points grows, the calibration of

the model’s posterior improves.

6.6 Conclusions

Within this chapter, we have developed a probabilistic ensemble model that is

capable of propagating uncertainty from the underlying climate models’ output

through to the ensemble model’s predictions. To achieve this, we have developed

a novel GP method that allows us to infer a posterior distribution over the

realisations produced by a single climate model. Further, we have leveraged

connections between our GP and the literature within the fields of optimal

transport and scoring rules to effectively weight and combine our set of GP

posteriors into an ensemble. Finally, we have applied our ensemble methodology

to surface temperature data to produce probabilistic projections of global mean

surface temperature from the present day through to 2100.

The model we have developed is flexible and modular, meaning that its usage is

not limited to just modelling surface temperature. Through a different likelihood

function or probabilistic model altogether, the hierarchical GP presented in
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Section 6.4.1 can be adapted to model other environmental variables such as

precipitation or air pollution. Further, we explored the use of three different

scoring rules to weight models within our ensemble but the literature on scoring

rules is vast, and exploring the use of other scoring rules is a natural extension of

this work.

Finally, a key finding of the most recent IPCC report is that “there is no single

1.5°C warmer world”. This means that the warming of our planet is increasing

at different rates in different parts of the world. Many regions of the world

have already surpassed a 1.5°C increase in surface temperature compared to pre-

industrial levels. For this reason, the immediate next step in this work is to

extend our model to the spatiotemporal domain. Doing so will allow us to create

projections of surface temperature in a grid of locations across the globe. These

projections can then be used to report the likely range of surface temperature

that each region of the world is likely to experience. The GP foundations of our

model make it a perfect candidate for such a task as, through careful kernel design,

we will be able to construct a model that can capture the spatial and temporal

dependencies within the climate models’ output.
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Chapter 7

Conclusions

This thesis is concluded by first summarising the key findings of the research and

discussing the unifying themes that relate chapters together. We then proceed to

close the thesis by discussing the implications of this work for future research and

outline potential directions of research.

7.1 Discussion of main results

To understand the process of scientific work, George Box advocated the use of a

loop to aid in understanding physical processes (Box et al., 1962). This workflow

has been assigned the name Box’s loop in more recent literature (Blei, 2014). We

adapt this loop for the process of developing GP models in Figure 7.1 and use this

framework to consolidate the key findings of this thesis.

The process of science is iterative, and whilst we may devote more time to certain

elements of Figure 7.1 than others, the whole process must be considered in order

to develop a successful model. We begin by devising our model. For a GP, this

requires us to specify a kernel and mean function, perhaps with prior distributions
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Criticise Model
Test log-likelihood,

Accuracy, Calibration

Infer Parameters
Type II MLE, VI,

MCMC, SVGD

Build Model
Priors, Kernel,
Mean function

Data

Apply model
Prediction, Visualisation,

Decision making

Revise model

Figure 7.1: Box’s loop of model development adapted for a Gaussian process
workflow.

placed on the parameters of these functions. We then use an observed dataset

to infer the optimal parameters of our model. For conjugate regression problems

with small data, this task is likely straightforward optimisation of the marginal

log-likelihood. However, for more complex models, this may involve the use of an

approximate inference algorithm. We then criticise, or evaluate, our model using

a test dataset that is disjoint to the data used for inference. The criteria for which

we evaluate our model will vary greatly depending upon the task at hand. If we

are satisfied by our model’s performance, then we may apply it in the context

of prediction, visualisation or as part of a decision-making loop. If we are not

satisfied, then we may revise our model. In practice, this may involve building

more complex kernel functions or altering our inference scheme to better identify

the parameters of our model.

Build models Within this thesis, we have spent time considering each com-

ponent of Figure 7.1, and across all chapters, we have constructed GP models.

In Chapter 2 we built a spatiotemporal GP with a custom kernel function to
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precisely represent our beliefs surround the underlying dynamics of pollution. In

Chapter 3 this involved the use of a kernel function that would allow us to capture

the correlation structure of vertices in a network. Meanwhile, Chapter 4 detailed

the construction of a latent variable model that could accurately represent the

implicit structure contained with a hypergraph. Finally, Chapter 6 saw us develop

a hierarchical GP that could identify and propagate the latent uncertainty across

a set of realisations into a single latent GP function.

Infer parameters In Chapter 2, we investigate the use of SVGD as an

alternative form of inference for GP models whose latent function cannot be

analytically integrated. Meanwhile, Chapters 3–4 and Chapter 6 detailed the

derivation of a variational approximation to the true posterior. Such a form of

inference allowed us to include a heteroscedastic noise term in Chapter 3, embed

binary hypergraph data into a latent space in Chapter 4, and compose a sequence

of GPs in a sparse hierarchical model in Chapter 6.

Data and model criticism Within each chapter, we have considered complex,

real-world datasets to evaluate and critique our model. In Chapter 2, we considered

spatiotemporal air quality sensor measurements throughout the time window of

the United Kingdom’s Covid-19 lockdown. This data was supplemented with

covariates such as spatially-indexed land type and spatiotemporally-indexed wind

speeds. Chapter 3 considered mobile air quality data which we incorporated

into a network to describe the streets of London. This was proceeded by our

campaign to collect a mobile dataset of ultrafine particulate matter in Lancaster,

UK. Hypergraph representations of political networks within the United States of

America and Peru were considered in Chapter 4 along with a comparison against

their pairwise graph counterparts. Finally, the vector-valued output of climate
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simulators was used in Chapter 6. In each case, the data has been collected,

processed and analysed to provide a fair and robust evaluation of our model

through a process described in the relevant chapter. To criticise our GP models,

metrics such as test log-likelihood, posterior calibration and expected calibration

error have been used as these measures allow us to assess not only the quality of

our GP’s posterior mean but also the posterior variance; an often overlooked area

of GP model criticism.

Apply model Model application has centred around trying to answer one, or

more, research questions. In Chapter 2 we sought to understand the extent to

which the United Kingdom’s Covid-19 lockdown affected air quality levels. In

Chapter 3, we quantified the NO2 exposure that one would experience whilst

walking between any two locations in Mitcham, London. We also applied our

model to identify the roads with the greatest NO2 levels in Mitcham. We tried to

understand the latent structure of political networks in Chapter 4. This not only

provided us with vectors that could more easily be fed into downstream machine

learning tasks but it also provided us with a way to visualise the dependency

structure of the hypergraph. Finally, in Chapter 6, we used our probabilistic

ensemble model to build probabilistic global surface temperature projections.

Across all of this work, there has been a strong focus on supplementing any research

with efficient software containing a set of abstractions that make it easy to use.

This principle is detailed in Chapter 5 where we discuss the design of the GPJax

software and how it provides practitioners with a tool that can enable them to

more easily conduct their research into GP methodology.
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7.2 Future directions

Research into accelerating inference in GP models blossomed in the early 2000s

through the works of Snelson et al. (2005) and Titsias (2009), to highlight just two

seminal works from this period. The field has continued to mature until the late-

2010s through works such as Hensman et al. (2013a). However, as a community,

inference in GPs is now such that millions of data points can be handled in a matter

of minutes using consumer-grade laptops (e.g., K. Wang et al., 2019; Hensman

et al., 2018). As a consequence of this, the GP community has reached an inflection

point where the focus of research is shifting from inferential efficiency to effectively

handling complex data supports with non-trivial modelling constraints.

Within this thesis alone, we have considered modelling spatiotemporal data in

Chapter 2, network data in Chapter 3, hypergraphs in Chapter 4, and hierarchical

vector-valued data in Chapter 6. Beyond this thesis, research has been conducted

to enable modelling with GPs on the following supports: Riemannian manifolds

(Borovitskiy et al., 2020), Lie groups (Azangulov et al., 2022), vector fields

(Hutchinson et al., 2021; Lange-Hegermann, 2021), and probability measures

(Meunier et al., 2022). Beyond this, recent work in Lu et al. (2022) has extended

the additive GP model (Duvenaud et al., 2011) to orthogonally constrain the

additive kernel terms, thus making the relationship between inputs and outputs

fully explainable. Across all of this work, the common theme is the shift from

trying to develop faster inference schemes to develop more expressive models that

can handle increasingly more complex data.

This paradigm shift is unsurprising as the way we collect data has evolved

significantly in recent years and we now have access to volumes of descriptive data

that is suitable for modelling. As such, machine learning models have transitioned

from isolated academic environments into businesses seeking to extract value from
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their data. In such environments, the singular priority is seldom speed and is

instead a complex balance of explainability, accuracy, and speed.

Complimenting the existing body of literature, the work presented in this thesis

could naturally be extended in several ways. Lifting the work given in Chapter 3

to an experimental design setting would be a natural starting point. Whilst

monitoring pollution levels using mobile sensors is of high utility, as shown in

Chapter 3, developing schemes that enable this data collection requires a significant

investment in infrastructure. Consequently, much of the interest still concerns

installing static measurement stations. The work presented in Chapter 3 could

be used as a tool to help decide where next to place a measurement station as,

often, sensors are placed in areas where we a priori anticipate pollution levels to be

high. Positioning sensors in this way results in a biased estimate of the expected

pollution levels in the area. Therefore, one solution would be to place sensors in

areas where the predictive variance of the model presented in Chapter 3 is greatest.

Pollution maps could then be built by modelling a network of sensors where the

predictive mean of the street-level GP presented in Chapter 3 is used as a control

variate to minimise the variance of the full model.

Chapter 4 enables a natural extension to embed network data into a manifold. We

assumed no explicit geometrical structure of latent space in this work, but there

is a body of literature that has considered embedding networks into elliptic and

hyperbolic manifolds (e.g., A. L. Smith et al., 2019). Using the kernel given in

(Borovitskiy et al., 2020), it may be possible to assume that the latent space has

a Riemannian metric and the assumption of a Euclidean latent space is relaxed.

Equipping the latent space with this structure would allow a rich inspection of

the latent space to be accomplished using the tools developed by the probabilistic

geometry community (Tosi et al., 2014; Arvanitidis et al., 2017).
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We considered the problem of modelling global surface temperature in Chapter 6.

However, throughout this work, we ensured that our modelling approach was

flexible enough to incorporate any climate model’s output. Consequently,

extending the model presented in Chapter 6 to the modelling of precipitation

or pollution data would be a natural extension with a large potential impact on

the environmental sciences. Logistical challenges will present themselves whilst

obtaining the relevant dataset, and some of the modelling assumptions made in

Chapter 6 may be inappropriate for the new dataset e.g., precipitation data is zero-

inflated and positive and a non-Gaussian likelihood function will undoubtedly be

required. However, due to the modularity of our framework, these assumptions

can be incorporated into the model.

Finally, the development of open source software is imperative for any significant

progress to be achieved in machine learning. Therefore, the ongoing maintenance

and contributions to packages such as GPJax Chapter 5 is one avenue of future

research that would be of great benefit to the community. At present, GPJax is

written in a way that is conducive to machine learning researchers being able to

quickly prototype and develop new models. However, the abstractions that enable

this are superfluous to applied scientists who simply wish to use a GP as part

of their modelling workflow. Therefore, developing an abstraction of GPJax that

provides a simple interface for applied scientists to leverage the efficiency of GPJax

would be of great utility to the broader science community.
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décisions rendues à la pluralité des voix. 1785. Cited on page 142.

[50] V. M. De Oliveira and J. Fontanari. Random replicators with high-order

interactions. Physical review letters, 2000. Cited on page 107.

[51] M. Deisenroth and J. W. Ng. Distributed Gaussian processes. In Interna-

tional Conference on Machine Learning. PMLR, 2015. Cited on page 142.

[52] M. Deisenroth and C. Rasmussen. PILCO: a model-based and data-

efficient approach to policy search. In Proceedings of the 28th International

Conference on machine learning (ICML-11). Citeseer, 2011. Cited on

page 130.

[53] M. P. Deisenroth, D. Fox, and C. E. Rasmussen. Gaussian processes

for data-efficient learning in robotics and control. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 2015. Cited on page 44.

187



Bibliography

[54] C. Deser, F. Lehner, K. B. Rodgers, T. Ault, T. L. Delworth, P. N. DiNezio,

A. Fiore, C. Frankignoul, J. C. Fyfe, D. E. Horton, J. E. Kay, R. Knutti,

N. S. Lovenduski, J. Marotzke, K. A. McKinnon, S. Minobe, Randerson,

J. A, I. Screen, I. R. Simpson, and T. M. Insights from Earth system model

initial-condition large ensembles and future prospects. Nature Climate

Change, 2020. Cited on pages 146, 147.

[55] G. Detommaso, T. Cui, Y. Marzouk, A. Spantini, and R. Scheichl. A Stein

variational Newton method. Advances in Neural Information Processing

Systems, 2018. Cited on page 52.

[56] S. S. Dhomse, D. Kinnison, M. P. Chipperfield, R. J. Salawitch, I. Cionni,

M. I. Hegglin, N. L. Abraham, H. Akiyoshi, A. T. Archibald, E. M. Bednarz,

S. Bekki, P. Braesicke, N. Butchart, M. Dameris, M. Deushi, S. Frith,

S. C. Hardiman, B. Hassler, L. W. Horowitz, R.-M. Hu, P. Jöckel, B. Josse,
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