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Abstract: 

In this paper, a novel micromechanical modeling framework is presented to investigate 

mechanical properties of a multiphase magnetostrictive composite subjected to a multi-field 

coupling environment. To this end, a nonlinear constitutive equation with consideration of 

mechanical-magneto-thermal condition is proposed. Parametric elements are used to discretize a 

representative volume element (RVE) of the material to obtain local stress distribution. The 

macroscopic strain responses of the magnetostrictive material under magnetic field loading are 

predicated considering local equilibrium and using the homogenization technique. Numerical 

results are compared with the available experimental data. In general, the proposed method offers a 

useful tool to study the effects of external pre-stress, ambient temperature and fiber volume fraction 

on the overall characteristics of fiber reinforced magnetostrictive composites. The numerical results 

show that the nonlinear variations of strain and flux density are closely related to the magnetization 

intensity. 
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1. Introduction 

Magnetostriction effect refers to a phenomenon that magnetostrictive materials produce elastic 

strain along the external magnetization direction when they are subjected to external magnetic field. 

Therefore, magnetostrictive materials show obvious magneto-elastic coupling effect, which can be 

used to covert magnetic energy to mechanical energy or verse vie. Owing to the magnetostrictive 

property, magnetostrictive materials have been widely used in the manufacturing process of 

actuators and sensors[1].  

In general, magnetostrictive materials generate linear strain response under magnetic field. 

However, some magnetostrictive materials, such as Terfenol-D, exhibit strong nonlinear magneto-

mechanical effect[2–4] due to complex environmental factors. Thus, an accurate nonlinear 

constitutive equation is required to predict their nonlinear magneto-mechanical property. Carman 

and Mitrovic[5] proposed a standard square model, and the numerical results were compared with 

experiment data. Wan et al.[6,7] proposed a hyperbolic tangent model that was used to simulate 

experimental results. Duenas et al.[8] used magnetization intensity instead of magnetic field 

intensity as the independent variable of magnetostrictive constitutive model to calculate the effective 

magnetostrictive properties. Zheng and Liu[9,10] established a new constitutive model based on the 

Gibbs free energy theory to investigate magnetostrictive strain under different magnetic field and 

pre-stress environments. Zheng and Jin[11]established a coupled mechanical-magnetic-thermal 



constitutive model with consideration of temperature and hysteresis effects. 

The nonlinear constitutive model mentioned above mainly focused on one-dimensional 

magnetostrictive rods or two-dimensional thin films. As a brittle material with a low modulus of 

elasticity, it is difficult to machine Terfenol-D and form monolithic magnetostrictive materials. To 

increase the potential of widening the use of the materials, some non-magnetic phase materials are 

added into the magnetostrictive phase to form a magnetostrictive composite. For instance, Terfenol-

D particles or flakes are embedded into polymers (e.g., epoxy) or ceramic substrates (e.g., BaTiO3) 

to improve their strength and toughness[12]. The effective properties of a magnetostrictive 

heterogeneous material depend on multiplefactors, such as volume fraction of individual 

components and microstructures[13]. Herbst et al.[14] established an approximate spherical model 

to predict effective magnetostriction of particle-reinforced composites. Nan and Weng[15,16] 

constructed a homogenization model by introducing two independent Green’s functions to decouple 

the interactions between the magnetic and stress field. Liu et al.[17] studied the influences of 

inclusion shape, applied stress and matrix properties on the magnetostrictive properties of  

heterogeneous materials. However, all the above models were developed by assuming uniform 

stress distribution. Tang et al.[18] analyzed the influences of interfacial phase and constituent 

properties on magnetostriction using an asymptotic homogenization approach. Zhong et al.[19] 

constructed a micromechanical model based on the variation asymptotic homogenization method, 

and obtained local stress field and magnetic flux density. Based on Eshelby equivalent inclusion and 

Mori Tanaka method, Xue[20] and Guan[21] predicted the effective magnetostrictive strain of 

particle reinforced composites. 

In recent years, a new microscopic model of the finite-volume direct-averaging micromechanics 

(FVDAM), was proposed by employing the finite volume theory and the boundary conditions of 

the surface-averaged force and displacement[22,23]. Khatam[24] and Cavalcante[25] further 

improved the accuracy of the method by introducing parametric elements to discretize the model. 

Li et al.[26] introduced the mechanical-electrical constitutive relation into the FVDAM to analyze 

the effective properties and local stress distribution of piezoelectric composites. Ye et al.[27,28] 

presented an effective FVDAM model for fiber-reinforced composites with initial damages to 

investigate the local stress distribution and damage evolution at constitutive material level. Cai et 

al.[29] proposed a novel mechanical property evaluation procedure with consideration of primary 

pores for random short fiber reinforced composites by constructing a 3D parametric FVDAM model. 

The homogenized properties and localized field distributions of the magnetostrictive composites[30] 

were also extensively investigated by using the FVDAM with full consideration of the coupled 

mechanical-magnetic effects. However, to the best knowledge of the authors, studies on nonlinear 

characteristics of magnetostrictive composites with coupled mechanical-magnetic effects are not 

available in the literature. 

Based on the microscopic modeling scheme of the FVDAM, this paper presents a coupled 

nonlinear mechanical-magneto-thermal model at the microscopic scale to study the effective 

mechanical behaviors of magnetostrictive composites. The outline of the paper is summarized as 

follows: The coupled nonlinear constitutive equation is given in Section 2. In Section3, the nonlinear 

microscopic modeling process of magnetostrictive composites subjected to a coupled mechanical-

magnetic condition is presented. Their nonlinear equivalent properties are effectively evaluated by 

the proposed numerical model. In Section 4, comparisons between the results from experiments and 

the numerical model are presented. Section 5 summarizes the current results. 
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2.Constitutive relation of magnetostrictive materials 

2.1. Thermodynamic constitutive equation 

In order to establish a coupled magneto-thermal-mechanical constitutive relation, the equations 

of thermodynamics in the form of the Gibbs free energy function are employed. The differential 

expression of the internal energy function U  is written as the function of magnetization vectors

k
M  

and entropy density S , that is, 

0( , , )ij ij ijdU S d d TdS   = + +
k k k

M H M
 

(1) 

where ij
  

and ij   are the stress and strain components, respectively. 
kH   

and T   are the 

magnetic field intensity and temperature, respectively. S  is the entropy density. The subscripts 

, ,i j k   represent the direction of the vector components in the three-dimensional Cartesian 

coordinate system
1 2 3- -x x x  

as shown in Fig. 1(a). -7

0 =4 10 H/m    is the vacuum permeability. 

The Gibbs free energy density function G  of the magnetostrictive materials is defined as: 

( ), ,ij ij ijG T U TS  = − −kM
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The thermodynamic relations are written as: 
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To obtain the constitutive relations in the form of polynomials, Jin[31] expressed the Gibbs free 

energy in a Taylor series expansion of stresses and magnetization at a reference point

( , ) (0,0)ij kM =  , and proposed the following general constitutive equations for nonlinear 

magnetostrictive materials. 
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(4b) 

where 
0T T T = −  is the change of temperature. T  and 

0T  
are the ambient temperature and the 

reference temperature, respectively. 
(0) ( , )ij mn T  

  
includes both elastic and thermal expansion 

strain that are independent of the magnetic field. 
(1) ( , , )ij mn T   kM

  
is the magnetization-

dependent magnetostrictive strain. 
(0) ( , )
k

H TlM
 
represents the free state magnetic field intensity 

( 0mn = ), and 
(1) ( , , )
k mnH T lM  is the magnetic field intensity when the material is stressed. The 

strain component ij  in the constitutive relation is further expressed as: 
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(5) 

where E  and v  are the Young's modulus and Poisson's ratio, respectively.   and   
are the 

thermal expansion coefficients and thermal expansion coefficients at magnetization saturation, 

respectively. 
s , 

sM  and 
s  

are the saturation magnetostrictive strain, saturation magnetization 

and maximum pre-stress, respectively. ij
 
is the Kronecker delta. 

The magnetic field intensity components
kH  in equation (4b) can be further expressed as: 
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where 
1 2 3

2 2 2M M M M= + + , ( )1 .L−  is the inverse of the Langevin function ( ) coth( ) 1 /L x x x= −
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is the relaxation factor with magnetic susceptibility
m  . The temperature-

dependent saturation magnetization ( )sM T  is given by,
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where 
cT  is the Curie temperature. 

2.2. Coupled mechanical-magnetic-thermal constitutive model 

With consideration of nonlinear properties of a magnetostrictive material, an incremental 

approach is followed to describe the relationship between the mechanical and the magnetic 

responses. At each increment step, a linear relation in the form of the generalized Hooke’s law is 

assumed, as follows: 

ij ijkl kl ijk k ij

i ikl kl ik k i

C q H T

B q H m T

 

 

 =  −  −  
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(8) 

where ij   and 
iB   are, respectively, stress increment and flux density increment. ijklC  , ijkq  , 

ij  , 
ik   

and 
im   

denote elastic stiffness coefficient, piezomagnetic coefficient, thermal stress 

coefficient, magnetic permeability coefficient and pyromagnetic coefficient, respectively. With 

consideration of the coupled mechanical-magnetic-thermal effects, the generalized magnetic-



mechanical coupling can be written in the following matrix form. 
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The linear constitutive equations mentioned above satisfy the stress equilibrium and Maxwell's 

equations in the Cartesian coordinates
ix , i.e., 

0 ,  0
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where 
iB   

are the components of the magnetic flux density which is related to magnetic field 

density components 
iH  

and magnetization components 
iM  

in the form ( )0i i iB H M= + . 
 

Solving Eq. (9) and considering Eq. (11) yield 
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where the coefficient matrix P   contains the flexibility coefficients, piezomagnetic coefficients 

and permeability components, which can be obtained by differentiating Eqs. (5)-(6) with respect to 
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where 
3

O   
and 

3I   are third-order zero matrix and third-order unit matrix, respectively. The 

detailed expressions of A , B , C , D , 
1

R  and 
2

R  
can be found in Appendix 1. Matrix Q  is 

the inverse matrix of P , i.e., 
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From Eq. (9), the linear magneto-elastic coefficient matrix G   can be replaced by a 9 9

nonlinear material matrix Q , that is,  
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Eq. (15) can be further expressed in a more compact matrix form: 
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3. Microscopic mechanical model 

The effective property of the magnetostrictive composite[13] is dependent closely on the volume 

fraction of inclusion and microstructure characteristics, etc. To simplify the modeling procedure, it 

is assumed that the continuous fibers are periodically distributed in the matrix, as shown in Fig. 1(a), 

where the macroscopic structure is presented in the three-dimensional coordinate system,

1 2 3x x x− − . A representative volume element (RVE), as shown in Fig.1(b), is chosen to represent 

the composite. Since this can be approximately considered as a plane strain problem, the stress and 

strain of the continuous fiber-reinforced composites in the 
1 directionx −   are assumed to be 

constant along the direction of the fibers. Thus, the axial strain of the sub-cells is equal to the 

macroscopic axial strain, that is 
( )
11 11

q
 = . The RVE is further discretized by 48 48  parametric 

sub-cells in the 
2 3x x−  plane, as shown in Fig. 1(b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

Fig. 1. Schematic diagrams of the periodic structure and parametric mesh in continuous fiber magnetostrictive 

composites: (a) Periodical arrangement fibers, (b) Parametric RVE. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The coupled mechanical-magnetic-thermal nonlinear modeling process is illustrated by the 

flowchart shown in Fig. 2, which involves the following five steps: 

(a)The Gibbs free energy density function ( ), ,ij ij ijG T U TS  = − −kM  is firstly established, 

and the differential relation of the stress components ij  , magnetization vectors 
k

M   and 

temperature T   is obtained in Eq. (3). The nonlinear general constitutive relation of the 

magnetostrictive materials is obtained by the second-order Taylor expansion. The constitutive 

equation is expressed in an incremental form at each incremental step due to its nonlinearity in Eq. 

(8). Moreover, the Maxwell equation and the Gauss equilibrium equation are used to obtain the 

nonlinear mechanical-magnetic coupling coefficient matrix Q . 

(b)The magnetic field load is applied. The tangential strain increment ij  
and the magnetic 

Fig. 2. The nonlinear modeling process of the magnetostrictive composites under mechanical-magnetic 

coupling condition 

 



field intensity increment 
iH  

are calculated for the stress vector equation and the magnetic flux 

density vector equation with consideration of the nonlinear relationship in Eq. (16). 

 

(c)Parametric elements are constructed to discretize the RVE. The local displacement ( )q

iu and 

the magnetic potential ( )q
 of each sub-cell are expanded by a second-order Legendre polynomial. 

The local stiffness coefficient matrix ( )q

Local
K

 
is obtained by considering local equilibrium. 

(d)The global stiffness equation is solved after imposing the periodic and continuity conditions 

between adjacent sub-cells. The strain components ( ) ( ), ( )=
q q 

+ε A ε D of each sub-cell are obtained 

by constructing the Hill strain matrix ( )q
A  . Based on the homogenization theory, the equivalent 

material coefficient *
Q  is obtained as weighted average of the material coefficient of each sub-

cell, and can be expressed as ( ) ( ), ,

1 1

1
N N

L L
S

 

   

 
 = =

= *
Q Q A .  

 

3.1. Parametric meshing 

The N N   parametric meshes shown in Fig. 3(a) are used to discretize the section, which are 

particularly suitable for the curved interface and improve the accuracy of the model. The general 

quadrilateral elements in coordinates 
2 3( , )y y   are the mapping of the square elements in the 

reference coordinates (ξ, η). The actual position coordinates of the thq sub-cell is 
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where ( ) ( )( ) ( ) ( )( )
2 2

1, , 1, ,

2 2 3 3

m q m q m q m q

mL y y y y
+ +

= − + − is the boundary length of the quadrilateral cell. 

Note that when 1 5m+ = , the position co-ordinates are identical to those when 1m = . 

The parametric elements are constructed in the reference coordinate system  − , wherein the 

plane bounds of 1 1−  
 
and 1 1−  

 
are satisfied. The shape functions ( ),mN  

 
are used 

to characterize the mapping relation between the coordinate system and the reference coordinate 

system. For the thq  sub-cell, the vertices 
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3.2. Construction of the local stiffness matrix 

According to the homogenization theory[32], the incremental forms of the displacement 

components 
( )q

iu  and magnetic potential 
( )q

  for the thq
 
sub-cell can be represented by a 

two-scale expansion involving the macroscopic and the fluctuating components, that is, 
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(19) 

where ij  and jH  are increments of the average macroscopic strain and the average magnetic 

field intensity, respectively. The fluctuating displacements 
( )q

iu 
  

and the magnetic potential 

components 
( )q


  

can be further expanded into a second-order Legendre expansion in the 

reference coordinate system ( ),
q

  , as follows, 

Fig. 3. Mapping relation during the parametric modeling (a) Parameterized mesh, (b) Mapping relation. 
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. The unknown coefficients 
( )
( ) ( 1,2,3,4)
q

i mnW i =

are intermediate variables, which are determined by satisfying the sub-cell interfacial continuity 

conditions, the periodical conditions and the local equilibrium equations. The coefficients 
( )
( )

q

i mnW

are related to the sub-cell interface displacements and sub-cell generalized plane displacements. 

The intermediate variables related to the internal magnetic potential and surface-averaged 

magnetic potential are the unknown parameters in the parametric FVDAM model. For the thq sub-

cell in the reference coordinate system, the fluctuating surface-averaged displacements and 

magnetic potentials on faces 
1 3,F F ( 1 = ) and 

2 4,F F ( 1 =  ) can be calculated by integrating 

the respective interfacial displacements and magnetic potentials, that is, 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

(1,3)

00 01 02

1

1

(2,4)
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1

1
, 1

2
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2

i i i i i

i i i i i

W W d W W W

W W d W W W

 

 

+

−

+

−

  =  =   + 

  =   =    + 




 

(21) 

To further reduce the number of the unknown variables, the first-order and second-order 

coefficients are replaced by the zero-order coefficients. On this basis, the fluctuating displacement 

and magnetic potential components can be written in a matrix form as: 

( )

( )

( )

( )

( )

( )

( )

( )

(1)

0010

(2)

01 00

(3)
20 00

(4)
02

00

ˆ
0 1 0 1

ˆ
1 0 1 01

ˆ0 1 0 12

1 0 1 0 ˆ

i ii

ii i

i i i

i
i i

W WW

W W W

W W W

W W W

  −  
−    

     −   −
   = 
     −  
           −    

 
(22) 

In addition, the local strain and magnetic field intensity can be obtained by employing the 

fluctuating strain and macroscopic magnetic field intensity components, that is, 

( )

( )
( )

( )1
,

2

q
q

jq qi
iijij i

j i i

uu
H H

y y y


 

   
 =  + +  =  − 

    
 

(23) 

The conversion from the actual coordinate system to the isoparametric coordinate system requires 

partial derivation of the surface-averaged strain and magnetic potential by means of the Jacobian 

matrix J, that is, 

( ) ( ) ( ) ( )

2 21 1

33

,

q qq q

i i

ii i

u u

y y

u u

yy

 







− −

          
        
      = =

         
              

J J

 

(24) 

where 
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(25) 

After the coordinate transformation using the inverse of Jacobian matrix 1−
J  , the fluctuating 

displacements 
iu  

and the magnetic potential components   in Eq. (20) are substituted into 

Eq. (23) to obtain the partial derivatives, respectively. The relevant derivatives with respective to 

the local coordinates are applied to obtain the strain components 
( )m

ij  and the magnetic field 

intensity ( )m

iH  ( 1,2,3,4m = ) for each sub-cell, given by, 

(1,3) (1,3)= + 1 1 1ΔX ΔX E W J  

(2,4) (2,4)= + 2 2 2ΔX ΔX E W J
 

(26) 

where ΔX  is the increment of the strain and magnetic field intensity in Eq. (16). 
1W  

and 
2W

are the vectors related to the intermediate differential variables 
( )
( )

q

i mnW . 
1J  and 

2J  
are related to 

the elements in 1−
J . The detailed expressions of 

1E  and 
2E  can be found in Appendix 2. 

In order to investigate the sub-cell interactions, the increments of the surface-averaged traction 

ˆ
it  and the normal magnetic displacement ˆφ  

are expressed by the boundary stresses 
( )m

ji  

and the internal magnetic flux density 
( )m

jB , respectively. The integral of the traction 
it  

and the 

magnetic potential φ  over each side of 
mF  can be obtained: 

( )
1 1

( )

1 1

1 1ˆ n
mm

i i ji j

m m

dl dl
l l


+ +

− −

 =  =   t t ,
( )

1 1

( )

1 1

1 1
ˆ n

mm

j j

m m

dl B dl
l l

+ +

− −

 =  =   φ φ
 

(27) 

where  
( )

1 2 3

m

i t t t =   t  are the surface-averaged tractions. The average surface 

displacement and magnetic displacement can be expressed in the matrix form below, 

( )

( )

( ) ( ) ( )

3 2

2 3

3 2

2 3

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

m

m m m m

n n

n n

n n

n n

 
 
 = =
 
 
 

I ΔY N ΔY
 

(28) 

where 
( ) ( )

1 2 3
ˆ ˆ ˆ ˆ

mm
t t t  =     I . ( )m

N  contain the normal vector of the sub-cell boundary.

ΔY  is the increment of stress and magnetic flux intensity in Eq. (16). By averaging the increments 

of the equilibrium equation and the Maxwell equation in Eq. (11), respectively, the surface-averaged 



traction and magnetic displacement are written as: 

( )

( ) ( )

4 4
( )

1 1

4 4

1 1

ˆ ˆ ˆ 0

ˆ ˆ ˆ 0

m

m

m m

ji j i i m m i

m mS S l

m m

i i m m

m mS S l
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B n dS dS dl l
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  =  =  =  =

  =  =  =  =

   

   

t

φ
 

(29) 

By employing Eq. (22), the zero-order variables 
( ),

1(00) 2(00) 3(00) 4(00)W W W W
 

       
are 

used to replace the first-order and second-order intermediate variables. Moreover, the differentials 

of the intermediate zero-order variables are eliminated by considering the local equilibrium equation 

(Eq. 29). The relationship between the surface-averaged traction and the normal magnetic 

displacements can be obtained by Eq. (30), where Q  is the nonlinear material constitutive matrix 

obtained in Section 2. 

( ) ( ) ( ) ( ) ( )
ocal

m m m m m

L T= + + I N Q ΔX K U Γ
 

(30) 

where 
( ) ( ) ( ) ( ) ( )

1 2 3

m
u u u

       
 =    

 
U

， ， ， ，
 . 

( )
ocal

m

LK
  

is dependent on the geometry of 

the sub-cell and the nonlinear material coefficients, which can be explicitly expressed as a matrix 

with 4 4  sub-matrices. 

( )

( )
11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

K K K K

K K K K

K K K K

K K K K

m

m

 
 
 =
 
 
 

LocalK
 

(31) 

3.3. Construction of the global stiffness matrix 

The surface-averaged displacements and magnetic potentials are obtained by employing the local 

stiffness matrix of each sub-cell. On this basis, the global stiffness matrix related to the sub-cell 

displacements and magnetic potentials can be constructed after imposing the continuity and 

periodicity conditions of the RVE. The surface-averaged traction and the normal magnetic 

displacements are continuous across the interfaces between adjacent sub-cells and are expressed as 

follows: 

2( 1, ) 4( , ) 0   + + =I I
  

1( 1, ) 3( , ) 0   + + =I I
 

(32) 

Similarly, the surface-averaged displacements and magnetic potentials of the adjacent sub-cells 

are written as follows: 

2( 1, ) 4( , )   + =U U    
1( 1, ) 3( , )   + =U U

 
(33) 

According to the periodic boundary conditions of the RVE, the boundary conditions of the 

average surface displacement, magnetic potential increment, average surface traction and normal 

magnetic flux density are written as: 



    
2( 1, )2(1, ) 0

N

i i
  +

+ =I I    
3( , 1)3( ,1) 0

N

i i
 +

+ =I I

 
2( 1, )2(1, ) N

i i
  +

=U U     
3( , 1)3( ,1) N

i i
 +

=U U
 

(34) 

The global stiffness equation of the RVE is written as follows: 

ˆ =globalK I ΔCΔX
 

(35) 

where Î  contains all the sub-cell displacements and magnetic potential components. The global 

stiffness matrix global
K

 
is an assembly of the local stiffness matrices. The global matrix ΔC  is 

the difference of the nonlinear material coefficients between adjacent sub-cells. After the unknown 

variables 
( )
( )

q

i mnW
 
of each sub-cells are solved, the displacements, magnetic potentials, strains, and 

magnetic field intensities of each sub-cells can be obtained subsequently. 

 

3.4. Homogenization process 

The average strain and magnetic field intensity of sub-cell with coordinates ( ) ,
 
are related 

to the macroscopic strain and magnetic field intensity of the RVE. The local ΔX  of the sub-cell 

can be obtained by using the Hill strain concentration matrix 
( ), 

A [33],that is, 

( ) ( ) ( ), , ,
=

th
T

     
+ ΔX A ΔX A

 
(36) 

where 
( ), 

A are determined from average strain 
( , )

ij

 
 
and magnetic field  of the sub-

cell. 
( ),th  

A  is the thermal contribution of the sub-cell. 

Subsequently, the increments of stress and magnetic flux density can be expressed as the weighted 

sum of the sub-cell average stress and magnetic displacement, that is, 
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(37) 

where ( )
S

 ，

 is the area of the sub-cell. 

Substituting the equivalent material coefficients into the nonlinear incremental constitutive 

relation in Eq. (16), the macroscopic nonlinear incremental constitutive equation of the 

magnetostrictive composite is found as, 

* T− *
ΔY = Q ΔX Φ

 
(38) 

where the equivalent magneto-elastic coefficients matrix 
 

=  
 

* *

*

*T *

C q
Q

q -μ
 

is determined by the 

( , )

ijH  



sub-cell geometry, constitutive law and magneto-elastic concentration matrix of the material. 

Substituting Eqs. (36) and (37) into Eq. (38) yields the following nonlinear equivalent material 

coefficient matrix *
Q . 

3.4. Convergence study 

To study mesh sensitivity of the model, results from using 48 48  and 96 96  sub-cells are 

obtained, respectively, and compared in Fig.4 for an axial magnetic field intensity of 20KA/m. The 

equivalent elastic modulus and the equivalent piezomagnetic coefficients are computed by the 

numerical model. The fiber volume fraction of the material ranges from 0.05 to 0.70. From the 

numerical results shown in Fig. 4, it can be seen that the results from the RVEs discretized by 

48 48  and 96 96  elements are virtually the same, suggesting that a mesh of 48 48  is suffice 

for the model to provide accurate predictions with reduced computational costs. Thus, the RVEs in 

the following calculations are all discretized by 48 48  sub-cells. 
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1
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= *
Q Q A

 
(39) 

Fig. 4. Convergence investigation of the composites with consideration of sub-cell number (a) 11E , (b) 22E , (c) 

*

11q  and (d) 
*

12q . 

(a) (b) 

(c) (d) 



4. Applications and discussions 

In this Section, the effects of magnetic field variation, pre-stress and temperature on the nonlinear 

properties of Terfenol-D fiber-reinforced epoxy matrix composites are investigated under different 

loading conditions. The constituent material properties of the fiber and the matrix are given in Table 

1 and Table 2, respectively. To study the influence of fiber contents, three different fiber volume 

fractions ( fV ), i.e., 0.35, 0.46 and 0.70, are considered. 

Table1. Material parameters of the Terfenol-D fiber [34] 

 

Table 2.Material parameters of the epoxy matrix[34] 

4.1. A Comparison with the experimental data 

The macroscopic axial strain increment 
11  

is plotted against the axial magnetic field intensity 

1H   
in Fig. 5 for the materials of different fiber volumes when the ambient temperature is the 

reference temperature 
0T T= . Comparing with the experimental results[35], it can be found that 

the current method presents a higher accuracy than the Mori-Tanaka theory when the fiber volume 

fractions are equal to 0.35 and 0.46, as shown in Figs. 5(a)-(b). It is interesting to mention that the 

current method predicts a higher level of nonlinearity, especially when the composite has a lower 

fiber ratio. This may be attributable to the pore defects, which are ignored in the numerical modeling, 

resulting in a reduction of the nonlinear magnetostrictive strain. In addition, the magnetic 

susceptibility of the composite may be overestimated by the numerical method without considering 

the interaction forces, which may lead to a higher nonlinear magnetostrictive effect. It should be 

Material properties Implication Value 

E  Elasticity modulus 110 Gpa  

v
 

Poisson ratio 0.3 


 

Coefficient of thermal expansion 612 10−
-1K  


 

Coefficient of saturation magnetization thermal expansion 
61.3 10−− 

-1K  

0T
 

The reference temperature 293 K  

cT
 

The Curie temperature 656.3 K  

s  The saturation magnetostriction 31.1 10−  

sM  The saturation magnetization 638 kA/m  

s  Maximum pre-stress 200 Mpa  

m
 

The magnetic susceptibility 14 

Material properties E (GPa)     ( )-1K  

Epoxy 3 0.35 654 10−  



pointed out that the present method agrees very well with the experimental results when the 

magnetization is close to magnetic saturation (
1 100kA/mH ＞ ). Both theoretical methods agree 

with the experimental data well when the fiber volume fraction is equal to 0.7, as shown in Fig. 5(c). 

This may be attributed to the increase of the fiber volume fraction. In other words, the mechanical 

property of the magnetostrictive composites is close to those of a monolithic magnetostrictive 

material, which results in a good consistency with the experimental results.  

   

 

 

4.2. Investigation of nonlinear responses 

The influences of average pre-stress on the magnetization effect of the magnetostrictive 

composites are investigated. Fig. 6 shows the magnetization intensity undergone axial pre-stresses

11  of 1MPa, 8MPa and 16MPa at reference temperature 
0T T= . The fiber volume fraction is 

chosen to be 0.35. Clearly, the magnetization process exhibits a slow growth when 
1 60kA/mH ＞ . 

This is because the magnetic domain and the magnetic domain walls are no longer offset by the 

magnetic fields, which can be explained by the relationship between the magnetization and magnetic 

fields in Eq. (6). In addition, it can be seen that in general the increase of the pre-stress increases 

magnetization intensity 
0 1M  , while has little effect on the maximum amplitude of the 

Fig. 5. Validation of the proposed micromechanical model (a) =0.35fV , (b) =0.46fV , and (c) =0.70fV . 

(a) (b) 

(c) 



magnetization intensity, -7

0 =4 10 H/m     is the vacuum permeability. The maximum 

magnetization intensity max

0 1M  eventually reaches 0.74T , which is determined by the property 

of the magnetostrictive material. 

Fig. 7 shows the magnetization process with respect to macroscopic strain and magnetic flux 

density at the reference temperature 
0T T= . Three different axial pre-stresses, i.e., 1MPa, 8MPa 

and 16MPa are considered. Similarly, the axial strain 
11  and the magnetic flux density 

1B  exhibit 

strong nonlinear property when the absolute value of magnetic field intensity
1 60kA/mH   . 

Moreover, the pre-stress tends to increase the amplitude of the total axial strain 
11

  
and the 

magnetic flux density 
1B  . Similarly, the axial strain 

11   and the magnetic flux density 
1B
 

increase almost linearly with the magnetic field intensity when 
1 60kA/mH 

 
and the material is 

in the state of magnetic saturation. In other words, in this state, the piezomagnetic coefficient and 

the permeability of the magnetostrictive composite are approximately constant. In addition, the pre-

stress has little effect on the magnetic flux density once the magnetization saturation 
1 max

1TB   . 

This is attributed to the fact that the magnetic flux density is defined as ( )0i i iB H M= + , where 

the maximum magnetic flux density is only determined by the saturation magnetization that depends 

on material properties, and has little correlation with pre-stress. 

 

 
Fig. 6. The influences of pre-stress 11

 
on magnetization effects 

Approaches the point of saturation magnetization 
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javascript:;


  

 

Fig. 8 shows the nonlinear responses of the equivalent piezomagnetic coefficient *

11q   and 

relative permeability *

11 0/ 
 
with respect to magnetic field intensity 

1H  under different axial pre-

stresses 
11  when the fiber volume ratio is equal to 0.35. Due to the mechanical-magnetic coupling 

effects, the pre-contraction phenomenon along the Terfenol-D fiber direction occurs owing to the 

magnetic domain rotation before the magnetic field is applied. The minimum equivalent 

piezomagnetic coefficient *

11q  is equal to 62.1 N/Am , which is independent of the applied pre-

stresses. The piezomagnetic coupling coefficient *

11q
 

starts to increase once a magnetic field is 

applied. It is worth noting that the equivalent piezomagnetic coefficient *

11q  is always positively 

correlated with the intensity of magnetic field, and tends to stabilize after saturation magnetization. 

It can be seen from Fig. 8 (b) that the relative permeability *

11 0/   decreases sharply with the 

increase of magnetic field intensity. Moreover, the applied pre-stress tends to decrease the relative 

permeability to some extent, which is attributable to the internal compression that reduces magnetic 

field conduction. 

  

Fig. 7. Comparisons of the nonlinear responses with respect to the magnetic field intensity 1H  under different 

pre-stresses 11   at reference temperature 0T T=   (a) Axial macroscopic strain 11  , and (b) Macroscopic 

magnetic flux density 1B . 

(a) (b) 

(b) (a) 



 

The local stress and strain distributions in the RVE predicted by the parametric FVDAM are 

shown in Fig. 9 for the magnetostrictive composites subjected to a magnetic field of intensity

1 100kA/mH =  along the 
1 directionx −  without considering any pre-stresses. In the figure, the 

strain distributions of 
22  

and 
33  

are identical due to symmetry and the effective stress is the 

von Mises stress given below. 

     
2 22

11 22 22 33 33 11

1 1 1

2 2 2
eff      = − + − + −

 
(39) 

It can be seen that higher microscopic stresses and strains are predicted when the nonlinear 

constitutive relationship is considered for the magnetostrictive composites. When the axial stress

11
 
produced by the magnetic field intensity 

1H  
is considered, the fiber and the matrix sub-cells 

are, respectively, subjected to compression and tension. This is attributed to the mismatch of elastic 

modulus between the two materials. In addition, the maximum strain components 
22

 
and 

23  in 

the matrices are always located at the interface between the Terfenol-D fiber and the matrix materials. 

In details, the respective maximum transverse compressive strains max

22   with and without 

considering nonlinearity are approximately 31.08 10−−   and 43.63 10−−  , which occurs around 

the interface in the matrix. The transverse compressive strains 
22  at the center distributed in the 

Terfenol-D fiber are 46.46 10−   and 57.26 10−  , respectively, from the nonlinear and linear 

analyses, which are lower than the transverse compressive strains along the matrix boundary. With 

and without considering nonlinearity, the respective maximum shear strains max

23
 

are 47.06 10−  

and 41.84 10− . Due to the structural symmetry of the RVE model along the fiber direction, as 

shown in Fig. 1 (b), the maximum and minimum shear strains max

23  and 
min

23
 
are symmetrically 

distributed in the matrix, as shown in Fig. 9. In addition, the shear strains 
23   in the fiber is 

approximately zero because the fiber has a much greater elastic modulus than the matrix.  

 

 

 

 

 

 

 

Fig. 8. Nonlinear property of the magnetostrictive composites with respect to magnetic field intensity 
1H  under 

different pre-stresses 
11

  
at reference temperature 

0T T=  : (a) Equivalent piezomagnetic coefficient *

11q   (b) 

Relative permeability *

11 0/   



 Linear model Nonlinear model 

11  

  

eff  

  

22  

  

23  

  

 

Fig. 9. Comparisons of the local stress and strain distributions by the proposed FVDAM model with and without 

consideration of the nonlinear behaviors under an axial magnetic field intensity loading 1 100kA/mH = . 



Fig. 10 presents a comparison of the numerical results for the magnetostrictive composites with 

and without consideration of the nonlinear constitutive relation. Herein the magnetic flux density 

along fiber direction from 52 10−   to 52 10  A/m  is applied on. It can be observed from Fig. 10 

(a) that the nonlinear model predicts higher strain amplitude before magnetization saturation. The 

linear and nonlinear numerical results shown in Fig. 10(b) are the macroscopic magnetic flux density 

1B  
of the magnetostrictive composite when a magnetic field is applied on. With consideration of 

nonlinear properties, the magnetic flux density 
1B  of the magnetostrictive composite shows a rapid 

growth when 1 60kA/mH  . Once the magnetostrictive composite is at a saturation magnetization 

state, the growth rate of the magnetic flux density 
1B
 
is approximately a constant, showing an 

almost linear relation to magnetic field intensity.  

  

 

Fig. 11 shows the effect of fiber volume fraction ( 0.35, 0.46, and 0.7fV = ) on the equivalent 

piezomagnetic coefficient *

11q , relative permeability *

11 0/   and axial increment strain 
11 . A 

pre-stress of 
11 1 Mpa =

 
is applied on the magnetostrictive composite at reference temperature

0 293KT = . It can be seen from Figs. 11(a) and (b) that under the same magnetic field the equivalent 

piezomagnetic coefficient and the relative permeability increase with the increase of fiber volume 

fraction. In addition, a higher equivalent piezomagnetic coefficient will generate more 

magnetostrictive strain, as shown in Fig. 11(c). The composite fiber ratio 0.7 has the highest strain. 

Fig. 10. Comparisons of the axial strain and magnetic flux density with respect to the nonlinear and linear 

constitutive relations (a) Axial macroscopic strain 11 , and (b) Macroscopic magnetic flux density 1B . 

(a) (b) 



  

 

 

Fig. 12 shows the nonlinear magnetostrictive responses with respect to the axial strain 
11  and 

magnetic flux density 
1B , respectively, at different ambient temperature changes. It can be seen 

from Fig. 12(a) that the axial magnetostrictive strain 
11   

decreases with the increase of 

temperature change. Fig. 12(b) is the relation between the magnetic flux density 
1B
  

and the 

temperature change. It is interesting to note that the temperature change T  has little effect on the 

magnetic flux density 
1B .  

Fig. 11. Comparisons of the different fiber volume fraction ( 0.35, 0.46, and 0.7fV = ) under pre-stress 11 1Mpa =

at reference temperature 0T T=  (a) Equivalent piezomagnetic coefficient *

11q , (b) Relative permeability 
*

11 0/  , 

and (c) Increment of axial strain 11 . 

(a) (b) 

(c) 



  

 

Fig. 13 plots the equivalent piezomagnetic coefficient *

11q  
and relative permeability *

11 0/   of 

the magnetostrictive composite with respect to temperature changes (
0T T T = − ). The results show 

that an elevated temperature has a negative impact on the magnetization process of the 

magnetostrictive fibers. This may be attributed to the suppressed rotation and movement of the 

magnetic domain. In other words, a magnetostrictive composite may not be suitable for an 

engineering application at a high ambient temperature. In general, the correlations of the influences 

of magnetic field, material composition and ambient temperature should be considered in the design 

procedure of magnetostrictive composites. 

  

 

5. Conclusions 

This paper presented a nonlinear microscopic constitutive model to effectively describe the 

mechanical behaviors of magnetostrictive composites subjected to coupled mechanical-magneto-

thermal conditions. By discretizing the RVE with the constructed parametric sub-cells, the proposed 

model shows a good ability in capturing nonlinear responses of the magnetostrictive composites 

with different fiber volume fraction and ambient temperature, etc. The main conclusions of this 

study are summarized as follows: 

Fig. 12. Nonlinear magnetostrictive responses with respect to different temperature variations 0T T T = − : (a) 

Axial strain 11  and (b) Magnetic flux density 1B . 

 

Fig. 13. Effective properties of magnetostrictive composites with respect to temperature changes 0T T T = −  (a) 

Equivalent piezomagnetic coefficient *

11q  and (b) Relative permeability *

11 0/  . 

(b) (a) 

(a) (b) 



1) The proposed nonlinear constitutive model is sufficiently accurate in investigating the effective 

nonlinear properties of the magnetostrictive composites.  

2) The nonlinear variations of strain and flux density are closely related to magnetization intensity 

and approach to a steady state after saturation of magnetization. The maximum saturation point 

in the magnetization process closely depends on the properties of the constituent materials, 

which has little correlation with the pre-stress and ambient temperature.  

3) Pre-stresses and temperature affect magnetostrictive strain and magnetic flux density by 

influencing the equivalent piezomagnetic coefficient and permeability. Pre-stress causes 

sharply increase of the piezomagnetic coefficient, which further results in a higher strain 

amplitude. In addition, a higher temperature variation can inhibit the equivalent piezomagnetic 

coefficient. 

4) Before saturation of magnetization, the strain responses of material with consideration of 

nonlinearity are higher than those without. Moreover, the nonlinear results are consistent with 

experiment results.  

In summarize, the proposed micromechanical method is capable of investigating nonlinear 

performance of magnetostrictive composites, which is useful in design and application of the 

materials. In addition, the proposed micromechanical model based on the nonlinear constitutive 

equation can be developed to model particulate magnetostrictive composites. 
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